gimplify.c (gimplify_expr): Gimplify TRUTH_NOT_EXPR as BIT_XOR_EXPR, same as the...
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
265 }
266 };
267
268
269 /* Return true if T is a computed goto. */
270
271 static bool
272 computed_goto_p (gimple t)
273 {
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
276 }
277
278
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
283
284 static void
285 factor_computed_gotos (void)
286 {
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
292
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
296
297 FOR_EACH_BB (bb)
298 {
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
301
302 if (gsi_end_p (gsi))
303 continue;
304
305 last = gsi_stmt (gsi);
306
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
311
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
314 {
315 gimple assignment;
316
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
321 {
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
324
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
330
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
338
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
342 }
343
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
347
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
350 }
351 }
352 }
353
354
355 /* Build a flowgraph for the sequence of stmts SEQ. */
356
357 static void
358 make_blocks (gimple_seq seq)
359 {
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
365
366 while (!gsi_end_p (i))
367 {
368 gimple prev_stmt;
369
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
372
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
377 {
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
382 }
383
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
387
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
390
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
394 {
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
403 {
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
414 }
415 start_new_block = true;
416 }
417
418 gsi_next (&i);
419 first_stmt_of_seq = false;
420 }
421 }
422
423
424 /* Create and return a new empty basic block after bb AFTER. */
425
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
428 {
429 basic_block bb;
430
431 gcc_assert (!e);
432
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
436 bb = alloc_block ();
437
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
442
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
445
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
448 {
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
451 }
452
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
455
456 n_basic_blocks++;
457 last_basic_block++;
458
459 return bb;
460 }
461
462
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
466
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
468
469 void
470 fold_cond_expr_cond (void)
471 {
472 basic_block bb;
473
474 FOR_EACH_BB (bb)
475 {
476 gimple stmt = last_stmt (bb);
477
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
479 {
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
483
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
488 {
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
491 }
492 else
493 zerop = onep = false;
494
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
502 }
503 }
504 }
505
506 /* Join all the blocks in the flowgraph. */
507
508 static void
509 make_edges (void)
510 {
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
513
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
517
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
520 {
521 gimple last = last_stmt (bb);
522 bool fallthru;
523
524 if (last)
525 {
526 enum gimple_code code = gimple_code (last);
527 switch (code)
528 {
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
552
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
559
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
563
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
566 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
567 /* Some calls are known not to return. */
568 else
569 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
570 break;
571
572 case GIMPLE_ASSIGN:
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
574 control-altering. */
575 if (is_ctrl_altering_stmt (last))
576 make_eh_edges (last);
577 fallthru = true;
578 break;
579
580 case GIMPLE_ASM:
581 make_gimple_asm_edges (bb);
582 fallthru = true;
583 break;
584
585 case GIMPLE_OMP_PARALLEL:
586 case GIMPLE_OMP_TASK:
587 case GIMPLE_OMP_FOR:
588 case GIMPLE_OMP_SINGLE:
589 case GIMPLE_OMP_MASTER:
590 case GIMPLE_OMP_ORDERED:
591 case GIMPLE_OMP_CRITICAL:
592 case GIMPLE_OMP_SECTION:
593 cur_region = new_omp_region (bb, code, cur_region);
594 fallthru = true;
595 break;
596
597 case GIMPLE_OMP_SECTIONS:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
601
602 case GIMPLE_OMP_SECTIONS_SWITCH:
603 fallthru = false;
604 break;
605
606 case GIMPLE_OMP_ATOMIC_LOAD:
607 case GIMPLE_OMP_ATOMIC_STORE:
608 fallthru = true;
609 break;
610
611 case GIMPLE_OMP_RETURN:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
614 created later. */
615 cur_region->exit = bb;
616 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
617 cur_region = cur_region->outer;
618 break;
619
620 case GIMPLE_OMP_CONTINUE:
621 cur_region->cont = bb;
622 switch (cur_region->type)
623 {
624 case GIMPLE_OMP_FOR:
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
627 them. */
628 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
629 /* Make the loopback edge. */
630 make_edge (bb, single_succ (cur_region->entry),
631 EDGE_ABNORMAL);
632
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
637 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
638 fallthru = false;
639 break;
640
641 case GIMPLE_OMP_SECTIONS:
642 /* Wire up the edges into and out of the nested sections. */
643 {
644 basic_block switch_bb = single_succ (cur_region->entry);
645
646 struct omp_region *i;
647 for (i = cur_region->inner; i ; i = i->next)
648 {
649 gcc_assert (i->type == GIMPLE_OMP_SECTION);
650 make_edge (switch_bb, i->entry, 0);
651 make_edge (i->exit, bb, EDGE_FALLTHRU);
652 }
653
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb, switch_bb, 0);
657
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb, bb->next_bb, 0);
660 fallthru = false;
661 }
662 break;
663
664 default:
665 gcc_unreachable ();
666 }
667 break;
668
669 default:
670 gcc_assert (!stmt_ends_bb_p (last));
671 fallthru = true;
672 }
673 }
674 else
675 fallthru = true;
676
677 if (fallthru)
678 {
679 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
680 if (last)
681 assign_discriminator (gimple_location (last), bb->next_bb);
682 }
683 }
684
685 if (root_omp_region)
686 free_omp_regions ();
687
688 /* Fold COND_EXPR_COND of each COND_EXPR. */
689 fold_cond_expr_cond ();
690 }
691
692 /* Trivial hash function for a location_t. ITEM is a pointer to
693 a hash table entry that maps a location_t to a discriminator. */
694
695 static unsigned int
696 locus_map_hash (const void *item)
697 {
698 return ((const struct locus_discrim_map *) item)->locus;
699 }
700
701 /* Equality function for the locus-to-discriminator map. VA and VB
702 point to the two hash table entries to compare. */
703
704 static int
705 locus_map_eq (const void *va, const void *vb)
706 {
707 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
708 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
709 return a->locus == b->locus;
710 }
711
712 /* Find the next available discriminator value for LOCUS. The
713 discriminator distinguishes among several basic blocks that
714 share a common locus, allowing for more accurate sample-based
715 profiling. */
716
717 static int
718 next_discriminator_for_locus (location_t locus)
719 {
720 struct locus_discrim_map item;
721 struct locus_discrim_map **slot;
722
723 item.locus = locus;
724 item.discriminator = 0;
725 slot = (struct locus_discrim_map **)
726 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
727 (hashval_t) locus, INSERT);
728 gcc_assert (slot);
729 if (*slot == HTAB_EMPTY_ENTRY)
730 {
731 *slot = XNEW (struct locus_discrim_map);
732 gcc_assert (*slot);
733 (*slot)->locus = locus;
734 (*slot)->discriminator = 0;
735 }
736 (*slot)->discriminator++;
737 return (*slot)->discriminator;
738 }
739
740 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
741
742 static bool
743 same_line_p (location_t locus1, location_t locus2)
744 {
745 expanded_location from, to;
746
747 if (locus1 == locus2)
748 return true;
749
750 from = expand_location (locus1);
751 to = expand_location (locus2);
752
753 if (from.line != to.line)
754 return false;
755 if (from.file == to.file)
756 return true;
757 return (from.file != NULL
758 && to.file != NULL
759 && filename_cmp (from.file, to.file) == 0);
760 }
761
762 /* Assign a unique discriminator value to block BB if it begins at the same
763 LOCUS as its predecessor block. */
764
765 static void
766 assign_discriminator (location_t locus, basic_block bb)
767 {
768 gimple first_in_to_bb, last_in_to_bb;
769
770 if (locus == 0 || bb->discriminator != 0)
771 return;
772
773 first_in_to_bb = first_non_label_stmt (bb);
774 last_in_to_bb = last_stmt (bb);
775 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
776 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
777 bb->discriminator = next_discriminator_for_locus (locus);
778 }
779
780 /* Create the edges for a GIMPLE_COND starting at block BB. */
781
782 static void
783 make_cond_expr_edges (basic_block bb)
784 {
785 gimple entry = last_stmt (bb);
786 gimple then_stmt, else_stmt;
787 basic_block then_bb, else_bb;
788 tree then_label, else_label;
789 edge e;
790 location_t entry_locus;
791
792 gcc_assert (entry);
793 gcc_assert (gimple_code (entry) == GIMPLE_COND);
794
795 entry_locus = gimple_location (entry);
796
797 /* Entry basic blocks for each component. */
798 then_label = gimple_cond_true_label (entry);
799 else_label = gimple_cond_false_label (entry);
800 then_bb = label_to_block (then_label);
801 else_bb = label_to_block (else_label);
802 then_stmt = first_stmt (then_bb);
803 else_stmt = first_stmt (else_bb);
804
805 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
806 assign_discriminator (entry_locus, then_bb);
807 e->goto_locus = gimple_location (then_stmt);
808 if (e->goto_locus)
809 e->goto_block = gimple_block (then_stmt);
810 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
811 if (e)
812 {
813 assign_discriminator (entry_locus, else_bb);
814 e->goto_locus = gimple_location (else_stmt);
815 if (e->goto_locus)
816 e->goto_block = gimple_block (else_stmt);
817 }
818
819 /* We do not need the labels anymore. */
820 gimple_cond_set_true_label (entry, NULL_TREE);
821 gimple_cond_set_false_label (entry, NULL_TREE);
822 }
823
824
825 /* Called for each element in the hash table (P) as we delete the
826 edge to cases hash table.
827
828 Clear all the TREE_CHAINs to prevent problems with copying of
829 SWITCH_EXPRs and structure sharing rules, then free the hash table
830 element. */
831
832 static bool
833 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
834 void *data ATTRIBUTE_UNUSED)
835 {
836 tree t, next;
837
838 for (t = (tree) *value; t; t = next)
839 {
840 next = CASE_CHAIN (t);
841 CASE_CHAIN (t) = NULL;
842 }
843
844 *value = NULL;
845 return true;
846 }
847
848 /* Start recording information mapping edges to case labels. */
849
850 void
851 start_recording_case_labels (void)
852 {
853 gcc_assert (edge_to_cases == NULL);
854 edge_to_cases = pointer_map_create ();
855 touched_switch_bbs = BITMAP_ALLOC (NULL);
856 }
857
858 /* Return nonzero if we are recording information for case labels. */
859
860 static bool
861 recording_case_labels_p (void)
862 {
863 return (edge_to_cases != NULL);
864 }
865
866 /* Stop recording information mapping edges to case labels and
867 remove any information we have recorded. */
868 void
869 end_recording_case_labels (void)
870 {
871 bitmap_iterator bi;
872 unsigned i;
873 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
874 pointer_map_destroy (edge_to_cases);
875 edge_to_cases = NULL;
876 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
877 {
878 basic_block bb = BASIC_BLOCK (i);
879 if (bb)
880 {
881 gimple stmt = last_stmt (bb);
882 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
883 group_case_labels_stmt (stmt);
884 }
885 }
886 BITMAP_FREE (touched_switch_bbs);
887 }
888
889 /* If we are inside a {start,end}_recording_cases block, then return
890 a chain of CASE_LABEL_EXPRs from T which reference E.
891
892 Otherwise return NULL. */
893
894 static tree
895 get_cases_for_edge (edge e, gimple t)
896 {
897 void **slot;
898 size_t i, n;
899
900 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
901 chains available. Return NULL so the caller can detect this case. */
902 if (!recording_case_labels_p ())
903 return NULL;
904
905 slot = pointer_map_contains (edge_to_cases, e);
906 if (slot)
907 return (tree) *slot;
908
909 /* If we did not find E in the hash table, then this must be the first
910 time we have been queried for information about E & T. Add all the
911 elements from T to the hash table then perform the query again. */
912
913 n = gimple_switch_num_labels (t);
914 for (i = 0; i < n; i++)
915 {
916 tree elt = gimple_switch_label (t, i);
917 tree lab = CASE_LABEL (elt);
918 basic_block label_bb = label_to_block (lab);
919 edge this_edge = find_edge (e->src, label_bb);
920
921 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
922 a new chain. */
923 slot = pointer_map_insert (edge_to_cases, this_edge);
924 CASE_CHAIN (elt) = (tree) *slot;
925 *slot = elt;
926 }
927
928 return (tree) *pointer_map_contains (edge_to_cases, e);
929 }
930
931 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
932
933 static void
934 make_gimple_switch_edges (basic_block bb)
935 {
936 gimple entry = last_stmt (bb);
937 location_t entry_locus;
938 size_t i, n;
939
940 entry_locus = gimple_location (entry);
941
942 n = gimple_switch_num_labels (entry);
943
944 for (i = 0; i < n; ++i)
945 {
946 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
947 basic_block label_bb = label_to_block (lab);
948 make_edge (bb, label_bb, 0);
949 assign_discriminator (entry_locus, label_bb);
950 }
951 }
952
953
954 /* Return the basic block holding label DEST. */
955
956 basic_block
957 label_to_block_fn (struct function *ifun, tree dest)
958 {
959 int uid = LABEL_DECL_UID (dest);
960
961 /* We would die hard when faced by an undefined label. Emit a label to
962 the very first basic block. This will hopefully make even the dataflow
963 and undefined variable warnings quite right. */
964 if (seen_error () && uid < 0)
965 {
966 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
967 gimple stmt;
968
969 stmt = gimple_build_label (dest);
970 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
971 uid = LABEL_DECL_UID (dest);
972 }
973 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
974 <= (unsigned int) uid)
975 return NULL;
976 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
977 }
978
979 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
980 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
981
982 void
983 make_abnormal_goto_edges (basic_block bb, bool for_call)
984 {
985 basic_block target_bb;
986 gimple_stmt_iterator gsi;
987
988 FOR_EACH_BB (target_bb)
989 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
990 {
991 gimple label_stmt = gsi_stmt (gsi);
992 tree target;
993
994 if (gimple_code (label_stmt) != GIMPLE_LABEL)
995 break;
996
997 target = gimple_label_label (label_stmt);
998
999 /* Make an edge to every label block that has been marked as a
1000 potential target for a computed goto or a non-local goto. */
1001 if ((FORCED_LABEL (target) && !for_call)
1002 || (DECL_NONLOCAL (target) && for_call))
1003 {
1004 make_edge (bb, target_bb, EDGE_ABNORMAL);
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Create edges for a goto statement at block BB. */
1011
1012 static void
1013 make_goto_expr_edges (basic_block bb)
1014 {
1015 gimple_stmt_iterator last = gsi_last_bb (bb);
1016 gimple goto_t = gsi_stmt (last);
1017
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t))
1020 {
1021 tree dest = gimple_goto_dest (goto_t);
1022 basic_block label_bb = label_to_block (dest);
1023 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1024 e->goto_locus = gimple_location (goto_t);
1025 assign_discriminator (e->goto_locus, label_bb);
1026 if (e->goto_locus)
1027 e->goto_block = gimple_block (goto_t);
1028 gsi_remove (&last, true);
1029 return;
1030 }
1031
1032 /* A computed GOTO creates abnormal edges. */
1033 make_abnormal_goto_edges (bb, false);
1034 }
1035
1036 /* Create edges for an asm statement with labels at block BB. */
1037
1038 static void
1039 make_gimple_asm_edges (basic_block bb)
1040 {
1041 gimple stmt = last_stmt (bb);
1042 location_t stmt_loc = gimple_location (stmt);
1043 int i, n = gimple_asm_nlabels (stmt);
1044
1045 for (i = 0; i < n; ++i)
1046 {
1047 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1048 basic_block label_bb = label_to_block (label);
1049 make_edge (bb, label_bb, 0);
1050 assign_discriminator (stmt_loc, label_bb);
1051 }
1052 }
1053
1054 /*---------------------------------------------------------------------------
1055 Flowgraph analysis
1056 ---------------------------------------------------------------------------*/
1057
1058 /* Cleanup useless labels in basic blocks. This is something we wish
1059 to do early because it allows us to group case labels before creating
1060 the edges for the CFG, and it speeds up block statement iterators in
1061 all passes later on.
1062 We rerun this pass after CFG is created, to get rid of the labels that
1063 are no longer referenced. After then we do not run it any more, since
1064 (almost) no new labels should be created. */
1065
1066 /* A map from basic block index to the leading label of that block. */
1067 static struct label_record
1068 {
1069 /* The label. */
1070 tree label;
1071
1072 /* True if the label is referenced from somewhere. */
1073 bool used;
1074 } *label_for_bb;
1075
1076 /* Given LABEL return the first label in the same basic block. */
1077
1078 static tree
1079 main_block_label (tree label)
1080 {
1081 basic_block bb = label_to_block (label);
1082 tree main_label = label_for_bb[bb->index].label;
1083
1084 /* label_to_block possibly inserted undefined label into the chain. */
1085 if (!main_label)
1086 {
1087 label_for_bb[bb->index].label = label;
1088 main_label = label;
1089 }
1090
1091 label_for_bb[bb->index].used = true;
1092 return main_label;
1093 }
1094
1095 /* Clean up redundant labels within the exception tree. */
1096
1097 static void
1098 cleanup_dead_labels_eh (void)
1099 {
1100 eh_landing_pad lp;
1101 eh_region r;
1102 tree lab;
1103 int i;
1104
1105 if (cfun->eh == NULL)
1106 return;
1107
1108 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1109 if (lp && lp->post_landing_pad)
1110 {
1111 lab = main_block_label (lp->post_landing_pad);
1112 if (lab != lp->post_landing_pad)
1113 {
1114 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1115 EH_LANDING_PAD_NR (lab) = lp->index;
1116 }
1117 }
1118
1119 FOR_ALL_EH_REGION (r)
1120 switch (r->type)
1121 {
1122 case ERT_CLEANUP:
1123 case ERT_MUST_NOT_THROW:
1124 break;
1125
1126 case ERT_TRY:
1127 {
1128 eh_catch c;
1129 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1130 {
1131 lab = c->label;
1132 if (lab)
1133 c->label = main_block_label (lab);
1134 }
1135 }
1136 break;
1137
1138 case ERT_ALLOWED_EXCEPTIONS:
1139 lab = r->u.allowed.label;
1140 if (lab)
1141 r->u.allowed.label = main_block_label (lab);
1142 break;
1143 }
1144 }
1145
1146
1147 /* Cleanup redundant labels. This is a three-step process:
1148 1) Find the leading label for each block.
1149 2) Redirect all references to labels to the leading labels.
1150 3) Cleanup all useless labels. */
1151
1152 void
1153 cleanup_dead_labels (void)
1154 {
1155 basic_block bb;
1156 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1157
1158 /* Find a suitable label for each block. We use the first user-defined
1159 label if there is one, or otherwise just the first label we see. */
1160 FOR_EACH_BB (bb)
1161 {
1162 gimple_stmt_iterator i;
1163
1164 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1165 {
1166 tree label;
1167 gimple stmt = gsi_stmt (i);
1168
1169 if (gimple_code (stmt) != GIMPLE_LABEL)
1170 break;
1171
1172 label = gimple_label_label (stmt);
1173
1174 /* If we have not yet seen a label for the current block,
1175 remember this one and see if there are more labels. */
1176 if (!label_for_bb[bb->index].label)
1177 {
1178 label_for_bb[bb->index].label = label;
1179 continue;
1180 }
1181
1182 /* If we did see a label for the current block already, but it
1183 is an artificially created label, replace it if the current
1184 label is a user defined label. */
1185 if (!DECL_ARTIFICIAL (label)
1186 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1187 {
1188 label_for_bb[bb->index].label = label;
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Now redirect all jumps/branches to the selected label.
1195 First do so for each block ending in a control statement. */
1196 FOR_EACH_BB (bb)
1197 {
1198 gimple stmt = last_stmt (bb);
1199 if (!stmt)
1200 continue;
1201
1202 switch (gimple_code (stmt))
1203 {
1204 case GIMPLE_COND:
1205 {
1206 tree true_label = gimple_cond_true_label (stmt);
1207 tree false_label = gimple_cond_false_label (stmt);
1208
1209 if (true_label)
1210 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1211 if (false_label)
1212 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1213 break;
1214 }
1215
1216 case GIMPLE_SWITCH:
1217 {
1218 size_t i, n = gimple_switch_num_labels (stmt);
1219
1220 /* Replace all destination labels. */
1221 for (i = 0; i < n; ++i)
1222 {
1223 tree case_label = gimple_switch_label (stmt, i);
1224 tree label = main_block_label (CASE_LABEL (case_label));
1225 CASE_LABEL (case_label) = label;
1226 }
1227 break;
1228 }
1229
1230 case GIMPLE_ASM:
1231 {
1232 int i, n = gimple_asm_nlabels (stmt);
1233
1234 for (i = 0; i < n; ++i)
1235 {
1236 tree cons = gimple_asm_label_op (stmt, i);
1237 tree label = main_block_label (TREE_VALUE (cons));
1238 TREE_VALUE (cons) = label;
1239 }
1240 break;
1241 }
1242
1243 /* We have to handle gotos until they're removed, and we don't
1244 remove them until after we've created the CFG edges. */
1245 case GIMPLE_GOTO:
1246 if (!computed_goto_p (stmt))
1247 {
1248 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1249 gimple_goto_set_dest (stmt, new_dest);
1250 }
1251 break;
1252
1253 default:
1254 break;
1255 }
1256 }
1257
1258 /* Do the same for the exception region tree labels. */
1259 cleanup_dead_labels_eh ();
1260
1261 /* Finally, purge dead labels. All user-defined labels and labels that
1262 can be the target of non-local gotos and labels which have their
1263 address taken are preserved. */
1264 FOR_EACH_BB (bb)
1265 {
1266 gimple_stmt_iterator i;
1267 tree label_for_this_bb = label_for_bb[bb->index].label;
1268
1269 if (!label_for_this_bb)
1270 continue;
1271
1272 /* If the main label of the block is unused, we may still remove it. */
1273 if (!label_for_bb[bb->index].used)
1274 label_for_this_bb = NULL;
1275
1276 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1277 {
1278 tree label;
1279 gimple stmt = gsi_stmt (i);
1280
1281 if (gimple_code (stmt) != GIMPLE_LABEL)
1282 break;
1283
1284 label = gimple_label_label (stmt);
1285
1286 if (label == label_for_this_bb
1287 || !DECL_ARTIFICIAL (label)
1288 || DECL_NONLOCAL (label)
1289 || FORCED_LABEL (label))
1290 gsi_next (&i);
1291 else
1292 gsi_remove (&i, true);
1293 }
1294 }
1295
1296 free (label_for_bb);
1297 }
1298
1299 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1300 the ones jumping to the same label.
