re PR middle-end/48989 (FAIL: gfortran.dg/lto/pr46036 f_lto_pr46036_0.o assemble)
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
673 }
674 }
675 else
676 fallthru = true;
677
678 if (fallthru)
679 {
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
683 }
684 }
685
686 if (root_omp_region)
687 free_omp_regions ();
688
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
691 }
692
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
695
696 static unsigned int
697 locus_map_hash (const void *item)
698 {
699 return ((const struct locus_discrim_map *) item)->locus;
700 }
701
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
704
705 static int
706 locus_map_eq (const void *va, const void *vb)
707 {
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
711 }
712
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
717
718 static int
719 next_discriminator_for_locus (location_t locus)
720 {
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
723
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
731 {
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
736 }
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
739 }
740
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
745 {
746 expanded_location from, to;
747
748 if (locus1 == locus2)
749 return true;
750
751 from = expand_location (locus1);
752 to = expand_location (locus2);
753
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && filename_cmp (from.file, to.file) == 0);
761 }
762
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
765
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
768 {
769 gimple first_in_to_bb, last_in_to_bb;
770
771 if (locus == 0 || bb->discriminator != 0)
772 return;
773
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
779 }
780
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
782
783 static void
784 make_cond_expr_edges (basic_block bb)
785 {
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
792
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795
796 entry_locus = gimple_location (entry);
797
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
805
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
813 {
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
818 }
819
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
823 }
824
825
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
828
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
832
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
836 {
837 tree t, next;
838
839 for (t = (tree) *value; t; t = next)
840 {
841 next = CASE_CHAIN (t);
842 CASE_CHAIN (t) = NULL;
843 }
844
845 *value = NULL;
846 return true;
847 }
848
849 /* Start recording information mapping edges to case labels. */
850
851 void
852 start_recording_case_labels (void)
853 {
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
857 }
858
859 /* Return nonzero if we are recording information for case labels. */
860
861 static bool
862 recording_case_labels_p (void)
863 {
864 return (edge_to_cases != NULL);
865 }
866
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
871 {
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 {
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
881 {
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
885 }
886 }
887 BITMAP_FREE (touched_switch_bbs);
888 }
889
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
892
893 Otherwise return NULL. */
894
895 static tree
896 get_cases_for_edge (edge e, gimple t)
897 {
898 void **slot;
899 size_t i, n;
900
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
905
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
909
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
913
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
916 {
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
921
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 CASE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
927 }
928
929 return (tree) *pointer_map_contains (edge_to_cases, e);
930 }
931
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933
934 static void
935 make_gimple_switch_edges (basic_block bb)
936 {
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
940
941 entry_locus = gimple_location (entry);
942
943 n = gimple_switch_num_labels (entry);
944
945 for (i = 0; i < n; ++i)
946 {
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
951 }
952 }
953
954
955 /* Return the basic block holding label DEST. */
956
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
959 {
960 int uid = LABEL_DECL_UID (dest);
961
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
966 {
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
969
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
973 }
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
978 }
979
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 {
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
988
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 {
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
994
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
997
998 target = gimple_label_label (label_stmt);
999
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1004 {
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* Create edges for a goto statement at block BB. */
1012
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1015 {
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1018
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1021 {
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1031 }
1032
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1035 }
1036
1037 /* Create edges for an asm statement with labels at block BB. */
1038
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1041 {
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1045
1046 for (i = 0; i < n; ++i)
1047 {
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1052 }
1053 }
1054
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1058
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1066
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1069 {
1070 /* The label. */
1071 tree label;
1072
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1076
1077 /* Given LABEL return the first label in the same basic block. */
1078
1079 static tree
1080 main_block_label (tree label)
1081 {
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1084
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1087 {
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1090 }
1091
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1094 }
1095
1096 /* Clean up redundant labels within the exception tree. */
1097
1098 static void
1099 cleanup_dead_labels_eh (void)
1100 {
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1105
1106 if (cfun->eh == NULL)
1107 return;
1108
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1111 {
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1114 {
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1117 }
1118 }
1119
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1122 {
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1126
1127 case ERT_TRY:
1128 {
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 {
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1135 }
1136 }
1137 break;
1138
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1144 }
1145 }
1146
1147
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1152
1153 void
1154 cleanup_dead_labels (void)
1155 {
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1162 {
1163 gimple_stmt_iterator i;
1164
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 {
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1169
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1172
1173 label = gimple_label_label (stmt);
1174
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1178 {
1179 label_for_bb[bb->index].label = label;
1180 continue;
1181 }
1182
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 {
1189 label_for_bb[bb->index].label = label;
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1198 {
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1202
1203 switch (gimple_code (stmt))
1204 {
1205 case GIMPLE_COND:
1206 {
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1209
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1215 }
1216
1217 case GIMPLE_SWITCH:
1218 {
1219 size_t i, n = gimple_switch_num_labels (stmt);
1220
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1223 {
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1227 }
1228 break;
1229 }
1230
1231 case GIMPLE_ASM:
1232 {
1233 int i, n = gimple_asm_nlabels (stmt);
1234
1235 for (i = 0; i < n; ++i)
1236 {
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1240 }
1241 break;
1242 }
1243
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1248 {
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1251 }
1252 break;
1253
1254 default:
1255 break;
1256 }
1257 }
1258
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1261
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1266 {
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1269
1270 if (!label_for_this_bb)
1271 continue;
1272
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1276
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 {
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1281
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1284
1285 label = gimple_label_label (stmt);
1286
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1294 }
1295 }
1296
1297 free (label_for_bb);
1298 }
1299
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1306 {
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1312
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 {
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1322 }
1323 else
1324 has_default = false;
1325
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1332 {
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1335
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1338
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1342 {
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1347 }
1348
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1353
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1358 {
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1362 double_int_one);
1363
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1368 bhp1))
1369 {
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1376 }
1377 else
1378 break;
1379 }
1380 }
1381
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1385 {
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1390 }
1391
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1394 }
1395
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1399
1400 void
1401 group_case_labels (void)
1402 {
1403 basic_block bb;
1404
1405 FOR_EACH_BB (bb)
1406 {
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1410 }
1411 }
1412
1413 /* Checks whether we can merge block B into block A. */
1414
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 {
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1421
1422 if (!single_succ_p (a))
1423 return false;
1424
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1427
1428 if (single_succ (a) != b)
1429 return false;
1430
1431 if (!single_pred_p (b))
1432 return false;
1433
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1436
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1442
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1448
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 {
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1457
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1461 }
1462
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1466
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1474
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 {
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1490 }
1491
1492 return true;
1493 }
1494
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 {
1500 const ssa_use_operand_t *ptr;
1501
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1505
1506 return true;
1507 }
1508
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1515 {
1516 ssa_use_operand_t *ptr, *single_use = 0;
1517
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1520 {
1521 if (single_use)
1522 {
1523 single_use = NULL;
1524 break;
1525 }
1526 single_use = ptr;
1527 }
1528
1529 if (use_p)
1530 *use_p = single_use;
1531
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1534
1535 return !!single_use;
1536 }
1537
1538 /* Replaces all uses of NAME by VAL. */
1539
1540 void
1541 replace_uses_by (tree name, tree val)
1542 {
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1547
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 {
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 {
1552 replace_exp (use, val);
1553
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1555 {
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1558 {
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1564 }
1565 }
1566 }
1567
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1569 {
1570 size_t i;
1571
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1575
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1578 {
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1585 }
1586
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1589 }
1590 }
1591
1592 gcc_assert (has_zero_uses (name));
1593
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1596 {
1597 struct loop *loop;
1598 loop_iterator li;
1599
1600 FOR_EACH_LOOP (li, loop, 0)
1601 {
1602 substitute_in_loop_info (loop, name, val);
1603 }
1604 }
1605 }
1606
1607 /* Merge block B into block A. */
1608
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1611 {
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1614
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1622 {
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1628
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1637
1638 if (!may_replace_uses)
1639 {
1640 gcc_assert (is_gimple_reg (def));
1641
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1649 }
1650 else
1651 {
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1656 {
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1660
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1664
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1667 }
1668 else
1669 replace_uses_by (def, use);
1670
1671 remove_phi_node (&psi, true);
1672 }
1673 }
1674
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1677
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 {
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 {
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1689
1690 gsi_remove (&gsi, false);
1691
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1699 {
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1702 }
1703
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1706 {
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1709 }
1710 }
1711 else
1712 {
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1715 }
1716 }
1717
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1722
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1725 }
1726
1727
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1732
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1735 {
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1739
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1746
1747 return bb;
1748 }
1749
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1751
1752 void
1753 notice_special_calls (gimple call)
1754 {
1755 int flags = gimple_call_flags (call);
1756
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1761 }
1762
1763
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1766
1767 void
1768 clear_special_calls (void)
1769 {
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1772 }
1773
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1775
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1778 {
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1782
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1786 }
1787
1788
1789 /* Remove statements of basic block BB. */
1790
1791 static void
1792 remove_bb (basic_block bb)
1793 {
1794 gimple_stmt_iterator i;
1795
1796 if (dump_file)
1797 {
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1800 {
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1803 }
1804 }
1805
1806 if (current_loops)
1807 {
1808 struct loop *loop = bb->loop_father;
1809
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1815 }
1816
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1819 {
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1825 {
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1830 {
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1833
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1838 {
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1841 }
1842
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1847 }
1848 else
1849 {
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1856
1857 gsi_remove (&i, true);
1858 }
1859
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1864 }
1865 }
1866
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1869 }
1870
1871
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1875
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1878 {
1879 gimple stmt;
1880
1881 stmt = last_stmt (bb);
1882
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1885
1886 if (val == NULL)
1887 return NULL;
1888
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1891
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1894
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1897
1898 if (computed_goto_p (stmt))
1899 {
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1902
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1910 }
1911
1912 gcc_unreachable ();
1913 }
1914
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1918
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1921 {
1922 basic_block dest;
1923 edge e = NULL;
1924
1925 dest = label_to_block (val);
1926 if (dest)
1927 {
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1930 }
1931
1932 return e;
1933 }
1934
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1938
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1941 {
1942 edge true_edge, false_edge;
1943
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1945
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1948 }
1949
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1953
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1956 {
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1961
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1965
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1969 }
1970
1971
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1975
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1978 {
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1981
1982 for (low = 0, high = n; high - low > 1; )
1983 {
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1987
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1990
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1995
1996 if (CASE_HIGH (t) == NULL)
1997 {
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2001 }
2002 else
2003 {
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2007 }
2008 }
2009
2010 return default_case;
2011 }
2012
2013
2014 /* Dump a basic block on stderr. */
2015
2016 void
2017 gimple_debug_bb (basic_block bb)
2018 {
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2020 }
2021
2022
2023 /* Dump basic block with index N on stderr. */
2024
2025 basic_block
2026 gimple_debug_bb_n (int n)
2027 {
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2030 }
2031
2032
2033 /* Dump the CFG on stderr.
2034
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2037
2038 void
2039 gimple_debug_cfg (int flags)
2040 {
2041 gimple_dump_cfg (stderr, flags);
2042 }
2043
2044
2045 /* Dump the program showing basic block boundaries on the given FILE.
2046
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2049
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2052 {
2053 if (flags & TDF_DETAILS)
2054 {
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2057
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2062
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2065 }
2066
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2069
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2071 }
2072
2073
2074 /* Dump CFG statistics on FILE. */
2075
2076 void
2077 dump_cfg_stats (FILE *file)
2078 {
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2089
2090
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2092
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2097
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2102
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2109
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2115
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2118
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2121
2122 fprintf (file, "\n");
2123 }
2124
2125
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2128
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2131 {
2132 dump_cfg_stats (stderr);
2133 }
2134
2135
2136 /* Dump the flowgraph to a .vcg FILE. */
2137
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2140 {
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2146
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2154 {
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2157
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2162
2163 fprintf (file, " }\n");
2164 }
2165 fputc ('\n', file);
2166
2167 FOR_EACH_BB (bb)
2168 {
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2175
2176 if (first)
2177 {
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2181 }
2182 else
2183 head_name = "no-statement";
2184
2185 if (last)
2186 {
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2190 }
2191 else
2192 end_name = "no-statement";
2193
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2197
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2199 {
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2204
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2209
2210 fprintf (file, " }\n");
2211 }
2212
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2215 }
2216
2217 fputs ("}\n\n", file);
2218 }
2219
2220
2221
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2225
2226 /* Return true if T represents a stmt that always transfers control. */
2227
2228 bool
2229 is_ctrl_stmt (gimple t)
2230 {
2231 switch (gimple_code (t))
2232 {
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2241 }
2242 }
2243
2244
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2247
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2250 {
2251 gcc_assert (t);
2252
2253 switch (gimple_code (t))
2254 {
2255 case GIMPLE_CALL:
2256 {
2257 int flags = gimple_call_flags (t);
2258
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2264
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2268
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2272 }
2273 break;
2274
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2280
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2285
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2289
2290 default:
2291 break;
2292 }
2293
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2296 }
2297
2298
2299 /* Return true if T is a simple local goto. */
2300
2301 bool
2302 simple_goto_p (gimple t)
2303 {
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2306 }
2307
2308
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2311
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2314 {
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2321 }
2322
2323
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2330
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2333 {
2334 if (stmt == NULL)
2335 return false;
2336
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2341 {
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2346
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2348 {
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2351
2352 cfg_stats.num_merged_labels++;
2353 return false;
2354 }
2355 else
2356 return true;
2357 }
2358
2359 return false;
2360 }
2361
2362
2363 /* Return true if T should end a basic block. */
2364
2365 bool
2366 stmt_ends_bb_p (gimple t)
2367 {
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2369 }
2370
2371 /* Remove block annotations and other data structures. */
2372
2373 void
2374 delete_tree_cfg_annotations (void)
2375 {
2376 label_to_block_map = NULL;
2377 }
2378
2379
2380 /* Return the first statement in basic block BB. */
2381
2382 gimple
2383 first_stmt (basic_block bb)
2384 {
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2387
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2389 {
2390 gsi_next (&i);
2391 stmt = NULL;
2392 }
2393 return stmt;
2394 }
2395
2396 /* Return the first non-label statement in basic block BB. */
2397
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2400 {
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2405 }
2406
2407 /* Return the last statement in basic block BB. */
2408
2409 gimple
2410 last_stmt (basic_block bb)
2411 {
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2414
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2416 {
2417 gsi_prev (&i);
2418 stmt = NULL;
2419 }
2420 return stmt;
2421 }
2422
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2426
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2429 {
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2432
2433 if (gsi_end_p (i))
2434 return NULL;
2435
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2440
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2445
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2453 }
2454
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2456
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2459 {
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2464
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2468
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2472 {
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2476
2477 gcc_assert (result == gimple_phi_result (phi));
2478
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2480 }
2481
2482 redirect_edge_var_map_clear (old_edge);
2483 }
2484
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2489
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2492 {
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2495
2496 if (dest_prev)
2497 {
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2501 }
2502 return dest_prev;
2503 }
2504
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2507
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2510 {
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2513
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2516
2517 dest = edge_in->dest;
2518
2519 after_bb = split_edge_bb_loc (edge_in);
2520
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2527
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2531
2532 return new_bb;
2533 }
2534
2535
2536 /* Verify properties of the address expression T with base object BASE. */
2537
2538 static tree
2539 verify_address (tree t, tree base)
2540 {
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2545
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2548
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2552
2553 if (old_constant != new_constant)
2554 {
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558 if (old_side_effects != new_side_effects)
2559 {
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2562 }
2563
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2568
2569 if (DECL_GIMPLE_REG_P (base))
2570 {
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2573 }
2574
2575 return NULL_TREE;
2576 }
2577
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2581
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2584 {
2585 tree t = *tp, x;
2586
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2589
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594
2595 switch (TREE_CODE (t))
2596 {
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2599 {
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2602 }
2603 break;
2604
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2608
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2613 {
2614 error ("invalid first operand of MEM_REF");
2615 return x;
2616 }
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2619 {
2620 error ("invalid offset operand of MEM_REF");
2621 return TREE_OPERAND (t, 1);
2622 }
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2628
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2632 {
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2635 }
2636 break;
2637
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples");
2640 return *tp;
2641
2642 case ADDR_EXPR:
2643 {
2644 tree tem;
2645
2646 gcc_assert (is_gimple_address (t));
2647
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2654 ;
2655
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2658
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2663
2664 if (!TREE_ADDRESSABLE (x))
2665 {
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2668 }
2669
2670 break;
2671 }
2672
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2676 {
2677 error ("non-integral used in condition");
2678 return x;
2679 }
2680 if (!is_gimple_condexpr (x))
2681 {
2682 error ("invalid conditional operand");
2683 return x;
2684 }
2685 break;
2686
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2689
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2699
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2712 {
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2717 {
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2723 }
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2725 {
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2728 {
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2731 }
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2735 {
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2739 }
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2743 {
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2747 }
2748 }
2749
2750 t = TREE_OPERAND (t, 0);
2751 }
2752
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2754 {
2755 error ("invalid reference prefix");
2756 return t;
2757 }
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2765 {
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2768 }
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2772
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2776 {
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2779 }
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2784 {
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype");
2787 return t;
2788 }
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2827
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2832
2833 case CASE_LABEL_EXPR:
2834 if (CASE_CHAIN (t))
2835 {
2836 error ("invalid CASE_CHAIN");
2837 return t;
2838 }
2839 break;
2840
2841 default:
2842 break;
2843 }
2844 return NULL;
2845
2846 #undef CHECK_OP
2847 }
2848
2849
2850 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2851 Returns true if there is an error, otherwise false. */
2852
2853 static bool
2854 verify_types_in_gimple_min_lval (tree expr)
2855 {
2856 tree op;
2857
2858 if (is_gimple_id (expr))
2859 return false;
2860
2861 if (TREE_CODE (expr) != TARGET_MEM_REF
2862 && TREE_CODE (expr) != MEM_REF)
2863 {
2864 error ("invalid expression for min lvalue");
2865 return true;
2866 }
2867
2868 /* TARGET_MEM_REFs are strange beasts. */
2869 if (TREE_CODE (expr) == TARGET_MEM_REF)
2870 return false;
2871
2872 op = TREE_OPERAND (expr, 0);
2873 if (!is_gimple_val (op))
2874 {
2875 error ("invalid operand in indirect reference");
2876 debug_generic_stmt (op);
2877 return true;
2878 }
2879 /* Memory references now generally can involve a value conversion. */
2880
2881 return false;
2882 }
2883
2884 /* Verify if EXPR is a valid GIMPLE reference expression. If
2885 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2886 if there is an error, otherwise false. */
2887
2888 static bool
2889 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2890 {
2891 while (handled_component_p (expr))
2892 {
2893 tree op = TREE_OPERAND (expr, 0);
2894
2895 if (TREE_CODE (expr) == ARRAY_REF
2896 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2897 {
2898 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2899 || (TREE_OPERAND (expr, 2)
2900 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2901 || (TREE_OPERAND (expr, 3)
2902 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2903 {
2904 error ("invalid operands to array reference");
2905 debug_generic_stmt (expr);
2906 return true;
2907 }
2908 }
2909
2910 /* Verify if the reference array element types are compatible. */
2911 if (TREE_CODE (expr) == ARRAY_REF
2912 && !useless_type_conversion_p (TREE_TYPE (expr),
2913 TREE_TYPE (TREE_TYPE (op))))
2914 {
2915 error ("type mismatch in array reference");
2916 debug_generic_stmt (TREE_TYPE (expr));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2918 return true;
2919 }
2920 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2921 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2922 TREE_TYPE (TREE_TYPE (op))))
2923 {
2924 error ("type mismatch in array range reference");
2925 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2926 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2927 return true;
2928 }
2929
2930 if ((TREE_CODE (expr) == REALPART_EXPR
2931 || TREE_CODE (expr) == IMAGPART_EXPR)
2932 && !useless_type_conversion_p (TREE_TYPE (expr),
2933 TREE_TYPE (TREE_TYPE (op))))
2934 {
2935 error ("type mismatch in real/imagpart reference");
2936 debug_generic_stmt (TREE_TYPE (expr));
2937 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2938 return true;
2939 }
2940
2941 if (TREE_CODE (expr) == COMPONENT_REF
2942 && !useless_type_conversion_p (TREE_TYPE (expr),
2943 TREE_TYPE (TREE_OPERAND (expr, 1))))
2944 {
2945 error ("type mismatch in component reference");
2946 debug_generic_stmt (TREE_TYPE (expr));
2947 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2948 return true;
2949 }
2950
2951 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2952 {
2953 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2954 that their operand is not an SSA name or an invariant when
2955 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2956 bug). Otherwise there is nothing to verify, gross mismatches at
2957 most invoke undefined behavior. */
2958 if (require_lvalue
2959 && (TREE_CODE (op) == SSA_NAME
2960 || is_gimple_min_invariant (op)))
2961 {
2962 error ("conversion of an SSA_NAME on the left hand side");
2963 debug_generic_stmt (expr);
2964 return true;
2965 }
2966 else if (TREE_CODE (op) == SSA_NAME
2967 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2968 {
2969 error ("conversion of register to a different size");
2970 debug_generic_stmt (expr);
2971 return true;
2972 }
2973 else if (!handled_component_p (op))
2974 return false;
2975 }
2976
2977 expr = op;
2978 }
2979
2980 if (TREE_CODE (expr) == MEM_REF)
2981 {
2982 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2983 {
2984 error ("invalid address operand in MEM_REF");
2985 debug_generic_stmt (expr);
2986 return true;
2987 }
2988 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2989 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2990 {
2991 error ("invalid offset operand in MEM_REF");
2992 debug_generic_stmt (expr);
2993 return true;
2994 }
2995 }
2996 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2997 {
2998 if (!TMR_BASE (expr)
2999 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3000 {
3001 error ("invalid address operand in TARGET_MEM_REF");
3002 return true;
3003 }
3004 if (!TMR_OFFSET (expr)
3005 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3006 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3007 {
3008 error ("invalid offset operand in TARGET_MEM_REF");
3009 debug_generic_stmt (expr);
3010 return true;
3011 }
3012 }
3013
3014 return ((require_lvalue || !is_gimple_min_invariant (expr))
3015 && verify_types_in_gimple_min_lval (expr));
3016 }
3017
3018 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3019 list of pointer-to types that is trivially convertible to DEST. */
3020
3021 static bool
3022 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3023 {
3024 tree src;
3025
3026 if (!TYPE_POINTER_TO (src_obj))
3027 return true;
3028
3029 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3030 if (useless_type_conversion_p (dest, src))
3031 return true;
3032
3033 return false;
3034 }
3035
3036 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3037 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3038
3039 static bool
3040 valid_fixed_convert_types_p (tree type1, tree type2)
3041 {
3042 return (FIXED_POINT_TYPE_P (type1)
3043 && (INTEGRAL_TYPE_P (type2)
3044 || SCALAR_FLOAT_TYPE_P (type2)
3045 || FIXED_POINT_TYPE_P (type2)));
3046 }
3047
3048 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3049 is a problem, otherwise false. */
3050
3051 static bool
3052 verify_gimple_call (gimple stmt)
3053 {
3054 tree fn = gimple_call_fn (stmt);
3055 tree fntype, fndecl;
3056 unsigned i;
3057
3058 if (gimple_call_internal_p (stmt))
3059 {
3060 if (fn)
3061 {
3062 error ("gimple call has two targets");
3063 debug_generic_stmt (fn);
3064 return true;
3065 }
3066 }
3067 else
3068 {
3069 if (!fn)
3070 {
3071 error ("gimple call has no target");
3072 return true;
3073 }
3074 }
3075
3076 if (fn && !is_gimple_call_addr (fn))
3077 {
3078 error ("invalid function in gimple call");
3079 debug_generic_stmt (fn);
3080 return true;
3081 }
3082
3083 if (fn
3084 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3085 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3086 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3087 {
3088 error ("non-function in gimple call");
3089 return true;
3090 }
3091
3092 fndecl = gimple_call_fndecl (stmt);
3093 if (fndecl
3094 && TREE_CODE (fndecl) == FUNCTION_DECL
3095 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3096 && !DECL_PURE_P (fndecl)
3097 && !TREE_READONLY (fndecl))
3098 {
3099 error ("invalid pure const state for function");
3100 return true;
3101 }
3102
3103 if (gimple_call_lhs (stmt)
3104 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3105 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3106 {
3107 error ("invalid LHS in gimple call");
3108 return true;
3109 }
3110
3111 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3112 {
3113 error ("LHS in noreturn call");
3114 return true;
3115 }
3116
3117 fntype = gimple_call_fntype (stmt);
3118 if (fntype
3119 && gimple_call_lhs (stmt)
3120 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3121 TREE_TYPE (fntype))
3122 /* ??? At least C++ misses conversions at assignments from
3123 void * call results.
