gimple-walk.h: New File.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimple-walk.h"
36 #include "gimple-ssa.h"
37 #include "cgraph.h"
38 #include "tree-cfg.h"
39 #include "tree-phinodes.h"
40 #include "ssa-iterators.h"
41 #include "tree-ssanames.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-into-ssa.h"
45 #include "tree-dfa.h"
46 #include "tree-ssa.h"
47 #include "tree-dump.h"
48 #include "tree-pass.h"
49 #include "diagnostic-core.h"
50 #include "except.h"
51 #include "cfgloop.h"
52 #include "tree-ssa-propagate.h"
53 #include "value-prof.h"
54 #include "pointer-set.h"
55 #include "tree-inline.h"
56 #include "target.h"
57 #include "tree-ssa-live.h"
58 #include "omp-low.h"
59 #include "tree-cfgcleanup.h"
60
61 /* This file contains functions for building the Control Flow Graph (CFG)
62 for a function tree. */
63
64 /* Local declarations. */
65
66 /* Initial capacity for the basic block array. */
67 static const int initial_cfg_capacity = 20;
68
69 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
70 which use a particular edge. The CASE_LABEL_EXPRs are chained together
71 via their CASE_CHAIN field, which we clear after we're done with the
72 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
73
74 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
75 update the case vector in response to edge redirections.
76
77 Right now this table is set up and torn down at key points in the
78 compilation process. It would be nice if we could make the table
79 more persistent. The key is getting notification of changes to
80 the CFG (particularly edge removal, creation and redirection). */
81
82 static struct pointer_map_t *edge_to_cases;
83
84 /* If we record edge_to_cases, this bitmap will hold indexes
85 of basic blocks that end in a GIMPLE_SWITCH which we touched
86 due to edge manipulations. */
87
88 static bitmap touched_switch_bbs;
89
90 /* CFG statistics. */
91 struct cfg_stats_d
92 {
93 long num_merged_labels;
94 };
95
96 static struct cfg_stats_d cfg_stats;
97
98 /* Nonzero if we found a computed goto while building basic blocks. */
99 static bool found_computed_goto;
100
101 /* Hash table to store last discriminator assigned for each locus. */
102 struct locus_discrim_map
103 {
104 location_t locus;
105 int discriminator;
106 };
107
108 /* Hashtable helpers. */
109
110 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
111 {
112 typedef locus_discrim_map value_type;
113 typedef locus_discrim_map compare_type;
114 static inline hashval_t hash (const value_type *);
115 static inline bool equal (const value_type *, const compare_type *);
116 };
117
118 /* Trivial hash function for a location_t. ITEM is a pointer to
119 a hash table entry that maps a location_t to a discriminator. */
120
121 inline hashval_t
122 locus_discrim_hasher::hash (const value_type *item)
123 {
124 return LOCATION_LINE (item->locus);
125 }
126
127 /* Equality function for the locus-to-discriminator map. A and B
128 point to the two hash table entries to compare. */
129
130 inline bool
131 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
132 {
133 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
134 }
135
136 static hash_table <locus_discrim_hasher> discriminator_per_locus;
137
138 /* Basic blocks and flowgraphs. */
139 static void make_blocks (gimple_seq);
140 static void factor_computed_gotos (void);
141
142 /* Edges. */
143 static void make_edges (void);
144 static void assign_discriminators (void);
145 static void make_cond_expr_edges (basic_block);
146 static void make_gimple_switch_edges (basic_block);
147 static void make_goto_expr_edges (basic_block);
148 static void make_gimple_asm_edges (basic_block);
149 static edge gimple_redirect_edge_and_branch (edge, basic_block);
150 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
151 static unsigned int split_critical_edges (void);
152
153 /* Various helpers. */
154 static inline bool stmt_starts_bb_p (gimple, gimple);
155 static int gimple_verify_flow_info (void);
156 static void gimple_make_forwarder_block (edge);
157 static gimple first_non_label_stmt (basic_block);
158 static bool verify_gimple_transaction (gimple);
159
160 /* Flowgraph optimization and cleanup. */
161 static void gimple_merge_blocks (basic_block, basic_block);
162 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
163 static void remove_bb (basic_block);
164 static edge find_taken_edge_computed_goto (basic_block, tree);
165 static edge find_taken_edge_cond_expr (basic_block, tree);
166 static edge find_taken_edge_switch_expr (basic_block, tree);
167 static tree find_case_label_for_value (gimple, tree);
168
169 void
170 init_empty_tree_cfg_for_function (struct function *fn)
171 {
172 /* Initialize the basic block array. */
173 init_flow (fn);
174 profile_status_for_function (fn) = PROFILE_ABSENT;
175 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
176 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
177 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
178 vec_safe_grow_cleared (basic_block_info_for_function (fn),
179 initial_cfg_capacity);
180
181 /* Build a mapping of labels to their associated blocks. */
182 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
183 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
184 initial_cfg_capacity);
185
186 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
187 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
188 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
189 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
190
191 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
192 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
193 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
194 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
195 }
196
197 void
198 init_empty_tree_cfg (void)
199 {
200 init_empty_tree_cfg_for_function (cfun);
201 }
202
203 /*---------------------------------------------------------------------------
204 Create basic blocks
205 ---------------------------------------------------------------------------*/
206
207 /* Entry point to the CFG builder for trees. SEQ is the sequence of
208 statements to be added to the flowgraph. */
209
210 static void
211 build_gimple_cfg (gimple_seq seq)
212 {
213 /* Register specific gimple functions. */
214 gimple_register_cfg_hooks ();
215
216 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
217
218 init_empty_tree_cfg ();
219
220 found_computed_goto = 0;
221 make_blocks (seq);
222
223 /* Computed gotos are hell to deal with, especially if there are
224 lots of them with a large number of destinations. So we factor
225 them to a common computed goto location before we build the
226 edge list. After we convert back to normal form, we will un-factor
227 the computed gotos since factoring introduces an unwanted jump. */
228 if (found_computed_goto)
229 factor_computed_gotos ();
230
231 /* Make sure there is always at least one block, even if it's empty. */
232 if (n_basic_blocks == NUM_FIXED_BLOCKS)
233 create_empty_bb (ENTRY_BLOCK_PTR);
234
235 /* Adjust the size of the array. */
236 if (basic_block_info->length () < (size_t) n_basic_blocks)
237 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
238
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
241
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
246
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus.create (13);
249 make_edges ();
250 assign_discriminators ();
251 cleanup_dead_labels ();
252 discriminator_per_locus.dispose ();
253 }
254
255
256 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
257 it and set loop->safelen to INT_MAX. We assume that the annotation
258 comes immediately before the condition. */
259
260 static void
261 replace_loop_annotate ()
262 {
263 struct loop *loop;
264 loop_iterator li;
265 basic_block bb;
266 gimple_stmt_iterator gsi;
267 gimple stmt;
268
269 FOR_EACH_LOOP (li, loop, 0)
270 {
271 gsi = gsi_last_bb (loop->header);
272 stmt = gsi_stmt (gsi);
273 if (stmt && gimple_code (stmt) == GIMPLE_COND)
274 {
275 gsi_prev_nondebug (&gsi);
276 if (gsi_end_p (gsi))
277 continue;
278 stmt = gsi_stmt (gsi);
279 if (gimple_code (stmt) != GIMPLE_CALL)
280 continue;
281 if (!gimple_call_internal_p (stmt)
282 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
283 continue;
284 if ((annot_expr_kind) tree_low_cst (gimple_call_arg (stmt, 1), 0)
285 != annot_expr_ivdep_kind)
286 continue;
287 stmt = gimple_build_assign (gimple_call_lhs (stmt),
288 gimple_call_arg (stmt, 0));
289 gsi_replace (&gsi, stmt, true);
290 loop->safelen = INT_MAX;
291 }
292 }
293
294 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
295 FOR_EACH_BB (bb)
296 {
297 gsi = gsi_last_bb (bb);
298 stmt = gsi_stmt (gsi);
299 if (stmt && gimple_code (stmt) == GIMPLE_COND)
300 gsi_prev_nondebug (&gsi);
301 if (gsi_end_p (gsi))
302 continue;
303 stmt = gsi_stmt (gsi);
304 if (gimple_code (stmt) != GIMPLE_CALL)
305 continue;
306 if (!gimple_call_internal_p (stmt)
307 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
308 continue;
309 if ((annot_expr_kind) tree_low_cst (gimple_call_arg (stmt, 1), 0)
310 != annot_expr_ivdep_kind)
311 continue;
312 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
313 "annotation");
314 stmt = gimple_build_assign (gimple_call_lhs (stmt),
315 gimple_call_arg (stmt, 0));
316 gsi_replace (&gsi, stmt, true);
317 }
318 }
319
320
321 static unsigned int
322 execute_build_cfg (void)
323 {
324 gimple_seq body = gimple_body (current_function_decl);
325
326 build_gimple_cfg (body);
327 gimple_set_body (current_function_decl, NULL);
328 if (dump_file && (dump_flags & TDF_DETAILS))
329 {
330 fprintf (dump_file, "Scope blocks:\n");
331 dump_scope_blocks (dump_file, dump_flags);
332 }
333 cleanup_tree_cfg ();
334 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
335 replace_loop_annotate ();
336 return 0;
337 }
338
339 namespace {
340
341 const pass_data pass_data_build_cfg =
342 {
343 GIMPLE_PASS, /* type */
344 "cfg", /* name */
345 OPTGROUP_NONE, /* optinfo_flags */
346 false, /* has_gate */
347 true, /* has_execute */
348 TV_TREE_CFG, /* tv_id */
349 PROP_gimple_leh, /* properties_required */
350 ( PROP_cfg | PROP_loops ), /* properties_provided */
351 0, /* properties_destroyed */
352 0, /* todo_flags_start */
353 TODO_verify_stmts, /* todo_flags_finish */
354 };
355
356 class pass_build_cfg : public gimple_opt_pass
357 {
358 public:
359 pass_build_cfg (gcc::context *ctxt)
360 : gimple_opt_pass (pass_data_build_cfg, ctxt)
361 {}
362
363 /* opt_pass methods: */
364 unsigned int execute () { return execute_build_cfg (); }
365
366 }; // class pass_build_cfg
367
368 } // anon namespace
369
370 gimple_opt_pass *
371 make_pass_build_cfg (gcc::context *ctxt)
372 {
373 return new pass_build_cfg (ctxt);
374 }
375
376
377 /* Return true if T is a computed goto. */
378
379 static bool
380 computed_goto_p (gimple t)
381 {
382 return (gimple_code (t) == GIMPLE_GOTO
383 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
384 }
385
386 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
387 the other edge points to a bb with just __builtin_unreachable ().
388 I.e. return true for C->M edge in:
389 <bb C>:
390 ...
391 if (something)
392 goto <bb N>;
393 else
394 goto <bb M>;
395 <bb N>:
396 __builtin_unreachable ();
397 <bb M>: */
398
399 bool
400 assert_unreachable_fallthru_edge_p (edge e)
401 {
402 basic_block pred_bb = e->src;
403 gimple last = last_stmt (pred_bb);
404 if (last && gimple_code (last) == GIMPLE_COND)
405 {
406 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
407 if (other_bb == e->dest)
408 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
409 if (EDGE_COUNT (other_bb->succs) == 0)
410 {
411 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
412 gimple stmt;
413
414 if (gsi_end_p (gsi))
415 return false;
416 stmt = gsi_stmt (gsi);
417 if (is_gimple_debug (stmt))
418 {
419 gsi_next_nondebug (&gsi);
420 if (gsi_end_p (gsi))
421 return false;
422 stmt = gsi_stmt (gsi);
423 }
424 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
425 }
426 }
427 return false;
428 }
429
430
431 /* Search the CFG for any computed gotos. If found, factor them to a
432 common computed goto site. Also record the location of that site so
433 that we can un-factor the gotos after we have converted back to
434 normal form. */
435
436 static void
437 factor_computed_gotos (void)
438 {
439 basic_block bb;
440 tree factored_label_decl = NULL;
441 tree var = NULL;
442 gimple factored_computed_goto_label = NULL;
443 gimple factored_computed_goto = NULL;
444
445 /* We know there are one or more computed gotos in this function.
446 Examine the last statement in each basic block to see if the block
447 ends with a computed goto. */
448
449 FOR_EACH_BB (bb)
450 {
451 gimple_stmt_iterator gsi = gsi_last_bb (bb);
452 gimple last;
453
454 if (gsi_end_p (gsi))
455 continue;
456
457 last = gsi_stmt (gsi);
458
459 /* Ignore the computed goto we create when we factor the original
460 computed gotos. */
461 if (last == factored_computed_goto)
462 continue;
463
464 /* If the last statement is a computed goto, factor it. */
465 if (computed_goto_p (last))
466 {
467 gimple assignment;
468
469 /* The first time we find a computed goto we need to create
470 the factored goto block and the variable each original
471 computed goto will use for their goto destination. */
472 if (!factored_computed_goto)
473 {
474 basic_block new_bb = create_empty_bb (bb);
475 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
476
477 /* Create the destination of the factored goto. Each original
478 computed goto will put its desired destination into this
479 variable and jump to the label we create immediately
480 below. */
481 var = create_tmp_var (ptr_type_node, "gotovar");
482
483 /* Build a label for the new block which will contain the
484 factored computed goto. */
485 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
486 factored_computed_goto_label
487 = gimple_build_label (factored_label_decl);
488 gsi_insert_after (&new_gsi, factored_computed_goto_label,
489 GSI_NEW_STMT);
490
491 /* Build our new computed goto. */
492 factored_computed_goto = gimple_build_goto (var);
493 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
494 }
495
496 /* Copy the original computed goto's destination into VAR. */
497 assignment = gimple_build_assign (var, gimple_goto_dest (last));
498 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
499
500 /* And re-vector the computed goto to the new destination. */
501 gimple_goto_set_dest (last, factored_label_decl);
502 }
503 }
504 }
505
506
507 /* Build a flowgraph for the sequence of stmts SEQ. */
508
509 static void
510 make_blocks (gimple_seq seq)
511 {
512 gimple_stmt_iterator i = gsi_start (seq);
513 gimple stmt = NULL;
514 bool start_new_block = true;
515 bool first_stmt_of_seq = true;
516 basic_block bb = ENTRY_BLOCK_PTR;
517
518 while (!gsi_end_p (i))
519 {
520 gimple prev_stmt;
521
522 prev_stmt = stmt;
523 stmt = gsi_stmt (i);
524
525 /* If the statement starts a new basic block or if we have determined
526 in a previous pass that we need to create a new block for STMT, do
527 so now. */
528 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
529 {
530 if (!first_stmt_of_seq)
531 gsi_split_seq_before (&i, &seq);
532 bb = create_basic_block (seq, NULL, bb);
533 start_new_block = false;
534 }
535
536 /* Now add STMT to BB and create the subgraphs for special statement
537 codes. */
538 gimple_set_bb (stmt, bb);
539
540 if (computed_goto_p (stmt))
541 found_computed_goto = true;
542
543 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
544 next iteration. */
545 if (stmt_ends_bb_p (stmt))
546 {
547 /* If the stmt can make abnormal goto use a new temporary
548 for the assignment to the LHS. This makes sure the old value
549 of the LHS is available on the abnormal edge. Otherwise
550 we will end up with overlapping life-ranges for abnormal
551 SSA names. */
552 if (gimple_has_lhs (stmt)
553 && stmt_can_make_abnormal_goto (stmt)
554 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
555 {
556 tree lhs = gimple_get_lhs (stmt);
557 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
558 gimple s = gimple_build_assign (lhs, tmp);
559 gimple_set_location (s, gimple_location (stmt));
560 gimple_set_block (s, gimple_block (stmt));
561 gimple_set_lhs (stmt, tmp);
562 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
563 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
564 DECL_GIMPLE_REG_P (tmp) = 1;
565 gsi_insert_after (&i, s, GSI_SAME_STMT);
566 }
567 start_new_block = true;
568 }
569
570 gsi_next (&i);
571 first_stmt_of_seq = false;
572 }
573 }
574
575
576 /* Create and return a new empty basic block after bb AFTER. */
577
578 static basic_block
579 create_bb (void *h, void *e, basic_block after)
580 {
581 basic_block bb;
582
583 gcc_assert (!e);
584
585 /* Create and initialize a new basic block. Since alloc_block uses
586 GC allocation that clears memory to allocate a basic block, we do
587 not have to clear the newly allocated basic block here. */
588 bb = alloc_block ();
589
590 bb->index = last_basic_block;
591 bb->flags = BB_NEW;
592 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
593
594 /* Add the new block to the linked list of blocks. */
595 link_block (bb, after);
596
597 /* Grow the basic block array if needed. */
598 if ((size_t) last_basic_block == basic_block_info->length ())
599 {
600 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
601 vec_safe_grow_cleared (basic_block_info, new_size);
602 }
603
604 /* Add the newly created block to the array. */
605 SET_BASIC_BLOCK (last_basic_block, bb);
606
607 n_basic_blocks++;
608 last_basic_block++;
609
610 return bb;
611 }
612
613
614 /*---------------------------------------------------------------------------
615 Edge creation
616 ---------------------------------------------------------------------------*/
617
618 /* Fold COND_EXPR_COND of each COND_EXPR. */
619
620 void
621 fold_cond_expr_cond (void)
622 {
623 basic_block bb;
624
625 FOR_EACH_BB (bb)
626 {
627 gimple stmt = last_stmt (bb);
628
629 if (stmt && gimple_code (stmt) == GIMPLE_COND)
630 {
631 location_t loc = gimple_location (stmt);
632 tree cond;
633 bool zerop, onep;
634
635 fold_defer_overflow_warnings ();
636 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
637 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
638 if (cond)
639 {
640 zerop = integer_zerop (cond);
641 onep = integer_onep (cond);
642 }
643 else
644 zerop = onep = false;
645
646 fold_undefer_overflow_warnings (zerop || onep,
647 stmt,
648 WARN_STRICT_OVERFLOW_CONDITIONAL);
649 if (zerop)
650 gimple_cond_make_false (stmt);
651 else if (onep)
652 gimple_cond_make_true (stmt);
653 }
654 }
655 }
656
657 /* Join all the blocks in the flowgraph. */
658
659 static void
660 make_edges (void)
661 {
662 basic_block bb;
663 struct omp_region *cur_region = NULL;
664
665 /* Create an edge from entry to the first block with executable
666 statements in it. */
667 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
668
669 /* Traverse the basic block array placing edges. */
670 FOR_EACH_BB (bb)
671 {
672 gimple last = last_stmt (bb);
673 bool fallthru;
674
675 if (last)
676 {
677 enum gimple_code code = gimple_code (last);
678 switch (code)
679 {
680 case GIMPLE_GOTO:
681 make_goto_expr_edges (bb);
682 fallthru = false;
683 break;
684 case GIMPLE_RETURN:
685 make_edge (bb, EXIT_BLOCK_PTR, 0);
686 fallthru = false;
687 break;
688 case GIMPLE_COND:
689 make_cond_expr_edges (bb);
690 fallthru = false;
691 break;
692 case GIMPLE_SWITCH:
693 make_gimple_switch_edges (bb);
694 fallthru = false;
695 break;
696 case GIMPLE_RESX:
697 make_eh_edges (last);
698 fallthru = false;
699 break;
700 case GIMPLE_EH_DISPATCH:
701 fallthru = make_eh_dispatch_edges (last);
702 break;
703
704 case GIMPLE_CALL:
705 /* If this function receives a nonlocal goto, then we need to
706 make edges from this call site to all the nonlocal goto
707 handlers. */
708 if (stmt_can_make_abnormal_goto (last))
709 make_abnormal_goto_edges (bb, true);
710
711 /* If this statement has reachable exception handlers, then
712 create abnormal edges to them. */
713 make_eh_edges (last);
714
715 /* BUILTIN_RETURN is really a return statement. */
716 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
717 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
718 /* Some calls are known not to return. */
719 else
720 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
721 break;
722
723 case GIMPLE_ASSIGN:
724 /* A GIMPLE_ASSIGN may throw internally and thus be considered
725 control-altering. */
726 if (is_ctrl_altering_stmt (last))
727 make_eh_edges (last);
728 fallthru = true;
729 break;
730
731 case GIMPLE_ASM:
732 make_gimple_asm_edges (bb);
733 fallthru = true;
734 break;
735
736 CASE_GIMPLE_OMP:
737 fallthru = make_gimple_omp_edges (bb, &cur_region);
738 break;
739
740 case GIMPLE_TRANSACTION:
741 {
742 tree abort_label = gimple_transaction_label (last);
743 if (abort_label)
744 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
745 fallthru = true;
746 }
747 break;
748
749 default:
750 gcc_assert (!stmt_ends_bb_p (last));
751 fallthru = true;
752 }
753 }
754 else
755 fallthru = true;
756
757 if (fallthru)
758 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
759 }
760
761 free_omp_regions ();
762
763 /* Fold COND_EXPR_COND of each COND_EXPR. */
764 fold_cond_expr_cond ();
765 }
766
767 /* Find the next available discriminator value for LOCUS. The
768 discriminator distinguishes among several basic blocks that
769 share a common locus, allowing for more accurate sample-based
770 profiling. */
771
772 static int
773 next_discriminator_for_locus (location_t locus)
774 {
775 struct locus_discrim_map item;
776 struct locus_discrim_map **slot;
777
778 item.locus = locus;
779 item.discriminator = 0;
780 slot = discriminator_per_locus.find_slot_with_hash (
781 &item, LOCATION_LINE (locus), INSERT);
782 gcc_assert (slot);
783 if (*slot == HTAB_EMPTY_ENTRY)
784 {
785 *slot = XNEW (struct locus_discrim_map);
786 gcc_assert (*slot);
787 (*slot)->locus = locus;
788 (*slot)->discriminator = 0;
789 }
790 (*slot)->discriminator++;
791 return (*slot)->discriminator;
792 }
793
794 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
795
796 static bool
797 same_line_p (location_t locus1, location_t locus2)
798 {
799 expanded_location from, to;
800
801 if (locus1 == locus2)
802 return true;
803
804 from = expand_location (locus1);
805 to = expand_location (locus2);
806
807 if (from.line != to.line)
808 return false;
809 if (from.file == to.file)
810 return true;
811 return (from.file != NULL
812 && to.file != NULL
813 && filename_cmp (from.file, to.file) == 0);
814 }
815
816 /* Assign discriminators to each basic block. */
817
818 static void
819 assign_discriminators (void)
820 {
821 basic_block bb;
822
823 FOR_EACH_BB (bb)
824 {
825 edge e;
826 edge_iterator ei;
827 gimple last = last_stmt (bb);
828 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
829
830 if (locus == UNKNOWN_LOCATION)
831 continue;
832
833 FOR_EACH_EDGE (e, ei, bb->succs)
834 {
835 gimple first = first_non_label_stmt (e->dest);
836 gimple last = last_stmt (e->dest);
837 if ((first && same_line_p (locus, gimple_location (first)))
838 || (last && same_line_p (locus, gimple_location (last))))
839 {
840 if (e->dest->discriminator != 0 && bb->discriminator == 0)
841 bb->discriminator = next_discriminator_for_locus (locus);
842 else
843 e->dest->discriminator = next_discriminator_for_locus (locus);
844 }
845 }
846 }
847 }
848
849 /* Create the edges for a GIMPLE_COND starting at block BB. */
850
851 static void
852 make_cond_expr_edges (basic_block bb)
853 {
854 gimple entry = last_stmt (bb);
855 gimple then_stmt, else_stmt;
856 basic_block then_bb, else_bb;
857 tree then_label, else_label;
858 edge e;
859
860 gcc_assert (entry);
861 gcc_assert (gimple_code (entry) == GIMPLE_COND);
862
863 /* Entry basic blocks for each component. */
864 then_label = gimple_cond_true_label (entry);
865 else_label = gimple_cond_false_label (entry);
866 then_bb = label_to_block (then_label);
867 else_bb = label_to_block (else_label);
868 then_stmt = first_stmt (then_bb);
869 else_stmt = first_stmt (else_bb);
870
871 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
872 e->goto_locus = gimple_location (then_stmt);
873 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
874 if (e)
875 e->goto_locus = gimple_location (else_stmt);
876
877 /* We do not need the labels anymore. */
878 gimple_cond_set_true_label (entry, NULL_TREE);
879 gimple_cond_set_false_label (entry, NULL_TREE);
880 }
881
882
883 /* Called for each element in the hash table (P) as we delete the
884 edge to cases hash table.