1301 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1302
1303 static void
1304 group_case_labels_stmt (gimple stmt)
1305 {
1306 int old_size = gimple_switch_num_labels (stmt);
1307 int i, j, new_size = old_size;
1308 tree default_case = NULL_TREE;
1309 tree default_label = NULL_TREE;
1310 bool has_default;
1311
1312 /* The default label is always the first case in a switch
1313 statement after gimplification if it was not optimized
1314 away */
1315 if (!CASE_LOW (gimple_switch_default_label (stmt))
1316 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1317 {
1318 default_case = gimple_switch_default_label (stmt);
1319 default_label = CASE_LABEL (default_case);
1320 has_default = true;
1321 }
1322 else
1323 has_default = false;
1324
1325 /* Look for possible opportunities to merge cases. */
1326 if (has_default)
1327 i = 1;
1328 else
1329 i = 0;
1330 while (i < old_size)
1331 {
1332 tree base_case, base_label, base_high;
1333 base_case = gimple_switch_label (stmt, i);
1334
1335 gcc_assert (base_case);
1336 base_label = CASE_LABEL (base_case);
1337
1338 /* Discard cases that have the same destination as the
1339 default case. */
1340 if (base_label == default_label)
1341 {
1342 gimple_switch_set_label (stmt, i, NULL_TREE);
1343 i++;
1344 new_size--;
1345 continue;
1346 }
1347
1348 base_high = CASE_HIGH (base_case)
1349 ? CASE_HIGH (base_case)
1350 : CASE_LOW (base_case);
1351 i++;
1352
1353 /* Try to merge case labels. Break out when we reach the end
1354 of the label vector or when we cannot merge the next case
1355 label with the current one. */
1356 while (i < old_size)
1357 {
1358 tree merge_case = gimple_switch_label (stmt, i);
1359 tree merge_label = CASE_LABEL (merge_case);
1360 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1361 double_int_one);
1362
1363 /* Merge the cases if they jump to the same place,
1364 and their ranges are consecutive. */
1365 if (merge_label == base_label
1366 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1367 bhp1))
1368 {
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1375 }
1376 else
1377 break;
1378 }
1379 }
1380
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1384 {
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1389 }
1390
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1393 }
1394
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1398
1399 void
1400 group_case_labels (void)
1401 {
1402 basic_block bb;
1403
1404 FOR_EACH_BB (bb)
1405 {
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1409 }
1410 }
1411
1412 /* Checks whether we can merge block B into block A. */
1413
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1416 {
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1420
1421 if (!single_succ_p (a))
1422 return false;
1423
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1425 return false;
1426
1427 if (single_succ (a) != b)
1428 return false;
1429
1430 if (!single_pred_p (b))
1431 return false;
1432
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1435
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1441
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1447
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1450 {
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1456
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1460 }
1461
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1465
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1473
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1477 {
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1489 }
1490
1491 return true;
1492 }
1493
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1498 {
1499 const ssa_use_operand_t *ptr;
1500
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1504
1505 return true;
1506 }
1507
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1514 {
1515 ssa_use_operand_t *ptr, *single_use = 0;
1516
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1519 {
1520 if (single_use)
1521 {
1522 single_use = NULL;
1523 break;
1524 }
1525 single_use = ptr;
1526 }
1527
1528 if (use_p)
1529 *use_p = single_use;
1530
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1533
1534 return !!single_use;
1535 }
1536
1537 /* Replaces all uses of NAME by VAL. */
1538
1539 void
1540 replace_uses_by (tree name, tree val)
1541 {
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1546
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1548 {
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1550 {
1551 replace_exp (use, val);
1552
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1554 {
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1557 {
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1563 }
1564 }
1565 }
1566
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1568 {
1569 size_t i;
1570
1571 fold_stmt_inplace (stmt);
1572 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1573 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1574
1575 /* FIXME. This should go in update_stmt. */
1576 for (i = 0; i < gimple_num_ops (stmt); i++)
1577 {
1578 tree op = gimple_op (stmt, i);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op && TREE_CODE (op) == ADDR_EXPR)
1583 recompute_tree_invariant_for_addr_expr (op);
1584 }
1585
1586 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1587 update_stmt (stmt);
1588 }
1589 }
1590
1591 gcc_assert (has_zero_uses (name));
1592
1593 /* Also update the trees stored in loop structures. */
1594 if (current_loops)
1595 {
1596 struct loop *loop;
1597 loop_iterator li;
1598
1599 FOR_EACH_LOOP (li, loop, 0)
1600 {
1601 substitute_in_loop_info (loop, name, val);
1602 }
1603 }
1604 }
1605
1606 /* Merge block B into block A. */
1607
1608 static void
1609 gimple_merge_blocks (basic_block a, basic_block b)
1610 {
1611 gimple_stmt_iterator last, gsi, psi;
1612 gimple_seq phis = phi_nodes (b);
1613
1614 if (dump_file)
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1616
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1621 {
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1624 gimple copy;
1625 bool may_replace_uses = !is_gimple_reg (def)
1626 || may_propagate_copy (def, use);
1627
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1630 if (current_loops
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && is_gimple_reg (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1636
1637 if (!may_replace_uses)
1638 {
1639 gcc_assert (is_gimple_reg (def));
1640
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1648 }
1649 else
1650 {
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1653 the stmt. */
1654 if (!is_gimple_reg (def))
1655 {
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1658 gimple stmt;
1659
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1663
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1666 }
1667 else
1668 replace_uses_by (def, use);
1669
1670 remove_phi_node (&psi, true);
1671 }
1672 }
1673
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1676
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1679
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1682 {
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1685 {
1686 tree label = gimple_label_label (stmt);
1687 int lp_nr;
1688
1689 gsi_remove (&gsi, false);
1690
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1698 {
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1701 }
1702
1703 lp_nr = EH_LANDING_PAD_NR (label);
1704 if (lp_nr)
1705 {
1706 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1707 lp->post_landing_pad = NULL;
1708 }
1709 }
1710 else
1711 {
1712 gimple_set_bb (stmt, a);
1713 gsi_next (&gsi);
1714 }
1715 }
1716
1717 /* Merge the sequences. */
1718 last = gsi_last_bb (a);
1719 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1720 set_bb_seq (b, NULL);
1721
1722 if (cfgcleanup_altered_bbs)
1723 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1724 }
1725
1726
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1731
1732 basic_block
1733 single_noncomplex_succ (basic_block bb)
1734 {
1735 edge e0, e1;
1736 if (EDGE_COUNT (bb->succs) != 2)
1737 return bb;
1738
1739 e0 = EDGE_SUCC (bb, 0);
1740 e1 = EDGE_SUCC (bb, 1);
1741 if (e0->flags & EDGE_COMPLEX)
1742 return e1->dest;
1743 if (e1->flags & EDGE_COMPLEX)
1744 return e0->dest;
1745
1746 return bb;
1747 }
1748
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1750
1751 void
1752 notice_special_calls (gimple call)
1753 {
1754 int flags = gimple_call_flags (call);
1755
1756 if (flags & ECF_MAY_BE_ALLOCA)
1757 cfun->calls_alloca = true;
1758 if (flags & ECF_RETURNS_TWICE)
1759 cfun->calls_setjmp = true;
1760 }
1761
1762
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1765
1766 void
1767 clear_special_calls (void)
1768 {
1769 cfun->calls_alloca = false;
1770 cfun->calls_setjmp = false;
1771 }
1772
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1774
1775 static void
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1777 {
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb);
1781
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb->succs) > 0)
1784 remove_edge (EDGE_SUCC (bb, 0));
1785 }
1786
1787
1788 /* Remove statements of basic block BB. */
1789
1790 static void
1791 remove_bb (basic_block bb)
1792 {
1793 gimple_stmt_iterator i;
1794
1795 if (dump_file)
1796 {
1797 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1798 if (dump_flags & TDF_DETAILS)
1799 {
1800 dump_bb (bb, dump_file, 0);
1801 fprintf (dump_file, "\n");
1802 }
1803 }
1804
1805 if (current_loops)
1806 {
1807 struct loop *loop = bb->loop_father;
1808
1809 /* If a loop gets removed, clean up the information associated
1810 with it. */
1811 if (loop->latch == bb
1812 || loop->header == bb)
1813 free_numbers_of_iterations_estimates_loop (loop);
1814 }
1815
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb) != NULL)
1818 {
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1822 details. */
1823 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1824 {
1825 gimple stmt = gsi_stmt (i);
1826 if (gimple_code (stmt) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt))
1828 || DECL_NONLOCAL (gimple_label_label (stmt))))
1829 {
1830 basic_block new_bb;
1831 gimple_stmt_iterator new_gsi;
1832
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1835 non-locality. */
1836 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1837 {
1838 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1840 }
1841
1842 new_bb = bb->prev_bb;
1843 new_gsi = gsi_start_bb (new_bb);
1844 gsi_remove (&i, false);
1845 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1846 }
1847 else
1848 {
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun))
1854 release_defs (stmt);
1855
1856 gsi_remove (&i, true);
1857 }
1858
1859 if (gsi_end_p (i))
1860 i = gsi_last_bb (bb);
1861 else
1862 gsi_prev (&i);
1863 }
1864 }
1865
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1867 bb->il.gimple = NULL;
1868 }
1869
1870
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1874
1875 edge
1876 find_taken_edge (basic_block bb, tree val)
1877 {
1878 gimple stmt;
1879
1880 stmt = last_stmt (bb);
1881
1882 gcc_assert (stmt);
1883 gcc_assert (is_ctrl_stmt (stmt));
1884
1885 if (val == NULL)
1886 return NULL;
1887
1888 if (!is_gimple_min_invariant (val))
1889 return NULL;
1890
1891 if (gimple_code (stmt) == GIMPLE_COND)
1892 return find_taken_edge_cond_expr (bb, val);
1893
1894 if (gimple_code (stmt) == GIMPLE_SWITCH)
1895 return find_taken_edge_switch_expr (bb, val);
1896
1897 if (computed_goto_p (stmt))
1898 {
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1901
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1906 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1907 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1908 return NULL;
1909 }
1910
1911 gcc_unreachable ();
1912 }
1913
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1917
1918 static edge
1919 find_taken_edge_computed_goto (basic_block bb, tree val)
1920 {
1921 basic_block dest;
1922 edge e = NULL;
1923
1924 dest = label_to_block (val);
1925 if (dest)
1926 {
1927 e = find_edge (bb, dest);
1928 gcc_assert (e != NULL);
1929 }
1930
1931 return e;
1932 }
1933
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1937
1938 static edge
1939 find_taken_edge_cond_expr (basic_block bb, tree val)
1940 {
1941 edge true_edge, false_edge;
1942
1943 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1944
1945 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1946 return (integer_zerop (val) ? false_edge : true_edge);
1947 }
1948
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1952
1953 static edge
1954 find_taken_edge_switch_expr (basic_block bb, tree val)
1955 {
1956 basic_block dest_bb;
1957 edge e;
1958 gimple switch_stmt;
1959 tree taken_case;
1960
1961 switch_stmt = last_stmt (bb);
1962 taken_case = find_case_label_for_value (switch_stmt, val);
1963 dest_bb = label_to_block (CASE_LABEL (taken_case));
1964
1965 e = find_edge (bb, dest_bb);
1966 gcc_assert (e);
1967 return e;
1968 }
1969
1970
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1974
1975 static tree
1976 find_case_label_for_value (gimple switch_stmt, tree val)
1977 {
1978 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1979 tree default_case = gimple_switch_default_label (switch_stmt);
1980
1981 for (low = 0, high = n; high - low > 1; )
1982 {
1983 size_t i = (high + low) / 2;
1984 tree t = gimple_switch_label (switch_stmt, i);
1985 int cmp;
1986
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1989
1990 if (cmp > 0)
1991 high = i;
1992 else
1993 low = i;
1994
1995 if (CASE_HIGH (t) == NULL)
1996 {
1997 /* A singe-valued case label. */
1998 if (cmp == 0)
1999 return t;
2000 }
2001 else
2002 {
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2005 return t;
2006 }
2007 }
2008
2009 return default_case;
2010 }
2011
2012
2013 /* Dump a basic block on stderr. */
2014
2015 void
2016 gimple_debug_bb (basic_block bb)
2017 {
2018 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2019 }
2020
2021
2022 /* Dump basic block with index N on stderr. */
2023
2024 basic_block
2025 gimple_debug_bb_n (int n)
2026 {
2027 gimple_debug_bb (BASIC_BLOCK (n));
2028 return BASIC_BLOCK (n);
2029 }
2030
2031
2032 /* Dump the CFG on stderr.
2033
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2036
2037 void
2038 gimple_debug_cfg (int flags)
2039 {
2040 gimple_dump_cfg (stderr, flags);
2041 }
2042
2043
2044 /* Dump the program showing basic block boundaries on the given FILE.
2045
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2047 tree.h). */
2048
2049 void
2050 gimple_dump_cfg (FILE *file, int flags)
2051 {
2052 if (flags & TDF_DETAILS)
2053 {
2054 dump_function_header (file, current_function_decl, flags);
2055 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2056 n_basic_blocks, n_edges, last_basic_block);
2057
2058 brief_dump_cfg (file);
2059 fprintf (file, "\n");
2060 }
2061
2062 if (flags & TDF_STATS)
2063 dump_cfg_stats (file);
2064
2065 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2066 }
2067
2068
2069 /* Dump CFG statistics on FILE. */
2070
2071 void
2072 dump_cfg_stats (FILE *file)
2073 {
2074 static long max_num_merged_labels = 0;
2075 unsigned long size, total = 0;
2076 long num_edges;
2077 basic_block bb;
2078 const char * const fmt_str = "%-30s%-13s%12s\n";
2079 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2080 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2081 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2082 const char *funcname
2083 = lang_hooks.decl_printable_name (current_function_decl, 2);
2084
2085
2086 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2087
2088 fprintf (file, "---------------------------------------------------------\n");
2089 fprintf (file, fmt_str, "", " Number of ", "Memory");
2090 fprintf (file, fmt_str, "", " instances ", "used ");
2091 fprintf (file, "---------------------------------------------------------\n");
2092
2093 size = n_basic_blocks * sizeof (struct basic_block_def);
2094 total += size;
2095 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2096 SCALE (size), LABEL (size));
2097
2098 num_edges = 0;
2099 FOR_EACH_BB (bb)
2100 num_edges += EDGE_COUNT (bb->succs);
2101 size = num_edges * sizeof (struct edge_def);
2102 total += size;
2103 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2104
2105 fprintf (file, "---------------------------------------------------------\n");
2106 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2107 LABEL (total));
2108 fprintf (file, "---------------------------------------------------------\n");
2109 fprintf (file, "\n");
2110
2111 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2112 max_num_merged_labels = cfg_stats.num_merged_labels;
2113
2114 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2115 cfg_stats.num_merged_labels, max_num_merged_labels);
2116
2117 fprintf (file, "\n");
2118 }
2119
2120
2121 /* Dump CFG statistics on stderr. Keep extern so that it's always
2122 linked in the final executable. */
2123
2124 DEBUG_FUNCTION void
2125 debug_cfg_stats (void)
2126 {
2127 dump_cfg_stats (stderr);
2128 }
2129
2130
2131 /* Dump the flowgraph to a .vcg FILE. */
2132
2133 static void
2134 gimple_cfg2vcg (FILE *file)
2135 {
2136 edge e;
2137 edge_iterator ei;
2138 basic_block bb;
2139 const char *funcname
2140 = lang_hooks.decl_printable_name (current_function_decl, 2);
2141
2142 /* Write the file header. */
2143 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2144 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2145 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2146
2147 /* Write blocks and edges. */
2148 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2149 {
2150 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2151 e->dest->index);
2152
2153 if (e->flags & EDGE_FAKE)
2154 fprintf (file, " linestyle: dotted priority: 10");
2155 else
2156 fprintf (file, " linestyle: solid priority: 100");
2157
2158 fprintf (file, " }\n");
2159 }
2160 fputc ('\n', file);
2161
2162 FOR_EACH_BB (bb)
2163 {
2164 enum gimple_code head_code, end_code;
2165 const char *head_name, *end_name;
2166 int head_line = 0;
2167 int end_line = 0;
2168 gimple first = first_stmt (bb);
2169 gimple last = last_stmt (bb);
2170
2171 if (first)
2172 {
2173 head_code = gimple_code (first);
2174 head_name = gimple_code_name[head_code];
2175 head_line = get_lineno (first);
2176 }
2177 else
2178 head_name = "no-statement";
2179
2180 if (last)
2181 {
2182 end_code = gimple_code (last);
2183 end_name = gimple_code_name[end_code];
2184 end_line = get_lineno (last);
2185 }
2186 else
2187 end_name = "no-statement";
2188
2189 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2190 bb->index, bb->index, head_name, head_line, end_name,
2191 end_line);
2192
2193 FOR_EACH_EDGE (e, ei, bb->succs)
2194 {
2195 if (e->dest == EXIT_BLOCK_PTR)
2196 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2197 else
2198 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2199
2200 if (e->flags & EDGE_FAKE)
2201 fprintf (file, " priority: 10 linestyle: dotted");
2202 else
2203 fprintf (file, " priority: 100 linestyle: solid");
2204
2205 fprintf (file, " }\n");
2206 }
2207
2208 if (bb->next_bb != EXIT_BLOCK_PTR)
2209 fputc ('\n', file);
2210 }
2211
2212 fputs ("}\n\n", file);
2213 }
2214
2215
2216
2217 /*---------------------------------------------------------------------------
2218 Miscellaneous helpers
2219 ---------------------------------------------------------------------------*/
2220
2221 /* Return true if T represents a stmt that always transfers control. */
2222
2223 bool
2224 is_ctrl_stmt (gimple t)
2225 {
2226 switch (gimple_code (t))
2227 {
2228 case GIMPLE_COND:
2229 case GIMPLE_SWITCH:
2230 case GIMPLE_GOTO:
2231 case GIMPLE_RETURN:
2232 case GIMPLE_RESX:
2233 return true;
2234 default:
2235 return false;
2236 }
2237 }
2238
2239
2240 /* Return true if T is a statement that may alter the flow of control
2241 (e.g., a call to a non-returning function). */
2242
2243 bool
2244 is_ctrl_altering_stmt (gimple t)
2245 {
2246 gcc_assert (t);
2247
2248 switch (gimple_code (t))
2249 {
2250 case GIMPLE_CALL:
2251 {
2252 int flags = gimple_call_flags (t);
2253
2254 /* A non-pure/const call alters flow control if the current
2255 function has nonlocal labels. */
2256 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2257 && cfun->has_nonlocal_label)
2258 return true;
2259
2260 /* A call also alters control flow if it does not return. */
2261 if (flags & ECF_NORETURN)
2262 return true;
2263
2264 /* BUILT_IN_RETURN call is same as return statement. */
2265 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2266 return true;
2267 }
2268 break;
2269
2270 case GIMPLE_EH_DISPATCH:
2271 /* EH_DISPATCH branches to the individual catch handlers at
2272 this level of a try or allowed-exceptions region. It can
2273 fallthru to the next statement as well. */
2274 return true;
2275
2276 case GIMPLE_ASM:
2277 if (gimple_asm_nlabels (t) > 0)
2278 return true;
2279 break;
2280
2281 CASE_GIMPLE_OMP:
2282 /* OpenMP directives alter control flow. */
2283 return true;
2284
2285 default:
2286 break;
2287 }
2288
2289 /* If a statement can throw, it alters control flow. */
2290 return stmt_can_throw_internal (t);
2291 }
2292
2293
2294 /* Return true if T is a simple local goto. */
2295
2296 bool
2297 simple_goto_p (gimple t)
2298 {
2299 return (gimple_code (t) == GIMPLE_GOTO
2300 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2301 }
2302
2303
2304 /* Return true if T can make an abnormal transfer of control flow.
2305 Transfers of control flow associated with EH are excluded. */
2306
2307 bool
2308 stmt_can_make_abnormal_goto (gimple t)
2309 {
2310 if (computed_goto_p (t))
2311 return true;
2312 if (is_gimple_call (t))
2313 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2314 && !(gimple_call_flags (t) & ECF_LEAF));
2315 return false;
2316 }
2317
2318
2319 /* Return true if STMT should start a new basic block. PREV_STMT is
2320 the statement preceding STMT. It is used when STMT is a label or a
2321 case label. Labels should only start a new basic block if their
2322 previous statement wasn't a label. Otherwise, sequence of labels
2323 would generate unnecessary basic blocks that only contain a single
2324 label. */
2325
2326 static inline bool
2327 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2328 {
2329 if (stmt == NULL)
2330 return false;
2331
2332 /* Labels start a new basic block only if the preceding statement
2333 wasn't a label of the same type. This prevents the creation of
2334 consecutive blocks that have nothing but a single label. */
2335 if (gimple_code (stmt) == GIMPLE_LABEL)
2336 {
2337 /* Nonlocal and computed GOTO targets always start a new block. */
2338 if (DECL_NONLOCAL (gimple_label_label (stmt))
2339 || FORCED_LABEL (gimple_label_label (stmt)))
2340 return true;
2341
2342 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2343 {
2344 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2345 return true;
2346
2347 cfg_stats.num_merged_labels++;
2348 return false;
2349 }
2350 else
2351 return true;
2352 }
2353
2354 return false;
2355 }
2356
2357
2358 /* Return true if T should end a basic block. */
2359
2360 bool
2361 stmt_ends_bb_p (gimple t)
2362 {
2363 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2364 }
2365
2366 /* Remove block annotations and other data structures. */
2367
2368 void
2369 delete_tree_cfg_annotations (void)
2370 {
2371 label_to_block_map = NULL;
2372 }
2373
2374
2375 /* Return the first statement in basic block BB. */
2376
2377 gimple
2378 first_stmt (basic_block bb)
2379 {
2380 gimple_stmt_iterator i = gsi_start_bb (bb);
2381 gimple stmt = NULL;
2382
2383 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2384 {
2385 gsi_next (&i);
2386 stmt = NULL;
2387 }
2388 return stmt;
2389 }
2390
2391 /* Return the first non-label statement in basic block BB. */
2392
2393 static gimple
2394 first_non_label_stmt (basic_block bb)
2395 {
2396 gimple_stmt_iterator i = gsi_start_bb (bb);
2397 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2398 gsi_next (&i);
2399 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2400 }
2401
2402 /* Return the last statement in basic block BB. */
2403
2404 gimple
2405 last_stmt (basic_block bb)
2406 {
2407 gimple_stmt_iterator i = gsi_last_bb (bb);
2408 gimple stmt = NULL;
2409
2410 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2411 {
2412 gsi_prev (&i);
2413 stmt = NULL;
2414 }
2415 return stmt;
2416 }
2417
2418 /* Return the last statement of an otherwise empty block. Return NULL
2419 if the block is totally empty, or if it contains more than one
2420 statement. */
2421
2422 gimple
2423 last_and_only_stmt (basic_block bb)
2424 {
2425 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2426 gimple last, prev;
2427
2428 if (gsi_end_p (i))
2429 return NULL;
2430
2431 last = gsi_stmt (i);
2432 gsi_prev_nondebug (&i);
2433 if (gsi_end_p (i))
2434 return last;
2435
2436 /* Empty statements should no longer appear in the instruction stream.
2437 Everything that might have appeared before should be deleted by
2438 remove_useless_stmts, and the optimizers should just gsi_remove
2439 instead of smashing with build_empty_stmt.