3124 ??? Java is completely off. Especially with functions
3125 returning java.lang.Object.
3126 For now simply allow arbitrary pointer type conversions. */
3127 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3128 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3129 {
3130 error ("invalid conversion in gimple call");
3131 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3132 debug_generic_stmt (TREE_TYPE (fntype));
3133 return true;
3134 }
3135
3136 if (gimple_call_chain (stmt)
3137 && !is_gimple_val (gimple_call_chain (stmt)))
3138 {
3139 error ("invalid static chain in gimple call");
3140 debug_generic_stmt (gimple_call_chain (stmt));
3141 return true;
3142 }
3143
3144 /* If there is a static chain argument, this should not be an indirect
3145 call, and the decl should have DECL_STATIC_CHAIN set. */
3146 if (gimple_call_chain (stmt))
3147 {
3148 if (!gimple_call_fndecl (stmt))
3149 {
3150 error ("static chain in indirect gimple call");
3151 return true;
3152 }
3153 fn = TREE_OPERAND (fn, 0);
3154
3155 if (!DECL_STATIC_CHAIN (fn))
3156 {
3157 error ("static chain with function that doesn%'t use one");
3158 return true;
3159 }
3160 }
3161
3162 /* ??? The C frontend passes unpromoted arguments in case it
3163 didn't see a function declaration before the call. So for now
3164 leave the call arguments mostly unverified. Once we gimplify
3165 unit-at-a-time we have a chance to fix this. */
3166
3167 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3168 {
3169 tree arg = gimple_call_arg (stmt, i);
3170 if ((is_gimple_reg_type (TREE_TYPE (arg))
3171 && !is_gimple_val (arg))
3172 || (!is_gimple_reg_type (TREE_TYPE (arg))
3173 && !is_gimple_lvalue (arg)))
3174 {
3175 error ("invalid argument to gimple call");
3176 debug_generic_expr (arg);
3177 return true;
3178 }
3179 }
3180
3181 return false;
3182 }
3183
3184 /* Verifies the gimple comparison with the result type TYPE and
3185 the operands OP0 and OP1. */
3186
3187 static bool
3188 verify_gimple_comparison (tree type, tree op0, tree op1)
3189 {
3190 tree op0_type = TREE_TYPE (op0);
3191 tree op1_type = TREE_TYPE (op1);
3192
3193 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3194 {
3195 error ("invalid operands in gimple comparison");
3196 return true;
3197 }
3198
3199 /* For comparisons we do not have the operations type as the
3200 effective type the comparison is carried out in. Instead
3201 we require that either the first operand is trivially
3202 convertible into the second, or the other way around.
3203 The resulting type of a comparison may be any integral type.
3204 Because we special-case pointers to void we allow
3205 comparisons of pointers with the same mode as well. */
3206 if ((!useless_type_conversion_p (op0_type, op1_type)
3207 && !useless_type_conversion_p (op1_type, op0_type)
3208 && (!POINTER_TYPE_P (op0_type)
3209 || !POINTER_TYPE_P (op1_type)
3210 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3211 || !INTEGRAL_TYPE_P (type))
3212 {
3213 error ("type mismatch in comparison expression");
3214 debug_generic_expr (type);
3215 debug_generic_expr (op0_type);
3216 debug_generic_expr (op1_type);
3217 return true;
3218 }
3219
3220 return false;
3221 }
3222
3223 /* Verify a gimple assignment statement STMT with an unary rhs.
3224 Returns true if anything is wrong. */
3225
3226 static bool
3227 verify_gimple_assign_unary (gimple stmt)
3228 {
3229 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3230 tree lhs = gimple_assign_lhs (stmt);
3231 tree lhs_type = TREE_TYPE (lhs);
3232 tree rhs1 = gimple_assign_rhs1 (stmt);
3233 tree rhs1_type = TREE_TYPE (rhs1);
3234
3235 if (!is_gimple_reg (lhs))
3236 {
3237 error ("non-register as LHS of unary operation");
3238 return true;
3239 }
3240
3241 if (!is_gimple_val (rhs1))
3242 {
3243 error ("invalid operand in unary operation");
3244 return true;
3245 }
3246
3247 /* First handle conversions. */
3248 switch (rhs_code)
3249 {
3250 CASE_CONVERT:
3251 {
3252 /* Allow conversions between integral types and pointers only if
3253 there is no sign or zero extension involved.
3254 For targets were the precision of sizetype doesn't match that
3255 of pointers we need to allow arbitrary conversions from and
3256 to sizetype. */
3257 if ((POINTER_TYPE_P (lhs_type)
3258 && INTEGRAL_TYPE_P (rhs1_type)
3259 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3260 || rhs1_type == sizetype))
3261 || (POINTER_TYPE_P (rhs1_type)
3262 && INTEGRAL_TYPE_P (lhs_type)
3263 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3264 || lhs_type == sizetype)))
3265 return false;
3266
3267 /* Allow conversion from integer to offset type and vice versa. */
3268 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3269 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3270 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3271 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3272 return false;
3273
3274 /* Otherwise assert we are converting between types of the
3275 same kind. */
3276 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3277 {
3278 error ("invalid types in nop conversion");
3279 debug_generic_expr (lhs_type);
3280 debug_generic_expr (rhs1_type);
3281 return true;
3282 }
3283
3284 return false;
3285 }
3286
3287 case ADDR_SPACE_CONVERT_EXPR:
3288 {
3289 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3290 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3291 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3292 {
3293 error ("invalid types in address space conversion");
3294 debug_generic_expr (lhs_type);
3295 debug_generic_expr (rhs1_type);
3296 return true;
3297 }
3298
3299 return false;
3300 }
3301
3302 case FIXED_CONVERT_EXPR:
3303 {
3304 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3305 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3306 {
3307 error ("invalid types in fixed-point conversion");
3308 debug_generic_expr (lhs_type);
3309 debug_generic_expr (rhs1_type);
3310 return true;
3311 }
3312
3313 return false;
3314 }
3315
3316 case FLOAT_EXPR:
3317 {
3318 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3319 {
3320 error ("invalid types in conversion to floating point");
3321 debug_generic_expr (lhs_type);
3322 debug_generic_expr (rhs1_type);
3323 return true;
3324 }
3325
3326 return false;
3327 }
3328
3329 case FIX_TRUNC_EXPR:
3330 {
3331 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3332 {
3333 error ("invalid types in conversion to integer");
3334 debug_generic_expr (lhs_type);
3335 debug_generic_expr (rhs1_type);
3336 return true;
3337 }
3338
3339 return false;
3340 }
3341
3342 case VEC_UNPACK_HI_EXPR:
3343 case VEC_UNPACK_LO_EXPR:
3344 case REDUC_MAX_EXPR:
3345 case REDUC_MIN_EXPR:
3346 case REDUC_PLUS_EXPR:
3347 case VEC_UNPACK_FLOAT_HI_EXPR:
3348 case VEC_UNPACK_FLOAT_LO_EXPR:
3349 /* FIXME. */
3350 return false;
3351
3352 case TRUTH_NOT_EXPR:
3353 /* We require two-valued operand types. */
3354 if (!(TREE_CODE (rhs1_type) == BOOLEAN_TYPE
3355 || (INTEGRAL_TYPE_P (rhs1_type)
3356 && TYPE_PRECISION (rhs1_type) == 1)))
3357 {
3358 error ("invalid types in truth not");
3359 debug_generic_expr (lhs_type);
3360 debug_generic_expr (rhs1_type);
3361 return true;
3362 }
3363 break;
3364
3365 case NEGATE_EXPR:
3366 case ABS_EXPR:
3367 case BIT_NOT_EXPR:
3368 case PAREN_EXPR:
3369 case NON_LVALUE_EXPR:
3370 case CONJ_EXPR:
3371 break;
3372
3373 default:
3374 gcc_unreachable ();
3375 }
3376
3377 /* For the remaining codes assert there is no conversion involved. */
3378 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3379 {
3380 error ("non-trivial conversion in unary operation");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 return true;
3384 }
3385
3386 return false;
3387 }
3388
3389 /* Verify a gimple assignment statement STMT with a binary rhs.
3390 Returns true if anything is wrong. */
3391
3392 static bool
3393 verify_gimple_assign_binary (gimple stmt)
3394 {
3395 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3396 tree lhs = gimple_assign_lhs (stmt);
3397 tree lhs_type = TREE_TYPE (lhs);
3398 tree rhs1 = gimple_assign_rhs1 (stmt);
3399 tree rhs1_type = TREE_TYPE (rhs1);
3400 tree rhs2 = gimple_assign_rhs2 (stmt);
3401 tree rhs2_type = TREE_TYPE (rhs2);
3402
3403 if (!is_gimple_reg (lhs))
3404 {
3405 error ("non-register as LHS of binary operation");
3406 return true;
3407 }
3408
3409 if (!is_gimple_val (rhs1)
3410 || !is_gimple_val (rhs2))
3411 {
3412 error ("invalid operands in binary operation");
3413 return true;
3414 }
3415
3416 /* First handle operations that involve different types. */
3417 switch (rhs_code)
3418 {
3419 case COMPLEX_EXPR:
3420 {
3421 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3422 || !(INTEGRAL_TYPE_P (rhs1_type)
3423 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3424 || !(INTEGRAL_TYPE_P (rhs2_type)
3425 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3426 {
3427 error ("type mismatch in complex expression");
3428 debug_generic_expr (lhs_type);
3429 debug_generic_expr (rhs1_type);
3430 debug_generic_expr (rhs2_type);
3431 return true;
3432 }
3433
3434 return false;
3435 }
3436
3437 case LSHIFT_EXPR:
3438 case RSHIFT_EXPR:
3439 case LROTATE_EXPR:
3440 case RROTATE_EXPR:
3441 {
3442 /* Shifts and rotates are ok on integral types, fixed point
3443 types and integer vector types. */
3444 if ((!INTEGRAL_TYPE_P (rhs1_type)
3445 && !FIXED_POINT_TYPE_P (rhs1_type)
3446 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3447 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3448 || (!INTEGRAL_TYPE_P (rhs2_type)
3449 /* Vector shifts of vectors are also ok. */
3450 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3451 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3452 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3453 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3454 || !useless_type_conversion_p (lhs_type, rhs1_type))
3455 {
3456 error ("type mismatch in shift expression");
3457 debug_generic_expr (lhs_type);
3458 debug_generic_expr (rhs1_type);
3459 debug_generic_expr (rhs2_type);
3460 return true;
3461 }
3462
3463 return false;
3464 }
3465
3466 case VEC_LSHIFT_EXPR:
3467 case VEC_RSHIFT_EXPR:
3468 {
3469 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3470 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3471 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3472 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3473 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3474 || (!INTEGRAL_TYPE_P (rhs2_type)
3475 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3476 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3477 || !useless_type_conversion_p (lhs_type, rhs1_type))
3478 {
3479 error ("type mismatch in vector shift expression");
3480 debug_generic_expr (lhs_type);
3481 debug_generic_expr (rhs1_type);
3482 debug_generic_expr (rhs2_type);
3483 return true;
3484 }
3485 /* For shifting a vector of non-integral components we
3486 only allow shifting by a constant multiple of the element size. */
3487 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3488 && (TREE_CODE (rhs2) != INTEGER_CST
3489 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3490 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3491 {
3492 error ("non-element sized vector shift of floating point vector");
3493 return true;
3494 }
3495
3496 return false;
3497 }
3498
3499 case PLUS_EXPR:
3500 case MINUS_EXPR:
3501 {
3502 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3503 ??? This just makes the checker happy and may not be what is
3504 intended. */
3505 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3506 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3507 {
3508 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3509 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3510 {
3511 error ("invalid non-vector operands to vector valued plus");
3512 return true;
3513 }
3514 lhs_type = TREE_TYPE (lhs_type);
3515 rhs1_type = TREE_TYPE (rhs1_type);
3516 rhs2_type = TREE_TYPE (rhs2_type);
3517 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3518 the pointer to 2nd place. */
3519 if (POINTER_TYPE_P (rhs2_type))
3520 {
3521 tree tem = rhs1_type;
3522 rhs1_type = rhs2_type;
3523 rhs2_type = tem;
3524 }
3525 goto do_pointer_plus_expr_check;
3526 }
3527 if (POINTER_TYPE_P (lhs_type)
3528 || POINTER_TYPE_P (rhs1_type)
3529 || POINTER_TYPE_P (rhs2_type))
3530 {
3531 error ("invalid (pointer) operands to plus/minus");
3532 return true;
3533 }
3534
3535 /* Continue with generic binary expression handling. */
3536 break;
3537 }
3538
3539 case POINTER_PLUS_EXPR:
3540 {
3541 do_pointer_plus_expr_check:
3542 if (!POINTER_TYPE_P (rhs1_type)
3543 || !useless_type_conversion_p (lhs_type, rhs1_type)
3544 || !useless_type_conversion_p (sizetype, rhs2_type))
3545 {
3546 error ("type mismatch in pointer plus expression");
3547 debug_generic_stmt (lhs_type);
3548 debug_generic_stmt (rhs1_type);
3549 debug_generic_stmt (rhs2_type);
3550 return true;
3551 }
3552
3553 return false;
3554 }
3555
3556 case TRUTH_ANDIF_EXPR:
3557 case TRUTH_ORIF_EXPR:
3558 gcc_unreachable ();
3559
3560 case TRUTH_AND_EXPR:
3561 case TRUTH_OR_EXPR:
3562 case TRUTH_XOR_EXPR:
3563 {
3564 /* We require two-valued operand types. */
3565 if (!(TREE_CODE (rhs1_type) == BOOLEAN_TYPE
3566 || (INTEGRAL_TYPE_P (rhs1_type)
3567 && TYPE_PRECISION (rhs1_type) == 1))
3568 || !(TREE_CODE (rhs2_type) == BOOLEAN_TYPE
3569 || (INTEGRAL_TYPE_P (rhs2_type)
3570 && TYPE_PRECISION (rhs2_type) == 1)))
3571 {
3572 error ("type mismatch in binary truth expression");
3573 debug_generic_expr (lhs_type);
3574 debug_generic_expr (rhs1_type);
3575 debug_generic_expr (rhs2_type);
3576 return true;
3577 }
3578
3579 break;
3580 }
3581
3582 case LT_EXPR:
3583 case LE_EXPR:
3584 case GT_EXPR:
3585 case GE_EXPR:
3586 case EQ_EXPR:
3587 case NE_EXPR:
3588 case UNORDERED_EXPR:
3589 case ORDERED_EXPR:
3590 case UNLT_EXPR:
3591 case UNLE_EXPR:
3592 case UNGT_EXPR:
3593 case UNGE_EXPR:
3594 case UNEQ_EXPR:
3595 case LTGT_EXPR:
3596 /* Comparisons are also binary, but the result type is not
3597 connected to the operand types. */
3598 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3599
3600 case WIDEN_MULT_EXPR:
3601 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3602 return true;
3603 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3604 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3605
3606 case WIDEN_SUM_EXPR:
3607 case VEC_WIDEN_MULT_HI_EXPR:
3608 case VEC_WIDEN_MULT_LO_EXPR:
3609 case VEC_PACK_TRUNC_EXPR:
3610 case VEC_PACK_SAT_EXPR:
3611 case VEC_PACK_FIX_TRUNC_EXPR:
3612 case VEC_EXTRACT_EVEN_EXPR:
3613 case VEC_EXTRACT_ODD_EXPR:
3614 case VEC_INTERLEAVE_HIGH_EXPR:
3615 case VEC_INTERLEAVE_LOW_EXPR:
3616 /* FIXME. */
3617 return false;
3618
3619 case MULT_EXPR:
3620 case TRUNC_DIV_EXPR:
3621 case CEIL_DIV_EXPR:
3622 case FLOOR_DIV_EXPR:
3623 case ROUND_DIV_EXPR:
3624 case TRUNC_MOD_EXPR:
3625 case CEIL_MOD_EXPR:
3626 case FLOOR_MOD_EXPR:
3627 case ROUND_MOD_EXPR:
3628 case RDIV_EXPR:
3629 case EXACT_DIV_EXPR:
3630 case MIN_EXPR:
3631 case MAX_EXPR:
3632 case BIT_IOR_EXPR:
3633 case BIT_XOR_EXPR:
3634 case BIT_AND_EXPR:
3635 /* Continue with generic binary expression handling. */
3636 break;
3637
3638 default:
3639 gcc_unreachable ();
3640 }
3641
3642 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3643 || !useless_type_conversion_p (lhs_type, rhs2_type))
3644 {
3645 error ("type mismatch in binary expression");
3646 debug_generic_stmt (lhs_type);
3647 debug_generic_stmt (rhs1_type);
3648 debug_generic_stmt (rhs2_type);
3649 return true;
3650 }
3651
3652 return false;
3653 }
3654
3655 /* Verify a gimple assignment statement STMT with a ternary rhs.