885
886 Clear all the TREE_CHAINs to prevent problems with copying of
887 SWITCH_EXPRs and structure sharing rules, then free the hash table
888 element. */
889
890 static bool
891 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
892 void *data ATTRIBUTE_UNUSED)
893 {
894 tree t, next;
895
896 for (t = (tree) *value; t; t = next)
897 {
898 next = CASE_CHAIN (t);
899 CASE_CHAIN (t) = NULL;
900 }
901
902 *value = NULL;
903 return true;
904 }
905
906 /* Start recording information mapping edges to case labels. */
907
908 void
909 start_recording_case_labels (void)
910 {
911 gcc_assert (edge_to_cases == NULL);
912 edge_to_cases = pointer_map_create ();
913 touched_switch_bbs = BITMAP_ALLOC (NULL);
914 }
915
916 /* Return nonzero if we are recording information for case labels. */
917
918 static bool
919 recording_case_labels_p (void)
920 {
921 return (edge_to_cases != NULL);
922 }
923
924 /* Stop recording information mapping edges to case labels and
925 remove any information we have recorded. */
926 void
927 end_recording_case_labels (void)
928 {
929 bitmap_iterator bi;
930 unsigned i;
931 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
932 pointer_map_destroy (edge_to_cases);
933 edge_to_cases = NULL;
934 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
935 {
936 basic_block bb = BASIC_BLOCK (i);
937 if (bb)
938 {
939 gimple stmt = last_stmt (bb);
940 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
941 group_case_labels_stmt (stmt);
942 }
943 }
944 BITMAP_FREE (touched_switch_bbs);
945 }
946
947 /* If we are inside a {start,end}_recording_cases block, then return
948 a chain of CASE_LABEL_EXPRs from T which reference E.
949
950 Otherwise return NULL. */
951
952 static tree
953 get_cases_for_edge (edge e, gimple t)
954 {
955 void **slot;
956 size_t i, n;
957
958 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
959 chains available. Return NULL so the caller can detect this case. */
960 if (!recording_case_labels_p ())
961 return NULL;
962
963 slot = pointer_map_contains (edge_to_cases, e);
964 if (slot)
965 return (tree) *slot;
966
967 /* If we did not find E in the hash table, then this must be the first
968 time we have been queried for information about E & T. Add all the
969 elements from T to the hash table then perform the query again. */
970
971 n = gimple_switch_num_labels (t);
972 for (i = 0; i < n; i++)
973 {
974 tree elt = gimple_switch_label (t, i);
975 tree lab = CASE_LABEL (elt);
976 basic_block label_bb = label_to_block (lab);
977 edge this_edge = find_edge (e->src, label_bb);
978
979 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
980 a new chain. */
981 slot = pointer_map_insert (edge_to_cases, this_edge);
982 CASE_CHAIN (elt) = (tree) *slot;
983 *slot = elt;
984 }
985
986 return (tree) *pointer_map_contains (edge_to_cases, e);
987 }
988
989 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
990
991 static void
992 make_gimple_switch_edges (basic_block bb)
993 {
994 gimple entry = last_stmt (bb);
995 size_t i, n;
996
997 n = gimple_switch_num_labels (entry);
998
999 for (i = 0; i < n; ++i)
1000 {
1001 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1002 basic_block label_bb = label_to_block (lab);
1003 make_edge (bb, label_bb, 0);
1004 }
1005 }
1006
1007
1008 /* Return the basic block holding label DEST. */
1009
1010 basic_block
1011 label_to_block_fn (struct function *ifun, tree dest)
1012 {
1013 int uid = LABEL_DECL_UID (dest);
1014
1015 /* We would die hard when faced by an undefined label. Emit a label to
1016 the very first basic block. This will hopefully make even the dataflow
1017 and undefined variable warnings quite right. */
1018 if (seen_error () && uid < 0)
1019 {
1020 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
1021 gimple stmt;
1022
1023 stmt = gimple_build_label (dest);
1024 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1025 uid = LABEL_DECL_UID (dest);
1026 }
1027 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1028 return NULL;
1029 return (*ifun->cfg->x_label_to_block_map)[uid];
1030 }
1031
1032 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
1033 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
1034
1035 void
1036 make_abnormal_goto_edges (basic_block bb, bool for_call)
1037 {
1038 basic_block target_bb;
1039 gimple_stmt_iterator gsi;
1040
1041 FOR_EACH_BB (target_bb)
1042 {
1043 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1044 {
1045 gimple label_stmt = gsi_stmt (gsi);
1046 tree target;
1047
1048 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1049 break;
1050
1051 target = gimple_label_label (label_stmt);
1052
1053 /* Make an edge to every label block that has been marked as a
1054 potential target for a computed goto or a non-local goto. */
1055 if ((FORCED_LABEL (target) && !for_call)
1056 || (DECL_NONLOCAL (target) && for_call))
1057 {
1058 make_edge (bb, target_bb, EDGE_ABNORMAL);
1059 break;
1060 }
1061 }
1062 if (!gsi_end_p (gsi)
1063 && is_gimple_debug (gsi_stmt (gsi)))
1064 gsi_next_nondebug (&gsi);
1065 if (!gsi_end_p (gsi))
1066 {
1067 /* Make an edge to every setjmp-like call. */
1068 gimple call_stmt = gsi_stmt (gsi);
1069 if (is_gimple_call (call_stmt)
1070 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1071 make_edge (bb, target_bb, EDGE_ABNORMAL);
1072 }
1073 }
1074 }
1075
1076 /* Create edges for a goto statement at block BB. */
1077
1078 static void
1079 make_goto_expr_edges (basic_block bb)
1080 {
1081 gimple_stmt_iterator last = gsi_last_bb (bb);
1082 gimple goto_t = gsi_stmt (last);
1083
1084 /* A simple GOTO creates normal edges. */
1085 if (simple_goto_p (goto_t))
1086 {
1087 tree dest = gimple_goto_dest (goto_t);
1088 basic_block label_bb = label_to_block (dest);
1089 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1090 e->goto_locus = gimple_location (goto_t);
1091 gsi_remove (&last, true);
1092 return;
1093 }
1094
1095 /* A computed GOTO creates abnormal edges. */
1096 make_abnormal_goto_edges (bb, false);
1097 }
1098
1099 /* Create edges for an asm statement with labels at block BB. */
1100
1101 static void
1102 make_gimple_asm_edges (basic_block bb)
1103 {
1104 gimple stmt = last_stmt (bb);
1105 int i, n = gimple_asm_nlabels (stmt);
1106
1107 for (i = 0; i < n; ++i)
1108 {
1109 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1110 basic_block label_bb = label_to_block (label);
1111 make_edge (bb, label_bb, 0);
1112 }
1113 }
1114
1115 /*---------------------------------------------------------------------------
1116 Flowgraph analysis
1117 ---------------------------------------------------------------------------*/
1118
1119 /* Cleanup useless labels in basic blocks. This is something we wish
1120 to do early because it allows us to group case labels before creating
1121 the edges for the CFG, and it speeds up block statement iterators in
1122 all passes later on.
1123 We rerun this pass after CFG is created, to get rid of the labels that
1124 are no longer referenced. After then we do not run it any more, since
1125 (almost) no new labels should be created. */
1126
1127 /* A map from basic block index to the leading label of that block. */
1128 static struct label_record
1129 {
1130 /* The label. */
1131 tree label;
1132
1133 /* True if the label is referenced from somewhere. */
1134 bool used;
1135 } *label_for_bb;
1136
1137 /* Given LABEL return the first label in the same basic block. */
1138
1139 static tree
1140 main_block_label (tree label)
1141 {
1142 basic_block bb = label_to_block (label);
1143 tree main_label = label_for_bb[bb->index].label;
1144
1145 /* label_to_block possibly inserted undefined label into the chain. */
1146 if (!main_label)
1147 {
1148 label_for_bb[bb->index].label = label;
1149 main_label = label;
1150 }
1151
1152 label_for_bb[bb->index].used = true;
1153 return main_label;
1154 }
1155
1156 /* Clean up redundant labels within the exception tree. */
1157
1158 static void
1159 cleanup_dead_labels_eh (void)
1160 {
1161 eh_landing_pad lp;
1162 eh_region r;
1163 tree lab;
1164 int i;
1165
1166 if (cfun->eh == NULL)
1167 return;
1168
1169 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1170 if (lp && lp->post_landing_pad)
1171 {
1172 lab = main_block_label (lp->post_landing_pad);
1173 if (lab != lp->post_landing_pad)
1174 {
1175 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1176 EH_LANDING_PAD_NR (lab) = lp->index;
1177 }
1178 }
1179
1180 FOR_ALL_EH_REGION (r)
1181 switch (r->type)
1182 {
1183 case ERT_CLEANUP:
1184 case ERT_MUST_NOT_THROW:
1185 break;
1186
1187 case ERT_TRY:
1188 {
1189 eh_catch c;
1190 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1191 {
1192 lab = c->label;
1193 if (lab)
1194 c->label = main_block_label (lab);
1195 }
1196 }
1197 break;
1198
1199 case ERT_ALLOWED_EXCEPTIONS:
1200 lab = r->u.allowed.label;
1201 if (lab)
1202 r->u.allowed.label = main_block_label (lab);
1203 break;
1204 }
1205 }
1206
1207
1208 /* Cleanup redundant labels. This is a three-step process:
1209 1) Find the leading label for each block.
1210 2) Redirect all references to labels to the leading labels.
1211 3) Cleanup all useless labels. */
1212
1213 void
1214 cleanup_dead_labels (void)
1215 {
1216 basic_block bb;
1217 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1218
1219 /* Find a suitable label for each block. We use the first user-defined
1220 label if there is one, or otherwise just the first label we see. */
1221 FOR_EACH_BB (bb)
1222 {
1223 gimple_stmt_iterator i;
1224
1225 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1226 {
1227 tree label;
1228 gimple stmt = gsi_stmt (i);
1229
1230 if (gimple_code (stmt) != GIMPLE_LABEL)
1231 break;
1232
1233 label = gimple_label_label (stmt);
1234
1235 /* If we have not yet seen a label for the current block,
1236 remember this one and see if there are more labels. */
1237 if (!label_for_bb[bb->index].label)
1238 {
1239 label_for_bb[bb->index].label = label;
1240 continue;
1241 }
1242
1243 /* If we did see a label for the current block already, but it
1244 is an artificially created label, replace it if the current
1245 label is a user defined label. */
1246 if (!DECL_ARTIFICIAL (label)
1247 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1248 {
1249 label_for_bb[bb->index].label = label;
1250 break;
1251 }
1252 }
1253 }
1254
1255 /* Now redirect all jumps/branches to the selected label.
1256 First do so for each block ending in a control statement. */
1257 FOR_EACH_BB (bb)
1258 {
1259 gimple stmt = last_stmt (bb);
1260 tree label, new_label;
1261
1262 if (!stmt)
1263 continue;
1264
1265 switch (gimple_code (stmt))
1266 {
1267 case GIMPLE_COND:
1268 label = gimple_cond_true_label (stmt);
1269 if (label)
1270 {
1271 new_label = main_block_label (label);
1272 if (new_label != label)
1273 gimple_cond_set_true_label (stmt, new_label);
1274 }
1275
1276 label = gimple_cond_false_label (stmt);
1277 if (label)
1278 {
1279 new_label = main_block_label (label);
1280 if (new_label != label)
1281 gimple_cond_set_false_label (stmt, new_label);
1282 }
1283 break;
1284
1285 case GIMPLE_SWITCH:
1286 {
1287 size_t i, n = gimple_switch_num_labels (stmt);
1288
1289 /* Replace all destination labels. */
1290 for (i = 0; i < n; ++i)
1291 {
1292 tree case_label = gimple_switch_label (stmt, i);
1293 label = CASE_LABEL (case_label);
1294 new_label = main_block_label (label);
1295 if (new_label != label)
1296 CASE_LABEL (case_label) = new_label;
1297 }
1298 break;
1299 }
1300
1301 case GIMPLE_ASM:
1302 {
1303 int i, n = gimple_asm_nlabels (stmt);
1304
1305 for (i = 0; i < n; ++i)
1306 {
1307 tree cons = gimple_asm_label_op (stmt, i);
1308 tree label = main_block_label (TREE_VALUE (cons));
1309 TREE_VALUE (cons) = label;
1310 }
1311 break;
1312 }
1313
1314 /* We have to handle gotos until they're removed, and we don't
1315 remove them until after we've created the CFG edges. */
1316 case GIMPLE_GOTO:
1317 if (!computed_goto_p (stmt))
1318 {
1319 label = gimple_goto_dest (stmt);
1320 new_label = main_block_label (label);
1321 if (new_label != label)
1322 gimple_goto_set_dest (stmt, new_label);
1323 }
1324 break;
1325
1326 case GIMPLE_TRANSACTION:
1327 {
1328 tree label = gimple_transaction_label (stmt);
1329 if (label)
1330 {
1331 tree new_label = main_block_label (label);
1332 if (new_label != label)
1333 gimple_transaction_set_label (stmt, new_label);
1334 }
1335 }
1336 break;
1337
1338 default:
1339 break;
1340 }
1341 }
1342
1343 /* Do the same for the exception region tree labels. */
1344 cleanup_dead_labels_eh ();
1345
1346 /* Finally, purge dead labels. All user-defined labels and labels that
1347 can be the target of non-local gotos and labels which have their
1348 address taken are preserved. */
1349 FOR_EACH_BB (bb)
1350 {
1351 gimple_stmt_iterator i;
1352 tree label_for_this_bb = label_for_bb[bb->index].label;
1353
1354 if (!label_for_this_bb)
1355 continue;
1356
1357 /* If the main label of the block is unused, we may still remove it. */
1358 if (!label_for_bb[bb->index].used)
1359 label_for_this_bb = NULL;
1360
1361 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1362 {
1363 tree label;
1364 gimple stmt = gsi_stmt (i);
1365
1366 if (gimple_code (stmt) != GIMPLE_LABEL)
1367 break;
1368
1369 label = gimple_label_label (stmt);
1370
1371 if (label == label_for_this_bb
1372 || !DECL_ARTIFICIAL (label)
1373 || DECL_NONLOCAL (label)
1374 || FORCED_LABEL (label))
1375 gsi_next (&i);
1376 else
1377 gsi_remove (&i, true);
1378 }
1379 }
1380
1381 free (label_for_bb);
1382 }
1383
1384 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1385 the ones jumping to the same label.
1386 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1387
1388 void
1389 group_case_labels_stmt (gimple stmt)
1390 {
1391 int old_size = gimple_switch_num_labels (stmt);
1392 int i, j, new_size = old_size;
1393 basic_block default_bb = NULL;
1394
1395 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1396
1397 /* Look for possible opportunities to merge cases. */
1398 i = 1;
1399 while (i < old_size)
1400 {
1401 tree base_case, base_high;
1402 basic_block base_bb;
1403
1404 base_case = gimple_switch_label (stmt, i);
1405
1406 gcc_assert (base_case);
1407 base_bb = label_to_block (CASE_LABEL (base_case));
1408
1409 /* Discard cases that have the same destination as the
1410 default case. */
1411 if (base_bb == default_bb)
1412 {
1413 gimple_switch_set_label (stmt, i, NULL_TREE);
1414 i++;
1415 new_size--;
1416 continue;
1417 }
1418
1419 base_high = CASE_HIGH (base_case)
1420 ? CASE_HIGH (base_case)
1421 : CASE_LOW (base_case);
1422 i++;
1423
1424 /* Try to merge case labels. Break out when we reach the end
1425 of the label vector or when we cannot merge the next case
1426 label with the current one. */
1427 while (i < old_size)
1428 {
1429 tree merge_case = gimple_switch_label (stmt, i);
1430 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1431 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1432
1433 /* Merge the cases if they jump to the same place,
1434 and their ranges are consecutive. */
1435 if (merge_bb == base_bb
1436 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1437 {
1438 base_high = CASE_HIGH (merge_case) ?
1439 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1440 CASE_HIGH (base_case) = base_high;
1441 gimple_switch_set_label (stmt, i, NULL_TREE);
1442 new_size--;
1443 i++;
1444 }
1445 else
1446 break;
1447 }
1448 }
1449
1450 /* Compress the case labels in the label vector, and adjust the
1451 length of the vector. */
1452 for (i = 0, j = 0; i < new_size; i++)
1453 {
1454 while (! gimple_switch_label (stmt, j))
1455 j++;
1456 gimple_switch_set_label (stmt, i,
1457 gimple_switch_label (stmt, j++));
1458 }
1459
1460 gcc_assert (new_size <= old_size);
1461 gimple_switch_set_num_labels (stmt, new_size);
1462 }
1463
1464 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1465 and scan the sorted vector of cases. Combine the ones jumping to the
1466 same label. */
1467
1468 void
1469 group_case_labels (void)
1470 {
1471 basic_block bb;
1472
1473 FOR_EACH_BB (bb)
1474 {
1475 gimple stmt = last_stmt (bb);
1476 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1477 group_case_labels_stmt (stmt);
1478 }
1479 }
1480
1481 /* Checks whether we can merge block B into block A. */
1482
1483 static bool
1484 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1485 {
1486 gimple stmt;
1487 gimple_stmt_iterator gsi;
1488
1489 if (!single_succ_p (a))
1490 return false;
1491
1492 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1493 return false;
1494
1495 if (single_succ (a) != b)
1496 return false;
1497
1498 if (!single_pred_p (b))
1499 return false;
1500
1501 if (b == EXIT_BLOCK_PTR)
1502 return false;
1503
1504 /* If A ends by a statement causing exceptions or something similar, we
1505 cannot merge the blocks. */
1506 stmt = last_stmt (a);
1507 if (stmt && stmt_ends_bb_p (stmt))
1508 return false;
1509
1510 /* Do not allow a block with only a non-local label to be merged. */
1511 if (stmt
1512 && gimple_code (stmt) == GIMPLE_LABEL
1513 && DECL_NONLOCAL (gimple_label_label (stmt)))
1514 return false;
1515
1516 /* Examine the labels at the beginning of B. */
1517 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1518 {
1519 tree lab;
1520 stmt = gsi_stmt (gsi);
1521 if (gimple_code (stmt) != GIMPLE_LABEL)
1522 break;
1523 lab = gimple_label_label (stmt);
1524
1525 /* Do not remove user forced labels or for -O0 any user labels. */
1526 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1527 return false;
1528 }
1529
1530 /* Protect the loop latches. */
1531 if (current_loops && b->loop_father->latch == b)
1532 return false;
1533
1534 /* It must be possible to eliminate all phi nodes in B. If ssa form
1535 is not up-to-date and a name-mapping is registered, we cannot eliminate
1536 any phis. Symbols marked for renaming are never a problem though. */
1537 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1538 {
1539 gimple phi = gsi_stmt (gsi);
1540 /* Technically only new names matter. */
1541 if (name_registered_for_update_p (PHI_RESULT (phi)))
1542 return false;
1543 }
1544
1545 /* When not optimizing, don't merge if we'd lose goto_locus. */
1546 if (!optimize
1547 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1548 {
1549 location_t goto_locus = single_succ_edge (a)->goto_locus;
1550 gimple_stmt_iterator prev, next;
1551 prev = gsi_last_nondebug_bb (a);
1552 next = gsi_after_labels (b);
1553 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1554 gsi_next_nondebug (&next);
1555 if ((gsi_end_p (prev)
1556 || gimple_location (gsi_stmt (prev)) != goto_locus)
1557 && (gsi_end_p (next)
1558 || gimple_location (gsi_stmt (next)) != goto_locus))
1559 return false;
1560 }
1561
1562 return true;
1563 }
1564
1565 /* Replaces all uses of NAME by VAL. */
1566
1567 void
1568 replace_uses_by (tree name, tree val)
1569 {
1570 imm_use_iterator imm_iter;
1571 use_operand_p use;
1572 gimple stmt;
1573 edge e;
1574
1575 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1576 {
1577 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1578 {
1579 replace_exp (use, val);
1580
1581 if (gimple_code (stmt) == GIMPLE_PHI)
1582 {
1583 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1584 if (e->flags & EDGE_ABNORMAL)
1585 {
1586 /* This can only occur for virtual operands, since
1587 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1588 would prevent replacement. */
1589 gcc_checking_assert (virtual_operand_p (name));
1590 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1591 }
1592 }
1593 }
1594
1595 if (gimple_code (stmt) != GIMPLE_PHI)
1596 {
1597 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1598 gimple orig_stmt = stmt;
1599 size_t i;
1600
1601 /* Mark the block if we changed the last stmt in it. */
1602 if (cfgcleanup_altered_bbs
1603 && stmt_ends_bb_p (stmt))
1604 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1605
1606 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1607 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1608 only change sth from non-invariant to invariant, and only
1609 when propagating constants. */
1610 if (is_gimple_min_invariant (val))
1611 for (i = 0; i < gimple_num_ops (stmt); i++)
1612 {
1613 tree op = gimple_op (stmt, i);
1614 /* Operands may be empty here. For example, the labels
1615 of a GIMPLE_COND are nulled out following the creation
1616 of the corresponding CFG edges. */
1617 if (op && TREE_CODE (op) == ADDR_EXPR)
1618 recompute_tree_invariant_for_addr_expr (op);
1619 }
1620
1621 if (fold_stmt (&gsi))
1622 stmt = gsi_stmt (gsi);
1623
1624 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1625 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1626
1627 update_stmt (stmt);
1628 }
1629 }
1630
1631 gcc_checking_assert (has_zero_uses (name));
1632
1633 /* Also update the trees stored in loop structures. */
1634 if (current_loops)
1635 {
1636 struct loop *loop;
1637 loop_iterator li;
1638
1639 FOR_EACH_LOOP (li, loop, 0)
1640 {
1641 substitute_in_loop_info (loop, name, val);
1642 }
1643 }
1644 }
1645
1646 /* Merge block B into block A. */
1647
1648 static void
1649 gimple_merge_blocks (basic_block a, basic_block b)
1650 {
1651 gimple_stmt_iterator last, gsi, psi;
1652
1653 if (dump_file)
1654 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1655
1656 /* Remove all single-valued PHI nodes from block B of the form
1657 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1658 gsi = gsi_last_bb (a);
1659 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1660 {
1661 gimple phi = gsi_stmt (psi);
1662 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1663 gimple copy;
1664 bool may_replace_uses = (virtual_operand_p (def)
1665 || may_propagate_copy (def, use));
1666
1667 /* In case we maintain loop closed ssa form, do not propagate arguments
1668 of loop exit phi nodes. */
1669 if (current_loops
1670 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1671 && !virtual_operand_p (def)
1672 && TREE_CODE (use) == SSA_NAME
1673 && a->loop_father != b->loop_father)
1674 may_replace_uses = false;
1675
1676 if (!may_replace_uses)
1677 {
1678 gcc_assert (!virtual_operand_p (def));
1679
1680 /* Note that just emitting the copies is fine -- there is no problem
1681 with ordering of phi nodes. This is because A is the single
1682 predecessor of B, therefore results of the phi nodes cannot
1683 appear as arguments of the phi nodes. */
1684 copy = gimple_build_assign (def, use);
1685 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1686 remove_phi_node (&psi, false);
1687 }
1688 else
1689 {
1690 /* If we deal with a PHI for virtual operands, we can simply
1691 propagate these without fussing with folding or updating
1692 the stmt. */
1693 if (virtual_operand_p (def))
1694 {
1695 imm_use_iterator iter;
1696 use_operand_p use_p;
1697 gimple stmt;
1698
1699 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1700 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1701 SET_USE (use_p, use);
1702
1703 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1704 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1705 }
1706 else
1707 replace_uses_by (def, use);
1708
1709 remove_phi_node (&psi, true);
1710 }
1711 }
1712
1713 /* Ensure that B follows A. */
1714 move_block_after (b, a);
1715
1716 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1717 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1718
1719 /* Remove labels from B and set gimple_bb to A for other statements. */
1720 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1721 {
1722 gimple stmt = gsi_stmt (gsi);
1723 if (gimple_code (stmt) == GIMPLE_LABEL)
1724 {
1725 tree label = gimple_label_label (stmt);
1726 int lp_nr;
1727
1728 gsi_remove (&gsi, false);
1729
1730 /* Now that we can thread computed gotos, we might have
1731 a situation where we have a forced label in block B
1732 However, the label at the start of block B might still be
1733 used in other ways (think about the runtime checking for
1734 Fortran assigned gotos). So we can not just delete the
1735 label. Instead we move the label to the start of block A. */
1736 if (FORCED_LABEL (label))
1737 {
1738 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1739 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1740 }
1741 /* Other user labels keep around in a form of a debug stmt. */
1742 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1743 {
1744 gimple dbg = gimple_build_debug_bind (label,
1745 integer_zero_node,
1746 stmt);
1747 gimple_debug_bind_reset_value (dbg);
1748 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1749 }
1750
1751 lp_nr = EH_LANDING_PAD_NR (label);
1752 if (lp_nr)
1753 {
1754 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1755 lp->post_landing_pad = NULL;
1756 }
1757 }
1758 else
1759 {
1760 gimple_set_bb (stmt, a);
1761 gsi_next (&gsi);
1762 }
1763 }
1764
1765 /* Merge the sequences. */
1766 last = gsi_last_bb (a);
1767 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1768 set_bb_seq (b, NULL);
1769
1770 if (cfgcleanup_altered_bbs)
1771 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1772 }
1773
1774
1775 /* Return the one of two successors of BB that is not reachable by a
1776 complex edge, if there is one. Else, return BB. We use
1777 this in optimizations that use post-dominators for their heuristics,
1778 to catch the cases in C++ where function calls are involved. */
1779
1780 basic_block
1781 single_noncomplex_succ (basic_block bb)
1782 {
1783 edge e0, e1;
1784 if (EDGE_COUNT (bb->succs) != 2)
1785 return bb;
1786
1787 e0 = EDGE_SUCC (bb, 0);
1788 e1 = EDGE_SUCC (bb, 1);
1789 if (e0->flags & EDGE_COMPLEX)
1790 return e1->dest;
1791 if (e1->flags & EDGE_COMPLEX)
1792 return e0->dest;
1793
1794 return bb;
1795 }
1796
1797 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1798
1799 void
1800 notice_special_calls (gimple call)
1801 {
1802 int flags = gimple_call_flags (call);
1803
1804 if (flags & ECF_MAY_BE_ALLOCA)
1805 cfun->calls_alloca = true;
1806 if (flags & ECF_RETURNS_TWICE)
1807 cfun->calls_setjmp = true;
1808 }
1809
1810
1811 /* Clear flags set by notice_special_calls. Used by dead code removal
1812 to update the flags. */
1813
1814 void
1815 clear_special_calls (void)
1816 {
1817 cfun->calls_alloca = false;
1818 cfun->calls_setjmp = false;
1819 }
1820
1821 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1822
1823 static void
1824 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1825 {
1826 /* Since this block is no longer reachable, we can just delete all
1827 of its PHI nodes. */
1828 remove_phi_nodes (bb);
1829
1830 /* Remove edges to BB's successors. */
1831 while (EDGE_COUNT (bb->succs) > 0)
1832 remove_edge (EDGE_SUCC (bb, 0));
1833 }
1834
1835
1836 /* Remove statements of basic block BB. */
1837
1838 static void
1839 remove_bb (basic_block bb)
1840 {
1841 gimple_stmt_iterator i;
1842
1843 if (dump_file)
1844 {
1845 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1846 if (dump_flags & TDF_DETAILS)
1847 {
1848 dump_bb (dump_file, bb, 0, dump_flags);
1849 fprintf (dump_file, "\n");
1850 }
1851 }
1852
1853 if (current_loops)
1854 {
1855 struct loop *loop = bb->loop_father;
1856
1857 /* If a loop gets removed, clean up the information associated
1858 with it. */
1859 if (loop->latch == bb
1860 || loop->header == bb)
1861 free_numbers_of_iterations_estimates_loop (loop);
1862 }
1863
1864 /* Remove all the instructions in the block. */
1865 if (bb_seq (bb) != NULL)
1866 {
1867 /* Walk backwards so as to get a chance to substitute all
1868 released DEFs into debug stmts. See
1869 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1870 details. */
1871 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1872 {
1873 gimple stmt = gsi_stmt (i);
1874 if (gimple_code (stmt) == GIMPLE_LABEL
1875 && (FORCED_LABEL (gimple_label_label (stmt))
1876 || DECL_NONLOCAL (gimple_label_label (stmt))))
1877 {
1878 basic_block new_bb;
1879 gimple_stmt_iterator new_gsi;
1880
1881 /* A non-reachable non-local label may still be referenced.