2440
2441 Thus the only thing that should appear here in a block containing
2442 one executable statement is a label. */
2443 prev = gsi_stmt (i);
2444 if (gimple_code (prev) == GIMPLE_LABEL)
2445 return last;
2446 else
2447 return NULL;
2448 }
2449
2450 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2451
2452 static void
2453 reinstall_phi_args (edge new_edge, edge old_edge)
2454 {
2455 edge_var_map_vector v;
2456 edge_var_map *vm;
2457 int i;
2458 gimple_stmt_iterator phis;
2459
2460 v = redirect_edge_var_map_vector (old_edge);
2461 if (!v)
2462 return;
2463
2464 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2465 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2466 i++, gsi_next (&phis))
2467 {
2468 gimple phi = gsi_stmt (phis);
2469 tree result = redirect_edge_var_map_result (vm);
2470 tree arg = redirect_edge_var_map_def (vm);
2471
2472 gcc_assert (result == gimple_phi_result (phi));
2473
2474 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2475 }
2476
2477 redirect_edge_var_map_clear (old_edge);
2478 }
2479
2480 /* Returns the basic block after which the new basic block created
2481 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2482 near its "logical" location. This is of most help to humans looking
2483 at debugging dumps. */
2484
2485 static basic_block
2486 split_edge_bb_loc (edge edge_in)
2487 {
2488 basic_block dest = edge_in->dest;
2489 basic_block dest_prev = dest->prev_bb;
2490
2491 if (dest_prev)
2492 {
2493 edge e = find_edge (dest_prev, dest);
2494 if (e && !(e->flags & EDGE_COMPLEX))
2495 return edge_in->src;
2496 }
2497 return dest_prev;
2498 }
2499
2500 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2501 Abort on abnormal edges. */
2502
2503 static basic_block
2504 gimple_split_edge (edge edge_in)
2505 {
2506 basic_block new_bb, after_bb, dest;
2507 edge new_edge, e;
2508
2509 /* Abnormal edges cannot be split. */
2510 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2511
2512 dest = edge_in->dest;
2513
2514 after_bb = split_edge_bb_loc (edge_in);
2515
2516 new_bb = create_empty_bb (after_bb);
2517 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2518 new_bb->count = edge_in->count;
2519 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2520 new_edge->probability = REG_BR_PROB_BASE;
2521 new_edge->count = edge_in->count;
2522
2523 e = redirect_edge_and_branch (edge_in, new_bb);
2524 gcc_assert (e == edge_in);
2525 reinstall_phi_args (new_edge, e);
2526
2527 return new_bb;
2528 }
2529
2530
2531 /* Verify properties of the address expression T with base object BASE. */
2532
2533 static tree
2534 verify_address (tree t, tree base)
2535 {
2536 bool old_constant;
2537 bool old_side_effects;
2538 bool new_constant;
2539 bool new_side_effects;
2540
2541 old_constant = TREE_CONSTANT (t);
2542 old_side_effects = TREE_SIDE_EFFECTS (t);
2543
2544 recompute_tree_invariant_for_addr_expr (t);
2545 new_side_effects = TREE_SIDE_EFFECTS (t);
2546 new_constant = TREE_CONSTANT (t);
2547
2548 if (old_constant != new_constant)
2549 {
2550 error ("constant not recomputed when ADDR_EXPR changed");
2551 return t;
2552 }
2553 if (old_side_effects != new_side_effects)
2554 {
2555 error ("side effects not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558
2559 if (!(TREE_CODE (base) == VAR_DECL
2560 || TREE_CODE (base) == PARM_DECL
2561 || TREE_CODE (base) == RESULT_DECL))
2562 return NULL_TREE;
2563
2564 if (DECL_GIMPLE_REG_P (base))
2565 {
2566 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2567 return base;
2568 }
2569
2570 return NULL_TREE;
2571 }
2572
2573 /* Callback for walk_tree, check that all elements with address taken are
2574 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2575 inside a PHI node. */
2576
2577 static tree
2578 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2579 {
2580 tree t = *tp, x;
2581
2582 if (TYPE_P (t))
2583 *walk_subtrees = 0;
2584
2585 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2586 #define CHECK_OP(N, MSG) \
2587 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2588 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2589
2590 switch (TREE_CODE (t))
2591 {
2592 case SSA_NAME:
2593 if (SSA_NAME_IN_FREE_LIST (t))
2594 {
2595 error ("SSA name in freelist but still referenced");
2596 return *tp;
2597 }
2598 break;
2599
2600 case INDIRECT_REF:
2601 error ("INDIRECT_REF in gimple IL");
2602 return t;
2603
2604 case MEM_REF:
2605 x = TREE_OPERAND (t, 0);
2606 if (!POINTER_TYPE_P (TREE_TYPE (x))
2607 || !is_gimple_mem_ref_addr (x))
2608 {
2609 error ("invalid first operand of MEM_REF");
2610 return x;
2611 }
2612 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2613 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2614 {
2615 error ("invalid offset operand of MEM_REF");
2616 return TREE_OPERAND (t, 1);
2617 }
2618 if (TREE_CODE (x) == ADDR_EXPR
2619 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2620 return x;
2621 *walk_subtrees = 0;
2622 break;
2623
2624 case ASSERT_EXPR:
2625 x = fold (ASSERT_EXPR_COND (t));
2626 if (x == boolean_false_node)
2627 {
2628 error ("ASSERT_EXPR with an always-false condition");
2629 return *tp;
2630 }
2631 break;
2632
2633 case MODIFY_EXPR:
2634 error ("MODIFY_EXPR not expected while having tuples");
2635 return *tp;
2636
2637 case ADDR_EXPR:
2638 {
2639 tree tem;
2640
2641 gcc_assert (is_gimple_address (t));
2642
2643 /* Skip any references (they will be checked when we recurse down the
2644 tree) and ensure that any variable used as a prefix is marked
2645 addressable. */
2646 for (x = TREE_OPERAND (t, 0);
2647 handled_component_p (x);
2648 x = TREE_OPERAND (x, 0))
2649 ;
2650
2651 if ((tem = verify_address (t, x)))
2652 return tem;
2653
2654 if (!(TREE_CODE (x) == VAR_DECL
2655 || TREE_CODE (x) == PARM_DECL
2656 || TREE_CODE (x) == RESULT_DECL))
2657 return NULL;
2658
2659 if (!TREE_ADDRESSABLE (x))
2660 {
2661 error ("address taken, but ADDRESSABLE bit not set");
2662 return x;
2663 }
2664
2665 break;
2666 }
2667
2668 case COND_EXPR:
2669 x = COND_EXPR_COND (t);
2670 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2671 {
2672 error ("non-integral used in condition");
2673 return x;
2674 }
2675 if (!is_gimple_condexpr (x))
2676 {
2677 error ("invalid conditional operand");
2678 return x;
2679 }
2680 break;
2681
2682 case NON_LVALUE_EXPR:
2683 case TRUTH_NOT_EXPR:
2684 gcc_unreachable ();
2685
2686 CASE_CONVERT:
2687 case FIX_TRUNC_EXPR:
2688 case FLOAT_EXPR:
2689 case NEGATE_EXPR:
2690 case ABS_EXPR:
2691 case BIT_NOT_EXPR:
2692 CHECK_OP (0, "invalid operand to unary operator");
2693 break;
2694
2695 case REALPART_EXPR:
2696 case IMAGPART_EXPR:
2697 case COMPONENT_REF:
2698 case ARRAY_REF:
2699 case ARRAY_RANGE_REF:
2700 case BIT_FIELD_REF:
2701 case VIEW_CONVERT_EXPR:
2702 /* We have a nest of references. Verify that each of the operands
2703 that determine where to reference is either a constant or a variable,
2704 verify that the base is valid, and then show we've already checked
2705 the subtrees. */
2706 while (handled_component_p (t))
2707 {
2708 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2709 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2710 else if (TREE_CODE (t) == ARRAY_REF
2711 || TREE_CODE (t) == ARRAY_RANGE_REF)
2712 {
2713 CHECK_OP (1, "invalid array index");
2714 if (TREE_OPERAND (t, 2))
2715 CHECK_OP (2, "invalid array lower bound");
2716 if (TREE_OPERAND (t, 3))
2717 CHECK_OP (3, "invalid array stride");
2718 }
2719 else if (TREE_CODE (t) == BIT_FIELD_REF)
2720 {
2721 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2722 || !host_integerp (TREE_OPERAND (t, 2), 1))
2723 {
2724 error ("invalid position or size operand to BIT_FIELD_REF");
2725 return t;
2726 }
2727 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2728 && (TYPE_PRECISION (TREE_TYPE (t))
2729 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2730 {
2731 error ("integral result type precision does not match "
2732 "field size of BIT_FIELD_REF");
2733 return t;
2734 }
2735 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2736 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2737 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2738 {
2739 error ("mode precision of non-integral result does not "
2740 "match field size of BIT_FIELD_REF");
2741 return t;
2742 }
2743 }
2744
2745 t = TREE_OPERAND (t, 0);
2746 }
2747
2748 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2749 {
2750 error ("invalid reference prefix");
2751 return t;
2752 }
2753 *walk_subtrees = 0;
2754 break;
2755 case PLUS_EXPR:
2756 case MINUS_EXPR:
2757 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2758 POINTER_PLUS_EXPR. */
2759 if (POINTER_TYPE_P (TREE_TYPE (t)))
2760 {
2761 error ("invalid operand to plus/minus, type is a pointer");
2762 return t;
2763 }
2764 CHECK_OP (0, "invalid operand to binary operator");
2765 CHECK_OP (1, "invalid operand to binary operator");
2766 break;
2767
2768 case POINTER_PLUS_EXPR:
2769 /* Check to make sure the first operand is a pointer or reference type. */
2770 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2771 {
2772 error ("invalid operand to pointer plus, first operand is not a pointer");
2773 return t;
2774 }
2775 /* Check to make sure the second operand is an integer with type of
2776 sizetype. */
2777 if (!useless_type_conversion_p (sizetype,
2778 TREE_TYPE (TREE_OPERAND (t, 1))))
2779 {
2780 error ("invalid operand to pointer plus, second operand is not an "
2781 "integer with type of sizetype");
2782 return t;
2783 }
2784 /* FALLTHROUGH */
2785 case LT_EXPR:
2786 case LE_EXPR:
2787 case GT_EXPR:
2788 case GE_EXPR:
2789 case EQ_EXPR:
2790 case NE_EXPR:
2791 case UNORDERED_EXPR:
2792 case ORDERED_EXPR:
2793 case UNLT_EXPR:
2794 case UNLE_EXPR:
2795 case UNGT_EXPR:
2796 case UNGE_EXPR:
2797 case UNEQ_EXPR:
2798 case LTGT_EXPR:
2799 case MULT_EXPR:
2800 case TRUNC_DIV_EXPR:
2801 case CEIL_DIV_EXPR:
2802 case FLOOR_DIV_EXPR:
2803 case ROUND_DIV_EXPR:
2804 case TRUNC_MOD_EXPR:
2805 case CEIL_MOD_EXPR:
2806 case FLOOR_MOD_EXPR:
2807 case ROUND_MOD_EXPR:
2808 case RDIV_EXPR:
2809 case EXACT_DIV_EXPR:
2810 case MIN_EXPR:
2811 case MAX_EXPR:
2812 case LSHIFT_EXPR:
2813 case RSHIFT_EXPR:
2814 case LROTATE_EXPR:
2815 case RROTATE_EXPR:
2816 case BIT_IOR_EXPR:
2817 case BIT_XOR_EXPR:
2818 case BIT_AND_EXPR:
2819 CHECK_OP (0, "invalid operand to binary operator");
2820 CHECK_OP (1, "invalid operand to binary operator");
2821 break;
2822
2823 case CONSTRUCTOR:
2824 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2825 *walk_subtrees = 0;
2826 break;
2827
2828 case CASE_LABEL_EXPR:
2829 if (CASE_CHAIN (t))
2830 {
2831 error ("invalid CASE_CHAIN");
2832 return t;
2833 }
2834 break;
2835
2836 default:
2837 break;
2838 }
2839 return NULL;
2840
2841 #undef CHECK_OP
2842 }
2843
2844
2845 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2846 Returns true if there is an error, otherwise false. */
2847
2848 static bool
2849 verify_types_in_gimple_min_lval (tree expr)
2850 {
2851 tree op;
2852
2853 if (is_gimple_id (expr))
2854 return false;
2855
2856 if (TREE_CODE (expr) != TARGET_MEM_REF
2857 && TREE_CODE (expr) != MEM_REF)
2858 {
2859 error ("invalid expression for min lvalue");
2860 return true;
2861 }
2862
2863 /* TARGET_MEM_REFs are strange beasts. */
2864 if (TREE_CODE (expr) == TARGET_MEM_REF)
2865 return false;
2866
2867 op = TREE_OPERAND (expr, 0);
2868 if (!is_gimple_val (op))
2869 {
2870 error ("invalid operand in indirect reference");
2871 debug_generic_stmt (op);
2872 return true;
2873 }
2874 /* Memory references now generally can involve a value conversion. */
2875
2876 return false;
2877 }
2878
2879 /* Verify if EXPR is a valid GIMPLE reference expression. If
2880 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2881 if there is an error, otherwise false. */
2882
2883 static bool
2884 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2885 {
2886 while (handled_component_p (expr))
2887 {
2888 tree op = TREE_OPERAND (expr, 0);
2889
2890 if (TREE_CODE (expr) == ARRAY_REF
2891 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2892 {
2893 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2894 || (TREE_OPERAND (expr, 2)
2895 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2896 || (TREE_OPERAND (expr, 3)
2897 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2898 {
2899 error ("invalid operands to array reference");
2900 debug_generic_stmt (expr);
2901 return true;
2902 }
2903 }
2904
2905 /* Verify if the reference array element types are compatible. */
2906 if (TREE_CODE (expr) == ARRAY_REF
2907 && !useless_type_conversion_p (TREE_TYPE (expr),
2908 TREE_TYPE (TREE_TYPE (op))))
2909 {
2910 error ("type mismatch in array reference");
2911 debug_generic_stmt (TREE_TYPE (expr));
2912 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2913 return true;
2914 }
2915 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2916 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2917 TREE_TYPE (TREE_TYPE (op))))
2918 {
2919 error ("type mismatch in array range reference");
2920 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2921 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2922 return true;
2923 }
2924
2925 if ((TREE_CODE (expr) == REALPART_EXPR
2926 || TREE_CODE (expr) == IMAGPART_EXPR)
2927 && !useless_type_conversion_p (TREE_TYPE (expr),
2928 TREE_TYPE (TREE_TYPE (op))))
2929 {
2930 error ("type mismatch in real/imagpart reference");
2931 debug_generic_stmt (TREE_TYPE (expr));
2932 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2933 return true;
2934 }
2935
2936 if (TREE_CODE (expr) == COMPONENT_REF
2937 && !useless_type_conversion_p (TREE_TYPE (expr),
2938 TREE_TYPE (TREE_OPERAND (expr, 1))))
2939 {
2940 error ("type mismatch in component reference");
2941 debug_generic_stmt (TREE_TYPE (expr));
2942 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2943 return true;
2944 }
2945
2946 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2947 {
2948 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2949 that their operand is not an SSA name or an invariant when
2950 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2951 bug). Otherwise there is nothing to verify, gross mismatches at
2952 most invoke undefined behavior. */
2953 if (require_lvalue
2954 && (TREE_CODE (op) == SSA_NAME
2955 || is_gimple_min_invariant (op)))
2956 {
2957 error ("conversion of an SSA_NAME on the left hand side");
2958 debug_generic_stmt (expr);
2959 return true;
2960 }
2961 else if (TREE_CODE (op) == SSA_NAME
2962 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2963 {
2964 error ("conversion of register to a different size");
2965 debug_generic_stmt (expr);
2966 return true;
2967 }
2968 else if (!handled_component_p (op))
2969 return false;
2970 }
2971
2972 expr = op;
2973 }
2974
2975 if (TREE_CODE (expr) == MEM_REF)
2976 {
2977 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2978 {
2979 error ("invalid address operand in MEM_REF");
2980 debug_generic_stmt (expr);
2981 return true;
2982 }
2983 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2984 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2985 {
2986 error ("invalid offset operand in MEM_REF");
2987 debug_generic_stmt (expr);
2988 return true;
2989 }
2990 }
2991 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2992 {
2993 if (!TMR_BASE (expr)
2994 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2995 {
2996 error ("invalid address operand in TARGET_MEM_REF");
2997 return true;
2998 }
2999 if (!TMR_OFFSET (expr)
3000 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3001 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3002 {
3003 error ("invalid offset operand in TARGET_MEM_REF");
3004 debug_generic_stmt (expr);
3005 return true;
3006 }
3007 }
3008
3009 return ((require_lvalue || !is_gimple_min_invariant (expr))
3010 && verify_types_in_gimple_min_lval (expr));
3011 }
3012
3013 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3014 list of pointer-to types that is trivially convertible to DEST. */
3015
3016 static bool
3017 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3018 {
3019 tree src;
3020
3021 if (!TYPE_POINTER_TO (src_obj))
3022 return true;
3023
3024 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3025 if (useless_type_conversion_p (dest, src))
3026 return true;
3027
3028 return false;
3029 }
3030
3031 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3032 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3033
3034 static bool
3035 valid_fixed_convert_types_p (tree type1, tree type2)
3036 {
3037 return (FIXED_POINT_TYPE_P (type1)
3038 && (INTEGRAL_TYPE_P (type2)
3039 || SCALAR_FLOAT_TYPE_P (type2)
3040 || FIXED_POINT_TYPE_P (type2)));
3041 }
3042
3043 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3044 is a problem, otherwise false. */
3045
3046 static bool
3047 verify_gimple_call (gimple stmt)
3048 {
3049 tree fn = gimple_call_fn (stmt);
3050 tree fntype, fndecl;
3051 unsigned i;
3052
3053 if (gimple_call_internal_p (stmt))
3054 {
3055 if (fn)
3056 {
3057 error ("gimple call has two targets");
3058 debug_generic_stmt (fn);
3059 return true;
3060 }
3061 }
3062 else
3063 {
3064 if (!fn)
3065 {
3066 error ("gimple call has no target");
3067 return true;
3068 }
3069 }
3070
3071 if (fn && !is_gimple_call_addr (fn))
3072 {
3073 error ("invalid function in gimple call");
3074 debug_generic_stmt (fn);
3075 return true;
3076 }
3077
3078 if (fn
3079 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3080 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3081 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3082 {
3083 error ("non-function in gimple call");
3084 return true;
3085 }
3086
3087 fndecl = gimple_call_fndecl (stmt);
3088 if (fndecl
3089 && TREE_CODE (fndecl) == FUNCTION_DECL
3090 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3091 && !DECL_PURE_P (fndecl)
3092 && !TREE_READONLY (fndecl))
3093 {
3094 error ("invalid pure const state for function");
3095 return true;
3096 }
3097
3098 if (gimple_call_lhs (stmt)
3099 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3100 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3101 {
3102 error ("invalid LHS in gimple call");
3103 return true;
3104 }
3105
3106 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3107 {
3108 error ("LHS in noreturn call");
3109 return true;
3110 }
3111
3112 fntype = gimple_call_fntype (stmt);
3113 if (fntype
3114 && gimple_call_lhs (stmt)
3115 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3116 TREE_TYPE (fntype))
3117 /* ??? At least C++ misses conversions at assignments from
3118 void * call results.
3119 ??? Java is completely off. Especially with functions
3120 returning java.lang.Object.
3121 For now simply allow arbitrary pointer type conversions. */
3122 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3123 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3124 {
3125 error ("invalid conversion in gimple call");
3126 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3127 debug_generic_stmt (TREE_TYPE (fntype));
3128 return true;
3129 }
3130
3131 if (gimple_call_chain (stmt)
3132 && !is_gimple_val (gimple_call_chain (stmt)))
3133 {
3134 error ("invalid static chain in gimple call");
3135 debug_generic_stmt (gimple_call_chain (stmt));
3136 return true;
3137 }
3138
3139 /* If there is a static chain argument, this should not be an indirect
3140 call, and the decl should have DECL_STATIC_CHAIN set. */
3141 if (gimple_call_chain (stmt))
3142 {
3143 if (!gimple_call_fndecl (stmt))
3144 {
3145 error ("static chain in indirect gimple call");
3146 return true;
3147 }
3148 fn = TREE_OPERAND (fn, 0);
3149
3150 if (!DECL_STATIC_CHAIN (fn))
3151 {
3152 error ("static chain with function that doesn%'t use one");
3153 return true;
3154 }
3155 }
3156
3157 /* ??? The C frontend passes unpromoted arguments in case it
3158 didn't see a function declaration before the call. So for now
3159 leave the call arguments mostly unverified. Once we gimplify
3160 unit-at-a-time we have a chance to fix this. */
3161
3162 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3163 {
3164 tree arg = gimple_call_arg (stmt, i);
3165 if ((is_gimple_reg_type (TREE_TYPE (arg))
3166 && !is_gimple_val (arg))
3167 || (!is_gimple_reg_type (TREE_TYPE (arg))
3168 && !is_gimple_lvalue (arg)))
3169 {
3170 error ("invalid argument to gimple call");
3171 debug_generic_expr (arg);
3172 return true;
3173 }
3174 }
3175
3176 return false;
3177 }
3178
3179 /* Verifies the gimple comparison with the result type TYPE and
3180 the operands OP0 and OP1. */
3181
3182 static bool
3183 verify_gimple_comparison (tree type, tree op0, tree op1)
3184 {
3185 tree op0_type = TREE_TYPE (op0);
3186 tree op1_type = TREE_TYPE (op1);
3187
3188 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3189 {
3190 error ("invalid operands in gimple comparison");
3191 return true;
3192 }
3193
3194 /* For comparisons we do not have the operations type as the
3195 effective type the comparison is carried out in. Instead
3196 we require that either the first operand is trivially
3197 convertible into the second, or the other way around.
3198 The resulting type of a comparison may be any integral type.
3199 Because we special-case pointers to void we allow
3200 comparisons of pointers with the same mode as well. */
3201 if ((!useless_type_conversion_p (op0_type, op1_type)
3202 && !useless_type_conversion_p (op1_type, op0_type)
3203 && (!POINTER_TYPE_P (op0_type)
3204 || !POINTER_TYPE_P (op1_type)
3205 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3206 || !INTEGRAL_TYPE_P (type))
3207 {
3208 error ("type mismatch in comparison expression");
3209 debug_generic_expr (type);
3210 debug_generic_expr (op0_type);
3211 debug_generic_expr (op1_type);
3212 return true;
3213 }
3214
3215 return false;
3216 }
3217
3218 /* Verify a gimple assignment statement STMT with an unary rhs.
3219 Returns true if anything is wrong. */
3220
3221 static bool
3222 verify_gimple_assign_unary (gimple stmt)
3223 {
3224 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3225 tree lhs = gimple_assign_lhs (stmt);
3226 tree lhs_type = TREE_TYPE (lhs);
3227 tree rhs1 = gimple_assign_rhs1 (stmt);
3228 tree rhs1_type = TREE_TYPE (rhs1);
3229
3230 if (!is_gimple_reg (lhs))
3231 {
3232 error ("non-register as LHS of unary operation");
3233 return true;
3234 }
3235
3236 if (!is_gimple_val (rhs1))
3237 {
3238 error ("invalid operand in unary operation");
3239 return true;
3240 }
3241
3242 /* First handle conversions. */
3243 switch (rhs_code)
3244 {
3245 CASE_CONVERT:
3246 {
3247 /* Allow conversions between integral types and pointers only if
3248 there is no sign or zero extension involved.
3249 For targets were the precision of sizetype doesn't match that
3250 of pointers we need to allow arbitrary conversions from and
3251 to sizetype. */
3252 if ((POINTER_TYPE_P (lhs_type)
3253 && INTEGRAL_TYPE_P (rhs1_type)
3254 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3255 || rhs1_type == sizetype))
3256 || (POINTER_TYPE_P (rhs1_type)
3257 && INTEGRAL_TYPE_P (lhs_type)
3258 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3259 || lhs_type == sizetype)))
3260 return false;
3261
3262 /* Allow conversion from integer to offset type and vice versa. */
3263 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3264 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3265 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3266 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3267 return false;
3268
3269 /* Otherwise assert we are converting between types of the
3270 same kind. */
3271 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3272 {
3273 error ("invalid types in nop conversion");
3274 debug_generic_expr (lhs_type);
3275 debug_generic_expr (rhs1_type);
3276 return true;
3277 }
3278
3279 return false;
3280 }
3281
3282 case ADDR_SPACE_CONVERT_EXPR:
3283 {
3284 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3285 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3286 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3287 {
3288 error ("invalid types in address space conversion");
3289 debug_generic_expr (lhs_type);
3290 debug_generic_expr (rhs1_type);
3291 return true;
3292 }
3293
3294 return false;
3295 }
3296
3297 case FIXED_CONVERT_EXPR:
3298 {
3299 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3300 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3301 {
3302 error ("invalid types in fixed-point conversion");
3303 debug_generic_expr (lhs_type);
3304 debug_generic_expr (rhs1_type);
3305 return true;
3306 }
3307
3308 return false;
3309 }
3310
3311 case FLOAT_EXPR:
3312 {
3313 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3314 {
3315 error ("invalid types in conversion to floating point");
3316 debug_generic_expr (lhs_type);
3317 debug_generic_expr (rhs1_type);
3318 return true;
3319 }
3320
3321 return false;
3322 }
3323
3324 case FIX_TRUNC_EXPR:
3325 {
3326 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3327 {
3328 error ("invalid types in conversion to integer");
3329 debug_generic_expr (lhs_type);
3330 debug_generic_expr (rhs1_type);
3331 return true;
3332 }
3333
3334 return false;
3335 }
3336
3337 case VEC_UNPACK_HI_EXPR:
3338 case VEC_UNPACK_LO_EXPR:
3339 case REDUC_MAX_EXPR:
3340 case REDUC_MIN_EXPR:
3341 case REDUC_PLUS_EXPR:
3342 case VEC_UNPACK_FLOAT_HI_EXPR:
3343 case VEC_UNPACK_FLOAT_LO_EXPR:
3344 /* FIXME. */
3345 return false;
3346
3347 case NEGATE_EXPR:
3348 case ABS_EXPR:
3349 case BIT_NOT_EXPR:
3350 case PAREN_EXPR:
3351 case NON_LVALUE_EXPR:
3352 case CONJ_EXPR:
3353 break;
3354
3355 default:
3356 gcc_unreachable ();
3357 }
3358
3359 /* For the remaining codes assert there is no conversion involved. */
3360 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3361 {
3362 error ("non-trivial conversion in unary operation");
3363 debug_generic_expr (lhs_type);
3364 debug_generic_expr (rhs1_type);
3365 return true;
3366 }
3367
3368 return false;
3369 }
3370
3371 /* Verify a gimple assignment statement STMT with a binary rhs.