3656 Returns true if anything is wrong. */
3657
3658 static bool
3659 verify_gimple_assign_ternary (gimple stmt)
3660 {
3661 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3662 tree lhs = gimple_assign_lhs (stmt);
3663 tree lhs_type = TREE_TYPE (lhs);
3664 tree rhs1 = gimple_assign_rhs1 (stmt);
3665 tree rhs1_type = TREE_TYPE (rhs1);
3666 tree rhs2 = gimple_assign_rhs2 (stmt);
3667 tree rhs2_type = TREE_TYPE (rhs2);
3668 tree rhs3 = gimple_assign_rhs3 (stmt);
3669 tree rhs3_type = TREE_TYPE (rhs3);
3670
3671 if (!is_gimple_reg (lhs))
3672 {
3673 error ("non-register as LHS of ternary operation");
3674 return true;
3675 }
3676
3677 if (!is_gimple_val (rhs1)
3678 || !is_gimple_val (rhs2)
3679 || !is_gimple_val (rhs3))
3680 {
3681 error ("invalid operands in ternary operation");
3682 return true;
3683 }
3684
3685 /* First handle operations that involve different types. */
3686 switch (rhs_code)
3687 {
3688 case WIDEN_MULT_PLUS_EXPR:
3689 case WIDEN_MULT_MINUS_EXPR:
3690 if ((!INTEGRAL_TYPE_P (rhs1_type)
3691 && !FIXED_POINT_TYPE_P (rhs1_type))
3692 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3693 || !useless_type_conversion_p (lhs_type, rhs3_type)
3694 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3695 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3696 {
3697 error ("type mismatch in widening multiply-accumulate expression");
3698 debug_generic_expr (lhs_type);
3699 debug_generic_expr (rhs1_type);
3700 debug_generic_expr (rhs2_type);
3701 debug_generic_expr (rhs3_type);
3702 return true;
3703 }
3704 break;
3705
3706 case FMA_EXPR:
3707 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3708 || !useless_type_conversion_p (lhs_type, rhs2_type)
3709 || !useless_type_conversion_p (lhs_type, rhs3_type))
3710 {
3711 error ("type mismatch in fused multiply-add expression");
3712 debug_generic_expr (lhs_type);
3713 debug_generic_expr (rhs1_type);
3714 debug_generic_expr (rhs2_type);
3715 debug_generic_expr (rhs3_type);
3716 return true;
3717 }
3718 break;
3719
3720 case DOT_PROD_EXPR:
3721 case REALIGN_LOAD_EXPR:
3722 /* FIXME. */
3723 return false;
3724
3725 default:
3726 gcc_unreachable ();
3727 }
3728 return false;
3729 }
3730
3731 /* Verify a gimple assignment statement STMT with a single rhs.
3732 Returns true if anything is wrong. */
3733
3734 static bool
3735 verify_gimple_assign_single (gimple stmt)
3736 {
3737 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3738 tree lhs = gimple_assign_lhs (stmt);
3739 tree lhs_type = TREE_TYPE (lhs);
3740 tree rhs1 = gimple_assign_rhs1 (stmt);
3741 tree rhs1_type = TREE_TYPE (rhs1);
3742 bool res = false;
3743
3744 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3745 {
3746 error ("non-trivial conversion at assignment");
3747 debug_generic_expr (lhs_type);
3748 debug_generic_expr (rhs1_type);
3749 return true;
3750 }
3751
3752 if (handled_component_p (lhs))
3753 res |= verify_types_in_gimple_reference (lhs, true);
3754
3755 /* Special codes we cannot handle via their class. */
3756 switch (rhs_code)
3757 {
3758 case ADDR_EXPR:
3759 {
3760 tree op = TREE_OPERAND (rhs1, 0);
3761 if (!is_gimple_addressable (op))
3762 {
3763 error ("invalid operand in unary expression");
3764 return true;
3765 }
3766
3767 /* Technically there is no longer a need for matching types, but
3768 gimple hygiene asks for this check. In LTO we can end up
3769 combining incompatible units and thus end up with addresses
3770 of globals that change their type to a common one. */
3771 if (!in_lto_p
3772 && !types_compatible_p (TREE_TYPE (op),
3773 TREE_TYPE (TREE_TYPE (rhs1)))
3774 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3775 TREE_TYPE (op)))
3776 {
3777 error ("type mismatch in address expression");
3778 debug_generic_stmt (TREE_TYPE (rhs1));
3779 debug_generic_stmt (TREE_TYPE (op));
3780 return true;
3781 }
3782
3783 return verify_types_in_gimple_reference (op, true);
3784 }
3785
3786 /* tcc_reference */
3787 case INDIRECT_REF:
3788 error ("INDIRECT_REF in gimple IL");
3789 return true;
3790
3791 case COMPONENT_REF:
3792 case BIT_FIELD_REF:
3793 case ARRAY_REF:
3794 case ARRAY_RANGE_REF:
3795 case VIEW_CONVERT_EXPR:
3796 case REALPART_EXPR:
3797 case IMAGPART_EXPR:
3798 case TARGET_MEM_REF:
3799 case MEM_REF:
3800 if (!is_gimple_reg (lhs)
3801 && is_gimple_reg_type (TREE_TYPE (lhs)))
3802 {
3803 error ("invalid rhs for gimple memory store");
3804 debug_generic_stmt (lhs);
3805 debug_generic_stmt (rhs1);
3806 return true;
3807 }
3808 return res || verify_types_in_gimple_reference (rhs1, false);
3809
3810 /* tcc_constant */
3811 case SSA_NAME:
3812 case INTEGER_CST:
3813 case REAL_CST:
3814 case FIXED_CST:
3815 case COMPLEX_CST:
3816 case VECTOR_CST:
3817 case STRING_CST:
3818 return res;
3819
3820 /* tcc_declaration */
3821 case CONST_DECL:
3822 return res;
3823 case VAR_DECL:
3824 case PARM_DECL:
3825 if (!is_gimple_reg (lhs)
3826 && !is_gimple_reg (rhs1)
3827 && is_gimple_reg_type (TREE_TYPE (lhs)))
3828 {
3829 error ("invalid rhs for gimple memory store");
3830 debug_generic_stmt (lhs);
3831 debug_generic_stmt (rhs1);
3832 return true;
3833 }
3834 return res;
3835
3836 case COND_EXPR:
3837 if (!is_gimple_reg (lhs)
3838 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3839 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3840 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3841 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3842 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3843 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3844 {
3845 error ("invalid COND_EXPR in gimple assignment");
3846 debug_generic_stmt (rhs1);
3847 return true;
3848 }
3849 return res;
3850
3851 case CONSTRUCTOR:
3852 case OBJ_TYPE_REF:
3853 case ASSERT_EXPR:
3854 case WITH_SIZE_EXPR:
3855 case VEC_COND_EXPR:
3856 /* FIXME. */
3857 return res;
3858
3859 default:;
3860 }
3861
3862 return res;
3863 }
3864
3865 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3866 is a problem, otherwise false. */
3867
3868 static bool
3869 verify_gimple_assign (gimple stmt)
3870 {
3871 switch (gimple_assign_rhs_class (stmt))
3872 {
3873 case GIMPLE_SINGLE_RHS:
3874 return verify_gimple_assign_single (stmt);
3875
3876 case GIMPLE_UNARY_RHS:
3877 return verify_gimple_assign_unary (stmt);
3878
3879 case GIMPLE_BINARY_RHS:
3880 return verify_gimple_assign_binary (stmt);
3881
3882 case GIMPLE_TERNARY_RHS:
3883 return verify_gimple_assign_ternary (stmt);
3884
3885 default:
3886 gcc_unreachable ();
3887 }
3888 }
3889
3890 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3891 is a problem, otherwise false. */
3892
3893 static bool
3894 verify_gimple_return (gimple stmt)
3895 {
3896 tree op = gimple_return_retval (stmt);
3897 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3898
3899 /* We cannot test for present return values as we do not fix up missing
3900 return values from the original source. */
3901 if (op == NULL)
3902 return false;
3903
3904 if (!is_gimple_val (op)
3905 && TREE_CODE (op) != RESULT_DECL)
3906 {
3907 error ("invalid operand in return statement");
3908 debug_generic_stmt (op);
3909 return true;
3910 }
3911
3912 if ((TREE_CODE (op) == RESULT_DECL
3913 && DECL_BY_REFERENCE (op))
3914 || (TREE_CODE (op) == SSA_NAME
3915 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3916 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3917 op = TREE_TYPE (op);
3918
3919 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3920 {
3921 error ("invalid conversion in return statement");
3922 debug_generic_stmt (restype);
3923 debug_generic_stmt (TREE_TYPE (op));
3924 return true;
3925 }
3926
3927 return false;
3928 }
3929
3930
3931 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3932 is a problem, otherwise false. */
3933
3934 static bool
3935 verify_gimple_goto (gimple stmt)
3936 {
3937 tree dest = gimple_goto_dest (stmt);
3938
3939 /* ??? We have two canonical forms of direct goto destinations, a
3940 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3941 if (TREE_CODE (dest) != LABEL_DECL
3942 && (!is_gimple_val (dest)
3943 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3944 {
3945 error ("goto destination is neither a label nor a pointer");
3946 return true;
3947 }
3948
3949 return false;
3950 }
3951
3952 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3953 is a problem, otherwise false. */
3954
3955 static bool
3956 verify_gimple_switch (gimple stmt)
3957 {
3958 if (!is_gimple_val (gimple_switch_index (stmt)))
3959 {
3960 error ("invalid operand to switch statement");
3961 debug_generic_stmt (gimple_switch_index (stmt));
3962 return true;
3963 }
3964
3965 return false;
3966 }
3967
3968
3969 /* Verify a gimple debug statement STMT.
3970 Returns true if anything is wrong. */
3971
3972 static bool
3973 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3974 {
3975 /* There isn't much that could be wrong in a gimple debug stmt. A
3976 gimple debug bind stmt, for example, maps a tree, that's usually
3977 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3978 component or member of an aggregate type, to another tree, that
3979 can be an arbitrary expression. These stmts expand into debug
3980 insns, and are converted to debug notes by var-tracking.c. */
3981 return false;
3982 }
3983
3984 /* Verify a gimple label statement STMT.