1882 But it no longer needs to carry the extra semantics of
1883 non-locality. */
1884 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1885 {
1886 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1887 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1888 }
1889
1890 new_bb = bb->prev_bb;
1891 new_gsi = gsi_start_bb (new_bb);
1892 gsi_remove (&i, false);
1893 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1894 }
1895 else
1896 {
1897 /* Release SSA definitions if we are in SSA. Note that we
1898 may be called when not in SSA. For example,
1899 final_cleanup calls this function via
1900 cleanup_tree_cfg. */
1901 if (gimple_in_ssa_p (cfun))
1902 release_defs (stmt);
1903
1904 gsi_remove (&i, true);
1905 }
1906
1907 if (gsi_end_p (i))
1908 i = gsi_last_bb (bb);
1909 else
1910 gsi_prev (&i);
1911 }
1912 }
1913
1914 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1915 bb->il.gimple.seq = NULL;
1916 bb->il.gimple.phi_nodes = NULL;
1917 }
1918
1919
1920 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1921 predicate VAL, return the edge that will be taken out of the block.
1922 If VAL does not match a unique edge, NULL is returned. */
1923
1924 edge
1925 find_taken_edge (basic_block bb, tree val)
1926 {
1927 gimple stmt;
1928
1929 stmt = last_stmt (bb);
1930
1931 gcc_assert (stmt);
1932 gcc_assert (is_ctrl_stmt (stmt));
1933
1934 if (val == NULL)
1935 return NULL;
1936
1937 if (!is_gimple_min_invariant (val))
1938 return NULL;
1939
1940 if (gimple_code (stmt) == GIMPLE_COND)
1941 return find_taken_edge_cond_expr (bb, val);
1942
1943 if (gimple_code (stmt) == GIMPLE_SWITCH)
1944 return find_taken_edge_switch_expr (bb, val);
1945
1946 if (computed_goto_p (stmt))
1947 {
1948 /* Only optimize if the argument is a label, if the argument is
1949 not a label then we can not construct a proper CFG.
1950
1951 It may be the case that we only need to allow the LABEL_REF to
1952 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1953 appear inside a LABEL_EXPR just to be safe. */
1954 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1955 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1956 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1957 return NULL;
1958 }
1959
1960 gcc_unreachable ();
1961 }
1962
1963 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1964 statement, determine which of the outgoing edges will be taken out of the
1965 block. Return NULL if either edge may be taken. */
1966
1967 static edge
1968 find_taken_edge_computed_goto (basic_block bb, tree val)
1969 {
1970 basic_block dest;
1971 edge e = NULL;
1972
1973 dest = label_to_block (val);
1974 if (dest)
1975 {
1976 e = find_edge (bb, dest);
1977 gcc_assert (e != NULL);
1978 }
1979
1980 return e;
1981 }
1982
1983 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1984 statement, determine which of the two edges will be taken out of the
1985 block. Return NULL if either edge may be taken. */
1986
1987 static edge
1988 find_taken_edge_cond_expr (basic_block bb, tree val)
1989 {
1990 edge true_edge, false_edge;
1991
1992 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1993
1994 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1995 return (integer_zerop (val) ? false_edge : true_edge);
1996 }
1997
1998 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1999 statement, determine which edge will be taken out of the block. Return
2000 NULL if any edge may be taken. */
2001
2002 static edge
2003 find_taken_edge_switch_expr (basic_block bb, tree val)
2004 {
2005 basic_block dest_bb;
2006 edge e;
2007 gimple switch_stmt;
2008 tree taken_case;
2009
2010 switch_stmt = last_stmt (bb);
2011 taken_case = find_case_label_for_value (switch_stmt, val);
2012 dest_bb = label_to_block (CASE_LABEL (taken_case));
2013
2014 e = find_edge (bb, dest_bb);
2015 gcc_assert (e);
2016 return e;
2017 }
2018
2019
2020 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2021 We can make optimal use here of the fact that the case labels are
2022 sorted: We can do a binary search for a case matching VAL. */
2023
2024 static tree
2025 find_case_label_for_value (gimple switch_stmt, tree val)
2026 {
2027 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2028 tree default_case = gimple_switch_default_label (switch_stmt);
2029
2030 for (low = 0, high = n; high - low > 1; )
2031 {
2032 size_t i = (high + low) / 2;
2033 tree t = gimple_switch_label (switch_stmt, i);
2034 int cmp;
2035
2036 /* Cache the result of comparing CASE_LOW and val. */
2037 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2038
2039 if (cmp > 0)
2040 high = i;
2041 else
2042 low = i;
2043
2044 if (CASE_HIGH (t) == NULL)
2045 {
2046 /* A singe-valued case label. */
2047 if (cmp == 0)
2048 return t;
2049 }
2050 else
2051 {
2052 /* A case range. We can only handle integer ranges. */
2053 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2054 return t;
2055 }
2056 }
2057
2058 return default_case;
2059 }
2060
2061
2062 /* Dump a basic block on stderr. */
2063
2064 void
2065 gimple_debug_bb (basic_block bb)
2066 {
2067 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2068 }
2069
2070
2071 /* Dump basic block with index N on stderr. */
2072
2073 basic_block
2074 gimple_debug_bb_n (int n)
2075 {
2076 gimple_debug_bb (BASIC_BLOCK (n));
2077 return BASIC_BLOCK (n);
2078 }
2079
2080
2081 /* Dump the CFG on stderr.
2082
2083 FLAGS are the same used by the tree dumping functions
2084 (see TDF_* in dumpfile.h). */
2085
2086 void
2087 gimple_debug_cfg (int flags)
2088 {
2089 gimple_dump_cfg (stderr, flags);
2090 }
2091
2092
2093 /* Dump the program showing basic block boundaries on the given FILE.
2094
2095 FLAGS are the same used by the tree dumping functions (see TDF_* in
2096 tree.h). */
2097
2098 void
2099 gimple_dump_cfg (FILE *file, int flags)
2100 {
2101 if (flags & TDF_DETAILS)
2102 {
2103 dump_function_header (file, current_function_decl, flags);
2104 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2105 n_basic_blocks, n_edges, last_basic_block);
2106
2107 brief_dump_cfg (file, flags | TDF_COMMENT);
2108 fprintf (file, "\n");
2109 }
2110
2111 if (flags & TDF_STATS)
2112 dump_cfg_stats (file);
2113
2114 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2115 }
2116
2117
2118 /* Dump CFG statistics on FILE. */
2119
2120 void
2121 dump_cfg_stats (FILE *file)
2122 {
2123 static long max_num_merged_labels = 0;
2124 unsigned long size, total = 0;
2125 long num_edges;
2126 basic_block bb;
2127 const char * const fmt_str = "%-30s%-13s%12s\n";
2128 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2129 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2130 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2131 const char *funcname = current_function_name ();
2132
2133 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2134
2135 fprintf (file, "---------------------------------------------------------\n");
2136 fprintf (file, fmt_str, "", " Number of ", "Memory");
2137 fprintf (file, fmt_str, "", " instances ", "used ");
2138 fprintf (file, "---------------------------------------------------------\n");
2139
2140 size = n_basic_blocks * sizeof (struct basic_block_def);
2141 total += size;
2142 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2143 SCALE (size), LABEL (size));
2144
2145 num_edges = 0;
2146 FOR_EACH_BB (bb)
2147 num_edges += EDGE_COUNT (bb->succs);
2148 size = num_edges * sizeof (struct edge_def);
2149 total += size;
2150 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2151
2152 fprintf (file, "---------------------------------------------------------\n");
2153 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2154 LABEL (total));
2155 fprintf (file, "---------------------------------------------------------\n");
2156 fprintf (file, "\n");
2157
2158 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2159 max_num_merged_labels = cfg_stats.num_merged_labels;
2160
2161 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2162 cfg_stats.num_merged_labels, max_num_merged_labels);
2163
2164 fprintf (file, "\n");
2165 }
2166
2167
2168 /* Dump CFG statistics on stderr. Keep extern so that it's always
2169 linked in the final executable. */
2170
2171 DEBUG_FUNCTION void
2172 debug_cfg_stats (void)
2173 {
2174 dump_cfg_stats (stderr);
2175 }
2176
2177 /*---------------------------------------------------------------------------
2178 Miscellaneous helpers
2179 ---------------------------------------------------------------------------*/
2180
2181 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2182 flow. Transfers of control flow associated with EH are excluded. */
2183
2184 static bool
2185 call_can_make_abnormal_goto (gimple t)
2186 {
2187 /* If the function has no non-local labels, then a call cannot make an
2188 abnormal transfer of control. */
2189 if (!cfun->has_nonlocal_label
2190 && !cfun->calls_setjmp)
2191 return false;
2192
2193 /* Likewise if the call has no side effects. */
2194 if (!gimple_has_side_effects (t))
2195 return false;
2196
2197 /* Likewise if the called function is leaf. */
2198 if (gimple_call_flags (t) & ECF_LEAF)
2199 return false;
2200
2201 return true;
2202 }
2203
2204
2205 /* Return true if T can make an abnormal transfer of control flow.
2206 Transfers of control flow associated with EH are excluded. */
2207
2208 bool
2209 stmt_can_make_abnormal_goto (gimple t)
2210 {
2211 if (computed_goto_p (t))
2212 return true;
2213 if (is_gimple_call (t))
2214 return call_can_make_abnormal_goto (t);
2215 return false;
2216 }
2217
2218
2219 /* Return true if T represents a stmt that always transfers control. */
2220
2221 bool
2222 is_ctrl_stmt (gimple t)
2223 {
2224 switch (gimple_code (t))
2225 {
2226 case GIMPLE_COND:
2227 case GIMPLE_SWITCH:
2228 case GIMPLE_GOTO:
2229 case GIMPLE_RETURN:
2230 case GIMPLE_RESX:
2231 return true;
2232 default:
2233 return false;
2234 }
2235 }
2236
2237
2238 /* Return true if T is a statement that may alter the flow of control
2239 (e.g., a call to a non-returning function). */
2240
2241 bool
2242 is_ctrl_altering_stmt (gimple t)
2243 {
2244 gcc_assert (t);
2245
2246 switch (gimple_code (t))
2247 {
2248 case GIMPLE_CALL:
2249 {
2250 int flags = gimple_call_flags (t);
2251
2252 /* A call alters control flow if it can make an abnormal goto. */
2253 if (call_can_make_abnormal_goto (t))
2254 return true;
2255
2256 /* A call also alters control flow if it does not return. */
2257 if (flags & ECF_NORETURN)
2258 return true;
2259
2260 /* TM ending statements have backedges out of the transaction.
2261 Return true so we split the basic block containing them.
2262 Note that the TM_BUILTIN test is merely an optimization. */
2263 if ((flags & ECF_TM_BUILTIN)
2264 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2265 return true;
2266
2267 /* BUILT_IN_RETURN call is same as return statement. */
2268 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2269 return true;
2270 }
2271 break;
2272
2273 case GIMPLE_EH_DISPATCH:
2274 /* EH_DISPATCH branches to the individual catch handlers at
2275 this level of a try or allowed-exceptions region. It can
2276 fallthru to the next statement as well. */
2277 return true;
2278
2279 case GIMPLE_ASM:
2280 if (gimple_asm_nlabels (t) > 0)
2281 return true;
2282 break;
2283
2284 CASE_GIMPLE_OMP:
2285 /* OpenMP directives alter control flow. */
2286 return true;
2287
2288 case GIMPLE_TRANSACTION:
2289 /* A transaction start alters control flow. */
2290 return true;
2291
2292 default:
2293 break;
2294 }
2295
2296 /* If a statement can throw, it alters control flow. */
2297 return stmt_can_throw_internal (t);
2298 }
2299
2300
2301 /* Return true if T is a simple local goto. */
2302
2303 bool
2304 simple_goto_p (gimple t)
2305 {
2306 return (gimple_code (t) == GIMPLE_GOTO
2307 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2308 }
2309
2310
2311 /* Return true if STMT should start a new basic block. PREV_STMT is
2312 the statement preceding STMT. It is used when STMT is a label or a
2313 case label. Labels should only start a new basic block if their
2314 previous statement wasn't a label. Otherwise, sequence of labels
2315 would generate unnecessary basic blocks that only contain a single
2316 label. */
2317
2318 static inline bool
2319 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2320 {
2321 if (stmt == NULL)
2322 return false;
2323
2324 /* Labels start a new basic block only if the preceding statement
2325 wasn't a label of the same type. This prevents the creation of
2326 consecutive blocks that have nothing but a single label. */
2327 if (gimple_code (stmt) == GIMPLE_LABEL)
2328 {
2329 /* Nonlocal and computed GOTO targets always start a new block. */
2330 if (DECL_NONLOCAL (gimple_label_label (stmt))
2331 || FORCED_LABEL (gimple_label_label (stmt)))
2332 return true;
2333
2334 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2335 {
2336 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2337 return true;
2338
2339 cfg_stats.num_merged_labels++;
2340 return false;
2341 }
2342 else
2343 return true;
2344 }
2345 else if (gimple_code (stmt) == GIMPLE_CALL
2346 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2347 /* setjmp acts similar to a nonlocal GOTO target and thus should
2348 start a new block. */
2349 return true;
2350
2351 return false;
2352 }
2353
2354
2355 /* Return true if T should end a basic block. */
2356
2357 bool
2358 stmt_ends_bb_p (gimple t)
2359 {
2360 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2361 }
2362
2363 /* Remove block annotations and other data structures. */
2364
2365 void
2366 delete_tree_cfg_annotations (void)
2367 {
2368 vec_free (label_to_block_map);
2369 }
2370
2371
2372 /* Return the first statement in basic block BB. */
2373
2374 gimple
2375 first_stmt (basic_block bb)
2376 {
2377 gimple_stmt_iterator i = gsi_start_bb (bb);
2378 gimple stmt = NULL;
2379
2380 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2381 {
2382 gsi_next (&i);
2383 stmt = NULL;
2384 }
2385 return stmt;
2386 }
2387
2388 /* Return the first non-label statement in basic block BB. */
2389
2390 static gimple
2391 first_non_label_stmt (basic_block bb)
2392 {
2393 gimple_stmt_iterator i = gsi_start_bb (bb);
2394 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2395 gsi_next (&i);
2396 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2397 }
2398
2399 /* Return the last statement in basic block BB. */
2400
2401 gimple
2402 last_stmt (basic_block bb)
2403 {
2404 gimple_stmt_iterator i = gsi_last_bb (bb);
2405 gimple stmt = NULL;
2406
2407 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2408 {
2409 gsi_prev (&i);
2410 stmt = NULL;
2411 }
2412 return stmt;
2413 }
2414
2415 /* Return the last statement of an otherwise empty block. Return NULL
2416 if the block is totally empty, or if it contains more than one
2417 statement. */
2418
2419 gimple
2420 last_and_only_stmt (basic_block bb)
2421 {
2422 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2423 gimple last, prev;
2424
2425 if (gsi_end_p (i))
2426 return NULL;
2427
2428 last = gsi_stmt (i);
2429 gsi_prev_nondebug (&i);
2430 if (gsi_end_p (i))
2431 return last;
2432
2433 /* Empty statements should no longer appear in the instruction stream.
2434 Everything that might have appeared before should be deleted by
2435 remove_useless_stmts, and the optimizers should just gsi_remove
2436 instead of smashing with build_empty_stmt.