3372 Returns true if anything is wrong. */
3373
3374 static bool
3375 verify_gimple_assign_binary (gimple stmt)
3376 {
3377 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3378 tree lhs = gimple_assign_lhs (stmt);
3379 tree lhs_type = TREE_TYPE (lhs);
3380 tree rhs1 = gimple_assign_rhs1 (stmt);
3381 tree rhs1_type = TREE_TYPE (rhs1);
3382 tree rhs2 = gimple_assign_rhs2 (stmt);
3383 tree rhs2_type = TREE_TYPE (rhs2);
3384
3385 if (!is_gimple_reg (lhs))
3386 {
3387 error ("non-register as LHS of binary operation");
3388 return true;
3389 }
3390
3391 if (!is_gimple_val (rhs1)
3392 || !is_gimple_val (rhs2))
3393 {
3394 error ("invalid operands in binary operation");
3395 return true;
3396 }
3397
3398 /* First handle operations that involve different types. */
3399 switch (rhs_code)
3400 {
3401 case COMPLEX_EXPR:
3402 {
3403 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3404 || !(INTEGRAL_TYPE_P (rhs1_type)
3405 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3406 || !(INTEGRAL_TYPE_P (rhs2_type)
3407 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3408 {
3409 error ("type mismatch in complex expression");
3410 debug_generic_expr (lhs_type);
3411 debug_generic_expr (rhs1_type);
3412 debug_generic_expr (rhs2_type);
3413 return true;
3414 }
3415
3416 return false;
3417 }
3418
3419 case LSHIFT_EXPR:
3420 case RSHIFT_EXPR:
3421 case LROTATE_EXPR:
3422 case RROTATE_EXPR:
3423 {
3424 /* Shifts and rotates are ok on integral types, fixed point
3425 types and integer vector types. */
3426 if ((!INTEGRAL_TYPE_P (rhs1_type)
3427 && !FIXED_POINT_TYPE_P (rhs1_type)
3428 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3429 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3430 || (!INTEGRAL_TYPE_P (rhs2_type)
3431 /* Vector shifts of vectors are also ok. */
3432 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3433 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3434 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3435 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3436 || !useless_type_conversion_p (lhs_type, rhs1_type))
3437 {
3438 error ("type mismatch in shift expression");
3439 debug_generic_expr (lhs_type);
3440 debug_generic_expr (rhs1_type);
3441 debug_generic_expr (rhs2_type);
3442 return true;
3443 }
3444
3445 return false;
3446 }
3447
3448 case VEC_LSHIFT_EXPR:
3449 case VEC_RSHIFT_EXPR:
3450 {
3451 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3452 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3453 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3454 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3455 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3456 || (!INTEGRAL_TYPE_P (rhs2_type)
3457 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3458 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3459 || !useless_type_conversion_p (lhs_type, rhs1_type))
3460 {
3461 error ("type mismatch in vector shift expression");
3462 debug_generic_expr (lhs_type);
3463 debug_generic_expr (rhs1_type);
3464 debug_generic_expr (rhs2_type);
3465 return true;
3466 }
3467 /* For shifting a vector of non-integral components we
3468 only allow shifting by a constant multiple of the element size. */
3469 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3470 && (TREE_CODE (rhs2) != INTEGER_CST
3471 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3472 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3473 {
3474 error ("non-element sized vector shift of floating point vector");
3475 return true;
3476 }
3477
3478 return false;
3479 }
3480
3481 case PLUS_EXPR:
3482 case MINUS_EXPR:
3483 {
3484 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3485 ??? This just makes the checker happy and may not be what is
3486 intended. */
3487 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3488 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3489 {
3490 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3491 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3492 {
3493 error ("invalid non-vector operands to vector valued plus");
3494 return true;
3495 }
3496 lhs_type = TREE_TYPE (lhs_type);
3497 rhs1_type = TREE_TYPE (rhs1_type);
3498 rhs2_type = TREE_TYPE (rhs2_type);
3499 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3500 the pointer to 2nd place. */
3501 if (POINTER_TYPE_P (rhs2_type))
3502 {
3503 tree tem = rhs1_type;
3504 rhs1_type = rhs2_type;
3505 rhs2_type = tem;
3506 }
3507 goto do_pointer_plus_expr_check;
3508 }
3509 if (POINTER_TYPE_P (lhs_type)
3510 || POINTER_TYPE_P (rhs1_type)
3511 || POINTER_TYPE_P (rhs2_type))
3512 {
3513 error ("invalid (pointer) operands to plus/minus");
3514 return true;
3515 }
3516
3517 /* Continue with generic binary expression handling. */
3518 break;
3519 }
3520
3521 case POINTER_PLUS_EXPR:
3522 {
3523 do_pointer_plus_expr_check:
3524 if (!POINTER_TYPE_P (rhs1_type)
3525 || !useless_type_conversion_p (lhs_type, rhs1_type)
3526 || !useless_type_conversion_p (sizetype, rhs2_type))
3527 {
3528 error ("type mismatch in pointer plus expression");
3529 debug_generic_stmt (lhs_type);
3530 debug_generic_stmt (rhs1_type);
3531 debug_generic_stmt (rhs2_type);
3532 return true;
3533 }
3534
3535 return false;
3536 }
3537
3538 case TRUTH_ANDIF_EXPR:
3539 case TRUTH_ORIF_EXPR:
3540 case TRUTH_AND_EXPR:
3541 case TRUTH_OR_EXPR:
3542 case TRUTH_XOR_EXPR:
3543
3544 gcc_unreachable ();
3545
3546 case LT_EXPR:
3547 case LE_EXPR:
3548 case GT_EXPR:
3549 case GE_EXPR:
3550 case EQ_EXPR:
3551 case NE_EXPR:
3552 case UNORDERED_EXPR:
3553 case ORDERED_EXPR:
3554 case UNLT_EXPR:
3555 case UNLE_EXPR:
3556 case UNGT_EXPR:
3557 case UNGE_EXPR:
3558 case UNEQ_EXPR:
3559 case LTGT_EXPR:
3560 /* Comparisons are also binary, but the result type is not
3561 connected to the operand types. */
3562 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3563
3564 case WIDEN_MULT_EXPR:
3565 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3566 return true;
3567 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3568 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3569
3570 case WIDEN_SUM_EXPR:
3571 case VEC_WIDEN_MULT_HI_EXPR:
3572 case VEC_WIDEN_MULT_LO_EXPR:
3573 case VEC_PACK_TRUNC_EXPR:
3574 case VEC_PACK_SAT_EXPR:
3575 case VEC_PACK_FIX_TRUNC_EXPR:
3576 case VEC_EXTRACT_EVEN_EXPR:
3577 case VEC_EXTRACT_ODD_EXPR:
3578 case VEC_INTERLEAVE_HIGH_EXPR:
3579 case VEC_INTERLEAVE_LOW_EXPR:
3580 /* FIXME. */
3581 return false;
3582
3583 case MULT_EXPR:
3584 case TRUNC_DIV_EXPR:
3585 case CEIL_DIV_EXPR:
3586 case FLOOR_DIV_EXPR:
3587 case ROUND_DIV_EXPR:
3588 case TRUNC_MOD_EXPR:
3589 case CEIL_MOD_EXPR:
3590 case FLOOR_MOD_EXPR:
3591 case ROUND_MOD_EXPR:
3592 case RDIV_EXPR:
3593 case EXACT_DIV_EXPR:
3594 case MIN_EXPR:
3595 case MAX_EXPR:
3596 case BIT_IOR_EXPR:
3597 case BIT_XOR_EXPR:
3598 case BIT_AND_EXPR:
3599 /* Continue with generic binary expression handling. */
3600 break;
3601
3602 default:
3603 gcc_unreachable ();
3604 }
3605
3606 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3607 || !useless_type_conversion_p (lhs_type, rhs2_type))
3608 {
3609 error ("type mismatch in binary expression");
3610 debug_generic_stmt (lhs_type);
3611 debug_generic_stmt (rhs1_type);
3612 debug_generic_stmt (rhs2_type);
3613 return true;
3614 }
3615
3616 return false;
3617 }
3618
3619 /* Verify a gimple assignment statement STMT with a ternary rhs.
3620 Returns true if anything is wrong. */
3621
3622 static bool
3623 verify_gimple_assign_ternary (gimple stmt)
3624 {
3625 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3626 tree lhs = gimple_assign_lhs (stmt);
3627 tree lhs_type = TREE_TYPE (lhs);
3628 tree rhs1 = gimple_assign_rhs1 (stmt);
3629 tree rhs1_type = TREE_TYPE (rhs1);
3630 tree rhs2 = gimple_assign_rhs2 (stmt);
3631 tree rhs2_type = TREE_TYPE (rhs2);
3632 tree rhs3 = gimple_assign_rhs3 (stmt);
3633 tree rhs3_type = TREE_TYPE (rhs3);
3634
3635 if (!is_gimple_reg (lhs))
3636 {
3637 error ("non-register as LHS of ternary operation");
3638 return true;
3639 }
3640
3641 if (!is_gimple_val (rhs1)
3642 || !is_gimple_val (rhs2)
3643 || !is_gimple_val (rhs3))
3644 {
3645 error ("invalid operands in ternary operation");
3646 return true;
3647 }
3648
3649 /* First handle operations that involve different types. */
3650 switch (rhs_code)
3651 {
3652 case WIDEN_MULT_PLUS_EXPR:
3653 case WIDEN_MULT_MINUS_EXPR:
3654 if ((!INTEGRAL_TYPE_P (rhs1_type)
3655 && !FIXED_POINT_TYPE_P (rhs1_type))
3656 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3657 || !useless_type_conversion_p (lhs_type, rhs3_type)
3658 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3659 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3660 {
3661 error ("type mismatch in widening multiply-accumulate expression");
3662 debug_generic_expr (lhs_type);
3663 debug_generic_expr (rhs1_type);
3664 debug_generic_expr (rhs2_type);
3665 debug_generic_expr (rhs3_type);
3666 return true;
3667 }
3668 break;
3669
3670 case FMA_EXPR:
3671 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3672 || !useless_type_conversion_p (lhs_type, rhs2_type)
3673 || !useless_type_conversion_p (lhs_type, rhs3_type))
3674 {
3675 error ("type mismatch in fused multiply-add expression");
3676 debug_generic_expr (lhs_type);
3677 debug_generic_expr (rhs1_type);
3678 debug_generic_expr (rhs2_type);
3679 debug_generic_expr (rhs3_type);
3680 return true;
3681 }
3682 break;
3683
3684 case DOT_PROD_EXPR:
3685 case REALIGN_LOAD_EXPR:
3686 /* FIXME. */
3687 return false;
3688
3689 default:
3690 gcc_unreachable ();
3691 }
3692 return false;
3693 }
3694
3695 /* Verify a gimple assignment statement STMT with a single rhs.
3696 Returns true if anything is wrong. */
3697
3698 static bool
3699 verify_gimple_assign_single (gimple stmt)
3700 {
3701 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3702 tree lhs = gimple_assign_lhs (stmt);
3703 tree lhs_type = TREE_TYPE (lhs);
3704 tree rhs1 = gimple_assign_rhs1 (stmt);
3705 tree rhs1_type = TREE_TYPE (rhs1);
3706 bool res = false;
3707
3708 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3709 {
3710 error ("non-trivial conversion at assignment");
3711 debug_generic_expr (lhs_type);
3712 debug_generic_expr (rhs1_type);
3713 return true;
3714 }
3715
3716 if (handled_component_p (lhs))
3717 res |= verify_types_in_gimple_reference (lhs, true);
3718
3719 /* Special codes we cannot handle via their class. */
3720 switch (rhs_code)
3721 {
3722 case ADDR_EXPR:
3723 {
3724 tree op = TREE_OPERAND (rhs1, 0);
3725 if (!is_gimple_addressable (op))
3726 {
3727 error ("invalid operand in unary expression");
3728 return true;
3729 }
3730
3731 /* Technically there is no longer a need for matching types, but
3732 gimple hygiene asks for this check. In LTO we can end up
3733 combining incompatible units and thus end up with addresses
3734 of globals that change their type to a common one. */
3735 if (!in_lto_p
3736 && !types_compatible_p (TREE_TYPE (op),
3737 TREE_TYPE (TREE_TYPE (rhs1)))
3738 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3739 TREE_TYPE (op)))
3740 {
3741 error ("type mismatch in address expression");
3742 debug_generic_stmt (TREE_TYPE (rhs1));
3743 debug_generic_stmt (TREE_TYPE (op));
3744 return true;
3745 }
3746
3747 return verify_types_in_gimple_reference (op, true);
3748 }
3749
3750 /* tcc_reference */
3751 case INDIRECT_REF:
3752 error ("INDIRECT_REF in gimple IL");
3753 return true;
3754
3755 case COMPONENT_REF:
3756 case BIT_FIELD_REF:
3757 case ARRAY_REF:
3758 case ARRAY_RANGE_REF:
3759 case VIEW_CONVERT_EXPR:
3760 case REALPART_EXPR:
3761 case IMAGPART_EXPR:
3762 case TARGET_MEM_REF:
3763 case MEM_REF:
3764 if (!is_gimple_reg (lhs)
3765 && is_gimple_reg_type (TREE_TYPE (lhs)))
3766 {
3767 error ("invalid rhs for gimple memory store");
3768 debug_generic_stmt (lhs);
3769 debug_generic_stmt (rhs1);
3770 return true;
3771 }
3772 return res || verify_types_in_gimple_reference (rhs1, false);
3773
3774 /* tcc_constant */
3775 case SSA_NAME:
3776 case INTEGER_CST:
3777 case REAL_CST:
3778 case FIXED_CST:
3779 case COMPLEX_CST:
3780 case VECTOR_CST:
3781 case STRING_CST:
3782 return res;
3783
3784 /* tcc_declaration */
3785 case CONST_DECL:
3786 return res;
3787 case VAR_DECL:
3788 case PARM_DECL:
3789 if (!is_gimple_reg (lhs)
3790 && !is_gimple_reg (rhs1)
3791 && is_gimple_reg_type (TREE_TYPE (lhs)))
3792 {
3793 error ("invalid rhs for gimple memory store");
3794 debug_generic_stmt (lhs);
3795 debug_generic_stmt (rhs1);
3796 return true;
3797 }
3798 return res;
3799
3800 case COND_EXPR:
3801 if (!is_gimple_reg (lhs)
3802 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3803 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3804 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3805 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3806 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3807 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3808 {
3809 error ("invalid COND_EXPR in gimple assignment");
3810 debug_generic_stmt (rhs1);
3811 return true;
3812 }
3813 return res;
3814
3815 case CONSTRUCTOR:
3816 case OBJ_TYPE_REF:
3817 case ASSERT_EXPR:
3818 case WITH_SIZE_EXPR:
3819 case VEC_COND_EXPR:
3820 /* FIXME. */
3821 return res;
3822
3823 default:;
3824 }
3825
3826 return res;
3827 }
3828
3829 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3830 is a problem, otherwise false. */
3831
3832 static bool
3833 verify_gimple_assign (gimple stmt)
3834 {
3835 switch (gimple_assign_rhs_class (stmt))
3836 {
3837 case GIMPLE_SINGLE_RHS:
3838 return verify_gimple_assign_single (stmt);
3839
3840 case GIMPLE_UNARY_RHS:
3841 return verify_gimple_assign_unary (stmt);
3842
3843 case GIMPLE_BINARY_RHS:
3844 return verify_gimple_assign_binary (stmt);
3845
3846 case GIMPLE_TERNARY_RHS:
3847 return verify_gimple_assign_ternary (stmt);
3848
3849 default:
3850 gcc_unreachable ();
3851 }
3852 }
3853
3854 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3855 is a problem, otherwise false. */
3856
3857 static bool
3858 verify_gimple_return (gimple stmt)
3859 {
3860 tree op = gimple_return_retval (stmt);
3861 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3862
3863 /* We cannot test for present return values as we do not fix up missing
3864 return values from the original source. */
3865 if (op == NULL)
3866 return false;
3867
3868 if (!is_gimple_val (op)
3869 && TREE_CODE (op) != RESULT_DECL)
3870 {
3871 error ("invalid operand in return statement");
3872 debug_generic_stmt (op);
3873 return true;
3874 }
3875
3876 if ((TREE_CODE (op) == RESULT_DECL
3877 && DECL_BY_REFERENCE (op))
3878 || (TREE_CODE (op) == SSA_NAME
3879 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3880 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3881 op = TREE_TYPE (op);
3882
3883 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3884 {
3885 error ("invalid conversion in return statement");
3886 debug_generic_stmt (restype);
3887 debug_generic_stmt (TREE_TYPE (op));
3888 return true;
3889 }
3890
3891 return false;
3892 }
3893
3894
3895 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3896 is a problem, otherwise false. */
3897
3898 static bool
3899 verify_gimple_goto (gimple stmt)
3900 {
3901 tree dest = gimple_goto_dest (stmt);
3902
3903 /* ??? We have two canonical forms of direct goto destinations, a
3904 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3905 if (TREE_CODE (dest) != LABEL_DECL
3906 && (!is_gimple_val (dest)
3907 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3908 {
3909 error ("goto destination is neither a label nor a pointer");
3910 return true;
3911 }
3912
3913 return false;
3914 }
3915
3916 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3917 is a problem, otherwise false. */
3918
3919 static bool
3920 verify_gimple_switch (gimple stmt)
3921 {
3922 if (!is_gimple_val (gimple_switch_index (stmt)))
3923 {
3924 error ("invalid operand to switch statement");
3925 debug_generic_stmt (gimple_switch_index (stmt));
3926 return true;
3927 }
3928
3929 return false;
3930 }
3931
3932
3933 /* Verify a gimple debug statement STMT.
3934 Returns true if anything is wrong. */
3935
3936 static bool
3937 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3938 {
3939 /* There isn't much that could be wrong in a gimple debug stmt. A
3940 gimple debug bind stmt, for example, maps a tree, that's usually
3941 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3942 component or member of an aggregate type, to another tree, that
3943 can be an arbitrary expression. These stmts expand into debug
3944 insns, and are converted to debug notes by var-tracking.c. */
3945 return false;
3946 }
3947
3948 /* Verify a gimple label statement STMT.
