20011-08-29 Artjoms Sinkarovs <artyom.shinkaroff@gmail.com>
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
265 }
266 };
267
268
269 /* Return true if T is a computed goto. */
270
271 static bool
272 computed_goto_p (gimple t)
273 {
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
276 }
277
278
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
283
284 static void
285 factor_computed_gotos (void)
286 {
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
292
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
296
297 FOR_EACH_BB (bb)
298 {
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
301
302 if (gsi_end_p (gsi))
303 continue;
304
305 last = gsi_stmt (gsi);
306
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
311
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
314 {
315 gimple assignment;
316
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
321 {
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
324
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
330
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
338
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
342 }
343
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
347
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
350 }
351 }
352 }
353
354
355 /* Build a flowgraph for the sequence of stmts SEQ. */
356
357 static void
358 make_blocks (gimple_seq seq)
359 {
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
365
366 while (!gsi_end_p (i))
367 {
368 gimple prev_stmt;
369
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
372
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
377 {
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
382 }
383
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
387
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
390
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
394 {
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
403 {
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
414 }
415 start_new_block = true;
416 }
417
418 gsi_next (&i);
419 first_stmt_of_seq = false;
420 }
421 }
422
423
424 /* Create and return a new empty basic block after bb AFTER. */
425
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
428 {
429 basic_block bb;
430
431 gcc_assert (!e);
432
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
436 bb = alloc_block ();
437
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
442
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
445
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
448 {
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
451 }
452
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
455
456 n_basic_blocks++;
457 last_basic_block++;
458
459 return bb;
460 }
461
462
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
466
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
468
469 void
470 fold_cond_expr_cond (void)
471 {
472 basic_block bb;
473
474 FOR_EACH_BB (bb)
475 {
476 gimple stmt = last_stmt (bb);
477
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
479 {
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
483
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
488 {
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
491 }
492 else
493 zerop = onep = false;
494
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
502 }
503 }
504 }
505
506 /* Join all the blocks in the flowgraph. */
507
508 static void
509 make_edges (void)
510 {
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
513
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
517
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
520 {
521 gimple last = last_stmt (bb);
522 bool fallthru;
523
524 if (last)
525 {
526 enum gimple_code code = gimple_code (last);
527 switch (code)
528 {
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
552
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
559
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
563
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
566 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
567 /* Some calls are known not to return. */
568 else
569 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
570 break;
571
572 case GIMPLE_ASSIGN:
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
574 control-altering. */
575 if (is_ctrl_altering_stmt (last))
576 make_eh_edges (last);
577 fallthru = true;
578 break;
579
580 case GIMPLE_ASM:
581 make_gimple_asm_edges (bb);
582 fallthru = true;
583 break;
584
585 case GIMPLE_OMP_PARALLEL:
586 case GIMPLE_OMP_TASK:
587 case GIMPLE_OMP_FOR:
588 case GIMPLE_OMP_SINGLE:
589 case GIMPLE_OMP_MASTER:
590 case GIMPLE_OMP_ORDERED:
591 case GIMPLE_OMP_CRITICAL:
592 case GIMPLE_OMP_SECTION:
593 cur_region = new_omp_region (bb, code, cur_region);
594 fallthru = true;
595 break;
596
597 case GIMPLE_OMP_SECTIONS:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
601
602 case GIMPLE_OMP_SECTIONS_SWITCH:
603 fallthru = false;
604 break;
605
606 case GIMPLE_OMP_ATOMIC_LOAD:
607 case GIMPLE_OMP_ATOMIC_STORE:
608 fallthru = true;
609 break;
610
611 case GIMPLE_OMP_RETURN:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
614 created later. */
615 cur_region->exit = bb;
616 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
617 cur_region = cur_region->outer;
618 break;
619
620 case GIMPLE_OMP_CONTINUE:
621 cur_region->cont = bb;
622 switch (cur_region->type)
623 {
624 case GIMPLE_OMP_FOR:
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
627 them. */
628 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
629 /* Make the loopback edge. */
630 make_edge (bb, single_succ (cur_region->entry),
631 EDGE_ABNORMAL);
632
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
637 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
638 fallthru = false;
639 break;
640
641 case GIMPLE_OMP_SECTIONS:
642 /* Wire up the edges into and out of the nested sections. */
643 {
644 basic_block switch_bb = single_succ (cur_region->entry);
645
646 struct omp_region *i;
647 for (i = cur_region->inner; i ; i = i->next)
648 {
649 gcc_assert (i->type == GIMPLE_OMP_SECTION);
650 make_edge (switch_bb, i->entry, 0);
651 make_edge (i->exit, bb, EDGE_FALLTHRU);
652 }
653
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb, switch_bb, 0);
657
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb, bb->next_bb, 0);
660 fallthru = false;
661 }
662 break;
663
664 default:
665 gcc_unreachable ();
666 }
667 break;
668
669 default:
670 gcc_assert (!stmt_ends_bb_p (last));
671 fallthru = true;
672 }
673 }
674 else
675 fallthru = true;
676
677 if (fallthru)
678 {
679 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
680 if (last)
681 assign_discriminator (gimple_location (last), bb->next_bb);
682 }
683 }
684
685 if (root_omp_region)
686 free_omp_regions ();
687
688 /* Fold COND_EXPR_COND of each COND_EXPR. */
689 fold_cond_expr_cond ();
690 }
691
692 /* Trivial hash function for a location_t. ITEM is a pointer to
693 a hash table entry that maps a location_t to a discriminator. */
694
695 static unsigned int
696 locus_map_hash (const void *item)
697 {
698 return ((const struct locus_discrim_map *) item)->locus;
699 }
700
701 /* Equality function for the locus-to-discriminator map. VA and VB
702 point to the two hash table entries to compare. */
703
704 static int
705 locus_map_eq (const void *va, const void *vb)
706 {
707 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
708 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
709 return a->locus == b->locus;
710 }
711
712 /* Find the next available discriminator value for LOCUS. The
713 discriminator distinguishes among several basic blocks that
714 share a common locus, allowing for more accurate sample-based
715 profiling. */
716
717 static int
718 next_discriminator_for_locus (location_t locus)
719 {
720 struct locus_discrim_map item;
721 struct locus_discrim_map **slot;
722
723 item.locus = locus;
724 item.discriminator = 0;
725 slot = (struct locus_discrim_map **)
726 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
727 (hashval_t) locus, INSERT);
728 gcc_assert (slot);
729 if (*slot == HTAB_EMPTY_ENTRY)
730 {
731 *slot = XNEW (struct locus_discrim_map);
732 gcc_assert (*slot);
733 (*slot)->locus = locus;
734 (*slot)->discriminator = 0;
735 }
736 (*slot)->discriminator++;
737 return (*slot)->discriminator;
738 }
739
740 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
741
742 static bool
743 same_line_p (location_t locus1, location_t locus2)
744 {
745 expanded_location from, to;
746
747 if (locus1 == locus2)
748 return true;
749
750 from = expand_location (locus1);
751 to = expand_location (locus2);
752
753 if (from.line != to.line)
754 return false;
755 if (from.file == to.file)
756 return true;
757 return (from.file != NULL
758 && to.file != NULL
759 && filename_cmp (from.file, to.file) == 0);
760 }
761
762 /* Assign a unique discriminator value to block BB if it begins at the same
763 LOCUS as its predecessor block. */
764
765 static void
766 assign_discriminator (location_t locus, basic_block bb)
767 {
768 gimple first_in_to_bb, last_in_to_bb;
769
770 if (locus == 0 || bb->discriminator != 0)
771 return;
772
773 first_in_to_bb = first_non_label_stmt (bb);
774 last_in_to_bb = last_stmt (bb);
775 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
776 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
777 bb->discriminator = next_discriminator_for_locus (locus);
778 }
779
780 /* Create the edges for a GIMPLE_COND starting at block BB. */
781
782 static void
783 make_cond_expr_edges (basic_block bb)
784 {
785 gimple entry = last_stmt (bb);
786 gimple then_stmt, else_stmt;
787 basic_block then_bb, else_bb;
788 tree then_label, else_label;
789 edge e;
790 location_t entry_locus;
791
792 gcc_assert (entry);
793 gcc_assert (gimple_code (entry) == GIMPLE_COND);
794
795 entry_locus = gimple_location (entry);
796
797 /* Entry basic blocks for each component. */
798 then_label = gimple_cond_true_label (entry);
799 else_label = gimple_cond_false_label (entry);
800 then_bb = label_to_block (then_label);
801 else_bb = label_to_block (else_label);
802 then_stmt = first_stmt (then_bb);
803 else_stmt = first_stmt (else_bb);
804
805 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
806 assign_discriminator (entry_locus, then_bb);
807 e->goto_locus = gimple_location (then_stmt);
808 if (e->goto_locus)
809 e->goto_block = gimple_block (then_stmt);
810 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
811 if (e)
812 {
813 assign_discriminator (entry_locus, else_bb);
814 e->goto_locus = gimple_location (else_stmt);
815 if (e->goto_locus)
816 e->goto_block = gimple_block (else_stmt);
817 }
818
819 /* We do not need the labels anymore. */
820 gimple_cond_set_true_label (entry, NULL_TREE);
821 gimple_cond_set_false_label (entry, NULL_TREE);
822 }
823
824
825 /* Called for each element in the hash table (P) as we delete the
826 edge to cases hash table.
827
828 Clear all the TREE_CHAINs to prevent problems with copying of
829 SWITCH_EXPRs and structure sharing rules, then free the hash table
830 element. */
831
832 static bool
833 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
834 void *data ATTRIBUTE_UNUSED)
835 {
836 tree t, next;
837
838 for (t = (tree) *value; t; t = next)
839 {
840 next = CASE_CHAIN (t);
841 CASE_CHAIN (t) = NULL;
842 }
843
844 *value = NULL;
845 return true;
846 }
847
848 /* Start recording information mapping edges to case labels. */
849
850 void
851 start_recording_case_labels (void)
852 {
853 gcc_assert (edge_to_cases == NULL);
854 edge_to_cases = pointer_map_create ();
855 touched_switch_bbs = BITMAP_ALLOC (NULL);
856 }
857
858 /* Return nonzero if we are recording information for case labels. */
859
860 static bool
861 recording_case_labels_p (void)
862 {
863 return (edge_to_cases != NULL);
864 }
865
866 /* Stop recording information mapping edges to case labels and
867 remove any information we have recorded. */
868 void
869 end_recording_case_labels (void)
870 {
871 bitmap_iterator bi;
872 unsigned i;
873 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
874 pointer_map_destroy (edge_to_cases);
875 edge_to_cases = NULL;
876 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
877 {
878 basic_block bb = BASIC_BLOCK (i);
879 if (bb)
880 {
881 gimple stmt = last_stmt (bb);
882 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
883 group_case_labels_stmt (stmt);
884 }
885 }
886 BITMAP_FREE (touched_switch_bbs);
887 }
888
889 /* If we are inside a {start,end}_recording_cases block, then return
890 a chain of CASE_LABEL_EXPRs from T which reference E.
891
892 Otherwise return NULL. */
893
894 static tree
895 get_cases_for_edge (edge e, gimple t)
896 {
897 void **slot;
898 size_t i, n;
899
900 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
901 chains available. Return NULL so the caller can detect this case. */
902 if (!recording_case_labels_p ())
903 return NULL;
904
905 slot = pointer_map_contains (edge_to_cases, e);
906 if (slot)
907 return (tree) *slot;
908
909 /* If we did not find E in the hash table, then this must be the first
910 time we have been queried for information about E & T. Add all the
911 elements from T to the hash table then perform the query again. */
912
913 n = gimple_switch_num_labels (t);
914 for (i = 0; i < n; i++)
915 {
916 tree elt = gimple_switch_label (t, i);
917 tree lab = CASE_LABEL (elt);
918 basic_block label_bb = label_to_block (lab);
919 edge this_edge = find_edge (e->src, label_bb);
920
921 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
922 a new chain. */
923 slot = pointer_map_insert (edge_to_cases, this_edge);
924 CASE_CHAIN (elt) = (tree) *slot;
925 *slot = elt;
926 }
927
928 return (tree) *pointer_map_contains (edge_to_cases, e);
929 }
930
931 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
932
933 static void
934 make_gimple_switch_edges (basic_block bb)
935 {
936 gimple entry = last_stmt (bb);
937 location_t entry_locus;
938 size_t i, n;
939
940 entry_locus = gimple_location (entry);
941
942 n = gimple_switch_num_labels (entry);
943
944 for (i = 0; i < n; ++i)
945 {
946 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
947 basic_block label_bb = label_to_block (lab);
948 make_edge (bb, label_bb, 0);
949 assign_discriminator (entry_locus, label_bb);
950 }
951 }
952
953
954 /* Return the basic block holding label DEST. */
955
956 basic_block
957 label_to_block_fn (struct function *ifun, tree dest)
958 {
959 int uid = LABEL_DECL_UID (dest);
960
961 /* We would die hard when faced by an undefined label. Emit a label to
962 the very first basic block. This will hopefully make even the dataflow
963 and undefined variable warnings quite right. */
964 if (seen_error () && uid < 0)
965 {
966 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
967 gimple stmt;
968
969 stmt = gimple_build_label (dest);
970 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
971 uid = LABEL_DECL_UID (dest);
972 }
973 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
974 <= (unsigned int) uid)
975 return NULL;
976 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
977 }
978
979 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
980 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
981
982 void
983 make_abnormal_goto_edges (basic_block bb, bool for_call)
984 {
985 basic_block target_bb;
986 gimple_stmt_iterator gsi;
987
988 FOR_EACH_BB (target_bb)
989 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
990 {
991 gimple label_stmt = gsi_stmt (gsi);
992 tree target;
993
994 if (gimple_code (label_stmt) != GIMPLE_LABEL)
995 break;
996
997 target = gimple_label_label (label_stmt);
998
999 /* Make an edge to every label block that has been marked as a
1000 potential target for a computed goto or a non-local goto. */
1001 if ((FORCED_LABEL (target) && !for_call)
1002 || (DECL_NONLOCAL (target) && for_call))
1003 {
1004 make_edge (bb, target_bb, EDGE_ABNORMAL);
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Create edges for a goto statement at block BB. */
1011
1012 static void
1013 make_goto_expr_edges (basic_block bb)
1014 {
1015 gimple_stmt_iterator last = gsi_last_bb (bb);
1016 gimple goto_t = gsi_stmt (last);
1017
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t))
1020 {
1021 tree dest = gimple_goto_dest (goto_t);
1022 basic_block label_bb = label_to_block (dest);
1023 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1024 e->goto_locus = gimple_location (goto_t);
1025 assign_discriminator (e->goto_locus, label_bb);
1026 if (e->goto_locus)
1027 e->goto_block = gimple_block (goto_t);
1028 gsi_remove (&last, true);
1029 return;
1030 }
1031
1032 /* A computed GOTO creates abnormal edges. */
1033 make_abnormal_goto_edges (bb, false);
1034 }
1035
1036 /* Create edges for an asm statement with labels at block BB. */
1037
1038 static void
1039 make_gimple_asm_edges (basic_block bb)
1040 {
1041 gimple stmt = last_stmt (bb);
1042 location_t stmt_loc = gimple_location (stmt);
1043 int i, n = gimple_asm_nlabels (stmt);
1044
1045 for (i = 0; i < n; ++i)
1046 {
1047 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1048 basic_block label_bb = label_to_block (label);
1049 make_edge (bb, label_bb, 0);
1050 assign_discriminator (stmt_loc, label_bb);
1051 }
1052 }
1053
1054 /*---------------------------------------------------------------------------
1055 Flowgraph analysis
1056 ---------------------------------------------------------------------------*/
1057
1058 /* Cleanup useless labels in basic blocks. This is something we wish
1059 to do early because it allows us to group case labels before creating
1060 the edges for the CFG, and it speeds up block statement iterators in
1061 all passes later on.
1062 We rerun this pass after CFG is created, to get rid of the labels that
1063 are no longer referenced. After then we do not run it any more, since
1064 (almost) no new labels should be created. */
1065
1066 /* A map from basic block index to the leading label of that block. */
1067 static struct label_record
1068 {
1069 /* The label. */
1070 tree label;
1071
1072 /* True if the label is referenced from somewhere. */
1073 bool used;
1074 } *label_for_bb;
1075
1076 /* Given LABEL return the first label in the same basic block. */
1077
1078 static tree
1079 main_block_label (tree label)
1080 {
1081 basic_block bb = label_to_block (label);
1082 tree main_label = label_for_bb[bb->index].label;
1083
1084 /* label_to_block possibly inserted undefined label into the chain. */
1085 if (!main_label)
1086 {
1087 label_for_bb[bb->index].label = label;
1088 main_label = label;
1089 }
1090
1091 label_for_bb[bb->index].used = true;
1092 return main_label;
1093 }
1094
1095 /* Clean up redundant labels within the exception tree. */
1096
1097 static void
1098 cleanup_dead_labels_eh (void)
1099 {
1100 eh_landing_pad lp;
1101 eh_region r;
1102 tree lab;
1103 int i;
1104
1105 if (cfun->eh == NULL)
1106 return;
1107
1108 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1109 if (lp && lp->post_landing_pad)
1110 {
1111 lab = main_block_label (lp->post_landing_pad);
1112 if (lab != lp->post_landing_pad)
1113 {
1114 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1115 EH_LANDING_PAD_NR (lab) = lp->index;
1116 }
1117 }
1118
1119 FOR_ALL_EH_REGION (r)
1120 switch (r->type)
1121 {
1122 case ERT_CLEANUP:
1123 case ERT_MUST_NOT_THROW:
1124 break;
1125
1126 case ERT_TRY:
1127 {
1128 eh_catch c;
1129 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1130 {
1131 lab = c->label;
1132 if (lab)
1133 c->label = main_block_label (lab);
1134 }
1135 }
1136 break;
1137
1138 case ERT_ALLOWED_EXCEPTIONS:
1139 lab = r->u.allowed.label;
1140 if (lab)
1141 r->u.allowed.label = main_block_label (lab);
1142 break;
1143 }
1144 }
1145
1146
1147 /* Cleanup redundant labels. This is a three-step process:
1148 1) Find the leading label for each block.
1149 2) Redirect all references to labels to the leading labels.
1150 3) Cleanup all useless labels. */
1151
1152 void
1153 cleanup_dead_labels (void)
1154 {
1155 basic_block bb;
1156 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1157
1158 /* Find a suitable label for each block. We use the first user-defined
1159 label if there is one, or otherwise just the first label we see. */
1160 FOR_EACH_BB (bb)
1161 {
1162 gimple_stmt_iterator i;
1163
1164 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1165 {
1166 tree label;
1167 gimple stmt = gsi_stmt (i);
1168
1169 if (gimple_code (stmt) != GIMPLE_LABEL)
1170 break;
1171
1172 label = gimple_label_label (stmt);
1173
1174 /* If we have not yet seen a label for the current block,
1175 remember this one and see if there are more labels. */
1176 if (!label_for_bb[bb->index].label)
1177 {
1178 label_for_bb[bb->index].label = label;
1179 continue;
1180 }
1181
1182 /* If we did see a label for the current block already, but it
1183 is an artificially created label, replace it if the current
1184 label is a user defined label. */
1185 if (!DECL_ARTIFICIAL (label)
1186 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1187 {
1188 label_for_bb[bb->index].label = label;
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Now redirect all jumps/branches to the selected label.
1195 First do so for each block ending in a control statement. */
1196 FOR_EACH_BB (bb)
1197 {
1198 gimple stmt = last_stmt (bb);
1199 if (!stmt)
1200 continue;
1201
1202 switch (gimple_code (stmt))
1203 {
1204 case GIMPLE_COND:
1205 {
1206 tree true_label = gimple_cond_true_label (stmt);
1207 tree false_label = gimple_cond_false_label (stmt);
1208
1209 if (true_label)
1210 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1211 if (false_label)
1212 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1213 break;
1214 }
1215
1216 case GIMPLE_SWITCH:
1217 {
1218 size_t i, n = gimple_switch_num_labels (stmt);
1219
1220 /* Replace all destination labels. */
1221 for (i = 0; i < n; ++i)
1222 {
1223 tree case_label = gimple_switch_label (stmt, i);
1224 tree label = main_block_label (CASE_LABEL (case_label));
1225 CASE_LABEL (case_label) = label;
1226 }
1227 break;
1228 }
1229
1230 case GIMPLE_ASM:
1231 {
1232 int i, n = gimple_asm_nlabels (stmt);
1233
1234 for (i = 0; i < n; ++i)
1235 {
1236 tree cons = gimple_asm_label_op (stmt, i);
1237 tree label = main_block_label (TREE_VALUE (cons));
1238 TREE_VALUE (cons) = label;
1239 }
1240 break;
1241 }
1242
1243 /* We have to handle gotos until they're removed, and we don't
1244 remove them until after we've created the CFG edges. */
1245 case GIMPLE_GOTO:
1246 if (!computed_goto_p (stmt))
1247 {
1248 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1249 gimple_goto_set_dest (stmt, new_dest);
1250 }
1251 break;
1252
1253 default:
1254 break;
1255 }
1256 }
1257
1258 /* Do the same for the exception region tree labels. */
1259 cleanup_dead_labels_eh ();
1260
1261 /* Finally, purge dead labels. All user-defined labels and labels that
1262 can be the target of non-local gotos and labels which have their
1263 address taken are preserved. */
1264 FOR_EACH_BB (bb)
1265 {
1266 gimple_stmt_iterator i;
1267 tree label_for_this_bb = label_for_bb[bb->index].label;
1268
1269 if (!label_for_this_bb)
1270 continue;
1271
1272 /* If the main label of the block is unused, we may still remove it. */
1273 if (!label_for_bb[bb->index].used)
1274 label_for_this_bb = NULL;
1275
1276 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1277 {
1278 tree label;
1279 gimple stmt = gsi_stmt (i);
1280
1281 if (gimple_code (stmt) != GIMPLE_LABEL)
1282 break;
1283
1284 label = gimple_label_label (stmt);
1285
1286 if (label == label_for_this_bb
1287 || !DECL_ARTIFICIAL (label)
1288 || DECL_NONLOCAL (label)
1289 || FORCED_LABEL (label))
1290 gsi_next (&i);
1291 else
1292 gsi_remove (&i, true);
1293 }
1294 }
1295
1296 free (label_for_bb);
1297 }
1298
1299 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1300 the ones jumping to the same label.