2437
2438 Thus the only thing that should appear here in a block containing
2439 one executable statement is a label. */
2440 prev = gsi_stmt (i);
2441 if (gimple_code (prev) == GIMPLE_LABEL)
2442 return last;
2443 else
2444 return NULL;
2445 }
2446
2447 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2448
2449 static void
2450 reinstall_phi_args (edge new_edge, edge old_edge)
2451 {
2452 edge_var_map_vector *v;
2453 edge_var_map *vm;
2454 int i;
2455 gimple_stmt_iterator phis;
2456
2457 v = redirect_edge_var_map_vector (old_edge);
2458 if (!v)
2459 return;
2460
2461 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2462 v->iterate (i, &vm) && !gsi_end_p (phis);
2463 i++, gsi_next (&phis))
2464 {
2465 gimple phi = gsi_stmt (phis);
2466 tree result = redirect_edge_var_map_result (vm);
2467 tree arg = redirect_edge_var_map_def (vm);
2468
2469 gcc_assert (result == gimple_phi_result (phi));
2470
2471 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2472 }
2473
2474 redirect_edge_var_map_clear (old_edge);
2475 }
2476
2477 /* Returns the basic block after which the new basic block created
2478 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2479 near its "logical" location. This is of most help to humans looking
2480 at debugging dumps. */
2481
2482 static basic_block
2483 split_edge_bb_loc (edge edge_in)
2484 {
2485 basic_block dest = edge_in->dest;
2486 basic_block dest_prev = dest->prev_bb;
2487
2488 if (dest_prev)
2489 {
2490 edge e = find_edge (dest_prev, dest);
2491 if (e && !(e->flags & EDGE_COMPLEX))
2492 return edge_in->src;
2493 }
2494 return dest_prev;
2495 }
2496
2497 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2498 Abort on abnormal edges. */
2499
2500 static basic_block
2501 gimple_split_edge (edge edge_in)
2502 {
2503 basic_block new_bb, after_bb, dest;
2504 edge new_edge, e;
2505
2506 /* Abnormal edges cannot be split. */
2507 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2508
2509 dest = edge_in->dest;
2510
2511 after_bb = split_edge_bb_loc (edge_in);
2512
2513 new_bb = create_empty_bb (after_bb);
2514 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2515 new_bb->count = edge_in->count;
2516 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2517 new_edge->probability = REG_BR_PROB_BASE;
2518 new_edge->count = edge_in->count;
2519
2520 e = redirect_edge_and_branch (edge_in, new_bb);
2521 gcc_assert (e == edge_in);
2522 reinstall_phi_args (new_edge, e);
2523
2524 return new_bb;
2525 }
2526
2527
2528 /* Verify properties of the address expression T with base object BASE. */
2529
2530 static tree
2531 verify_address (tree t, tree base)
2532 {
2533 bool old_constant;
2534 bool old_side_effects;
2535 bool new_constant;
2536 bool new_side_effects;
2537
2538 old_constant = TREE_CONSTANT (t);
2539 old_side_effects = TREE_SIDE_EFFECTS (t);
2540
2541 recompute_tree_invariant_for_addr_expr (t);
2542 new_side_effects = TREE_SIDE_EFFECTS (t);
2543 new_constant = TREE_CONSTANT (t);
2544
2545 if (old_constant != new_constant)
2546 {
2547 error ("constant not recomputed when ADDR_EXPR changed");
2548 return t;
2549 }
2550 if (old_side_effects != new_side_effects)
2551 {
2552 error ("side effects not recomputed when ADDR_EXPR changed");
2553 return t;
2554 }
2555
2556 if (!(TREE_CODE (base) == VAR_DECL
2557 || TREE_CODE (base) == PARM_DECL
2558 || TREE_CODE (base) == RESULT_DECL))
2559 return NULL_TREE;
2560
2561 if (DECL_GIMPLE_REG_P (base))
2562 {
2563 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2564 return base;
2565 }
2566
2567 return NULL_TREE;
2568 }
2569
2570 /* Callback for walk_tree, check that all elements with address taken are
2571 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2572 inside a PHI node. */
2573
2574 static tree
2575 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2576 {
2577 tree t = *tp, x;
2578
2579 if (TYPE_P (t))
2580 *walk_subtrees = 0;
2581
2582 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2583 #define CHECK_OP(N, MSG) \
2584 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2585 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2586
2587 switch (TREE_CODE (t))
2588 {
2589 case SSA_NAME:
2590 if (SSA_NAME_IN_FREE_LIST (t))
2591 {
2592 error ("SSA name in freelist but still referenced");
2593 return *tp;
2594 }
2595 break;
2596
2597 case INDIRECT_REF:
2598 error ("INDIRECT_REF in gimple IL");
2599 return t;
2600
2601 case MEM_REF:
2602 x = TREE_OPERAND (t, 0);
2603 if (!POINTER_TYPE_P (TREE_TYPE (x))
2604 || !is_gimple_mem_ref_addr (x))
2605 {
2606 error ("invalid first operand of MEM_REF");
2607 return x;
2608 }
2609 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2610 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2611 {
2612 error ("invalid offset operand of MEM_REF");
2613 return TREE_OPERAND (t, 1);
2614 }
2615 if (TREE_CODE (x) == ADDR_EXPR
2616 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2617 return x;
2618 *walk_subtrees = 0;
2619 break;
2620
2621 case ASSERT_EXPR:
2622 x = fold (ASSERT_EXPR_COND (t));
2623 if (x == boolean_false_node)
2624 {
2625 error ("ASSERT_EXPR with an always-false condition");
2626 return *tp;
2627 }
2628 break;
2629
2630 case MODIFY_EXPR:
2631 error ("MODIFY_EXPR not expected while having tuples");
2632 return *tp;
2633
2634 case ADDR_EXPR:
2635 {
2636 tree tem;
2637
2638 gcc_assert (is_gimple_address (t));
2639
2640 /* Skip any references (they will be checked when we recurse down the
2641 tree) and ensure that any variable used as a prefix is marked
2642 addressable. */
2643 for (x = TREE_OPERAND (t, 0);
2644 handled_component_p (x);
2645 x = TREE_OPERAND (x, 0))
2646 ;
2647
2648 if ((tem = verify_address (t, x)))
2649 return tem;
2650
2651 if (!(TREE_CODE (x) == VAR_DECL
2652 || TREE_CODE (x) == PARM_DECL
2653 || TREE_CODE (x) == RESULT_DECL))
2654 return NULL;
2655
2656 if (!TREE_ADDRESSABLE (x))
2657 {
2658 error ("address taken, but ADDRESSABLE bit not set");
2659 return x;
2660 }
2661
2662 break;
2663 }
2664
2665 case COND_EXPR:
2666 x = COND_EXPR_COND (t);
2667 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2668 {
2669 error ("non-integral used in condition");
2670 return x;
2671 }
2672 if (!is_gimple_condexpr (x))
2673 {
2674 error ("invalid conditional operand");
2675 return x;
2676 }
2677 break;
2678
2679 case NON_LVALUE_EXPR:
2680 case TRUTH_NOT_EXPR:
2681 gcc_unreachable ();
2682
2683 CASE_CONVERT:
2684 case FIX_TRUNC_EXPR:
2685 case FLOAT_EXPR:
2686 case NEGATE_EXPR:
2687 case ABS_EXPR:
2688 case BIT_NOT_EXPR:
2689 CHECK_OP (0, "invalid operand to unary operator");
2690 break;
2691
2692 case REALPART_EXPR:
2693 case IMAGPART_EXPR:
2694 case BIT_FIELD_REF:
2695 if (!is_gimple_reg_type (TREE_TYPE (t)))
2696 {
2697 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2698 return t;
2699 }
2700
2701 if (TREE_CODE (t) == BIT_FIELD_REF)
2702 {
2703 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2704 || !host_integerp (TREE_OPERAND (t, 2), 1))
2705 {
2706 error ("invalid position or size operand to BIT_FIELD_REF");
2707 return t;
2708 }
2709 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2710 && (TYPE_PRECISION (TREE_TYPE (t))
2711 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2712 {
2713 error ("integral result type precision does not match "
2714 "field size of BIT_FIELD_REF");
2715 return t;
2716 }
2717 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2718 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2719 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2720 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2721 {
2722 error ("mode precision of non-integral result does not "
2723 "match field size of BIT_FIELD_REF");
2724 return t;
2725 }
2726 }
2727 t = TREE_OPERAND (t, 0);
2728
2729 /* Fall-through. */
2730 case COMPONENT_REF:
2731 case ARRAY_REF:
2732 case ARRAY_RANGE_REF:
2733 case VIEW_CONVERT_EXPR:
2734 /* We have a nest of references. Verify that each of the operands
2735 that determine where to reference is either a constant or a variable,
2736 verify that the base is valid, and then show we've already checked
2737 the subtrees. */
2738 while (handled_component_p (t))
2739 {
2740 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2741 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2742 else if (TREE_CODE (t) == ARRAY_REF
2743 || TREE_CODE (t) == ARRAY_RANGE_REF)
2744 {
2745 CHECK_OP (1, "invalid array index");
2746 if (TREE_OPERAND (t, 2))
2747 CHECK_OP (2, "invalid array lower bound");
2748 if (TREE_OPERAND (t, 3))
2749 CHECK_OP (3, "invalid array stride");
2750 }
2751 else if (TREE_CODE (t) == BIT_FIELD_REF
2752 || TREE_CODE (t) == REALPART_EXPR
2753 || TREE_CODE (t) == IMAGPART_EXPR)
2754 {
2755 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2756 "REALPART_EXPR");
2757 return t;
2758 }
2759
2760 t = TREE_OPERAND (t, 0);
2761 }
2762
2763 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2764 {
2765 error ("invalid reference prefix");
2766 return t;
2767 }
2768 *walk_subtrees = 0;
2769 break;
2770 case PLUS_EXPR:
2771 case MINUS_EXPR:
2772 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2773 POINTER_PLUS_EXPR. */
2774 if (POINTER_TYPE_P (TREE_TYPE (t)))
2775 {
2776 error ("invalid operand to plus/minus, type is a pointer");
2777 return t;
2778 }
2779 CHECK_OP (0, "invalid operand to binary operator");
2780 CHECK_OP (1, "invalid operand to binary operator");
2781 break;
2782
2783 case POINTER_PLUS_EXPR:
2784 /* Check to make sure the first operand is a pointer or reference type. */
2785 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2786 {
2787 error ("invalid operand to pointer plus, first operand is not a pointer");
2788 return t;
2789 }
2790 /* Check to make sure the second operand is a ptrofftype. */
2791 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2792 {
2793 error ("invalid operand to pointer plus, second operand is not an "
2794 "integer type of appropriate width");
2795 return t;
2796 }
2797 /* FALLTHROUGH */
2798 case LT_EXPR:
2799 case LE_EXPR:
2800 case GT_EXPR:
2801 case GE_EXPR:
2802 case EQ_EXPR:
2803 case NE_EXPR:
2804 case UNORDERED_EXPR:
2805 case ORDERED_EXPR:
2806 case UNLT_EXPR:
2807 case UNLE_EXPR:
2808 case UNGT_EXPR:
2809 case UNGE_EXPR:
2810 case UNEQ_EXPR:
2811 case LTGT_EXPR:
2812 case MULT_EXPR:
2813 case TRUNC_DIV_EXPR:
2814 case CEIL_DIV_EXPR:
2815 case FLOOR_DIV_EXPR:
2816 case ROUND_DIV_EXPR:
2817 case TRUNC_MOD_EXPR:
2818 case CEIL_MOD_EXPR:
2819 case FLOOR_MOD_EXPR:
2820 case ROUND_MOD_EXPR:
2821 case RDIV_EXPR:
2822 case EXACT_DIV_EXPR:
2823 case MIN_EXPR:
2824 case MAX_EXPR:
2825 case LSHIFT_EXPR:
2826 case RSHIFT_EXPR:
2827 case LROTATE_EXPR:
2828 case RROTATE_EXPR:
2829 case BIT_IOR_EXPR:
2830 case BIT_XOR_EXPR:
2831 case BIT_AND_EXPR:
2832 CHECK_OP (0, "invalid operand to binary operator");
2833 CHECK_OP (1, "invalid operand to binary operator");
2834 break;
2835
2836 case CONSTRUCTOR:
2837 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2838 *walk_subtrees = 0;
2839 break;
2840
2841 case CASE_LABEL_EXPR:
2842 if (CASE_CHAIN (t))
2843 {
2844 error ("invalid CASE_CHAIN");
2845 return t;
2846 }
2847 break;
2848
2849 default:
2850 break;
2851 }
2852 return NULL;
2853
2854 #undef CHECK_OP
2855 }
2856
2857
2858 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2859 Returns true if there is an error, otherwise false. */
2860
2861 static bool
2862 verify_types_in_gimple_min_lval (tree expr)
2863 {
2864 tree op;
2865
2866 if (is_gimple_id (expr))
2867 return false;
2868
2869 if (TREE_CODE (expr) != TARGET_MEM_REF
2870 && TREE_CODE (expr) != MEM_REF)
2871 {
2872 error ("invalid expression for min lvalue");
2873 return true;
2874 }
2875
2876 /* TARGET_MEM_REFs are strange beasts. */
2877 if (TREE_CODE (expr) == TARGET_MEM_REF)
2878 return false;
2879
2880 op = TREE_OPERAND (expr, 0);
2881 if (!is_gimple_val (op))
2882 {
2883 error ("invalid operand in indirect reference");
2884 debug_generic_stmt (op);
2885 return true;
2886 }
2887 /* Memory references now generally can involve a value conversion. */
2888
2889 return false;
2890 }
2891
2892 /* Verify if EXPR is a valid GIMPLE reference expression. If
2893 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2894 if there is an error, otherwise false. */
2895
2896 static bool
2897 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2898 {
2899 while (handled_component_p (expr))
2900 {
2901 tree op = TREE_OPERAND (expr, 0);
2902
2903 if (TREE_CODE (expr) == ARRAY_REF
2904 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2905 {
2906 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2907 || (TREE_OPERAND (expr, 2)
2908 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2909 || (TREE_OPERAND (expr, 3)
2910 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2911 {
2912 error ("invalid operands to array reference");
2913 debug_generic_stmt (expr);
2914 return true;
2915 }
2916 }
2917
2918 /* Verify if the reference array element types are compatible. */
2919 if (TREE_CODE (expr) == ARRAY_REF
2920 && !useless_type_conversion_p (TREE_TYPE (expr),
2921 TREE_TYPE (TREE_TYPE (op))))
2922 {
2923 error ("type mismatch in array reference");
2924 debug_generic_stmt (TREE_TYPE (expr));
2925 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2926 return true;
2927 }
2928 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2929 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2930 TREE_TYPE (TREE_TYPE (op))))
2931 {
2932 error ("type mismatch in array range reference");
2933 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2934 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2935 return true;
2936 }
2937
2938 if ((TREE_CODE (expr) == REALPART_EXPR
2939 || TREE_CODE (expr) == IMAGPART_EXPR)
2940 && !useless_type_conversion_p (TREE_TYPE (expr),
2941 TREE_TYPE (TREE_TYPE (op))))
2942 {
2943 error ("type mismatch in real/imagpart reference");
2944 debug_generic_stmt (TREE_TYPE (expr));
2945 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2946 return true;
2947 }
2948
2949 if (TREE_CODE (expr) == COMPONENT_REF
2950 && !useless_type_conversion_p (TREE_TYPE (expr),
2951 TREE_TYPE (TREE_OPERAND (expr, 1))))
2952 {
2953 error ("type mismatch in component reference");
2954 debug_generic_stmt (TREE_TYPE (expr));
2955 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2956 return true;
2957 }
2958
2959 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2960 {
2961 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2962 that their operand is not an SSA name or an invariant when
2963 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2964 bug). Otherwise there is nothing to verify, gross mismatches at
2965 most invoke undefined behavior. */
2966 if (require_lvalue
2967 && (TREE_CODE (op) == SSA_NAME
2968 || is_gimple_min_invariant (op)))
2969 {
2970 error ("conversion of an SSA_NAME on the left hand side");
2971 debug_generic_stmt (expr);
2972 return true;
2973 }
2974 else if (TREE_CODE (op) == SSA_NAME
2975 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2976 {
2977 error ("conversion of register to a different size");
2978 debug_generic_stmt (expr);
2979 return true;
2980 }
2981 else if (!handled_component_p (op))
2982 return false;
2983 }
2984
2985 expr = op;
2986 }
2987
2988 if (TREE_CODE (expr) == MEM_REF)
2989 {
2990 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2991 {
2992 error ("invalid address operand in MEM_REF");
2993 debug_generic_stmt (expr);
2994 return true;
2995 }
2996 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2997 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2998 {
2999 error ("invalid offset operand in MEM_REF");
3000 debug_generic_stmt (expr);
3001 return true;
3002 }
3003 }
3004 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3005 {
3006 if (!TMR_BASE (expr)
3007 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3008 {
3009 error ("invalid address operand in TARGET_MEM_REF");
3010 return true;
3011 }
3012 if (!TMR_OFFSET (expr)
3013 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3014 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3015 {
3016 error ("invalid offset operand in TARGET_MEM_REF");
3017 debug_generic_stmt (expr);
3018 return true;
3019 }
3020 }
3021
3022 return ((require_lvalue || !is_gimple_min_invariant (expr))
3023 && verify_types_in_gimple_min_lval (expr));
3024 }
3025
3026 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3027 list of pointer-to types that is trivially convertible to DEST. */
3028
3029 static bool
3030 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3031 {
3032 tree src;
3033
3034 if (!TYPE_POINTER_TO (src_obj))
3035 return true;
3036
3037 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3038 if (useless_type_conversion_p (dest, src))
3039 return true;
3040
3041 return false;
3042 }
3043
3044 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3045 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3046
3047 static bool
3048 valid_fixed_convert_types_p (tree type1, tree type2)
3049 {
3050 return (FIXED_POINT_TYPE_P (type1)
3051 && (INTEGRAL_TYPE_P (type2)
3052 || SCALAR_FLOAT_TYPE_P (type2)
3053 || FIXED_POINT_TYPE_P (type2)));
3054 }
3055
3056 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3057 is a problem, otherwise false. */
3058
3059 static bool
3060 verify_gimple_call (gimple stmt)
3061 {
3062 tree fn = gimple_call_fn (stmt);
3063 tree fntype, fndecl;
3064 unsigned i;
3065
3066 if (gimple_call_internal_p (stmt))
3067 {
3068 if (fn)
3069 {
3070 error ("gimple call has two targets");
3071 debug_generic_stmt (fn);
3072 return true;
3073 }
3074 }
3075 else
3076 {
3077 if (!fn)
3078 {
3079 error ("gimple call has no target");
3080 return true;
3081 }
3082 }
3083
3084 if (fn && !is_gimple_call_addr (fn))
3085 {
3086 error ("invalid function in gimple call");
3087 debug_generic_stmt (fn);
3088 return true;
3089 }
3090
3091 if (fn
3092 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3093 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3094 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3095 {
3096 error ("non-function in gimple call");
3097 return true;
3098 }
3099
3100 fndecl = gimple_call_fndecl (stmt);
3101 if (fndecl
3102 && TREE_CODE (fndecl) == FUNCTION_DECL
3103 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3104 && !DECL_PURE_P (fndecl)
3105 && !TREE_READONLY (fndecl))
3106 {
3107 error ("invalid pure const state for function");
3108 return true;
3109 }
3110
3111 if (gimple_call_lhs (stmt)
3112 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3113 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3114 {
3115 error ("invalid LHS in gimple call");
3116 return true;
3117 }
3118
3119 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3120 {
3121 error ("LHS in noreturn call");
3122 return true;
3123 }
3124
3125 fntype = gimple_call_fntype (stmt);
3126 if (fntype
3127 && gimple_call_lhs (stmt)
3128 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3129 TREE_TYPE (fntype))
3130 /* ??? At least C++ misses conversions at assignments from
3131 void * call results.
3132 ??? Java is completely off. Especially with functions
3133 returning java.lang.Object.
3134 For now simply allow arbitrary pointer type conversions. */
3135 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3136 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3137 {
3138 error ("invalid conversion in gimple call");
3139 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3140 debug_generic_stmt (TREE_TYPE (fntype));
3141 return true;
3142 }
3143
3144 if (gimple_call_chain (stmt)
3145 && !is_gimple_val (gimple_call_chain (stmt)))
3146 {
3147 error ("invalid static chain in gimple call");
3148 debug_generic_stmt (gimple_call_chain (stmt));
3149 return true;
3150 }
3151
3152 /* If there is a static chain argument, this should not be an indirect
3153 call, and the decl should have DECL_STATIC_CHAIN set. */
3154 if (gimple_call_chain (stmt))
3155 {
3156 if (!gimple_call_fndecl (stmt))
3157 {
3158 error ("static chain in indirect gimple call");
3159 return true;
3160 }
3161 fn = TREE_OPERAND (fn, 0);
3162
3163 if (!DECL_STATIC_CHAIN (fn))
3164 {
3165 error ("static chain with function that doesn%'t use one");
3166 return true;
3167 }
3168 }
3169
3170 /* ??? The C frontend passes unpromoted arguments in case it
3171 didn't see a function declaration before the call. So for now
3172 leave the call arguments mostly unverified. Once we gimplify
3173 unit-at-a-time we have a chance to fix this. */
3174
3175 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3176 {
3177 tree arg = gimple_call_arg (stmt, i);
3178 if ((is_gimple_reg_type (TREE_TYPE (arg))
3179 && !is_gimple_val (arg))
3180 || (!is_gimple_reg_type (TREE_TYPE (arg))
3181 && !is_gimple_lvalue (arg)))
3182 {
3183 error ("invalid argument to gimple call");
3184 debug_generic_expr (arg);
3185 return true;
3186 }
3187 }
3188
3189 return false;
3190 }
3191
3192 /* Verifies the gimple comparison with the result type TYPE and
3193 the operands OP0 and OP1. */
3194
3195 static bool
3196 verify_gimple_comparison (tree type, tree op0, tree op1)
3197 {
3198 tree op0_type = TREE_TYPE (op0);
3199 tree op1_type = TREE_TYPE (op1);
3200
3201 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3202 {
3203 error ("invalid operands in gimple comparison");
3204 return true;
3205 }
3206
3207 /* For comparisons we do not have the operations type as the
3208 effective type the comparison is carried out in. Instead
3209 we require that either the first operand is trivially
3210 convertible into the second, or the other way around.
3211 Because we special-case pointers to void we allow
3212 comparisons of pointers with the same mode as well. */
3213 if (!useless_type_conversion_p (op0_type, op1_type)
3214 && !useless_type_conversion_p (op1_type, op0_type)
3215 && (!POINTER_TYPE_P (op0_type)
3216 || !POINTER_TYPE_P (op1_type)
3217 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3218 {
3219 error ("mismatching comparison operand types");
3220 debug_generic_expr (op0_type);
3221 debug_generic_expr (op1_type);
3222 return true;
3223 }
3224
3225 /* The resulting type of a comparison may be an effective boolean type. */
3226 if (INTEGRAL_TYPE_P (type)
3227 && (TREE_CODE (type) == BOOLEAN_TYPE
3228 || TYPE_PRECISION (type) == 1))
3229 {
3230 if (TREE_CODE (op0_type) == VECTOR_TYPE
3231 || TREE_CODE (op1_type) == VECTOR_TYPE)
3232 {
3233 error ("vector comparison returning a boolean");
3234 debug_generic_expr (op0_type);
3235 debug_generic_expr (op1_type);
3236 return true;
3237 }
3238 }
3239 /* Or an integer vector type with the same size and element count
3240 as the comparison operand types. */
3241 else if (TREE_CODE (type) == VECTOR_TYPE
3242 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3243 {
3244 if (TREE_CODE (op0_type) != VECTOR_TYPE
3245 || TREE_CODE (op1_type) != VECTOR_TYPE)
3246 {
3247 error ("non-vector operands in vector comparison");
3248 debug_generic_expr (op0_type);
3249 debug_generic_expr (op1_type);
3250 return true;
3251 }
3252
3253 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3254 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3255 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3256 /* The result of a vector comparison is of signed
3257 integral type. */
3258 || TYPE_UNSIGNED (TREE_TYPE (type)))
3259 {
3260 error ("invalid vector comparison resulting type");
3261 debug_generic_expr (type);
3262 return true;
3263 }
3264 }
3265 else
3266 {
3267 error ("bogus comparison result type");
3268 debug_generic_expr (type);
3269 return true;
3270 }
3271
3272 return false;
3273 }
3274
3275 /* Verify a gimple assignment statement STMT with an unary rhs.
3276 Returns true if anything is wrong. */
3277
3278 static bool
3279 verify_gimple_assign_unary (gimple stmt)
3280 {
3281 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3282 tree lhs = gimple_assign_lhs (stmt);
3283 tree lhs_type = TREE_TYPE (lhs);
3284 tree rhs1 = gimple_assign_rhs1 (stmt);
3285 tree rhs1_type = TREE_TYPE (rhs1);
3286
3287 if (!is_gimple_reg (lhs))
3288 {
3289 error ("non-register as LHS of unary operation");
3290 return true;
3291 }
3292
3293 if (!is_gimple_val (rhs1))
3294 {
3295 error ("invalid operand in unary operation");
3296 return true;
3297 }
3298
3299 /* First handle conversions. */
3300 switch (rhs_code)
3301 {
3302 CASE_CONVERT:
3303 {
3304 /* Allow conversions from pointer type to integral type only if
3305 there is no sign or zero extension involved.
3306 For targets were the precision of ptrofftype doesn't match that
3307 of pointers we need to allow arbitrary conversions to ptrofftype. */
3308 if ((POINTER_TYPE_P (lhs_type)
3309 && INTEGRAL_TYPE_P (rhs1_type))
3310 || (POINTER_TYPE_P (rhs1_type)
3311 && INTEGRAL_TYPE_P (lhs_type)
3312 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3313 || ptrofftype_p (sizetype))))
3314 return false;
3315
3316 /* Allow conversion from integral to offset type and vice versa. */
3317 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3318 && INTEGRAL_TYPE_P (rhs1_type))
3319 || (INTEGRAL_TYPE_P (lhs_type)
3320 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3321 return false;
3322
3323 /* Otherwise assert we are converting between types of the
3324 same kind. */
3325 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3326 {
3327 error ("invalid types in nop conversion");
3328 debug_generic_expr (lhs_type);
3329 debug_generic_expr (rhs1_type);
3330 return true;
3331 }
3332
3333 return false;
3334 }
3335
3336 case ADDR_SPACE_CONVERT_EXPR:
3337 {
3338 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3339 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3340 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3341 {
3342 error ("invalid types in address space conversion");
3343 debug_generic_expr (lhs_type);
3344 debug_generic_expr (rhs1_type);
3345 return true;
3346 }
3347
3348 return false;
3349 }
3350
3351 case FIXED_CONVERT_EXPR:
3352 {
3353 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3354 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3355 {
3356 error ("invalid types in fixed-point conversion");
3357 debug_generic_expr (lhs_type);
3358 debug_generic_expr (rhs1_type);
3359 return true;
3360 }
3361
3362 return false;
3363 }
3364
3365 case FLOAT_EXPR:
3366 {
3367 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3368 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3369 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3370 {
3371 error ("invalid types in conversion to floating point");
3372 debug_generic_expr (lhs_type);
3373 debug_generic_expr (rhs1_type);
3374 return true;
3375 }
3376
3377 return false;
3378 }
3379
3380 case FIX_TRUNC_EXPR:
3381 {
3382 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3383 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3384 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3385 {
3386 error ("invalid types in conversion to integer");
3387 debug_generic_expr (lhs_type);
3388 debug_generic_expr (rhs1_type);
3389 return true;
3390 }
3391
3392 return false;
3393 }
3394
3395 case VEC_UNPACK_HI_EXPR:
3396 case VEC_UNPACK_LO_EXPR:
3397 case REDUC_MAX_EXPR:
3398 case REDUC_MIN_EXPR:
3399 case REDUC_PLUS_EXPR:
3400 case VEC_UNPACK_FLOAT_HI_EXPR:
3401 case VEC_UNPACK_FLOAT_LO_EXPR:
3402 /* FIXME. */
3403 return false;
3404
3405 case NEGATE_EXPR:
3406 case ABS_EXPR:
3407 case BIT_NOT_EXPR:
3408 case PAREN_EXPR:
3409 case NON_LVALUE_EXPR:
3410 case CONJ_EXPR:
3411 break;
3412
3413 default:
3414 gcc_unreachable ();
3415 }
3416
3417 /* For the remaining codes assert there is no conversion involved. */
3418 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3419 {
3420 error ("non-trivial conversion in unary operation");
3421 debug_generic_expr (lhs_type);
3422 debug_generic_expr (rhs1_type);
3423 return true;
3424 }
3425
3426 return false;
3427 }
3428
3429 /* Verify a gimple assignment statement STMT with a binary rhs.