3949 Returns true if anything is wrong. */
3950
3951 static bool
3952 verify_gimple_label (gimple stmt)
3953 {
3954 tree decl = gimple_label_label (stmt);
3955 int uid;
3956 bool err = false;
3957
3958 if (TREE_CODE (decl) != LABEL_DECL)
3959 return true;
3960
3961 uid = LABEL_DECL_UID (decl);
3962 if (cfun->cfg
3963 && (uid == -1
3964 || VEC_index (basic_block,
3965 label_to_block_map, uid) != gimple_bb (stmt)))
3966 {
3967 error ("incorrect entry in label_to_block_map");
3968 err |= true;
3969 }
3970
3971 uid = EH_LANDING_PAD_NR (decl);
3972 if (uid)
3973 {
3974 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
3975 if (decl != lp->post_landing_pad)
3976 {
3977 error ("incorrect setting of landing pad number");
3978 err |= true;
3979 }
3980 }
3981
3982 return err;
3983 }
3984
3985 /* Verify the GIMPLE statement STMT. Returns true if there is an
3986 error, otherwise false. */
3987
3988 static bool
3989 verify_gimple_stmt (gimple stmt)
3990 {
3991 switch (gimple_code (stmt))
3992 {
3993 case GIMPLE_ASSIGN:
3994 return verify_gimple_assign (stmt);
3995
3996 case GIMPLE_LABEL:
3997 return verify_gimple_label (stmt);
3998
3999 case GIMPLE_CALL:
4000 return verify_gimple_call (stmt);
4001
4002 case GIMPLE_COND:
4003 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4004 {
4005 error ("invalid comparison code in gimple cond");
4006 return true;
4007 }
4008 if (!(!gimple_cond_true_label (stmt)
4009 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4010 || !(!gimple_cond_false_label (stmt)
4011 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4012 {
4013 error ("invalid labels in gimple cond");
4014 return true;
4015 }
4016
4017 return verify_gimple_comparison (boolean_type_node,
4018 gimple_cond_lhs (stmt),
4019 gimple_cond_rhs (stmt));
4020
4021 case GIMPLE_GOTO:
4022 return verify_gimple_goto (stmt);
4023
4024 case GIMPLE_SWITCH:
4025 return verify_gimple_switch (stmt);
4026
4027 case GIMPLE_RETURN:
4028 return verify_gimple_return (stmt);
4029
4030 case GIMPLE_ASM:
4031 return false;
4032
4033 /* Tuples that do not have tree operands. */
4034 case GIMPLE_NOP:
4035 case GIMPLE_PREDICT:
4036 case GIMPLE_RESX:
4037 case GIMPLE_EH_DISPATCH:
4038 case GIMPLE_EH_MUST_NOT_THROW:
4039 return false;
4040
4041 CASE_GIMPLE_OMP:
4042 /* OpenMP directives are validated by the FE and never operated
4043 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4044 non-gimple expressions when the main index variable has had
4045 its address taken. This does not affect the loop itself
4046 because the header of an GIMPLE_OMP_FOR is merely used to determine
4047 how to setup the parallel iteration. */
4048 return false;
4049
4050 case GIMPLE_DEBUG:
4051 return verify_gimple_debug (stmt);
4052
4053 default:
4054 gcc_unreachable ();
4055 }
4056 }
4057
4058 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4059 and false otherwise. */
4060
4061 static bool
4062 verify_gimple_phi (gimple phi)
4063 {
4064 bool err = false;
4065 unsigned i;
4066 tree phi_result = gimple_phi_result (phi);
4067 bool virtual_p;
4068
4069 if (!phi_result)
4070 {
4071 error ("invalid PHI result");
4072 return true;
4073 }
4074
4075 virtual_p = !is_gimple_reg (phi_result);
4076 if (TREE_CODE (phi_result) != SSA_NAME
4077 || (virtual_p
4078 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4079 {
4080 error ("invalid PHI result");
4081 err = true;
4082 }
4083
4084 for (i = 0; i < gimple_phi_num_args (phi); i++)
4085 {
4086 tree t = gimple_phi_arg_def (phi, i);
4087
4088 if (!t)
4089 {
4090 error ("missing PHI def");
4091 err |= true;
4092 continue;
4093 }
4094 /* Addressable variables do have SSA_NAMEs but they
4095 are not considered gimple values. */
4096 else if ((TREE_CODE (t) == SSA_NAME
4097 && virtual_p != !is_gimple_reg (t))
4098 || (virtual_p
4099 && (TREE_CODE (t) != SSA_NAME
4100 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4101 || (!virtual_p
4102 && !is_gimple_val (t)))
4103 {
4104 error ("invalid PHI argument");
4105 debug_generic_expr (t);
4106 err |= true;
4107 }
4108 #ifdef ENABLE_TYPES_CHECKING
4109 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4110 {
4111 error ("incompatible types in PHI argument %u", i);
4112 debug_generic_stmt (TREE_TYPE (phi_result));
4113 debug_generic_stmt (TREE_TYPE (t));
4114 err |= true;
4115 }
4116 #endif
4117 }
4118
4119 return err;
4120 }
4121
4122 /* Verify the GIMPLE statements inside the sequence STMTS. */
4123
4124 static bool
4125 verify_gimple_in_seq_2 (gimple_seq stmts)
4126 {
4127 gimple_stmt_iterator ittr;
4128 bool err = false;
4129
4130 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4131 {
4132 gimple stmt = gsi_stmt (ittr);
4133
4134 switch (gimple_code (stmt))
4135 {
4136 case GIMPLE_BIND:
4137 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4138 break;
4139
4140 case GIMPLE_TRY:
4141 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4142 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4143 break;
4144
4145 case GIMPLE_EH_FILTER:
4146 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4147 break;
4148
4149 case GIMPLE_CATCH:
4150 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4151 break;
4152
4153 default:
4154 {
4155 bool err2 = verify_gimple_stmt (stmt);
4156 if (err2)
4157 debug_gimple_stmt (stmt);
4158 err |= err2;
4159 }
4160 }
4161 }
4162
4163 return err;
4164 }
4165
4166
4167 /* Verify the GIMPLE statements inside the statement list STMTS. */
4168
4169 DEBUG_FUNCTION void
4170 verify_gimple_in_seq (gimple_seq stmts)
4171 {
4172 timevar_push (TV_TREE_STMT_VERIFY);
4173 if (verify_gimple_in_seq_2 (stmts))
4174 internal_error ("verify_gimple failed");
4175 timevar_pop (TV_TREE_STMT_VERIFY);
4176 }
4177
4178 /* Return true when the T can be shared. */
4179
4180 bool
4181 tree_node_can_be_shared (tree t)
4182 {
4183 if (IS_TYPE_OR_DECL_P (t)
4184 || is_gimple_min_invariant (t)
4185 || TREE_CODE (t) == SSA_NAME
4186 || t == error_mark_node
4187 || TREE_CODE (t) == IDENTIFIER_NODE)
4188 return true;
4189
4190 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4191 return true;
4192
4193 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4194 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4195 || TREE_CODE (t) == COMPONENT_REF
4196 || TREE_CODE (t) == REALPART_EXPR
4197 || TREE_CODE (t) == IMAGPART_EXPR)
4198 t = TREE_OPERAND (t, 0);
4199
4200 if (DECL_P (t))
4201 return true;
4202
4203 return false;
4204 }
4205
4206 /* Called via walk_gimple_stmt. Verify tree sharing. */
4207
4208 static tree
4209 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4210 {
4211 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4212 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4213
4214 if (tree_node_can_be_shared (*tp))
4215 {
4216 *walk_subtrees = false;
4217 return NULL;
4218 }
4219
4220 if (pointer_set_insert (visited, *tp))
4221 return *tp;
4222
4223 return NULL;
4224 }
4225
4226 static bool eh_error_found;
4227 static int
4228 verify_eh_throw_stmt_node (void **slot, void *data)
4229 {
4230 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4231 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4232
4233 if (!pointer_set_contains (visited, node->stmt))
4234 {
4235 error ("dead STMT in EH table");
4236 debug_gimple_stmt (node->stmt);
4237 eh_error_found = true;
4238 }
4239 return 1;
4240 }
4241
4242 /* Verify the GIMPLE statements in the CFG of FN. */
4243
4244 DEBUG_FUNCTION void
4245 verify_gimple_in_cfg (struct function *fn)
4246 {
4247 basic_block bb;
4248 bool err = false;
4249 struct pointer_set_t *visited, *visited_stmts;
4250
4251 timevar_push (TV_TREE_STMT_VERIFY);
4252 visited = pointer_set_create ();
4253 visited_stmts = pointer_set_create ();
4254
4255 FOR_EACH_BB_FN (bb, fn)
4256 {
4257 gimple_stmt_iterator gsi;
4258
4259 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4260 {
4261 gimple phi = gsi_stmt (gsi);
4262 bool err2 = false;
4263 unsigned i;
4264
4265 pointer_set_insert (visited_stmts, phi);
4266
4267 if (gimple_bb (phi) != bb)
4268 {
4269 error ("gimple_bb (phi) is set to a wrong basic block");
4270 err2 = true;
4271 }
4272
4273 err2 |= verify_gimple_phi (phi);
4274
4275 for (i = 0; i < gimple_phi_num_args (phi); i++)
4276 {
4277 tree arg = gimple_phi_arg_def (phi, i);
4278 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4279 if (addr)
4280 {
4281 error ("incorrect sharing of tree nodes");
4282 debug_generic_expr (addr);
4283 err2 |= true;
4284 }
4285 }
4286
4287 if (err2)
4288 debug_gimple_stmt (phi);
4289 err |= err2;
4290 }
4291
4292 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4293 {
4294 gimple stmt = gsi_stmt (gsi);
4295 bool err2 = false;
4296 struct walk_stmt_info wi;
4297 tree addr;
4298 int lp_nr;
4299
4300 pointer_set_insert (visited_stmts, stmt);
4301
4302 if (gimple_bb (stmt) != bb)
4303 {
4304 error ("gimple_bb (stmt) is set to a wrong basic block");
4305 err2 = true;
4306 }
4307
4308 err2 |= verify_gimple_stmt (stmt);
4309
4310 memset (&wi, 0, sizeof (wi));
4311 wi.info = (void *) visited;
4312 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4313 if (addr)
4314 {
4315 error ("incorrect sharing of tree nodes");
4316 debug_generic_expr (addr);
4317 err2 |= true;
4318 }
4319
4320 /* ??? Instead of not checking these stmts at all the walker
4321 should know its context via wi. */
4322 if (!is_gimple_debug (stmt)
4323 && !is_gimple_omp (stmt))
4324 {
4325 memset (&wi, 0, sizeof (wi));
4326 addr = walk_gimple_op (stmt, verify_expr, &wi);
4327 if (addr)
4328 {
4329 debug_generic_expr (addr);
4330 inform (gimple_location (stmt), "in statement");
4331 err2 |= true;
4332 }
4333 }
4334
4335 /* If the statement is marked as part of an EH region, then it is
4336 expected that the statement could throw. Verify that when we
4337 have optimizations that simplify statements such that we prove
4338 that they cannot throw, that we update other data structures
4339 to match. */
4340 lp_nr = lookup_stmt_eh_lp (stmt);
4341 if (lp_nr != 0)
4342 {
4343 if (!stmt_could_throw_p (stmt))
4344 {
4345 error ("statement marked for throw, but doesn%'t");
4346 err2 |= true;
4347 }
4348 else if (lp_nr > 0
4349 && !gsi_one_before_end_p (gsi)
4350 && stmt_can_throw_internal (stmt))
4351 {
4352 error ("statement marked for throw in middle of block");
4353 err2 |= true;
4354 }
4355 }
4356
4357 if (err2)
4358 debug_gimple_stmt (stmt);
4359 err |= err2;
4360 }
4361 }
4362
4363 eh_error_found = false;
4364 if (get_eh_throw_stmt_table (cfun))
4365 htab_traverse (get_eh_throw_stmt_table (cfun),
4366 verify_eh_throw_stmt_node,
4367 visited_stmts);
4368
4369 if (err || eh_error_found)
4370 internal_error ("verify_gimple failed");
4371
4372 pointer_set_destroy (visited);
4373 pointer_set_destroy (visited_stmts);
4374 verify_histograms ();
4375 timevar_pop (TV_TREE_STMT_VERIFY);
4376 }
4377
4378
4379 /* Verifies that the flow information is OK. */
4380
4381 static int
4382 gimple_verify_flow_info (void)
4383 {
4384 int err = 0;
4385 basic_block bb;
4386 gimple_stmt_iterator gsi;
4387 gimple stmt;
4388 edge e;
4389 edge_iterator ei;
4390
4391 if (ENTRY_BLOCK_PTR->il.gimple)
4392 {
4393 error ("ENTRY_BLOCK has IL associated with it");
4394 err = 1;
4395 }
4396
4397 if (EXIT_BLOCK_PTR->il.gimple)
4398 {
4399 error ("EXIT_BLOCK has IL associated with it");
4400 err = 1;
4401 }
4402
4403 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4404 if (e->flags & EDGE_FALLTHRU)
4405 {
4406 error ("fallthru to exit from bb %d", e->src->index);
4407 err = 1;
4408 }
4409
4410 FOR_EACH_BB (bb)
4411 {
4412 bool found_ctrl_stmt = false;
4413
4414 stmt = NULL;
4415
4416 /* Skip labels on the start of basic block. */
4417 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4418 {
4419 tree label;
4420 gimple prev_stmt = stmt;
4421
4422 stmt = gsi_stmt (gsi);
4423
4424 if (gimple_code (stmt) != GIMPLE_LABEL)
4425 break;
4426
4427 label = gimple_label_label (stmt);
4428 if (prev_stmt && DECL_NONLOCAL (label))
4429 {
4430 error ("nonlocal label ");
4431 print_generic_expr (stderr, label, 0);
4432 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4433 bb->index);
4434 err = 1;
4435 }
4436
4437 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4438 {
4439 error ("EH landing pad label ");
4440 print_generic_expr (stderr, label, 0);
4441 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4442 bb->index);
4443 err = 1;
4444 }
4445
4446 if (label_to_block (label) != bb)
4447 {
4448 error ("label ");
4449 print_generic_expr (stderr, label, 0);
4450 fprintf (stderr, " to block does not match in bb %d",
4451 bb->index);
4452 err = 1;
4453 }
4454
4455 if (decl_function_context (label) != current_function_decl)
4456 {
4457 error ("label ");
4458 print_generic_expr (stderr, label, 0);
4459 fprintf (stderr, " has incorrect context in bb %d",
4460 bb->index);
4461 err = 1;
4462 }
4463 }
4464
4465 /* Verify that body of basic block BB is free of control flow. */
4466 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4467 {
4468 gimple stmt = gsi_stmt (gsi);
4469
4470 if (found_ctrl_stmt)
4471 {
4472 error ("control flow in the middle of basic block %d",
4473 bb->index);
4474 err = 1;
4475 }
4476
4477 if (stmt_ends_bb_p (stmt))
4478 found_ctrl_stmt = true;
4479
4480 if (gimple_code (stmt) == GIMPLE_LABEL)
4481 {
4482 error ("label ");
4483 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4484 fprintf (stderr, " in the middle of basic block %d", bb->index);
4485 err = 1;
4486 }
4487 }
4488
4489 gsi = gsi_last_bb (bb);
4490 if (gsi_end_p (gsi))
4491 continue;
4492
4493 stmt = gsi_stmt (gsi);
4494
4495 if (gimple_code (stmt) == GIMPLE_LABEL)
4496 continue;
4497
4498 err |= verify_eh_edges (stmt);
4499
4500 if (is_ctrl_stmt (stmt))
4501 {
4502 FOR_EACH_EDGE (e, ei, bb->succs)
4503 if (e->flags & EDGE_FALLTHRU)
4504 {
4505 error ("fallthru edge after a control statement in bb %d",
4506 bb->index);
4507 err = 1;
4508 }
4509 }
4510
4511 if (gimple_code (stmt) != GIMPLE_COND)
4512 {
4513 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4514 after anything else but if statement. */
4515 FOR_EACH_EDGE (e, ei, bb->succs)
4516 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4517 {
4518 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4519 bb->index);
4520 err = 1;
4521 }
4522 }
4523
4524 switch (gimple_code (stmt))
4525 {
4526 case GIMPLE_COND:
4527 {
4528 edge true_edge;
4529 edge false_edge;
4530
4531 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4532
4533 if (!true_edge
4534 || !false_edge
4535 || !(true_edge->flags & EDGE_TRUE_VALUE)
4536 || !(false_edge->flags & EDGE_FALSE_VALUE)
4537 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4538 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4539 || EDGE_COUNT (bb->succs) >= 3)
4540 {
4541 error ("wrong outgoing edge flags at end of bb %d",
4542 bb->index);
4543 err = 1;
4544 }
4545 }
4546 break;
4547
4548 case GIMPLE_GOTO:
4549 if (simple_goto_p (stmt))
4550 {
4551 error ("explicit goto at end of bb %d", bb->index);
4552 err = 1;
4553 }
4554 else
4555 {
4556 /* FIXME. We should double check that the labels in the
4557 destination blocks have their address taken. */
4558 FOR_EACH_EDGE (e, ei, bb->succs)
4559 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4560 | EDGE_FALSE_VALUE))
4561 || !(e->flags & EDGE_ABNORMAL))
4562 {
4563 error ("wrong outgoing edge flags at end of bb %d",
4564 bb->index);
4565 err = 1;
4566 }
4567 }
4568 break;
4569
4570 case GIMPLE_CALL:
4571 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4572 break;
4573 /* ... fallthru ... */
4574 case GIMPLE_RETURN:
4575 if (!single_succ_p (bb)
4576 || (single_succ_edge (bb)->flags
4577 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4578 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4579 {
4580 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4581 err = 1;
4582 }
4583 if (single_succ (bb) != EXIT_BLOCK_PTR)
4584 {
4585 error ("return edge does not point to exit in bb %d",
4586 bb->index);
4587 err = 1;
4588 }
4589 break;
4590
4591 case GIMPLE_SWITCH:
4592 {
4593 tree prev;
4594 edge e;
4595 size_t i, n;
4596
4597 n = gimple_switch_num_labels (stmt);
4598
4599 /* Mark all the destination basic blocks. */
4600 for (i = 0; i < n; ++i)
4601 {
4602 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4603 basic_block label_bb = label_to_block (lab);
4604 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4605 label_bb->aux = (void *)1;
4606 }
4607
4608 /* Verify that the case labels are sorted. */
4609 prev = gimple_switch_label (stmt, 0);
4610 for (i = 1; i < n; ++i)
4611 {
4612 tree c = gimple_switch_label (stmt, i);
4613 if (!CASE_LOW (c))
4614 {
4615 error ("found default case not at the start of "
4616 "case vector");
4617 err = 1;
4618 continue;
4619 }
4620 if (CASE_LOW (prev)
4621 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4622 {
4623 error ("case labels not sorted: ");
4624 print_generic_expr (stderr, prev, 0);
4625 fprintf (stderr," is greater than ");
4626 print_generic_expr (stderr, c, 0);
4627 fprintf (stderr," but comes before it.\n");
4628 err = 1;
4629 }
4630 prev = c;
4631 }
4632 /* VRP will remove the default case if it can prove it will
4633 never be executed. So do not verify there always exists
4634 a default case here. */
4635
4636 FOR_EACH_EDGE (e, ei, bb->succs)
4637 {
4638 if (!e->dest->aux)
4639 {
4640 error ("extra outgoing edge %d->%d",
4641 bb->index, e->dest->index);
4642 err = 1;
4643 }
4644
4645 e->dest->aux = (void *)2;
4646 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4647 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4648 {
4649 error ("wrong outgoing edge flags at end of bb %d",
4650 bb->index);
4651 err = 1;
4652 }
4653 }
4654
4655 /* Check that we have all of them. */
4656 for (i = 0; i < n; ++i)
4657 {
4658 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4659 basic_block label_bb = label_to_block (lab);
4660
4661 if (label_bb->aux != (void *)2)
4662 {
4663 error ("missing edge %i->%i", bb->index, label_bb->index);
4664 err = 1;
4665 }
4666 }
4667
4668 FOR_EACH_EDGE (e, ei, bb->succs)
4669 e->dest->aux = (void *)0;
4670 }
4671 break;
4672
4673 case GIMPLE_EH_DISPATCH:
4674 err |= verify_eh_dispatch_edge (stmt);
4675 break;
4676
4677 default:
4678 break;
4679 }
4680 }
4681
4682 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4683 verify_dominators (CDI_DOMINATORS);
4684
4685 return err;
4686 }
4687
4688
4689 /* Updates phi nodes after creating a forwarder block joined
4690 by edge FALLTHRU. */
4691
4692 static void
4693 gimple_make_forwarder_block (edge fallthru)
4694 {
4695 edge e;
4696 edge_iterator ei;
4697 basic_block dummy, bb;
4698 tree var;
4699 gimple_stmt_iterator gsi;
4700
4701 dummy = fallthru->src;
4702 bb = fallthru->dest;
4703
4704 if (single_pred_p (bb))
4705 return;
4706
4707 /* If we redirected a branch we must create new PHI nodes at the
4708 start of BB. */
4709 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4710 {
4711 gimple phi, new_phi;
4712
4713 phi = gsi_stmt (gsi);
4714 var = gimple_phi_result (phi);
4715 new_phi = create_phi_node (var, bb);
4716 SSA_NAME_DEF_STMT (var) = new_phi;
4717 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4718 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4719 UNKNOWN_LOCATION);
4720 }
4721
4722 /* Add the arguments we have stored on edges. */
4723 FOR_EACH_EDGE (e, ei, bb->preds)
4724 {
4725 if (e == fallthru)
4726 continue;
4727
4728 flush_pending_stmts (e);
4729 }
4730 }
4731
4732
4733 /* Return a non-special label in the head of basic block BLOCK.
4734 Create one if it doesn't exist. */
4735
4736 tree
4737 gimple_block_label (basic_block bb)
4738 {
4739 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4740 bool first = true;
4741 tree label;
4742 gimple stmt;
4743
4744 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4745 {
4746 stmt = gsi_stmt (i);
4747 if (gimple_code (stmt) != GIMPLE_LABEL)
4748 break;
4749 label = gimple_label_label (stmt);
4750 if (!DECL_NONLOCAL (label))
4751 {
4752 if (!first)
4753 gsi_move_before (&i, &s);
4754 return label;
4755 }
4756 }
4757
4758 label = create_artificial_label (UNKNOWN_LOCATION);
4759 stmt = gimple_build_label (label);
4760 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4761 return label;
4762 }
4763
4764
4765 /* Attempt to perform edge redirection by replacing a possibly complex
4766 jump instruction by a goto or by removing the jump completely.
4767 This can apply only if all edges now point to the same block. The
4768 parameters and return values are equivalent to
4769 redirect_edge_and_branch. */
4770
4771 static edge
4772 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4773 {
4774 basic_block src = e->src;
4775 gimple_stmt_iterator i;
4776 gimple stmt;
4777
4778 /* We can replace or remove a complex jump only when we have exactly
4779 two edges. */
4780 if (EDGE_COUNT (src->succs) != 2
4781 /* Verify that all targets will be TARGET. Specifically, the
4782 edge that is not E must also go to TARGET. */
4783 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4784 return NULL;
4785
4786 i = gsi_last_bb (src);
4787 if (gsi_end_p (i))
4788 return NULL;
4789
4790 stmt = gsi_stmt (i);
4791
4792 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4793 {
4794 gsi_remove (&i, true);
4795 e = ssa_redirect_edge (e, target);
4796 e->flags = EDGE_FALLTHRU;
4797 return e;
4798 }
4799
4800 return NULL;
4801 }
4802
4803
4804 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4805 edge representing the redirected branch. */
4806
4807 static edge
4808 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4809 {
4810 basic_block bb = e->src;
4811 gimple_stmt_iterator gsi;
4812 edge ret;
4813 gimple stmt;
4814
4815 if (e->flags & EDGE_ABNORMAL)
4816 return NULL;
4817
4818 if (e->dest == dest)
4819 return NULL;
4820
4821 if (e->flags & EDGE_EH)
4822 return redirect_eh_edge (e, dest);
4823
4824 if (e->src != ENTRY_BLOCK_PTR)
4825 {
4826 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4827 if (ret)
4828 return ret;
4829 }
4830
4831 gsi = gsi_last_bb (bb);
4832 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4833
4834 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4835 {
4836 case GIMPLE_COND:
4837 /* For COND_EXPR, we only need to redirect the edge. */
4838 break;
4839
4840 case GIMPLE_GOTO:
4841 /* No non-abnormal edges should lead from a non-simple goto, and
4842 simple ones should be represented implicitly. */
4843 gcc_unreachable ();
4844
4845 case GIMPLE_SWITCH:
4846 {
4847 tree label = gimple_block_label (dest);
4848 tree cases = get_cases_for_edge (e, stmt);
4849
4850 /* If we have a list of cases associated with E, then use it
4851 as it's a lot faster than walking the entire case vector. */
4852 if (cases)
4853 {
4854 edge e2 = find_edge (e->src, dest);
4855 tree last, first;
4856
4857 first = cases;
4858 while (cases)
4859 {
4860 last = cases;
4861 CASE_LABEL (cases) = label;
4862 cases = CASE_CHAIN (cases);
4863 }
4864
4865 /* If there was already an edge in the CFG, then we need
4866 to move all the cases associated with E to E2. */
4867 if (e2)
4868 {
4869 tree cases2 = get_cases_for_edge (e2, stmt);
4870
4871 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4872 CASE_CHAIN (cases2) = first;
4873 }
4874 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4875 }
4876 else
4877 {
4878 size_t i, n = gimple_switch_num_labels (stmt);
4879
4880 for (i = 0; i < n; i++)
4881 {
4882 tree elt = gimple_switch_label (stmt, i);
4883 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4884 CASE_LABEL (elt) = label;
4885 }
4886 }
4887 }
4888 break;
4889
4890 case GIMPLE_ASM:
4891 {
4892 int i, n = gimple_asm_nlabels (stmt);
4893 tree label = NULL;
4894
4895 for (i = 0; i < n; ++i)
4896 {
4897 tree cons = gimple_asm_label_op (stmt, i);
4898 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4899 {
4900 if (!label)
4901 label = gimple_block_label (dest);
4902 TREE_VALUE (cons) = label;
4903 }
4904 }
4905
4906 /* If we didn't find any label matching the former edge in the
4907 asm labels, we must be redirecting the fallthrough
4908 edge. */
4909 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4910 }
4911 break;
4912
4913 case GIMPLE_RETURN:
4914 gsi_remove (&gsi, true);
4915 e->flags |= EDGE_FALLTHRU;
4916 break;
4917
4918 case GIMPLE_OMP_RETURN:
4919 case GIMPLE_OMP_CONTINUE:
4920 case GIMPLE_OMP_SECTIONS_SWITCH:
4921 case GIMPLE_OMP_FOR:
4922 /* The edges from OMP constructs can be simply redirected. */
4923 break;
4924
4925 case GIMPLE_EH_DISPATCH:
4926 if (!(e->flags & EDGE_FALLTHRU))
4927 redirect_eh_dispatch_edge (stmt, e, dest);
4928 break;
4929
4930 default:
4931 /* Otherwise it must be a fallthru edge, and we don't need to
4932 do anything besides redirecting it. */
4933 gcc_assert (e->flags & EDGE_FALLTHRU);
4934 break;
4935 }
4936
4937 /* Update/insert PHI nodes as necessary. */
4938
4939 /* Now update the edges in the CFG. */
4940 e = ssa_redirect_edge (e, dest);
4941
4942 return e;
4943 }
4944
4945 /* Returns true if it is possible to remove edge E by redirecting
4946 it to the destination of the other edge from E->src. */
4947
4948 static bool
4949 gimple_can_remove_branch_p (const_edge e)
4950 {
4951 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4952 return false;
4953
4954 return true;
4955 }
4956
4957 /* Simple wrapper, as we can always redirect fallthru edges. */
4958
4959 static basic_block
4960 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4961 {
4962 e = gimple_redirect_edge_and_branch (e, dest);
4963 gcc_assert (e);
4964
4965 return NULL;
4966 }
4967
4968
4969 /* Splits basic block BB after statement STMT (but at least after the
4970 labels). If STMT is NULL, BB is split just after the labels. */
4971
4972 static basic_block
4973 gimple_split_block (basic_block bb, void *stmt)
4974 {
4975 gimple_stmt_iterator gsi;
4976 gimple_stmt_iterator gsi_tgt;
4977 gimple act;
4978 gimple_seq list;
4979 basic_block new_bb;
4980 edge e;
4981 edge_iterator ei;
4982
4983 new_bb = create_empty_bb (bb);
4984
4985 /* Redirect the outgoing edges. */
4986 new_bb->succs = bb->succs;
4987 bb->succs = NULL;
4988 FOR_EACH_EDGE (e, ei, new_bb->succs)
4989 e->src = new_bb;
4990
4991 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4992 stmt = NULL;
4993
4994 /* Move everything from GSI to the new basic block. */
4995 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4996 {
4997 act = gsi_stmt (gsi);
4998 if (gimple_code (act) == GIMPLE_LABEL)
4999 continue;
5000
5001 if (!stmt)
5002 break;
5003
5004 if (stmt == act)
5005 {
5006 gsi_next (&gsi);
5007 break;
5008 }
5009 }
5010
5011 if (gsi_end_p (gsi))
5012 return new_bb;
5013
5014 /* Split the statement list - avoid re-creating new containers as this
5015 brings ugly quadratic memory consumption in the inliner.