1301 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1302
1303 static void
1304 group_case_labels_stmt (gimple stmt)
1305 {
1306 int old_size = gimple_switch_num_labels (stmt);
1307 int i, j, new_size = old_size;
1308 tree default_case = NULL_TREE;
1309 tree default_label = NULL_TREE;
1310 bool has_default;
1311
1312 /* The default label is always the first case in a switch
1313 statement after gimplification if it was not optimized
1314 away */
1315 if (!CASE_LOW (gimple_switch_default_label (stmt))
1316 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1317 {
1318 default_case = gimple_switch_default_label (stmt);
1319 default_label = CASE_LABEL (default_case);
1320 has_default = true;
1321 }
1322 else
1323 has_default = false;
1324
1325 /* Look for possible opportunities to merge cases. */
1326 if (has_default)
1327 i = 1;
1328 else
1329 i = 0;
1330 while (i < old_size)
1331 {
1332 tree base_case, base_label, base_high;
1333 base_case = gimple_switch_label (stmt, i);
1334
1335 gcc_assert (base_case);
1336 base_label = CASE_LABEL (base_case);
1337
1338 /* Discard cases that have the same destination as the
1339 default case. */
1340 if (base_label == default_label)
1341 {
1342 gimple_switch_set_label (stmt, i, NULL_TREE);
1343 i++;
1344 new_size--;
1345 continue;
1346 }
1347
1348 base_high = CASE_HIGH (base_case)
1349 ? CASE_HIGH (base_case)
1350 : CASE_LOW (base_case);
1351 i++;
1352
1353 /* Try to merge case labels. Break out when we reach the end
1354 of the label vector or when we cannot merge the next case
1355 label with the current one. */
1356 while (i < old_size)
1357 {
1358 tree merge_case = gimple_switch_label (stmt, i);
1359 tree merge_label = CASE_LABEL (merge_case);
1360 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1361 double_int_one);
1362
1363 /* Merge the cases if they jump to the same place,
1364 and their ranges are consecutive. */
1365 if (merge_label == base_label
1366 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1367 bhp1))
1368 {
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1375 }
1376 else
1377 break;
1378 }
1379 }
1380
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1384 {
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1389 }
1390
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1393 }
1394
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1398
1399 void
1400 group_case_labels (void)
1401 {
1402 basic_block bb;
1403
1404 FOR_EACH_BB (bb)
1405 {
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1409 }
1410 }
1411
1412 /* Checks whether we can merge block B into block A. */
1413
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1416 {
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1420
1421 if (!single_succ_p (a))
1422 return false;
1423
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1425 return false;
1426
1427 if (single_succ (a) != b)
1428 return false;
1429
1430 if (!single_pred_p (b))
1431 return false;
1432
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1435
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1441
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1447
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1450 {
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1456
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1460 }
1461
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1465
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1473
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1477 {
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1489 }
1490
1491 return true;
1492 }
1493
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1498 {
1499 const ssa_use_operand_t *ptr;
1500
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1504
1505 return true;
1506 }
1507
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1514 {
1515 ssa_use_operand_t *ptr, *single_use = 0;
1516
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1519 {
1520 if (single_use)
1521 {
1522 single_use = NULL;
1523 break;
1524 }
1525 single_use = ptr;
1526 }
1527
1528 if (use_p)
1529 *use_p = single_use;
1530
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1533
1534 return !!single_use;
1535 }
1536
1537 /* Replaces all uses of NAME by VAL. */
1538
1539 void
1540 replace_uses_by (tree name, tree val)
1541 {
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1546
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1548 {
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1550 {
1551 replace_exp (use, val);
1552
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1554 {
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1557 {
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1563 }
1564 }
1565 }
1566
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1568 {
1569 size_t i;
1570
1571 fold_stmt_inplace (stmt);
1572 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1573 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1574
1575 /* FIXME. This should go in update_stmt. */
1576 for (i = 0; i < gimple_num_ops (stmt); i++)
1577 {
1578 tree op = gimple_op (stmt, i);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op && TREE_CODE (op) == ADDR_EXPR)
1583 recompute_tree_invariant_for_addr_expr (op);
1584 }
1585
1586 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1587 update_stmt (stmt);
1588 }
1589 }
1590
1591 gcc_assert (has_zero_uses (name));
1592
1593 /* Also update the trees stored in loop structures. */
1594 if (current_loops)
1595 {
1596 struct loop *loop;
1597 loop_iterator li;
1598
1599 FOR_EACH_LOOP (li, loop, 0)
1600 {
1601 substitute_in_loop_info (loop, name, val);
1602 }
1603 }
1604 }
1605
1606 /* Merge block B into block A. */
1607
1608 static void
1609 gimple_merge_blocks (basic_block a, basic_block b)
1610 {
1611 gimple_stmt_iterator last, gsi, psi;
1612 gimple_seq phis = phi_nodes (b);
1613
1614 if (dump_file)
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1616
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1621 {
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1624 gimple copy;
1625 bool may_replace_uses = !is_gimple_reg (def)
1626 || may_propagate_copy (def, use);
1627
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1630 if (current_loops
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && is_gimple_reg (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1636
1637 if (!may_replace_uses)
1638 {
1639 gcc_assert (is_gimple_reg (def));
1640
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1648 }
1649 else
1650 {
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1653 the stmt. */
1654 if (!is_gimple_reg (def))
1655 {
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1658 gimple stmt;
1659
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1663
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1666 }
1667 else
1668 replace_uses_by (def, use);
1669
1670 remove_phi_node (&psi, true);
1671 }
1672 }
1673
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1676
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1679
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1682 {
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1685 {
1686 tree label = gimple_label_label (stmt);
1687 int lp_nr;
1688
1689 gsi_remove (&gsi, false);
1690
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1698 {
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1701 }
1702
1703 lp_nr = EH_LANDING_PAD_NR (label);
1704 if (lp_nr)
1705 {
1706 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1707 lp->post_landing_pad = NULL;
1708 }
1709 }
1710 else
1711 {
1712 gimple_set_bb (stmt, a);
1713 gsi_next (&gsi);
1714 }
1715 }
1716
1717 /* Merge the sequences. */
1718 last = gsi_last_bb (a);
1719 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1720 set_bb_seq (b, NULL);
1721
1722 if (cfgcleanup_altered_bbs)
1723 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1724 }
1725
1726
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1731
1732 basic_block
1733 single_noncomplex_succ (basic_block bb)
1734 {
1735 edge e0, e1;
1736 if (EDGE_COUNT (bb->succs) != 2)
1737 return bb;
1738
1739 e0 = EDGE_SUCC (bb, 0);
1740 e1 = EDGE_SUCC (bb, 1);
1741 if (e0->flags & EDGE_COMPLEX)
1742 return e1->dest;
1743 if (e1->flags & EDGE_COMPLEX)
1744 return e0->dest;
1745
1746 return bb;
1747 }
1748
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1750
1751 void
1752 notice_special_calls (gimple call)
1753 {
1754 int flags = gimple_call_flags (call);
1755
1756 if (flags & ECF_MAY_BE_ALLOCA)
1757 cfun->calls_alloca = true;
1758 if (flags & ECF_RETURNS_TWICE)
1759 cfun->calls_setjmp = true;
1760 }
1761
1762
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1765
1766 void
1767 clear_special_calls (void)
1768 {
1769 cfun->calls_alloca = false;
1770 cfun->calls_setjmp = false;
1771 }
1772
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1774
1775 static void
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1777 {
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb);
1781
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb->succs) > 0)
1784 remove_edge (EDGE_SUCC (bb, 0));
1785 }
1786
1787
1788 /* Remove statements of basic block BB. */
1789
1790 static void
1791 remove_bb (basic_block bb)
1792 {
1793 gimple_stmt_iterator i;
1794
1795 if (dump_file)
1796 {
1797 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1798 if (dump_flags & TDF_DETAILS)
1799 {
1800 dump_bb (bb, dump_file, 0);
1801 fprintf (dump_file, "\n");
1802 }
1803 }
1804
1805 if (current_loops)
1806 {
1807 struct loop *loop = bb->loop_father;
1808
1809 /* If a loop gets removed, clean up the information associated
1810 with it. */
1811 if (loop->latch == bb
1812 || loop->header == bb)
1813 free_numbers_of_iterations_estimates_loop (loop);
1814 }
1815
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb) != NULL)
1818 {
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1822 details. */
1823 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1824 {
1825 gimple stmt = gsi_stmt (i);
1826 if (gimple_code (stmt) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt))
1828 || DECL_NONLOCAL (gimple_label_label (stmt))))
1829 {
1830 basic_block new_bb;
1831 gimple_stmt_iterator new_gsi;
1832
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1835 non-locality. */
1836 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1837 {
1838 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1840 }
1841
1842 new_bb = bb->prev_bb;
1843 new_gsi = gsi_start_bb (new_bb);
1844 gsi_remove (&i, false);
1845 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1846 }
1847 else
1848 {
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun))
1854 release_defs (stmt);
1855
1856 gsi_remove (&i, true);
1857 }
1858
1859 if (gsi_end_p (i))
1860 i = gsi_last_bb (bb);
1861 else
1862 gsi_prev (&i);
1863 }
1864 }
1865
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1867 bb->il.gimple = NULL;
1868 }
1869
1870
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1874
1875 edge
1876 find_taken_edge (basic_block bb, tree val)
1877 {
1878 gimple stmt;
1879
1880 stmt = last_stmt (bb);
1881
1882 gcc_assert (stmt);
1883 gcc_assert (is_ctrl_stmt (stmt));
1884
1885 if (val == NULL)
1886 return NULL;
1887
1888 if (!is_gimple_min_invariant (val))
1889 return NULL;
1890
1891 if (gimple_code (stmt) == GIMPLE_COND)
1892 return find_taken_edge_cond_expr (bb, val);
1893
1894 if (gimple_code (stmt) == GIMPLE_SWITCH)
1895 return find_taken_edge_switch_expr (bb, val);
1896
1897 if (computed_goto_p (stmt))
1898 {
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1901
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1906 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1907 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1908 return NULL;
1909 }
1910
1911 gcc_unreachable ();
1912 }
1913
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1917
1918 static edge
1919 find_taken_edge_computed_goto (basic_block bb, tree val)
1920 {
1921 basic_block dest;
1922 edge e = NULL;
1923
1924 dest = label_to_block (val);
1925 if (dest)
1926 {
1927 e = find_edge (bb, dest);
1928 gcc_assert (e != NULL);
1929 }
1930
1931 return e;
1932 }
1933
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1937
1938 static edge
1939 find_taken_edge_cond_expr (basic_block bb, tree val)
1940 {
1941 edge true_edge, false_edge;
1942
1943 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1944
1945 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1946 return (integer_zerop (val) ? false_edge : true_edge);
1947 }
1948
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1952
1953 static edge
1954 find_taken_edge_switch_expr (basic_block bb, tree val)
1955 {
1956 basic_block dest_bb;
1957 edge e;
1958 gimple switch_stmt;
1959 tree taken_case;
1960
1961 switch_stmt = last_stmt (bb);
1962 taken_case = find_case_label_for_value (switch_stmt, val);
1963 dest_bb = label_to_block (CASE_LABEL (taken_case));
1964
1965 e = find_edge (bb, dest_bb);
1966 gcc_assert (e);
1967 return e;
1968 }
1969
1970
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1974
1975 static tree
1976 find_case_label_for_value (gimple switch_stmt, tree val)
1977 {
1978 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1979 tree default_case = gimple_switch_default_label (switch_stmt);
1980
1981 for (low = 0, high = n; high - low > 1; )
1982 {
1983 size_t i = (high + low) / 2;
1984 tree t = gimple_switch_label (switch_stmt, i);
1985 int cmp;
1986
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1989
1990 if (cmp > 0)
1991 high = i;
1992 else
1993 low = i;
1994
1995 if (CASE_HIGH (t) == NULL)
1996 {
1997 /* A singe-valued case label. */
1998 if (cmp == 0)
1999 return t;
2000 }
2001 else
2002 {
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2005 return t;
2006 }
2007 }
2008
2009 return default_case;
2010 }
2011
2012
2013 /* Dump a basic block on stderr. */
2014
2015 void
2016 gimple_debug_bb (basic_block bb)
2017 {
2018 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2019 }
2020
2021
2022 /* Dump basic block with index N on stderr. */
2023
2024 basic_block
2025 gimple_debug_bb_n (int n)
2026 {
2027 gimple_debug_bb (BASIC_BLOCK (n));
2028 return BASIC_BLOCK (n);
2029 }
2030
2031
2032 /* Dump the CFG on stderr.
2033
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2036
2037 void
2038 gimple_debug_cfg (int flags)
2039 {
2040 gimple_dump_cfg (stderr, flags);
2041 }
2042
2043
2044 /* Dump the program showing basic block boundaries on the given FILE.
2045
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2047 tree.h). */
2048
2049 void
2050 gimple_dump_cfg (FILE *file, int flags)
2051 {
2052 if (flags & TDF_DETAILS)
2053 {
2054 dump_function_header (file, current_function_decl, flags);
2055 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2056 n_basic_blocks, n_edges, last_basic_block);
2057
2058 brief_dump_cfg (file);
2059 fprintf (file, "\n");
2060 }
2061
2062 if (flags & TDF_STATS)
2063 dump_cfg_stats (file);
2064
2065 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2066 }
2067
2068
2069 /* Dump CFG statistics on FILE. */
2070
2071 void
2072 dump_cfg_stats (FILE *file)
2073 {
2074 static long max_num_merged_labels = 0;
2075 unsigned long size, total = 0;
2076 long num_edges;
2077 basic_block bb;
2078 const char * const fmt_str = "%-30s%-13s%12s\n";
2079 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2080 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2081 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2082 const char *funcname
2083 = lang_hooks.decl_printable_name (current_function_decl, 2);
2084
2085
2086 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2087
2088 fprintf (file, "---------------------------------------------------------\n");
2089 fprintf (file, fmt_str, "", " Number of ", "Memory");
2090 fprintf (file, fmt_str, "", " instances ", "used ");
2091 fprintf (file, "---------------------------------------------------------\n");
2092
2093 size = n_basic_blocks * sizeof (struct basic_block_def);
2094 total += size;
2095 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2096 SCALE (size), LABEL (size));
2097
2098 num_edges = 0;
2099 FOR_EACH_BB (bb)
2100 num_edges += EDGE_COUNT (bb->succs);
2101 size = num_edges * sizeof (struct edge_def);
2102 total += size;
2103 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2104
2105 fprintf (file, "---------------------------------------------------------\n");
2106 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2107 LABEL (total));
2108 fprintf (file, "---------------------------------------------------------\n");
2109 fprintf (file, "\n");
2110
2111 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2112 max_num_merged_labels = cfg_stats.num_merged_labels;
2113
2114 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2115 cfg_stats.num_merged_labels, max_num_merged_labels);
2116
2117 fprintf (file, "\n");
2118 }
2119
2120
2121 /* Dump CFG statistics on stderr. Keep extern so that it's always
2122 linked in the final executable. */
2123
2124 DEBUG_FUNCTION void
2125 debug_cfg_stats (void)
2126 {
2127 dump_cfg_stats (stderr);
2128 }
2129
2130
2131 /* Dump the flowgraph to a .vcg FILE. */
2132
2133 static void
2134 gimple_cfg2vcg (FILE *file)
2135 {
2136 edge e;
2137 edge_iterator ei;
2138 basic_block bb;
2139 const char *funcname
2140 = lang_hooks.decl_printable_name (current_function_decl, 2);
2141
2142 /* Write the file header. */
2143 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2144 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2145 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2146
2147 /* Write blocks and edges. */
2148 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2149 {
2150 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2151 e->dest->index);
2152
2153 if (e->flags & EDGE_FAKE)
2154 fprintf (file, " linestyle: dotted priority: 10");
2155 else
2156 fprintf (file, " linestyle: solid priority: 100");
2157
2158 fprintf (file, " }\n");
2159 }
2160 fputc ('\n', file);
2161
2162 FOR_EACH_BB (bb)
2163 {
2164 enum gimple_code head_code, end_code;
2165 const char *head_name, *end_name;
2166 int head_line = 0;
2167 int end_line = 0;
2168 gimple first = first_stmt (bb);
2169 gimple last = last_stmt (bb);
2170
2171 if (first)
2172 {
2173 head_code = gimple_code (first);
2174 head_name = gimple_code_name[head_code];
2175 head_line = get_lineno (first);
2176 }
2177 else
2178 head_name = "no-statement";
2179
2180 if (last)
2181 {
2182 end_code = gimple_code (last);
2183 end_name = gimple_code_name[end_code];
2184 end_line = get_lineno (last);
2185 }
2186 else
2187 end_name = "no-statement";
2188
2189 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2190 bb->index, bb->index, head_name, head_line, end_name,
2191 end_line);
2192
2193 FOR_EACH_EDGE (e, ei, bb->succs)
2194 {
2195 if (e->dest == EXIT_BLOCK_PTR)
2196 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2197 else
2198 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2199
2200 if (e->flags & EDGE_FAKE)
2201 fprintf (file, " priority: 10 linestyle: dotted");
2202 else
2203 fprintf (file, " priority: 100 linestyle: solid");
2204
2205 fprintf (file, " }\n");
2206 }
2207
2208 if (bb->next_bb != EXIT_BLOCK_PTR)
2209 fputc ('\n', file);
2210 }
2211
2212 fputs ("}\n\n", file);
2213 }
2214
2215
2216
2217 /*---------------------------------------------------------------------------
2218 Miscellaneous helpers
2219 ---------------------------------------------------------------------------*/
2220
2221 /* Return true if T represents a stmt that always transfers control. */
2222
2223 bool
2224 is_ctrl_stmt (gimple t)
2225 {
2226 switch (gimple_code (t))
2227 {
2228 case GIMPLE_COND:
2229 case GIMPLE_SWITCH:
2230 case GIMPLE_GOTO:
2231 case GIMPLE_RETURN:
2232 case GIMPLE_RESX:
2233 return true;
2234 default:
2235 return false;
2236 }
2237 }
2238
2239
2240 /* Return true if T is a statement that may alter the flow of control
2241 (e.g., a call to a non-returning function). */
2242
2243 bool
2244 is_ctrl_altering_stmt (gimple t)
2245 {
2246 gcc_assert (t);
2247
2248 switch (gimple_code (t))
2249 {
2250 case GIMPLE_CALL:
2251 {
2252 int flags = gimple_call_flags (t);
2253
2254 /* A non-pure/const call alters flow control if the current
2255 function has nonlocal labels. */
2256 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2257 && cfun->has_nonlocal_label)
2258 return true;
2259
2260 /* A call also alters control flow if it does not return. */
2261 if (flags & ECF_NORETURN)
2262 return true;
2263
2264 /* BUILT_IN_RETURN call is same as return statement. */
2265 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2266 return true;
2267 }
2268 break;
2269
2270 case GIMPLE_EH_DISPATCH:
2271 /* EH_DISPATCH branches to the individual catch handlers at
2272 this level of a try or allowed-exceptions region. It can
2273 fallthru to the next statement as well. */
2274 return true;
2275
2276 case GIMPLE_ASM:
2277 if (gimple_asm_nlabels (t) > 0)
2278 return true;
2279 break;
2280
2281 CASE_GIMPLE_OMP:
2282 /* OpenMP directives alter control flow. */
2283 return true;
2284
2285 default:
2286 break;
2287 }
2288
2289 /* If a statement can throw, it alters control flow. */
2290 return stmt_can_throw_internal (t);
2291 }
2292
2293
2294 /* Return true if T is a simple local goto. */
2295
2296 bool
2297 simple_goto_p (gimple t)
2298 {
2299 return (gimple_code (t) == GIMPLE_GOTO
2300 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2301 }
2302
2303
2304 /* Return true if T can make an abnormal transfer of control flow.
2305 Transfers of control flow associated with EH are excluded. */
2306
2307 bool
2308 stmt_can_make_abnormal_goto (gimple t)
2309 {
2310 if (computed_goto_p (t))
2311 return true;
2312 if (is_gimple_call (t))
2313 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2314 && !(gimple_call_flags (t) & ECF_LEAF));
2315 return false;
2316 }
2317
2318
2319 /* Return true if STMT should start a new basic block. PREV_STMT is
2320 the statement preceding STMT. It is used when STMT is a label or a
2321 case label. Labels should only start a new basic block if their
2322 previous statement wasn't a label. Otherwise, sequence of labels
2323 would generate unnecessary basic blocks that only contain a single
2324 label. */
2325
2326 static inline bool
2327 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2328 {
2329 if (stmt == NULL)
2330 return false;
2331
2332 /* Labels start a new basic block only if the preceding statement
2333 wasn't a label of the same type. This prevents the creation of
2334 consecutive blocks that have nothing but a single label. */
2335 if (gimple_code (stmt) == GIMPLE_LABEL)
2336 {
2337 /* Nonlocal and computed GOTO targets always start a new block. */
2338 if (DECL_NONLOCAL (gimple_label_label (stmt))
2339 || FORCED_LABEL (gimple_label_label (stmt)))
2340 return true;
2341
2342 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2343 {
2344 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2345 return true;
2346
2347 cfg_stats.num_merged_labels++;
2348 return false;
2349 }
2350 else
2351 return true;
2352 }
2353
2354 return false;
2355 }
2356
2357
2358 /* Return true if T should end a basic block. */
2359
2360 bool
2361 stmt_ends_bb_p (gimple t)
2362 {
2363 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2364 }
2365
2366 /* Remove block annotations and other data structures. */
2367
2368 void
2369 delete_tree_cfg_annotations (void)
2370 {
2371 label_to_block_map = NULL;
2372 }
2373
2374
2375 /* Return the first statement in basic block BB. */
2376
2377 gimple
2378 first_stmt (basic_block bb)
2379 {
2380 gimple_stmt_iterator i = gsi_start_bb (bb);
2381 gimple stmt = NULL;
2382
2383 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2384 {
2385 gsi_next (&i);
2386 stmt = NULL;
2387 }
2388 return stmt;
2389 }
2390
2391 /* Return the first non-label statement in basic block BB. */
2392
2393 static gimple
2394 first_non_label_stmt (basic_block bb)
2395 {
2396 gimple_stmt_iterator i = gsi_start_bb (bb);
2397 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2398 gsi_next (&i);
2399 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2400 }
2401
2402 /* Return the last statement in basic block BB. */
2403
2404 gimple
2405 last_stmt (basic_block bb)
2406 {
2407 gimple_stmt_iterator i = gsi_last_bb (bb);
2408 gimple stmt = NULL;
2409
2410 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2411 {
2412 gsi_prev (&i);
2413 stmt = NULL;
2414 }
2415 return stmt;
2416 }
2417
2418 /* Return the last statement of an otherwise empty block. Return NULL
2419 if the block is totally empty, or if it contains more than one
2420 statement. */
2421
2422 gimple
2423 last_and_only_stmt (basic_block bb)
2424 {
2425 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2426 gimple last, prev;
2427
2428 if (gsi_end_p (i))
2429 return NULL;
2430
2431 last = gsi_stmt (i);
2432 gsi_prev_nondebug (&i);
2433 if (gsi_end_p (i))
2434 return last;
2435
2436 /* Empty statements should no longer appear in the instruction stream.
2437 Everything that might have appeared before should be deleted by
2438 remove_useless_stmts, and the optimizers should just gsi_remove
2439 instead of smashing with build_empty_stmt.