3985 Returns true if anything is wrong. */
3986
3987 static bool
3988 verify_gimple_label (gimple stmt)
3989 {
3990 tree decl = gimple_label_label (stmt);
3991 int uid;
3992 bool err = false;
3993
3994 if (TREE_CODE (decl) != LABEL_DECL)
3995 return true;
3996
3997 uid = LABEL_DECL_UID (decl);
3998 if (cfun->cfg
3999 && (uid == -1
4000 || VEC_index (basic_block,
4001 label_to_block_map, uid) != gimple_bb (stmt)))
4002 {
4003 error ("incorrect entry in label_to_block_map");
4004 err |= true;
4005 }
4006
4007 uid = EH_LANDING_PAD_NR (decl);
4008 if (uid)
4009 {
4010 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4011 if (decl != lp->post_landing_pad)
4012 {
4013 error ("incorrect setting of landing pad number");
4014 err |= true;
4015 }
4016 }
4017
4018 return err;
4019 }
4020
4021 /* Verify the GIMPLE statement STMT. Returns true if there is an
4022 error, otherwise false. */
4023
4024 static bool
4025 verify_gimple_stmt (gimple stmt)
4026 {
4027 switch (gimple_code (stmt))
4028 {
4029 case GIMPLE_ASSIGN:
4030 return verify_gimple_assign (stmt);
4031
4032 case GIMPLE_LABEL:
4033 return verify_gimple_label (stmt);
4034
4035 case GIMPLE_CALL:
4036 return verify_gimple_call (stmt);
4037
4038 case GIMPLE_COND:
4039 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4040 {
4041 error ("invalid comparison code in gimple cond");
4042 return true;
4043 }
4044 if (!(!gimple_cond_true_label (stmt)
4045 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4046 || !(!gimple_cond_false_label (stmt)
4047 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4048 {
4049 error ("invalid labels in gimple cond");
4050 return true;
4051 }
4052
4053 return verify_gimple_comparison (boolean_type_node,
4054 gimple_cond_lhs (stmt),
4055 gimple_cond_rhs (stmt));
4056
4057 case GIMPLE_GOTO:
4058 return verify_gimple_goto (stmt);
4059
4060 case GIMPLE_SWITCH:
4061 return verify_gimple_switch (stmt);
4062
4063 case GIMPLE_RETURN:
4064 return verify_gimple_return (stmt);
4065
4066 case GIMPLE_ASM:
4067 return false;
4068
4069 /* Tuples that do not have tree operands. */
4070 case GIMPLE_NOP:
4071 case GIMPLE_PREDICT:
4072 case GIMPLE_RESX:
4073 case GIMPLE_EH_DISPATCH:
4074 case GIMPLE_EH_MUST_NOT_THROW:
4075 return false;
4076
4077 CASE_GIMPLE_OMP:
4078 /* OpenMP directives are validated by the FE and never operated
4079 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4080 non-gimple expressions when the main index variable has had
4081 its address taken. This does not affect the loop itself
4082 because the header of an GIMPLE_OMP_FOR is merely used to determine
4083 how to setup the parallel iteration. */
4084 return false;
4085
4086 case GIMPLE_DEBUG:
4087 return verify_gimple_debug (stmt);
4088
4089 default:
4090 gcc_unreachable ();
4091 }
4092 }
4093
4094 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4095 and false otherwise. */
4096
4097 static bool
4098 verify_gimple_phi (gimple phi)
4099 {
4100 bool err = false;
4101 unsigned i;
4102 tree phi_result = gimple_phi_result (phi);
4103 bool virtual_p;
4104
4105 if (!phi_result)
4106 {
4107 error ("invalid PHI result");
4108 return true;
4109 }
4110
4111 virtual_p = !is_gimple_reg (phi_result);
4112 if (TREE_CODE (phi_result) != SSA_NAME
4113 || (virtual_p
4114 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4115 {
4116 error ("invalid PHI result");
4117 err = true;
4118 }
4119
4120 for (i = 0; i < gimple_phi_num_args (phi); i++)
4121 {
4122 tree t = gimple_phi_arg_def (phi, i);
4123
4124 if (!t)
4125 {
4126 error ("missing PHI def");
4127 err |= true;
4128 continue;
4129 }
4130 /* Addressable variables do have SSA_NAMEs but they
4131 are not considered gimple values. */
4132 else if ((TREE_CODE (t) == SSA_NAME
4133 && virtual_p != !is_gimple_reg (t))
4134 || (virtual_p
4135 && (TREE_CODE (t) != SSA_NAME
4136 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4137 || (!virtual_p
4138 && !is_gimple_val (t)))
4139 {
4140 error ("invalid PHI argument");
4141 debug_generic_expr (t);
4142 err |= true;
4143 }
4144 #ifdef ENABLE_TYPES_CHECKING
4145 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4146 {
4147 error ("incompatible types in PHI argument %u", i);
4148 debug_generic_stmt (TREE_TYPE (phi_result));
4149 debug_generic_stmt (TREE_TYPE (t));
4150 err |= true;
4151 }
4152 #endif
4153 }
4154
4155 return err;
4156 }
4157
4158 /* Verify the GIMPLE statements inside the sequence STMTS. */
4159
4160 static bool
4161 verify_gimple_in_seq_2 (gimple_seq stmts)
4162 {
4163 gimple_stmt_iterator ittr;
4164 bool err = false;
4165
4166 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4167 {
4168 gimple stmt = gsi_stmt (ittr);
4169
4170 switch (gimple_code (stmt))
4171 {
4172 case GIMPLE_BIND:
4173 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4174 break;
4175
4176 case GIMPLE_TRY:
4177 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4178 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4179 break;
4180
4181 case GIMPLE_EH_FILTER:
4182 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4183 break;
4184
4185 case GIMPLE_CATCH:
4186 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4187 break;
4188
4189 default:
4190 {
4191 bool err2 = verify_gimple_stmt (stmt);
4192 if (err2)
4193 debug_gimple_stmt (stmt);
4194 err |= err2;
4195 }
4196 }
4197 }
4198
4199 return err;
4200 }
4201
4202
4203 /* Verify the GIMPLE statements inside the statement list STMTS. */
4204
4205 DEBUG_FUNCTION void
4206 verify_gimple_in_seq (gimple_seq stmts)
4207 {
4208 timevar_push (TV_TREE_STMT_VERIFY);
4209 if (verify_gimple_in_seq_2 (stmts))
4210 internal_error ("verify_gimple failed");
4211 timevar_pop (TV_TREE_STMT_VERIFY);
4212 }
4213
4214 /* Return true when the T can be shared. */
4215
4216 bool
4217 tree_node_can_be_shared (tree t)
4218 {
4219 if (IS_TYPE_OR_DECL_P (t)
4220 || is_gimple_min_invariant (t)
4221 || TREE_CODE (t) == SSA_NAME
4222 || t == error_mark_node
4223 || TREE_CODE (t) == IDENTIFIER_NODE)
4224 return true;
4225
4226 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4227 return true;
4228
4229 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4230 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4231 || TREE_CODE (t) == COMPONENT_REF
4232 || TREE_CODE (t) == REALPART_EXPR
4233 || TREE_CODE (t) == IMAGPART_EXPR)
4234 t = TREE_OPERAND (t, 0);
4235
4236 if (DECL_P (t))
4237 return true;
4238
4239 return false;
4240 }
4241
4242 /* Called via walk_gimple_stmt. Verify tree sharing. */
4243
4244 static tree
4245 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4246 {
4247 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4248 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4249
4250 if (tree_node_can_be_shared (*tp))
4251 {
4252 *walk_subtrees = false;
4253 return NULL;
4254 }
4255
4256 if (pointer_set_insert (visited, *tp))
4257 return *tp;
4258
4259 return NULL;
4260 }
4261
4262 static bool eh_error_found;
4263 static int
4264 verify_eh_throw_stmt_node (void **slot, void *data)
4265 {
4266 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4267 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4268
4269 if (!pointer_set_contains (visited, node->stmt))
4270 {
4271 error ("dead STMT in EH table");
4272 debug_gimple_stmt (node->stmt);
4273 eh_error_found = true;
4274 }
4275 return 1;
4276 }
4277
4278 /* Verify the GIMPLE statements in the CFG of FN. */
4279
4280 DEBUG_FUNCTION void
4281 verify_gimple_in_cfg (struct function *fn)
4282 {
4283 basic_block bb;
4284 bool err = false;
4285 struct pointer_set_t *visited, *visited_stmts;
4286
4287 timevar_push (TV_TREE_STMT_VERIFY);
4288 visited = pointer_set_create ();
4289 visited_stmts = pointer_set_create ();
4290
4291 FOR_EACH_BB_FN (bb, fn)
4292 {
4293 gimple_stmt_iterator gsi;
4294
4295 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4296 {
4297 gimple phi = gsi_stmt (gsi);
4298 bool err2 = false;
4299 unsigned i;
4300
4301 pointer_set_insert (visited_stmts, phi);
4302
4303 if (gimple_bb (phi) != bb)
4304 {
4305 error ("gimple_bb (phi) is set to a wrong basic block");
4306 err2 = true;
4307 }
4308
4309 err2 |= verify_gimple_phi (phi);
4310
4311 for (i = 0; i < gimple_phi_num_args (phi); i++)
4312 {
4313 tree arg = gimple_phi_arg_def (phi, i);
4314 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4315 if (addr)
4316 {
4317 error ("incorrect sharing of tree nodes");
4318 debug_generic_expr (addr);
4319 err2 |= true;
4320 }
4321 }
4322
4323 if (err2)
4324 debug_gimple_stmt (phi);
4325 err |= err2;
4326 }
4327
4328 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4329 {
4330 gimple stmt = gsi_stmt (gsi);
4331 bool err2 = false;
4332 struct walk_stmt_info wi;
4333 tree addr;
4334 int lp_nr;
4335
4336 pointer_set_insert (visited_stmts, stmt);
4337
4338 if (gimple_bb (stmt) != bb)
4339 {
4340 error ("gimple_bb (stmt) is set to a wrong basic block");
4341 err2 = true;
4342 }
4343
4344 err2 |= verify_gimple_stmt (stmt);
4345
4346 memset (&wi, 0, sizeof (wi));
4347 wi.info = (void *) visited;
4348 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4349 if (addr)
4350 {
4351 error ("incorrect sharing of tree nodes");
4352 debug_generic_expr (addr);
4353 err2 |= true;
4354 }
4355
4356 /* ??? Instead of not checking these stmts at all the walker
4357 should know its context via wi. */
4358 if (!is_gimple_debug (stmt)
4359 && !is_gimple_omp (stmt))
4360 {
4361 memset (&wi, 0, sizeof (wi));
4362 addr = walk_gimple_op (stmt, verify_expr, &wi);
4363 if (addr)
4364 {
4365 debug_generic_expr (addr);
4366 inform (gimple_location (stmt), "in statement");
4367 err2 |= true;
4368 }
4369 }
4370
4371 /* If the statement is marked as part of an EH region, then it is
4372 expected that the statement could throw. Verify that when we
4373 have optimizations that simplify statements such that we prove
4374 that they cannot throw, that we update other data structures
4375 to match. */
4376 lp_nr = lookup_stmt_eh_lp (stmt);
4377 if (lp_nr != 0)
4378 {
4379 if (!stmt_could_throw_p (stmt))
4380 {
4381 error ("statement marked for throw, but doesn%'t");
4382 err2 |= true;
4383 }
4384 else if (lp_nr > 0
4385 && !gsi_one_before_end_p (gsi)
4386 && stmt_can_throw_internal (stmt))
4387 {
4388 error ("statement marked for throw in middle of block");
4389 err2 |= true;
4390 }
4391 }
4392
4393 if (err2)
4394 debug_gimple_stmt (stmt);
4395 err |= err2;
4396 }
4397 }
4398
4399 eh_error_found = false;
4400 if (get_eh_throw_stmt_table (cfun))
4401 htab_traverse (get_eh_throw_stmt_table (cfun),
4402 verify_eh_throw_stmt_node,
4403 visited_stmts);
4404
4405 if (err || eh_error_found)
4406 internal_error ("verify_gimple failed");
4407
4408 pointer_set_destroy (visited);
4409 pointer_set_destroy (visited_stmts);
4410 verify_histograms ();
4411 timevar_pop (TV_TREE_STMT_VERIFY);
4412 }
4413
4414
4415 /* Verifies that the flow information is OK. */
4416
4417 static int
4418 gimple_verify_flow_info (void)
4419 {
4420 int err = 0;
4421 basic_block bb;
4422 gimple_stmt_iterator gsi;
4423 gimple stmt;
4424 edge e;
4425 edge_iterator ei;
4426
4427 if (ENTRY_BLOCK_PTR->il.gimple)
4428 {
4429 error ("ENTRY_BLOCK has IL associated with it");
4430 err = 1;
4431 }
4432
4433 if (EXIT_BLOCK_PTR->il.gimple)
4434 {
4435 error ("EXIT_BLOCK has IL associated with it");
4436 err = 1;
4437 }
4438
4439 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4440 if (e->flags & EDGE_FALLTHRU)
4441 {
4442 error ("fallthru to exit from bb %d", e->src->index);
4443 err = 1;
4444 }
4445
4446 FOR_EACH_BB (bb)
4447 {
4448 bool found_ctrl_stmt = false;
4449
4450 stmt = NULL;
4451
4452 /* Skip labels on the start of basic block. */
4453 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4454 {
4455 tree label;
4456 gimple prev_stmt = stmt;
4457
4458 stmt = gsi_stmt (gsi);
4459
4460 if (gimple_code (stmt) != GIMPLE_LABEL)
4461 break;
4462
4463 label = gimple_label_label (stmt);
4464 if (prev_stmt && DECL_NONLOCAL (label))
4465 {
4466 error ("nonlocal label ");
4467 print_generic_expr (stderr, label, 0);
4468 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4469 bb->index);
4470 err = 1;
4471 }
4472
4473 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4474 {
4475 error ("EH landing pad label ");
4476 print_generic_expr (stderr, label, 0);
4477 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4478 bb->index);
4479 err = 1;
4480 }
4481
4482 if (label_to_block (label) != bb)
4483 {
4484 error ("label ");
4485 print_generic_expr (stderr, label, 0);
4486 fprintf (stderr, " to block does not match in bb %d",
4487 bb->index);
4488 err = 1;
4489 }
4490
4491 if (decl_function_context (label) != current_function_decl)
4492 {
4493 error ("label ");
4494 print_generic_expr (stderr, label, 0);
4495 fprintf (stderr, " has incorrect context in bb %d",
4496 bb->index);
4497 err = 1;
4498 }
4499 }
4500
4501 /* Verify that body of basic block BB is free of control flow. */
4502 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4503 {
4504 gimple stmt = gsi_stmt (gsi);
4505
4506 if (found_ctrl_stmt)
4507 {
4508 error ("control flow in the middle of basic block %d",
4509 bb->index);
4510 err = 1;
4511 }
4512
4513 if (stmt_ends_bb_p (stmt))
4514 found_ctrl_stmt = true;
4515
4516 if (gimple_code (stmt) == GIMPLE_LABEL)
4517 {
4518 error ("label ");
4519 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4520 fprintf (stderr, " in the middle of basic block %d", bb->index);
4521 err = 1;
4522 }
4523 }
4524
4525 gsi = gsi_last_bb (bb);
4526 if (gsi_end_p (gsi))
4527 continue;
4528
4529 stmt = gsi_stmt (gsi);
4530
4531 if (gimple_code (stmt) == GIMPLE_LABEL)
4532 continue;
4533
4534 err |= verify_eh_edges (stmt);
4535
4536 if (is_ctrl_stmt (stmt))
4537 {
4538 FOR_EACH_EDGE (e, ei, bb->succs)
4539 if (e->flags & EDGE_FALLTHRU)
4540 {
4541 error ("fallthru edge after a control statement in bb %d",
4542 bb->index);
4543 err = 1;
4544 }
4545 }
4546
4547 if (gimple_code (stmt) != GIMPLE_COND)
4548 {
4549 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4550 after anything else but if statement. */
4551 FOR_EACH_EDGE (e, ei, bb->succs)
4552 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4553 {
4554 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4555 bb->index);
4556 err = 1;
4557 }
4558 }
4559
4560 switch (gimple_code (stmt))
4561 {
4562 case GIMPLE_COND:
4563 {
4564 edge true_edge;
4565 edge false_edge;
4566
4567 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4568
4569 if (!true_edge
4570 || !false_edge
4571 || !(true_edge->flags & EDGE_TRUE_VALUE)
4572 || !(false_edge->flags & EDGE_FALSE_VALUE)
4573 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4574 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4575 || EDGE_COUNT (bb->succs) >= 3)
4576 {
4577 error ("wrong outgoing edge flags at end of bb %d",
4578 bb->index);
4579 err = 1;
4580 }
4581 }
4582 break;
4583
4584 case GIMPLE_GOTO:
4585 if (simple_goto_p (stmt))
4586 {
4587 error ("explicit goto at end of bb %d", bb->index);
4588 err = 1;
4589 }
4590 else
4591 {
4592 /* FIXME. We should double check that the labels in the
4593 destination blocks have their address taken. */
4594 FOR_EACH_EDGE (e, ei, bb->succs)
4595 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4596 | EDGE_FALSE_VALUE))
4597 || !(e->flags & EDGE_ABNORMAL))
4598 {
4599 error ("wrong outgoing edge flags at end of bb %d",
4600 bb->index);
4601 err = 1;
4602 }
4603 }
4604 break;
4605
4606 case GIMPLE_CALL:
4607 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4608 break;
4609 /* ... fallthru ... */
4610 case GIMPLE_RETURN:
4611 if (!single_succ_p (bb)
4612 || (single_succ_edge (bb)->flags
4613 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4614 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4615 {
4616 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4617 err = 1;
4618 }
4619 if (single_succ (bb) != EXIT_BLOCK_PTR)
4620 {
4621 error ("return edge does not point to exit in bb %d",
4622 bb->index);
4623 err = 1;
4624 }
4625 break;
4626
4627 case GIMPLE_SWITCH:
4628 {
4629 tree prev;
4630 edge e;
4631 size_t i, n;
4632
4633 n = gimple_switch_num_labels (stmt);
4634
4635 /* Mark all the destination basic blocks. */
4636 for (i = 0; i < n; ++i)
4637 {
4638 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4639 basic_block label_bb = label_to_block (lab);
4640 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4641 label_bb->aux = (void *)1;
4642 }
4643
4644 /* Verify that the case labels are sorted. */
4645 prev = gimple_switch_label (stmt, 0);
4646 for (i = 1; i < n; ++i)
4647 {
4648 tree c = gimple_switch_label (stmt, i);
4649 if (!CASE_LOW (c))
4650 {
4651 error ("found default case not at the start of "
4652 "case vector");
4653 err = 1;
4654 continue;
4655 }
4656 if (CASE_LOW (prev)
4657 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4658 {
4659 error ("case labels not sorted: ");
4660 print_generic_expr (stderr, prev, 0);
4661 fprintf (stderr," is greater than ");
4662 print_generic_expr (stderr, c, 0);
4663 fprintf (stderr," but comes before it.\n");
4664 err = 1;
4665 }
4666 prev = c;
4667 }
4668 /* VRP will remove the default case if it can prove it will
4669 never be executed. So do not verify there always exists
4670 a default case here. */
4671
4672 FOR_EACH_EDGE (e, ei, bb->succs)
4673 {
4674 if (!e->dest->aux)
4675 {
4676 error ("extra outgoing edge %d->%d",
4677 bb->index, e->dest->index);
4678 err = 1;
4679 }
4680
4681 e->dest->aux = (void *)2;
4682 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4683 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4684 {
4685 error ("wrong outgoing edge flags at end of bb %d",
4686 bb->index);
4687 err = 1;
4688 }
4689 }
4690
4691 /* Check that we have all of them. */
4692 for (i = 0; i < n; ++i)
4693 {
4694 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4695 basic_block label_bb = label_to_block (lab);
4696
4697 if (label_bb->aux != (void *)2)
4698 {
4699 error ("missing edge %i->%i", bb->index, label_bb->index);
4700 err = 1;
4701 }
4702 }
4703
4704 FOR_EACH_EDGE (e, ei, bb->succs)
4705 e->dest->aux = (void *)0;
4706 }
4707 break;
4708
4709 case GIMPLE_EH_DISPATCH:
4710 err |= verify_eh_dispatch_edge (stmt);
4711 break;
4712
4713 default:
4714 break;
4715 }
4716 }
4717
4718 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4719 verify_dominators (CDI_DOMINATORS);
4720
4721 return err;
4722 }
4723
4724
4725 /* Updates phi nodes after creating a forwarder block joined
4726 by edge FALLTHRU. */
4727
4728 static void
4729 gimple_make_forwarder_block (edge fallthru)
4730 {
4731 edge e;
4732 edge_iterator ei;
4733 basic_block dummy, bb;
4734 tree var;
4735 gimple_stmt_iterator gsi;
4736
4737 dummy = fallthru->src;
4738 bb = fallthru->dest;
4739
4740 if (single_pred_p (bb))
4741 return;
4742
4743 /* If we redirected a branch we must create new PHI nodes at the
4744 start of BB. */
4745 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4746 {
4747 gimple phi, new_phi;
4748
4749 phi = gsi_stmt (gsi);
4750 var = gimple_phi_result (phi);
4751 new_phi = create_phi_node (var, bb);
4752 SSA_NAME_DEF_STMT (var) = new_phi;
4753 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4754 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4755 UNKNOWN_LOCATION);
4756 }
4757
4758 /* Add the arguments we have stored on edges. */
4759 FOR_EACH_EDGE (e, ei, bb->preds)
4760 {
4761 if (e == fallthru)
4762 continue;
4763
4764 flush_pending_stmts (e);
4765 }
4766 }
4767
4768
4769 /* Return a non-special label in the head of basic block BLOCK.
4770 Create one if it doesn't exist. */
4771
4772 tree
4773 gimple_block_label (basic_block bb)
4774 {
4775 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4776 bool first = true;
4777 tree label;
4778 gimple stmt;
4779
4780 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4781 {
4782 stmt = gsi_stmt (i);
4783 if (gimple_code (stmt) != GIMPLE_LABEL)
4784 break;
4785 label = gimple_label_label (stmt);
4786 if (!DECL_NONLOCAL (label))
4787 {
4788 if (!first)
4789 gsi_move_before (&i, &s);
4790 return label;
4791 }
4792 }
4793
4794 label = create_artificial_label (UNKNOWN_LOCATION);
4795 stmt = gimple_build_label (label);
4796 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4797 return label;
4798 }
4799
4800
4801 /* Attempt to perform edge redirection by replacing a possibly complex
4802 jump instruction by a goto or by removing the jump completely.