3430 Returns true if anything is wrong. */
3431
3432 static bool
3433 verify_gimple_assign_binary (gimple stmt)
3434 {
3435 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3436 tree lhs = gimple_assign_lhs (stmt);
3437 tree lhs_type = TREE_TYPE (lhs);
3438 tree rhs1 = gimple_assign_rhs1 (stmt);
3439 tree rhs1_type = TREE_TYPE (rhs1);
3440 tree rhs2 = gimple_assign_rhs2 (stmt);
3441 tree rhs2_type = TREE_TYPE (rhs2);
3442
3443 if (!is_gimple_reg (lhs))
3444 {
3445 error ("non-register as LHS of binary operation");
3446 return true;
3447 }
3448
3449 if (!is_gimple_val (rhs1)
3450 || !is_gimple_val (rhs2))
3451 {
3452 error ("invalid operands in binary operation");
3453 return true;
3454 }
3455
3456 /* First handle operations that involve different types. */
3457 switch (rhs_code)
3458 {
3459 case COMPLEX_EXPR:
3460 {
3461 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3462 || !(INTEGRAL_TYPE_P (rhs1_type)
3463 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3464 || !(INTEGRAL_TYPE_P (rhs2_type)
3465 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3466 {
3467 error ("type mismatch in complex expression");
3468 debug_generic_expr (lhs_type);
3469 debug_generic_expr (rhs1_type);
3470 debug_generic_expr (rhs2_type);
3471 return true;
3472 }
3473
3474 return false;
3475 }
3476
3477 case LSHIFT_EXPR:
3478 case RSHIFT_EXPR:
3479 case LROTATE_EXPR:
3480 case RROTATE_EXPR:
3481 {
3482 /* Shifts and rotates are ok on integral types, fixed point
3483 types and integer vector types. */
3484 if ((!INTEGRAL_TYPE_P (rhs1_type)
3485 && !FIXED_POINT_TYPE_P (rhs1_type)
3486 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3487 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3488 || (!INTEGRAL_TYPE_P (rhs2_type)
3489 /* Vector shifts of vectors are also ok. */
3490 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3491 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3492 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3493 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3494 || !useless_type_conversion_p (lhs_type, rhs1_type))
3495 {
3496 error ("type mismatch in shift expression");
3497 debug_generic_expr (lhs_type);
3498 debug_generic_expr (rhs1_type);
3499 debug_generic_expr (rhs2_type);
3500 return true;
3501 }
3502
3503 return false;
3504 }
3505
3506 case VEC_LSHIFT_EXPR:
3507 case VEC_RSHIFT_EXPR:
3508 {
3509 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3510 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3511 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3512 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3513 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3514 || (!INTEGRAL_TYPE_P (rhs2_type)
3515 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3516 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3517 || !useless_type_conversion_p (lhs_type, rhs1_type))
3518 {
3519 error ("type mismatch in vector shift expression");
3520 debug_generic_expr (lhs_type);
3521 debug_generic_expr (rhs1_type);
3522 debug_generic_expr (rhs2_type);
3523 return true;
3524 }
3525 /* For shifting a vector of non-integral components we
3526 only allow shifting by a constant multiple of the element size. */
3527 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3528 && (TREE_CODE (rhs2) != INTEGER_CST
3529 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3530 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3531 {
3532 error ("non-element sized vector shift of floating point vector");
3533 return true;
3534 }
3535
3536 return false;
3537 }
3538
3539 case WIDEN_LSHIFT_EXPR:
3540 {
3541 if (!INTEGRAL_TYPE_P (lhs_type)
3542 || !INTEGRAL_TYPE_P (rhs1_type)
3543 || TREE_CODE (rhs2) != INTEGER_CST
3544 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3545 {
3546 error ("type mismatch in widening vector shift expression");
3547 debug_generic_expr (lhs_type);
3548 debug_generic_expr (rhs1_type);
3549 debug_generic_expr (rhs2_type);
3550 return true;
3551 }
3552
3553 return false;
3554 }
3555
3556 case VEC_WIDEN_LSHIFT_HI_EXPR:
3557 case VEC_WIDEN_LSHIFT_LO_EXPR:
3558 {
3559 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3560 || TREE_CODE (lhs_type) != VECTOR_TYPE
3561 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3562 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3563 || TREE_CODE (rhs2) != INTEGER_CST
3564 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3565 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3566 {
3567 error ("type mismatch in widening vector shift expression");
3568 debug_generic_expr (lhs_type);
3569 debug_generic_expr (rhs1_type);
3570 debug_generic_expr (rhs2_type);
3571 return true;
3572 }
3573
3574 return false;
3575 }
3576
3577 case PLUS_EXPR:
3578 case MINUS_EXPR:
3579 {
3580 tree lhs_etype = lhs_type;
3581 tree rhs1_etype = rhs1_type;
3582 tree rhs2_etype = rhs2_type;
3583 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3584 {
3585 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3586 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3587 {
3588 error ("invalid non-vector operands to vector valued plus");
3589 return true;
3590 }
3591 lhs_etype = TREE_TYPE (lhs_type);
3592 rhs1_etype = TREE_TYPE (rhs1_type);
3593 rhs2_etype = TREE_TYPE (rhs2_type);
3594 }
3595 if (POINTER_TYPE_P (lhs_etype)
3596 || POINTER_TYPE_P (rhs1_etype)
3597 || POINTER_TYPE_P (rhs2_etype))
3598 {
3599 error ("invalid (pointer) operands to plus/minus");
3600 return true;
3601 }
3602
3603 /* Continue with generic binary expression handling. */
3604 break;
3605 }
3606
3607 case POINTER_PLUS_EXPR:
3608 {
3609 if (!POINTER_TYPE_P (rhs1_type)
3610 || !useless_type_conversion_p (lhs_type, rhs1_type)
3611 || !ptrofftype_p (rhs2_type))
3612 {
3613 error ("type mismatch in pointer plus expression");
3614 debug_generic_stmt (lhs_type);
3615 debug_generic_stmt (rhs1_type);
3616 debug_generic_stmt (rhs2_type);
3617 return true;
3618 }
3619
3620 return false;
3621 }
3622
3623 case TRUTH_ANDIF_EXPR:
3624 case TRUTH_ORIF_EXPR:
3625 case TRUTH_AND_EXPR:
3626 case TRUTH_OR_EXPR:
3627 case TRUTH_XOR_EXPR:
3628
3629 gcc_unreachable ();
3630
3631 case LT_EXPR:
3632 case LE_EXPR:
3633 case GT_EXPR:
3634 case GE_EXPR:
3635 case EQ_EXPR:
3636 case NE_EXPR:
3637 case UNORDERED_EXPR:
3638 case ORDERED_EXPR:
3639 case UNLT_EXPR:
3640 case UNLE_EXPR:
3641 case UNGT_EXPR:
3642 case UNGE_EXPR:
3643 case UNEQ_EXPR:
3644 case LTGT_EXPR:
3645 /* Comparisons are also binary, but the result type is not
3646 connected to the operand types. */
3647 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3648
3649 case WIDEN_MULT_EXPR:
3650 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3651 return true;
3652 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3653 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3654
3655 case WIDEN_SUM_EXPR:
3656 case VEC_WIDEN_MULT_HI_EXPR:
3657 case VEC_WIDEN_MULT_LO_EXPR:
3658 case VEC_WIDEN_MULT_EVEN_EXPR:
3659 case VEC_WIDEN_MULT_ODD_EXPR:
3660 case VEC_PACK_TRUNC_EXPR:
3661 case VEC_PACK_SAT_EXPR:
3662 case VEC_PACK_FIX_TRUNC_EXPR:
3663 /* FIXME. */
3664 return false;
3665
3666 case MULT_EXPR:
3667 case MULT_HIGHPART_EXPR:
3668 case TRUNC_DIV_EXPR:
3669 case CEIL_DIV_EXPR:
3670 case FLOOR_DIV_EXPR:
3671 case ROUND_DIV_EXPR:
3672 case TRUNC_MOD_EXPR:
3673 case CEIL_MOD_EXPR:
3674 case FLOOR_MOD_EXPR:
3675 case ROUND_MOD_EXPR:
3676 case RDIV_EXPR:
3677 case EXACT_DIV_EXPR:
3678 case MIN_EXPR:
3679 case MAX_EXPR:
3680 case BIT_IOR_EXPR:
3681 case BIT_XOR_EXPR:
3682 case BIT_AND_EXPR:
3683 /* Continue with generic binary expression handling. */
3684 break;
3685
3686 default:
3687 gcc_unreachable ();
3688 }
3689
3690 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3691 || !useless_type_conversion_p (lhs_type, rhs2_type))
3692 {
3693 error ("type mismatch in binary expression");
3694 debug_generic_stmt (lhs_type);
3695 debug_generic_stmt (rhs1_type);
3696 debug_generic_stmt (rhs2_type);
3697 return true;
3698 }
3699
3700 return false;
3701 }
3702
3703 /* Verify a gimple assignment statement STMT with a ternary rhs.
3704 Returns true if anything is wrong. */
3705
3706 static bool
3707 verify_gimple_assign_ternary (gimple stmt)
3708 {
3709 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3710 tree lhs = gimple_assign_lhs (stmt);
3711 tree lhs_type = TREE_TYPE (lhs);
3712 tree rhs1 = gimple_assign_rhs1 (stmt);
3713 tree rhs1_type = TREE_TYPE (rhs1);
3714 tree rhs2 = gimple_assign_rhs2 (stmt);
3715 tree rhs2_type = TREE_TYPE (rhs2);
3716 tree rhs3 = gimple_assign_rhs3 (stmt);
3717 tree rhs3_type = TREE_TYPE (rhs3);
3718
3719 if (!is_gimple_reg (lhs))
3720 {
3721 error ("non-register as LHS of ternary operation");
3722 return true;
3723 }
3724
3725 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3726 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3727 || !is_gimple_val (rhs2)
3728 || !is_gimple_val (rhs3))
3729 {
3730 error ("invalid operands in ternary operation");
3731 return true;
3732 }
3733
3734 /* First handle operations that involve different types. */
3735 switch (rhs_code)
3736 {
3737 case WIDEN_MULT_PLUS_EXPR:
3738 case WIDEN_MULT_MINUS_EXPR:
3739 if ((!INTEGRAL_TYPE_P (rhs1_type)
3740 && !FIXED_POINT_TYPE_P (rhs1_type))
3741 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3742 || !useless_type_conversion_p (lhs_type, rhs3_type)
3743 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3744 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3745 {
3746 error ("type mismatch in widening multiply-accumulate expression");
3747 debug_generic_expr (lhs_type);
3748 debug_generic_expr (rhs1_type);
3749 debug_generic_expr (rhs2_type);
3750 debug_generic_expr (rhs3_type);
3751 return true;
3752 }
3753 break;
3754
3755 case FMA_EXPR:
3756 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3757 || !useless_type_conversion_p (lhs_type, rhs2_type)
3758 || !useless_type_conversion_p (lhs_type, rhs3_type))
3759 {
3760 error ("type mismatch in fused multiply-add expression");
3761 debug_generic_expr (lhs_type);
3762 debug_generic_expr (rhs1_type);
3763 debug_generic_expr (rhs2_type);
3764 debug_generic_expr (rhs3_type);
3765 return true;
3766 }
3767 break;
3768
3769 case COND_EXPR:
3770 case VEC_COND_EXPR:
3771 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3772 || !useless_type_conversion_p (lhs_type, rhs3_type))
3773 {
3774 error ("type mismatch in conditional expression");
3775 debug_generic_expr (lhs_type);
3776 debug_generic_expr (rhs2_type);
3777 debug_generic_expr (rhs3_type);
3778 return true;
3779 }
3780 break;
3781
3782 case VEC_PERM_EXPR:
3783 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3784 || !useless_type_conversion_p (lhs_type, rhs2_type))
3785 {
3786 error ("type mismatch in vector permute expression");
3787 debug_generic_expr (lhs_type);
3788 debug_generic_expr (rhs1_type);
3789 debug_generic_expr (rhs2_type);
3790 debug_generic_expr (rhs3_type);
3791 return true;
3792 }
3793
3794 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3795 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3796 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3797 {
3798 error ("vector types expected in vector permute expression");
3799 debug_generic_expr (lhs_type);
3800 debug_generic_expr (rhs1_type);
3801 debug_generic_expr (rhs2_type);
3802 debug_generic_expr (rhs3_type);
3803 return true;
3804 }
3805
3806 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3807 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3808 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3809 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3810 != TYPE_VECTOR_SUBPARTS (lhs_type))
3811 {
3812 error ("vectors with different element number found "
3813 "in vector permute expression");
3814 debug_generic_expr (lhs_type);
3815 debug_generic_expr (rhs1_type);
3816 debug_generic_expr (rhs2_type);
3817 debug_generic_expr (rhs3_type);
3818 return true;
3819 }
3820
3821 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3822 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3823 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3824 {
3825 error ("invalid mask type in vector permute expression");
3826 debug_generic_expr (lhs_type);
3827 debug_generic_expr (rhs1_type);
3828 debug_generic_expr (rhs2_type);
3829 debug_generic_expr (rhs3_type);
3830 return true;
3831 }
3832
3833 return false;
3834
3835 case DOT_PROD_EXPR:
3836 case REALIGN_LOAD_EXPR:
3837 /* FIXME. */
3838 return false;
3839
3840 default:
3841 gcc_unreachable ();
3842 }
3843 return false;
3844 }
3845
3846 /* Verify a gimple assignment statement STMT with a single rhs.
3847 Returns true if anything is wrong. */
3848
3849 static bool
3850 verify_gimple_assign_single (gimple stmt)
3851 {
3852 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3853 tree lhs = gimple_assign_lhs (stmt);
3854 tree lhs_type = TREE_TYPE (lhs);
3855 tree rhs1 = gimple_assign_rhs1 (stmt);
3856 tree rhs1_type = TREE_TYPE (rhs1);
3857 bool res = false;
3858
3859 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3860 {
3861 error ("non-trivial conversion at assignment");
3862 debug_generic_expr (lhs_type);
3863 debug_generic_expr (rhs1_type);
3864 return true;
3865 }
3866
3867 if (gimple_clobber_p (stmt)
3868 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3869 {
3870 error ("non-decl/MEM_REF LHS in clobber statement");
3871 debug_generic_expr (lhs);
3872 return true;
3873 }
3874
3875 if (handled_component_p (lhs))
3876 res |= verify_types_in_gimple_reference (lhs, true);
3877
3878 /* Special codes we cannot handle via their class. */
3879 switch (rhs_code)
3880 {
3881 case ADDR_EXPR:
3882 {
3883 tree op = TREE_OPERAND (rhs1, 0);
3884 if (!is_gimple_addressable (op))
3885 {
3886 error ("invalid operand in unary expression");
3887 return true;
3888 }
3889
3890 /* Technically there is no longer a need for matching types, but
3891 gimple hygiene asks for this check. In LTO we can end up
3892 combining incompatible units and thus end up with addresses
3893 of globals that change their type to a common one. */
3894 if (!in_lto_p
3895 && !types_compatible_p (TREE_TYPE (op),
3896 TREE_TYPE (TREE_TYPE (rhs1)))
3897 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3898 TREE_TYPE (op)))
3899 {
3900 error ("type mismatch in address expression");
3901 debug_generic_stmt (TREE_TYPE (rhs1));
3902 debug_generic_stmt (TREE_TYPE (op));
3903 return true;
3904 }
3905
3906 return verify_types_in_gimple_reference (op, true);
3907 }
3908
3909 /* tcc_reference */
3910 case INDIRECT_REF:
3911 error ("INDIRECT_REF in gimple IL");
3912 return true;
3913
3914 case COMPONENT_REF:
3915 case BIT_FIELD_REF:
3916 case ARRAY_REF:
3917 case ARRAY_RANGE_REF:
3918 case VIEW_CONVERT_EXPR:
3919 case REALPART_EXPR:
3920 case IMAGPART_EXPR:
3921 case TARGET_MEM_REF:
3922 case MEM_REF:
3923 if (!is_gimple_reg (lhs)
3924 && is_gimple_reg_type (TREE_TYPE (lhs)))
3925 {
3926 error ("invalid rhs for gimple memory store");
3927 debug_generic_stmt (lhs);
3928 debug_generic_stmt (rhs1);
3929 return true;
3930 }
3931 return res || verify_types_in_gimple_reference (rhs1, false);
3932
3933 /* tcc_constant */
3934 case SSA_NAME:
3935 case INTEGER_CST:
3936 case REAL_CST:
3937 case FIXED_CST:
3938 case COMPLEX_CST:
3939 case VECTOR_CST:
3940 case STRING_CST:
3941 return res;
3942
3943 /* tcc_declaration */
3944 case CONST_DECL:
3945 return res;
3946 case VAR_DECL:
3947 case PARM_DECL:
3948 if (!is_gimple_reg (lhs)
3949 && !is_gimple_reg (rhs1)
3950 && is_gimple_reg_type (TREE_TYPE (lhs)))
3951 {
3952 error ("invalid rhs for gimple memory store");
3953 debug_generic_stmt (lhs);
3954 debug_generic_stmt (rhs1);
3955 return true;
3956 }
3957 return res;
3958
3959 case CONSTRUCTOR:
3960 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3961 {
3962 unsigned int i;
3963 tree elt_i, elt_v, elt_t = NULL_TREE;
3964
3965 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3966 return res;
3967 /* For vector CONSTRUCTORs we require that either it is empty
3968 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3969 (then the element count must be correct to cover the whole
3970 outer vector and index must be NULL on all elements, or it is
3971 a CONSTRUCTOR of scalar elements, where we as an exception allow
3972 smaller number of elements (assuming zero filling) and
3973 consecutive indexes as compared to NULL indexes (such
3974 CONSTRUCTORs can appear in the IL from FEs). */
3975 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3976 {
3977 if (elt_t == NULL_TREE)
3978 {
3979 elt_t = TREE_TYPE (elt_v);
3980 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3981 {
3982 tree elt_t = TREE_TYPE (elt_v);
3983 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3984 TREE_TYPE (elt_t)))
3985 {
3986 error ("incorrect type of vector CONSTRUCTOR"
3987 " elements");
3988 debug_generic_stmt (rhs1);
3989 return true;
3990 }
3991 else if (CONSTRUCTOR_NELTS (rhs1)
3992 * TYPE_VECTOR_SUBPARTS (elt_t)
3993 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3994 {
3995 error ("incorrect number of vector CONSTRUCTOR"
3996 " elements");
3997 debug_generic_stmt (rhs1);
3998 return true;
3999 }
4000 }
4001 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4002 elt_t))
4003 {
4004 error ("incorrect type of vector CONSTRUCTOR elements");
4005 debug_generic_stmt (rhs1);
4006 return true;
4007 }
4008 else if (CONSTRUCTOR_NELTS (rhs1)
4009 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4010 {
4011 error ("incorrect number of vector CONSTRUCTOR elements");
4012 debug_generic_stmt (rhs1);
4013 return true;
4014 }
4015 }
4016 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4017 {
4018 error ("incorrect type of vector CONSTRUCTOR elements");
4019 debug_generic_stmt (rhs1);
4020 return true;
4021 }
4022 if (elt_i != NULL_TREE
4023 && (TREE_CODE (elt_t) == VECTOR_TYPE
4024 || TREE_CODE (elt_i) != INTEGER_CST
4025 || compare_tree_int (elt_i, i) != 0))
4026 {
4027 error ("vector CONSTRUCTOR with non-NULL element index");
4028 debug_generic_stmt (rhs1);
4029 return true;
4030 }
4031 }
4032 }
4033 return res;
4034 case OBJ_TYPE_REF:
4035 case ASSERT_EXPR:
4036 case WITH_SIZE_EXPR:
4037 /* FIXME. */
4038 return res;
4039
4040 default:;
4041 }
4042
4043 return res;
4044 }
4045
4046 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4047 is a problem, otherwise false. */
4048
4049 static bool
4050 verify_gimple_assign (gimple stmt)
4051 {
4052 switch (gimple_assign_rhs_class (stmt))
4053 {
4054 case GIMPLE_SINGLE_RHS:
4055 return verify_gimple_assign_single (stmt);
4056
4057 case GIMPLE_UNARY_RHS:
4058 return verify_gimple_assign_unary (stmt);
4059
4060 case GIMPLE_BINARY_RHS:
4061 return verify_gimple_assign_binary (stmt);
4062
4063 case GIMPLE_TERNARY_RHS:
4064 return verify_gimple_assign_ternary (stmt);
4065
4066 default:
4067 gcc_unreachable ();
4068 }
4069 }
4070
4071 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4072 is a problem, otherwise false. */
4073
4074 static bool
4075 verify_gimple_return (gimple stmt)
4076 {
4077 tree op = gimple_return_retval (stmt);
4078 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4079
4080 /* We cannot test for present return values as we do not fix up missing
4081 return values from the original source. */
4082 if (op == NULL)
4083 return false;
4084
4085 if (!is_gimple_val (op)
4086 && TREE_CODE (op) != RESULT_DECL)
4087 {
4088 error ("invalid operand in return statement");
4089 debug_generic_stmt (op);
4090 return true;
4091 }
4092
4093 if ((TREE_CODE (op) == RESULT_DECL
4094 && DECL_BY_REFERENCE (op))
4095 || (TREE_CODE (op) == SSA_NAME
4096 && SSA_NAME_VAR (op)
4097 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4098 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4099 op = TREE_TYPE (op);
4100
4101 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4102 {
4103 error ("invalid conversion in return statement");
4104 debug_generic_stmt (restype);
4105 debug_generic_stmt (TREE_TYPE (op));
4106 return true;
4107 }
4108
4109 return false;
4110 }
4111
4112
4113 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4114 is a problem, otherwise false. */
4115
4116 static bool
4117 verify_gimple_goto (gimple stmt)
4118 {
4119 tree dest = gimple_goto_dest (stmt);
4120
4121 /* ??? We have two canonical forms of direct goto destinations, a
4122 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4123 if (TREE_CODE (dest) != LABEL_DECL
4124 && (!is_gimple_val (dest)
4125 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4126 {
4127 error ("goto destination is neither a label nor a pointer");
4128 return true;
4129 }
4130
4131 return false;
4132 }
4133
4134 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4135 is a problem, otherwise false. */
4136
4137 static bool
4138 verify_gimple_switch (gimple stmt)
4139 {
4140 unsigned int i, n;
4141 tree elt, prev_upper_bound = NULL_TREE;
4142 tree index_type, elt_type = NULL_TREE;
4143
4144 if (!is_gimple_val (gimple_switch_index (stmt)))
4145 {
4146 error ("invalid operand to switch statement");
4147 debug_generic_stmt (gimple_switch_index (stmt));
4148 return true;
4149 }
4150
4151 index_type = TREE_TYPE (gimple_switch_index (stmt));
4152 if (! INTEGRAL_TYPE_P (index_type))
4153 {
4154 error ("non-integral type switch statement");
4155 debug_generic_expr (index_type);
4156 return true;
4157 }
4158
4159 elt = gimple_switch_label (stmt, 0);
4160 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4161 {
4162 error ("invalid default case label in switch statement");
4163 debug_generic_expr (elt);
4164 return true;
4165 }
4166
4167 n = gimple_switch_num_labels (stmt);
4168 for (i = 1; i < n; i++)
4169 {
4170 elt = gimple_switch_label (stmt, i);
4171
4172 if (! CASE_LOW (elt))
4173 {
4174 error ("invalid case label in switch statement");
4175 debug_generic_expr (elt);
4176 return true;
4177 }
4178 if (CASE_HIGH (elt)
4179 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4180 {
4181 error ("invalid case range in switch statement");
4182 debug_generic_expr (elt);
4183 return true;
4184 }
4185
4186 if (elt_type)
4187 {
4188 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4189 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4190 {
4191 error ("type mismatch for case label in switch statement");
4192 debug_generic_expr (elt);
4193 return true;
4194 }
4195 }
4196 else
4197 {
4198 elt_type = TREE_TYPE (CASE_LOW (elt));
4199 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4200 {
4201 error ("type precision mismatch in switch statement");
4202 return true;
4203 }
4204 }
4205
4206 if (prev_upper_bound)
4207 {
4208 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4209 {
4210 error ("case labels not sorted in switch statement");
4211 return true;
4212 }
4213 }
4214
4215 prev_upper_bound = CASE_HIGH (elt);
4216 if (! prev_upper_bound)
4217 prev_upper_bound = CASE_LOW (elt);
4218 }
4219
4220 return false;
4221 }
4222
4223 /* Verify a gimple debug statement STMT.