2440
2441 Thus the only thing that should appear here in a block containing
2442 one executable statement is a label. */
2443 prev = gsi_stmt (i);
2444 if (gimple_code (prev) == GIMPLE_LABEL)
2445 return last;
2446 else
2447 return NULL;
2448 }
2449
2450 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2451
2452 static void
2453 reinstall_phi_args (edge new_edge, edge old_edge)
2454 {
2455 edge_var_map_vector v;
2456 edge_var_map *vm;
2457 int i;
2458 gimple_stmt_iterator phis;
2459
2460 v = redirect_edge_var_map_vector (old_edge);
2461 if (!v)
2462 return;
2463
2464 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2465 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2466 i++, gsi_next (&phis))
2467 {
2468 gimple phi = gsi_stmt (phis);
2469 tree result = redirect_edge_var_map_result (vm);
2470 tree arg = redirect_edge_var_map_def (vm);
2471
2472 gcc_assert (result == gimple_phi_result (phi));
2473
2474 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2475 }
2476
2477 redirect_edge_var_map_clear (old_edge);
2478 }
2479
2480 /* Returns the basic block after which the new basic block created
2481 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2482 near its "logical" location. This is of most help to humans looking
2483 at debugging dumps. */
2484
2485 static basic_block
2486 split_edge_bb_loc (edge edge_in)
2487 {
2488 basic_block dest = edge_in->dest;
2489 basic_block dest_prev = dest->prev_bb;
2490
2491 if (dest_prev)
2492 {
2493 edge e = find_edge (dest_prev, dest);
2494 if (e && !(e->flags & EDGE_COMPLEX))
2495 return edge_in->src;
2496 }
2497 return dest_prev;
2498 }
2499
2500 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2501 Abort on abnormal edges. */
2502
2503 static basic_block
2504 gimple_split_edge (edge edge_in)
2505 {
2506 basic_block new_bb, after_bb, dest;
2507 edge new_edge, e;
2508
2509 /* Abnormal edges cannot be split. */
2510 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2511
2512 dest = edge_in->dest;
2513
2514 after_bb = split_edge_bb_loc (edge_in);
2515
2516 new_bb = create_empty_bb (after_bb);
2517 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2518 new_bb->count = edge_in->count;
2519 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2520 new_edge->probability = REG_BR_PROB_BASE;
2521 new_edge->count = edge_in->count;
2522
2523 e = redirect_edge_and_branch (edge_in, new_bb);
2524 gcc_assert (e == edge_in);
2525 reinstall_phi_args (new_edge, e);
2526
2527 return new_bb;
2528 }
2529
2530
2531 /* Verify properties of the address expression T with base object BASE. */
2532
2533 static tree
2534 verify_address (tree t, tree base)
2535 {
2536 bool old_constant;
2537 bool old_side_effects;
2538 bool new_constant;
2539 bool new_side_effects;
2540
2541 old_constant = TREE_CONSTANT (t);
2542 old_side_effects = TREE_SIDE_EFFECTS (t);
2543
2544 recompute_tree_invariant_for_addr_expr (t);
2545 new_side_effects = TREE_SIDE_EFFECTS (t);
2546 new_constant = TREE_CONSTANT (t);
2547
2548 if (old_constant != new_constant)
2549 {
2550 error ("constant not recomputed when ADDR_EXPR changed");
2551 return t;
2552 }
2553 if (old_side_effects != new_side_effects)
2554 {
2555 error ("side effects not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558
2559 if (!(TREE_CODE (base) == VAR_DECL
2560 || TREE_CODE (base) == PARM_DECL
2561 || TREE_CODE (base) == RESULT_DECL))
2562 return NULL_TREE;
2563
2564 if (DECL_GIMPLE_REG_P (base))
2565 {
2566 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2567 return base;
2568 }
2569
2570 return NULL_TREE;
2571 }
2572
2573 /* Callback for walk_tree, check that all elements with address taken are
2574 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2575 inside a PHI node. */
2576
2577 static tree
2578 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2579 {
2580 tree t = *tp, x;
2581
2582 if (TYPE_P (t))
2583 *walk_subtrees = 0;
2584
2585 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2586 #define CHECK_OP(N, MSG) \
2587 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2588 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2589
2590 switch (TREE_CODE (t))
2591 {
2592 case SSA_NAME:
2593 if (SSA_NAME_IN_FREE_LIST (t))
2594 {
2595 error ("SSA name in freelist but still referenced");
2596 return *tp;
2597 }
2598 break;
2599
2600 case INDIRECT_REF:
2601 error ("INDIRECT_REF in gimple IL");
2602 return t;
2603
2604 case MEM_REF:
2605 x = TREE_OPERAND (t, 0);
2606 if (!POINTER_TYPE_P (TREE_TYPE (x))
2607 || !is_gimple_mem_ref_addr (x))
2608 {
2609 error ("invalid first operand of MEM_REF");
2610 return x;
2611 }
2612 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2613 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2614 {
2615 error ("invalid offset operand of MEM_REF");
2616 return TREE_OPERAND (t, 1);
2617 }
2618 if (TREE_CODE (x) == ADDR_EXPR
2619 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2620 return x;
2621 *walk_subtrees = 0;
2622 break;
2623
2624 case ASSERT_EXPR:
2625 x = fold (ASSERT_EXPR_COND (t));
2626 if (x == boolean_false_node)
2627 {
2628 error ("ASSERT_EXPR with an always-false condition");
2629 return *tp;
2630 }
2631 break;
2632
2633 case MODIFY_EXPR:
2634 error ("MODIFY_EXPR not expected while having tuples");
2635 return *tp;
2636
2637 case ADDR_EXPR:
2638 {
2639 tree tem;
2640
2641 gcc_assert (is_gimple_address (t));
2642
2643 /* Skip any references (they will be checked when we recurse down the
2644 tree) and ensure that any variable used as a prefix is marked
2645 addressable. */
2646 for (x = TREE_OPERAND (t, 0);
2647 handled_component_p (x);
2648 x = TREE_OPERAND (x, 0))
2649 ;
2650
2651 if ((tem = verify_address (t, x)))
2652 return tem;
2653
2654 if (!(TREE_CODE (x) == VAR_DECL
2655 || TREE_CODE (x) == PARM_DECL
2656 || TREE_CODE (x) == RESULT_DECL))
2657 return NULL;
2658
2659 if (!TREE_ADDRESSABLE (x))
2660 {
2661 error ("address taken, but ADDRESSABLE bit not set");
2662 return x;
2663 }
2664
2665 break;
2666 }
2667
2668 case COND_EXPR:
2669 x = COND_EXPR_COND (t);
2670 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2671 {
2672 error ("non-integral used in condition");
2673 return x;
2674 }
2675 if (!is_gimple_condexpr (x))
2676 {
2677 error ("invalid conditional operand");
2678 return x;
2679 }
2680 break;
2681
2682 case NON_LVALUE_EXPR:
2683 case TRUTH_NOT_EXPR:
2684 gcc_unreachable ();
2685
2686 CASE_CONVERT:
2687 case FIX_TRUNC_EXPR:
2688 case FLOAT_EXPR:
2689 case NEGATE_EXPR:
2690 case ABS_EXPR:
2691 case BIT_NOT_EXPR:
2692 CHECK_OP (0, "invalid operand to unary operator");
2693 break;
2694
2695 case REALPART_EXPR:
2696 case IMAGPART_EXPR:
2697 case COMPONENT_REF:
2698 case ARRAY_REF:
2699 case ARRAY_RANGE_REF:
2700 case BIT_FIELD_REF:
2701 case VIEW_CONVERT_EXPR:
2702 /* We have a nest of references. Verify that each of the operands
2703 that determine where to reference is either a constant or a variable,
2704 verify that the base is valid, and then show we've already checked
2705 the subtrees. */
2706 while (handled_component_p (t))
2707 {
2708 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2709 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2710 else if (TREE_CODE (t) == ARRAY_REF
2711 || TREE_CODE (t) == ARRAY_RANGE_REF)
2712 {
2713 CHECK_OP (1, "invalid array index");
2714 if (TREE_OPERAND (t, 2))
2715 CHECK_OP (2, "invalid array lower bound");
2716 if (TREE_OPERAND (t, 3))
2717 CHECK_OP (3, "invalid array stride");
2718 }
2719 else if (TREE_CODE (t) == BIT_FIELD_REF)
2720 {
2721 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2722 || !host_integerp (TREE_OPERAND (t, 2), 1))
2723 {
2724 error ("invalid position or size operand to BIT_FIELD_REF");
2725 return t;
2726 }
2727 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2728 && (TYPE_PRECISION (TREE_TYPE (t))
2729 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2730 {
2731 error ("integral result type precision does not match "
2732 "field size of BIT_FIELD_REF");
2733 return t;
2734 }
2735 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2736 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2737 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2738 {
2739 error ("mode precision of non-integral result does not "
2740 "match field size of BIT_FIELD_REF");
2741 return t;
2742 }
2743 }
2744
2745 t = TREE_OPERAND (t, 0);
2746 }
2747
2748 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2749 {
2750 error ("invalid reference prefix");
2751 return t;
2752 }
2753 *walk_subtrees = 0;
2754 break;
2755 case PLUS_EXPR:
2756 case MINUS_EXPR:
2757 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2758 POINTER_PLUS_EXPR. */
2759 if (POINTER_TYPE_P (TREE_TYPE (t)))
2760 {
2761 error ("invalid operand to plus/minus, type is a pointer");
2762 return t;
2763 }
2764 CHECK_OP (0, "invalid operand to binary operator");
2765 CHECK_OP (1, "invalid operand to binary operator");
2766 break;
2767
2768 case POINTER_PLUS_EXPR:
2769 /* Check to make sure the first operand is a pointer or reference type. */
2770 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2771 {
2772 error ("invalid operand to pointer plus, first operand is not a pointer");
2773 return t;
2774 }
2775 /* Check to make sure the second operand is a ptrofftype. */
2776 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2777 {
2778 error ("invalid operand to pointer plus, second operand is not an "
2779 "integer type of appropriate width");
2780 return t;
2781 }
2782 /* FALLTHROUGH */
2783 case LT_EXPR:
2784 case LE_EXPR:
2785 case GT_EXPR:
2786 case GE_EXPR:
2787 case EQ_EXPR:
2788 case NE_EXPR:
2789 case UNORDERED_EXPR:
2790 case ORDERED_EXPR:
2791 case UNLT_EXPR:
2792 case UNLE_EXPR:
2793 case UNGT_EXPR:
2794 case UNGE_EXPR:
2795 case UNEQ_EXPR:
2796 case LTGT_EXPR:
2797 case MULT_EXPR:
2798 case TRUNC_DIV_EXPR:
2799 case CEIL_DIV_EXPR:
2800 case FLOOR_DIV_EXPR:
2801 case ROUND_DIV_EXPR:
2802 case TRUNC_MOD_EXPR:
2803 case CEIL_MOD_EXPR:
2804 case FLOOR_MOD_EXPR:
2805 case ROUND_MOD_EXPR:
2806 case RDIV_EXPR:
2807 case EXACT_DIV_EXPR:
2808 case MIN_EXPR:
2809 case MAX_EXPR:
2810 case LSHIFT_EXPR:
2811 case RSHIFT_EXPR:
2812 case LROTATE_EXPR:
2813 case RROTATE_EXPR:
2814 case BIT_IOR_EXPR:
2815 case BIT_XOR_EXPR:
2816 case BIT_AND_EXPR:
2817 CHECK_OP (0, "invalid operand to binary operator");
2818 CHECK_OP (1, "invalid operand to binary operator");
2819 break;
2820
2821 case CONSTRUCTOR:
2822 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2823 *walk_subtrees = 0;
2824 break;
2825
2826 case CASE_LABEL_EXPR:
2827 if (CASE_CHAIN (t))
2828 {
2829 error ("invalid CASE_CHAIN");
2830 return t;
2831 }
2832 break;
2833
2834 default:
2835 break;
2836 }
2837 return NULL;
2838
2839 #undef CHECK_OP
2840 }
2841
2842
2843 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2844 Returns true if there is an error, otherwise false. */
2845
2846 static bool
2847 verify_types_in_gimple_min_lval (tree expr)
2848 {
2849 tree op;
2850
2851 if (is_gimple_id (expr))
2852 return false;
2853
2854 if (TREE_CODE (expr) != TARGET_MEM_REF
2855 && TREE_CODE (expr) != MEM_REF)
2856 {
2857 error ("invalid expression for min lvalue");
2858 return true;
2859 }
2860
2861 /* TARGET_MEM_REFs are strange beasts. */
2862 if (TREE_CODE (expr) == TARGET_MEM_REF)
2863 return false;
2864
2865 op = TREE_OPERAND (expr, 0);
2866 if (!is_gimple_val (op))
2867 {
2868 error ("invalid operand in indirect reference");
2869 debug_generic_stmt (op);
2870 return true;
2871 }
2872 /* Memory references now generally can involve a value conversion. */
2873
2874 return false;
2875 }
2876
2877 /* Verify if EXPR is a valid GIMPLE reference expression. If
2878 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2879 if there is an error, otherwise false. */
2880
2881 static bool
2882 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2883 {
2884 while (handled_component_p (expr))
2885 {
2886 tree op = TREE_OPERAND (expr, 0);
2887
2888 if (TREE_CODE (expr) == ARRAY_REF
2889 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2890 {
2891 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2892 || (TREE_OPERAND (expr, 2)
2893 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2894 || (TREE_OPERAND (expr, 3)
2895 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2896 {
2897 error ("invalid operands to array reference");
2898 debug_generic_stmt (expr);
2899 return true;
2900 }
2901 }
2902
2903 /* Verify if the reference array element types are compatible. */
2904 if (TREE_CODE (expr) == ARRAY_REF
2905 && !useless_type_conversion_p (TREE_TYPE (expr),
2906 TREE_TYPE (TREE_TYPE (op))))
2907 {
2908 error ("type mismatch in array reference");
2909 debug_generic_stmt (TREE_TYPE (expr));
2910 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2911 return true;
2912 }
2913 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2914 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2915 TREE_TYPE (TREE_TYPE (op))))
2916 {
2917 error ("type mismatch in array range reference");
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2919 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2920 return true;
2921 }
2922
2923 if ((TREE_CODE (expr) == REALPART_EXPR
2924 || TREE_CODE (expr) == IMAGPART_EXPR)
2925 && !useless_type_conversion_p (TREE_TYPE (expr),
2926 TREE_TYPE (TREE_TYPE (op))))
2927 {
2928 error ("type mismatch in real/imagpart reference");
2929 debug_generic_stmt (TREE_TYPE (expr));
2930 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2931 return true;
2932 }
2933
2934 if (TREE_CODE (expr) == COMPONENT_REF
2935 && !useless_type_conversion_p (TREE_TYPE (expr),
2936 TREE_TYPE (TREE_OPERAND (expr, 1))))
2937 {
2938 error ("type mismatch in component reference");
2939 debug_generic_stmt (TREE_TYPE (expr));
2940 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2941 return true;
2942 }
2943
2944 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2945 {
2946 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2947 that their operand is not an SSA name or an invariant when
2948 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2949 bug). Otherwise there is nothing to verify, gross mismatches at
2950 most invoke undefined behavior. */
2951 if (require_lvalue
2952 && (TREE_CODE (op) == SSA_NAME
2953 || is_gimple_min_invariant (op)))
2954 {
2955 error ("conversion of an SSA_NAME on the left hand side");
2956 debug_generic_stmt (expr);
2957 return true;
2958 }
2959 else if (TREE_CODE (op) == SSA_NAME
2960 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2961 {
2962 error ("conversion of register to a different size");
2963 debug_generic_stmt (expr);
2964 return true;
2965 }
2966 else if (!handled_component_p (op))
2967 return false;
2968 }
2969
2970 expr = op;
2971 }
2972
2973 if (TREE_CODE (expr) == MEM_REF)
2974 {
2975 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2976 {
2977 error ("invalid address operand in MEM_REF");
2978 debug_generic_stmt (expr);
2979 return true;
2980 }
2981 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2982 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2983 {
2984 error ("invalid offset operand in MEM_REF");
2985 debug_generic_stmt (expr);
2986 return true;
2987 }
2988 }
2989 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2990 {
2991 if (!TMR_BASE (expr)
2992 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2993 {
2994 error ("invalid address operand in TARGET_MEM_REF");
2995 return true;
2996 }
2997 if (!TMR_OFFSET (expr)
2998 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2999 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3000 {
3001 error ("invalid offset operand in TARGET_MEM_REF");
3002 debug_generic_stmt (expr);
3003 return true;
3004 }
3005 }
3006
3007 return ((require_lvalue || !is_gimple_min_invariant (expr))
3008 && verify_types_in_gimple_min_lval (expr));
3009 }
3010
3011 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3012 list of pointer-to types that is trivially convertible to DEST. */
3013
3014 static bool
3015 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3016 {
3017 tree src;
3018
3019 if (!TYPE_POINTER_TO (src_obj))
3020 return true;
3021
3022 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3023 if (useless_type_conversion_p (dest, src))
3024 return true;
3025
3026 return false;
3027 }
3028
3029 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3030 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3031
3032 static bool
3033 valid_fixed_convert_types_p (tree type1, tree type2)
3034 {
3035 return (FIXED_POINT_TYPE_P (type1)
3036 && (INTEGRAL_TYPE_P (type2)
3037 || SCALAR_FLOAT_TYPE_P (type2)
3038 || FIXED_POINT_TYPE_P (type2)));
3039 }
3040
3041 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3042 is a problem, otherwise false. */
3043
3044 static bool
3045 verify_gimple_call (gimple stmt)
3046 {
3047 tree fn = gimple_call_fn (stmt);
3048 tree fntype, fndecl;
3049 unsigned i;
3050
3051 if (gimple_call_internal_p (stmt))
3052 {
3053 if (fn)
3054 {
3055 error ("gimple call has two targets");
3056 debug_generic_stmt (fn);
3057 return true;
3058 }
3059 }
3060 else
3061 {
3062 if (!fn)
3063 {
3064 error ("gimple call has no target");
3065 return true;
3066 }
3067 }
3068
3069 if (fn && !is_gimple_call_addr (fn))
3070 {
3071 error ("invalid function in gimple call");
3072 debug_generic_stmt (fn);
3073 return true;
3074 }
3075
3076 if (fn
3077 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3078 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3079 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3080 {
3081 error ("non-function in gimple call");
3082 return true;
3083 }
3084
3085 fndecl = gimple_call_fndecl (stmt);
3086 if (fndecl
3087 && TREE_CODE (fndecl) == FUNCTION_DECL
3088 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3089 && !DECL_PURE_P (fndecl)
3090 && !TREE_READONLY (fndecl))
3091 {
3092 error ("invalid pure const state for function");
3093 return true;
3094 }
3095
3096 if (gimple_call_lhs (stmt)
3097 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3098 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3099 {
3100 error ("invalid LHS in gimple call");
3101 return true;
3102 }
3103
3104 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3105 {
3106 error ("LHS in noreturn call");
3107 return true;
3108 }
3109
3110 fntype = gimple_call_fntype (stmt);
3111 if (fntype
3112 && gimple_call_lhs (stmt)
3113 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3114 TREE_TYPE (fntype))
3115 /* ??? At least C++ misses conversions at assignments from
3116 void * call results.
3117 ??? Java is completely off. Especially with functions
3118 returning java.lang.Object.
3119 For now simply allow arbitrary pointer type conversions. */
3120 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3121 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3122 {
3123 error ("invalid conversion in gimple call");
3124 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3125 debug_generic_stmt (TREE_TYPE (fntype));
3126 return true;
3127 }
3128
3129 if (gimple_call_chain (stmt)
3130 && !is_gimple_val (gimple_call_chain (stmt)))
3131 {
3132 error ("invalid static chain in gimple call");
3133 debug_generic_stmt (gimple_call_chain (stmt));
3134 return true;
3135 }
3136
3137 /* If there is a static chain argument, this should not be an indirect
3138 call, and the decl should have DECL_STATIC_CHAIN set. */
3139 if (gimple_call_chain (stmt))
3140 {
3141 if (!gimple_call_fndecl (stmt))
3142 {
3143 error ("static chain in indirect gimple call");
3144 return true;
3145 }
3146 fn = TREE_OPERAND (fn, 0);
3147
3148 if (!DECL_STATIC_CHAIN (fn))
3149 {
3150 error ("static chain with function that doesn%'t use one");
3151 return true;
3152 }
3153 }
3154
3155 /* ??? The C frontend passes unpromoted arguments in case it
3156 didn't see a function declaration before the call. So for now
3157 leave the call arguments mostly unverified. Once we gimplify
3158 unit-at-a-time we have a chance to fix this. */
3159
3160 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3161 {
3162 tree arg = gimple_call_arg (stmt, i);
3163 if ((is_gimple_reg_type (TREE_TYPE (arg))
3164 && !is_gimple_val (arg))
3165 || (!is_gimple_reg_type (TREE_TYPE (arg))
3166 && !is_gimple_lvalue (arg)))
3167 {
3168 error ("invalid argument to gimple call");
3169 debug_generic_expr (arg);
3170 return true;
3171 }
3172 }
3173
3174 return false;
3175 }
3176
3177 /* Verifies the gimple comparison with the result type TYPE and
3178 the operands OP0 and OP1. */
3179
3180 static bool
3181 verify_gimple_comparison (tree type, tree op0, tree op1)
3182 {
3183 tree op0_type = TREE_TYPE (op0);
3184 tree op1_type = TREE_TYPE (op1);
3185
3186 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3187 {
3188 error ("invalid operands in gimple comparison");
3189 return true;
3190 }
3191
3192 /* For comparisons we do not have the operations type as the
3193 effective type the comparison is carried out in. Instead
3194 we require that either the first operand is trivially
3195 convertible into the second, or the other way around.
3196 Because we special-case pointers to void we allow
3197 comparisons of pointers with the same mode as well. */
3198 if (!useless_type_conversion_p (op0_type, op1_type)
3199 && !useless_type_conversion_p (op1_type, op0_type)
3200 && (!POINTER_TYPE_P (op0_type)
3201 || !POINTER_TYPE_P (op1_type)
3202 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3203 {
3204 error ("mismatching comparison operand types");
3205 debug_generic_expr (op0_type);
3206 debug_generic_expr (op1_type);
3207 return true;
3208 }
3209
3210 /* The resulting type of a comparison may be an effective boolean type. */
3211 if (INTEGRAL_TYPE_P (type)
3212 && (TREE_CODE (type) == BOOLEAN_TYPE
3213 || TYPE_PRECISION (type) == 1))
3214 ;
3215 /* Or an integer vector type with the same size and element count
3216 as the comparison operand types. */
3217 else if (TREE_CODE (type) == VECTOR_TYPE
3218 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3219 {
3220 if (TREE_CODE (op0_type) != VECTOR_TYPE
3221 || TREE_CODE (op1_type) != VECTOR_TYPE)
3222 {
3223 error ("non-vector operands in vector comparison");
3224 debug_generic_expr (op0_type);
3225 debug_generic_expr (op1_type);
3226 return true;
3227 }
3228
3229 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3230 || (GET_MODE_SIZE (TYPE_MODE (type))
3231 != GET_MODE_SIZE (TYPE_MODE (op0_type))))
3232 {
3233 error ("invalid vector comparison resulting type");
3234 debug_generic_expr (type);
3235 return true;
3236 }
3237 }
3238 else
3239 {
3240 error ("bogus comparison result type");
3241 debug_generic_expr (type);
3242 return true;
3243 }
3244
3245 return false;
3246 }
3247
3248 /* Verify a gimple assignment statement STMT with an unary rhs.
3249 Returns true if anything is wrong. */
3250
3251 static bool
3252 verify_gimple_assign_unary (gimple stmt)
3253 {
3254 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3255 tree lhs = gimple_assign_lhs (stmt);
3256 tree lhs_type = TREE_TYPE (lhs);
3257 tree rhs1 = gimple_assign_rhs1 (stmt);
3258 tree rhs1_type = TREE_TYPE (rhs1);
3259
3260 if (!is_gimple_reg (lhs))
3261 {
3262 error ("non-register as LHS of unary operation");
3263 return true;
3264 }
3265
3266 if (!is_gimple_val (rhs1))
3267 {
3268 error ("invalid operand in unary operation");
3269 return true;
3270 }
3271
3272 /* First handle conversions. */
3273 switch (rhs_code)
3274 {
3275 CASE_CONVERT:
3276 {
3277 /* Allow conversions between integral types and pointers only if
3278 there is no sign or zero extension involved.
3279 For targets were the precision of ptrofftype doesn't match that
3280 of pointers we need to allow arbitrary conversions from and
3281 to ptrofftype. */
3282 if ((POINTER_TYPE_P (lhs_type)
3283 && INTEGRAL_TYPE_P (rhs1_type)
3284 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3285 || ptrofftype_p (rhs1_type)))
3286 || (POINTER_TYPE_P (rhs1_type)
3287 && INTEGRAL_TYPE_P (lhs_type)
3288 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3289 || ptrofftype_p (sizetype))))
3290 return false;
3291
3292 /* Allow conversion from integer to offset type and vice versa. */
3293 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3294 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3295 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3296 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3297 return false;
3298
3299 /* Otherwise assert we are converting between types of the
3300 same kind. */
3301 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3302 {
3303 error ("invalid types in nop conversion");
3304 debug_generic_expr (lhs_type);
3305 debug_generic_expr (rhs1_type);
3306 return true;
3307 }
3308
3309 return false;
3310 }
3311
3312 case ADDR_SPACE_CONVERT_EXPR:
3313 {
3314 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3315 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3316 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3317 {
3318 error ("invalid types in address space conversion");
3319 debug_generic_expr (lhs_type);
3320 debug_generic_expr (rhs1_type);
3321 return true;
3322 }
3323
3324 return false;
3325 }
3326
3327 case FIXED_CONVERT_EXPR:
3328 {
3329 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3330 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3331 {
3332 error ("invalid types in fixed-point conversion");
3333 debug_generic_expr (lhs_type);
3334 debug_generic_expr (rhs1_type);
3335 return true;
3336 }
3337
3338 return false;
3339 }
3340
3341 case FLOAT_EXPR:
3342 {
3343 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3344 {
3345 error ("invalid types in conversion to floating point");
3346 debug_generic_expr (lhs_type);
3347 debug_generic_expr (rhs1_type);
3348 return true;
3349 }
3350
3351 return false;
3352 }
3353
3354 case FIX_TRUNC_EXPR:
3355 {
3356 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3357 {
3358 error ("invalid types in conversion to integer");
3359 debug_generic_expr (lhs_type);
3360 debug_generic_expr (rhs1_type);
3361 return true;
3362 }
3363
3364 return false;
3365 }
3366
3367 case VEC_UNPACK_HI_EXPR:
3368 case VEC_UNPACK_LO_EXPR:
3369 case REDUC_MAX_EXPR:
3370 case REDUC_MIN_EXPR:
3371 case REDUC_PLUS_EXPR:
3372 case VEC_UNPACK_FLOAT_HI_EXPR:
3373 case VEC_UNPACK_FLOAT_LO_EXPR:
3374 /* FIXME. */
3375 return false;
3376
3377 case NEGATE_EXPR:
3378 case ABS_EXPR:
3379 case BIT_NOT_EXPR:
3380 case PAREN_EXPR:
3381 case NON_LVALUE_EXPR:
3382 case CONJ_EXPR:
3383 break;
3384
3385 default:
3386 gcc_unreachable ();
3387 }
3388
3389 /* For the remaining codes assert there is no conversion involved. */
3390 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3391 {
3392 error ("non-trivial conversion in unary operation");
3393 debug_generic_expr (lhs_type);
3394 debug_generic_expr (rhs1_type);
3395 return true;
3396 }
3397
3398 return false;
3399 }
3400
3401 /* Verify a gimple assignment statement STMT with a binary rhs.