4803 This can apply only if all edges now point to the same block. The
4804 parameters and return values are equivalent to
4805 redirect_edge_and_branch. */
4806
4807 static edge
4808 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4809 {
4810 basic_block src = e->src;
4811 gimple_stmt_iterator i;
4812 gimple stmt;
4813
4814 /* We can replace or remove a complex jump only when we have exactly
4815 two edges. */
4816 if (EDGE_COUNT (src->succs) != 2
4817 /* Verify that all targets will be TARGET. Specifically, the
4818 edge that is not E must also go to TARGET. */
4819 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4820 return NULL;
4821
4822 i = gsi_last_bb (src);
4823 if (gsi_end_p (i))
4824 return NULL;
4825
4826 stmt = gsi_stmt (i);
4827
4828 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4829 {
4830 gsi_remove (&i, true);
4831 e = ssa_redirect_edge (e, target);
4832 e->flags = EDGE_FALLTHRU;
4833 return e;
4834 }
4835
4836 return NULL;
4837 }
4838
4839
4840 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4841 edge representing the redirected branch. */
4842
4843 static edge
4844 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4845 {
4846 basic_block bb = e->src;
4847 gimple_stmt_iterator gsi;
4848 edge ret;
4849 gimple stmt;
4850
4851 if (e->flags & EDGE_ABNORMAL)
4852 return NULL;
4853
4854 if (e->dest == dest)
4855 return NULL;
4856
4857 if (e->flags & EDGE_EH)
4858 return redirect_eh_edge (e, dest);
4859
4860 if (e->src != ENTRY_BLOCK_PTR)
4861 {
4862 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4863 if (ret)
4864 return ret;
4865 }
4866
4867 gsi = gsi_last_bb (bb);
4868 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4869
4870 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4871 {
4872 case GIMPLE_COND:
4873 /* For COND_EXPR, we only need to redirect the edge. */
4874 break;
4875
4876 case GIMPLE_GOTO:
4877 /* No non-abnormal edges should lead from a non-simple goto, and
4878 simple ones should be represented implicitly. */
4879 gcc_unreachable ();
4880
4881 case GIMPLE_SWITCH:
4882 {
4883 tree label = gimple_block_label (dest);
4884 tree cases = get_cases_for_edge (e, stmt);
4885
4886 /* If we have a list of cases associated with E, then use it
4887 as it's a lot faster than walking the entire case vector. */
4888 if (cases)
4889 {
4890 edge e2 = find_edge (e->src, dest);
4891 tree last, first;
4892
4893 first = cases;
4894 while (cases)
4895 {
4896 last = cases;
4897 CASE_LABEL (cases) = label;
4898 cases = CASE_CHAIN (cases);
4899 }
4900
4901 /* If there was already an edge in the CFG, then we need
4902 to move all the cases associated with E to E2. */
4903 if (e2)
4904 {
4905 tree cases2 = get_cases_for_edge (e2, stmt);
4906
4907 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4908 CASE_CHAIN (cases2) = first;
4909 }
4910 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4911 }
4912 else
4913 {
4914 size_t i, n = gimple_switch_num_labels (stmt);
4915
4916 for (i = 0; i < n; i++)
4917 {
4918 tree elt = gimple_switch_label (stmt, i);
4919 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4920 CASE_LABEL (elt) = label;
4921 }
4922 }
4923 }
4924 break;
4925
4926 case GIMPLE_ASM:
4927 {
4928 int i, n = gimple_asm_nlabels (stmt);
4929 tree label = NULL;
4930
4931 for (i = 0; i < n; ++i)
4932 {
4933 tree cons = gimple_asm_label_op (stmt, i);
4934 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4935 {
4936 if (!label)
4937 label = gimple_block_label (dest);
4938 TREE_VALUE (cons) = label;
4939 }
4940 }
4941
4942 /* If we didn't find any label matching the former edge in the
4943 asm labels, we must be redirecting the fallthrough
4944 edge. */
4945 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4946 }
4947 break;
4948
4949 case GIMPLE_RETURN:
4950 gsi_remove (&gsi, true);
4951 e->flags |= EDGE_FALLTHRU;
4952 break;
4953
4954 case GIMPLE_OMP_RETURN:
4955 case GIMPLE_OMP_CONTINUE:
4956 case GIMPLE_OMP_SECTIONS_SWITCH:
4957 case GIMPLE_OMP_FOR:
4958 /* The edges from OMP constructs can be simply redirected. */
4959 break;
4960
4961 case GIMPLE_EH_DISPATCH:
4962 if (!(e->flags & EDGE_FALLTHRU))
4963 redirect_eh_dispatch_edge (stmt, e, dest);
4964 break;
4965
4966 default:
4967 /* Otherwise it must be a fallthru edge, and we don't need to
4968 do anything besides redirecting it. */
4969 gcc_assert (e->flags & EDGE_FALLTHRU);
4970 break;
4971 }
4972
4973 /* Update/insert PHI nodes as necessary. */
4974
4975 /* Now update the edges in the CFG. */
4976 e = ssa_redirect_edge (e, dest);
4977
4978 return e;
4979 }
4980
4981 /* Returns true if it is possible to remove edge E by redirecting
4982 it to the destination of the other edge from E->src. */
4983
4984 static bool
4985 gimple_can_remove_branch_p (const_edge e)
4986 {
4987 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4988 return false;
4989
4990 return true;
4991 }
4992
4993 /* Simple wrapper, as we can always redirect fallthru edges. */
4994
4995 static basic_block
4996 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4997 {
4998 e = gimple_redirect_edge_and_branch (e, dest);
4999 gcc_assert (e);
5000
5001 return NULL;
5002 }
5003
5004
5005 /* Splits basic block BB after statement STMT (but at least after the
5006 labels). If STMT is NULL, BB is split just after the labels. */
5007
5008 static basic_block
5009 gimple_split_block (basic_block bb, void *stmt)
5010 {
5011 gimple_stmt_iterator gsi;
5012 gimple_stmt_iterator gsi_tgt;
5013 gimple act;
5014 gimple_seq list;
5015 basic_block new_bb;
5016 edge e;
5017 edge_iterator ei;
5018
5019 new_bb = create_empty_bb (bb);
5020
5021 /* Redirect the outgoing edges. */
5022 new_bb->succs = bb->succs;
5023 bb->succs = NULL;
5024 FOR_EACH_EDGE (e, ei, new_bb->succs)
5025 e->src = new_bb;
5026
5027 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5028 stmt = NULL;
5029
5030 /* Move everything from GSI to the new basic block. */
5031 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5032 {
5033 act = gsi_stmt (gsi);
5034 if (gimple_code (act) == GIMPLE_LABEL)
5035 continue;
5036
5037 if (!stmt)
5038 break;
5039
5040 if (stmt == act)
5041 {
5042 gsi_next (&gsi);
5043 break;
5044 }
5045 }
5046
5047 if (gsi_end_p (gsi))
5048 return new_bb;
5049
5050 /* Split the statement list - avoid re-creating new containers as this
5051 brings ugly quadratic memory consumption in the inliner.
5052 (We are still quadratic since we need to update stmt BB pointers,
5053 sadly.) */
5054 list = gsi_split_seq_before (&gsi);
5055 set_bb_seq (new_bb, list);
5056 for (gsi_tgt = gsi_start (list);
5057 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5058 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5059
5060 return new_bb;
5061 }
5062
5063
5064 /* Moves basic block BB after block AFTER. */
5065
5066 static bool
5067 gimple_move_block_after (basic_block bb, basic_block after)
5068 {
5069 if (bb->prev_bb == after)
5070 return true;
5071
5072 unlink_block (bb);
5073 link_block (bb, after);
5074
5075 return true;
5076 }
5077
5078
5079 /* Return true if basic_block can be duplicated. */
5080
5081 static bool
5082 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5083 {
5084 return true;
5085 }
5086
5087 /* Create a duplicate of the basic block BB. NOTE: This does not
5088 preserve SSA form. */
5089
5090 static basic_block
5091 gimple_duplicate_bb (basic_block bb)
5092 {
5093 basic_block new_bb;
5094 gimple_stmt_iterator gsi, gsi_tgt;
5095 gimple_seq phis = phi_nodes (bb);
5096 gimple phi, stmt, copy;
5097
5098 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5099
5100 /* Copy the PHI nodes. We ignore PHI node arguments here because
5101 the incoming edges have not been setup yet. */
5102 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5103 {
5104 phi = gsi_stmt (gsi);
5105 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5106 create_new_def_for (gimple_phi_result (copy), copy,
5107 gimple_phi_result_ptr (copy));
5108 }
5109
5110 gsi_tgt = gsi_start_bb (new_bb);
5111 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5112 {
5113 def_operand_p def_p;
5114 ssa_op_iter op_iter;
5115
5116 stmt = gsi_stmt (gsi);
5117 if (gimple_code (stmt) == GIMPLE_LABEL)
5118 continue;
5119
5120 /* Create a new copy of STMT and duplicate STMT's virtual
5121 operands. */
5122 copy = gimple_copy (stmt);
5123 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5124
5125 maybe_duplicate_eh_stmt (copy, stmt);
5126 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5127
5128 /* Create new names for all the definitions created by COPY and
5129 add replacement mappings for each new name. */
5130 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5131 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5132 }
5133
5134 return new_bb;
5135 }
5136
5137 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5138
5139 static void
5140 add_phi_args_after_copy_edge (edge e_copy)
5141 {
5142 basic_block bb, bb_copy = e_copy->src, dest;
5143 edge e;
5144 edge_iterator ei;
5145 gimple phi, phi_copy;
5146 tree def;
5147 gimple_stmt_iterator psi, psi_copy;
5148
5149 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5150 return;
5151
5152 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5153
5154 if (e_copy->dest->flags & BB_DUPLICATED)
5155 dest = get_bb_original (e_copy->dest);
5156 else
5157 dest = e_copy->dest;
5158
5159 e = find_edge (bb, dest);
5160 if (!e)
5161 {
5162 /* During loop unrolling the target of the latch edge is copied.
5163 In this case we are not looking for edge to dest, but to
5164 duplicated block whose original was dest. */
5165 FOR_EACH_EDGE (e, ei, bb->succs)
5166 {
5167 if ((e->dest->flags & BB_DUPLICATED)
5168 && get_bb_original (e->dest) == dest)
5169 break;
5170 }
5171
5172 gcc_assert (e != NULL);
5173 }
5174
5175 for (psi = gsi_start_phis (e->dest),
5176 psi_copy = gsi_start_phis (e_copy->dest);
5177 !gsi_end_p (psi);
5178 gsi_next (&psi), gsi_next (&psi_copy))
5179 {
5180 phi = gsi_stmt (psi);
5181 phi_copy = gsi_stmt (psi_copy);
5182 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5183 add_phi_arg (phi_copy, def, e_copy,
5184 gimple_phi_arg_location_from_edge (phi, e));
5185 }
5186 }
5187
5188
5189 /* Basic block BB_COPY was created by code duplication. Add phi node
5190 arguments for edges going out of BB_COPY. The blocks that were
5191 duplicated have BB_DUPLICATED set. */
5192
5193 void
5194 add_phi_args_after_copy_bb (basic_block bb_copy)
5195 {
5196 edge e_copy;
5197 edge_iterator ei;
5198
5199 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5200 {
5201 add_phi_args_after_copy_edge (e_copy);
5202 }
5203 }
5204
5205 /* Blocks in REGION_COPY array of length N_REGION were created by
5206 duplication of basic blocks. Add phi node arguments for edges
5207 going from these blocks. If E_COPY is not NULL, also add
5208 phi node arguments for its destination.*/
5209
5210 void
5211 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5212 edge e_copy)
5213 {
5214 unsigned i;
5215
5216 for (i = 0; i < n_region; i++)
5217 region_copy[i]->flags |= BB_DUPLICATED;
5218
5219 for (i = 0; i < n_region; i++)
5220 add_phi_args_after_copy_bb (region_copy[i]);
5221 if (e_copy)
5222 add_phi_args_after_copy_edge (e_copy);
5223
5224 for (i = 0; i < n_region; i++)
5225 region_copy[i]->flags &= ~BB_DUPLICATED;
5226 }
5227
5228 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5229 important exit edge EXIT. By important we mean that no SSA name defined
5230 inside region is live over the other exit edges of the region. All entry
5231 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5232 to the duplicate of the region. SSA form, dominance and loop information
5233 is updated. The new basic blocks are stored to REGION_COPY in the same
5234 order as they had in REGION, provided that REGION_COPY is not NULL.
5235 The function returns false if it is unable to copy the region,
5236 true otherwise. */
5237
5238 bool
5239 gimple_duplicate_sese_region (edge entry, edge exit,
5240 basic_block *region, unsigned n_region,
5241 basic_block *region_copy)
5242 {
5243 unsigned i;
5244 bool free_region_copy = false, copying_header = false;
5245 struct loop *loop = entry->dest->loop_father;
5246 edge exit_copy;
5247 VEC (basic_block, heap) *doms;
5248 edge redirected;
5249 int total_freq = 0, entry_freq = 0;
5250 gcov_type total_count = 0, entry_count = 0;
5251
5252 if (!can_copy_bbs_p (region, n_region))
5253 return false;
5254
5255 /* Some sanity checking. Note that we do not check for all possible
5256 missuses of the functions. I.e. if you ask to copy something weird,
5257 it will work, but the state of structures probably will not be
5258 correct. */
5259 for (i = 0; i < n_region; i++)
5260 {
5261 /* We do not handle subloops, i.e. all the blocks must belong to the
5262 same loop. */
5263 if (region[i]->loop_father != loop)
5264 return false;
5265
5266 if (region[i] != entry->dest
5267 && region[i] == loop->header)
5268 return false;
5269 }
5270
5271 set_loop_copy (loop, loop);
5272
5273 /* In case the function is used for loop header copying (which is the primary
5274 use), ensure that EXIT and its copy will be new latch and entry edges. */
5275 if (loop->header == entry->dest)
5276 {
5277 copying_header = true;
5278 set_loop_copy (loop, loop_outer (loop));
5279
5280 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5281 return false;
5282
5283 for (i = 0; i < n_region; i++)
5284 if (region[i] != exit->src
5285 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5286 return false;
5287 }
5288
5289 if (!region_copy)
5290 {
5291 region_copy = XNEWVEC (basic_block, n_region);
5292 free_region_copy = true;
5293 }
5294
5295 gcc_assert (!need_ssa_update_p (cfun));
5296
5297 /* Record blocks outside the region that are dominated by something
5298 inside. */
5299 doms = NULL;
5300 initialize_original_copy_tables ();
5301
5302 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5303
5304 if (entry->dest->count)
5305 {
5306 total_count = entry->dest->count;
5307 entry_count = entry->count;
5308 /* Fix up corner cases, to avoid division by zero or creation of negative
5309 frequencies. */
5310 if (entry_count > total_count)
5311 entry_count = total_count;
5312 }
5313 else
5314 {
5315 total_freq = entry->dest->frequency;
5316 entry_freq = EDGE_FREQUENCY (entry);
5317 /* Fix up corner cases, to avoid division by zero or creation of negative
5318 frequencies. */
5319 if (total_freq == 0)
5320 total_freq = 1;
5321 else if (entry_freq > total_freq)
5322 entry_freq = total_freq;
5323 }
5324
5325 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5326 split_edge_bb_loc (entry));
5327 if (total_count)
5328 {
5329 scale_bbs_frequencies_gcov_type (region, n_region,
5330 total_count - entry_count,
5331 total_count);
5332 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5333 total_count);
5334 }
5335 else
5336 {
5337 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5338 total_freq);
5339 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5340 }
5341
5342 if (copying_header)
5343 {
5344 loop->header = exit->dest;
5345 loop->latch = exit->src;
5346 }
5347
5348 /* Redirect the entry and add the phi node arguments. */
5349 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5350 gcc_assert (redirected != NULL);
5351 flush_pending_stmts (entry);
5352
5353 /* Concerning updating of dominators: We must recount dominators
5354 for entry block and its copy. Anything that is outside of the
5355 region, but was dominated by something inside needs recounting as
5356 well. */
5357 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5358 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5359 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5360 VEC_free (basic_block, heap, doms);
5361
5362 /* Add the other PHI node arguments. */
5363 add_phi_args_after_copy (region_copy, n_region, NULL);
5364
5365 /* Update the SSA web. */
5366 update_ssa (TODO_update_ssa);
5367
5368 if (free_region_copy)
5369 free (region_copy);
5370
5371 free_original_copy_tables ();
5372 return true;
5373 }
5374
5375 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5376 are stored to REGION_COPY in the same order in that they appear
5377 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5378 the region, EXIT an exit from it. The condition guarding EXIT
5379 is moved to ENTRY. Returns true if duplication succeeds, false
5380 otherwise.