5016 (We are still quadratic since we need to update stmt BB pointers,
5017 sadly.) */
5018 list = gsi_split_seq_before (&gsi);
5019 set_bb_seq (new_bb, list);
5020 for (gsi_tgt = gsi_start (list);
5021 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5022 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5023
5024 return new_bb;
5025 }
5026
5027
5028 /* Moves basic block BB after block AFTER. */
5029
5030 static bool
5031 gimple_move_block_after (basic_block bb, basic_block after)
5032 {
5033 if (bb->prev_bb == after)
5034 return true;
5035
5036 unlink_block (bb);
5037 link_block (bb, after);
5038
5039 return true;
5040 }
5041
5042
5043 /* Return true if basic_block can be duplicated. */
5044
5045 static bool
5046 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5047 {
5048 return true;
5049 }
5050
5051 /* Create a duplicate of the basic block BB. NOTE: This does not
5052 preserve SSA form. */
5053
5054 static basic_block
5055 gimple_duplicate_bb (basic_block bb)
5056 {
5057 basic_block new_bb;
5058 gimple_stmt_iterator gsi, gsi_tgt;
5059 gimple_seq phis = phi_nodes (bb);
5060 gimple phi, stmt, copy;
5061
5062 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5063
5064 /* Copy the PHI nodes. We ignore PHI node arguments here because
5065 the incoming edges have not been setup yet. */
5066 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5067 {
5068 phi = gsi_stmt (gsi);
5069 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5070 create_new_def_for (gimple_phi_result (copy), copy,
5071 gimple_phi_result_ptr (copy));
5072 }
5073
5074 gsi_tgt = gsi_start_bb (new_bb);
5075 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5076 {
5077 def_operand_p def_p;
5078 ssa_op_iter op_iter;
5079 tree lhs;
5080
5081 stmt = gsi_stmt (gsi);
5082 if (gimple_code (stmt) == GIMPLE_LABEL)
5083 continue;
5084
5085 /* Create a new copy of STMT and duplicate STMT's virtual
5086 operands. */
5087 copy = gimple_copy (stmt);
5088 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5089
5090 maybe_duplicate_eh_stmt (copy, stmt);
5091 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5092
5093 /* When copying around a stmt writing into a local non-user
5094 aggregate, make sure it won't share stack slot with other
5095 vars. */
5096 lhs = gimple_get_lhs (stmt);
5097 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5098 {
5099 tree base = get_base_address (lhs);
5100 if (base
5101 && (TREE_CODE (base) == VAR_DECL
5102 || TREE_CODE (base) == RESULT_DECL)
5103 && DECL_IGNORED_P (base)
5104 && !TREE_STATIC (base)
5105 && !DECL_EXTERNAL (base)
5106 && (TREE_CODE (base) != VAR_DECL
5107 || !DECL_HAS_VALUE_EXPR_P (base)))
5108 DECL_NONSHAREABLE (base) = 1;
5109 }
5110
5111 /* Create new names for all the definitions created by COPY and
5112 add replacement mappings for each new name. */
5113 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5114 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5115 }
5116
5117 return new_bb;
5118 }
5119
5120 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5121
5122 static void
5123 add_phi_args_after_copy_edge (edge e_copy)
5124 {
5125 basic_block bb, bb_copy = e_copy->src, dest;
5126 edge e;
5127 edge_iterator ei;
5128 gimple phi, phi_copy;
5129 tree def;
5130 gimple_stmt_iterator psi, psi_copy;
5131
5132 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5133 return;
5134
5135 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5136
5137 if (e_copy->dest->flags & BB_DUPLICATED)
5138 dest = get_bb_original (e_copy->dest);
5139 else
5140 dest = e_copy->dest;
5141
5142 e = find_edge (bb, dest);
5143 if (!e)
5144 {
5145 /* During loop unrolling the target of the latch edge is copied.
5146 In this case we are not looking for edge to dest, but to
5147 duplicated block whose original was dest. */
5148 FOR_EACH_EDGE (e, ei, bb->succs)
5149 {
5150 if ((e->dest->flags & BB_DUPLICATED)
5151 && get_bb_original (e->dest) == dest)
5152 break;
5153 }
5154
5155 gcc_assert (e != NULL);
5156 }
5157
5158 for (psi = gsi_start_phis (e->dest),
5159 psi_copy = gsi_start_phis (e_copy->dest);
5160 !gsi_end_p (psi);
5161 gsi_next (&psi), gsi_next (&psi_copy))
5162 {
5163 phi = gsi_stmt (psi);
5164 phi_copy = gsi_stmt (psi_copy);
5165 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5166 add_phi_arg (phi_copy, def, e_copy,
5167 gimple_phi_arg_location_from_edge (phi, e));
5168 }
5169 }
5170
5171
5172 /* Basic block BB_COPY was created by code duplication. Add phi node
5173 arguments for edges going out of BB_COPY. The blocks that were
5174 duplicated have BB_DUPLICATED set. */
5175
5176 void
5177 add_phi_args_after_copy_bb (basic_block bb_copy)
5178 {
5179 edge e_copy;
5180 edge_iterator ei;
5181
5182 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5183 {
5184 add_phi_args_after_copy_edge (e_copy);
5185 }
5186 }
5187
5188 /* Blocks in REGION_COPY array of length N_REGION were created by
5189 duplication of basic blocks. Add phi node arguments for edges
5190 going from these blocks. If E_COPY is not NULL, also add
5191 phi node arguments for its destination.*/
5192
5193 void
5194 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5195 edge e_copy)
5196 {
5197 unsigned i;
5198
5199 for (i = 0; i < n_region; i++)
5200 region_copy[i]->flags |= BB_DUPLICATED;
5201
5202 for (i = 0; i < n_region; i++)
5203 add_phi_args_after_copy_bb (region_copy[i]);
5204 if (e_copy)
5205 add_phi_args_after_copy_edge (e_copy);
5206
5207 for (i = 0; i < n_region; i++)
5208 region_copy[i]->flags &= ~BB_DUPLICATED;
5209 }
5210
5211 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5212 important exit edge EXIT. By important we mean that no SSA name defined
5213 inside region is live over the other exit edges of the region. All entry
5214 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5215 to the duplicate of the region. SSA form, dominance and loop information
5216 is updated. The new basic blocks are stored to REGION_COPY in the same
5217 order as they had in REGION, provided that REGION_COPY is not NULL.
5218 The function returns false if it is unable to copy the region,
5219 true otherwise. */
5220
5221 bool
5222 gimple_duplicate_sese_region (edge entry, edge exit,
5223 basic_block *region, unsigned n_region,
5224 basic_block *region_copy)
5225 {
5226 unsigned i;
5227 bool free_region_copy = false, copying_header = false;
5228 struct loop *loop = entry->dest->loop_father;
5229 edge exit_copy;
5230 VEC (basic_block, heap) *doms;
5231 edge redirected;
5232 int total_freq = 0, entry_freq = 0;
5233 gcov_type total_count = 0, entry_count = 0;
5234
5235 if (!can_copy_bbs_p (region, n_region))
5236 return false;
5237
5238 /* Some sanity checking. Note that we do not check for all possible
5239 missuses of the functions. I.e. if you ask to copy something weird,
5240 it will work, but the state of structures probably will not be
5241 correct. */
5242 for (i = 0; i < n_region; i++)
5243 {
5244 /* We do not handle subloops, i.e. all the blocks must belong to the
5245 same loop. */
5246 if (region[i]->loop_father != loop)
5247 return false;
5248
5249 if (region[i] != entry->dest
5250 && region[i] == loop->header)
5251 return false;
5252 }
5253
5254 set_loop_copy (loop, loop);
5255
5256 /* In case the function is used for loop header copying (which is the primary
5257 use), ensure that EXIT and its copy will be new latch and entry edges. */
5258 if (loop->header == entry->dest)
5259 {
5260 copying_header = true;
5261 set_loop_copy (loop, loop_outer (loop));
5262
5263 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5264 return false;
5265
5266 for (i = 0; i < n_region; i++)
5267 if (region[i] != exit->src
5268 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5269 return false;
5270 }
5271
5272 if (!region_copy)
5273 {
5274 region_copy = XNEWVEC (basic_block, n_region);
5275 free_region_copy = true;
5276 }
5277
5278 gcc_assert (!need_ssa_update_p (cfun));
5279
5280 /* Record blocks outside the region that are dominated by something
5281 inside. */
5282 doms = NULL;
5283 initialize_original_copy_tables ();
5284
5285 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5286
5287 if (entry->dest->count)
5288 {
5289 total_count = entry->dest->count;
5290 entry_count = entry->count;
5291 /* Fix up corner cases, to avoid division by zero or creation of negative
5292 frequencies. */
5293 if (entry_count > total_count)
5294 entry_count = total_count;
5295 }
5296 else
5297 {
5298 total_freq = entry->dest->frequency;
5299 entry_freq = EDGE_FREQUENCY (entry);
5300 /* Fix up corner cases, to avoid division by zero or creation of negative
5301 frequencies. */
5302 if (total_freq == 0)
5303 total_freq = 1;
5304 else if (entry_freq > total_freq)
5305 entry_freq = total_freq;
5306 }
5307
5308 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5309 split_edge_bb_loc (entry));
5310 if (total_count)
5311 {
5312 scale_bbs_frequencies_gcov_type (region, n_region,
5313 total_count - entry_count,
5314 total_count);
5315 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5316 total_count);
5317 }
5318 else
5319 {
5320 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5321 total_freq);
5322 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5323 }
5324
5325 if (copying_header)
5326 {
5327 loop->header = exit->dest;
5328 loop->latch = exit->src;
5329 }
5330
5331 /* Redirect the entry and add the phi node arguments. */
5332 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5333 gcc_assert (redirected != NULL);
5334 flush_pending_stmts (entry);
5335
5336 /* Concerning updating of dominators: We must recount dominators
5337 for entry block and its copy. Anything that is outside of the
5338 region, but was dominated by something inside needs recounting as
5339 well. */
5340 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5341 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5342 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5343 VEC_free (basic_block, heap, doms);
5344
5345 /* Add the other PHI node arguments. */
5346 add_phi_args_after_copy (region_copy, n_region, NULL);
5347
5348 /* Update the SSA web. */
5349 update_ssa (TODO_update_ssa);
5350
5351 if (free_region_copy)
5352 free (region_copy);
5353
5354 free_original_copy_tables ();
5355 return true;
5356 }
5357
5358 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5359 are stored to REGION_COPY in the same order in that they appear
5360 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5361 the region, EXIT an exit from it. The condition guarding EXIT
5362 is moved to ENTRY. Returns true if duplication succeeds, false
5363 otherwise.
5364
5365 For example,
5366
5367 some_code;
5368 if (cond)
5369 A;
5370 else
5371 B;
5372
5373 is transformed to
5374
5375 if (cond)
5376 {
5377 some_code;
5378 A;
5379 }
5380 else
5381 {
5382 some_code;
5383 B;
5384 }
5385 */
5386
5387 bool
5388 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5389 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5390 basic_block *region_copy ATTRIBUTE_UNUSED)
5391 {
5392 unsigned i;
5393 bool free_region_copy = false;
5394 struct loop *loop = exit->dest->loop_father;
5395 struct loop *orig_loop = entry->dest->loop_father;
5396 basic_block switch_bb, entry_bb, nentry_bb;
5397 VEC (basic_block, heap) *doms;
5398 int total_freq = 0, exit_freq = 0;
5399 gcov_type total_count = 0, exit_count = 0;
5400 edge exits[2], nexits[2], e;
5401 gimple_stmt_iterator gsi;
5402 gimple cond_stmt;
5403 edge sorig, snew;
5404 basic_block exit_bb;
5405 gimple_stmt_iterator psi;
5406 gimple phi;
5407 tree def;
5408
5409 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5410 exits[0] = exit;
5411 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5412
5413 if (!can_copy_bbs_p (region, n_region))
5414 return false;
5415
5416 initialize_original_copy_tables ();
5417 set_loop_copy (orig_loop, loop);
5418 duplicate_subloops (orig_loop, loop);
5419
5420 if (!region_copy)
5421 {
5422 region_copy = XNEWVEC (basic_block, n_region);
5423 free_region_copy = true;
5424 }
5425
5426 gcc_assert (!need_ssa_update_p (cfun));
5427
5428 /* Record blocks outside the region that are dominated by something
5429 inside. */
5430 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5431
5432 if (exit->src->count)
5433 {
5434 total_count = exit->src->count;
5435 exit_count = exit->count;
5436 /* Fix up corner cases, to avoid division by zero or creation of negative
5437 frequencies. */
5438 if (exit_count > total_count)
5439 exit_count = total_count;
5440 }
5441 else
5442 {
5443 total_freq = exit->src->frequency;
5444 exit_freq = EDGE_FREQUENCY (exit);
5445 /* Fix up corner cases, to avoid division by zero or creation of negative
5446 frequencies. */
5447 if (total_freq == 0)
5448 total_freq = 1;
5449 if (exit_freq > total_freq)
5450 exit_freq = total_freq;
5451 }
5452
5453 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5454 split_edge_bb_loc (exit));
5455 if (total_count)
5456 {
5457 scale_bbs_frequencies_gcov_type (region, n_region,
5458 total_count - exit_count,
5459 total_count);
5460 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5461 total_count);
5462 }
5463 else
5464 {
5465 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5466 total_freq);
5467 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5468 }
5469
5470 /* Create the switch block, and put the exit condition to it. */
5471 entry_bb = entry->dest;
5472 nentry_bb = get_bb_copy (entry_bb);
5473 if (!last_stmt (entry->src)
5474 || !stmt_ends_bb_p (last_stmt (entry->src)))
5475 switch_bb = entry->src;
5476 else
5477 switch_bb = split_edge (entry);
5478 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5479
5480 gsi = gsi_last_bb (switch_bb);
5481 cond_stmt = last_stmt (exit->src);
5482 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5483 cond_stmt = gimple_copy (cond_stmt);
5484
5485 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5486
5487 sorig = single_succ_edge (switch_bb);
5488 sorig->flags = exits[1]->flags;
5489 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5490
5491 /* Register the new edge from SWITCH_BB in loop exit lists. */
5492 rescan_loop_exit (snew, true, false);
5493
5494 /* Add the PHI node arguments. */
5495 add_phi_args_after_copy (region_copy, n_region, snew);
5496
5497 /* Get rid of now superfluous conditions and associated edges (and phi node
5498 arguments). */
5499 exit_bb = exit->dest;
5500
5501 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5502 PENDING_STMT (e) = NULL;
5503
5504 /* The latch of ORIG_LOOP was copied, and so was the backedge
5505 to the original header. We redirect this backedge to EXIT_BB. */
5506 for (i = 0; i < n_region; i++)
5507 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5508 {
5509 gcc_assert (single_succ_edge (region_copy[i]));
5510 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5511 PENDING_STMT (e) = NULL;
5512 for (psi = gsi_start_phis (exit_bb);
5513 !gsi_end_p (psi);
5514 gsi_next (&psi))
5515 {
5516 phi = gsi_stmt (psi);
5517 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5518 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5519 }
5520 }
5521 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5522 PENDING_STMT (e) = NULL;
5523
5524 /* Anything that is outside of the region, but was dominated by something
5525 inside needs to update dominance info. */
5526 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5527 VEC_free (basic_block, heap, doms);
5528 /* Update the SSA web. */
5529 update_ssa (TODO_update_ssa);
5530
5531 if (free_region_copy)
5532 free (region_copy);
5533
5534 free_original_copy_tables ();
5535 return true;
5536 }
5537
5538 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5539 adding blocks when the dominator traversal reaches EXIT. This
5540 function silently assumes that ENTRY strictly dominates EXIT. */
5541
5542 void
5543 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5544 VEC(basic_block,heap) **bbs_p)
5545 {
5546 basic_block son;
5547
5548 for (son = first_dom_son (CDI_DOMINATORS, entry);
5549 son;
5550 son = next_dom_son (CDI_DOMINATORS, son))
5551 {
5552 VEC_safe_push (basic_block, heap, *bbs_p, son);
5553 if (son != exit)
5554 gather_blocks_in_sese_region (son, exit, bbs_p);
5555 }
5556 }
5557
5558 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5559 The duplicates are recorded in VARS_MAP. */
5560
5561 static void
5562 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5563 tree to_context)
5564 {
5565 tree t = *tp, new_t;
5566 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5567 void **loc;
5568
5569 if (DECL_CONTEXT (t) == to_context)
5570 return;
5571
5572 loc = pointer_map_contains (vars_map, t);
5573
5574 if (!loc)
5575 {
5576 loc = pointer_map_insert (vars_map, t);
5577
5578 if (SSA_VAR_P (t))
5579 {
5580 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5581 add_local_decl (f, new_t);
5582 }
5583 else
5584 {
5585 gcc_assert (TREE_CODE (t) == CONST_DECL);
5586 new_t = copy_node (t);
5587 }
5588 DECL_CONTEXT (new_t) = to_context;
5589
5590 *loc = new_t;
5591 }
5592 else
5593 new_t = (tree) *loc;
5594
5595 *tp = new_t;
5596 }
5597
5598
5599 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5600 VARS_MAP maps old ssa names and var_decls to the new ones. */
5601
5602 static tree
5603 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5604 tree to_context)
5605 {
5606 void **loc;
5607 tree new_name, decl = SSA_NAME_VAR (name);
5608
5609 gcc_assert (is_gimple_reg (name));
5610
5611 loc = pointer_map_contains (vars_map, name);
5612
5613 if (!loc)
5614 {
5615 replace_by_duplicate_decl (&decl, vars_map, to_context);
5616
5617 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5618 if (gimple_in_ssa_p (cfun))
5619 add_referenced_var (decl);
5620
5621 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5622 if (SSA_NAME_IS_DEFAULT_DEF (name))
5623 set_default_def (decl, new_name);
5624 pop_cfun ();
5625
5626 loc = pointer_map_insert (vars_map, name);
5627 *loc = new_name;
5628 }
5629 else
5630 new_name = (tree) *loc;
5631
5632 return new_name;
5633 }
5634
5635 struct move_stmt_d
5636 {
5637 tree orig_block;
5638 tree new_block;
5639 tree from_context;
5640 tree to_context;
5641 struct pointer_map_t *vars_map;
5642 htab_t new_label_map;
5643 struct pointer_map_t *eh_map;
5644 bool remap_decls_p;
5645 };
5646
5647 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5648 contained in *TP if it has been ORIG_BLOCK previously and change the
5649 DECL_CONTEXT of every local variable referenced in *TP. */
5650
5651 static tree
5652 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5653 {
5654 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5655 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5656 tree t = *tp;
5657
5658 if (EXPR_P (t))
5659 /* We should never have TREE_BLOCK set on non-statements. */
5660 gcc_assert (!TREE_BLOCK (t));
5661
5662 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5663 {
5664 if (TREE_CODE (t) == SSA_NAME)
5665 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5666 else if (TREE_CODE (t) == LABEL_DECL)
5667 {
5668 if (p->new_label_map)
5669 {
5670 struct tree_map in, *out;
5671 in.base.from = t;
5672 out = (struct tree_map *)
5673 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5674 if (out)
5675 *tp = t = out->to;
5676 }
5677
5678 DECL_CONTEXT (t) = p->to_context;
5679 }
5680 else if (p->remap_decls_p)
5681 {
5682 /* Replace T with its duplicate. T should no longer appear in the
5683 parent function, so this looks wasteful; however, it may appear
5684 in referenced_vars, and more importantly, as virtual operands of
5685 statements, and in alias lists of other variables. It would be
5686 quite difficult to expunge it from all those places. ??? It might
5687 suffice to do this for addressable variables. */
5688 if ((TREE_CODE (t) == VAR_DECL
5689 && !is_global_var (t))
5690 || TREE_CODE (t) == CONST_DECL)
5691 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5692
5693 if (SSA_VAR_P (t)
5694 && gimple_in_ssa_p (cfun))
5695 {
5696 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5697 add_referenced_var (*tp);
5698 pop_cfun ();
5699 }
5700 }
5701 *walk_subtrees = 0;
5702 }
5703 else if (TYPE_P (t))
5704 *walk_subtrees = 0;
5705
5706 return NULL_TREE;
5707 }
5708
5709 /* Helper for move_stmt_r. Given an EH region number for the source
5710 function, map that to the duplicate EH regio number in the dest. */
5711
5712 static int
5713 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5714 {
5715 eh_region old_r, new_r;
5716 void **slot;
5717
5718 old_r = get_eh_region_from_number (old_nr);
5719 slot = pointer_map_contains (p->eh_map, old_r);
5720 new_r = (eh_region) *slot;
5721
5722 return new_r->index;
5723 }
5724
5725 /* Similar, but operate on INTEGER_CSTs. */
5726
5727 static tree
5728 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5729 {
5730 int old_nr, new_nr;
5731
5732 old_nr = tree_low_cst (old_t_nr, 0);
5733 new_nr = move_stmt_eh_region_nr (old_nr, p);
5734
5735 return build_int_cst (integer_type_node, new_nr);
5736 }
5737
5738 /* Like move_stmt_op, but for gimple statements.
5739
5740 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5741 contained in the current statement in *GSI_P and change the
5742 DECL_CONTEXT of every local variable referenced in the current
5743 statement. */
5744
5745 static tree
5746 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5747 struct walk_stmt_info *wi)
5748 {
5749 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5750 gimple stmt = gsi_stmt (*gsi_p);
5751 tree block = gimple_block (stmt);
5752
5753 if (p->orig_block == NULL_TREE
5754 || block == p->orig_block
5755 || block == NULL_TREE)
5756 gimple_set_block (stmt, p->new_block);
5757 #ifdef ENABLE_CHECKING
5758 else if (block != p->new_block)
5759 {
5760 while (block && block != p->orig_block)
5761 block = BLOCK_SUPERCONTEXT (block);
5762 gcc_assert (block);
5763 }
5764 #endif
5765
5766 switch (gimple_code (stmt))
5767 {
5768 case GIMPLE_CALL:
5769 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5770 {
5771 tree r, fndecl = gimple_call_fndecl (stmt);
5772 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5773 switch (DECL_FUNCTION_CODE (fndecl))
5774 {
5775 case BUILT_IN_EH_COPY_VALUES:
5776 r = gimple_call_arg (stmt, 1);
5777 r = move_stmt_eh_region_tree_nr (r, p);
5778 gimple_call_set_arg (stmt, 1, r);
5779 /* FALLTHRU */
5780
5781 case BUILT_IN_EH_POINTER:
5782 case BUILT_IN_EH_FILTER:
5783 r = gimple_call_arg (stmt, 0);
5784 r = move_stmt_eh_region_tree_nr (r, p);
5785 gimple_call_set_arg (stmt, 0, r);
5786 break;
5787
5788 default:
5789 break;
5790 }
5791 }
5792 break;
5793
5794 case GIMPLE_RESX:
5795 {
5796 int r = gimple_resx_region (stmt);
5797 r = move_stmt_eh_region_nr (r, p);
5798 gimple_resx_set_region (stmt, r);
5799 }
5800 break;
5801
5802 case GIMPLE_EH_DISPATCH:
5803 {
5804 int r = gimple_eh_dispatch_region (stmt);
5805 r = move_stmt_eh_region_nr (r, p);
5806 gimple_eh_dispatch_set_region (stmt, r);
5807 }
5808 break;
5809
5810 case GIMPLE_OMP_RETURN:
5811 case GIMPLE_OMP_CONTINUE:
5812 break;
5813 default:
5814 if (is_gimple_omp (stmt))
5815 {
5816 /* Do not remap variables inside OMP directives. Variables
5817 referenced in clauses and directive header belong to the
5818 parent function and should not be moved into the child
5819 function. */
5820 bool save_remap_decls_p = p->remap_decls_p;
5821 p->remap_decls_p = false;
5822 *handled_ops_p = true;
5823
5824 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5825 move_stmt_op, wi);
5826
5827 p->remap_decls_p = save_remap_decls_p;
5828 }
5829 break;
5830 }
5831
5832 return NULL_TREE;
5833 }
5834
5835 /* Move basic block BB from function CFUN to function DEST_FN. The
5836 block is moved out of the original linked list and placed after
5837 block AFTER in the new list. Also, the block is removed from the
5838 original array of blocks and placed in DEST_FN's array of blocks.