3402 Returns true if anything is wrong. */
3403
3404 static bool
3405 verify_gimple_assign_binary (gimple stmt)
3406 {
3407 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3408 tree lhs = gimple_assign_lhs (stmt);
3409 tree lhs_type = TREE_TYPE (lhs);
3410 tree rhs1 = gimple_assign_rhs1 (stmt);
3411 tree rhs1_type = TREE_TYPE (rhs1);
3412 tree rhs2 = gimple_assign_rhs2 (stmt);
3413 tree rhs2_type = TREE_TYPE (rhs2);
3414
3415 if (!is_gimple_reg (lhs))
3416 {
3417 error ("non-register as LHS of binary operation");
3418 return true;
3419 }
3420
3421 if (!is_gimple_val (rhs1)
3422 || !is_gimple_val (rhs2))
3423 {
3424 error ("invalid operands in binary operation");
3425 return true;
3426 }
3427
3428 /* First handle operations that involve different types. */
3429 switch (rhs_code)
3430 {
3431 case COMPLEX_EXPR:
3432 {
3433 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3434 || !(INTEGRAL_TYPE_P (rhs1_type)
3435 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3436 || !(INTEGRAL_TYPE_P (rhs2_type)
3437 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3438 {
3439 error ("type mismatch in complex expression");
3440 debug_generic_expr (lhs_type);
3441 debug_generic_expr (rhs1_type);
3442 debug_generic_expr (rhs2_type);
3443 return true;
3444 }
3445
3446 return false;
3447 }
3448
3449 case LSHIFT_EXPR:
3450 case RSHIFT_EXPR:
3451 case LROTATE_EXPR:
3452 case RROTATE_EXPR:
3453 {
3454 /* Shifts and rotates are ok on integral types, fixed point
3455 types and integer vector types. */
3456 if ((!INTEGRAL_TYPE_P (rhs1_type)
3457 && !FIXED_POINT_TYPE_P (rhs1_type)
3458 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3459 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3460 || (!INTEGRAL_TYPE_P (rhs2_type)
3461 /* Vector shifts of vectors are also ok. */
3462 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3463 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3464 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3465 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3466 || !useless_type_conversion_p (lhs_type, rhs1_type))
3467 {
3468 error ("type mismatch in shift expression");
3469 debug_generic_expr (lhs_type);
3470 debug_generic_expr (rhs1_type);
3471 debug_generic_expr (rhs2_type);
3472 return true;
3473 }
3474
3475 return false;
3476 }
3477
3478 case VEC_LSHIFT_EXPR:
3479 case VEC_RSHIFT_EXPR:
3480 {
3481 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3482 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3483 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3484 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3485 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3486 || (!INTEGRAL_TYPE_P (rhs2_type)
3487 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3488 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3489 || !useless_type_conversion_p (lhs_type, rhs1_type))
3490 {
3491 error ("type mismatch in vector shift expression");
3492 debug_generic_expr (lhs_type);
3493 debug_generic_expr (rhs1_type);
3494 debug_generic_expr (rhs2_type);
3495 return true;
3496 }
3497 /* For shifting a vector of non-integral components we
3498 only allow shifting by a constant multiple of the element size. */
3499 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3500 && (TREE_CODE (rhs2) != INTEGER_CST
3501 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3502 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3503 {
3504 error ("non-element sized vector shift of floating point vector");
3505 return true;
3506 }
3507
3508 return false;
3509 }
3510
3511 case PLUS_EXPR:
3512 case MINUS_EXPR:
3513 {
3514 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3515 ??? This just makes the checker happy and may not be what is
3516 intended. */
3517 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3518 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3519 {
3520 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3521 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3522 {
3523 error ("invalid non-vector operands to vector valued plus");
3524 return true;
3525 }
3526 lhs_type = TREE_TYPE (lhs_type);
3527 rhs1_type = TREE_TYPE (rhs1_type);
3528 rhs2_type = TREE_TYPE (rhs2_type);
3529 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3530 the pointer to 2nd place. */
3531 if (POINTER_TYPE_P (rhs2_type))
3532 {
3533 tree tem = rhs1_type;
3534 rhs1_type = rhs2_type;
3535 rhs2_type = tem;
3536 }
3537 goto do_pointer_plus_expr_check;
3538 }
3539 if (POINTER_TYPE_P (lhs_type)
3540 || POINTER_TYPE_P (rhs1_type)
3541 || POINTER_TYPE_P (rhs2_type))
3542 {
3543 error ("invalid (pointer) operands to plus/minus");
3544 return true;
3545 }
3546
3547 /* Continue with generic binary expression handling. */
3548 break;
3549 }
3550
3551 case POINTER_PLUS_EXPR:
3552 {
3553 do_pointer_plus_expr_check:
3554 if (!POINTER_TYPE_P (rhs1_type)
3555 || !useless_type_conversion_p (lhs_type, rhs1_type)
3556 || !ptrofftype_p (rhs2_type))
3557 {
3558 error ("type mismatch in pointer plus expression");
3559 debug_generic_stmt (lhs_type);
3560 debug_generic_stmt (rhs1_type);
3561 debug_generic_stmt (rhs2_type);
3562 return true;
3563 }
3564
3565 return false;
3566 }
3567
3568 case TRUTH_ANDIF_EXPR:
3569 case TRUTH_ORIF_EXPR:
3570 case TRUTH_AND_EXPR:
3571 case TRUTH_OR_EXPR:
3572 case TRUTH_XOR_EXPR:
3573
3574 gcc_unreachable ();
3575
3576 case LT_EXPR:
3577 case LE_EXPR:
3578 case GT_EXPR:
3579 case GE_EXPR:
3580 case EQ_EXPR:
3581 case NE_EXPR:
3582 case UNORDERED_EXPR:
3583 case ORDERED_EXPR:
3584 case UNLT_EXPR:
3585 case UNLE_EXPR:
3586 case UNGT_EXPR:
3587 case UNGE_EXPR:
3588 case UNEQ_EXPR:
3589 case LTGT_EXPR:
3590 /* Comparisons are also binary, but the result type is not
3591 connected to the operand types. */
3592 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3593
3594 case WIDEN_MULT_EXPR:
3595 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3596 return true;
3597 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3598 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3599
3600 case WIDEN_SUM_EXPR:
3601 case VEC_WIDEN_MULT_HI_EXPR:
3602 case VEC_WIDEN_MULT_LO_EXPR:
3603 case VEC_PACK_TRUNC_EXPR:
3604 case VEC_PACK_SAT_EXPR:
3605 case VEC_PACK_FIX_TRUNC_EXPR:
3606 case VEC_EXTRACT_EVEN_EXPR:
3607 case VEC_EXTRACT_ODD_EXPR:
3608 case VEC_INTERLEAVE_HIGH_EXPR:
3609 case VEC_INTERLEAVE_LOW_EXPR:
3610 /* FIXME. */
3611 return false;
3612
3613 case MULT_EXPR:
3614 case TRUNC_DIV_EXPR:
3615 case CEIL_DIV_EXPR:
3616 case FLOOR_DIV_EXPR:
3617 case ROUND_DIV_EXPR:
3618 case TRUNC_MOD_EXPR:
3619 case CEIL_MOD_EXPR:
3620 case FLOOR_MOD_EXPR:
3621 case ROUND_MOD_EXPR:
3622 case RDIV_EXPR:
3623 case EXACT_DIV_EXPR:
3624 case MIN_EXPR:
3625 case MAX_EXPR:
3626 case BIT_IOR_EXPR:
3627 case BIT_XOR_EXPR:
3628 case BIT_AND_EXPR:
3629 /* Continue with generic binary expression handling. */
3630 break;
3631
3632 default:
3633 gcc_unreachable ();
3634 }
3635
3636 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3637 || !useless_type_conversion_p (lhs_type, rhs2_type))
3638 {
3639 error ("type mismatch in binary expression");
3640 debug_generic_stmt (lhs_type);
3641 debug_generic_stmt (rhs1_type);
3642 debug_generic_stmt (rhs2_type);
3643 return true;
3644 }
3645
3646 return false;
3647 }
3648
3649 /* Verify a gimple assignment statement STMT with a ternary rhs.
3650 Returns true if anything is wrong. */
3651
3652 static bool
3653 verify_gimple_assign_ternary (gimple stmt)
3654 {
3655 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3656 tree lhs = gimple_assign_lhs (stmt);
3657 tree lhs_type = TREE_TYPE (lhs);
3658 tree rhs1 = gimple_assign_rhs1 (stmt);
3659 tree rhs1_type = TREE_TYPE (rhs1);
3660 tree rhs2 = gimple_assign_rhs2 (stmt);
3661 tree rhs2_type = TREE_TYPE (rhs2);
3662 tree rhs3 = gimple_assign_rhs3 (stmt);
3663 tree rhs3_type = TREE_TYPE (rhs3);
3664
3665 if (!is_gimple_reg (lhs))
3666 {
3667 error ("non-register as LHS of ternary operation");
3668 return true;
3669 }
3670
3671 if (!is_gimple_val (rhs1)
3672 || !is_gimple_val (rhs2)
3673 || !is_gimple_val (rhs3))
3674 {
3675 error ("invalid operands in ternary operation");
3676 return true;
3677 }
3678
3679 /* First handle operations that involve different types. */
3680 switch (rhs_code)
3681 {
3682 case WIDEN_MULT_PLUS_EXPR:
3683 case WIDEN_MULT_MINUS_EXPR:
3684 if ((!INTEGRAL_TYPE_P (rhs1_type)
3685 && !FIXED_POINT_TYPE_P (rhs1_type))
3686 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3687 || !useless_type_conversion_p (lhs_type, rhs3_type)
3688 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3689 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3690 {
3691 error ("type mismatch in widening multiply-accumulate expression");
3692 debug_generic_expr (lhs_type);
3693 debug_generic_expr (rhs1_type);
3694 debug_generic_expr (rhs2_type);
3695 debug_generic_expr (rhs3_type);
3696 return true;
3697 }
3698 break;
3699
3700 case FMA_EXPR:
3701 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3702 || !useless_type_conversion_p (lhs_type, rhs2_type)
3703 || !useless_type_conversion_p (lhs_type, rhs3_type))
3704 {
3705 error ("type mismatch in fused multiply-add expression");
3706 debug_generic_expr (lhs_type);
3707 debug_generic_expr (rhs1_type);
3708 debug_generic_expr (rhs2_type);
3709 debug_generic_expr (rhs3_type);
3710 return true;
3711 }
3712 break;
3713
3714 case DOT_PROD_EXPR:
3715 case REALIGN_LOAD_EXPR:
3716 /* FIXME. */
3717 return false;
3718
3719 default:
3720 gcc_unreachable ();
3721 }
3722 return false;
3723 }
3724
3725 /* Verify a gimple assignment statement STMT with a single rhs.
3726 Returns true if anything is wrong. */
3727
3728 static bool
3729 verify_gimple_assign_single (gimple stmt)
3730 {
3731 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3732 tree lhs = gimple_assign_lhs (stmt);
3733 tree lhs_type = TREE_TYPE (lhs);
3734 tree rhs1 = gimple_assign_rhs1 (stmt);
3735 tree rhs1_type = TREE_TYPE (rhs1);
3736 bool res = false;
3737
3738 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3739 {
3740 error ("non-trivial conversion at assignment");
3741 debug_generic_expr (lhs_type);
3742 debug_generic_expr (rhs1_type);
3743 return true;
3744 }
3745
3746 if (handled_component_p (lhs))
3747 res |= verify_types_in_gimple_reference (lhs, true);
3748
3749 /* Special codes we cannot handle via their class. */
3750 switch (rhs_code)
3751 {
3752 case ADDR_EXPR:
3753 {
3754 tree op = TREE_OPERAND (rhs1, 0);
3755 if (!is_gimple_addressable (op))
3756 {
3757 error ("invalid operand in unary expression");
3758 return true;
3759 }
3760
3761 /* Technically there is no longer a need for matching types, but
3762 gimple hygiene asks for this check. In LTO we can end up
3763 combining incompatible units and thus end up with addresses
3764 of globals that change their type to a common one. */
3765 if (!in_lto_p
3766 && !types_compatible_p (TREE_TYPE (op),
3767 TREE_TYPE (TREE_TYPE (rhs1)))
3768 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3769 TREE_TYPE (op)))
3770 {
3771 error ("type mismatch in address expression");
3772 debug_generic_stmt (TREE_TYPE (rhs1));
3773 debug_generic_stmt (TREE_TYPE (op));
3774 return true;
3775 }
3776
3777 return verify_types_in_gimple_reference (op, true);
3778 }
3779
3780 /* tcc_reference */
3781 case INDIRECT_REF:
3782 error ("INDIRECT_REF in gimple IL");
3783 return true;
3784
3785 case COMPONENT_REF:
3786 case BIT_FIELD_REF:
3787 case ARRAY_REF:
3788 case ARRAY_RANGE_REF:
3789 case VIEW_CONVERT_EXPR:
3790 case REALPART_EXPR:
3791 case IMAGPART_EXPR:
3792 case TARGET_MEM_REF:
3793 case MEM_REF:
3794 if (!is_gimple_reg (lhs)
3795 && is_gimple_reg_type (TREE_TYPE (lhs)))
3796 {
3797 error ("invalid rhs for gimple memory store");
3798 debug_generic_stmt (lhs);
3799 debug_generic_stmt (rhs1);
3800 return true;
3801 }
3802 return res || verify_types_in_gimple_reference (rhs1, false);
3803
3804 /* tcc_constant */
3805 case SSA_NAME:
3806 case INTEGER_CST:
3807 case REAL_CST:
3808 case FIXED_CST:
3809 case COMPLEX_CST:
3810 case VECTOR_CST:
3811 case STRING_CST:
3812 return res;
3813
3814 /* tcc_declaration */
3815 case CONST_DECL:
3816 return res;
3817 case VAR_DECL:
3818 case PARM_DECL:
3819 if (!is_gimple_reg (lhs)
3820 && !is_gimple_reg (rhs1)
3821 && is_gimple_reg_type (TREE_TYPE (lhs)))
3822 {
3823 error ("invalid rhs for gimple memory store");
3824 debug_generic_stmt (lhs);
3825 debug_generic_stmt (rhs1);
3826 return true;
3827 }
3828 return res;
3829
3830 case COND_EXPR:
3831 if (!is_gimple_reg (lhs)
3832 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3833 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3834 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3835 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3836 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3837 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3838 {
3839 error ("invalid COND_EXPR in gimple assignment");
3840 debug_generic_stmt (rhs1);
3841 return true;
3842 }
3843 return res;
3844
3845 case CONSTRUCTOR:
3846 case OBJ_TYPE_REF:
3847 case ASSERT_EXPR:
3848 case WITH_SIZE_EXPR:
3849 case VEC_COND_EXPR:
3850 /* FIXME. */
3851 return res;
3852
3853 default:;
3854 }
3855
3856 return res;
3857 }
3858
3859 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3860 is a problem, otherwise false. */
3861
3862 static bool
3863 verify_gimple_assign (gimple stmt)
3864 {
3865 switch (gimple_assign_rhs_class (stmt))
3866 {
3867 case GIMPLE_SINGLE_RHS:
3868 return verify_gimple_assign_single (stmt);
3869
3870 case GIMPLE_UNARY_RHS:
3871 return verify_gimple_assign_unary (stmt);
3872
3873 case GIMPLE_BINARY_RHS:
3874 return verify_gimple_assign_binary (stmt);
3875
3876 case GIMPLE_TERNARY_RHS:
3877 return verify_gimple_assign_ternary (stmt);
3878
3879 default:
3880 gcc_unreachable ();
3881 }
3882 }
3883
3884 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3885 is a problem, otherwise false. */
3886
3887 static bool
3888 verify_gimple_return (gimple stmt)
3889 {
3890 tree op = gimple_return_retval (stmt);
3891 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3892
3893 /* We cannot test for present return values as we do not fix up missing
3894 return values from the original source. */
3895 if (op == NULL)
3896 return false;
3897
3898 if (!is_gimple_val (op)
3899 && TREE_CODE (op) != RESULT_DECL)
3900 {
3901 error ("invalid operand in return statement");
3902 debug_generic_stmt (op);
3903 return true;
3904 }
3905
3906 if ((TREE_CODE (op) == RESULT_DECL
3907 && DECL_BY_REFERENCE (op))
3908 || (TREE_CODE (op) == SSA_NAME
3909 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3910 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3911 op = TREE_TYPE (op);
3912
3913 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3914 {
3915 error ("invalid conversion in return statement");
3916 debug_generic_stmt (restype);
3917 debug_generic_stmt (TREE_TYPE (op));
3918 return true;
3919 }
3920
3921 return false;
3922 }
3923
3924
3925 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3926 is a problem, otherwise false. */
3927
3928 static bool
3929 verify_gimple_goto (gimple stmt)
3930 {
3931 tree dest = gimple_goto_dest (stmt);
3932
3933 /* ??? We have two canonical forms of direct goto destinations, a
3934 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3935 if (TREE_CODE (dest) != LABEL_DECL
3936 && (!is_gimple_val (dest)
3937 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3938 {
3939 error ("goto destination is neither a label nor a pointer");
3940 return true;
3941 }
3942
3943 return false;
3944 }
3945
3946 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3947 is a problem, otherwise false. */
3948
3949 static bool
3950 verify_gimple_switch (gimple stmt)
3951 {
3952 if (!is_gimple_val (gimple_switch_index (stmt)))
3953 {
3954 error ("invalid operand to switch statement");
3955 debug_generic_stmt (gimple_switch_index (stmt));
3956 return true;
3957 }
3958
3959 return false;
3960 }
3961
3962
3963 /* Verify a gimple debug statement STMT.
3964 Returns true if anything is wrong. */
3965
3966 static bool
3967 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3968 {
3969 /* There isn't much that could be wrong in a gimple debug stmt. A
3970 gimple debug bind stmt, for example, maps a tree, that's usually
3971 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3972 component or member of an aggregate type, to another tree, that
3973 can be an arbitrary expression. These stmts expand into debug
3974 insns, and are converted to debug notes by var-tracking.c. */
3975 return false;
3976 }
3977
3978 /* Verify a gimple label statement STMT.