5381
5382 For example,
5383
5384 some_code;
5385 if (cond)
5386 A;
5387 else
5388 B;
5389
5390 is transformed to
5391
5392 if (cond)
5393 {
5394 some_code;
5395 A;
5396 }
5397 else
5398 {
5399 some_code;
5400 B;
5401 }
5402 */
5403
5404 bool
5405 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5406 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5407 basic_block *region_copy ATTRIBUTE_UNUSED)
5408 {
5409 unsigned i;
5410 bool free_region_copy = false;
5411 struct loop *loop = exit->dest->loop_father;
5412 struct loop *orig_loop = entry->dest->loop_father;
5413 basic_block switch_bb, entry_bb, nentry_bb;
5414 VEC (basic_block, heap) *doms;
5415 int total_freq = 0, exit_freq = 0;
5416 gcov_type total_count = 0, exit_count = 0;
5417 edge exits[2], nexits[2], e;
5418 gimple_stmt_iterator gsi,gsi1;
5419 gimple cond_stmt;
5420 edge sorig, snew;
5421 basic_block exit_bb;
5422 basic_block iters_bb;
5423 tree new_rhs;
5424 gimple_stmt_iterator psi;
5425 gimple phi;
5426 tree def;
5427
5428 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5429 exits[0] = exit;
5430 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5431
5432 if (!can_copy_bbs_p (region, n_region))
5433 return false;
5434
5435 initialize_original_copy_tables ();
5436 set_loop_copy (orig_loop, loop);
5437 duplicate_subloops (orig_loop, loop);
5438
5439 if (!region_copy)
5440 {
5441 region_copy = XNEWVEC (basic_block, n_region);
5442 free_region_copy = true;
5443 }
5444
5445 gcc_assert (!need_ssa_update_p (cfun));
5446
5447 /* Record blocks outside the region that are dominated by something
5448 inside. */
5449 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5450
5451 if (exit->src->count)
5452 {
5453 total_count = exit->src->count;
5454 exit_count = exit->count;
5455 /* Fix up corner cases, to avoid division by zero or creation of negative
5456 frequencies. */
5457 if (exit_count > total_count)
5458 exit_count = total_count;
5459 }
5460 else
5461 {
5462 total_freq = exit->src->frequency;
5463 exit_freq = EDGE_FREQUENCY (exit);
5464 /* Fix up corner cases, to avoid division by zero or creation of negative
5465 frequencies. */
5466 if (total_freq == 0)
5467 total_freq = 1;
5468 if (exit_freq > total_freq)
5469 exit_freq = total_freq;
5470 }
5471
5472 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5473 split_edge_bb_loc (exit));
5474 if (total_count)
5475 {
5476 scale_bbs_frequencies_gcov_type (region, n_region,
5477 total_count - exit_count,
5478 total_count);
5479 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5480 total_count);
5481 }
5482 else
5483 {
5484 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5485 total_freq);
5486 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5487 }
5488
5489 /* Create the switch block, and put the exit condition to it. */
5490 entry_bb = entry->dest;
5491 nentry_bb = get_bb_copy (entry_bb);
5492 if (!last_stmt (entry->src)
5493 || !stmt_ends_bb_p (last_stmt (entry->src)))
5494 switch_bb = entry->src;
5495 else
5496 switch_bb = split_edge (entry);
5497 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5498
5499 gsi = gsi_last_bb (switch_bb);
5500 cond_stmt = last_stmt (exit->src);
5501 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5502 cond_stmt = gimple_copy (cond_stmt);
5503
5504 /* If the block consisting of the exit condition has the latch as
5505 successor, then the body of the loop is executed before
5506 the exit condition is tested. In such case, moving the
5507 condition to the entry, causes that the loop will iterate
5508 one less iteration (which is the wanted outcome, since we
5509 peel out the last iteration). If the body is executed after
5510 the condition, moving the condition to the entry requires
5511 decrementing one iteration. */
5512 if (exits[1]->dest == orig_loop->latch)
5513 new_rhs = gimple_cond_rhs (cond_stmt);
5514 else
5515 {
5516 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5517 gimple_cond_rhs (cond_stmt),
5518 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5519
5520 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5521 {
5522 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5523 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5524 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5525 break;
5526
5527 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5528 NULL_TREE,false,GSI_CONTINUE_LINKING);
5529 }
5530 }
5531 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5532 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5533 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5534
5535 sorig = single_succ_edge (switch_bb);
5536 sorig->flags = exits[1]->flags;
5537 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5538
5539 /* Register the new edge from SWITCH_BB in loop exit lists. */
5540 rescan_loop_exit (snew, true, false);
5541
5542 /* Add the PHI node arguments. */
5543 add_phi_args_after_copy (region_copy, n_region, snew);
5544
5545 /* Get rid of now superfluous conditions and associated edges (and phi node
5546 arguments). */
5547 exit_bb = exit->dest;
5548
5549 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5550 PENDING_STMT (e) = NULL;
5551
5552 /* The latch of ORIG_LOOP was copied, and so was the backedge
5553 to the original header. We redirect this backedge to EXIT_BB. */
5554 for (i = 0; i < n_region; i++)
5555 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5556 {
5557 gcc_assert (single_succ_edge (region_copy[i]));
5558 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5559 PENDING_STMT (e) = NULL;
5560 for (psi = gsi_start_phis (exit_bb);
5561 !gsi_end_p (psi);
5562 gsi_next (&psi))
5563 {
5564 phi = gsi_stmt (psi);
5565 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5566 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5567 }
5568 }
5569 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5570 PENDING_STMT (e) = NULL;
5571
5572 /* Anything that is outside of the region, but was dominated by something
5573 inside needs to update dominance info. */
5574 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5575 VEC_free (basic_block, heap, doms);
5576 /* Update the SSA web. */
5577 update_ssa (TODO_update_ssa);
5578
5579 if (free_region_copy)
5580 free (region_copy);
5581
5582 free_original_copy_tables ();
5583 return true;
5584 }
5585
5586 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5587 adding blocks when the dominator traversal reaches EXIT. This
5588 function silently assumes that ENTRY strictly dominates EXIT. */
5589
5590 void
5591 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5592 VEC(basic_block,heap) **bbs_p)
5593 {
5594 basic_block son;
5595
5596 for (son = first_dom_son (CDI_DOMINATORS, entry);
5597 son;
5598 son = next_dom_son (CDI_DOMINATORS, son))
5599 {
5600 VEC_safe_push (basic_block, heap, *bbs_p, son);
5601 if (son != exit)
5602 gather_blocks_in_sese_region (son, exit, bbs_p);
5603 }
5604 }
5605
5606 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5607 The duplicates are recorded in VARS_MAP. */
5608
5609 static void
5610 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5611 tree to_context)
5612 {
5613 tree t = *tp, new_t;
5614 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5615 void **loc;
5616
5617 if (DECL_CONTEXT (t) == to_context)
5618 return;
5619
5620 loc = pointer_map_contains (vars_map, t);
5621
5622 if (!loc)
5623 {
5624 loc = pointer_map_insert (vars_map, t);
5625
5626 if (SSA_VAR_P (t))
5627 {
5628 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5629 add_local_decl (f, new_t);
5630 }
5631 else
5632 {
5633 gcc_assert (TREE_CODE (t) == CONST_DECL);
5634 new_t = copy_node (t);
5635 }
5636 DECL_CONTEXT (new_t) = to_context;
5637
5638 *loc = new_t;
5639 }
5640 else
5641 new_t = (tree) *loc;
5642
5643 *tp = new_t;
5644 }
5645
5646
5647 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5648 VARS_MAP maps old ssa names and var_decls to the new ones. */
5649
5650 static tree
5651 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5652 tree to_context)
5653 {
5654 void **loc;
5655 tree new_name, decl = SSA_NAME_VAR (name);
5656
5657 gcc_assert (is_gimple_reg (name));
5658
5659 loc = pointer_map_contains (vars_map, name);
5660
5661 if (!loc)
5662 {
5663 replace_by_duplicate_decl (&decl, vars_map, to_context);
5664
5665 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5666 if (gimple_in_ssa_p (cfun))
5667 add_referenced_var (decl);
5668
5669 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5670 if (SSA_NAME_IS_DEFAULT_DEF (name))
5671 set_default_def (decl, new_name);
5672 pop_cfun ();
5673
5674 loc = pointer_map_insert (vars_map, name);
5675 *loc = new_name;
5676 }
5677 else
5678 new_name = (tree) *loc;
5679
5680 return new_name;
5681 }
5682
5683 struct move_stmt_d
5684 {
5685 tree orig_block;
5686 tree new_block;
5687 tree from_context;
5688 tree to_context;
5689 struct pointer_map_t *vars_map;
5690 htab_t new_label_map;
5691 struct pointer_map_t *eh_map;
5692 bool remap_decls_p;
5693 };
5694
5695 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5696 contained in *TP if it has been ORIG_BLOCK previously and change the
5697 DECL_CONTEXT of every local variable referenced in *TP. */
5698
5699 static tree
5700 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5701 {
5702 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5703 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5704 tree t = *tp;
5705
5706 if (EXPR_P (t))
5707 /* We should never have TREE_BLOCK set on non-statements. */
5708 gcc_assert (!TREE_BLOCK (t));
5709
5710 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5711 {
5712 if (TREE_CODE (t) == SSA_NAME)
5713 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5714 else if (TREE_CODE (t) == LABEL_DECL)
5715 {
5716 if (p->new_label_map)
5717 {
5718 struct tree_map in, *out;
5719 in.base.from = t;
5720 out = (struct tree_map *)
5721 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5722 if (out)
5723 *tp = t = out->to;
5724 }
5725
5726 DECL_CONTEXT (t) = p->to_context;
5727 }
5728 else if (p->remap_decls_p)
5729 {
5730 /* Replace T with its duplicate. T should no longer appear in the
5731 parent function, so this looks wasteful; however, it may appear
5732 in referenced_vars, and more importantly, as virtual operands of
5733 statements, and in alias lists of other variables. It would be
5734 quite difficult to expunge it from all those places. ??? It might
5735 suffice to do this for addressable variables. */
5736 if ((TREE_CODE (t) == VAR_DECL
5737 && !is_global_var (t))
5738 || TREE_CODE (t) == CONST_DECL)
5739 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5740
5741 if (SSA_VAR_P (t)
5742 && gimple_in_ssa_p (cfun))
5743 {
5744 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5745 add_referenced_var (*tp);
5746 pop_cfun ();
5747 }
5748 }
5749 *walk_subtrees = 0;
5750 }
5751 else if (TYPE_P (t))
5752 *walk_subtrees = 0;
5753
5754 return NULL_TREE;
5755 }
5756
5757 /* Helper for move_stmt_r. Given an EH region number for the source
5758 function, map that to the duplicate EH regio number in the dest. */
5759
5760 static int
5761 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5762 {
5763 eh_region old_r, new_r;
5764 void **slot;
5765
5766 old_r = get_eh_region_from_number (old_nr);
5767 slot = pointer_map_contains (p->eh_map, old_r);
5768 new_r = (eh_region) *slot;
5769
5770 return new_r->index;
5771 }
5772
5773 /* Similar, but operate on INTEGER_CSTs. */
5774
5775 static tree
5776 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5777 {
5778 int old_nr, new_nr;
5779
5780 old_nr = tree_low_cst (old_t_nr, 0);
5781 new_nr = move_stmt_eh_region_nr (old_nr, p);
5782
5783 return build_int_cst (integer_type_node, new_nr);
5784 }
5785
5786 /* Like move_stmt_op, but for gimple statements.
5787
5788 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5789 contained in the current statement in *GSI_P and change the
5790 DECL_CONTEXT of every local variable referenced in the current
5791 statement. */
5792
5793 static tree
5794 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5795 struct walk_stmt_info *wi)
5796 {
5797 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5798 gimple stmt = gsi_stmt (*gsi_p);
5799 tree block = gimple_block (stmt);
5800
5801 if (p->orig_block == NULL_TREE
5802 || block == p->orig_block
5803 || block == NULL_TREE)
5804 gimple_set_block (stmt, p->new_block);
5805 #ifdef ENABLE_CHECKING
5806 else if (block != p->new_block)
5807 {
5808 while (block && block != p->orig_block)
5809 block = BLOCK_SUPERCONTEXT (block);
5810 gcc_assert (block);
5811 }
5812 #endif
5813
5814 switch (gimple_code (stmt))
5815 {
5816 case GIMPLE_CALL:
5817 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5818 {
5819 tree r, fndecl = gimple_call_fndecl (stmt);
5820 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5821 switch (DECL_FUNCTION_CODE (fndecl))
5822 {
5823 case BUILT_IN_EH_COPY_VALUES:
5824 r = gimple_call_arg (stmt, 1);
5825 r = move_stmt_eh_region_tree_nr (r, p);
5826 gimple_call_set_arg (stmt, 1, r);
5827 /* FALLTHRU */
5828
5829 case BUILT_IN_EH_POINTER:
5830 case BUILT_IN_EH_FILTER:
5831 r = gimple_call_arg (stmt, 0);
5832 r = move_stmt_eh_region_tree_nr (r, p);
5833 gimple_call_set_arg (stmt, 0, r);
5834 break;
5835
5836 default:
5837 break;
5838 }
5839 }
5840 break;
5841
5842 case GIMPLE_RESX:
5843 {
5844 int r = gimple_resx_region (stmt);
5845 r = move_stmt_eh_region_nr (r, p);
5846 gimple_resx_set_region (stmt, r);
5847 }
5848 break;
5849
5850 case GIMPLE_EH_DISPATCH:
5851 {
5852 int r = gimple_eh_dispatch_region (stmt);
5853 r = move_stmt_eh_region_nr (r, p);
5854 gimple_eh_dispatch_set_region (stmt, r);
5855 }
5856 break;
5857
5858 case GIMPLE_OMP_RETURN:
5859 case GIMPLE_OMP_CONTINUE:
5860 break;
5861 default:
5862 if (is_gimple_omp (stmt))
5863 {
5864 /* Do not remap variables inside OMP directives. Variables
5865 referenced in clauses and directive header belong to the
5866 parent function and should not be moved into the child
5867 function. */
5868 bool save_remap_decls_p = p->remap_decls_p;
5869 p->remap_decls_p = false;
5870 *handled_ops_p = true;
5871
5872 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5873 move_stmt_op, wi);
5874
5875 p->remap_decls_p = save_remap_decls_p;
5876 }
5877 break;
5878 }
5879
5880 return NULL_TREE;
5881 }
5882
5883 /* Move basic block BB from function CFUN to function DEST_FN. The
5884 block is moved out of the original linked list and placed after
5885 block AFTER in the new list. Also, the block is removed from the
5886 original array of blocks and placed in DEST_FN's array of blocks.
5887 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5888 updated to reflect the moved edges.
5889
5890 The local variables are remapped to new instances, VARS_MAP is used
5891 to record the mapping. */
5892
5893 static void
5894 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5895 basic_block after, bool update_edge_count_p,
5896 struct move_stmt_d *d)
5897 {
5898 struct control_flow_graph *cfg;
5899 edge_iterator ei;
5900 edge e;
5901 gimple_stmt_iterator si;
5902 unsigned old_len, new_len;
5903
5904 /* Remove BB from dominance structures. */
5905 delete_from_dominance_info (CDI_DOMINATORS, bb);
5906 if (current_loops)
5907 remove_bb_from_loops (bb);
5908
5909 /* Link BB to the new linked list. */
5910 move_block_after (bb, after);
5911
5912 /* Update the edge count in the corresponding flowgraphs. */
5913 if (update_edge_count_p)
5914 FOR_EACH_EDGE (e, ei, bb->succs)
5915 {
5916 cfun->cfg->x_n_edges--;
5917 dest_cfun->cfg->x_n_edges++;
5918 }
5919
5920 /* Remove BB from the original basic block array. */
5921 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5922 cfun->cfg->x_n_basic_blocks--;
5923
5924 /* Grow DEST_CFUN's basic block array if needed. */
5925 cfg = dest_cfun->cfg;
5926 cfg->x_n_basic_blocks++;
5927 if (bb->index >= cfg->x_last_basic_block)
5928 cfg->x_last_basic_block = bb->index + 1;
5929
5930 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5931 if ((unsigned) cfg->x_last_basic_block >= old_len)
5932 {
5933 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5934 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5935 new_len);
5936 }
5937
5938 VEC_replace (basic_block, cfg->x_basic_block_info,
5939 bb->index, bb);
5940
5941 /* Remap the variables in phi nodes. */
5942 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5943 {
5944 gimple phi = gsi_stmt (si);
5945 use_operand_p use;
5946 tree op = PHI_RESULT (phi);
5947 ssa_op_iter oi;
5948
5949 if (!is_gimple_reg (op))
5950 {
5951 /* Remove the phi nodes for virtual operands (alias analysis will be
5952 run for the new function, anyway). */
5953 remove_phi_node (&si, true);
5954 continue;
5955 }
5956
5957 SET_PHI_RESULT (phi,
5958 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5959 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5960 {
5961 op = USE_FROM_PTR (use);
5962 if (TREE_CODE (op) == SSA_NAME)
5963 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5964 }
5965
5966 gsi_next (&si);
5967 }
5968
5969 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5970 {
5971 gimple stmt = gsi_stmt (si);
5972 struct walk_stmt_info wi;
5973
5974 memset (&wi, 0, sizeof (wi));
5975 wi.info = d;
5976 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5977
5978 if (gimple_code (stmt) == GIMPLE_LABEL)
5979 {
5980 tree label = gimple_label_label (stmt);
5981 int uid = LABEL_DECL_UID (label);
5982
5983 gcc_assert (uid > -1);
5984
5985 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5986 if (old_len <= (unsigned) uid)
5987 {
5988 new_len = 3 * uid / 2 + 1;
5989 VEC_safe_grow_cleared (basic_block, gc,
5990 cfg->x_label_to_block_map, new_len);
5991 }
5992
5993 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5994 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5995
5996 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5997
5998 if (uid >= dest_cfun->cfg->last_label_uid)
5999 dest_cfun->cfg->last_label_uid = uid + 1;
6000 }
6001
6002 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6003 remove_stmt_from_eh_lp_fn (cfun, stmt);
6004
6005 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6006 gimple_remove_stmt_histograms (cfun, stmt);
6007
6008 /* We cannot leave any operands allocated from the operand caches of
6009 the current function. */
6010 free_stmt_operands (stmt);
6011 push_cfun (dest_cfun);
6012 update_stmt (stmt);
6013 pop_cfun ();
6014 }
6015
6016 FOR_EACH_EDGE (e, ei, bb->succs)
6017 if (e->goto_locus)
6018 {
6019 tree block = e->goto_block;
6020 if (d->orig_block == NULL_TREE
6021 || block == d->orig_block)
6022 e->goto_block = d->new_block;
6023 #ifdef ENABLE_CHECKING
6024 else if (block != d->new_block)
6025 {
6026 while (block && block != d->orig_block)
6027 block = BLOCK_SUPERCONTEXT (block);
6028 gcc_assert (block);
6029 }
6030 #endif
6031 }
6032 }
6033
6034 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6035 the outermost EH region. Use REGION as the incoming base EH region. */
6036
6037 static eh_region
6038 find_outermost_region_in_block (struct function *src_cfun,
6039 basic_block bb, eh_region region)
6040 {
6041 gimple_stmt_iterator si;
6042
6043 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6044 {
6045 gimple stmt = gsi_stmt (si);
6046 eh_region stmt_region;
6047 int lp_nr;
6048
6049 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6050 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6051 if (stmt_region)
6052 {
6053 if (region == NULL)
6054 region = stmt_region;
6055 else if (stmt_region != region)
6056 {
6057 region = eh_region_outermost (src_cfun, stmt_region, region);
6058 gcc_assert (region != NULL);
6059 }
6060 }
6061 }
6062
6063 return region;
6064 }
6065
6066 static tree
6067 new_label_mapper (tree decl, void *data)
6068 {
6069 htab_t hash = (htab_t) data;
6070 struct tree_map *m;
6071 void **slot;
6072
6073 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6074
6075 m = XNEW (struct tree_map);
6076 m->hash = DECL_UID (decl);
6077 m->base.from = decl;
6078 m->to = create_artificial_label (UNKNOWN_LOCATION);
6079 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6080 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6081 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6082
6083 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6084 gcc_assert (*slot == NULL);
6085
6086 *slot = m;
6087
6088 return m->to;
6089 }
6090
6091 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6092 subblocks. */
6093
6094 static void
6095 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6096 tree to_context)
6097 {
6098 tree *tp, t;
6099
6100 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6101 {
6102 t = *tp;
6103 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6104 continue;
6105 replace_by_duplicate_decl (&t, vars_map, to_context);
6106 if (t != *tp)
6107 {
6108 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6109 {
6110 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6111 DECL_HAS_VALUE_EXPR_P (t) = 1;
6112 }
6113 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6114 *tp = t;
6115 }
6116 }
6117
6118 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6119 replace_block_vars_by_duplicates (block, vars_map, to_context);
6120 }
6121
6122 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6123 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6124 single basic block in the original CFG and the new basic block is
6125 returned. DEST_CFUN must not have a CFG yet.
6126
6127 Note that the region need not be a pure SESE region. Blocks inside
6128 the region may contain calls to abort/exit. The only restriction
6129 is that ENTRY_BB should be the only entry point and it must
6130 dominate EXIT_BB.
6131
6132 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6133 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6134 to the new function.