5839 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5840 updated to reflect the moved edges.
5841
5842 The local variables are remapped to new instances, VARS_MAP is used
5843 to record the mapping. */
5844
5845 static void
5846 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5847 basic_block after, bool update_edge_count_p,
5848 struct move_stmt_d *d)
5849 {
5850 struct control_flow_graph *cfg;
5851 edge_iterator ei;
5852 edge e;
5853 gimple_stmt_iterator si;
5854 unsigned old_len, new_len;
5855
5856 /* Remove BB from dominance structures. */
5857 delete_from_dominance_info (CDI_DOMINATORS, bb);
5858 if (current_loops)
5859 remove_bb_from_loops (bb);
5860
5861 /* Link BB to the new linked list. */
5862 move_block_after (bb, after);
5863
5864 /* Update the edge count in the corresponding flowgraphs. */
5865 if (update_edge_count_p)
5866 FOR_EACH_EDGE (e, ei, bb->succs)
5867 {
5868 cfun->cfg->x_n_edges--;
5869 dest_cfun->cfg->x_n_edges++;
5870 }
5871
5872 /* Remove BB from the original basic block array. */
5873 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5874 cfun->cfg->x_n_basic_blocks--;
5875
5876 /* Grow DEST_CFUN's basic block array if needed. */
5877 cfg = dest_cfun->cfg;
5878 cfg->x_n_basic_blocks++;
5879 if (bb->index >= cfg->x_last_basic_block)
5880 cfg->x_last_basic_block = bb->index + 1;
5881
5882 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5883 if ((unsigned) cfg->x_last_basic_block >= old_len)
5884 {
5885 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5886 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5887 new_len);
5888 }
5889
5890 VEC_replace (basic_block, cfg->x_basic_block_info,
5891 bb->index, bb);
5892
5893 /* Remap the variables in phi nodes. */
5894 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5895 {
5896 gimple phi = gsi_stmt (si);
5897 use_operand_p use;
5898 tree op = PHI_RESULT (phi);
5899 ssa_op_iter oi;
5900
5901 if (!is_gimple_reg (op))
5902 {
5903 /* Remove the phi nodes for virtual operands (alias analysis will be
5904 run for the new function, anyway). */
5905 remove_phi_node (&si, true);
5906 continue;
5907 }
5908
5909 SET_PHI_RESULT (phi,
5910 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5911 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5912 {
5913 op = USE_FROM_PTR (use);
5914 if (TREE_CODE (op) == SSA_NAME)
5915 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5916 }
5917
5918 gsi_next (&si);
5919 }
5920
5921 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5922 {
5923 gimple stmt = gsi_stmt (si);
5924 struct walk_stmt_info wi;
5925
5926 memset (&wi, 0, sizeof (wi));
5927 wi.info = d;
5928 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5929
5930 if (gimple_code (stmt) == GIMPLE_LABEL)
5931 {
5932 tree label = gimple_label_label (stmt);
5933 int uid = LABEL_DECL_UID (label);
5934
5935 gcc_assert (uid > -1);
5936
5937 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5938 if (old_len <= (unsigned) uid)
5939 {
5940 new_len = 3 * uid / 2 + 1;
5941 VEC_safe_grow_cleared (basic_block, gc,
5942 cfg->x_label_to_block_map, new_len);
5943 }
5944
5945 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5946 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5947
5948 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5949
5950 if (uid >= dest_cfun->cfg->last_label_uid)
5951 dest_cfun->cfg->last_label_uid = uid + 1;
5952 }
5953
5954 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5955 remove_stmt_from_eh_lp_fn (cfun, stmt);
5956
5957 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5958 gimple_remove_stmt_histograms (cfun, stmt);
5959
5960 /* We cannot leave any operands allocated from the operand caches of
5961 the current function. */
5962 free_stmt_operands (stmt);
5963 push_cfun (dest_cfun);
5964 update_stmt (stmt);
5965 pop_cfun ();
5966 }
5967
5968 FOR_EACH_EDGE (e, ei, bb->succs)
5969 if (e->goto_locus)
5970 {
5971 tree block = e->goto_block;
5972 if (d->orig_block == NULL_TREE
5973 || block == d->orig_block)
5974 e->goto_block = d->new_block;
5975 #ifdef ENABLE_CHECKING
5976 else if (block != d->new_block)
5977 {
5978 while (block && block != d->orig_block)
5979 block = BLOCK_SUPERCONTEXT (block);
5980 gcc_assert (block);
5981 }
5982 #endif
5983 }
5984 }
5985
5986 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5987 the outermost EH region. Use REGION as the incoming base EH region. */
5988
5989 static eh_region
5990 find_outermost_region_in_block (struct function *src_cfun,
5991 basic_block bb, eh_region region)
5992 {
5993 gimple_stmt_iterator si;
5994
5995 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5996 {
5997 gimple stmt = gsi_stmt (si);
5998 eh_region stmt_region;
5999 int lp_nr;
6000
6001 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6002 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6003 if (stmt_region)
6004 {
6005 if (region == NULL)
6006 region = stmt_region;
6007 else if (stmt_region != region)
6008 {
6009 region = eh_region_outermost (src_cfun, stmt_region, region);
6010 gcc_assert (region != NULL);
6011 }
6012 }
6013 }
6014
6015 return region;
6016 }
6017
6018 static tree
6019 new_label_mapper (tree decl, void *data)
6020 {
6021 htab_t hash = (htab_t) data;
6022 struct tree_map *m;
6023 void **slot;
6024
6025 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6026
6027 m = XNEW (struct tree_map);
6028 m->hash = DECL_UID (decl);
6029 m->base.from = decl;
6030 m->to = create_artificial_label (UNKNOWN_LOCATION);
6031 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6032 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6033 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6034
6035 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6036 gcc_assert (*slot == NULL);
6037
6038 *slot = m;
6039
6040 return m->to;
6041 }
6042
6043 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6044 subblocks. */
6045
6046 static void
6047 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6048 tree to_context)
6049 {
6050 tree *tp, t;
6051
6052 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6053 {
6054 t = *tp;
6055 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6056 continue;
6057 replace_by_duplicate_decl (&t, vars_map, to_context);
6058 if (t != *tp)
6059 {
6060 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6061 {
6062 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6063 DECL_HAS_VALUE_EXPR_P (t) = 1;
6064 }
6065 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6066 *tp = t;
6067 }
6068 }
6069
6070 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6071 replace_block_vars_by_duplicates (block, vars_map, to_context);
6072 }
6073
6074 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6075 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6076 single basic block in the original CFG and the new basic block is
6077 returned. DEST_CFUN must not have a CFG yet.
6078
6079 Note that the region need not be a pure SESE region. Blocks inside
6080 the region may contain calls to abort/exit. The only restriction
6081 is that ENTRY_BB should be the only entry point and it must
6082 dominate EXIT_BB.
6083
6084 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6085 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6086 to the new function.
6087
6088 All local variables referenced in the region are assumed to be in
6089 the corresponding BLOCK_VARS and unexpanded variable lists
6090 associated with DEST_CFUN. */
6091
6092 basic_block
6093 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6094 basic_block exit_bb, tree orig_block)
6095 {
6096 VEC(basic_block,heap) *bbs, *dom_bbs;
6097 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6098 basic_block after, bb, *entry_pred, *exit_succ, abb;
6099 struct function *saved_cfun = cfun;
6100 int *entry_flag, *exit_flag;
6101 unsigned *entry_prob, *exit_prob;
6102 unsigned i, num_entry_edges, num_exit_edges;
6103 edge e;
6104 edge_iterator ei;
6105 htab_t new_label_map;
6106 struct pointer_map_t *vars_map, *eh_map;
6107 struct loop *loop = entry_bb->loop_father;
6108 struct move_stmt_d d;
6109
6110 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6111 region. */
6112 gcc_assert (entry_bb != exit_bb
6113 && (!exit_bb
6114 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6115
6116 /* Collect all the blocks in the region. Manually add ENTRY_BB
6117 because it won't be added by dfs_enumerate_from. */
6118 bbs = NULL;
6119 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6120 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6121
6122 /* The blocks that used to be dominated by something in BBS will now be
6123 dominated by the new block. */
6124 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6125 VEC_address (basic_block, bbs),
6126 VEC_length (basic_block, bbs));
6127
6128 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6129 the predecessor edges to ENTRY_BB and the successor edges to
6130 EXIT_BB so that we can re-attach them to the new basic block that
6131 will replace the region. */
6132 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6133 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6134 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6135 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6136 i = 0;
6137 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6138 {
6139 entry_prob[i] = e->probability;
6140 entry_flag[i] = e->flags;
6141 entry_pred[i++] = e->src;
6142 remove_edge (e);
6143 }
6144
6145 if (exit_bb)
6146 {
6147 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6148 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6149 sizeof (basic_block));
6150 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6151 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6152 i = 0;
6153 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6154 {
6155 exit_prob[i] = e->probability;
6156 exit_flag[i] = e->flags;
6157 exit_succ[i++] = e->dest;
6158 remove_edge (e);
6159 }
6160 }
6161 else
6162 {
6163 num_exit_edges = 0;
6164 exit_succ = NULL;
6165 exit_flag = NULL;
6166 exit_prob = NULL;
6167 }
6168
6169 /* Switch context to the child function to initialize DEST_FN's CFG. */
6170 gcc_assert (dest_cfun->cfg == NULL);
6171 push_cfun (dest_cfun);
6172
6173 init_empty_tree_cfg ();
6174
6175 /* Initialize EH information for the new function. */
6176 eh_map = NULL;
6177 new_label_map = NULL;
6178 if (saved_cfun->eh)
6179 {
6180 eh_region region = NULL;
6181
6182 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6183 region = find_outermost_region_in_block (saved_cfun, bb, region);
6184
6185 init_eh_for_function ();
6186 if (region != NULL)
6187 {
6188 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6189 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6190 new_label_mapper, new_label_map);
6191 }
6192 }
6193
6194 pop_cfun ();
6195
6196 /* Move blocks from BBS into DEST_CFUN. */
6197 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6198 after = dest_cfun->cfg->x_entry_block_ptr;
6199 vars_map = pointer_map_create ();
6200
6201 memset (&d, 0, sizeof (d));
6202 d.orig_block = orig_block;
6203 d.new_block = DECL_INITIAL (dest_cfun->decl);
6204 d.from_context = cfun->decl;
6205 d.to_context = dest_cfun->decl;
6206 d.vars_map = vars_map;
6207 d.new_label_map = new_label_map;
6208 d.eh_map = eh_map;
6209 d.remap_decls_p = true;
6210
6211 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6212 {
6213 /* No need to update edge counts on the last block. It has
6214 already been updated earlier when we detached the region from
6215 the original CFG. */
6216 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6217 after = bb;
6218 }
6219
6220 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6221 if (orig_block)
6222 {
6223 tree block;
6224 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6225 == NULL_TREE);
6226 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6227 = BLOCK_SUBBLOCKS (orig_block);
6228 for (block = BLOCK_SUBBLOCKS (orig_block);
6229 block; block = BLOCK_CHAIN (block))
6230 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6231 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6232 }
6233
6234 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6235 vars_map, dest_cfun->decl);
6236
6237 if (new_label_map)
6238 htab_delete (new_label_map);
6239 if (eh_map)
6240 pointer_map_destroy (eh_map);
6241 pointer_map_destroy (vars_map);
6242
6243 /* Rewire the entry and exit blocks. The successor to the entry
6244 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6245 the child function. Similarly, the predecessor of DEST_FN's
6246 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6247 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6248 various CFG manipulation function get to the right CFG.
6249
6250 FIXME, this is silly. The CFG ought to become a parameter to
6251 these helpers. */
6252 push_cfun (dest_cfun);
6253 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6254 if (exit_bb)
6255 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6256 pop_cfun ();
6257
6258 /* Back in the original function, the SESE region has disappeared,
6259 create a new basic block in its place. */
6260 bb = create_empty_bb (entry_pred[0]);
6261 if (current_loops)
6262 add_bb_to_loop (bb, loop);
6263 for (i = 0; i < num_entry_edges; i++)
6264 {
6265 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6266 e->probability = entry_prob[i];
6267 }
6268
6269 for (i = 0; i < num_exit_edges; i++)
6270 {
6271 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6272 e->probability = exit_prob[i];
6273 }
6274
6275 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6276 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6277 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6278 VEC_free (basic_block, heap, dom_bbs);
6279
6280 if (exit_bb)
6281 {
6282 free (exit_prob);
6283 free (exit_flag);
6284 free (exit_succ);
6285 }
6286 free (entry_prob);
6287 free (entry_flag);
6288 free (entry_pred);
6289 VEC_free (basic_block, heap, bbs);
6290
6291 return bb;
6292 }
6293
6294
6295 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6296 */
6297
6298 void
6299 dump_function_to_file (tree fn, FILE *file, int flags)
6300 {
6301 tree arg, var;
6302 struct function *dsf;
6303 bool ignore_topmost_bind = false, any_var = false;
6304 basic_block bb;
6305 tree chain;
6306
6307 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6308
6309 arg = DECL_ARGUMENTS (fn);
6310 while (arg)
6311 {
6312 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6313 fprintf (file, " ");
6314 print_generic_expr (file, arg, dump_flags);
6315 if (flags & TDF_VERBOSE)
6316 print_node (file, "", arg, 4);
6317 if (DECL_CHAIN (arg))
6318 fprintf (file, ", ");
6319 arg = DECL_CHAIN (arg);
6320 }
6321 fprintf (file, ")\n");
6322
6323 if (flags & TDF_VERBOSE)
6324 print_node (file, "", fn, 2);
6325
6326 dsf = DECL_STRUCT_FUNCTION (fn);
6327 if (dsf && (flags & TDF_EH))
6328 dump_eh_tree (file, dsf);
6329
6330 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6331 {
6332 dump_node (fn, TDF_SLIM | flags, file);
6333 return;
6334 }
6335
6336 /* Switch CFUN to point to FN. */
6337 push_cfun (DECL_STRUCT_FUNCTION (fn));
6338
6339 /* When GIMPLE is lowered, the variables are no longer available in
6340 BIND_EXPRs, so display them separately. */
6341 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6342 {
6343 unsigned ix;
6344 ignore_topmost_bind = true;
6345
6346 fprintf (file, "{\n");
6347 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6348 {
6349 print_generic_decl (file, var, flags);
6350 if (flags & TDF_VERBOSE)
6351 print_node (file, "", var, 4);
6352 fprintf (file, "\n");
6353
6354 any_var = true;
6355 }
6356 }
6357
6358 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6359 {
6360 /* If the CFG has been built, emit a CFG-based dump. */
6361 check_bb_profile (ENTRY_BLOCK_PTR, file);
6362 if (!ignore_topmost_bind)
6363 fprintf (file, "{\n");
6364
6365 if (any_var && n_basic_blocks)
6366 fprintf (file, "\n");
6367
6368 FOR_EACH_BB (bb)
6369 gimple_dump_bb (bb, file, 2, flags);
6370
6371 fprintf (file, "}\n");
6372 check_bb_profile (EXIT_BLOCK_PTR, file);
6373 }
6374 else if (DECL_SAVED_TREE (fn) == NULL)
6375 {
6376 /* The function is now in GIMPLE form but the CFG has not been
6377 built yet. Emit the single sequence of GIMPLE statements
6378 that make up its body. */
6379 gimple_seq body = gimple_body (fn);
6380
6381 if (gimple_seq_first_stmt (body)
6382 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6383 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6384 print_gimple_seq (file, body, 0, flags);
6385 else
6386 {
6387 if (!ignore_topmost_bind)
6388 fprintf (file, "{\n");
6389
6390 if (any_var)
6391 fprintf (file, "\n");
6392
6393 print_gimple_seq (file, body, 2, flags);
6394 fprintf (file, "}\n");
6395 }
6396 }
6397 else
6398 {
6399 int indent;
6400
6401 /* Make a tree based dump. */
6402 chain = DECL_SAVED_TREE (fn);
6403
6404 if (chain && TREE_CODE (chain) == BIND_EXPR)
6405 {
6406 if (ignore_topmost_bind)
6407 {
6408 chain = BIND_EXPR_BODY (chain);
6409 indent = 2;
6410 }
6411 else
6412 indent = 0;
6413 }
6414 else
6415 {
6416 if (!ignore_topmost_bind)
6417 fprintf (file, "{\n");
6418 indent = 2;
6419 }
6420
6421 if (any_var)
6422 fprintf (file, "\n");
6423
6424 print_generic_stmt_indented (file, chain, flags, indent);
6425 if (ignore_topmost_bind)
6426 fprintf (file, "}\n");
6427 }
6428
6429 if (flags & TDF_ENUMERATE_LOCALS)
6430 dump_enumerated_decls (file, flags);
6431 fprintf (file, "\n\n");
6432
6433 /* Restore CFUN. */
6434 pop_cfun ();
6435 }
6436
6437
6438 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6439
6440 DEBUG_FUNCTION void
6441 debug_function (tree fn, int flags)
6442 {
6443 dump_function_to_file (fn, stderr, flags);
6444 }
6445
6446
6447 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6448
6449 static void
6450 print_pred_bbs (FILE *file, basic_block bb)
6451 {
6452 edge e;
6453 edge_iterator ei;
6454
6455 FOR_EACH_EDGE (e, ei, bb->preds)
6456 fprintf (file, "bb_%d ", e->src->index);
6457 }
6458
6459
6460 /* Print on FILE the indexes for the successors of basic_block BB. */
6461
6462 static void
6463 print_succ_bbs (FILE *file, basic_block bb)
6464 {
6465 edge e;
6466 edge_iterator ei;
6467
6468 FOR_EACH_EDGE (e, ei, bb->succs)
6469 fprintf (file, "bb_%d ", e->dest->index);
6470 }
6471
6472 /* Print to FILE the basic block BB following the VERBOSITY level. */
6473
6474 void
6475 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6476 {
6477 char *s_indent = (char *) alloca ((size_t) indent + 1);
6478 memset ((void *) s_indent, ' ', (size_t) indent);
6479 s_indent[indent] = '\0';
6480
6481 /* Print basic_block's header. */
6482 if (verbosity >= 2)
6483 {
6484 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6485 print_pred_bbs (file, bb);
6486 fprintf (file, "}, succs = {");
6487 print_succ_bbs (file, bb);
6488 fprintf (file, "})\n");
6489 }
6490
6491 /* Print basic_block's body. */
6492 if (verbosity >= 3)
6493 {
6494 fprintf (file, "%s {\n", s_indent);
6495 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6496 fprintf (file, "%s }\n", s_indent);
6497 }
6498 }
6499
6500 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6501
6502 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6503 VERBOSITY level this outputs the contents of the loop, or just its
6504 structure. */
6505
6506 static void
6507 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6508 {
6509 char *s_indent;
6510 basic_block bb;
6511
6512 if (loop == NULL)
6513 return;
6514
6515 s_indent = (char *) alloca ((size_t) indent + 1);
6516 memset ((void *) s_indent, ' ', (size_t) indent);
6517 s_indent[indent] = '\0';
6518
6519 /* Print loop's header. */
6520 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6521 loop->num, loop->header->index, loop->latch->index);
6522 fprintf (file, ", niter = ");
6523 print_generic_expr (file, loop->nb_iterations, 0);
6524
6525 if (loop->any_upper_bound)
6526 {
6527 fprintf (file, ", upper_bound = ");
6528 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6529 }
6530
6531 if (loop->any_estimate)
6532 {
6533 fprintf (file, ", estimate = ");
6534 dump_double_int (file, loop->nb_iterations_estimate, true);
6535 }
6536 fprintf (file, ")\n");
6537
6538 /* Print loop's body. */
6539 if (verbosity >= 1)
6540 {
6541 fprintf (file, "%s{\n", s_indent);
6542 FOR_EACH_BB (bb)
6543 if (bb->loop_father == loop)
6544 print_loops_bb (file, bb, indent, verbosity);
6545
6546 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6547 fprintf (file, "%s}\n", s_indent);
6548 }
6549 }
6550
6551 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6552 spaces. Following VERBOSITY level this outputs the contents of the
6553 loop, or just its structure. */
6554
6555 static void
6556 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6557 {
6558 if (loop == NULL)
6559 return;
6560
6561 print_loop (file, loop, indent, verbosity);
6562 print_loop_and_siblings (file, loop->next, indent, verbosity);
6563 }
6564
6565 /* Follow a CFG edge from the entry point of the program, and on entry
6566 of a loop, pretty print the loop structure on FILE. */
6567
6568 void
6569 print_loops (FILE *file, int verbosity)
6570 {
6571 basic_block bb;
6572
6573 bb = ENTRY_BLOCK_PTR;
6574 if (bb && bb->loop_father)
6575 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6576 }
6577
6578
6579 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6580
6581 DEBUG_FUNCTION void
6582 debug_loops (int verbosity)
6583 {
6584 print_loops (stderr, verbosity);
6585 }
6586
6587 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6588
6589 DEBUG_FUNCTION void
6590 debug_loop (struct loop *loop, int verbosity)
6591 {
6592 print_loop (stderr, loop, 0, verbosity);
6593 }
6594
6595 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6596 level. */
6597
6598 DEBUG_FUNCTION void
6599 debug_loop_num (unsigned num, int verbosity)
6600 {
6601 debug_loop (get_loop (num), verbosity);
6602 }
6603
6604 /* Return true if BB ends with a call, possibly followed by some
6605 instructions that must stay with the call. Return false,
6606 otherwise. */
6607
6608 static bool
6609 gimple_block_ends_with_call_p (basic_block bb)
6610 {
6611 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6612 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6613 }
6614
6615
6616 /* Return true if BB ends with a conditional branch. Return false,
6617 otherwise. */
6618
6619 static bool
6620 gimple_block_ends_with_condjump_p (const_basic_block bb)
6621 {
6622 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6623 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6624 }
6625
6626
6627 /* Return true if we need to add fake edge to exit at statement T.
6628 Helper function for gimple_flow_call_edges_add. */
6629
6630 static bool
6631 need_fake_edge_p (gimple t)
6632 {
6633 tree fndecl = NULL_TREE;
6634 int call_flags = 0;
6635
6636 /* NORETURN and LONGJMP calls already have an edge to exit.
6637 CONST and PURE calls do not need one.
6638 We don't currently check for CONST and PURE here, although
6639 it would be a good idea, because those attributes are
6640 figured out from the RTL in mark_constant_function, and
6641 the counter incrementation code from -fprofile-arcs
6642 leads to different results from -fbranch-probabilities. */
6643 if (is_gimple_call (t))
6644 {
6645 fndecl = gimple_call_fndecl (t);
6646 call_flags = gimple_call_flags (t);
6647 }
6648
6649 if (is_gimple_call (t)
6650 && fndecl
6651 && DECL_BUILT_IN (fndecl)
6652 && (call_flags & ECF_NOTHROW)
6653 && !(call_flags & ECF_RETURNS_TWICE)
6654 /* fork() doesn't really return twice, but the effect of
6655 wrapping it in __gcov_fork() which calls __gcov_flush()
6656 and clears the counters before forking has the same
6657 effect as returning twice. Force a fake edge. */
6658 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6659 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6660 return false;
6661
6662 if (is_gimple_call (t)
6663 && !(call_flags & ECF_NORETURN))
6664 return true;
6665
6666 if (gimple_code (t) == GIMPLE_ASM
6667 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6668 return true;
6669
6670 return false;
6671 }
6672
6673
6674 /* Add fake edges to the function exit for any non constant and non
6675 noreturn calls, volatile inline assembly in the bitmap of blocks
6676 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6677 the number of blocks that were split.