3979 Returns true if anything is wrong. */
3980
3981 static bool
3982 verify_gimple_label (gimple stmt)
3983 {
3984 tree decl = gimple_label_label (stmt);
3985 int uid;
3986 bool err = false;
3987
3988 if (TREE_CODE (decl) != LABEL_DECL)
3989 return true;
3990
3991 uid = LABEL_DECL_UID (decl);
3992 if (cfun->cfg
3993 && (uid == -1
3994 || VEC_index (basic_block,
3995 label_to_block_map, uid) != gimple_bb (stmt)))
3996 {
3997 error ("incorrect entry in label_to_block_map");
3998 err |= true;
3999 }
4000
4001 uid = EH_LANDING_PAD_NR (decl);
4002 if (uid)
4003 {
4004 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4005 if (decl != lp->post_landing_pad)
4006 {
4007 error ("incorrect setting of landing pad number");
4008 err |= true;
4009 }
4010 }
4011
4012 return err;
4013 }
4014
4015 /* Verify the GIMPLE statement STMT. Returns true if there is an
4016 error, otherwise false. */
4017
4018 static bool
4019 verify_gimple_stmt (gimple stmt)
4020 {
4021 switch (gimple_code (stmt))
4022 {
4023 case GIMPLE_ASSIGN:
4024 return verify_gimple_assign (stmt);
4025
4026 case GIMPLE_LABEL:
4027 return verify_gimple_label (stmt);
4028
4029 case GIMPLE_CALL:
4030 return verify_gimple_call (stmt);
4031
4032 case GIMPLE_COND:
4033 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4034 {
4035 error ("invalid comparison code in gimple cond");
4036 return true;
4037 }
4038 if (!(!gimple_cond_true_label (stmt)
4039 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4040 || !(!gimple_cond_false_label (stmt)
4041 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4042 {
4043 error ("invalid labels in gimple cond");
4044 return true;
4045 }
4046
4047 return verify_gimple_comparison (boolean_type_node,
4048 gimple_cond_lhs (stmt),
4049 gimple_cond_rhs (stmt));
4050
4051 case GIMPLE_GOTO:
4052 return verify_gimple_goto (stmt);
4053
4054 case GIMPLE_SWITCH:
4055 return verify_gimple_switch (stmt);
4056
4057 case GIMPLE_RETURN:
4058 return verify_gimple_return (stmt);
4059
4060 case GIMPLE_ASM:
4061 return false;
4062
4063 /* Tuples that do not have tree operands. */
4064 case GIMPLE_NOP:
4065 case GIMPLE_PREDICT:
4066 case GIMPLE_RESX:
4067 case GIMPLE_EH_DISPATCH:
4068 case GIMPLE_EH_MUST_NOT_THROW:
4069 return false;
4070
4071 CASE_GIMPLE_OMP:
4072 /* OpenMP directives are validated by the FE and never operated
4073 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4074 non-gimple expressions when the main index variable has had
4075 its address taken. This does not affect the loop itself
4076 because the header of an GIMPLE_OMP_FOR is merely used to determine
4077 how to setup the parallel iteration. */
4078 return false;
4079
4080 case GIMPLE_DEBUG:
4081 return verify_gimple_debug (stmt);
4082
4083 default:
4084 gcc_unreachable ();
4085 }
4086 }
4087
4088 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4089 and false otherwise. */
4090
4091 static bool
4092 verify_gimple_phi (gimple phi)
4093 {
4094 bool err = false;
4095 unsigned i;
4096 tree phi_result = gimple_phi_result (phi);
4097 bool virtual_p;
4098
4099 if (!phi_result)
4100 {
4101 error ("invalid PHI result");
4102 return true;
4103 }
4104
4105 virtual_p = !is_gimple_reg (phi_result);
4106 if (TREE_CODE (phi_result) != SSA_NAME
4107 || (virtual_p
4108 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4109 {
4110 error ("invalid PHI result");
4111 err = true;
4112 }
4113
4114 for (i = 0; i < gimple_phi_num_args (phi); i++)
4115 {
4116 tree t = gimple_phi_arg_def (phi, i);
4117
4118 if (!t)
4119 {
4120 error ("missing PHI def");
4121 err |= true;
4122 continue;
4123 }
4124 /* Addressable variables do have SSA_NAMEs but they
4125 are not considered gimple values. */
4126 else if ((TREE_CODE (t) == SSA_NAME
4127 && virtual_p != !is_gimple_reg (t))
4128 || (virtual_p
4129 && (TREE_CODE (t) != SSA_NAME
4130 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4131 || (!virtual_p
4132 && !is_gimple_val (t)))
4133 {
4134 error ("invalid PHI argument");
4135 debug_generic_expr (t);
4136 err |= true;
4137 }
4138 #ifdef ENABLE_TYPES_CHECKING
4139 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4140 {
4141 error ("incompatible types in PHI argument %u", i);
4142 debug_generic_stmt (TREE_TYPE (phi_result));
4143 debug_generic_stmt (TREE_TYPE (t));
4144 err |= true;
4145 }
4146 #endif
4147 }
4148
4149 return err;
4150 }
4151
4152 /* Verify the GIMPLE statements inside the sequence STMTS. */
4153
4154 static bool
4155 verify_gimple_in_seq_2 (gimple_seq stmts)
4156 {
4157 gimple_stmt_iterator ittr;
4158 bool err = false;
4159
4160 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4161 {
4162 gimple stmt = gsi_stmt (ittr);
4163
4164 switch (gimple_code (stmt))
4165 {
4166 case GIMPLE_BIND:
4167 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4168 break;
4169
4170 case GIMPLE_TRY:
4171 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4172 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4173 break;
4174
4175 case GIMPLE_EH_FILTER:
4176 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4177 break;
4178
4179 case GIMPLE_CATCH:
4180 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4181 break;
4182
4183 default:
4184 {
4185 bool err2 = verify_gimple_stmt (stmt);
4186 if (err2)
4187 debug_gimple_stmt (stmt);
4188 err |= err2;
4189 }
4190 }
4191 }
4192
4193 return err;
4194 }
4195
4196
4197 /* Verify the GIMPLE statements inside the statement list STMTS. */
4198
4199 DEBUG_FUNCTION void
4200 verify_gimple_in_seq (gimple_seq stmts)
4201 {
4202 timevar_push (TV_TREE_STMT_VERIFY);
4203 if (verify_gimple_in_seq_2 (stmts))
4204 internal_error ("verify_gimple failed");
4205 timevar_pop (TV_TREE_STMT_VERIFY);
4206 }
4207
4208 /* Return true when the T can be shared. */
4209
4210 bool
4211 tree_node_can_be_shared (tree t)
4212 {
4213 if (IS_TYPE_OR_DECL_P (t)
4214 || is_gimple_min_invariant (t)
4215 || TREE_CODE (t) == SSA_NAME
4216 || t == error_mark_node
4217 || TREE_CODE (t) == IDENTIFIER_NODE)
4218 return true;
4219
4220 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4221 return true;
4222
4223 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4224 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4225 || TREE_CODE (t) == COMPONENT_REF
4226 || TREE_CODE (t) == REALPART_EXPR
4227 || TREE_CODE (t) == IMAGPART_EXPR)
4228 t = TREE_OPERAND (t, 0);
4229
4230 if (DECL_P (t))
4231 return true;
4232
4233 return false;
4234 }
4235
4236 /* Called via walk_gimple_stmt. Verify tree sharing. */
4237
4238 static tree
4239 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4240 {
4241 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4242 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4243
4244 if (tree_node_can_be_shared (*tp))
4245 {
4246 *walk_subtrees = false;
4247 return NULL;
4248 }
4249
4250 if (pointer_set_insert (visited, *tp))
4251 return *tp;
4252
4253 return NULL;
4254 }
4255
4256 static bool eh_error_found;
4257 static int
4258 verify_eh_throw_stmt_node (void **slot, void *data)
4259 {
4260 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4261 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4262
4263 if (!pointer_set_contains (visited, node->stmt))
4264 {
4265 error ("dead STMT in EH table");
4266 debug_gimple_stmt (node->stmt);
4267 eh_error_found = true;
4268 }
4269 return 1;
4270 }
4271
4272 /* Verify the GIMPLE statements in the CFG of FN. */
4273
4274 DEBUG_FUNCTION void
4275 verify_gimple_in_cfg (struct function *fn)
4276 {
4277 basic_block bb;
4278 bool err = false;
4279 struct pointer_set_t *visited, *visited_stmts;
4280
4281 timevar_push (TV_TREE_STMT_VERIFY);
4282 visited = pointer_set_create ();
4283 visited_stmts = pointer_set_create ();
4284
4285 FOR_EACH_BB_FN (bb, fn)
4286 {
4287 gimple_stmt_iterator gsi;
4288
4289 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4290 {
4291 gimple phi = gsi_stmt (gsi);
4292 bool err2 = false;
4293 unsigned i;
4294
4295 pointer_set_insert (visited_stmts, phi);
4296
4297 if (gimple_bb (phi) != bb)
4298 {
4299 error ("gimple_bb (phi) is set to a wrong basic block");
4300 err2 = true;
4301 }
4302
4303 err2 |= verify_gimple_phi (phi);
4304
4305 for (i = 0; i < gimple_phi_num_args (phi); i++)
4306 {
4307 tree arg = gimple_phi_arg_def (phi, i);
4308 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4309 if (addr)
4310 {
4311 error ("incorrect sharing of tree nodes");
4312 debug_generic_expr (addr);
4313 err2 |= true;
4314 }
4315 }
4316
4317 if (err2)
4318 debug_gimple_stmt (phi);
4319 err |= err2;
4320 }
4321
4322 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4323 {
4324 gimple stmt = gsi_stmt (gsi);
4325 bool err2 = false;
4326 struct walk_stmt_info wi;
4327 tree addr;
4328 int lp_nr;
4329
4330 pointer_set_insert (visited_stmts, stmt);
4331
4332 if (gimple_bb (stmt) != bb)
4333 {
4334 error ("gimple_bb (stmt) is set to a wrong basic block");
4335 err2 = true;
4336 }
4337
4338 err2 |= verify_gimple_stmt (stmt);
4339
4340 memset (&wi, 0, sizeof (wi));
4341 wi.info = (void *) visited;
4342 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4343 if (addr)
4344 {
4345 error ("incorrect sharing of tree nodes");
4346 debug_generic_expr (addr);
4347 err2 |= true;
4348 }
4349
4350 /* ??? Instead of not checking these stmts at all the walker
4351 should know its context via wi. */
4352 if (!is_gimple_debug (stmt)
4353 && !is_gimple_omp (stmt))
4354 {
4355 memset (&wi, 0, sizeof (wi));
4356 addr = walk_gimple_op (stmt, verify_expr, &wi);
4357 if (addr)
4358 {
4359 debug_generic_expr (addr);
4360 inform (gimple_location (stmt), "in statement");
4361 err2 |= true;
4362 }
4363 }
4364
4365 /* If the statement is marked as part of an EH region, then it is
4366 expected that the statement could throw. Verify that when we
4367 have optimizations that simplify statements such that we prove
4368 that they cannot throw, that we update other data structures
4369 to match. */
4370 lp_nr = lookup_stmt_eh_lp (stmt);
4371 if (lp_nr != 0)
4372 {
4373 if (!stmt_could_throw_p (stmt))
4374 {
4375 error ("statement marked for throw, but doesn%'t");
4376 err2 |= true;
4377 }
4378 else if (lp_nr > 0
4379 && !gsi_one_before_end_p (gsi)
4380 && stmt_can_throw_internal (stmt))
4381 {
4382 error ("statement marked for throw in middle of block");
4383 err2 |= true;
4384 }
4385 }
4386
4387 if (err2)
4388 debug_gimple_stmt (stmt);
4389 err |= err2;
4390 }
4391 }
4392
4393 eh_error_found = false;
4394 if (get_eh_throw_stmt_table (cfun))
4395 htab_traverse (get_eh_throw_stmt_table (cfun),
4396 verify_eh_throw_stmt_node,
4397 visited_stmts);
4398
4399 if (err || eh_error_found)
4400 internal_error ("verify_gimple failed");
4401
4402 pointer_set_destroy (visited);
4403 pointer_set_destroy (visited_stmts);
4404 verify_histograms ();
4405 timevar_pop (TV_TREE_STMT_VERIFY);
4406 }
4407
4408
4409 /* Verifies that the flow information is OK. */
4410
4411 static int
4412 gimple_verify_flow_info (void)
4413 {
4414 int err = 0;
4415 basic_block bb;
4416 gimple_stmt_iterator gsi;
4417 gimple stmt;
4418 edge e;
4419 edge_iterator ei;
4420
4421 if (ENTRY_BLOCK_PTR->il.gimple)
4422 {
4423 error ("ENTRY_BLOCK has IL associated with it");
4424 err = 1;
4425 }
4426
4427 if (EXIT_BLOCK_PTR->il.gimple)
4428 {
4429 error ("EXIT_BLOCK has IL associated with it");
4430 err = 1;
4431 }
4432
4433 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4434 if (e->flags & EDGE_FALLTHRU)
4435 {
4436 error ("fallthru to exit from bb %d", e->src->index);
4437 err = 1;
4438 }
4439
4440 FOR_EACH_BB (bb)
4441 {
4442 bool found_ctrl_stmt = false;
4443
4444 stmt = NULL;
4445
4446 /* Skip labels on the start of basic block. */
4447 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4448 {
4449 tree label;
4450 gimple prev_stmt = stmt;
4451
4452 stmt = gsi_stmt (gsi);
4453
4454 if (gimple_code (stmt) != GIMPLE_LABEL)
4455 break;
4456
4457 label = gimple_label_label (stmt);
4458 if (prev_stmt && DECL_NONLOCAL (label))
4459 {
4460 error ("nonlocal label ");
4461 print_generic_expr (stderr, label, 0);
4462 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4463 bb->index);
4464 err = 1;
4465 }
4466
4467 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4468 {
4469 error ("EH landing pad label ");
4470 print_generic_expr (stderr, label, 0);
4471 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4472 bb->index);
4473 err = 1;
4474 }
4475
4476 if (label_to_block (label) != bb)
4477 {
4478 error ("label ");
4479 print_generic_expr (stderr, label, 0);
4480 fprintf (stderr, " to block does not match in bb %d",
4481 bb->index);
4482 err = 1;
4483 }
4484
4485 if (decl_function_context (label) != current_function_decl)
4486 {
4487 error ("label ");
4488 print_generic_expr (stderr, label, 0);
4489 fprintf (stderr, " has incorrect context in bb %d",
4490 bb->index);
4491 err = 1;
4492 }
4493 }
4494
4495 /* Verify that body of basic block BB is free of control flow. */
4496 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4497 {
4498 gimple stmt = gsi_stmt (gsi);
4499
4500 if (found_ctrl_stmt)
4501 {
4502 error ("control flow in the middle of basic block %d",
4503 bb->index);
4504 err = 1;
4505 }
4506
4507 if (stmt_ends_bb_p (stmt))
4508 found_ctrl_stmt = true;
4509
4510 if (gimple_code (stmt) == GIMPLE_LABEL)
4511 {
4512 error ("label ");
4513 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4514 fprintf (stderr, " in the middle of basic block %d", bb->index);
4515 err = 1;
4516 }
4517 }
4518
4519 gsi = gsi_last_bb (bb);
4520 if (gsi_end_p (gsi))
4521 continue;
4522
4523 stmt = gsi_stmt (gsi);
4524
4525 if (gimple_code (stmt) == GIMPLE_LABEL)
4526 continue;
4527
4528 err |= verify_eh_edges (stmt);
4529
4530 if (is_ctrl_stmt (stmt))
4531 {
4532 FOR_EACH_EDGE (e, ei, bb->succs)
4533 if (e->flags & EDGE_FALLTHRU)
4534 {
4535 error ("fallthru edge after a control statement in bb %d",
4536 bb->index);
4537 err = 1;
4538 }
4539 }
4540
4541 if (gimple_code (stmt) != GIMPLE_COND)
4542 {
4543 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4544 after anything else but if statement. */
4545 FOR_EACH_EDGE (e, ei, bb->succs)
4546 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4547 {
4548 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4549 bb->index);
4550 err = 1;
4551 }
4552 }
4553
4554 switch (gimple_code (stmt))
4555 {
4556 case GIMPLE_COND:
4557 {
4558 edge true_edge;
4559 edge false_edge;
4560
4561 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4562
4563 if (!true_edge
4564 || !false_edge
4565 || !(true_edge->flags & EDGE_TRUE_VALUE)
4566 || !(false_edge->flags & EDGE_FALSE_VALUE)
4567 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4568 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4569 || EDGE_COUNT (bb->succs) >= 3)
4570 {
4571 error ("wrong outgoing edge flags at end of bb %d",
4572 bb->index);
4573 err = 1;
4574 }
4575 }
4576 break;
4577
4578 case GIMPLE_GOTO:
4579 if (simple_goto_p (stmt))
4580 {
4581 error ("explicit goto at end of bb %d", bb->index);
4582 err = 1;
4583 }
4584 else
4585 {
4586 /* FIXME. We should double check that the labels in the
4587 destination blocks have their address taken. */
4588 FOR_EACH_EDGE (e, ei, bb->succs)
4589 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4590 | EDGE_FALSE_VALUE))
4591 || !(e->flags & EDGE_ABNORMAL))
4592 {
4593 error ("wrong outgoing edge flags at end of bb %d",
4594 bb->index);
4595 err = 1;
4596 }
4597 }
4598 break;
4599
4600 case GIMPLE_CALL:
4601 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4602 break;
4603 /* ... fallthru ... */
4604 case GIMPLE_RETURN:
4605 if (!single_succ_p (bb)
4606 || (single_succ_edge (bb)->flags
4607 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4608 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4609 {
4610 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4611 err = 1;
4612 }
4613 if (single_succ (bb) != EXIT_BLOCK_PTR)
4614 {
4615 error ("return edge does not point to exit in bb %d",
4616 bb->index);
4617 err = 1;
4618 }
4619 break;
4620
4621 case GIMPLE_SWITCH:
4622 {
4623 tree prev;
4624 edge e;
4625 size_t i, n;
4626
4627 n = gimple_switch_num_labels (stmt);
4628
4629 /* Mark all the destination basic blocks. */
4630 for (i = 0; i < n; ++i)
4631 {
4632 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4633 basic_block label_bb = label_to_block (lab);
4634 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4635 label_bb->aux = (void *)1;
4636 }
4637
4638 /* Verify that the case labels are sorted. */
4639 prev = gimple_switch_label (stmt, 0);
4640 for (i = 1; i < n; ++i)
4641 {
4642 tree c = gimple_switch_label (stmt, i);
4643 if (!CASE_LOW (c))
4644 {
4645 error ("found default case not at the start of "
4646 "case vector");
4647 err = 1;
4648 continue;
4649 }
4650 if (CASE_LOW (prev)
4651 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4652 {
4653 error ("case labels not sorted: ");
4654 print_generic_expr (stderr, prev, 0);
4655 fprintf (stderr," is greater than ");
4656 print_generic_expr (stderr, c, 0);
4657 fprintf (stderr," but comes before it.\n");
4658 err = 1;
4659 }
4660 prev = c;
4661 }
4662 /* VRP will remove the default case if it can prove it will
4663 never be executed. So do not verify there always exists
4664 a default case here. */
4665
4666 FOR_EACH_EDGE (e, ei, bb->succs)
4667 {
4668 if (!e->dest->aux)
4669 {
4670 error ("extra outgoing edge %d->%d",
4671 bb->index, e->dest->index);
4672 err = 1;
4673 }
4674
4675 e->dest->aux = (void *)2;
4676 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4677 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4678 {
4679 error ("wrong outgoing edge flags at end of bb %d",
4680 bb->index);
4681 err = 1;
4682 }
4683 }
4684
4685 /* Check that we have all of them. */
4686 for (i = 0; i < n; ++i)
4687 {
4688 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4689 basic_block label_bb = label_to_block (lab);
4690
4691 if (label_bb->aux != (void *)2)
4692 {
4693 error ("missing edge %i->%i", bb->index, label_bb->index);
4694 err = 1;
4695 }
4696 }
4697
4698 FOR_EACH_EDGE (e, ei, bb->succs)
4699 e->dest->aux = (void *)0;
4700 }
4701 break;
4702
4703 case GIMPLE_EH_DISPATCH:
4704 err |= verify_eh_dispatch_edge (stmt);
4705 break;
4706
4707 default:
4708 break;
4709 }
4710 }
4711
4712 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4713 verify_dominators (CDI_DOMINATORS);
4714
4715 return err;
4716 }
4717
4718
4719 /* Updates phi nodes after creating a forwarder block joined
4720 by edge FALLTHRU. */
4721
4722 static void
4723 gimple_make_forwarder_block (edge fallthru)
4724 {
4725 edge e;
4726 edge_iterator ei;
4727 basic_block dummy, bb;
4728 tree var;
4729 gimple_stmt_iterator gsi;
4730
4731 dummy = fallthru->src;
4732 bb = fallthru->dest;
4733
4734 if (single_pred_p (bb))
4735 return;
4736
4737 /* If we redirected a branch we must create new PHI nodes at the
4738 start of BB. */
4739 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4740 {
4741 gimple phi, new_phi;
4742
4743 phi = gsi_stmt (gsi);
4744 var = gimple_phi_result (phi);
4745 new_phi = create_phi_node (var, bb);
4746 SSA_NAME_DEF_STMT (var) = new_phi;
4747 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4748 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4749 UNKNOWN_LOCATION);
4750 }
4751
4752 /* Add the arguments we have stored on edges. */
4753 FOR_EACH_EDGE (e, ei, bb->preds)
4754 {
4755 if (e == fallthru)
4756 continue;
4757
4758 flush_pending_stmts (e);
4759 }
4760 }
4761
4762
4763 /* Return a non-special label in the head of basic block BLOCK.
4764 Create one if it doesn't exist. */
4765
4766 tree
4767 gimple_block_label (basic_block bb)
4768 {
4769 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4770 bool first = true;
4771 tree label;
4772 gimple stmt;
4773
4774 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4775 {
4776 stmt = gsi_stmt (i);
4777 if (gimple_code (stmt) != GIMPLE_LABEL)
4778 break;
4779 label = gimple_label_label (stmt);
4780 if (!DECL_NONLOCAL (label))
4781 {
4782 if (!first)
4783 gsi_move_before (&i, &s);
4784 return label;
4785 }
4786 }
4787
4788 label = create_artificial_label (UNKNOWN_LOCATION);
4789 stmt = gimple_build_label (label);
4790 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4791 return label;
4792 }
4793
4794
4795 /* Attempt to perform edge redirection by replacing a possibly complex
4796 jump instruction by a goto or by removing the jump completely.
4797 This can apply only if all edges now point to the same block. The
4798 parameters and return values are equivalent to
4799 redirect_edge_and_branch. */
4800
4801 static edge
4802 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4803 {
4804 basic_block src = e->src;
4805 gimple_stmt_iterator i;
4806 gimple stmt;
4807
4808 /* We can replace or remove a complex jump only when we have exactly
4809 two edges. */
4810 if (EDGE_COUNT (src->succs) != 2
4811 /* Verify that all targets will be TARGET. Specifically, the
4812 edge that is not E must also go to TARGET. */
4813 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4814 return NULL;
4815
4816 i = gsi_last_bb (src);
4817 if (gsi_end_p (i))
4818 return NULL;
4819
4820 stmt = gsi_stmt (i);
4821
4822 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4823 {
4824 gsi_remove (&i, true);
4825 e = ssa_redirect_edge (e, target);
4826 e->flags = EDGE_FALLTHRU;
4827 return e;
4828 }
4829
4830 return NULL;
4831 }
4832
4833
4834 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4835 edge representing the redirected branch. */
4836
4837 static edge
4838 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4839 {
4840 basic_block bb = e->src;
4841 gimple_stmt_iterator gsi;
4842 edge ret;
4843 gimple stmt;
4844
4845 if (e->flags & EDGE_ABNORMAL)
4846 return NULL;
4847
4848 if (e->dest == dest)
4849 return NULL;
4850
4851 if (e->flags & EDGE_EH)
4852 return redirect_eh_edge (e, dest);
4853
4854 if (e->src != ENTRY_BLOCK_PTR)
4855 {
4856 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4857 if (ret)
4858 return ret;
4859 }
4860
4861 gsi = gsi_last_bb (bb);
4862 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4863
4864 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4865 {
4866 case GIMPLE_COND:
4867 /* For COND_EXPR, we only need to redirect the edge. */
4868 break;
4869
4870 case GIMPLE_GOTO:
4871 /* No non-abnormal edges should lead from a non-simple goto, and
4872 simple ones should be represented implicitly. */
4873 gcc_unreachable ();
4874
4875 case GIMPLE_SWITCH:
4876 {
4877 tree label = gimple_block_label (dest);
4878 tree cases = get_cases_for_edge (e, stmt);
4879
4880 /* If we have a list of cases associated with E, then use it
4881 as it's a lot faster than walking the entire case vector. */
4882 if (cases)
4883 {
4884 edge e2 = find_edge (e->src, dest);
4885 tree last, first;
4886
4887 first = cases;
4888 while (cases)
4889 {
4890 last = cases;
4891 CASE_LABEL (cases) = label;
4892 cases = CASE_CHAIN (cases);
4893 }
4894
4895 /* If there was already an edge in the CFG, then we need
4896 to move all the cases associated with E to E2. */
4897 if (e2)
4898 {
4899 tree cases2 = get_cases_for_edge (e2, stmt);
4900
4901 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4902 CASE_CHAIN (cases2) = first;
4903 }
4904 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4905 }
4906 else
4907 {
4908 size_t i, n = gimple_switch_num_labels (stmt);
4909
4910 for (i = 0; i < n; i++)
4911 {
4912 tree elt = gimple_switch_label (stmt, i);
4913 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4914 CASE_LABEL (elt) = label;
4915 }
4916 }
4917 }
4918 break;
4919
4920 case GIMPLE_ASM:
4921 {
4922 int i, n = gimple_asm_nlabels (stmt);
4923 tree label = NULL;
4924
4925 for (i = 0; i < n; ++i)
4926 {
4927 tree cons = gimple_asm_label_op (stmt, i);
4928 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4929 {
4930 if (!label)
4931 label = gimple_block_label (dest);
4932 TREE_VALUE (cons) = label;
4933 }
4934 }
4935
4936 /* If we didn't find any label matching the former edge in the
4937 asm labels, we must be redirecting the fallthrough
4938 edge. */
4939 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4940 }
4941 break;
4942
4943 case GIMPLE_RETURN:
4944 gsi_remove (&gsi, true);
4945 e->flags |= EDGE_FALLTHRU;
4946 break;
4947
4948 case GIMPLE_OMP_RETURN:
4949 case GIMPLE_OMP_CONTINUE:
4950 case GIMPLE_OMP_SECTIONS_SWITCH:
4951 case GIMPLE_OMP_FOR:
4952 /* The edges from OMP constructs can be simply redirected. */
4953 break;
4954
4955 case GIMPLE_EH_DISPATCH:
4956 if (!(e->flags & EDGE_FALLTHRU))
4957 redirect_eh_dispatch_edge (stmt, e, dest);
4958 break;
4959
4960 default:
4961 /* Otherwise it must be a fallthru edge, and we don't need to
4962 do anything besides redirecting it. */
4963 gcc_assert (e->flags & EDGE_FALLTHRU);
4964 break;
4965 }
4966
4967 /* Update/insert PHI nodes as necessary. */
4968
4969 /* Now update the edges in the CFG. */
4970 e = ssa_redirect_edge (e, dest);
4971
4972 return e;
4973 }
4974
4975 /* Returns true if it is possible to remove edge E by redirecting
4976 it to the destination of the other edge from E->src. */
4977
4978 static bool
4979 gimple_can_remove_branch_p (const_edge e)
4980 {
4981 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4982 return false;
4983
4984 return true;
4985 }
4986
4987 /* Simple wrapper, as we can always redirect fallthru edges. */
4988
4989 static basic_block
4990 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4991 {
4992 e = gimple_redirect_edge_and_branch (e, dest);
4993 gcc_assert (e);
4994
4995 return NULL;
4996 }
4997
4998
4999 /* Splits basic block BB after statement STMT (but at least after the
5000 labels). If STMT is NULL, BB is split just after the labels. */
5001
5002 static basic_block
5003 gimple_split_block (basic_block bb, void *stmt)
5004 {
5005 gimple_stmt_iterator gsi;
5006 gimple_stmt_iterator gsi_tgt;
5007 gimple act;
5008 gimple_seq list;
5009 basic_block new_bb;
5010 edge e;
5011 edge_iterator ei;
5012
5013 new_bb = create_empty_bb (bb);
5014
5015 /* Redirect the outgoing edges. */
5016 new_bb->succs = bb->succs;
5017 bb->succs = NULL;
5018 FOR_EACH_EDGE (e, ei, new_bb->succs)
5019 e->src = new_bb;
5020
5021 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5022 stmt = NULL;
5023
5024 /* Move everything from GSI to the new basic block. */
5025 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5026 {
5027 act = gsi_stmt (gsi);
5028 if (gimple_code (act) == GIMPLE_LABEL)
5029 continue;
5030
5031 if (!stmt)
5032 break;
5033
5034 if (stmt == act)
5035 {
5036 gsi_next (&gsi);
5037 break;
5038 }
5039 }
5040
5041 if (gsi_end_p (gsi))
5042 return new_bb;
5043
5044 /* Split the statement list - avoid re-creating new containers as this
5045 brings ugly quadratic memory consumption in the inliner.