6135
6136 All local variables referenced in the region are assumed to be in
6137 the corresponding BLOCK_VARS and unexpanded variable lists
6138 associated with DEST_CFUN. */
6139
6140 basic_block
6141 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6142 basic_block exit_bb, tree orig_block)
6143 {
6144 VEC(basic_block,heap) *bbs, *dom_bbs;
6145 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6146 basic_block after, bb, *entry_pred, *exit_succ, abb;
6147 struct function *saved_cfun = cfun;
6148 int *entry_flag, *exit_flag;
6149 unsigned *entry_prob, *exit_prob;
6150 unsigned i, num_entry_edges, num_exit_edges;
6151 edge e;
6152 edge_iterator ei;
6153 htab_t new_label_map;
6154 struct pointer_map_t *vars_map, *eh_map;
6155 struct loop *loop = entry_bb->loop_father;
6156 struct move_stmt_d d;
6157
6158 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6159 region. */
6160 gcc_assert (entry_bb != exit_bb
6161 && (!exit_bb
6162 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6163
6164 /* Collect all the blocks in the region. Manually add ENTRY_BB
6165 because it won't be added by dfs_enumerate_from. */
6166 bbs = NULL;
6167 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6168 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6169
6170 /* The blocks that used to be dominated by something in BBS will now be
6171 dominated by the new block. */
6172 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6173 VEC_address (basic_block, bbs),
6174 VEC_length (basic_block, bbs));
6175
6176 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6177 the predecessor edges to ENTRY_BB and the successor edges to
6178 EXIT_BB so that we can re-attach them to the new basic block that
6179 will replace the region. */
6180 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6181 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6182 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6183 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6184 i = 0;
6185 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6186 {
6187 entry_prob[i] = e->probability;
6188 entry_flag[i] = e->flags;
6189 entry_pred[i++] = e->src;
6190 remove_edge (e);
6191 }
6192
6193 if (exit_bb)
6194 {
6195 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6196 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6197 sizeof (basic_block));
6198 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6199 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6200 i = 0;
6201 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6202 {
6203 exit_prob[i] = e->probability;
6204 exit_flag[i] = e->flags;
6205 exit_succ[i++] = e->dest;
6206 remove_edge (e);
6207 }
6208 }
6209 else
6210 {
6211 num_exit_edges = 0;
6212 exit_succ = NULL;
6213 exit_flag = NULL;
6214 exit_prob = NULL;
6215 }
6216
6217 /* Switch context to the child function to initialize DEST_FN's CFG. */
6218 gcc_assert (dest_cfun->cfg == NULL);
6219 push_cfun (dest_cfun);
6220
6221 init_empty_tree_cfg ();
6222
6223 /* Initialize EH information for the new function. */
6224 eh_map = NULL;
6225 new_label_map = NULL;
6226 if (saved_cfun->eh)
6227 {
6228 eh_region region = NULL;
6229
6230 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6231 region = find_outermost_region_in_block (saved_cfun, bb, region);
6232
6233 init_eh_for_function ();
6234 if (region != NULL)
6235 {
6236 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6237 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6238 new_label_mapper, new_label_map);
6239 }
6240 }
6241
6242 pop_cfun ();
6243
6244 /* Move blocks from BBS into DEST_CFUN. */
6245 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6246 after = dest_cfun->cfg->x_entry_block_ptr;
6247 vars_map = pointer_map_create ();
6248
6249 memset (&d, 0, sizeof (d));
6250 d.orig_block = orig_block;
6251 d.new_block = DECL_INITIAL (dest_cfun->decl);
6252 d.from_context = cfun->decl;
6253 d.to_context = dest_cfun->decl;
6254 d.vars_map = vars_map;
6255 d.new_label_map = new_label_map;
6256 d.eh_map = eh_map;
6257 d.remap_decls_p = true;
6258
6259 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6260 {
6261 /* No need to update edge counts on the last block. It has
6262 already been updated earlier when we detached the region from
6263 the original CFG. */
6264 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6265 after = bb;
6266 }
6267
6268 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6269 if (orig_block)
6270 {
6271 tree block;
6272 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6273 == NULL_TREE);
6274 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6275 = BLOCK_SUBBLOCKS (orig_block);
6276 for (block = BLOCK_SUBBLOCKS (orig_block);
6277 block; block = BLOCK_CHAIN (block))
6278 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6279 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6280 }
6281
6282 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6283 vars_map, dest_cfun->decl);
6284
6285 if (new_label_map)
6286 htab_delete (new_label_map);
6287 if (eh_map)
6288 pointer_map_destroy (eh_map);
6289 pointer_map_destroy (vars_map);
6290
6291 /* Rewire the entry and exit blocks. The successor to the entry
6292 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6293 the child function. Similarly, the predecessor of DEST_FN's
6294 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6295 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6296 various CFG manipulation function get to the right CFG.
6297
6298 FIXME, this is silly. The CFG ought to become a parameter to
6299 these helpers. */
6300 push_cfun (dest_cfun);
6301 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6302 if (exit_bb)
6303 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6304 pop_cfun ();
6305
6306 /* Back in the original function, the SESE region has disappeared,
6307 create a new basic block in its place. */
6308 bb = create_empty_bb (entry_pred[0]);
6309 if (current_loops)
6310 add_bb_to_loop (bb, loop);
6311 for (i = 0; i < num_entry_edges; i++)
6312 {
6313 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6314 e->probability = entry_prob[i];
6315 }
6316
6317 for (i = 0; i < num_exit_edges; i++)
6318 {
6319 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6320 e->probability = exit_prob[i];
6321 }
6322
6323 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6324 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6325 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6326 VEC_free (basic_block, heap, dom_bbs);
6327
6328 if (exit_bb)
6329 {
6330 free (exit_prob);
6331 free (exit_flag);
6332 free (exit_succ);
6333 }
6334 free (entry_prob);
6335 free (entry_flag);
6336 free (entry_pred);
6337 VEC_free (basic_block, heap, bbs);
6338
6339 return bb;
6340 }
6341
6342
6343 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6344 */
6345
6346 void
6347 dump_function_to_file (tree fn, FILE *file, int flags)
6348 {
6349 tree arg, var;
6350 struct function *dsf;
6351 bool ignore_topmost_bind = false, any_var = false;
6352 basic_block bb;
6353 tree chain;
6354
6355 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6356
6357 arg = DECL_ARGUMENTS (fn);
6358 while (arg)
6359 {
6360 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6361 fprintf (file, " ");
6362 print_generic_expr (file, arg, dump_flags);
6363 if (flags & TDF_VERBOSE)
6364 print_node (file, "", arg, 4);
6365 if (DECL_CHAIN (arg))
6366 fprintf (file, ", ");
6367 arg = DECL_CHAIN (arg);
6368 }
6369 fprintf (file, ")\n");
6370
6371 if (flags & TDF_VERBOSE)
6372 print_node (file, "", fn, 2);
6373
6374 dsf = DECL_STRUCT_FUNCTION (fn);
6375 if (dsf && (flags & TDF_EH))
6376 dump_eh_tree (file, dsf);
6377
6378 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6379 {
6380 dump_node (fn, TDF_SLIM | flags, file);
6381 return;
6382 }
6383
6384 /* Switch CFUN to point to FN. */
6385 push_cfun (DECL_STRUCT_FUNCTION (fn));
6386
6387 /* When GIMPLE is lowered, the variables are no longer available in
6388 BIND_EXPRs, so display them separately. */
6389 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6390 {
6391 unsigned ix;
6392 ignore_topmost_bind = true;
6393
6394 fprintf (file, "{\n");
6395 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6396 {
6397 print_generic_decl (file, var, flags);
6398 if (flags & TDF_VERBOSE)
6399 print_node (file, "", var, 4);
6400 fprintf (file, "\n");
6401
6402 any_var = true;
6403 }
6404 }
6405
6406 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6407 {
6408 /* If the CFG has been built, emit a CFG-based dump. */
6409 check_bb_profile (ENTRY_BLOCK_PTR, file);
6410 if (!ignore_topmost_bind)
6411 fprintf (file, "{\n");
6412
6413 if (any_var && n_basic_blocks)
6414 fprintf (file, "\n");
6415
6416 FOR_EACH_BB (bb)
6417 gimple_dump_bb (bb, file, 2, flags);
6418
6419 fprintf (file, "}\n");
6420 check_bb_profile (EXIT_BLOCK_PTR, file);
6421 }
6422 else if (DECL_SAVED_TREE (fn) == NULL)
6423 {
6424 /* The function is now in GIMPLE form but the CFG has not been
6425 built yet. Emit the single sequence of GIMPLE statements
6426 that make up its body. */
6427 gimple_seq body = gimple_body (fn);
6428
6429 if (gimple_seq_first_stmt (body)
6430 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6431 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6432 print_gimple_seq (file, body, 0, flags);
6433 else
6434 {
6435 if (!ignore_topmost_bind)
6436 fprintf (file, "{\n");
6437
6438 if (any_var)
6439 fprintf (file, "\n");
6440
6441 print_gimple_seq (file, body, 2, flags);
6442 fprintf (file, "}\n");
6443 }
6444 }
6445 else
6446 {
6447 int indent;
6448
6449 /* Make a tree based dump. */
6450 chain = DECL_SAVED_TREE (fn);
6451
6452 if (chain && TREE_CODE (chain) == BIND_EXPR)
6453 {
6454 if (ignore_topmost_bind)
6455 {
6456 chain = BIND_EXPR_BODY (chain);
6457 indent = 2;
6458 }
6459 else
6460 indent = 0;
6461 }
6462 else
6463 {
6464 if (!ignore_topmost_bind)
6465 fprintf (file, "{\n");
6466 indent = 2;
6467 }
6468
6469 if (any_var)
6470 fprintf (file, "\n");
6471
6472 print_generic_stmt_indented (file, chain, flags, indent);
6473 if (ignore_topmost_bind)
6474 fprintf (file, "}\n");
6475 }
6476
6477 if (flags & TDF_ENUMERATE_LOCALS)
6478 dump_enumerated_decls (file, flags);
6479 fprintf (file, "\n\n");
6480
6481 /* Restore CFUN. */
6482 pop_cfun ();
6483 }
6484
6485
6486 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6487
6488 DEBUG_FUNCTION void
6489 debug_function (tree fn, int flags)
6490 {
6491 dump_function_to_file (fn, stderr, flags);
6492 }
6493
6494
6495 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6496
6497 static void
6498 print_pred_bbs (FILE *file, basic_block bb)
6499 {
6500 edge e;
6501 edge_iterator ei;
6502
6503 FOR_EACH_EDGE (e, ei, bb->preds)
6504 fprintf (file, "bb_%d ", e->src->index);
6505 }
6506
6507
6508 /* Print on FILE the indexes for the successors of basic_block BB. */
6509
6510 static void
6511 print_succ_bbs (FILE *file, basic_block bb)
6512 {
6513 edge e;
6514 edge_iterator ei;
6515
6516 FOR_EACH_EDGE (e, ei, bb->succs)
6517 fprintf (file, "bb_%d ", e->dest->index);
6518 }
6519
6520 /* Print to FILE the basic block BB following the VERBOSITY level. */
6521
6522 void
6523 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6524 {
6525 char *s_indent = (char *) alloca ((size_t) indent + 1);
6526 memset ((void *) s_indent, ' ', (size_t) indent);
6527 s_indent[indent] = '\0';
6528
6529 /* Print basic_block's header. */
6530 if (verbosity >= 2)
6531 {
6532 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6533 print_pred_bbs (file, bb);
6534 fprintf (file, "}, succs = {");
6535 print_succ_bbs (file, bb);
6536 fprintf (file, "})\n");
6537 }
6538
6539 /* Print basic_block's body. */
6540 if (verbosity >= 3)
6541 {
6542 fprintf (file, "%s {\n", s_indent);
6543 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6544 fprintf (file, "%s }\n", s_indent);
6545 }
6546 }
6547
6548 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6549
6550 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6551 VERBOSITY level this outputs the contents of the loop, or just its
6552 structure. */
6553
6554 static void
6555 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6556 {
6557 char *s_indent;
6558 basic_block bb;
6559
6560 if (loop == NULL)
6561 return;
6562
6563 s_indent = (char *) alloca ((size_t) indent + 1);
6564 memset ((void *) s_indent, ' ', (size_t) indent);
6565 s_indent[indent] = '\0';
6566
6567 /* Print loop's header. */
6568 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6569 loop->num, loop->header->index, loop->latch->index);
6570 fprintf (file, ", niter = ");
6571 print_generic_expr (file, loop->nb_iterations, 0);
6572
6573 if (loop->any_upper_bound)
6574 {
6575 fprintf (file, ", upper_bound = ");
6576 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6577 }
6578
6579 if (loop->any_estimate)
6580 {
6581 fprintf (file, ", estimate = ");
6582 dump_double_int (file, loop->nb_iterations_estimate, true);
6583 }
6584 fprintf (file, ")\n");
6585
6586 /* Print loop's body. */
6587 if (verbosity >= 1)
6588 {
6589 fprintf (file, "%s{\n", s_indent);
6590 FOR_EACH_BB (bb)
6591 if (bb->loop_father == loop)
6592 print_loops_bb (file, bb, indent, verbosity);
6593
6594 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6595 fprintf (file, "%s}\n", s_indent);
6596 }
6597 }
6598
6599 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6600 spaces. Following VERBOSITY level this outputs the contents of the
6601 loop, or just its structure. */
6602
6603 static void
6604 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6605 {
6606 if (loop == NULL)
6607 return;
6608
6609 print_loop (file, loop, indent, verbosity);
6610 print_loop_and_siblings (file, loop->next, indent, verbosity);
6611 }
6612
6613 /* Follow a CFG edge from the entry point of the program, and on entry
6614 of a loop, pretty print the loop structure on FILE. */
6615
6616 void
6617 print_loops (FILE *file, int verbosity)
6618 {
6619 basic_block bb;
6620
6621 bb = ENTRY_BLOCK_PTR;
6622 if (bb && bb->loop_father)
6623 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6624 }
6625
6626
6627 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6628
6629 DEBUG_FUNCTION void
6630 debug_loops (int verbosity)
6631 {
6632 print_loops (stderr, verbosity);
6633 }
6634
6635 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6636
6637 DEBUG_FUNCTION void
6638 debug_loop (struct loop *loop, int verbosity)
6639 {
6640 print_loop (stderr, loop, 0, verbosity);
6641 }
6642
6643 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6644 level. */
6645
6646 DEBUG_FUNCTION void
6647 debug_loop_num (unsigned num, int verbosity)
6648 {
6649 debug_loop (get_loop (num), verbosity);
6650 }
6651
6652 /* Return true if BB ends with a call, possibly followed by some
6653 instructions that must stay with the call. Return false,
6654 otherwise. */
6655
6656 static bool
6657 gimple_block_ends_with_call_p (basic_block bb)
6658 {
6659 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6660 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6661 }
6662
6663
6664 /* Return true if BB ends with a conditional branch. Return false,
6665 otherwise. */
6666
6667 static bool
6668 gimple_block_ends_with_condjump_p (const_basic_block bb)
6669 {
6670 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6671 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6672 }
6673
6674
6675 /* Return true if we need to add fake edge to exit at statement T.
6676 Helper function for gimple_flow_call_edges_add. */
6677
6678 static bool
6679 need_fake_edge_p (gimple t)
6680 {
6681 tree fndecl = NULL_TREE;
6682 int call_flags = 0;
6683
6684 /* NORETURN and LONGJMP calls already have an edge to exit.
6685 CONST and PURE calls do not need one.
6686 We don't currently check for CONST and PURE here, although
6687 it would be a good idea, because those attributes are
6688 figured out from the RTL in mark_constant_function, and
6689 the counter incrementation code from -fprofile-arcs
6690 leads to different results from -fbranch-probabilities. */
6691 if (is_gimple_call (t))
6692 {
6693 fndecl = gimple_call_fndecl (t);
6694 call_flags = gimple_call_flags (t);
6695 }
6696
6697 if (is_gimple_call (t)
6698 && fndecl
6699 && DECL_BUILT_IN (fndecl)
6700 && (call_flags & ECF_NOTHROW)
6701 && !(call_flags & ECF_RETURNS_TWICE)
6702 /* fork() doesn't really return twice, but the effect of
6703 wrapping it in __gcov_fork() which calls __gcov_flush()
6704 and clears the counters before forking has the same
6705 effect as returning twice. Force a fake edge. */
6706 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6707 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6708 return false;
6709
6710 if (is_gimple_call (t)
6711 && !(call_flags & ECF_NORETURN))
6712 return true;
6713
6714 if (gimple_code (t) == GIMPLE_ASM
6715 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6716 return true;
6717
6718 return false;
6719 }
6720
6721
6722 /* Add fake edges to the function exit for any non constant and non
6723 noreturn calls, volatile inline assembly in the bitmap of blocks
6724 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6725 the number of blocks that were split.
6726
6727 The goal is to expose cases in which entering a basic block does
6728 not imply that all subsequent instructions must be executed. */
6729
6730 static int
6731 gimple_flow_call_edges_add (sbitmap blocks)
6732 {
6733 int i;
6734 int blocks_split = 0;
6735 int last_bb = last_basic_block;
6736 bool check_last_block = false;
6737
6738 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6739 return 0;
6740
6741 if (! blocks)
6742 check_last_block = true;
6743 else
6744 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6745
6746 /* In the last basic block, before epilogue generation, there will be
6747 a fallthru edge to EXIT. Special care is required if the last insn
6748 of the last basic block is a call because make_edge folds duplicate
6749 edges, which would result in the fallthru edge also being marked
6750 fake, which would result in the fallthru edge being removed by
6751 remove_fake_edges, which would result in an invalid CFG.
6752
6753 Moreover, we can't elide the outgoing fake edge, since the block
6754 profiler needs to take this into account in order to solve the minimal
6755 spanning tree in the case that the call doesn't return.
6756
6757 Handle this by adding a dummy instruction in a new last basic block. */
6758 if (check_last_block)
6759 {
6760 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6761 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6762 gimple t = NULL;
6763
6764 if (!gsi_end_p (gsi))
6765 t = gsi_stmt (gsi);
6766
6767 if (t && need_fake_edge_p (t))
6768 {
6769 edge e;
6770
6771 e = find_edge (bb, EXIT_BLOCK_PTR);
6772 if (e)
6773 {
6774 gsi_insert_on_edge (e, gimple_build_nop ());
6775 gsi_commit_edge_inserts ();
6776 }
6777 }
6778 }
6779
6780 /* Now add fake edges to the function exit for any non constant
6781 calls since there is no way that we can determine if they will
6782 return or not... */
6783 for (i = 0; i < last_bb; i++)
6784 {
6785 basic_block bb = BASIC_BLOCK (i);
6786 gimple_stmt_iterator gsi;
6787 gimple stmt, last_stmt;
6788
6789 if (!bb)
6790 continue;
6791
6792 if (blocks && !TEST_BIT (blocks, i))
6793 continue;
6794
6795 gsi = gsi_last_nondebug_bb (bb);
6796 if (!gsi_end_p (gsi))
6797 {
6798 last_stmt = gsi_stmt (gsi);
6799 do
6800 {
6801 stmt = gsi_stmt (gsi);
6802 if (need_fake_edge_p (stmt))
6803 {
6804 edge e;
6805
6806 /* The handling above of the final block before the
6807 epilogue should be enough to verify that there is
6808 no edge to the exit block in CFG already.
6809 Calling make_edge in such case would cause us to
6810 mark that edge as fake and remove it later. */
6811 #ifdef ENABLE_CHECKING
6812 if (stmt == last_stmt)
6813 {
6814 e = find_edge (bb, EXIT_BLOCK_PTR);
6815 gcc_assert (e == NULL);
6816 }
6817 #endif
6818
6819 /* Note that the following may create a new basic block
6820 and renumber the existing basic blocks. */
6821 if (stmt != last_stmt)
6822 {
6823 e = split_block (bb, stmt);
6824 if (e)
6825 blocks_split++;
6826 }
6827 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6828 }
6829 gsi_prev (&gsi);
6830 }
6831 while (!gsi_end_p (gsi));
6832 }
6833 }
6834
6835 if (blocks_split)
6836 verify_flow_info ();
6837
6838 return blocks_split;
6839 }
6840
6841 /* Removes edge E and all the blocks dominated by it, and updates dominance
6842 information. The IL in E->src needs to be updated separately.
6843 If dominance info is not available, only the edge E is removed.*/
6844
6845 void
6846 remove_edge_and_dominated_blocks (edge e)
6847 {
6848 VEC (basic_block, heap) *bbs_to_remove = NULL;
6849 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6850 bitmap df, df_idom;
6851 edge f;
6852 edge_iterator ei;
6853 bool none_removed = false;
6854 unsigned i;
6855 basic_block bb, dbb;
6856 bitmap_iterator bi;
6857
6858 if (!dom_info_available_p (CDI_DOMINATORS))
6859 {
6860 remove_edge (e);
6861 return;
6862 }
6863
6864 /* No updating is needed for edges to exit. */
6865 if (e->dest == EXIT_BLOCK_PTR)
6866 {
6867 if (cfgcleanup_altered_bbs)
6868 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6869 remove_edge (e);
6870 return;
6871 }
6872
6873 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6874 that is not dominated by E->dest, then this set is empty. Otherwise,
6875 all the basic blocks dominated by E->dest are removed.