4224 Returns true if anything is wrong. */
4225
4226 static bool
4227 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4228 {
4229 /* There isn't much that could be wrong in a gimple debug stmt. A
4230 gimple debug bind stmt, for example, maps a tree, that's usually
4231 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4232 component or member of an aggregate type, to another tree, that
4233 can be an arbitrary expression. These stmts expand into debug
4234 insns, and are converted to debug notes by var-tracking.c. */
4235 return false;
4236 }
4237
4238 /* Verify a gimple label statement STMT.
4239 Returns true if anything is wrong. */
4240
4241 static bool
4242 verify_gimple_label (gimple stmt)
4243 {
4244 tree decl = gimple_label_label (stmt);
4245 int uid;
4246 bool err = false;
4247
4248 if (TREE_CODE (decl) != LABEL_DECL)
4249 return true;
4250 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4251 && DECL_CONTEXT (decl) != current_function_decl)
4252 {
4253 error ("label's context is not the current function decl");
4254 err |= true;
4255 }
4256
4257 uid = LABEL_DECL_UID (decl);
4258 if (cfun->cfg
4259 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4260 {
4261 error ("incorrect entry in label_to_block_map");
4262 err |= true;
4263 }
4264
4265 uid = EH_LANDING_PAD_NR (decl);
4266 if (uid)
4267 {
4268 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4269 if (decl != lp->post_landing_pad)
4270 {
4271 error ("incorrect setting of landing pad number");
4272 err |= true;
4273 }
4274 }
4275
4276 return err;
4277 }
4278
4279 /* Verify the GIMPLE statement STMT. Returns true if there is an
4280 error, otherwise false. */
4281
4282 static bool
4283 verify_gimple_stmt (gimple stmt)
4284 {
4285 switch (gimple_code (stmt))
4286 {
4287 case GIMPLE_ASSIGN:
4288 return verify_gimple_assign (stmt);
4289
4290 case GIMPLE_LABEL:
4291 return verify_gimple_label (stmt);
4292
4293 case GIMPLE_CALL:
4294 return verify_gimple_call (stmt);
4295
4296 case GIMPLE_COND:
4297 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4298 {
4299 error ("invalid comparison code in gimple cond");
4300 return true;
4301 }
4302 if (!(!gimple_cond_true_label (stmt)
4303 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4304 || !(!gimple_cond_false_label (stmt)
4305 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4306 {
4307 error ("invalid labels in gimple cond");
4308 return true;
4309 }
4310
4311 return verify_gimple_comparison (boolean_type_node,
4312 gimple_cond_lhs (stmt),
4313 gimple_cond_rhs (stmt));
4314
4315 case GIMPLE_GOTO:
4316 return verify_gimple_goto (stmt);
4317
4318 case GIMPLE_SWITCH:
4319 return verify_gimple_switch (stmt);
4320
4321 case GIMPLE_RETURN:
4322 return verify_gimple_return (stmt);
4323
4324 case GIMPLE_ASM:
4325 return false;
4326
4327 case GIMPLE_TRANSACTION:
4328 return verify_gimple_transaction (stmt);
4329
4330 /* Tuples that do not have tree operands. */
4331 case GIMPLE_NOP:
4332 case GIMPLE_PREDICT:
4333 case GIMPLE_RESX:
4334 case GIMPLE_EH_DISPATCH:
4335 case GIMPLE_EH_MUST_NOT_THROW:
4336 return false;
4337
4338 CASE_GIMPLE_OMP:
4339 /* OpenMP directives are validated by the FE and never operated
4340 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4341 non-gimple expressions when the main index variable has had
4342 its address taken. This does not affect the loop itself
4343 because the header of an GIMPLE_OMP_FOR is merely used to determine
4344 how to setup the parallel iteration. */
4345 return false;
4346
4347 case GIMPLE_DEBUG:
4348 return verify_gimple_debug (stmt);
4349
4350 default:
4351 gcc_unreachable ();
4352 }
4353 }
4354
4355 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4356 and false otherwise. */
4357
4358 static bool
4359 verify_gimple_phi (gimple phi)
4360 {
4361 bool err = false;
4362 unsigned i;
4363 tree phi_result = gimple_phi_result (phi);
4364 bool virtual_p;
4365
4366 if (!phi_result)
4367 {
4368 error ("invalid PHI result");
4369 return true;
4370 }
4371
4372 virtual_p = virtual_operand_p (phi_result);
4373 if (TREE_CODE (phi_result) != SSA_NAME
4374 || (virtual_p
4375 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4376 {
4377 error ("invalid PHI result");
4378 err = true;
4379 }
4380
4381 for (i = 0; i < gimple_phi_num_args (phi); i++)
4382 {
4383 tree t = gimple_phi_arg_def (phi, i);
4384
4385 if (!t)
4386 {
4387 error ("missing PHI def");
4388 err |= true;
4389 continue;
4390 }
4391 /* Addressable variables do have SSA_NAMEs but they
4392 are not considered gimple values. */
4393 else if ((TREE_CODE (t) == SSA_NAME
4394 && virtual_p != virtual_operand_p (t))
4395 || (virtual_p
4396 && (TREE_CODE (t) != SSA_NAME
4397 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4398 || (!virtual_p
4399 && !is_gimple_val (t)))
4400 {
4401 error ("invalid PHI argument");
4402 debug_generic_expr (t);
4403 err |= true;
4404 }
4405 #ifdef ENABLE_TYPES_CHECKING
4406 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4407 {
4408 error ("incompatible types in PHI argument %u", i);
4409 debug_generic_stmt (TREE_TYPE (phi_result));
4410 debug_generic_stmt (TREE_TYPE (t));
4411 err |= true;
4412 }
4413 #endif
4414 }
4415
4416 return err;
4417 }
4418
4419 /* Verify the GIMPLE statements inside the sequence STMTS. */
4420
4421 static bool
4422 verify_gimple_in_seq_2 (gimple_seq stmts)
4423 {
4424 gimple_stmt_iterator ittr;
4425 bool err = false;
4426
4427 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4428 {
4429 gimple stmt = gsi_stmt (ittr);
4430
4431 switch (gimple_code (stmt))
4432 {
4433 case GIMPLE_BIND:
4434 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4435 break;
4436
4437 case GIMPLE_TRY:
4438 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4439 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4440 break;
4441
4442 case GIMPLE_EH_FILTER:
4443 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4444 break;
4445
4446 case GIMPLE_EH_ELSE:
4447 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4448 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4449 break;
4450
4451 case GIMPLE_CATCH:
4452 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4453 break;
4454
4455 case GIMPLE_TRANSACTION:
4456 err |= verify_gimple_transaction (stmt);
4457 break;
4458
4459 default:
4460 {
4461 bool err2 = verify_gimple_stmt (stmt);
4462 if (err2)
4463 debug_gimple_stmt (stmt);
4464 err |= err2;
4465 }
4466 }
4467 }
4468
4469 return err;
4470 }
4471
4472 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4473 is a problem, otherwise false. */
4474
4475 static bool
4476 verify_gimple_transaction (gimple stmt)
4477 {
4478 tree lab = gimple_transaction_label (stmt);
4479 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4480 return true;
4481 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4482 }
4483
4484
4485 /* Verify the GIMPLE statements inside the statement list STMTS. */
4486
4487 DEBUG_FUNCTION void
4488 verify_gimple_in_seq (gimple_seq stmts)
4489 {
4490 timevar_push (TV_TREE_STMT_VERIFY);
4491 if (verify_gimple_in_seq_2 (stmts))
4492 internal_error ("verify_gimple failed");
4493 timevar_pop (TV_TREE_STMT_VERIFY);
4494 }
4495
4496 /* Return true when the T can be shared. */
4497
4498 static bool
4499 tree_node_can_be_shared (tree t)
4500 {
4501 if (IS_TYPE_OR_DECL_P (t)
4502 || is_gimple_min_invariant (t)
4503 || TREE_CODE (t) == SSA_NAME
4504 || t == error_mark_node
4505 || TREE_CODE (t) == IDENTIFIER_NODE)
4506 return true;
4507
4508 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4509 return true;
4510
4511 if (DECL_P (t))
4512 return true;
4513
4514 return false;
4515 }
4516
4517 /* Called via walk_tree. Verify tree sharing. */
4518
4519 static tree
4520 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4521 {
4522 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4523
4524 if (tree_node_can_be_shared (*tp))
4525 {
4526 *walk_subtrees = false;
4527 return NULL;
4528 }
4529
4530 if (pointer_set_insert (visited, *tp))
4531 return *tp;
4532
4533 return NULL;
4534 }
4535
4536 /* Called via walk_gimple_stmt. Verify tree sharing. */
4537
4538 static tree
4539 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4540 {
4541 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4542 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4543 }
4544
4545 static bool eh_error_found;
4546 static int
4547 verify_eh_throw_stmt_node (void **slot, void *data)
4548 {
4549 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4550 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4551
4552 if (!pointer_set_contains (visited, node->stmt))
4553 {
4554 error ("dead STMT in EH table");
4555 debug_gimple_stmt (node->stmt);
4556 eh_error_found = true;
4557 }
4558 return 1;
4559 }
4560
4561 /* Verify if the location LOCs block is in BLOCKS. */
4562
4563 static bool
4564 verify_location (pointer_set_t *blocks, location_t loc)
4565 {
4566 tree block = LOCATION_BLOCK (loc);
4567 if (block != NULL_TREE
4568 && !pointer_set_contains (blocks, block))
4569 {
4570 error ("location references block not in block tree");
4571 return true;
4572 }
4573 if (block != NULL_TREE)
4574 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4575 return false;
4576 }
4577
4578 /* Called via walk_tree. Verify that expressions have no blocks. */
4579
4580 static tree
4581 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4582 {
4583 if (!EXPR_P (*tp))
4584 {
4585 *walk_subtrees = false;
4586 return NULL;
4587 }
4588
4589 location_t loc = EXPR_LOCATION (*tp);
4590 if (LOCATION_BLOCK (loc) != NULL)
4591 return *tp;
4592
4593 return NULL;
4594 }
4595
4596 /* Called via walk_tree. Verify locations of expressions. */
4597
4598 static tree
4599 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4600 {
4601 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4602
4603 if (TREE_CODE (*tp) == VAR_DECL
4604 && DECL_HAS_DEBUG_EXPR_P (*tp))
4605 {
4606 tree t = DECL_DEBUG_EXPR (*tp);
4607 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4608 if (addr)
4609 return addr;
4610 }
4611 if ((TREE_CODE (*tp) == VAR_DECL
4612 || TREE_CODE (*tp) == PARM_DECL
4613 || TREE_CODE (*tp) == RESULT_DECL)
4614 && DECL_HAS_VALUE_EXPR_P (*tp))
4615 {
4616 tree t = DECL_VALUE_EXPR (*tp);
4617 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4618 if (addr)
4619 return addr;
4620 }
4621
4622 if (!EXPR_P (*tp))
4623 {
4624 *walk_subtrees = false;
4625 return NULL;
4626 }
4627
4628 location_t loc = EXPR_LOCATION (*tp);
4629 if (verify_location (blocks, loc))
4630 return *tp;
4631
4632 return NULL;
4633 }
4634
4635 /* Called via walk_gimple_op. Verify locations of expressions. */
4636
4637 static tree
4638 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4639 {
4640 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4641 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4642 }
4643
4644 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4645
4646 static void
4647 collect_subblocks (pointer_set_t *blocks, tree block)
4648 {
4649 tree t;
4650 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4651 {
4652 pointer_set_insert (blocks, t);
4653 collect_subblocks (blocks, t);
4654 }
4655 }
4656
4657 /* Verify the GIMPLE statements in the CFG of FN. */
4658
4659 DEBUG_FUNCTION void
4660 verify_gimple_in_cfg (struct function *fn)
4661 {
4662 basic_block bb;
4663 bool err = false;
4664 struct pointer_set_t *visited, *visited_stmts, *blocks;
4665
4666 timevar_push (TV_TREE_STMT_VERIFY);
4667 visited = pointer_set_create ();
4668 visited_stmts = pointer_set_create ();
4669
4670 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4671 blocks = pointer_set_create ();
4672 if (DECL_INITIAL (fn->decl))
4673 {
4674 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4675 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4676 }
4677
4678 FOR_EACH_BB_FN (bb, fn)
4679 {
4680 gimple_stmt_iterator gsi;
4681
4682 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4683 {
4684 gimple phi = gsi_stmt (gsi);
4685 bool err2 = false;
4686 unsigned i;
4687
4688 pointer_set_insert (visited_stmts, phi);
4689
4690 if (gimple_bb (phi) != bb)
4691 {
4692 error ("gimple_bb (phi) is set to a wrong basic block");
4693 err2 = true;
4694 }
4695
4696 err2 |= verify_gimple_phi (phi);
4697
4698 /* Only PHI arguments have locations. */
4699 if (gimple_location (phi) != UNKNOWN_LOCATION)
4700 {
4701 error ("PHI node with location");
4702 err2 = true;
4703 }
4704
4705 for (i = 0; i < gimple_phi_num_args (phi); i++)
4706 {
4707 tree arg = gimple_phi_arg_def (phi, i);
4708 tree addr = walk_tree (&arg, verify_node_sharing_1,
4709 visited, NULL);
4710 if (addr)
4711 {
4712 error ("incorrect sharing of tree nodes");
4713 debug_generic_expr (addr);
4714 err2 |= true;
4715 }
4716 location_t loc = gimple_phi_arg_location (phi, i);
4717 if (virtual_operand_p (gimple_phi_result (phi))
4718 && loc != UNKNOWN_LOCATION)
4719 {
4720 error ("virtual PHI with argument locations");
4721 err2 = true;
4722 }
4723 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4724 if (addr)
4725 {
4726 debug_generic_expr (addr);
4727 err2 = true;
4728 }
4729 err2 |= verify_location (blocks, loc);
4730 }
4731
4732 if (err2)
4733 debug_gimple_stmt (phi);
4734 err |= err2;
4735 }
4736
4737 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4738 {
4739 gimple stmt = gsi_stmt (gsi);
4740 bool err2 = false;
4741 struct walk_stmt_info wi;
4742 tree addr;
4743 int lp_nr;
4744
4745 pointer_set_insert (visited_stmts, stmt);
4746
4747 if (gimple_bb (stmt) != bb)
4748 {
4749 error ("gimple_bb (stmt) is set to a wrong basic block");
4750 err2 = true;
4751 }
4752
4753 err2 |= verify_gimple_stmt (stmt);
4754 err2 |= verify_location (blocks, gimple_location (stmt));
4755
4756 memset (&wi, 0, sizeof (wi));
4757 wi.info = (void *) visited;
4758 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4759 if (addr)
4760 {
4761 error ("incorrect sharing of tree nodes");
4762 debug_generic_expr (addr);
4763 err2 |= true;
4764 }
4765
4766 memset (&wi, 0, sizeof (wi));
4767 wi.info = (void *) blocks;
4768 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4769 if (addr)
4770 {
4771 debug_generic_expr (addr);
4772 err2 |= true;
4773 }
4774
4775 /* ??? Instead of not checking these stmts at all the walker
4776 should know its context via wi. */
4777 if (!is_gimple_debug (stmt)
4778 && !is_gimple_omp (stmt))
4779 {
4780 memset (&wi, 0, sizeof (wi));
4781 addr = walk_gimple_op (stmt, verify_expr, &wi);
4782 if (addr)
4783 {
4784 debug_generic_expr (addr);
4785 inform (gimple_location (stmt), "in statement");
4786 err2 |= true;
4787 }
4788 }
4789
4790 /* If the statement is marked as part of an EH region, then it is
4791 expected that the statement could throw. Verify that when we
4792 have optimizations that simplify statements such that we prove
4793 that they cannot throw, that we update other data structures
4794 to match. */
4795 lp_nr = lookup_stmt_eh_lp (stmt);
4796 if (lp_nr != 0)
4797 {
4798 if (!stmt_could_throw_p (stmt))
4799 {
4800 error ("statement marked for throw, but doesn%'t");
4801 err2 |= true;
4802 }
4803 else if (lp_nr > 0
4804 && !gsi_one_before_end_p (gsi)
4805 && stmt_can_throw_internal (stmt))
4806 {
4807 error ("statement marked for throw in middle of block");
4808 err2 |= true;
4809 }
4810 }
4811
4812 if (err2)
4813 debug_gimple_stmt (stmt);
4814 err |= err2;
4815 }
4816 }
4817
4818 eh_error_found = false;
4819 if (get_eh_throw_stmt_table (cfun))
4820 htab_traverse (get_eh_throw_stmt_table (cfun),
4821 verify_eh_throw_stmt_node,
4822 visited_stmts);
4823
4824 if (err || eh_error_found)
4825 internal_error ("verify_gimple failed");
4826
4827 pointer_set_destroy (visited);
4828 pointer_set_destroy (visited_stmts);
4829 pointer_set_destroy (blocks);
4830 verify_histograms ();
4831 timevar_pop (TV_TREE_STMT_VERIFY);
4832 }
4833
4834
4835 /* Verifies that the flow information is OK. */
4836
4837 static int
4838 gimple_verify_flow_info (void)
4839 {
4840 int err = 0;
4841 basic_block bb;
4842 gimple_stmt_iterator gsi;
4843 gimple stmt;
4844 edge e;
4845 edge_iterator ei;
4846
4847 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4848 {
4849 error ("ENTRY_BLOCK has IL associated with it");
4850 err = 1;
4851 }
4852
4853 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4854 {
4855 error ("EXIT_BLOCK has IL associated with it");
4856 err = 1;
4857 }
4858
4859 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4860 if (e->flags & EDGE_FALLTHRU)
4861 {
4862 error ("fallthru to exit from bb %d", e->src->index);
4863 err = 1;
4864 }
4865
4866 FOR_EACH_BB (bb)
4867 {
4868 bool found_ctrl_stmt = false;
4869
4870 stmt = NULL;
4871
4872 /* Skip labels on the start of basic block. */
4873 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4874 {
4875 tree label;
4876 gimple prev_stmt = stmt;
4877
4878 stmt = gsi_stmt (gsi);
4879
4880 if (gimple_code (stmt) != GIMPLE_LABEL)
4881 break;
4882
4883 label = gimple_label_label (stmt);
4884 if (prev_stmt && DECL_NONLOCAL (label))
4885 {
4886 error ("nonlocal label ");
4887 print_generic_expr (stderr, label, 0);
4888 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4889 bb->index);
4890 err = 1;
4891 }
4892
4893 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4894 {
4895 error ("EH landing pad label ");
4896 print_generic_expr (stderr, label, 0);
4897 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4898 bb->index);
4899 err = 1;
4900 }
4901
4902 if (label_to_block (label) != bb)
4903 {
4904 error ("label ");
4905 print_generic_expr (stderr, label, 0);
4906 fprintf (stderr, " to block does not match in bb %d",
4907 bb->index);
4908 err = 1;
4909 }
4910
4911 if (decl_function_context (label) != current_function_decl)
4912 {
4913 error ("label ");
4914 print_generic_expr (stderr, label, 0);
4915 fprintf (stderr, " has incorrect context in bb %d",
4916 bb->index);
4917 err = 1;
4918 }
4919 }
4920
4921 /* Verify that body of basic block BB is free of control flow. */
4922 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4923 {
4924 gimple stmt = gsi_stmt (gsi);
4925
4926 if (found_ctrl_stmt)
4927 {
4928 error ("control flow in the middle of basic block %d",
4929 bb->index);
4930 err = 1;
4931 }
4932
4933 if (stmt_ends_bb_p (stmt))
4934 found_ctrl_stmt = true;
4935
4936 if (gimple_code (stmt) == GIMPLE_LABEL)
4937 {
4938 error ("label ");
4939 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4940 fprintf (stderr, " in the middle of basic block %d", bb->index);
4941 err = 1;
4942 }
4943 }
4944
4945 gsi = gsi_last_bb (bb);
4946 if (gsi_end_p (gsi))
4947 continue;
4948
4949 stmt = gsi_stmt (gsi);
4950
4951 if (gimple_code (stmt) == GIMPLE_LABEL)
4952 continue;
4953
4954 err |= verify_eh_edges (stmt);
4955
4956 if (is_ctrl_stmt (stmt))
4957 {
4958 FOR_EACH_EDGE (e, ei, bb->succs)
4959 if (e->flags & EDGE_FALLTHRU)
4960 {
4961 error ("fallthru edge after a control statement in bb %d",
4962 bb->index);
4963 err = 1;
4964 }
4965 }
4966
4967 if (gimple_code (stmt) != GIMPLE_COND)
4968 {
4969 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4970 after anything else but if statement. */
4971 FOR_EACH_EDGE (e, ei, bb->succs)
4972 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4973 {
4974 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4975 bb->index);
4976 err = 1;
4977 }
4978 }
4979
4980 switch (gimple_code (stmt))
4981 {
4982 case GIMPLE_COND:
4983 {
4984 edge true_edge;
4985 edge false_edge;
4986
4987 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4988
4989 if (!true_edge
4990 || !false_edge
4991 || !(true_edge->flags & EDGE_TRUE_VALUE)
4992 || !(false_edge->flags & EDGE_FALSE_VALUE)
4993 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4994 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4995 || EDGE_COUNT (bb->succs) >= 3)
4996 {
4997 error ("wrong outgoing edge flags at end of bb %d",
4998 bb->index);
4999 err = 1;
5000 }
5001 }
5002 break;
5003
5004 case GIMPLE_GOTO:
5005 if (simple_goto_p (stmt))
5006 {
5007 error ("explicit goto at end of bb %d", bb->index);
5008 err = 1;
5009 }
5010 else
5011 {
5012 /* FIXME. We should double check that the labels in the
5013 destination blocks have their address taken. */
5014 FOR_EACH_EDGE (e, ei, bb->succs)
5015 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5016 | EDGE_FALSE_VALUE))
5017 || !(e->flags & EDGE_ABNORMAL))
5018 {
5019 error ("wrong outgoing edge flags at end of bb %d",
5020 bb->index);
5021 err = 1;
5022 }
5023 }
5024 break;
5025
5026 case GIMPLE_CALL:
5027 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5028 break;
5029 /* ... fallthru ... */
5030 case GIMPLE_RETURN:
5031 if (!single_succ_p (bb)
5032 || (single_succ_edge (bb)->flags
5033 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5034 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5035 {
5036 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5037 err = 1;
5038 }
5039 if (single_succ (bb) != EXIT_BLOCK_PTR)
5040 {
5041 error ("return edge does not point to exit in bb %d",
5042 bb->index);
5043 err = 1;
5044 }
5045 break;
5046
5047 case GIMPLE_SWITCH:
5048 {
5049 tree prev;
5050 edge e;
5051 size_t i, n;
5052
5053 n = gimple_switch_num_labels (stmt);
5054
5055 /* Mark all the destination basic blocks. */
5056 for (i = 0; i < n; ++i)
5057 {
5058 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5059 basic_block label_bb = label_to_block (lab);
5060 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5061 label_bb->aux = (void *)1;
5062 }
5063
5064 /* Verify that the case labels are sorted. */
5065 prev = gimple_switch_label (stmt, 0);
5066 for (i = 1; i < n; ++i)
5067 {
5068 tree c = gimple_switch_label (stmt, i);
5069 if (!CASE_LOW (c))
5070 {
5071 error ("found default case not at the start of "
5072 "case vector");
5073 err = 1;
5074 continue;
5075 }
5076 if (CASE_LOW (prev)
5077 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5078 {
5079 error ("case labels not sorted: ");
5080 print_generic_expr (stderr, prev, 0);
5081 fprintf (stderr," is greater than ");
5082 print_generic_expr (stderr, c, 0);
5083 fprintf (stderr," but comes before it.\n");
5084 err = 1;
5085 }
5086 prev = c;
5087 }
5088 /* VRP will remove the default case if it can prove it will
5089 never be executed. So do not verify there always exists
5090 a default case here. */
5091
5092 FOR_EACH_EDGE (e, ei, bb->succs)
5093 {
5094 if (!e->dest->aux)
5095 {
5096 error ("extra outgoing edge %d->%d",
5097 bb->index, e->dest->index);
5098 err = 1;
5099 }
5100
5101 e->dest->aux = (void *)2;
5102 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5103 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5104 {
5105 error ("wrong outgoing edge flags at end of bb %d",
5106 bb->index);
5107 err = 1;
5108 }
5109 }
5110
5111 /* Check that we have all of them. */
5112 for (i = 0; i < n; ++i)
5113 {
5114 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5115 basic_block label_bb = label_to_block (lab);
5116
5117 if (label_bb->aux != (void *)2)
5118 {
5119 error ("missing edge %i->%i", bb->index, label_bb->index);
5120 err = 1;
5121 }
5122 }
5123
5124 FOR_EACH_EDGE (e, ei, bb->succs)
5125 e->dest->aux = (void *)0;
5126 }
5127 break;
5128
5129 case GIMPLE_EH_DISPATCH:
5130 err |= verify_eh_dispatch_edge (stmt);
5131 break;
5132
5133 default:
5134 break;
5135 }
5136 }
5137
5138 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5139 verify_dominators (CDI_DOMINATORS);
5140
5141 return err;
5142 }
5143
5144
5145 /* Updates phi nodes after creating a forwarder block joined
5146 by edge FALLTHRU. */
5147
5148 static void
5149 gimple_make_forwarder_block (edge fallthru)
5150 {
5151 edge e;
5152 edge_iterator ei;
5153 basic_block dummy, bb;
5154 tree var;
5155 gimple_stmt_iterator gsi;
5156
5157 dummy = fallthru->src;
5158 bb = fallthru->dest;
5159
5160 if (single_pred_p (bb))
5161 return;
5162
5163 /* If we redirected a branch we must create new PHI nodes at the
5164 start of BB. */
5165 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5166 {
5167 gimple phi, new_phi;
5168
5169 phi = gsi_stmt (gsi);
5170 var = gimple_phi_result (phi);
5171 new_phi = create_phi_node (var, bb);
5172 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5173 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5174 UNKNOWN_LOCATION);
5175 }
5176
5177 /* Add the arguments we have stored on edges. */
5178 FOR_EACH_EDGE (e, ei, bb->preds)
5179 {
5180 if (e == fallthru)
5181 continue;
5182
5183 flush_pending_stmts (e);
5184 }
5185 }
5186
5187
5188 /* Return a non-special label in the head of basic block BLOCK.