5046 (We are still quadratic since we need to update stmt BB pointers,
5047 sadly.) */
5048 list = gsi_split_seq_before (&gsi);
5049 set_bb_seq (new_bb, list);
5050 for (gsi_tgt = gsi_start (list);
5051 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5052 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5053
5054 return new_bb;
5055 }
5056
5057
5058 /* Moves basic block BB after block AFTER. */
5059
5060 static bool
5061 gimple_move_block_after (basic_block bb, basic_block after)
5062 {
5063 if (bb->prev_bb == after)
5064 return true;
5065
5066 unlink_block (bb);
5067 link_block (bb, after);
5068
5069 return true;
5070 }
5071
5072
5073 /* Return true if basic_block can be duplicated. */
5074
5075 static bool
5076 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5077 {
5078 return true;
5079 }
5080
5081 /* Create a duplicate of the basic block BB. NOTE: This does not
5082 preserve SSA form. */
5083
5084 static basic_block
5085 gimple_duplicate_bb (basic_block bb)
5086 {
5087 basic_block new_bb;
5088 gimple_stmt_iterator gsi, gsi_tgt;
5089 gimple_seq phis = phi_nodes (bb);
5090 gimple phi, stmt, copy;
5091
5092 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5093
5094 /* Copy the PHI nodes. We ignore PHI node arguments here because
5095 the incoming edges have not been setup yet. */
5096 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5097 {
5098 phi = gsi_stmt (gsi);
5099 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5100 create_new_def_for (gimple_phi_result (copy), copy,
5101 gimple_phi_result_ptr (copy));
5102 }
5103
5104 gsi_tgt = gsi_start_bb (new_bb);
5105 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5106 {
5107 def_operand_p def_p;
5108 ssa_op_iter op_iter;
5109 tree lhs;
5110
5111 stmt = gsi_stmt (gsi);
5112 if (gimple_code (stmt) == GIMPLE_LABEL)
5113 continue;
5114
5115 /* Create a new copy of STMT and duplicate STMT's virtual
5116 operands. */
5117 copy = gimple_copy (stmt);
5118 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5119
5120 maybe_duplicate_eh_stmt (copy, stmt);
5121 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5122
5123 /* When copying around a stmt writing into a local non-user
5124 aggregate, make sure it won't share stack slot with other
5125 vars. */
5126 lhs = gimple_get_lhs (stmt);
5127 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5128 {
5129 tree base = get_base_address (lhs);
5130 if (base
5131 && (TREE_CODE (base) == VAR_DECL
5132 || TREE_CODE (base) == RESULT_DECL)
5133 && DECL_IGNORED_P (base)
5134 && !TREE_STATIC (base)
5135 && !DECL_EXTERNAL (base)
5136 && (TREE_CODE (base) != VAR_DECL
5137 || !DECL_HAS_VALUE_EXPR_P (base)))
5138 DECL_NONSHAREABLE (base) = 1;
5139 }
5140
5141 /* Create new names for all the definitions created by COPY and
5142 add replacement mappings for each new name. */
5143 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5144 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5145 }
5146
5147 return new_bb;
5148 }
5149
5150 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5151
5152 static void
5153 add_phi_args_after_copy_edge (edge e_copy)
5154 {
5155 basic_block bb, bb_copy = e_copy->src, dest;
5156 edge e;
5157 edge_iterator ei;
5158 gimple phi, phi_copy;
5159 tree def;
5160 gimple_stmt_iterator psi, psi_copy;
5161
5162 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5163 return;
5164
5165 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5166
5167 if (e_copy->dest->flags & BB_DUPLICATED)
5168 dest = get_bb_original (e_copy->dest);
5169 else
5170 dest = e_copy->dest;
5171
5172 e = find_edge (bb, dest);
5173 if (!e)
5174 {
5175 /* During loop unrolling the target of the latch edge is copied.
5176 In this case we are not looking for edge to dest, but to
5177 duplicated block whose original was dest. */
5178 FOR_EACH_EDGE (e, ei, bb->succs)
5179 {
5180 if ((e->dest->flags & BB_DUPLICATED)
5181 && get_bb_original (e->dest) == dest)
5182 break;
5183 }
5184
5185 gcc_assert (e != NULL);
5186 }
5187
5188 for (psi = gsi_start_phis (e->dest),
5189 psi_copy = gsi_start_phis (e_copy->dest);
5190 !gsi_end_p (psi);
5191 gsi_next (&psi), gsi_next (&psi_copy))
5192 {
5193 phi = gsi_stmt (psi);
5194 phi_copy = gsi_stmt (psi_copy);
5195 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5196 add_phi_arg (phi_copy, def, e_copy,
5197 gimple_phi_arg_location_from_edge (phi, e));
5198 }
5199 }
5200
5201
5202 /* Basic block BB_COPY was created by code duplication. Add phi node
5203 arguments for edges going out of BB_COPY. The blocks that were
5204 duplicated have BB_DUPLICATED set. */
5205
5206 void
5207 add_phi_args_after_copy_bb (basic_block bb_copy)
5208 {
5209 edge e_copy;
5210 edge_iterator ei;
5211
5212 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5213 {
5214 add_phi_args_after_copy_edge (e_copy);
5215 }
5216 }
5217
5218 /* Blocks in REGION_COPY array of length N_REGION were created by
5219 duplication of basic blocks. Add phi node arguments for edges
5220 going from these blocks. If E_COPY is not NULL, also add
5221 phi node arguments for its destination.*/
5222
5223 void
5224 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5225 edge e_copy)
5226 {
5227 unsigned i;
5228
5229 for (i = 0; i < n_region; i++)
5230 region_copy[i]->flags |= BB_DUPLICATED;
5231
5232 for (i = 0; i < n_region; i++)
5233 add_phi_args_after_copy_bb (region_copy[i]);
5234 if (e_copy)
5235 add_phi_args_after_copy_edge (e_copy);
5236
5237 for (i = 0; i < n_region; i++)
5238 region_copy[i]->flags &= ~BB_DUPLICATED;
5239 }
5240
5241 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5242 important exit edge EXIT. By important we mean that no SSA name defined
5243 inside region is live over the other exit edges of the region. All entry
5244 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5245 to the duplicate of the region. SSA form, dominance and loop information
5246 is updated. The new basic blocks are stored to REGION_COPY in the same
5247 order as they had in REGION, provided that REGION_COPY is not NULL.
5248 The function returns false if it is unable to copy the region,
5249 true otherwise. */
5250
5251 bool
5252 gimple_duplicate_sese_region (edge entry, edge exit,
5253 basic_block *region, unsigned n_region,
5254 basic_block *region_copy)
5255 {
5256 unsigned i;
5257 bool free_region_copy = false, copying_header = false;
5258 struct loop *loop = entry->dest->loop_father;
5259 edge exit_copy;
5260 VEC (basic_block, heap) *doms;
5261 edge redirected;
5262 int total_freq = 0, entry_freq = 0;
5263 gcov_type total_count = 0, entry_count = 0;
5264
5265 if (!can_copy_bbs_p (region, n_region))
5266 return false;
5267
5268 /* Some sanity checking. Note that we do not check for all possible
5269 missuses of the functions. I.e. if you ask to copy something weird,
5270 it will work, but the state of structures probably will not be
5271 correct. */
5272 for (i = 0; i < n_region; i++)
5273 {
5274 /* We do not handle subloops, i.e. all the blocks must belong to the
5275 same loop. */
5276 if (region[i]->loop_father != loop)
5277 return false;
5278
5279 if (region[i] != entry->dest
5280 && region[i] == loop->header)
5281 return false;
5282 }
5283
5284 set_loop_copy (loop, loop);
5285
5286 /* In case the function is used for loop header copying (which is the primary
5287 use), ensure that EXIT and its copy will be new latch and entry edges. */
5288 if (loop->header == entry->dest)
5289 {
5290 copying_header = true;
5291 set_loop_copy (loop, loop_outer (loop));
5292
5293 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5294 return false;
5295
5296 for (i = 0; i < n_region; i++)
5297 if (region[i] != exit->src
5298 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5299 return false;
5300 }
5301
5302 if (!region_copy)
5303 {
5304 region_copy = XNEWVEC (basic_block, n_region);
5305 free_region_copy = true;
5306 }
5307
5308 gcc_assert (!need_ssa_update_p (cfun));
5309
5310 /* Record blocks outside the region that are dominated by something
5311 inside. */
5312 doms = NULL;
5313 initialize_original_copy_tables ();
5314
5315 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5316
5317 if (entry->dest->count)
5318 {
5319 total_count = entry->dest->count;
5320 entry_count = entry->count;
5321 /* Fix up corner cases, to avoid division by zero or creation of negative
5322 frequencies. */
5323 if (entry_count > total_count)
5324 entry_count = total_count;
5325 }
5326 else
5327 {
5328 total_freq = entry->dest->frequency;
5329 entry_freq = EDGE_FREQUENCY (entry);
5330 /* Fix up corner cases, to avoid division by zero or creation of negative
5331 frequencies. */
5332 if (total_freq == 0)
5333 total_freq = 1;
5334 else if (entry_freq > total_freq)
5335 entry_freq = total_freq;
5336 }
5337
5338 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5339 split_edge_bb_loc (entry));
5340 if (total_count)
5341 {
5342 scale_bbs_frequencies_gcov_type (region, n_region,
5343 total_count - entry_count,
5344 total_count);
5345 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5346 total_count);
5347 }
5348 else
5349 {
5350 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5351 total_freq);
5352 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5353 }
5354
5355 if (copying_header)
5356 {
5357 loop->header = exit->dest;
5358 loop->latch = exit->src;
5359 }
5360
5361 /* Redirect the entry and add the phi node arguments. */
5362 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5363 gcc_assert (redirected != NULL);
5364 flush_pending_stmts (entry);
5365
5366 /* Concerning updating of dominators: We must recount dominators
5367 for entry block and its copy. Anything that is outside of the
5368 region, but was dominated by something inside needs recounting as
5369 well. */
5370 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5371 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5372 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5373 VEC_free (basic_block, heap, doms);
5374
5375 /* Add the other PHI node arguments. */
5376 add_phi_args_after_copy (region_copy, n_region, NULL);
5377
5378 /* Update the SSA web. */
5379 update_ssa (TODO_update_ssa);
5380
5381 if (free_region_copy)
5382 free (region_copy);
5383
5384 free_original_copy_tables ();
5385 return true;
5386 }
5387
5388 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5389 are stored to REGION_COPY in the same order in that they appear
5390 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5391 the region, EXIT an exit from it. The condition guarding EXIT
5392 is moved to ENTRY. Returns true if duplication succeeds, false
5393 otherwise.
5394
5395 For example,
5396
5397 some_code;
5398 if (cond)
5399 A;
5400 else
5401 B;
5402
5403 is transformed to
5404
5405 if (cond)
5406 {
5407 some_code;
5408 A;
5409 }
5410 else
5411 {
5412 some_code;
5413 B;
5414 }
5415 */
5416
5417 bool
5418 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5419 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5420 basic_block *region_copy ATTRIBUTE_UNUSED)
5421 {
5422 unsigned i;
5423 bool free_region_copy = false;
5424 struct loop *loop = exit->dest->loop_father;
5425 struct loop *orig_loop = entry->dest->loop_father;
5426 basic_block switch_bb, entry_bb, nentry_bb;
5427 VEC (basic_block, heap) *doms;
5428 int total_freq = 0, exit_freq = 0;
5429 gcov_type total_count = 0, exit_count = 0;
5430 edge exits[2], nexits[2], e;
5431 gimple_stmt_iterator gsi;
5432 gimple cond_stmt;
5433 edge sorig, snew;
5434 basic_block exit_bb;
5435 gimple_stmt_iterator psi;
5436 gimple phi;
5437 tree def;
5438
5439 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5440 exits[0] = exit;
5441 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5442
5443 if (!can_copy_bbs_p (region, n_region))
5444 return false;
5445
5446 initialize_original_copy_tables ();
5447 set_loop_copy (orig_loop, loop);
5448 duplicate_subloops (orig_loop, loop);
5449
5450 if (!region_copy)
5451 {
5452 region_copy = XNEWVEC (basic_block, n_region);
5453 free_region_copy = true;
5454 }
5455
5456 gcc_assert (!need_ssa_update_p (cfun));
5457
5458 /* Record blocks outside the region that are dominated by something
5459 inside. */
5460 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5461
5462 if (exit->src->count)
5463 {
5464 total_count = exit->src->count;
5465 exit_count = exit->count;
5466 /* Fix up corner cases, to avoid division by zero or creation of negative
5467 frequencies. */
5468 if (exit_count > total_count)
5469 exit_count = total_count;
5470 }
5471 else
5472 {
5473 total_freq = exit->src->frequency;
5474 exit_freq = EDGE_FREQUENCY (exit);
5475 /* Fix up corner cases, to avoid division by zero or creation of negative
5476 frequencies. */
5477 if (total_freq == 0)
5478 total_freq = 1;
5479 if (exit_freq > total_freq)
5480 exit_freq = total_freq;
5481 }
5482
5483 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5484 split_edge_bb_loc (exit));
5485 if (total_count)
5486 {
5487 scale_bbs_frequencies_gcov_type (region, n_region,
5488 total_count - exit_count,
5489 total_count);
5490 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5491 total_count);
5492 }
5493 else
5494 {
5495 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5496 total_freq);
5497 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5498 }
5499
5500 /* Create the switch block, and put the exit condition to it. */
5501 entry_bb = entry->dest;
5502 nentry_bb = get_bb_copy (entry_bb);
5503 if (!last_stmt (entry->src)
5504 || !stmt_ends_bb_p (last_stmt (entry->src)))
5505 switch_bb = entry->src;
5506 else
5507 switch_bb = split_edge (entry);
5508 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5509
5510 gsi = gsi_last_bb (switch_bb);
5511 cond_stmt = last_stmt (exit->src);
5512 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5513 cond_stmt = gimple_copy (cond_stmt);
5514
5515 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5516
5517 sorig = single_succ_edge (switch_bb);
5518 sorig->flags = exits[1]->flags;
5519 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5520
5521 /* Register the new edge from SWITCH_BB in loop exit lists. */
5522 rescan_loop_exit (snew, true, false);
5523
5524 /* Add the PHI node arguments. */
5525 add_phi_args_after_copy (region_copy, n_region, snew);
5526
5527 /* Get rid of now superfluous conditions and associated edges (and phi node
5528 arguments). */
5529 exit_bb = exit->dest;
5530
5531 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5532 PENDING_STMT (e) = NULL;
5533
5534 /* The latch of ORIG_LOOP was copied, and so was the backedge
5535 to the original header. We redirect this backedge to EXIT_BB. */
5536 for (i = 0; i < n_region; i++)
5537 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5538 {
5539 gcc_assert (single_succ_edge (region_copy[i]));
5540 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5541 PENDING_STMT (e) = NULL;
5542 for (psi = gsi_start_phis (exit_bb);
5543 !gsi_end_p (psi);
5544 gsi_next (&psi))
5545 {
5546 phi = gsi_stmt (psi);
5547 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5548 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5549 }
5550 }
5551 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5552 PENDING_STMT (e) = NULL;
5553
5554 /* Anything that is outside of the region, but was dominated by something
5555 inside needs to update dominance info. */
5556 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5557 VEC_free (basic_block, heap, doms);
5558 /* Update the SSA web. */
5559 update_ssa (TODO_update_ssa);
5560
5561 if (free_region_copy)
5562 free (region_copy);
5563
5564 free_original_copy_tables ();
5565 return true;
5566 }
5567
5568 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5569 adding blocks when the dominator traversal reaches EXIT. This
5570 function silently assumes that ENTRY strictly dominates EXIT. */
5571
5572 void
5573 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5574 VEC(basic_block,heap) **bbs_p)
5575 {
5576 basic_block son;
5577
5578 for (son = first_dom_son (CDI_DOMINATORS, entry);
5579 son;
5580 son = next_dom_son (CDI_DOMINATORS, son))
5581 {
5582 VEC_safe_push (basic_block, heap, *bbs_p, son);
5583 if (son != exit)
5584 gather_blocks_in_sese_region (son, exit, bbs_p);
5585 }
5586 }
5587
5588 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5589 The duplicates are recorded in VARS_MAP. */
5590
5591 static void
5592 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5593 tree to_context)
5594 {
5595 tree t = *tp, new_t;
5596 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5597 void **loc;
5598
5599 if (DECL_CONTEXT (t) == to_context)
5600 return;
5601
5602 loc = pointer_map_contains (vars_map, t);
5603
5604 if (!loc)
5605 {
5606 loc = pointer_map_insert (vars_map, t);
5607
5608 if (SSA_VAR_P (t))
5609 {
5610 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5611 add_local_decl (f, new_t);
5612 }
5613 else
5614 {
5615 gcc_assert (TREE_CODE (t) == CONST_DECL);
5616 new_t = copy_node (t);
5617 }
5618 DECL_CONTEXT (new_t) = to_context;
5619
5620 *loc = new_t;
5621 }
5622 else
5623 new_t = (tree) *loc;
5624
5625 *tp = new_t;
5626 }
5627
5628
5629 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5630 VARS_MAP maps old ssa names and var_decls to the new ones. */
5631
5632 static tree
5633 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5634 tree to_context)
5635 {
5636 void **loc;
5637 tree new_name, decl = SSA_NAME_VAR (name);
5638
5639 gcc_assert (is_gimple_reg (name));
5640
5641 loc = pointer_map_contains (vars_map, name);
5642
5643 if (!loc)
5644 {
5645 replace_by_duplicate_decl (&decl, vars_map, to_context);
5646
5647 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5648 if (gimple_in_ssa_p (cfun))
5649 add_referenced_var (decl);
5650
5651 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5652 if (SSA_NAME_IS_DEFAULT_DEF (name))
5653 set_default_def (decl, new_name);
5654 pop_cfun ();
5655
5656 loc = pointer_map_insert (vars_map, name);
5657 *loc = new_name;
5658 }
5659 else
5660 new_name = (tree) *loc;
5661
5662 return new_name;
5663 }
5664
5665 struct move_stmt_d
5666 {
5667 tree orig_block;
5668 tree new_block;
5669 tree from_context;
5670 tree to_context;
5671 struct pointer_map_t *vars_map;
5672 htab_t new_label_map;
5673 struct pointer_map_t *eh_map;
5674 bool remap_decls_p;
5675 };
5676
5677 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5678 contained in *TP if it has been ORIG_BLOCK previously and change the
5679 DECL_CONTEXT of every local variable referenced in *TP. */
5680
5681 static tree
5682 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5683 {
5684 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5685 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5686 tree t = *tp;
5687
5688 if (EXPR_P (t))
5689 /* We should never have TREE_BLOCK set on non-statements. */
5690 gcc_assert (!TREE_BLOCK (t));
5691
5692 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5693 {
5694 if (TREE_CODE (t) == SSA_NAME)
5695 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5696 else if (TREE_CODE (t) == LABEL_DECL)
5697 {
5698 if (p->new_label_map)
5699 {
5700 struct tree_map in, *out;
5701 in.base.from = t;
5702 out = (struct tree_map *)
5703 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5704 if (out)
5705 *tp = t = out->to;
5706 }
5707
5708 DECL_CONTEXT (t) = p->to_context;
5709 }
5710 else if (p->remap_decls_p)
5711 {
5712 /* Replace T with its duplicate. T should no longer appear in the
5713 parent function, so this looks wasteful; however, it may appear
5714 in referenced_vars, and more importantly, as virtual operands of
5715 statements, and in alias lists of other variables. It would be
5716 quite difficult to expunge it from all those places. ??? It might
5717 suffice to do this for addressable variables. */
5718 if ((TREE_CODE (t) == VAR_DECL
5719 && !is_global_var (t))
5720 || TREE_CODE (t) == CONST_DECL)
5721 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5722
5723 if (SSA_VAR_P (t)
5724 && gimple_in_ssa_p (cfun))
5725 {
5726 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5727 add_referenced_var (*tp);
5728 pop_cfun ();
5729 }
5730 }
5731 *walk_subtrees = 0;
5732 }
5733 else if (TYPE_P (t))
5734 *walk_subtrees = 0;
5735
5736 return NULL_TREE;
5737 }
5738
5739 /* Helper for move_stmt_r. Given an EH region number for the source
5740 function, map that to the duplicate EH regio number in the dest. */
5741
5742 static int
5743 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5744 {
5745 eh_region old_r, new_r;
5746 void **slot;
5747
5748 old_r = get_eh_region_from_number (old_nr);
5749 slot = pointer_map_contains (p->eh_map, old_r);
5750 new_r = (eh_region) *slot;
5751
5752 return new_r->index;
5753 }
5754
5755 /* Similar, but operate on INTEGER_CSTs. */
5756
5757 static tree
5758 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5759 {
5760 int old_nr, new_nr;
5761
5762 old_nr = tree_low_cst (old_t_nr, 0);
5763 new_nr = move_stmt_eh_region_nr (old_nr, p);
5764
5765 return build_int_cst (integer_type_node, new_nr);
5766 }
5767
5768 /* Like move_stmt_op, but for gimple statements.
5769
5770 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5771 contained in the current statement in *GSI_P and change the
5772 DECL_CONTEXT of every local variable referenced in the current
5773 statement. */
5774
5775 static tree
5776 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5777 struct walk_stmt_info *wi)
5778 {
5779 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5780 gimple stmt = gsi_stmt (*gsi_p);
5781 tree block = gimple_block (stmt);
5782
5783 if (p->orig_block == NULL_TREE
5784 || block == p->orig_block
5785 || block == NULL_TREE)
5786 gimple_set_block (stmt, p->new_block);
5787 #ifdef ENABLE_CHECKING
5788 else if (block != p->new_block)
5789 {
5790 while (block && block != p->orig_block)
5791 block = BLOCK_SUPERCONTEXT (block);
5792 gcc_assert (block);
5793 }
5794 #endif
5795
5796 switch (gimple_code (stmt))
5797 {
5798 case GIMPLE_CALL:
5799 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5800 {
5801 tree r, fndecl = gimple_call_fndecl (stmt);
5802 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5803 switch (DECL_FUNCTION_CODE (fndecl))
5804 {
5805 case BUILT_IN_EH_COPY_VALUES:
5806 r = gimple_call_arg (stmt, 1);
5807 r = move_stmt_eh_region_tree_nr (r, p);
5808 gimple_call_set_arg (stmt, 1, r);
5809 /* FALLTHRU */
5810
5811 case BUILT_IN_EH_POINTER:
5812 case BUILT_IN_EH_FILTER:
5813 r = gimple_call_arg (stmt, 0);
5814 r = move_stmt_eh_region_tree_nr (r, p);
5815 gimple_call_set_arg (stmt, 0, r);
5816 break;
5817
5818 default:
5819 break;
5820 }
5821 }
5822 break;
5823
5824 case GIMPLE_RESX:
5825 {
5826 int r = gimple_resx_region (stmt);
5827 r = move_stmt_eh_region_nr (r, p);
5828 gimple_resx_set_region (stmt, r);
5829 }
5830 break;
5831
5832 case GIMPLE_EH_DISPATCH:
5833 {
5834 int r = gimple_eh_dispatch_region (stmt);
5835 r = move_stmt_eh_region_nr (r, p);
5836 gimple_eh_dispatch_set_region (stmt, r);
5837 }
5838 break;
5839
5840 case GIMPLE_OMP_RETURN:
5841 case GIMPLE_OMP_CONTINUE:
5842 break;
5843 default:
5844 if (is_gimple_omp (stmt))
5845 {
5846 /* Do not remap variables inside OMP directives. Variables
5847 referenced in clauses and directive header belong to the
5848 parent function and should not be moved into the child
5849 function. */
5850 bool save_remap_decls_p = p->remap_decls_p;
5851 p->remap_decls_p = false;
5852 *handled_ops_p = true;
5853
5854 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5855 move_stmt_op, wi);
5856
5857 p->remap_decls_p = save_remap_decls_p;
5858 }
5859 break;
5860 }
5861
5862 return NULL_TREE;
5863 }
5864
5865 /* Move basic block BB from function CFUN to function DEST_FN. The
5866 block is moved out of the original linked list and placed after
5867 block AFTER in the new list. Also, the block is removed from the
5868 original array of blocks and placed in DEST_FN's array of blocks.