6876
6877 Also, to DF_IDOM we store the immediate dominators of the blocks in
6878 the dominance frontier of E (i.e., of the successors of the
6879 removed blocks, if there are any, and of E->dest otherwise). */
6880 FOR_EACH_EDGE (f, ei, e->dest->preds)
6881 {
6882 if (f == e)
6883 continue;
6884
6885 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6886 {
6887 none_removed = true;
6888 break;
6889 }
6890 }
6891
6892 df = BITMAP_ALLOC (NULL);
6893 df_idom = BITMAP_ALLOC (NULL);
6894
6895 if (none_removed)
6896 bitmap_set_bit (df_idom,
6897 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6898 else
6899 {
6900 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6901 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6902 {
6903 FOR_EACH_EDGE (f, ei, bb->succs)
6904 {
6905 if (f->dest != EXIT_BLOCK_PTR)
6906 bitmap_set_bit (df, f->dest->index);
6907 }
6908 }
6909 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6910 bitmap_clear_bit (df, bb->index);
6911
6912 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6913 {
6914 bb = BASIC_BLOCK (i);
6915 bitmap_set_bit (df_idom,
6916 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6917 }
6918 }
6919
6920 if (cfgcleanup_altered_bbs)
6921 {
6922 /* Record the set of the altered basic blocks. */
6923 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6924 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6925 }
6926
6927 /* Remove E and the cancelled blocks. */
6928 if (none_removed)
6929 remove_edge (e);
6930 else
6931 {
6932 /* Walk backwards so as to get a chance to substitute all
6933 released DEFs into debug stmts. See
6934 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6935 details. */
6936 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6937 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6938 }
6939
6940 /* Update the dominance information. The immediate dominator may change only
6941 for blocks whose immediate dominator belongs to DF_IDOM:
6942
6943 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6944 removal. Let Z the arbitrary block such that idom(Z) = Y and
6945 Z dominates X after the removal. Before removal, there exists a path P
6946 from Y to X that avoids Z. Let F be the last edge on P that is
6947 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6948 dominates W, and because of P, Z does not dominate W), and W belongs to
6949 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6950 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6951 {
6952 bb = BASIC_BLOCK (i);
6953 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6954 dbb;
6955 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6956 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6957 }
6958
6959 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6960
6961 BITMAP_FREE (df);
6962 BITMAP_FREE (df_idom);
6963 VEC_free (basic_block, heap, bbs_to_remove);
6964 VEC_free (basic_block, heap, bbs_to_fix_dom);
6965 }
6966
6967 /* Purge dead EH edges from basic block BB. */
6968
6969 bool
6970 gimple_purge_dead_eh_edges (basic_block bb)
6971 {
6972 bool changed = false;
6973 edge e;
6974 edge_iterator ei;
6975 gimple stmt = last_stmt (bb);
6976
6977 if (stmt && stmt_can_throw_internal (stmt))
6978 return false;
6979
6980 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6981 {
6982 if (e->flags & EDGE_EH)
6983 {
6984 remove_edge_and_dominated_blocks (e);
6985 changed = true;
6986 }
6987 else
6988 ei_next (&ei);
6989 }
6990
6991 return changed;
6992 }
6993
6994 /* Purge dead EH edges from basic block listed in BLOCKS. */
6995
6996 bool
6997 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6998 {
6999 bool changed = false;
7000 unsigned i;
7001 bitmap_iterator bi;
7002
7003 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7004 {
7005 basic_block bb = BASIC_BLOCK (i);
7006
7007 /* Earlier gimple_purge_dead_eh_edges could have removed
7008 this basic block already. */
7009 gcc_assert (bb || changed);
7010 if (bb != NULL)
7011 changed |= gimple_purge_dead_eh_edges (bb);
7012 }
7013
7014 return changed;
7015 }
7016
7017 /* Purge dead abnormal call edges from basic block BB. */
7018
7019 bool
7020 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7021 {
7022 bool changed = false;
7023 edge e;
7024 edge_iterator ei;
7025 gimple stmt = last_stmt (bb);
7026
7027 if (!cfun->has_nonlocal_label)
7028 return false;
7029
7030 if (stmt && stmt_can_make_abnormal_goto (stmt))
7031 return false;
7032
7033 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7034 {
7035 if (e->flags & EDGE_ABNORMAL)
7036 {
7037 remove_edge_and_dominated_blocks (e);
7038 changed = true;
7039 }
7040 else
7041 ei_next (&ei);
7042 }
7043
7044 return changed;
7045 }
7046
7047 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7048
7049 bool
7050 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7051 {
7052 bool changed = false;
7053 unsigned i;
7054 bitmap_iterator bi;
7055
7056 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7057 {
7058 basic_block bb = BASIC_BLOCK (i);
7059
7060 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7061 this basic block already. */
7062 gcc_assert (bb || changed);
7063 if (bb != NULL)
7064 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7065 }
7066
7067 return changed;
7068 }
7069
7070 /* This function is called whenever a new edge is created or
7071 redirected. */
7072
7073 static void
7074 gimple_execute_on_growing_pred (edge e)
7075 {
7076 basic_block bb = e->dest;
7077
7078 if (!gimple_seq_empty_p (phi_nodes (bb)))
7079 reserve_phi_args_for_new_edge (bb);
7080 }
7081
7082 /* This function is called immediately before edge E is removed from
7083 the edge vector E->dest->preds. */
7084
7085 static void
7086 gimple_execute_on_shrinking_pred (edge e)
7087 {
7088 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7089 remove_phi_args (e);
7090 }
7091
7092 /*---------------------------------------------------------------------------
7093 Helper functions for Loop versioning
7094 ---------------------------------------------------------------------------*/
7095
7096 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7097 of 'first'. Both of them are dominated by 'new_head' basic block. When
7098 'new_head' was created by 'second's incoming edge it received phi arguments
7099 on the edge by split_edge(). Later, additional edge 'e' was created to
7100 connect 'new_head' and 'first'. Now this routine adds phi args on this
7101 additional edge 'e' that new_head to second edge received as part of edge
7102 splitting. */
7103
7104 static void
7105 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7106 basic_block new_head, edge e)
7107 {
7108 gimple phi1, phi2;
7109 gimple_stmt_iterator psi1, psi2;
7110 tree def;
7111 edge e2 = find_edge (new_head, second);
7112
7113 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7114 edge, we should always have an edge from NEW_HEAD to SECOND. */
7115 gcc_assert (e2 != NULL);
7116
7117 /* Browse all 'second' basic block phi nodes and add phi args to
7118 edge 'e' for 'first' head. PHI args are always in correct order. */
7119
7120 for (psi2 = gsi_start_phis (second),
7121 psi1 = gsi_start_phis (first);
7122 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7123 gsi_next (&psi2), gsi_next (&psi1))
7124 {
7125 phi1 = gsi_stmt (psi1);
7126 phi2 = gsi_stmt (psi2);
7127 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7128 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7129 }
7130 }
7131
7132
7133 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7134 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7135 the destination of the ELSE part. */
7136
7137 static void
7138 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7139 basic_block second_head ATTRIBUTE_UNUSED,
7140 basic_block cond_bb, void *cond_e)
7141 {
7142 gimple_stmt_iterator gsi;
7143 gimple new_cond_expr;
7144 tree cond_expr = (tree) cond_e;
7145 edge e0;
7146
7147 /* Build new conditional expr */
7148 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7149 NULL_TREE, NULL_TREE);
7150
7151 /* Add new cond in cond_bb. */
7152 gsi = gsi_last_bb (cond_bb);
7153 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7154
7155 /* Adjust edges appropriately to connect new head with first head
7156 as well as second head. */
7157 e0 = single_succ_edge (cond_bb);
7158 e0->flags &= ~EDGE_FALLTHRU;
7159 e0->flags |= EDGE_FALSE_VALUE;
7160 }
7161
7162 struct cfg_hooks gimple_cfg_hooks = {
7163 "gimple",
7164 gimple_verify_flow_info,
7165 gimple_dump_bb, /* dump_bb */
7166 create_bb, /* create_basic_block */
7167 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7168 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7169 gimple_can_remove_branch_p, /* can_remove_branch_p */
7170 remove_bb, /* delete_basic_block */
7171 gimple_split_block, /* split_block */
7172 gimple_move_block_after, /* move_block_after */
7173 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7174 gimple_merge_blocks, /* merge_blocks */
7175 gimple_predict_edge, /* predict_edge */
7176 gimple_predicted_by_p, /* predicted_by_p */
7177 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7178 gimple_duplicate_bb, /* duplicate_block */
7179 gimple_split_edge, /* split_edge */
7180 gimple_make_forwarder_block, /* make_forward_block */
7181 NULL, /* tidy_fallthru_edge */
7182 NULL, /* force_nonfallthru */
7183 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7184 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7185 gimple_flow_call_edges_add, /* flow_call_edges_add */
7186 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7187 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7188 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7189 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7190 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7191 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7192 flush_pending_stmts /* flush_pending_stmts */
7193 };
7194
7195
7196 /* Split all critical edges. */
7197
7198 static unsigned int
7199 split_critical_edges (void)
7200 {
7201 basic_block bb;
7202 edge e;
7203 edge_iterator ei;
7204
7205 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7206 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7207 mappings around the calls to split_edge. */
7208 start_recording_case_labels ();
7209 FOR_ALL_BB (bb)
7210 {
7211 FOR_EACH_EDGE (e, ei, bb->succs)
7212 {
7213 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7214 split_edge (e);
7215 /* PRE inserts statements to edges and expects that
7216 since split_critical_edges was done beforehand, committing edge
7217 insertions will not split more edges. In addition to critical
7218 edges we must split edges that have multiple successors and
7219 end by control flow statements, such as RESX.
7220 Go ahead and split them too. This matches the logic in
7221 gimple_find_edge_insert_loc. */
7222 else if ((!single_pred_p (e->dest)
7223 || !gimple_seq_empty_p (phi_nodes (e->dest))
7224 || e->dest == EXIT_BLOCK_PTR)
7225 && e->src != ENTRY_BLOCK_PTR
7226 && !(e->flags & EDGE_ABNORMAL))
7227 {
7228 gimple_stmt_iterator gsi;
7229
7230 gsi = gsi_last_bb (e->src);
7231 if (!gsi_end_p (gsi)
7232 && stmt_ends_bb_p (gsi_stmt (gsi))
7233 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7234 && !gimple_call_builtin_p (gsi_stmt (gsi),
7235 BUILT_IN_RETURN)))
7236 split_edge (e);
7237 }
7238 }
7239 }
7240 end_recording_case_labels ();
7241 return 0;
7242 }
7243
7244 struct gimple_opt_pass pass_split_crit_edges =
7245 {
7246 {
7247 GIMPLE_PASS,
7248 "crited", /* name */
7249 NULL, /* gate */
7250 split_critical_edges, /* execute */
7251 NULL, /* sub */
7252 NULL, /* next */
7253 0, /* static_pass_number */
7254 TV_TREE_SPLIT_EDGES, /* tv_id */
7255 PROP_cfg, /* properties required */
7256 PROP_no_crit_edges, /* properties_provided */
7257 0, /* properties_destroyed */
7258 0, /* todo_flags_start */
7259 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7260 }
7261 };
7262
7263
7264 /* Build a ternary operation and gimplify it. Emit code before GSI.
7265 Return the gimple_val holding the result. */
7266
7267 tree
7268 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7269 tree type, tree a, tree b, tree c)
7270 {
7271 tree ret;
7272 location_t loc = gimple_location (gsi_stmt (*gsi));
7273
7274 ret = fold_build3_loc (loc, code, type, a, b, c);
7275 STRIP_NOPS (ret);
7276
7277 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7278 GSI_SAME_STMT);
7279 }
7280
7281 /* Build a binary operation and gimplify it. Emit code before GSI.
7282 Return the gimple_val holding the result. */
7283
7284 tree
7285 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7286 tree type, tree a, tree b)
7287 {
7288 tree ret;
7289
7290 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7291 STRIP_NOPS (ret);
7292
7293 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7294 GSI_SAME_STMT);
7295 }
7296
7297 /* Build a unary operation and gimplify it. Emit code before GSI.
7298 Return the gimple_val holding the result. */
7299
7300 tree
7301 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7302 tree a)
7303 {
7304 tree ret;
7305
7306 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7307 STRIP_NOPS (ret);
7308
7309 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7310 GSI_SAME_STMT);
7311 }
7312
7313
7314 \f
7315 /* Emit return warnings. */
7316
7317 static unsigned int
7318 execute_warn_function_return (void)
7319 {
7320 source_location location;
7321 gimple last;
7322 edge e;
7323 edge_iterator ei;
7324
7325 /* If we have a path to EXIT, then we do return. */
7326 if (TREE_THIS_VOLATILE (cfun->decl)
7327 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7328 {
7329 location = UNKNOWN_LOCATION;
7330 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7331 {
7332 last = last_stmt (e->src);
7333 if ((gimple_code (last) == GIMPLE_RETURN
7334 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7335 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7336 break;
7337 }
7338 if (location == UNKNOWN_LOCATION)
7339 location = cfun->function_end_locus;
7340 warning_at (location, 0, "%<noreturn%> function does return");
7341 }
7342
7343 /* If we see "return;" in some basic block, then we do reach the end
7344 without returning a value. */
7345 else if (warn_return_type
7346 && !TREE_NO_WARNING (cfun->decl)
7347 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7348 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7349 {
7350 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7351 {
7352 gimple last = last_stmt (e->src);
7353 if (gimple_code (last) == GIMPLE_RETURN
7354 && gimple_return_retval (last) == NULL
7355 && !gimple_no_warning_p (last))
7356 {
7357 location = gimple_location (last);
7358 if (location == UNKNOWN_LOCATION)
7359 location = cfun->function_end_locus;
7360 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7361 TREE_NO_WARNING (cfun->decl) = 1;
7362 break;
7363 }
7364 }
7365 }
7366 return 0;
7367 }
7368
7369
7370 /* Given a basic block B which ends with a conditional and has
7371 precisely two successors, determine which of the edges is taken if
7372 the conditional is true and which is taken if the conditional is
7373 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7374
7375 void
7376 extract_true_false_edges_from_block (basic_block b,
7377 edge *true_edge,
7378 edge *false_edge)
7379 {
7380 edge e = EDGE_SUCC (b, 0);
7381
7382 if (e->flags & EDGE_TRUE_VALUE)
7383 {
7384 *true_edge = e;
7385 *false_edge = EDGE_SUCC (b, 1);
7386 }
7387 else
7388 {
7389 *false_edge = e;
7390 *true_edge = EDGE_SUCC (b, 1);
7391 }
7392 }
7393
7394 struct gimple_opt_pass pass_warn_function_return =
7395 {
7396 {
7397 GIMPLE_PASS,
7398 "*warn_function_return", /* name */
7399 NULL, /* gate */
7400 execute_warn_function_return, /* execute */
7401 NULL, /* sub */
7402 NULL, /* next */
7403 0, /* static_pass_number */
7404 TV_NONE, /* tv_id */
7405 PROP_cfg, /* properties_required */
7406 0, /* properties_provided */
7407 0, /* properties_destroyed */
7408 0, /* todo_flags_start */
7409 0 /* todo_flags_finish */
7410 }
7411 };
7412
7413 /* Emit noreturn warnings. */
7414
7415 static unsigned int
7416 execute_warn_function_noreturn (void)
7417 {
7418 if (!TREE_THIS_VOLATILE (current_function_decl)
7419 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7420 warn_function_noreturn (current_function_decl);
7421 return 0;
7422 }
7423
7424 static bool
7425 gate_warn_function_noreturn (void)
7426 {
7427 return warn_suggest_attribute_noreturn;
7428 }
7429
7430 struct gimple_opt_pass pass_warn_function_noreturn =
7431 {
7432 {
7433 GIMPLE_PASS,
7434 "*warn_function_noreturn", /* name */
7435 gate_warn_function_noreturn, /* gate */
7436 execute_warn_function_noreturn, /* execute */
7437 NULL, /* sub */
7438 NULL, /* next */
7439 0, /* static_pass_number */
7440 TV_NONE, /* tv_id */
7441 PROP_cfg, /* properties_required */
7442 0, /* properties_provided */
7443 0, /* properties_destroyed */
7444 0, /* todo_flags_start */
7445 0 /* todo_flags_finish */
7446 }
7447 };
7448
7449
7450 /* Walk a gimplified function and warn for functions whose return value is
7451 ignored and attribute((warn_unused_result)) is set. This is done before
7452 inlining, so we don't have to worry about that. */
7453
7454 static void
7455 do_warn_unused_result (gimple_seq seq)
7456 {
7457 tree fdecl, ftype;
7458 gimple_stmt_iterator i;
7459
7460 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7461 {
7462 gimple g = gsi_stmt (i);
7463
7464 switch (gimple_code (g))
7465 {
7466 case GIMPLE_BIND:
7467 do_warn_unused_result (gimple_bind_body (g));
7468 break;
7469 case GIMPLE_TRY:
7470 do_warn_unused_result (gimple_try_eval (g));
7471 do_warn_unused_result (gimple_try_cleanup (g));
7472 break;
7473 case GIMPLE_CATCH:
7474 do_warn_unused_result (gimple_catch_handler (g));
7475 break;
7476 case GIMPLE_EH_FILTER:
7477 do_warn_unused_result (gimple_eh_filter_failure (g));
7478 break;
7479
7480 case GIMPLE_CALL:
7481 if (gimple_call_lhs (g))
7482 break;
7483 if (gimple_call_internal_p (g))
7484 break;
7485
7486 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7487 LHS. All calls whose value is ignored should be
7488 represented like this. Look for the attribute. */
7489 fdecl = gimple_call_fndecl (g);
7490 ftype = gimple_call_fntype (g);
7491
7492 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7493 {
7494 location_t loc = gimple_location (g);
7495
7496 if (fdecl)
7497 warning_at (loc, OPT_Wunused_result,
7498 "ignoring return value of %qD, "
7499 "declared with attribute warn_unused_result",
7500 fdecl);
7501 else
7502 warning_at (loc, OPT_Wunused_result,
7503 "ignoring return value of function "
7504 "declared with attribute warn_unused_result");
7505 }
7506 break;
7507
7508 default:
7509 /* Not a container, not a call, or a call whose value is used. */
7510 break;
7511 }
7512 }
7513 }
7514
7515 static unsigned int
7516 run_warn_unused_result (void)
7517 {
7518 do_warn_unused_result (gimple_body (current_function_decl));
7519 return 0;
7520 }
7521
7522 static bool
7523 gate_warn_unused_result (void)
7524 {
7525 return flag_warn_unused_result;
7526 }
7527
7528 struct gimple_opt_pass pass_warn_unused_result =
7529 {
7530 {
7531 GIMPLE_PASS,
7532 "*warn_unused_result", /* name */
7533 gate_warn_unused_result, /* gate */
7534 run_warn_unused_result, /* execute */
7535 NULL, /* sub */
7536 NULL, /* next */
7537 0, /* static_pass_number */
7538 TV_NONE, /* tv_id */
7539 PROP_gimple_any, /* properties_required */
7540 0, /* properties_provided */
7541 0, /* properties_destroyed */
7542 0, /* todo_flags_start */
7543 0, /* todo_flags_finish */
7544 }
7545 };
7546