5189 Create one if it doesn't exist. */
5190
5191 tree
5192 gimple_block_label (basic_block bb)
5193 {
5194 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5195 bool first = true;
5196 tree label;
5197 gimple stmt;
5198
5199 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5200 {
5201 stmt = gsi_stmt (i);
5202 if (gimple_code (stmt) != GIMPLE_LABEL)
5203 break;
5204 label = gimple_label_label (stmt);
5205 if (!DECL_NONLOCAL (label))
5206 {
5207 if (!first)
5208 gsi_move_before (&i, &s);
5209 return label;
5210 }
5211 }
5212
5213 label = create_artificial_label (UNKNOWN_LOCATION);
5214 stmt = gimple_build_label (label);
5215 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5216 return label;
5217 }
5218
5219
5220 /* Attempt to perform edge redirection by replacing a possibly complex
5221 jump instruction by a goto or by removing the jump completely.
5222 This can apply only if all edges now point to the same block. The
5223 parameters and return values are equivalent to
5224 redirect_edge_and_branch. */
5225
5226 static edge
5227 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5228 {
5229 basic_block src = e->src;
5230 gimple_stmt_iterator i;
5231 gimple stmt;
5232
5233 /* We can replace or remove a complex jump only when we have exactly
5234 two edges. */
5235 if (EDGE_COUNT (src->succs) != 2
5236 /* Verify that all targets will be TARGET. Specifically, the
5237 edge that is not E must also go to TARGET. */
5238 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5239 return NULL;
5240
5241 i = gsi_last_bb (src);
5242 if (gsi_end_p (i))
5243 return NULL;
5244
5245 stmt = gsi_stmt (i);
5246
5247 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5248 {
5249 gsi_remove (&i, true);
5250 e = ssa_redirect_edge (e, target);
5251 e->flags = EDGE_FALLTHRU;
5252 return e;
5253 }
5254
5255 return NULL;
5256 }
5257
5258
5259 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5260 edge representing the redirected branch. */
5261
5262 static edge
5263 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5264 {
5265 basic_block bb = e->src;
5266 gimple_stmt_iterator gsi;
5267 edge ret;
5268 gimple stmt;
5269
5270 if (e->flags & EDGE_ABNORMAL)
5271 return NULL;
5272
5273 if (e->dest == dest)
5274 return NULL;
5275
5276 if (e->flags & EDGE_EH)
5277 return redirect_eh_edge (e, dest);
5278
5279 if (e->src != ENTRY_BLOCK_PTR)
5280 {
5281 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5282 if (ret)
5283 return ret;
5284 }
5285
5286 gsi = gsi_last_bb (bb);
5287 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5288
5289 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5290 {
5291 case GIMPLE_COND:
5292 /* For COND_EXPR, we only need to redirect the edge. */
5293 break;
5294
5295 case GIMPLE_GOTO:
5296 /* No non-abnormal edges should lead from a non-simple goto, and
5297 simple ones should be represented implicitly. */
5298 gcc_unreachable ();
5299
5300 case GIMPLE_SWITCH:
5301 {
5302 tree label = gimple_block_label (dest);
5303 tree cases = get_cases_for_edge (e, stmt);
5304
5305 /* If we have a list of cases associated with E, then use it
5306 as it's a lot faster than walking the entire case vector. */
5307 if (cases)
5308 {
5309 edge e2 = find_edge (e->src, dest);
5310 tree last, first;
5311
5312 first = cases;
5313 while (cases)
5314 {
5315 last = cases;
5316 CASE_LABEL (cases) = label;
5317 cases = CASE_CHAIN (cases);
5318 }
5319
5320 /* If there was already an edge in the CFG, then we need
5321 to move all the cases associated with E to E2. */
5322 if (e2)
5323 {
5324 tree cases2 = get_cases_for_edge (e2, stmt);
5325
5326 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5327 CASE_CHAIN (cases2) = first;
5328 }
5329 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5330 }
5331 else
5332 {
5333 size_t i, n = gimple_switch_num_labels (stmt);
5334
5335 for (i = 0; i < n; i++)
5336 {
5337 tree elt = gimple_switch_label (stmt, i);
5338 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5339 CASE_LABEL (elt) = label;
5340 }
5341 }
5342 }
5343 break;
5344
5345 case GIMPLE_ASM:
5346 {
5347 int i, n = gimple_asm_nlabels (stmt);
5348 tree label = NULL;
5349
5350 for (i = 0; i < n; ++i)
5351 {
5352 tree cons = gimple_asm_label_op (stmt, i);
5353 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5354 {
5355 if (!label)
5356 label = gimple_block_label (dest);
5357 TREE_VALUE (cons) = label;
5358 }
5359 }
5360
5361 /* If we didn't find any label matching the former edge in the
5362 asm labels, we must be redirecting the fallthrough
5363 edge. */
5364 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5365 }
5366 break;
5367
5368 case GIMPLE_RETURN:
5369 gsi_remove (&gsi, true);
5370 e->flags |= EDGE_FALLTHRU;
5371 break;
5372
5373 case GIMPLE_OMP_RETURN:
5374 case GIMPLE_OMP_CONTINUE:
5375 case GIMPLE_OMP_SECTIONS_SWITCH:
5376 case GIMPLE_OMP_FOR:
5377 /* The edges from OMP constructs can be simply redirected. */
5378 break;
5379
5380 case GIMPLE_EH_DISPATCH:
5381 if (!(e->flags & EDGE_FALLTHRU))
5382 redirect_eh_dispatch_edge (stmt, e, dest);
5383 break;
5384
5385 case GIMPLE_TRANSACTION:
5386 /* The ABORT edge has a stored label associated with it, otherwise
5387 the edges are simply redirectable. */
5388 if (e->flags == 0)
5389 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5390 break;
5391
5392 default:
5393 /* Otherwise it must be a fallthru edge, and we don't need to
5394 do anything besides redirecting it. */
5395 gcc_assert (e->flags & EDGE_FALLTHRU);
5396 break;
5397 }
5398
5399 /* Update/insert PHI nodes as necessary. */
5400
5401 /* Now update the edges in the CFG. */
5402 e = ssa_redirect_edge (e, dest);
5403
5404 return e;
5405 }
5406
5407 /* Returns true if it is possible to remove edge E by redirecting
5408 it to the destination of the other edge from E->src. */
5409
5410 static bool
5411 gimple_can_remove_branch_p (const_edge e)
5412 {
5413 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5414 return false;
5415
5416 return true;
5417 }
5418
5419 /* Simple wrapper, as we can always redirect fallthru edges. */
5420
5421 static basic_block
5422 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5423 {
5424 e = gimple_redirect_edge_and_branch (e, dest);
5425 gcc_assert (e);
5426
5427 return NULL;
5428 }
5429
5430
5431 /* Splits basic block BB after statement STMT (but at least after the
5432 labels). If STMT is NULL, BB is split just after the labels. */
5433
5434 static basic_block
5435 gimple_split_block (basic_block bb, void *stmt)
5436 {
5437 gimple_stmt_iterator gsi;
5438 gimple_stmt_iterator gsi_tgt;
5439 gimple act;
5440 gimple_seq list;
5441 basic_block new_bb;
5442 edge e;
5443 edge_iterator ei;
5444
5445 new_bb = create_empty_bb (bb);
5446
5447 /* Redirect the outgoing edges. */
5448 new_bb->succs = bb->succs;
5449 bb->succs = NULL;
5450 FOR_EACH_EDGE (e, ei, new_bb->succs)
5451 e->src = new_bb;
5452
5453 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5454 stmt = NULL;
5455
5456 /* Move everything from GSI to the new basic block. */
5457 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5458 {
5459 act = gsi_stmt (gsi);
5460 if (gimple_code (act) == GIMPLE_LABEL)
5461 continue;
5462
5463 if (!stmt)
5464 break;
5465
5466 if (stmt == act)
5467 {
5468 gsi_next (&gsi);
5469 break;
5470 }
5471 }
5472
5473 if (gsi_end_p (gsi))
5474 return new_bb;
5475
5476 /* Split the statement list - avoid re-creating new containers as this
5477 brings ugly quadratic memory consumption in the inliner.
5478 (We are still quadratic since we need to update stmt BB pointers,
5479 sadly.) */
5480 gsi_split_seq_before (&gsi, &list);
5481 set_bb_seq (new_bb, list);
5482 for (gsi_tgt = gsi_start (list);
5483 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5484 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5485
5486 return new_bb;
5487 }
5488
5489
5490 /* Moves basic block BB after block AFTER. */
5491
5492 static bool
5493 gimple_move_block_after (basic_block bb, basic_block after)
5494 {
5495 if (bb->prev_bb == after)
5496 return true;
5497
5498 unlink_block (bb);
5499 link_block (bb, after);
5500
5501 return true;
5502 }
5503
5504
5505 /* Return TRUE if block BB has no executable statements, otherwise return
5506 FALSE. */
5507
5508 static bool
5509 gimple_empty_block_p (basic_block bb)
5510 {
5511 /* BB must have no executable statements. */
5512 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5513 if (phi_nodes (bb))
5514 return false;
5515 if (gsi_end_p (gsi))
5516 return true;
5517 if (is_gimple_debug (gsi_stmt (gsi)))
5518 gsi_next_nondebug (&gsi);
5519 return gsi_end_p (gsi);
5520 }
5521
5522
5523 /* Split a basic block if it ends with a conditional branch and if the
5524 other part of the block is not empty. */
5525
5526 static basic_block
5527 gimple_split_block_before_cond_jump (basic_block bb)
5528 {
5529 gimple last, split_point;
5530 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5531 if (gsi_end_p (gsi))
5532 return NULL;
5533 last = gsi_stmt (gsi);
5534 if (gimple_code (last) != GIMPLE_COND
5535 && gimple_code (last) != GIMPLE_SWITCH)
5536 return NULL;
5537 gsi_prev_nondebug (&gsi);
5538 split_point = gsi_stmt (gsi);
5539 return split_block (bb, split_point)->dest;
5540 }
5541
5542
5543 /* Return true if basic_block can be duplicated. */
5544
5545 static bool
5546 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5547 {
5548 return true;
5549 }
5550
5551 /* Create a duplicate of the basic block BB. NOTE: This does not
5552 preserve SSA form. */
5553
5554 static basic_block
5555 gimple_duplicate_bb (basic_block bb)
5556 {
5557 basic_block new_bb;
5558 gimple_stmt_iterator gsi, gsi_tgt;
5559 gimple_seq phis = phi_nodes (bb);
5560 gimple phi, stmt, copy;
5561
5562 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5563
5564 /* Copy the PHI nodes. We ignore PHI node arguments here because
5565 the incoming edges have not been setup yet. */
5566 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5567 {
5568 phi = gsi_stmt (gsi);
5569 copy = create_phi_node (NULL_TREE, new_bb);
5570 create_new_def_for (gimple_phi_result (phi), copy,
5571 gimple_phi_result_ptr (copy));
5572 gimple_set_uid (copy, gimple_uid (phi));
5573 }
5574
5575 gsi_tgt = gsi_start_bb (new_bb);
5576 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5577 {
5578 def_operand_p def_p;
5579 ssa_op_iter op_iter;
5580 tree lhs;
5581
5582 stmt = gsi_stmt (gsi);
5583 if (gimple_code (stmt) == GIMPLE_LABEL)
5584 continue;
5585
5586 /* Don't duplicate label debug stmts. */
5587 if (gimple_debug_bind_p (stmt)
5588 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5589 == LABEL_DECL)
5590 continue;
5591
5592 /* Create a new copy of STMT and duplicate STMT's virtual
5593 operands. */
5594 copy = gimple_copy (stmt);
5595 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5596
5597 maybe_duplicate_eh_stmt (copy, stmt);
5598 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5599
5600 /* When copying around a stmt writing into a local non-user
5601 aggregate, make sure it won't share stack slot with other
5602 vars. */
5603 lhs = gimple_get_lhs (stmt);
5604 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5605 {
5606 tree base = get_base_address (lhs);
5607 if (base
5608 && (TREE_CODE (base) == VAR_DECL
5609 || TREE_CODE (base) == RESULT_DECL)
5610 && DECL_IGNORED_P (base)
5611 && !TREE_STATIC (base)
5612 && !DECL_EXTERNAL (base)
5613 && (TREE_CODE (base) != VAR_DECL
5614 || !DECL_HAS_VALUE_EXPR_P (base)))
5615 DECL_NONSHAREABLE (base) = 1;
5616 }
5617
5618 /* Create new names for all the definitions created by COPY and
5619 add replacement mappings for each new name. */
5620 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5621 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5622 }
5623
5624 return new_bb;
5625 }
5626
5627 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5628
5629 static void
5630 add_phi_args_after_copy_edge (edge e_copy)
5631 {
5632 basic_block bb, bb_copy = e_copy->src, dest;
5633 edge e;
5634 edge_iterator ei;
5635 gimple phi, phi_copy;
5636 tree def;
5637 gimple_stmt_iterator psi, psi_copy;
5638
5639 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5640 return;
5641
5642 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5643
5644 if (e_copy->dest->flags & BB_DUPLICATED)
5645 dest = get_bb_original (e_copy->dest);
5646 else
5647 dest = e_copy->dest;
5648
5649 e = find_edge (bb, dest);
5650 if (!e)
5651 {
5652 /* During loop unrolling the target of the latch edge is copied.
5653 In this case we are not looking for edge to dest, but to
5654 duplicated block whose original was dest. */
5655 FOR_EACH_EDGE (e, ei, bb->succs)
5656 {
5657 if ((e->dest->flags & BB_DUPLICATED)
5658 && get_bb_original (e->dest) == dest)
5659 break;
5660 }
5661
5662 gcc_assert (e != NULL);
5663 }
5664
5665 for (psi = gsi_start_phis (e->dest),
5666 psi_copy = gsi_start_phis (e_copy->dest);
5667 !gsi_end_p (psi);
5668 gsi_next (&psi), gsi_next (&psi_copy))
5669 {
5670 phi = gsi_stmt (psi);
5671 phi_copy = gsi_stmt (psi_copy);
5672 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5673 add_phi_arg (phi_copy, def, e_copy,
5674 gimple_phi_arg_location_from_edge (phi, e));
5675 }
5676 }
5677
5678
5679 /* Basic block BB_COPY was created by code duplication. Add phi node
5680 arguments for edges going out of BB_COPY. The blocks that were
5681 duplicated have BB_DUPLICATED set. */
5682
5683 void
5684 add_phi_args_after_copy_bb (basic_block bb_copy)
5685 {
5686 edge e_copy;
5687 edge_iterator ei;
5688
5689 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5690 {
5691 add_phi_args_after_copy_edge (e_copy);
5692 }
5693 }
5694
5695 /* Blocks in REGION_COPY array of length N_REGION were created by
5696 duplication of basic blocks. Add phi node arguments for edges
5697 going from these blocks. If E_COPY is not NULL, also add
5698 phi node arguments for its destination.*/
5699
5700 void
5701 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5702 edge e_copy)
5703 {
5704 unsigned i;
5705
5706 for (i = 0; i < n_region; i++)
5707 region_copy[i]->flags |= BB_DUPLICATED;
5708
5709 for (i = 0; i < n_region; i++)
5710 add_phi_args_after_copy_bb (region_copy[i]);
5711 if (e_copy)
5712 add_phi_args_after_copy_edge (e_copy);
5713
5714 for (i = 0; i < n_region; i++)
5715 region_copy[i]->flags &= ~BB_DUPLICATED;
5716 }
5717
5718 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5719 important exit edge EXIT. By important we mean that no SSA name defined
5720 inside region is live over the other exit edges of the region. All entry
5721 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5722 to the duplicate of the region. Dominance and loop information is
5723 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5724 UPDATE_DOMINANCE is false then we assume that the caller will update the
5725 dominance information after calling this function. The new basic
5726 blocks are stored to REGION_COPY in the same order as they had in REGION,
5727 provided that REGION_COPY is not NULL.
5728 The function returns false if it is unable to copy the region,
5729 true otherwise. */
5730
5731 bool
5732 gimple_duplicate_sese_region (edge entry, edge exit,
5733 basic_block *region, unsigned n_region,
5734 basic_block *region_copy,
5735 bool update_dominance)
5736 {
5737 unsigned i;
5738 bool free_region_copy = false, copying_header = false;
5739 struct loop *loop = entry->dest->loop_father;
5740 edge exit_copy;
5741 vec<basic_block> doms;
5742 edge redirected;
5743 int total_freq = 0, entry_freq = 0;
5744 gcov_type total_count = 0, entry_count = 0;
5745
5746 if (!can_copy_bbs_p (region, n_region))
5747 return false;
5748
5749 /* Some sanity checking. Note that we do not check for all possible
5750 missuses of the functions. I.e. if you ask to copy something weird,
5751 it will work, but the state of structures probably will not be
5752 correct. */
5753 for (i = 0; i < n_region; i++)
5754 {
5755 /* We do not handle subloops, i.e. all the blocks must belong to the
5756 same loop. */
5757 if (region[i]->loop_father != loop)
5758 return false;
5759
5760 if (region[i] != entry->dest
5761 && region[i] == loop->header)
5762 return false;
5763 }
5764
5765 set_loop_copy (loop, loop);
5766
5767 /* In case the function is used for loop header copying (which is the primary
5768 use), ensure that EXIT and its copy will be new latch and entry edges. */
5769 if (loop->header == entry->dest)
5770 {
5771 copying_header = true;
5772 set_loop_copy (loop, loop_outer (loop));
5773
5774 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5775 return false;
5776
5777 for (i = 0; i < n_region; i++)
5778 if (region[i] != exit->src
5779 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5780 return false;
5781 }
5782
5783 if (!region_copy)
5784 {
5785 region_copy = XNEWVEC (basic_block, n_region);
5786 free_region_copy = true;
5787 }
5788
5789 initialize_original_copy_tables ();
5790
5791 /* Record blocks outside the region that are dominated by something
5792 inside. */
5793 if (update_dominance)
5794 {
5795 doms.create (0);
5796 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5797 }
5798
5799 if (entry->dest->count)
5800 {
5801 total_count = entry->dest->count;
5802 entry_count = entry->count;
5803 /* Fix up corner cases, to avoid division by zero or creation of negative
5804 frequencies. */
5805 if (entry_count > total_count)
5806 entry_count = total_count;
5807 }
5808 else
5809 {
5810 total_freq = entry->dest->frequency;
5811 entry_freq = EDGE_FREQUENCY (entry);
5812 /* Fix up corner cases, to avoid division by zero or creation of negative
5813 frequencies. */
5814 if (total_freq == 0)
5815 total_freq = 1;
5816 else if (entry_freq > total_freq)
5817 entry_freq = total_freq;
5818 }
5819
5820 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5821 split_edge_bb_loc (entry), update_dominance);
5822 if (total_count)
5823 {
5824 scale_bbs_frequencies_gcov_type (region, n_region,
5825 total_count - entry_count,
5826 total_count);
5827 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5828 total_count);
5829 }
5830 else
5831 {
5832 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5833 total_freq);
5834 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5835 }
5836
5837 if (copying_header)
5838 {
5839 loop->header = exit->dest;
5840 loop->latch = exit->src;
5841 }
5842
5843 /* Redirect the entry and add the phi node arguments. */
5844 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5845 gcc_assert (redirected != NULL);
5846 flush_pending_stmts (entry);
5847
5848 /* Concerning updating of dominators: We must recount dominators
5849 for entry block and its copy. Anything that is outside of the
5850 region, but was dominated by something inside needs recounting as
5851 well. */
5852 if (update_dominance)
5853 {
5854 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5855 doms.safe_push (get_bb_original (entry->dest));
5856 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5857 doms.release ();
5858 }
5859
5860 /* Add the other PHI node arguments. */
5861 add_phi_args_after_copy (region_copy, n_region, NULL);
5862
5863 if (free_region_copy)
5864 free (region_copy);
5865
5866 free_original_copy_tables ();
5867 return true;
5868 }
5869
5870 /* Checks if BB is part of the region defined by N_REGION BBS. */
5871 static bool
5872 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5873 {
5874 unsigned int n;
5875
5876 for (n = 0; n < n_region; n++)
5877 {
5878 if (bb == bbs[n])
5879 return true;
5880 }
5881 return false;
5882 }
5883
5884 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5885 are stored to REGION_COPY in the same order in that they appear
5886 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5887 the region, EXIT an exit from it. The condition guarding EXIT
5888 is moved to ENTRY. Returns true if duplication succeeds, false
5889 otherwise.