5869 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5870 updated to reflect the moved edges.
5871
5872 The local variables are remapped to new instances, VARS_MAP is used
5873 to record the mapping. */
5874
5875 static void
5876 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5877 basic_block after, bool update_edge_count_p,
5878 struct move_stmt_d *d)
5879 {
5880 struct control_flow_graph *cfg;
5881 edge_iterator ei;
5882 edge e;
5883 gimple_stmt_iterator si;
5884 unsigned old_len, new_len;
5885
5886 /* Remove BB from dominance structures. */
5887 delete_from_dominance_info (CDI_DOMINATORS, bb);
5888 if (current_loops)
5889 remove_bb_from_loops (bb);
5890
5891 /* Link BB to the new linked list. */
5892 move_block_after (bb, after);
5893
5894 /* Update the edge count in the corresponding flowgraphs. */
5895 if (update_edge_count_p)
5896 FOR_EACH_EDGE (e, ei, bb->succs)
5897 {
5898 cfun->cfg->x_n_edges--;
5899 dest_cfun->cfg->x_n_edges++;
5900 }
5901
5902 /* Remove BB from the original basic block array. */
5903 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5904 cfun->cfg->x_n_basic_blocks--;
5905
5906 /* Grow DEST_CFUN's basic block array if needed. */
5907 cfg = dest_cfun->cfg;
5908 cfg->x_n_basic_blocks++;
5909 if (bb->index >= cfg->x_last_basic_block)
5910 cfg->x_last_basic_block = bb->index + 1;
5911
5912 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5913 if ((unsigned) cfg->x_last_basic_block >= old_len)
5914 {
5915 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5916 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5917 new_len);
5918 }
5919
5920 VEC_replace (basic_block, cfg->x_basic_block_info,
5921 bb->index, bb);
5922
5923 /* Remap the variables in phi nodes. */
5924 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5925 {
5926 gimple phi = gsi_stmt (si);
5927 use_operand_p use;
5928 tree op = PHI_RESULT (phi);
5929 ssa_op_iter oi;
5930
5931 if (!is_gimple_reg (op))
5932 {
5933 /* Remove the phi nodes for virtual operands (alias analysis will be
5934 run for the new function, anyway). */
5935 remove_phi_node (&si, true);
5936 continue;
5937 }
5938
5939 SET_PHI_RESULT (phi,
5940 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5941 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5942 {
5943 op = USE_FROM_PTR (use);
5944 if (TREE_CODE (op) == SSA_NAME)
5945 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5946 }
5947
5948 gsi_next (&si);
5949 }
5950
5951 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5952 {
5953 gimple stmt = gsi_stmt (si);
5954 struct walk_stmt_info wi;
5955
5956 memset (&wi, 0, sizeof (wi));
5957 wi.info = d;
5958 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5959
5960 if (gimple_code (stmt) == GIMPLE_LABEL)
5961 {
5962 tree label = gimple_label_label (stmt);
5963 int uid = LABEL_DECL_UID (label);
5964
5965 gcc_assert (uid > -1);
5966
5967 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5968 if (old_len <= (unsigned) uid)
5969 {
5970 new_len = 3 * uid / 2 + 1;
5971 VEC_safe_grow_cleared (basic_block, gc,
5972 cfg->x_label_to_block_map, new_len);
5973 }
5974
5975 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5976 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5977
5978 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5979
5980 if (uid >= dest_cfun->cfg->last_label_uid)
5981 dest_cfun->cfg->last_label_uid = uid + 1;
5982 }
5983
5984 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5985 remove_stmt_from_eh_lp_fn (cfun, stmt);
5986
5987 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5988 gimple_remove_stmt_histograms (cfun, stmt);
5989
5990 /* We cannot leave any operands allocated from the operand caches of
5991 the current function. */
5992 free_stmt_operands (stmt);
5993 push_cfun (dest_cfun);
5994 update_stmt (stmt);
5995 pop_cfun ();
5996 }
5997
5998 FOR_EACH_EDGE (e, ei, bb->succs)
5999 if (e->goto_locus)
6000 {
6001 tree block = e->goto_block;
6002 if (d->orig_block == NULL_TREE
6003 || block == d->orig_block)
6004 e->goto_block = d->new_block;
6005 #ifdef ENABLE_CHECKING
6006 else if (block != d->new_block)
6007 {
6008 while (block && block != d->orig_block)
6009 block = BLOCK_SUPERCONTEXT (block);
6010 gcc_assert (block);
6011 }
6012 #endif
6013 }
6014 }
6015
6016 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6017 the outermost EH region. Use REGION as the incoming base EH region. */
6018
6019 static eh_region
6020 find_outermost_region_in_block (struct function *src_cfun,
6021 basic_block bb, eh_region region)
6022 {
6023 gimple_stmt_iterator si;
6024
6025 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6026 {
6027 gimple stmt = gsi_stmt (si);
6028 eh_region stmt_region;
6029 int lp_nr;
6030
6031 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6032 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6033 if (stmt_region)
6034 {
6035 if (region == NULL)
6036 region = stmt_region;
6037 else if (stmt_region != region)
6038 {
6039 region = eh_region_outermost (src_cfun, stmt_region, region);
6040 gcc_assert (region != NULL);
6041 }
6042 }
6043 }
6044
6045 return region;
6046 }
6047
6048 static tree
6049 new_label_mapper (tree decl, void *data)
6050 {
6051 htab_t hash = (htab_t) data;
6052 struct tree_map *m;
6053 void **slot;
6054
6055 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6056
6057 m = XNEW (struct tree_map);
6058 m->hash = DECL_UID (decl);
6059 m->base.from = decl;
6060 m->to = create_artificial_label (UNKNOWN_LOCATION);
6061 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6062 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6063 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6064
6065 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6066 gcc_assert (*slot == NULL);
6067
6068 *slot = m;
6069
6070 return m->to;
6071 }
6072
6073 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6074 subblocks. */
6075
6076 static void
6077 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6078 tree to_context)
6079 {
6080 tree *tp, t;
6081
6082 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6083 {
6084 t = *tp;
6085 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6086 continue;
6087 replace_by_duplicate_decl (&t, vars_map, to_context);
6088 if (t != *tp)
6089 {
6090 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6091 {
6092 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6093 DECL_HAS_VALUE_EXPR_P (t) = 1;
6094 }
6095 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6096 *tp = t;
6097 }
6098 }
6099
6100 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6101 replace_block_vars_by_duplicates (block, vars_map, to_context);
6102 }
6103
6104 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6105 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6106 single basic block in the original CFG and the new basic block is
6107 returned. DEST_CFUN must not have a CFG yet.
6108
6109 Note that the region need not be a pure SESE region. Blocks inside
6110 the region may contain calls to abort/exit. The only restriction
6111 is that ENTRY_BB should be the only entry point and it must
6112 dominate EXIT_BB.
6113
6114 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6115 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6116 to the new function.
6117
6118 All local variables referenced in the region are assumed to be in
6119 the corresponding BLOCK_VARS and unexpanded variable lists
6120 associated with DEST_CFUN. */
6121
6122 basic_block
6123 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6124 basic_block exit_bb, tree orig_block)
6125 {
6126 VEC(basic_block,heap) *bbs, *dom_bbs;
6127 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6128 basic_block after, bb, *entry_pred, *exit_succ, abb;
6129 struct function *saved_cfun = cfun;
6130 int *entry_flag, *exit_flag;
6131 unsigned *entry_prob, *exit_prob;
6132 unsigned i, num_entry_edges, num_exit_edges;
6133 edge e;
6134 edge_iterator ei;
6135 htab_t new_label_map;
6136 struct pointer_map_t *vars_map, *eh_map;
6137 struct loop *loop = entry_bb->loop_father;
6138 struct move_stmt_d d;
6139
6140 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6141 region. */
6142 gcc_assert (entry_bb != exit_bb
6143 && (!exit_bb
6144 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6145
6146 /* Collect all the blocks in the region. Manually add ENTRY_BB
6147 because it won't be added by dfs_enumerate_from. */
6148 bbs = NULL;
6149 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6150 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6151
6152 /* The blocks that used to be dominated by something in BBS will now be
6153 dominated by the new block. */
6154 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6155 VEC_address (basic_block, bbs),
6156 VEC_length (basic_block, bbs));
6157
6158 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6159 the predecessor edges to ENTRY_BB and the successor edges to
6160 EXIT_BB so that we can re-attach them to the new basic block that
6161 will replace the region. */
6162 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6163 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6164 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6165 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6166 i = 0;
6167 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6168 {
6169 entry_prob[i] = e->probability;
6170 entry_flag[i] = e->flags;
6171 entry_pred[i++] = e->src;
6172 remove_edge (e);
6173 }
6174
6175 if (exit_bb)
6176 {
6177 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6178 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6179 sizeof (basic_block));
6180 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6181 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6182 i = 0;
6183 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6184 {
6185 exit_prob[i] = e->probability;
6186 exit_flag[i] = e->flags;
6187 exit_succ[i++] = e->dest;
6188 remove_edge (e);
6189 }
6190 }
6191 else
6192 {
6193 num_exit_edges = 0;
6194 exit_succ = NULL;
6195 exit_flag = NULL;
6196 exit_prob = NULL;
6197 }
6198
6199 /* Switch context to the child function to initialize DEST_FN's CFG. */
6200 gcc_assert (dest_cfun->cfg == NULL);
6201 push_cfun (dest_cfun);
6202
6203 init_empty_tree_cfg ();
6204
6205 /* Initialize EH information for the new function. */
6206 eh_map = NULL;
6207 new_label_map = NULL;
6208 if (saved_cfun->eh)
6209 {
6210 eh_region region = NULL;
6211
6212 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6213 region = find_outermost_region_in_block (saved_cfun, bb, region);
6214
6215 init_eh_for_function ();
6216 if (region != NULL)
6217 {
6218 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6219 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6220 new_label_mapper, new_label_map);
6221 }
6222 }
6223
6224 pop_cfun ();
6225
6226 /* Move blocks from BBS into DEST_CFUN. */
6227 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6228 after = dest_cfun->cfg->x_entry_block_ptr;
6229 vars_map = pointer_map_create ();
6230
6231 memset (&d, 0, sizeof (d));
6232 d.orig_block = orig_block;
6233 d.new_block = DECL_INITIAL (dest_cfun->decl);
6234 d.from_context = cfun->decl;
6235 d.to_context = dest_cfun->decl;
6236 d.vars_map = vars_map;
6237 d.new_label_map = new_label_map;
6238 d.eh_map = eh_map;
6239 d.remap_decls_p = true;
6240
6241 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6242 {
6243 /* No need to update edge counts on the last block. It has
6244 already been updated earlier when we detached the region from
6245 the original CFG. */
6246 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6247 after = bb;
6248 }
6249
6250 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6251 if (orig_block)
6252 {
6253 tree block;
6254 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6255 == NULL_TREE);
6256 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6257 = BLOCK_SUBBLOCKS (orig_block);
6258 for (block = BLOCK_SUBBLOCKS (orig_block);
6259 block; block = BLOCK_CHAIN (block))
6260 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6261 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6262 }
6263
6264 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6265 vars_map, dest_cfun->decl);
6266
6267 if (new_label_map)
6268 htab_delete (new_label_map);
6269 if (eh_map)
6270 pointer_map_destroy (eh_map);
6271 pointer_map_destroy (vars_map);
6272
6273 /* Rewire the entry and exit blocks. The successor to the entry
6274 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6275 the child function. Similarly, the predecessor of DEST_FN's
6276 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6277 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6278 various CFG manipulation function get to the right CFG.
6279
6280 FIXME, this is silly. The CFG ought to become a parameter to
6281 these helpers. */
6282 push_cfun (dest_cfun);
6283 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6284 if (exit_bb)
6285 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6286 pop_cfun ();
6287
6288 /* Back in the original function, the SESE region has disappeared,
6289 create a new basic block in its place. */
6290 bb = create_empty_bb (entry_pred[0]);
6291 if (current_loops)
6292 add_bb_to_loop (bb, loop);
6293 for (i = 0; i < num_entry_edges; i++)
6294 {
6295 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6296 e->probability = entry_prob[i];
6297 }
6298
6299 for (i = 0; i < num_exit_edges; i++)
6300 {
6301 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6302 e->probability = exit_prob[i];
6303 }
6304
6305 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6306 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6307 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6308 VEC_free (basic_block, heap, dom_bbs);
6309
6310 if (exit_bb)
6311 {
6312 free (exit_prob);
6313 free (exit_flag);
6314 free (exit_succ);
6315 }
6316 free (entry_prob);
6317 free (entry_flag);
6318 free (entry_pred);
6319 VEC_free (basic_block, heap, bbs);
6320
6321 return bb;
6322 }
6323
6324
6325 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6326 */
6327
6328 void
6329 dump_function_to_file (tree fn, FILE *file, int flags)
6330 {
6331 tree arg, var;
6332 struct function *dsf;
6333 bool ignore_topmost_bind = false, any_var = false;
6334 basic_block bb;
6335 tree chain;
6336
6337 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6338
6339 arg = DECL_ARGUMENTS (fn);
6340 while (arg)
6341 {
6342 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6343 fprintf (file, " ");
6344 print_generic_expr (file, arg, dump_flags);
6345 if (flags & TDF_VERBOSE)
6346 print_node (file, "", arg, 4);
6347 if (DECL_CHAIN (arg))
6348 fprintf (file, ", ");
6349 arg = DECL_CHAIN (arg);
6350 }
6351 fprintf (file, ")\n");
6352
6353 if (flags & TDF_VERBOSE)
6354 print_node (file, "", fn, 2);
6355
6356 dsf = DECL_STRUCT_FUNCTION (fn);
6357 if (dsf && (flags & TDF_EH))
6358 dump_eh_tree (file, dsf);
6359
6360 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6361 {
6362 dump_node (fn, TDF_SLIM | flags, file);
6363 return;
6364 }
6365
6366 /* Switch CFUN to point to FN. */
6367 push_cfun (DECL_STRUCT_FUNCTION (fn));
6368
6369 /* When GIMPLE is lowered, the variables are no longer available in
6370 BIND_EXPRs, so display them separately. */
6371 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6372 {
6373 unsigned ix;
6374 ignore_topmost_bind = true;
6375
6376 fprintf (file, "{\n");
6377 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6378 {
6379 print_generic_decl (file, var, flags);
6380 if (flags & TDF_VERBOSE)
6381 print_node (file, "", var, 4);
6382 fprintf (file, "\n");
6383
6384 any_var = true;
6385 }
6386 }
6387
6388 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6389 {
6390 /* If the CFG has been built, emit a CFG-based dump. */
6391 check_bb_profile (ENTRY_BLOCK_PTR, file);
6392 if (!ignore_topmost_bind)
6393 fprintf (file, "{\n");
6394
6395 if (any_var && n_basic_blocks)
6396 fprintf (file, "\n");
6397
6398 FOR_EACH_BB (bb)
6399 gimple_dump_bb (bb, file, 2, flags);
6400
6401 fprintf (file, "}\n");
6402 check_bb_profile (EXIT_BLOCK_PTR, file);
6403 }
6404 else if (DECL_SAVED_TREE (fn) == NULL)
6405 {
6406 /* The function is now in GIMPLE form but the CFG has not been
6407 built yet. Emit the single sequence of GIMPLE statements
6408 that make up its body. */
6409 gimple_seq body = gimple_body (fn);
6410
6411 if (gimple_seq_first_stmt (body)
6412 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6413 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6414 print_gimple_seq (file, body, 0, flags);
6415 else
6416 {
6417 if (!ignore_topmost_bind)
6418 fprintf (file, "{\n");
6419
6420 if (any_var)
6421 fprintf (file, "\n");
6422
6423 print_gimple_seq (file, body, 2, flags);
6424 fprintf (file, "}\n");
6425 }
6426 }
6427 else
6428 {
6429 int indent;
6430
6431 /* Make a tree based dump. */
6432 chain = DECL_SAVED_TREE (fn);
6433
6434 if (chain && TREE_CODE (chain) == BIND_EXPR)
6435 {
6436 if (ignore_topmost_bind)
6437 {
6438 chain = BIND_EXPR_BODY (chain);
6439 indent = 2;
6440 }
6441 else
6442 indent = 0;
6443 }
6444 else
6445 {
6446 if (!ignore_topmost_bind)
6447 fprintf (file, "{\n");
6448 indent = 2;
6449 }
6450
6451 if (any_var)
6452 fprintf (file, "\n");
6453
6454 print_generic_stmt_indented (file, chain, flags, indent);
6455 if (ignore_topmost_bind)
6456 fprintf (file, "}\n");
6457 }
6458
6459 if (flags & TDF_ENUMERATE_LOCALS)
6460 dump_enumerated_decls (file, flags);
6461 fprintf (file, "\n\n");
6462
6463 /* Restore CFUN. */
6464 pop_cfun ();
6465 }
6466
6467
6468 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6469
6470 DEBUG_FUNCTION void
6471 debug_function (tree fn, int flags)
6472 {
6473 dump_function_to_file (fn, stderr, flags);
6474 }
6475
6476
6477 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6478
6479 static void
6480 print_pred_bbs (FILE *file, basic_block bb)
6481 {
6482 edge e;
6483 edge_iterator ei;
6484
6485 FOR_EACH_EDGE (e, ei, bb->preds)
6486 fprintf (file, "bb_%d ", e->src->index);
6487 }
6488
6489
6490 /* Print on FILE the indexes for the successors of basic_block BB. */
6491
6492 static void
6493 print_succ_bbs (FILE *file, basic_block bb)
6494 {
6495 edge e;
6496 edge_iterator ei;
6497
6498 FOR_EACH_EDGE (e, ei, bb->succs)
6499 fprintf (file, "bb_%d ", e->dest->index);
6500 }
6501
6502 /* Print to FILE the basic block BB following the VERBOSITY level. */
6503
6504 void
6505 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6506 {
6507 char *s_indent = (char *) alloca ((size_t) indent + 1);
6508 memset ((void *) s_indent, ' ', (size_t) indent);
6509 s_indent[indent] = '\0';
6510
6511 /* Print basic_block's header. */
6512 if (verbosity >= 2)
6513 {
6514 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6515 print_pred_bbs (file, bb);
6516 fprintf (file, "}, succs = {");
6517 print_succ_bbs (file, bb);
6518 fprintf (file, "})\n");
6519 }
6520
6521 /* Print basic_block's body. */
6522 if (verbosity >= 3)
6523 {
6524 fprintf (file, "%s {\n", s_indent);
6525 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6526 fprintf (file, "%s }\n", s_indent);
6527 }
6528 }
6529
6530 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6531
6532 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6533 VERBOSITY level this outputs the contents of the loop, or just its
6534 structure. */
6535
6536 static void
6537 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6538 {
6539 char *s_indent;
6540 basic_block bb;
6541
6542 if (loop == NULL)
6543 return;
6544
6545 s_indent = (char *) alloca ((size_t) indent + 1);
6546 memset ((void *) s_indent, ' ', (size_t) indent);
6547 s_indent[indent] = '\0';
6548
6549 /* Print loop's header. */
6550 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6551 loop->num, loop->header->index, loop->latch->index);
6552 fprintf (file, ", niter = ");
6553 print_generic_expr (file, loop->nb_iterations, 0);
6554
6555 if (loop->any_upper_bound)
6556 {
6557 fprintf (file, ", upper_bound = ");
6558 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6559 }
6560
6561 if (loop->any_estimate)
6562 {
6563 fprintf (file, ", estimate = ");
6564 dump_double_int (file, loop->nb_iterations_estimate, true);
6565 }
6566 fprintf (file, ")\n");
6567
6568 /* Print loop's body. */
6569 if (verbosity >= 1)
6570 {
6571 fprintf (file, "%s{\n", s_indent);
6572 FOR_EACH_BB (bb)
6573 if (bb->loop_father == loop)
6574 print_loops_bb (file, bb, indent, verbosity);
6575
6576 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6577 fprintf (file, "%s}\n", s_indent);
6578 }
6579 }
6580
6581 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6582 spaces. Following VERBOSITY level this outputs the contents of the
6583 loop, or just its structure. */
6584
6585 static void
6586 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6587 {
6588 if (loop == NULL)
6589 return;
6590
6591 print_loop (file, loop, indent, verbosity);
6592 print_loop_and_siblings (file, loop->next, indent, verbosity);
6593 }
6594
6595 /* Follow a CFG edge from the entry point of the program, and on entry
6596 of a loop, pretty print the loop structure on FILE. */
6597
6598 void
6599 print_loops (FILE *file, int verbosity)
6600 {
6601 basic_block bb;
6602
6603 bb = ENTRY_BLOCK_PTR;
6604 if (bb && bb->loop_father)
6605 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6606 }
6607
6608
6609 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6610
6611 DEBUG_FUNCTION void
6612 debug_loops (int verbosity)
6613 {
6614 print_loops (stderr, verbosity);
6615 }
6616
6617 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6618
6619 DEBUG_FUNCTION void
6620 debug_loop (struct loop *loop, int verbosity)
6621 {
6622 print_loop (stderr, loop, 0, verbosity);
6623 }
6624
6625 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6626 level. */
6627
6628 DEBUG_FUNCTION void
6629 debug_loop_num (unsigned num, int verbosity)
6630 {
6631 debug_loop (get_loop (num), verbosity);
6632 }
6633
6634 /* Return true if BB ends with a call, possibly followed by some
6635 instructions that must stay with the call. Return false,
6636 otherwise. */
6637
6638 static bool
6639 gimple_block_ends_with_call_p (basic_block bb)
6640 {
6641 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6642 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6643 }
6644
6645
6646 /* Return true if BB ends with a conditional branch. Return false,
6647 otherwise. */
6648
6649 static bool
6650 gimple_block_ends_with_condjump_p (const_basic_block bb)
6651 {
6652 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6653 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6654 }
6655
6656
6657 /* Return true if we need to add fake edge to exit at statement T.
6658 Helper function for gimple_flow_call_edges_add. */
6659
6660 static bool
6661 need_fake_edge_p (gimple t)
6662 {
6663 tree fndecl = NULL_TREE;
6664 int call_flags = 0;
6665
6666 /* NORETURN and LONGJMP calls already have an edge to exit.
6667 CONST and PURE calls do not need one.
6668 We don't currently check for CONST and PURE here, although
6669 it would be a good idea, because those attributes are
6670 figured out from the RTL in mark_constant_function, and
6671 the counter incrementation code from -fprofile-arcs
6672 leads to different results from -fbranch-probabilities. */
6673 if (is_gimple_call (t))
6674 {
6675 fndecl = gimple_call_fndecl (t);
6676 call_flags = gimple_call_flags (t);
6677 }
6678
6679 if (is_gimple_call (t)
6680 && fndecl
6681 && DECL_BUILT_IN (fndecl)
6682 && (call_flags & ECF_NOTHROW)
6683 && !(call_flags & ECF_RETURNS_TWICE)
6684 /* fork() doesn't really return twice, but the effect of
6685 wrapping it in __gcov_fork() which calls __gcov_flush()
6686 and clears the counters before forking has the same
6687 effect as returning twice. Force a fake edge. */
6688 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6689 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6690 return false;
6691
6692 if (is_gimple_call (t)
6693 && !(call_flags & ECF_NORETURN))
6694 return true;
6695
6696 if (gimple_code (t) == GIMPLE_ASM
6697 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6698 return true;
6699
6700 return false;
6701 }
6702
6703
6704 /* Add fake edges to the function exit for any non constant and non
6705 noreturn calls, volatile inline assembly in the bitmap of blocks
6706 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6707 the number of blocks that were split.