6678
6679 The goal is to expose cases in which entering a basic block does
6680 not imply that all subsequent instructions must be executed. */
6681
6682 static int
6683 gimple_flow_call_edges_add (sbitmap blocks)
6684 {
6685 int i;
6686 int blocks_split = 0;
6687 int last_bb = last_basic_block;
6688 bool check_last_block = false;
6689
6690 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6691 return 0;
6692
6693 if (! blocks)
6694 check_last_block = true;
6695 else
6696 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6697
6698 /* In the last basic block, before epilogue generation, there will be
6699 a fallthru edge to EXIT. Special care is required if the last insn
6700 of the last basic block is a call because make_edge folds duplicate
6701 edges, which would result in the fallthru edge also being marked
6702 fake, which would result in the fallthru edge being removed by
6703 remove_fake_edges, which would result in an invalid CFG.
6704
6705 Moreover, we can't elide the outgoing fake edge, since the block
6706 profiler needs to take this into account in order to solve the minimal
6707 spanning tree in the case that the call doesn't return.
6708
6709 Handle this by adding a dummy instruction in a new last basic block. */
6710 if (check_last_block)
6711 {
6712 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6713 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6714 gimple t = NULL;
6715
6716 if (!gsi_end_p (gsi))
6717 t = gsi_stmt (gsi);
6718
6719 if (t && need_fake_edge_p (t))
6720 {
6721 edge e;
6722
6723 e = find_edge (bb, EXIT_BLOCK_PTR);
6724 if (e)
6725 {
6726 gsi_insert_on_edge (e, gimple_build_nop ());
6727 gsi_commit_edge_inserts ();
6728 }
6729 }
6730 }
6731
6732 /* Now add fake edges to the function exit for any non constant
6733 calls since there is no way that we can determine if they will
6734 return or not... */
6735 for (i = 0; i < last_bb; i++)
6736 {
6737 basic_block bb = BASIC_BLOCK (i);
6738 gimple_stmt_iterator gsi;
6739 gimple stmt, last_stmt;
6740
6741 if (!bb)
6742 continue;
6743
6744 if (blocks && !TEST_BIT (blocks, i))
6745 continue;
6746
6747 gsi = gsi_last_nondebug_bb (bb);
6748 if (!gsi_end_p (gsi))
6749 {
6750 last_stmt = gsi_stmt (gsi);
6751 do
6752 {
6753 stmt = gsi_stmt (gsi);
6754 if (need_fake_edge_p (stmt))
6755 {
6756 edge e;
6757
6758 /* The handling above of the final block before the
6759 epilogue should be enough to verify that there is
6760 no edge to the exit block in CFG already.
6761 Calling make_edge in such case would cause us to
6762 mark that edge as fake and remove it later. */
6763 #ifdef ENABLE_CHECKING
6764 if (stmt == last_stmt)
6765 {
6766 e = find_edge (bb, EXIT_BLOCK_PTR);
6767 gcc_assert (e == NULL);
6768 }
6769 #endif
6770
6771 /* Note that the following may create a new basic block
6772 and renumber the existing basic blocks. */
6773 if (stmt != last_stmt)
6774 {
6775 e = split_block (bb, stmt);
6776 if (e)
6777 blocks_split++;
6778 }
6779 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6780 }
6781 gsi_prev (&gsi);
6782 }
6783 while (!gsi_end_p (gsi));
6784 }
6785 }
6786
6787 if (blocks_split)
6788 verify_flow_info ();
6789
6790 return blocks_split;
6791 }
6792
6793 /* Removes edge E and all the blocks dominated by it, and updates dominance
6794 information. The IL in E->src needs to be updated separately.
6795 If dominance info is not available, only the edge E is removed.*/
6796
6797 void
6798 remove_edge_and_dominated_blocks (edge e)
6799 {
6800 VEC (basic_block, heap) *bbs_to_remove = NULL;
6801 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6802 bitmap df, df_idom;
6803 edge f;
6804 edge_iterator ei;
6805 bool none_removed = false;
6806 unsigned i;
6807 basic_block bb, dbb;
6808 bitmap_iterator bi;
6809
6810 if (!dom_info_available_p (CDI_DOMINATORS))
6811 {
6812 remove_edge (e);
6813 return;
6814 }
6815
6816 /* No updating is needed for edges to exit. */
6817 if (e->dest == EXIT_BLOCK_PTR)
6818 {
6819 if (cfgcleanup_altered_bbs)
6820 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6821 remove_edge (e);
6822 return;
6823 }
6824
6825 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6826 that is not dominated by E->dest, then this set is empty. Otherwise,
6827 all the basic blocks dominated by E->dest are removed.
6828
6829 Also, to DF_IDOM we store the immediate dominators of the blocks in
6830 the dominance frontier of E (i.e., of the successors of the
6831 removed blocks, if there are any, and of E->dest otherwise). */
6832 FOR_EACH_EDGE (f, ei, e->dest->preds)
6833 {
6834 if (f == e)
6835 continue;
6836
6837 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6838 {
6839 none_removed = true;
6840 break;
6841 }
6842 }
6843
6844 df = BITMAP_ALLOC (NULL);
6845 df_idom = BITMAP_ALLOC (NULL);
6846
6847 if (none_removed)
6848 bitmap_set_bit (df_idom,
6849 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6850 else
6851 {
6852 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6853 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6854 {
6855 FOR_EACH_EDGE (f, ei, bb->succs)
6856 {
6857 if (f->dest != EXIT_BLOCK_PTR)
6858 bitmap_set_bit (df, f->dest->index);
6859 }
6860 }
6861 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6862 bitmap_clear_bit (df, bb->index);
6863
6864 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6865 {
6866 bb = BASIC_BLOCK (i);
6867 bitmap_set_bit (df_idom,
6868 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6869 }
6870 }
6871
6872 if (cfgcleanup_altered_bbs)
6873 {
6874 /* Record the set of the altered basic blocks. */
6875 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6876 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6877 }
6878
6879 /* Remove E and the cancelled blocks. */
6880 if (none_removed)
6881 remove_edge (e);
6882 else
6883 {
6884 /* Walk backwards so as to get a chance to substitute all
6885 released DEFs into debug stmts. See
6886 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6887 details. */
6888 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6889 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6890 }
6891
6892 /* Update the dominance information. The immediate dominator may change only
6893 for blocks whose immediate dominator belongs to DF_IDOM:
6894
6895 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6896 removal. Let Z the arbitrary block such that idom(Z) = Y and
6897 Z dominates X after the removal. Before removal, there exists a path P
6898 from Y to X that avoids Z. Let F be the last edge on P that is
6899 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6900 dominates W, and because of P, Z does not dominate W), and W belongs to
6901 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6902 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6903 {
6904 bb = BASIC_BLOCK (i);
6905 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6906 dbb;
6907 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6908 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6909 }
6910
6911 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6912
6913 BITMAP_FREE (df);
6914 BITMAP_FREE (df_idom);
6915 VEC_free (basic_block, heap, bbs_to_remove);
6916 VEC_free (basic_block, heap, bbs_to_fix_dom);
6917 }
6918
6919 /* Purge dead EH edges from basic block BB. */
6920
6921 bool
6922 gimple_purge_dead_eh_edges (basic_block bb)
6923 {
6924 bool changed = false;
6925 edge e;
6926 edge_iterator ei;
6927 gimple stmt = last_stmt (bb);
6928
6929 if (stmt && stmt_can_throw_internal (stmt))
6930 return false;
6931
6932 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6933 {
6934 if (e->flags & EDGE_EH)
6935 {
6936 remove_edge_and_dominated_blocks (e);
6937 changed = true;
6938 }
6939 else
6940 ei_next (&ei);
6941 }
6942
6943 return changed;
6944 }
6945
6946 /* Purge dead EH edges from basic block listed in BLOCKS. */
6947
6948 bool
6949 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6950 {
6951 bool changed = false;
6952 unsigned i;
6953 bitmap_iterator bi;
6954
6955 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6956 {
6957 basic_block bb = BASIC_BLOCK (i);
6958
6959 /* Earlier gimple_purge_dead_eh_edges could have removed
6960 this basic block already. */
6961 gcc_assert (bb || changed);
6962 if (bb != NULL)
6963 changed |= gimple_purge_dead_eh_edges (bb);
6964 }
6965
6966 return changed;
6967 }
6968
6969 /* Purge dead abnormal call edges from basic block BB. */
6970
6971 bool
6972 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6973 {
6974 bool changed = false;
6975 edge e;
6976 edge_iterator ei;
6977 gimple stmt = last_stmt (bb);
6978
6979 if (!cfun->has_nonlocal_label)
6980 return false;
6981
6982 if (stmt && stmt_can_make_abnormal_goto (stmt))
6983 return false;
6984
6985 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6986 {
6987 if (e->flags & EDGE_ABNORMAL)
6988 {
6989 remove_edge_and_dominated_blocks (e);
6990 changed = true;
6991 }
6992 else
6993 ei_next (&ei);
6994 }
6995
6996 return changed;
6997 }
6998
6999 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7000
7001 bool
7002 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7003 {
7004 bool changed = false;
7005 unsigned i;
7006 bitmap_iterator bi;
7007
7008 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7009 {
7010 basic_block bb = BASIC_BLOCK (i);
7011
7012 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7013 this basic block already. */
7014 gcc_assert (bb || changed);
7015 if (bb != NULL)
7016 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7017 }
7018
7019 return changed;
7020 }
7021
7022 /* This function is called whenever a new edge is created or
7023 redirected. */
7024
7025 static void
7026 gimple_execute_on_growing_pred (edge e)
7027 {
7028 basic_block bb = e->dest;
7029
7030 if (!gimple_seq_empty_p (phi_nodes (bb)))
7031 reserve_phi_args_for_new_edge (bb);
7032 }
7033
7034 /* This function is called immediately before edge E is removed from
7035 the edge vector E->dest->preds. */
7036
7037 static void
7038 gimple_execute_on_shrinking_pred (edge e)
7039 {
7040 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7041 remove_phi_args (e);
7042 }
7043
7044 /*---------------------------------------------------------------------------
7045 Helper functions for Loop versioning
7046 ---------------------------------------------------------------------------*/
7047
7048 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7049 of 'first'. Both of them are dominated by 'new_head' basic block. When
7050 'new_head' was created by 'second's incoming edge it received phi arguments
7051 on the edge by split_edge(). Later, additional edge 'e' was created to
7052 connect 'new_head' and 'first'. Now this routine adds phi args on this
7053 additional edge 'e' that new_head to second edge received as part of edge
7054 splitting. */
7055
7056 static void
7057 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7058 basic_block new_head, edge e)
7059 {
7060 gimple phi1, phi2;
7061 gimple_stmt_iterator psi1, psi2;
7062 tree def;
7063 edge e2 = find_edge (new_head, second);
7064
7065 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7066 edge, we should always have an edge from NEW_HEAD to SECOND. */
7067 gcc_assert (e2 != NULL);
7068
7069 /* Browse all 'second' basic block phi nodes and add phi args to
7070 edge 'e' for 'first' head. PHI args are always in correct order. */
7071
7072 for (psi2 = gsi_start_phis (second),
7073 psi1 = gsi_start_phis (first);
7074 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7075 gsi_next (&psi2), gsi_next (&psi1))
7076 {
7077 phi1 = gsi_stmt (psi1);
7078 phi2 = gsi_stmt (psi2);
7079 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7080 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7081 }
7082 }
7083
7084
7085 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7086 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7087 the destination of the ELSE part. */
7088
7089 static void
7090 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7091 basic_block second_head ATTRIBUTE_UNUSED,
7092 basic_block cond_bb, void *cond_e)
7093 {
7094 gimple_stmt_iterator gsi;
7095 gimple new_cond_expr;
7096 tree cond_expr = (tree) cond_e;
7097 edge e0;
7098
7099 /* Build new conditional expr */
7100 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7101 NULL_TREE, NULL_TREE);
7102
7103 /* Add new cond in cond_bb. */
7104 gsi = gsi_last_bb (cond_bb);
7105 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7106
7107 /* Adjust edges appropriately to connect new head with first head
7108 as well as second head. */
7109 e0 = single_succ_edge (cond_bb);
7110 e0->flags &= ~EDGE_FALLTHRU;
7111 e0->flags |= EDGE_FALSE_VALUE;
7112 }
7113
7114 struct cfg_hooks gimple_cfg_hooks = {
7115 "gimple",
7116 gimple_verify_flow_info,
7117 gimple_dump_bb, /* dump_bb */
7118 create_bb, /* create_basic_block */
7119 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7120 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7121 gimple_can_remove_branch_p, /* can_remove_branch_p */
7122 remove_bb, /* delete_basic_block */
7123 gimple_split_block, /* split_block */
7124 gimple_move_block_after, /* move_block_after */
7125 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7126 gimple_merge_blocks, /* merge_blocks */
7127 gimple_predict_edge, /* predict_edge */
7128 gimple_predicted_by_p, /* predicted_by_p */
7129 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7130 gimple_duplicate_bb, /* duplicate_block */
7131 gimple_split_edge, /* split_edge */
7132 gimple_make_forwarder_block, /* make_forward_block */
7133 NULL, /* tidy_fallthru_edge */
7134 NULL, /* force_nonfallthru */
7135 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7136 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7137 gimple_flow_call_edges_add, /* flow_call_edges_add */
7138 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7139 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7140 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7141 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7142 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7143 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7144 flush_pending_stmts /* flush_pending_stmts */
7145 };
7146
7147
7148 /* Split all critical edges. */
7149
7150 static unsigned int
7151 split_critical_edges (void)
7152 {
7153 basic_block bb;
7154 edge e;
7155 edge_iterator ei;
7156
7157 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7158 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7159 mappings around the calls to split_edge. */
7160 start_recording_case_labels ();
7161 FOR_ALL_BB (bb)
7162 {
7163 FOR_EACH_EDGE (e, ei, bb->succs)
7164 {
7165 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7166 split_edge (e);
7167 /* PRE inserts statements to edges and expects that
7168 since split_critical_edges was done beforehand, committing edge
7169 insertions will not split more edges. In addition to critical
7170 edges we must split edges that have multiple successors and
7171 end by control flow statements, such as RESX.
7172 Go ahead and split them too. This matches the logic in
7173 gimple_find_edge_insert_loc. */
7174 else if ((!single_pred_p (e->dest)
7175 || !gimple_seq_empty_p (phi_nodes (e->dest))
7176 || e->dest == EXIT_BLOCK_PTR)
7177 && e->src != ENTRY_BLOCK_PTR
7178 && !(e->flags & EDGE_ABNORMAL))
7179 {
7180 gimple_stmt_iterator gsi;
7181
7182 gsi = gsi_last_bb (e->src);
7183 if (!gsi_end_p (gsi)
7184 && stmt_ends_bb_p (gsi_stmt (gsi))
7185 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7186 && !gimple_call_builtin_p (gsi_stmt (gsi),
7187 BUILT_IN_RETURN)))
7188 split_edge (e);
7189 }
7190 }
7191 }
7192 end_recording_case_labels ();
7193 return 0;
7194 }
7195
7196 struct gimple_opt_pass pass_split_crit_edges =
7197 {
7198 {
7199 GIMPLE_PASS,
7200 "crited", /* name */
7201 NULL, /* gate */
7202 split_critical_edges, /* execute */
7203 NULL, /* sub */
7204 NULL, /* next */
7205 0, /* static_pass_number */
7206 TV_TREE_SPLIT_EDGES, /* tv_id */
7207 PROP_cfg, /* properties required */
7208 PROP_no_crit_edges, /* properties_provided */
7209 0, /* properties_destroyed */
7210 0, /* todo_flags_start */
7211 TODO_verify_flow /* todo_flags_finish */
7212 }
7213 };
7214
7215
7216 /* Build a ternary operation and gimplify it. Emit code before GSI.
7217 Return the gimple_val holding the result. */
7218
7219 tree
7220 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7221 tree type, tree a, tree b, tree c)
7222 {
7223 tree ret;
7224 location_t loc = gimple_location (gsi_stmt (*gsi));
7225
7226 ret = fold_build3_loc (loc, code, type, a, b, c);
7227 STRIP_NOPS (ret);
7228
7229 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7230 GSI_SAME_STMT);
7231 }
7232
7233 /* Build a binary operation and gimplify it. Emit code before GSI.
7234 Return the gimple_val holding the result. */
7235
7236 tree
7237 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7238 tree type, tree a, tree b)
7239 {
7240 tree ret;
7241
7242 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7243 STRIP_NOPS (ret);
7244
7245 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7246 GSI_SAME_STMT);
7247 }
7248
7249 /* Build a unary operation and gimplify it. Emit code before GSI.
7250 Return the gimple_val holding the result. */
7251
7252 tree
7253 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7254 tree a)
7255 {
7256 tree ret;
7257
7258 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7259 STRIP_NOPS (ret);
7260
7261 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7262 GSI_SAME_STMT);
7263 }
7264
7265
7266 \f
7267 /* Emit return warnings. */
7268
7269 static unsigned int
7270 execute_warn_function_return (void)
7271 {
7272 source_location location;
7273 gimple last;
7274 edge e;
7275 edge_iterator ei;
7276
7277 /* If we have a path to EXIT, then we do return. */
7278 if (TREE_THIS_VOLATILE (cfun->decl)
7279 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7280 {
7281 location = UNKNOWN_LOCATION;
7282 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7283 {
7284 last = last_stmt (e->src);
7285 if ((gimple_code (last) == GIMPLE_RETURN
7286 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7287 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7288 break;
7289 }
7290 if (location == UNKNOWN_LOCATION)
7291 location = cfun->function_end_locus;
7292 warning_at (location, 0, "%<noreturn%> function does return");
7293 }
7294
7295 /* If we see "return;" in some basic block, then we do reach the end
7296 without returning a value. */
7297 else if (warn_return_type
7298 && !TREE_NO_WARNING (cfun->decl)
7299 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7300 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7301 {
7302 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7303 {
7304 gimple last = last_stmt (e->src);
7305 if (gimple_code (last) == GIMPLE_RETURN
7306 && gimple_return_retval (last) == NULL
7307 && !gimple_no_warning_p (last))
7308 {
7309 location = gimple_location (last);
7310 if (location == UNKNOWN_LOCATION)
7311 location = cfun->function_end_locus;
7312 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7313 TREE_NO_WARNING (cfun->decl) = 1;
7314 break;
7315 }
7316 }
7317 }
7318 return 0;
7319 }
7320
7321
7322 /* Given a basic block B which ends with a conditional and has
7323 precisely two successors, determine which of the edges is taken if
7324 the conditional is true and which is taken if the conditional is
7325 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7326
7327 void
7328 extract_true_false_edges_from_block (basic_block b,
7329 edge *true_edge,
7330 edge *false_edge)
7331 {
7332 edge e = EDGE_SUCC (b, 0);
7333
7334 if (e->flags & EDGE_TRUE_VALUE)
7335 {
7336 *true_edge = e;
7337 *false_edge = EDGE_SUCC (b, 1);
7338 }
7339 else
7340 {
7341 *false_edge = e;
7342 *true_edge = EDGE_SUCC (b, 1);
7343 }
7344 }
7345
7346 struct gimple_opt_pass pass_warn_function_return =
7347 {
7348 {
7349 GIMPLE_PASS,
7350 "*warn_function_return", /* name */
7351 NULL, /* gate */
7352 execute_warn_function_return, /* execute */
7353 NULL, /* sub */
7354 NULL, /* next */
7355 0, /* static_pass_number */
7356 TV_NONE, /* tv_id */
7357 PROP_cfg, /* properties_required */
7358 0, /* properties_provided */
7359 0, /* properties_destroyed */
7360 0, /* todo_flags_start */
7361 0 /* todo_flags_finish */
7362 }
7363 };
7364
7365 /* Emit noreturn warnings. */
7366
7367 static unsigned int
7368 execute_warn_function_noreturn (void)
7369 {
7370 if (!TREE_THIS_VOLATILE (current_function_decl)
7371 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7372 warn_function_noreturn (current_function_decl);
7373 return 0;
7374 }
7375
7376 static bool
7377 gate_warn_function_noreturn (void)
7378 {
7379 return warn_suggest_attribute_noreturn;
7380 }
7381
7382 struct gimple_opt_pass pass_warn_function_noreturn =
7383 {
7384 {
7385 GIMPLE_PASS,
7386 "*warn_function_noreturn", /* name */
7387 gate_warn_function_noreturn, /* gate */
7388 execute_warn_function_noreturn, /* execute */
7389 NULL, /* sub */
7390 NULL, /* next */
7391 0, /* static_pass_number */
7392 TV_NONE, /* tv_id */
7393 PROP_cfg, /* properties_required */
7394 0, /* properties_provided */
7395 0, /* properties_destroyed */
7396 0, /* todo_flags_start */
7397 0 /* todo_flags_finish */
7398 }
7399 };
7400
7401
7402 /* Walk a gimplified function and warn for functions whose return value is
7403 ignored and attribute((warn_unused_result)) is set. This is done before
7404 inlining, so we don't have to worry about that. */
7405
7406 static void
7407 do_warn_unused_result (gimple_seq seq)
7408 {
7409 tree fdecl, ftype;
7410 gimple_stmt_iterator i;
7411
7412 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7413 {
7414 gimple g = gsi_stmt (i);
7415
7416 switch (gimple_code (g))
7417 {
7418 case GIMPLE_BIND:
7419 do_warn_unused_result (gimple_bind_body (g));
7420 break;
7421 case GIMPLE_TRY:
7422 do_warn_unused_result (gimple_try_eval (g));
7423 do_warn_unused_result (gimple_try_cleanup (g));
7424 break;
7425 case GIMPLE_CATCH:
7426 do_warn_unused_result (gimple_catch_handler (g));
7427 break;
7428 case GIMPLE_EH_FILTER:
7429 do_warn_unused_result (gimple_eh_filter_failure (g));
7430 break;
7431
7432 case GIMPLE_CALL:
7433 if (gimple_call_lhs (g))
7434 break;
7435 if (gimple_call_internal_p (g))
7436 break;
7437
7438 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7439 LHS. All calls whose value is ignored should be
7440 represented like this. Look for the attribute. */
7441 fdecl = gimple_call_fndecl (g);
7442 ftype = gimple_call_fntype (g);
7443
7444 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7445 {
7446 location_t loc = gimple_location (g);
7447
7448 if (fdecl)
7449 warning_at (loc, OPT_Wunused_result,
7450 "ignoring return value of %qD, "
7451 "declared with attribute warn_unused_result",
7452 fdecl);
7453 else
7454 warning_at (loc, OPT_Wunused_result,
7455 "ignoring return value of function "
7456 "declared with attribute warn_unused_result");
7457 }
7458 break;
7459
7460 default:
7461 /* Not a container, not a call, or a call whose value is used. */
7462 break;
7463 }
7464 }
7465 }
7466
7467 static unsigned int
7468 run_warn_unused_result (void)
7469 {
7470 do_warn_unused_result (gimple_body (current_function_decl));
7471 return 0;
7472 }
7473
7474 static bool
7475 gate_warn_unused_result (void)
7476 {
7477 return flag_warn_unused_result;
7478 }
7479
7480 struct gimple_opt_pass pass_warn_unused_result =
7481 {
7482 {
7483 GIMPLE_PASS,
7484 "*warn_unused_result", /* name */
7485 gate_warn_unused_result, /* gate */
7486 run_warn_unused_result, /* execute */
7487 NULL, /* sub */
7488 NULL, /* next */
7489 0, /* static_pass_number */
7490 TV_NONE, /* tv_id */
7491 PROP_gimple_any, /* properties_required */
7492 0, /* properties_provided */
7493 0, /* properties_destroyed */
7494 0, /* todo_flags_start */
7495 0, /* todo_flags_finish */
7496 }
7497 };