6708
6709 The goal is to expose cases in which entering a basic block does
6710 not imply that all subsequent instructions must be executed. */
6711
6712 static int
6713 gimple_flow_call_edges_add (sbitmap blocks)
6714 {
6715 int i;
6716 int blocks_split = 0;
6717 int last_bb = last_basic_block;
6718 bool check_last_block = false;
6719
6720 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6721 return 0;
6722
6723 if (! blocks)
6724 check_last_block = true;
6725 else
6726 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6727
6728 /* In the last basic block, before epilogue generation, there will be
6729 a fallthru edge to EXIT. Special care is required if the last insn
6730 of the last basic block is a call because make_edge folds duplicate
6731 edges, which would result in the fallthru edge also being marked
6732 fake, which would result in the fallthru edge being removed by
6733 remove_fake_edges, which would result in an invalid CFG.
6734
6735 Moreover, we can't elide the outgoing fake edge, since the block
6736 profiler needs to take this into account in order to solve the minimal
6737 spanning tree in the case that the call doesn't return.
6738
6739 Handle this by adding a dummy instruction in a new last basic block. */
6740 if (check_last_block)
6741 {
6742 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6743 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6744 gimple t = NULL;
6745
6746 if (!gsi_end_p (gsi))
6747 t = gsi_stmt (gsi);
6748
6749 if (t && need_fake_edge_p (t))
6750 {
6751 edge e;
6752
6753 e = find_edge (bb, EXIT_BLOCK_PTR);
6754 if (e)
6755 {
6756 gsi_insert_on_edge (e, gimple_build_nop ());
6757 gsi_commit_edge_inserts ();
6758 }
6759 }
6760 }
6761
6762 /* Now add fake edges to the function exit for any non constant
6763 calls since there is no way that we can determine if they will
6764 return or not... */
6765 for (i = 0; i < last_bb; i++)
6766 {
6767 basic_block bb = BASIC_BLOCK (i);
6768 gimple_stmt_iterator gsi;
6769 gimple stmt, last_stmt;
6770
6771 if (!bb)
6772 continue;
6773
6774 if (blocks && !TEST_BIT (blocks, i))
6775 continue;
6776
6777 gsi = gsi_last_nondebug_bb (bb);
6778 if (!gsi_end_p (gsi))
6779 {
6780 last_stmt = gsi_stmt (gsi);
6781 do
6782 {
6783 stmt = gsi_stmt (gsi);
6784 if (need_fake_edge_p (stmt))
6785 {
6786 edge e;
6787
6788 /* The handling above of the final block before the
6789 epilogue should be enough to verify that there is
6790 no edge to the exit block in CFG already.
6791 Calling make_edge in such case would cause us to
6792 mark that edge as fake and remove it later. */
6793 #ifdef ENABLE_CHECKING
6794 if (stmt == last_stmt)
6795 {
6796 e = find_edge (bb, EXIT_BLOCK_PTR);
6797 gcc_assert (e == NULL);
6798 }
6799 #endif
6800
6801 /* Note that the following may create a new basic block
6802 and renumber the existing basic blocks. */
6803 if (stmt != last_stmt)
6804 {
6805 e = split_block (bb, stmt);
6806 if (e)
6807 blocks_split++;
6808 }
6809 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6810 }
6811 gsi_prev (&gsi);
6812 }
6813 while (!gsi_end_p (gsi));
6814 }
6815 }
6816
6817 if (blocks_split)
6818 verify_flow_info ();
6819
6820 return blocks_split;
6821 }
6822
6823 /* Removes edge E and all the blocks dominated by it, and updates dominance
6824 information. The IL in E->src needs to be updated separately.
6825 If dominance info is not available, only the edge E is removed.*/
6826
6827 void
6828 remove_edge_and_dominated_blocks (edge e)
6829 {
6830 VEC (basic_block, heap) *bbs_to_remove = NULL;
6831 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6832 bitmap df, df_idom;
6833 edge f;
6834 edge_iterator ei;
6835 bool none_removed = false;
6836 unsigned i;
6837 basic_block bb, dbb;
6838 bitmap_iterator bi;
6839
6840 if (!dom_info_available_p (CDI_DOMINATORS))
6841 {
6842 remove_edge (e);
6843 return;
6844 }
6845
6846 /* No updating is needed for edges to exit. */
6847 if (e->dest == EXIT_BLOCK_PTR)
6848 {
6849 if (cfgcleanup_altered_bbs)
6850 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6851 remove_edge (e);
6852 return;
6853 }
6854
6855 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6856 that is not dominated by E->dest, then this set is empty. Otherwise,
6857 all the basic blocks dominated by E->dest are removed.
6858
6859 Also, to DF_IDOM we store the immediate dominators of the blocks in
6860 the dominance frontier of E (i.e., of the successors of the
6861 removed blocks, if there are any, and of E->dest otherwise). */
6862 FOR_EACH_EDGE (f, ei, e->dest->preds)
6863 {
6864 if (f == e)
6865 continue;
6866
6867 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6868 {
6869 none_removed = true;
6870 break;
6871 }
6872 }
6873
6874 df = BITMAP_ALLOC (NULL);
6875 df_idom = BITMAP_ALLOC (NULL);
6876
6877 if (none_removed)
6878 bitmap_set_bit (df_idom,
6879 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6880 else
6881 {
6882 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6883 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6884 {
6885 FOR_EACH_EDGE (f, ei, bb->succs)
6886 {
6887 if (f->dest != EXIT_BLOCK_PTR)
6888 bitmap_set_bit (df, f->dest->index);
6889 }
6890 }
6891 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6892 bitmap_clear_bit (df, bb->index);
6893
6894 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6895 {
6896 bb = BASIC_BLOCK (i);
6897 bitmap_set_bit (df_idom,
6898 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6899 }
6900 }
6901
6902 if (cfgcleanup_altered_bbs)
6903 {
6904 /* Record the set of the altered basic blocks. */
6905 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6906 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6907 }
6908
6909 /* Remove E and the cancelled blocks. */
6910 if (none_removed)
6911 remove_edge (e);
6912 else
6913 {
6914 /* Walk backwards so as to get a chance to substitute all
6915 released DEFs into debug stmts. See
6916 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6917 details. */
6918 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6919 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6920 }
6921
6922 /* Update the dominance information. The immediate dominator may change only
6923 for blocks whose immediate dominator belongs to DF_IDOM:
6924
6925 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6926 removal. Let Z the arbitrary block such that idom(Z) = Y and
6927 Z dominates X after the removal. Before removal, there exists a path P
6928 from Y to X that avoids Z. Let F be the last edge on P that is
6929 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6930 dominates W, and because of P, Z does not dominate W), and W belongs to
6931 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6932 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6933 {
6934 bb = BASIC_BLOCK (i);
6935 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6936 dbb;
6937 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6938 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6939 }
6940
6941 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6942
6943 BITMAP_FREE (df);
6944 BITMAP_FREE (df_idom);
6945 VEC_free (basic_block, heap, bbs_to_remove);
6946 VEC_free (basic_block, heap, bbs_to_fix_dom);
6947 }
6948
6949 /* Purge dead EH edges from basic block BB. */
6950
6951 bool
6952 gimple_purge_dead_eh_edges (basic_block bb)
6953 {
6954 bool changed = false;
6955 edge e;
6956 edge_iterator ei;
6957 gimple stmt = last_stmt (bb);
6958
6959 if (stmt && stmt_can_throw_internal (stmt))
6960 return false;
6961
6962 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6963 {
6964 if (e->flags & EDGE_EH)
6965 {
6966 remove_edge_and_dominated_blocks (e);
6967 changed = true;
6968 }
6969 else
6970 ei_next (&ei);
6971 }
6972
6973 return changed;
6974 }
6975
6976 /* Purge dead EH edges from basic block listed in BLOCKS. */
6977
6978 bool
6979 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6980 {
6981 bool changed = false;
6982 unsigned i;
6983 bitmap_iterator bi;
6984
6985 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6986 {
6987 basic_block bb = BASIC_BLOCK (i);
6988
6989 /* Earlier gimple_purge_dead_eh_edges could have removed
6990 this basic block already. */
6991 gcc_assert (bb || changed);
6992 if (bb != NULL)
6993 changed |= gimple_purge_dead_eh_edges (bb);
6994 }
6995
6996 return changed;
6997 }
6998
6999 /* Purge dead abnormal call edges from basic block BB. */
7000
7001 bool
7002 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7003 {
7004 bool changed = false;
7005 edge e;
7006 edge_iterator ei;
7007 gimple stmt = last_stmt (bb);
7008
7009 if (!cfun->has_nonlocal_label)
7010 return false;
7011
7012 if (stmt && stmt_can_make_abnormal_goto (stmt))
7013 return false;
7014
7015 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7016 {
7017 if (e->flags & EDGE_ABNORMAL)
7018 {
7019 remove_edge_and_dominated_blocks (e);
7020 changed = true;
7021 }
7022 else
7023 ei_next (&ei);
7024 }
7025
7026 return changed;
7027 }
7028
7029 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7030
7031 bool
7032 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7033 {
7034 bool changed = false;
7035 unsigned i;
7036 bitmap_iterator bi;
7037
7038 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7039 {
7040 basic_block bb = BASIC_BLOCK (i);
7041
7042 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7043 this basic block already. */
7044 gcc_assert (bb || changed);
7045 if (bb != NULL)
7046 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7047 }
7048
7049 return changed;
7050 }
7051
7052 /* This function is called whenever a new edge is created or
7053 redirected. */
7054
7055 static void
7056 gimple_execute_on_growing_pred (edge e)
7057 {
7058 basic_block bb = e->dest;
7059
7060 if (!gimple_seq_empty_p (phi_nodes (bb)))
7061 reserve_phi_args_for_new_edge (bb);
7062 }
7063
7064 /* This function is called immediately before edge E is removed from
7065 the edge vector E->dest->preds. */
7066
7067 static void
7068 gimple_execute_on_shrinking_pred (edge e)
7069 {
7070 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7071 remove_phi_args (e);
7072 }
7073
7074 /*---------------------------------------------------------------------------
7075 Helper functions for Loop versioning
7076 ---------------------------------------------------------------------------*/
7077
7078 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7079 of 'first'. Both of them are dominated by 'new_head' basic block. When
7080 'new_head' was created by 'second's incoming edge it received phi arguments
7081 on the edge by split_edge(). Later, additional edge 'e' was created to
7082 connect 'new_head' and 'first'. Now this routine adds phi args on this
7083 additional edge 'e' that new_head to second edge received as part of edge
7084 splitting. */
7085
7086 static void
7087 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7088 basic_block new_head, edge e)
7089 {
7090 gimple phi1, phi2;
7091 gimple_stmt_iterator psi1, psi2;
7092 tree def;
7093 edge e2 = find_edge (new_head, second);
7094
7095 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7096 edge, we should always have an edge from NEW_HEAD to SECOND. */
7097 gcc_assert (e2 != NULL);
7098
7099 /* Browse all 'second' basic block phi nodes and add phi args to
7100 edge 'e' for 'first' head. PHI args are always in correct order. */
7101
7102 for (psi2 = gsi_start_phis (second),
7103 psi1 = gsi_start_phis (first);
7104 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7105 gsi_next (&psi2), gsi_next (&psi1))
7106 {
7107 phi1 = gsi_stmt (psi1);
7108 phi2 = gsi_stmt (psi2);
7109 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7110 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7111 }
7112 }
7113
7114
7115 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7116 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7117 the destination of the ELSE part. */
7118
7119 static void
7120 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7121 basic_block second_head ATTRIBUTE_UNUSED,
7122 basic_block cond_bb, void *cond_e)
7123 {
7124 gimple_stmt_iterator gsi;
7125 gimple new_cond_expr;
7126 tree cond_expr = (tree) cond_e;
7127 edge e0;
7128
7129 /* Build new conditional expr */
7130 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7131 NULL_TREE, NULL_TREE);
7132
7133 /* Add new cond in cond_bb. */
7134 gsi = gsi_last_bb (cond_bb);
7135 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7136
7137 /* Adjust edges appropriately to connect new head with first head
7138 as well as second head. */
7139 e0 = single_succ_edge (cond_bb);
7140 e0->flags &= ~EDGE_FALLTHRU;
7141 e0->flags |= EDGE_FALSE_VALUE;
7142 }
7143
7144 struct cfg_hooks gimple_cfg_hooks = {
7145 "gimple",
7146 gimple_verify_flow_info,
7147 gimple_dump_bb, /* dump_bb */
7148 create_bb, /* create_basic_block */
7149 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7150 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7151 gimple_can_remove_branch_p, /* can_remove_branch_p */
7152 remove_bb, /* delete_basic_block */
7153 gimple_split_block, /* split_block */
7154 gimple_move_block_after, /* move_block_after */
7155 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7156 gimple_merge_blocks, /* merge_blocks */
7157 gimple_predict_edge, /* predict_edge */
7158 gimple_predicted_by_p, /* predicted_by_p */
7159 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7160 gimple_duplicate_bb, /* duplicate_block */
7161 gimple_split_edge, /* split_edge */
7162 gimple_make_forwarder_block, /* make_forward_block */
7163 NULL, /* tidy_fallthru_edge */
7164 NULL, /* force_nonfallthru */
7165 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7166 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7167 gimple_flow_call_edges_add, /* flow_call_edges_add */
7168 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7169 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7170 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7171 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7172 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7173 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7174 flush_pending_stmts /* flush_pending_stmts */
7175 };
7176
7177
7178 /* Split all critical edges. */
7179
7180 static unsigned int
7181 split_critical_edges (void)
7182 {
7183 basic_block bb;
7184 edge e;
7185 edge_iterator ei;
7186
7187 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7188 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7189 mappings around the calls to split_edge. */
7190 start_recording_case_labels ();
7191 FOR_ALL_BB (bb)
7192 {
7193 FOR_EACH_EDGE (e, ei, bb->succs)
7194 {
7195 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7196 split_edge (e);
7197 /* PRE inserts statements to edges and expects that
7198 since split_critical_edges was done beforehand, committing edge
7199 insertions will not split more edges. In addition to critical
7200 edges we must split edges that have multiple successors and
7201 end by control flow statements, such as RESX.
7202 Go ahead and split them too. This matches the logic in
7203 gimple_find_edge_insert_loc. */
7204 else if ((!single_pred_p (e->dest)
7205 || !gimple_seq_empty_p (phi_nodes (e->dest))
7206 || e->dest == EXIT_BLOCK_PTR)
7207 && e->src != ENTRY_BLOCK_PTR
7208 && !(e->flags & EDGE_ABNORMAL))
7209 {
7210 gimple_stmt_iterator gsi;
7211
7212 gsi = gsi_last_bb (e->src);
7213 if (!gsi_end_p (gsi)
7214 && stmt_ends_bb_p (gsi_stmt (gsi))
7215 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7216 && !gimple_call_builtin_p (gsi_stmt (gsi),
7217 BUILT_IN_RETURN)))
7218 split_edge (e);
7219 }
7220 }
7221 }
7222 end_recording_case_labels ();
7223 return 0;
7224 }
7225
7226 struct gimple_opt_pass pass_split_crit_edges =
7227 {
7228 {
7229 GIMPLE_PASS,
7230 "crited", /* name */
7231 NULL, /* gate */
7232 split_critical_edges, /* execute */
7233 NULL, /* sub */
7234 NULL, /* next */
7235 0, /* static_pass_number */
7236 TV_TREE_SPLIT_EDGES, /* tv_id */
7237 PROP_cfg, /* properties required */
7238 PROP_no_crit_edges, /* properties_provided */
7239 0, /* properties_destroyed */
7240 0, /* todo_flags_start */
7241 TODO_verify_flow /* todo_flags_finish */
7242 }
7243 };
7244
7245
7246 /* Build a ternary operation and gimplify it. Emit code before GSI.
7247 Return the gimple_val holding the result. */
7248
7249 tree
7250 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7251 tree type, tree a, tree b, tree c)
7252 {
7253 tree ret;
7254 location_t loc = gimple_location (gsi_stmt (*gsi));
7255
7256 ret = fold_build3_loc (loc, code, type, a, b, c);
7257 STRIP_NOPS (ret);
7258
7259 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7260 GSI_SAME_STMT);
7261 }
7262
7263 /* Build a binary operation and gimplify it. Emit code before GSI.
7264 Return the gimple_val holding the result. */
7265
7266 tree
7267 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7268 tree type, tree a, tree b)
7269 {
7270 tree ret;
7271
7272 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7273 STRIP_NOPS (ret);
7274
7275 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7276 GSI_SAME_STMT);
7277 }
7278
7279 /* Build a unary operation and gimplify it. Emit code before GSI.
7280 Return the gimple_val holding the result. */
7281
7282 tree
7283 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7284 tree a)
7285 {
7286 tree ret;
7287
7288 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7289 STRIP_NOPS (ret);
7290
7291 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7292 GSI_SAME_STMT);
7293 }
7294
7295
7296 \f
7297 /* Emit return warnings. */
7298
7299 static unsigned int
7300 execute_warn_function_return (void)
7301 {
7302 source_location location;
7303 gimple last;
7304 edge e;
7305 edge_iterator ei;
7306
7307 /* If we have a path to EXIT, then we do return. */
7308 if (TREE_THIS_VOLATILE (cfun->decl)
7309 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7310 {
7311 location = UNKNOWN_LOCATION;
7312 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7313 {
7314 last = last_stmt (e->src);
7315 if ((gimple_code (last) == GIMPLE_RETURN
7316 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7317 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7318 break;
7319 }
7320 if (location == UNKNOWN_LOCATION)
7321 location = cfun->function_end_locus;
7322 warning_at (location, 0, "%<noreturn%> function does return");
7323 }
7324
7325 /* If we see "return;" in some basic block, then we do reach the end
7326 without returning a value. */
7327 else if (warn_return_type
7328 && !TREE_NO_WARNING (cfun->decl)
7329 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7330 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7331 {
7332 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7333 {
7334 gimple last = last_stmt (e->src);
7335 if (gimple_code (last) == GIMPLE_RETURN
7336 && gimple_return_retval (last) == NULL
7337 && !gimple_no_warning_p (last))
7338 {
7339 location = gimple_location (last);
7340 if (location == UNKNOWN_LOCATION)
7341 location = cfun->function_end_locus;
7342 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7343 TREE_NO_WARNING (cfun->decl) = 1;
7344 break;
7345 }
7346 }
7347 }
7348 return 0;
7349 }
7350
7351
7352 /* Given a basic block B which ends with a conditional and has
7353 precisely two successors, determine which of the edges is taken if
7354 the conditional is true and which is taken if the conditional is
7355 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7356
7357 void
7358 extract_true_false_edges_from_block (basic_block b,
7359 edge *true_edge,
7360 edge *false_edge)
7361 {
7362 edge e = EDGE_SUCC (b, 0);
7363
7364 if (e->flags & EDGE_TRUE_VALUE)
7365 {
7366 *true_edge = e;
7367 *false_edge = EDGE_SUCC (b, 1);
7368 }
7369 else
7370 {
7371 *false_edge = e;
7372 *true_edge = EDGE_SUCC (b, 1);
7373 }
7374 }
7375
7376 struct gimple_opt_pass pass_warn_function_return =
7377 {
7378 {
7379 GIMPLE_PASS,
7380 "*warn_function_return", /* name */
7381 NULL, /* gate */
7382 execute_warn_function_return, /* execute */
7383 NULL, /* sub */
7384 NULL, /* next */
7385 0, /* static_pass_number */
7386 TV_NONE, /* tv_id */
7387 PROP_cfg, /* properties_required */
7388 0, /* properties_provided */
7389 0, /* properties_destroyed */
7390 0, /* todo_flags_start */
7391 0 /* todo_flags_finish */
7392 }
7393 };
7394
7395 /* Emit noreturn warnings. */
7396
7397 static unsigned int
7398 execute_warn_function_noreturn (void)
7399 {
7400 if (!TREE_THIS_VOLATILE (current_function_decl)
7401 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7402 warn_function_noreturn (current_function_decl);
7403 return 0;
7404 }
7405
7406 static bool
7407 gate_warn_function_noreturn (void)
7408 {
7409 return warn_suggest_attribute_noreturn;
7410 }
7411
7412 struct gimple_opt_pass pass_warn_function_noreturn =
7413 {
7414 {
7415 GIMPLE_PASS,
7416 "*warn_function_noreturn", /* name */
7417 gate_warn_function_noreturn, /* gate */
7418 execute_warn_function_noreturn, /* execute */
7419 NULL, /* sub */
7420 NULL, /* next */
7421 0, /* static_pass_number */
7422 TV_NONE, /* tv_id */
7423 PROP_cfg, /* properties_required */
7424 0, /* properties_provided */
7425 0, /* properties_destroyed */
7426 0, /* todo_flags_start */
7427 0 /* todo_flags_finish */
7428 }
7429 };
7430
7431
7432 /* Walk a gimplified function and warn for functions whose return value is
7433 ignored and attribute((warn_unused_result)) is set. This is done before
7434 inlining, so we don't have to worry about that. */
7435
7436 static void
7437 do_warn_unused_result (gimple_seq seq)
7438 {
7439 tree fdecl, ftype;
7440 gimple_stmt_iterator i;
7441
7442 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7443 {
7444 gimple g = gsi_stmt (i);
7445
7446 switch (gimple_code (g))
7447 {
7448 case GIMPLE_BIND:
7449 do_warn_unused_result (gimple_bind_body (g));
7450 break;
7451 case GIMPLE_TRY:
7452 do_warn_unused_result (gimple_try_eval (g));
7453 do_warn_unused_result (gimple_try_cleanup (g));
7454 break;
7455 case GIMPLE_CATCH:
7456 do_warn_unused_result (gimple_catch_handler (g));
7457 break;
7458 case GIMPLE_EH_FILTER:
7459 do_warn_unused_result (gimple_eh_filter_failure (g));
7460 break;
7461
7462 case GIMPLE_CALL:
7463 if (gimple_call_lhs (g))
7464 break;
7465 if (gimple_call_internal_p (g))
7466 break;
7467
7468 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7469 LHS. All calls whose value is ignored should be
7470 represented like this. Look for the attribute. */
7471 fdecl = gimple_call_fndecl (g);
7472 ftype = gimple_call_fntype (g);
7473
7474 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7475 {
7476 location_t loc = gimple_location (g);
7477
7478 if (fdecl)
7479 warning_at (loc, OPT_Wunused_result,
7480 "ignoring return value of %qD, "
7481 "declared with attribute warn_unused_result",
7482 fdecl);
7483 else
7484 warning_at (loc, OPT_Wunused_result,
7485 "ignoring return value of function "
7486 "declared with attribute warn_unused_result");
7487 }
7488 break;
7489
7490 default:
7491 /* Not a container, not a call, or a call whose value is used. */
7492 break;
7493 }
7494 }
7495 }
7496
7497 static unsigned int
7498 run_warn_unused_result (void)
7499 {
7500 do_warn_unused_result (gimple_body (current_function_decl));
7501 return 0;
7502 }
7503
7504 static bool
7505 gate_warn_unused_result (void)
7506 {
7507 return flag_warn_unused_result;
7508 }
7509
7510 struct gimple_opt_pass pass_warn_unused_result =
7511 {
7512 {
7513 GIMPLE_PASS,
7514 "*warn_unused_result", /* name */
7515 gate_warn_unused_result, /* gate */
7516 run_warn_unused_result, /* execute */
7517 NULL, /* sub */
7518 NULL, /* next */
7519 0, /* static_pass_number */
7520 TV_NONE, /* tv_id */
7521 PROP_gimple_any, /* properties_required */
7522 0, /* properties_provided */
7523 0, /* properties_destroyed */
7524 0, /* todo_flags_start */
7525 0, /* todo_flags_finish */
7526 }
7527 };