5890
5891 For example,
5892
5893 some_code;
5894 if (cond)
5895 A;
5896 else
5897 B;
5898
5899 is transformed to
5900
5901 if (cond)
5902 {
5903 some_code;
5904 A;
5905 }
5906 else
5907 {
5908 some_code;
5909 B;
5910 }
5911 */
5912
5913 bool
5914 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5915 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5916 basic_block *region_copy ATTRIBUTE_UNUSED)
5917 {
5918 unsigned i;
5919 bool free_region_copy = false;
5920 struct loop *loop = exit->dest->loop_father;
5921 struct loop *orig_loop = entry->dest->loop_father;
5922 basic_block switch_bb, entry_bb, nentry_bb;
5923 vec<basic_block> doms;
5924 int total_freq = 0, exit_freq = 0;
5925 gcov_type total_count = 0, exit_count = 0;
5926 edge exits[2], nexits[2], e;
5927 gimple_stmt_iterator gsi;
5928 gimple cond_stmt;
5929 edge sorig, snew;
5930 basic_block exit_bb;
5931 gimple_stmt_iterator psi;
5932 gimple phi;
5933 tree def;
5934 struct loop *target, *aloop, *cloop;
5935
5936 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5937 exits[0] = exit;
5938 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5939
5940 if (!can_copy_bbs_p (region, n_region))
5941 return false;
5942
5943 initialize_original_copy_tables ();
5944 set_loop_copy (orig_loop, loop);
5945
5946 target= loop;
5947 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5948 {
5949 if (bb_part_of_region_p (aloop->header, region, n_region))
5950 {
5951 cloop = duplicate_loop (aloop, target);
5952 duplicate_subloops (aloop, cloop);
5953 }
5954 }
5955
5956 if (!region_copy)
5957 {
5958 region_copy = XNEWVEC (basic_block, n_region);
5959 free_region_copy = true;
5960 }
5961
5962 gcc_assert (!need_ssa_update_p (cfun));
5963
5964 /* Record blocks outside the region that are dominated by something
5965 inside. */
5966 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5967
5968 if (exit->src->count)
5969 {
5970 total_count = exit->src->count;
5971 exit_count = exit->count;
5972 /* Fix up corner cases, to avoid division by zero or creation of negative
5973 frequencies. */
5974 if (exit_count > total_count)
5975 exit_count = total_count;
5976 }
5977 else
5978 {
5979 total_freq = exit->src->frequency;
5980 exit_freq = EDGE_FREQUENCY (exit);
5981 /* Fix up corner cases, to avoid division by zero or creation of negative
5982 frequencies. */
5983 if (total_freq == 0)
5984 total_freq = 1;
5985 if (exit_freq > total_freq)
5986 exit_freq = total_freq;
5987 }
5988
5989 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5990 split_edge_bb_loc (exit), true);
5991 if (total_count)
5992 {
5993 scale_bbs_frequencies_gcov_type (region, n_region,
5994 total_count - exit_count,
5995 total_count);
5996 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5997 total_count);
5998 }
5999 else
6000 {
6001 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6002 total_freq);
6003 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6004 }
6005
6006 /* Create the switch block, and put the exit condition to it. */
6007 entry_bb = entry->dest;
6008 nentry_bb = get_bb_copy (entry_bb);
6009 if (!last_stmt (entry->src)
6010 || !stmt_ends_bb_p (last_stmt (entry->src)))
6011 switch_bb = entry->src;
6012 else
6013 switch_bb = split_edge (entry);
6014 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6015
6016 gsi = gsi_last_bb (switch_bb);
6017 cond_stmt = last_stmt (exit->src);
6018 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6019 cond_stmt = gimple_copy (cond_stmt);
6020
6021 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6022
6023 sorig = single_succ_edge (switch_bb);
6024 sorig->flags = exits[1]->flags;
6025 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6026
6027 /* Register the new edge from SWITCH_BB in loop exit lists. */
6028 rescan_loop_exit (snew, true, false);
6029
6030 /* Add the PHI node arguments. */
6031 add_phi_args_after_copy (region_copy, n_region, snew);
6032
6033 /* Get rid of now superfluous conditions and associated edges (and phi node
6034 arguments). */
6035 exit_bb = exit->dest;
6036
6037 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6038 PENDING_STMT (e) = NULL;
6039
6040 /* The latch of ORIG_LOOP was copied, and so was the backedge
6041 to the original header. We redirect this backedge to EXIT_BB. */
6042 for (i = 0; i < n_region; i++)
6043 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6044 {
6045 gcc_assert (single_succ_edge (region_copy[i]));
6046 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6047 PENDING_STMT (e) = NULL;
6048 for (psi = gsi_start_phis (exit_bb);
6049 !gsi_end_p (psi);
6050 gsi_next (&psi))
6051 {
6052 phi = gsi_stmt (psi);
6053 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6054 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6055 }
6056 }
6057 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6058 PENDING_STMT (e) = NULL;
6059
6060 /* Anything that is outside of the region, but was dominated by something
6061 inside needs to update dominance info. */
6062 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6063 doms.release ();
6064 /* Update the SSA web. */
6065 update_ssa (TODO_update_ssa);
6066
6067 if (free_region_copy)
6068 free (region_copy);
6069
6070 free_original_copy_tables ();
6071 return true;
6072 }
6073
6074 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6075 adding blocks when the dominator traversal reaches EXIT. This
6076 function silently assumes that ENTRY strictly dominates EXIT. */
6077
6078 void
6079 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6080 vec<basic_block> *bbs_p)
6081 {
6082 basic_block son;
6083
6084 for (son = first_dom_son (CDI_DOMINATORS, entry);
6085 son;
6086 son = next_dom_son (CDI_DOMINATORS, son))
6087 {
6088 bbs_p->safe_push (son);
6089 if (son != exit)
6090 gather_blocks_in_sese_region (son, exit, bbs_p);
6091 }
6092 }
6093
6094 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6095 The duplicates are recorded in VARS_MAP. */
6096
6097 static void
6098 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6099 tree to_context)
6100 {
6101 tree t = *tp, new_t;
6102 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6103 void **loc;
6104
6105 if (DECL_CONTEXT (t) == to_context)
6106 return;
6107
6108 loc = pointer_map_contains (vars_map, t);
6109
6110 if (!loc)
6111 {
6112 loc = pointer_map_insert (vars_map, t);
6113
6114 if (SSA_VAR_P (t))
6115 {
6116 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6117 add_local_decl (f, new_t);
6118 }
6119 else
6120 {
6121 gcc_assert (TREE_CODE (t) == CONST_DECL);
6122 new_t = copy_node (t);
6123 }
6124 DECL_CONTEXT (new_t) = to_context;
6125
6126 *loc = new_t;
6127 }
6128 else
6129 new_t = (tree) *loc;
6130
6131 *tp = new_t;
6132 }
6133
6134
6135 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6136 VARS_MAP maps old ssa names and var_decls to the new ones. */
6137
6138 static tree
6139 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6140 tree to_context)
6141 {
6142 void **loc;
6143 tree new_name;
6144
6145 gcc_assert (!virtual_operand_p (name));
6146
6147 loc = pointer_map_contains (vars_map, name);
6148
6149 if (!loc)
6150 {
6151 tree decl = SSA_NAME_VAR (name);
6152 if (decl)
6153 {
6154 replace_by_duplicate_decl (&decl, vars_map, to_context);
6155 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6156 decl, SSA_NAME_DEF_STMT (name));
6157 if (SSA_NAME_IS_DEFAULT_DEF (name))
6158 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6159 decl, new_name);
6160 }
6161 else
6162 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6163 name, SSA_NAME_DEF_STMT (name));
6164
6165 loc = pointer_map_insert (vars_map, name);
6166 *loc = new_name;
6167 }
6168 else
6169 new_name = (tree) *loc;
6170
6171 return new_name;
6172 }
6173
6174 struct move_stmt_d
6175 {
6176 tree orig_block;
6177 tree new_block;
6178 tree from_context;
6179 tree to_context;
6180 struct pointer_map_t *vars_map;
6181 htab_t new_label_map;
6182 struct pointer_map_t *eh_map;
6183 bool remap_decls_p;
6184 };
6185
6186 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6187 contained in *TP if it has been ORIG_BLOCK previously and change the
6188 DECL_CONTEXT of every local variable referenced in *TP. */
6189
6190 static tree
6191 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6192 {
6193 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6194 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6195 tree t = *tp;
6196
6197 if (EXPR_P (t))
6198 {
6199 tree block = TREE_BLOCK (t);
6200 if (block == p->orig_block
6201 || (p->orig_block == NULL_TREE
6202 && block != NULL_TREE))
6203 TREE_SET_BLOCK (t, p->new_block);
6204 #ifdef ENABLE_CHECKING
6205 else if (block != NULL_TREE)
6206 {
6207 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6208 block = BLOCK_SUPERCONTEXT (block);
6209 gcc_assert (block == p->orig_block);
6210 }
6211 #endif
6212 }
6213 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6214 {
6215 if (TREE_CODE (t) == SSA_NAME)
6216 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6217 else if (TREE_CODE (t) == LABEL_DECL)
6218 {
6219 if (p->new_label_map)
6220 {
6221 struct tree_map in, *out;
6222 in.base.from = t;
6223 out = (struct tree_map *)
6224 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6225 if (out)
6226 *tp = t = out->to;
6227 }
6228
6229 DECL_CONTEXT (t) = p->to_context;
6230 }
6231 else if (p->remap_decls_p)
6232 {
6233 /* Replace T with its duplicate. T should no longer appear in the
6234 parent function, so this looks wasteful; however, it may appear
6235 in referenced_vars, and more importantly, as virtual operands of
6236 statements, and in alias lists of other variables. It would be
6237 quite difficult to expunge it from all those places. ??? It might
6238 suffice to do this for addressable variables. */
6239 if ((TREE_CODE (t) == VAR_DECL
6240 && !is_global_var (t))
6241 || TREE_CODE (t) == CONST_DECL)
6242 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6243 }
6244 *walk_subtrees = 0;
6245 }
6246 else if (TYPE_P (t))
6247 *walk_subtrees = 0;
6248
6249 return NULL_TREE;
6250 }
6251
6252 /* Helper for move_stmt_r. Given an EH region number for the source
6253 function, map that to the duplicate EH regio number in the dest. */
6254
6255 static int
6256 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6257 {
6258 eh_region old_r, new_r;
6259 void **slot;
6260
6261 old_r = get_eh_region_from_number (old_nr);
6262 slot = pointer_map_contains (p->eh_map, old_r);
6263 new_r = (eh_region) *slot;
6264
6265 return new_r->index;
6266 }
6267
6268 /* Similar, but operate on INTEGER_CSTs. */
6269
6270 static tree
6271 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6272 {
6273 int old_nr, new_nr;
6274
6275 old_nr = tree_low_cst (old_t_nr, 0);
6276 new_nr = move_stmt_eh_region_nr (old_nr, p);
6277
6278 return build_int_cst (integer_type_node, new_nr);
6279 }
6280
6281 /* Like move_stmt_op, but for gimple statements.
6282
6283 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6284 contained in the current statement in *GSI_P and change the
6285 DECL_CONTEXT of every local variable referenced in the current
6286 statement. */
6287
6288 static tree
6289 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6290 struct walk_stmt_info *wi)
6291 {
6292 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6293 gimple stmt = gsi_stmt (*gsi_p);
6294 tree block = gimple_block (stmt);
6295
6296 if (block == p->orig_block
6297 || (p->orig_block == NULL_TREE
6298 && block != NULL_TREE))
6299 gimple_set_block (stmt, p->new_block);
6300
6301 switch (gimple_code (stmt))
6302 {
6303 case GIMPLE_CALL:
6304 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6305 {
6306 tree r, fndecl = gimple_call_fndecl (stmt);
6307 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6308 switch (DECL_FUNCTION_CODE (fndecl))
6309 {
6310 case BUILT_IN_EH_COPY_VALUES:
6311 r = gimple_call_arg (stmt, 1);
6312 r = move_stmt_eh_region_tree_nr (r, p);
6313 gimple_call_set_arg (stmt, 1, r);
6314 /* FALLTHRU */
6315
6316 case BUILT_IN_EH_POINTER:
6317 case BUILT_IN_EH_FILTER:
6318 r = gimple_call_arg (stmt, 0);
6319 r = move_stmt_eh_region_tree_nr (r, p);
6320 gimple_call_set_arg (stmt, 0, r);
6321 break;
6322
6323 default:
6324 break;
6325 }
6326 }
6327 break;
6328
6329 case GIMPLE_RESX:
6330 {
6331 int r = gimple_resx_region (stmt);
6332 r = move_stmt_eh_region_nr (r, p);
6333 gimple_resx_set_region (stmt, r);
6334 }
6335 break;
6336
6337 case GIMPLE_EH_DISPATCH:
6338 {
6339 int r = gimple_eh_dispatch_region (stmt);
6340 r = move_stmt_eh_region_nr (r, p);
6341 gimple_eh_dispatch_set_region (stmt, r);
6342 }
6343 break;
6344
6345 case GIMPLE_OMP_RETURN:
6346 case GIMPLE_OMP_CONTINUE:
6347 break;
6348 default:
6349 if (is_gimple_omp (stmt))
6350 {
6351 /* Do not remap variables inside OMP directives. Variables
6352 referenced in clauses and directive header belong to the
6353 parent function and should not be moved into the child
6354 function. */
6355 bool save_remap_decls_p = p->remap_decls_p;
6356 p->remap_decls_p = false;
6357 *handled_ops_p = true;
6358
6359 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6360 move_stmt_op, wi);
6361
6362 p->remap_decls_p = save_remap_decls_p;
6363 }
6364 break;
6365 }
6366
6367 return NULL_TREE;
6368 }
6369
6370 /* Move basic block BB from function CFUN to function DEST_FN. The
6371 block is moved out of the original linked list and placed after
6372 block AFTER in the new list. Also, the block is removed from the
6373 original array of blocks and placed in DEST_FN's array of blocks.
6374 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6375 updated to reflect the moved edges.
6376
6377 The local variables are remapped to new instances, VARS_MAP is used
6378 to record the mapping. */
6379
6380 static void
6381 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6382 basic_block after, bool update_edge_count_p,
6383 struct move_stmt_d *d)
6384 {
6385 struct control_flow_graph *cfg;
6386 edge_iterator ei;
6387 edge e;
6388 gimple_stmt_iterator si;
6389 unsigned old_len, new_len;
6390
6391 /* Remove BB from dominance structures. */
6392 delete_from_dominance_info (CDI_DOMINATORS, bb);
6393
6394 /* Move BB from its current loop to the copy in the new function. */
6395 if (current_loops)
6396 {
6397 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6398 if (new_loop)
6399 bb->loop_father = new_loop;
6400 }
6401
6402 /* Link BB to the new linked list. */
6403 move_block_after (bb, after);
6404
6405 /* Update the edge count in the corresponding flowgraphs. */
6406 if (update_edge_count_p)
6407 FOR_EACH_EDGE (e, ei, bb->succs)
6408 {
6409 cfun->cfg->x_n_edges--;
6410 dest_cfun->cfg->x_n_edges++;
6411 }
6412
6413 /* Remove BB from the original basic block array. */
6414 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6415 cfun->cfg->x_n_basic_blocks--;
6416
6417 /* Grow DEST_CFUN's basic block array if needed. */
6418 cfg = dest_cfun->cfg;
6419 cfg->x_n_basic_blocks++;
6420 if (bb->index >= cfg->x_last_basic_block)
6421 cfg->x_last_basic_block = bb->index + 1;
6422
6423 old_len = vec_safe_length (cfg->x_basic_block_info);
6424 if ((unsigned) cfg->x_last_basic_block >= old_len)
6425 {
6426 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6427 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6428 }
6429
6430 (*cfg->x_basic_block_info)[bb->index] = bb;
6431
6432 /* Remap the variables in phi nodes. */
6433 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6434 {
6435 gimple phi = gsi_stmt (si);
6436 use_operand_p use;
6437 tree op = PHI_RESULT (phi);
6438 ssa_op_iter oi;
6439 unsigned i;
6440
6441 if (virtual_operand_p (op))
6442 {
6443 /* Remove the phi nodes for virtual operands (alias analysis will be
6444 run for the new function, anyway). */
6445 remove_phi_node (&si, true);
6446 continue;
6447 }
6448
6449 SET_PHI_RESULT (phi,
6450 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6451 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6452 {
6453 op = USE_FROM_PTR (use);
6454 if (TREE_CODE (op) == SSA_NAME)
6455 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6456 }
6457
6458 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6459 {
6460 location_t locus = gimple_phi_arg_location (phi, i);
6461 tree block = LOCATION_BLOCK (locus);
6462
6463 if (locus == UNKNOWN_LOCATION)
6464 continue;
6465 if (d->orig_block == NULL_TREE || block == d->orig_block)
6466 {
6467 if (d->new_block == NULL_TREE)
6468 locus = LOCATION_LOCUS (locus);
6469 else
6470 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6471 gimple_phi_arg_set_location (phi, i, locus);
6472 }
6473 }
6474
6475 gsi_next (&si);
6476 }
6477
6478 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6479 {
6480 gimple stmt = gsi_stmt (si);
6481 struct walk_stmt_info wi;
6482
6483 memset (&wi, 0, sizeof (wi));
6484 wi.info = d;
6485 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6486
6487 if (gimple_code (stmt) == GIMPLE_LABEL)
6488 {
6489 tree label = gimple_label_label (stmt);
6490 int uid = LABEL_DECL_UID (label);
6491
6492 gcc_assert (uid > -1);
6493
6494 old_len = vec_safe_length (cfg->x_label_to_block_map);
6495 if (old_len <= (unsigned) uid)
6496 {
6497 new_len = 3 * uid / 2 + 1;
6498 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6499 }
6500
6501 (*cfg->x_label_to_block_map)[uid] = bb;
6502 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6503
6504 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6505
6506 if (uid >= dest_cfun->cfg->last_label_uid)
6507 dest_cfun->cfg->last_label_uid = uid + 1;
6508 }
6509
6510 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6511 remove_stmt_from_eh_lp_fn (cfun, stmt);
6512
6513 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6514 gimple_remove_stmt_histograms (cfun, stmt);
6515
6516 /* We cannot leave any operands allocated from the operand caches of
6517 the current function. */
6518 free_stmt_operands (stmt);
6519 push_cfun (dest_cfun);
6520 update_stmt (stmt);
6521 pop_cfun ();
6522 }
6523
6524 FOR_EACH_EDGE (e, ei, bb->succs)
6525 if (e->goto_locus != UNKNOWN_LOCATION)
6526 {
6527 tree block = LOCATION_BLOCK (e->goto_locus);
6528 if (d->orig_block == NULL_TREE
6529 || block == d->orig_block)
6530 e->goto_locus = d->new_block ?
6531 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6532 LOCATION_LOCUS (e->goto_locus);
6533 }
6534 }
6535
6536 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6537 the outermost EH region. Use REGION as the incoming base EH region. */
6538
6539 static eh_region
6540 find_outermost_region_in_block (struct function *src_cfun,
6541 basic_block bb, eh_region region)
6542 {
6543 gimple_stmt_iterator si;
6544
6545 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6546 {
6547 gimple stmt = gsi_stmt (si);
6548 eh_region stmt_region;
6549 int lp_nr;
6550
6551 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6552 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6553 if (stmt_region)
6554 {
6555 if (region == NULL)
6556 region = stmt_region;
6557 else if (stmt_region != region)
6558 {
6559 region = eh_region_outermost (src_cfun, stmt_region, region);
6560 gcc_assert (region != NULL);
6561 }
6562 }
6563 }
6564
6565 return region;
6566 }
6567
6568 static tree
6569 new_label_mapper (tree decl, void *data)
6570 {
6571 htab_t hash = (htab_t) data;
6572 struct tree_map *m;
6573 void **slot;
6574
6575 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6576
6577 m = XNEW (struct tree_map);
6578 m->hash = DECL_UID (decl);
6579 m->base.from = decl;
6580 m->to = create_artificial_label (UNKNOWN_LOCATION);
6581 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6582 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6583 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6584
6585 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6586 gcc_assert (*slot == NULL);
6587
6588 *slot = m;
6589
6590 return m->to;
6591 }
6592
6593 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6594 subblocks. */
6595
6596 static void
6597 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6598 tree to_context)
6599 {
6600 tree *tp, t;
6601
6602 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6603 {
6604 t = *tp;
6605 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6606 continue;
6607 replace_by_duplicate_decl (&t, vars_map, to_context);
6608 if (t != *tp)
6609 {
6610 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6611 {
6612 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6613 DECL_HAS_VALUE_EXPR_P (t) = 1;
6614 }
6615 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6616 *tp = t;
6617 }
6618 }
6619
6620 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6621 replace_block_vars_by_duplicates (block, vars_map, to_context);
6622 }
6623
6624 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6625 from FN1 to FN2. */
6626
6627 static void
6628 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6629 struct loop *loop)
6630 {
6631 /* Discard it from the old loop array. */
6632 (*get_loops (fn1))[loop->num] = NULL;
6633
6634 /* Place it in the new loop array, assigning it a new number. */
6635 loop->num = number_of_loops (fn2);
6636 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6637
6638 /* Recurse to children. */
6639 for (loop = loop->inner; loop; loop = loop->next)
6640 fixup_loop_arrays_after_move (fn1, fn2, loop);
6641 }
6642
6643 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6644 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6645 single basic block in the original CFG and the new basic block is
6646 returned. DEST_CFUN must not have a CFG yet.
6647
6648 Note that the region need not be a pure SESE region. Blocks inside
6649 the region may contain calls to abort/exit. The only restriction
6650 is that ENTRY_BB should be the only entry point and it must
6651 dominate EXIT_BB.
6652
6653 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6654 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6655 to the new function.
6656
6657 All local variables referenced in the region are assumed to be in
6658 the corresponding BLOCK_VARS and unexpanded variable lists
6659 associated with DEST_CFUN. */
6660
6661 basic_block
6662 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6663 basic_block exit_bb, tree orig_block)
6664 {
6665 vec<basic_block> bbs, dom_bbs;
6666 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6667 basic_block after, bb, *entry_pred, *exit_succ, abb;
6668 struct function *saved_cfun = cfun;
6669 int *entry_flag, *exit_flag;
6670 unsigned *entry_prob, *exit_prob;
6671 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6672 edge e;
6673 edge_iterator ei;
6674 htab_t new_label_map;
6675 struct pointer_map_t *vars_map, *eh_map;
6676 struct loop *loop = entry_bb->loop_father;
6677 struct loop *loop0 = get_loop (saved_cfun, 0);
6678 struct move_stmt_d d;
6679
6680 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6681 region. */
6682 gcc_assert (entry_bb != exit_bb
6683 && (!exit_bb
6684 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6685
6686 /* Collect all the blocks in the region. Manually add ENTRY_BB
6687 because it won't be added by dfs_enumerate_from. */
6688 bbs.create (0);
6689 bbs.safe_push (entry_bb);
6690 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6691
6692 /* The blocks that used to be dominated by something in BBS will now be
6693 dominated by the new block. */
6694 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6695 bbs.address (),
6696 bbs.length ());
6697
6698 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6699 the predecessor edges to ENTRY_BB and the successor edges to
6700 EXIT_BB so that we can re-attach them to the new basic block that
6701 will replace the region. */
6702 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6703 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6704 entry_flag = XNEWVEC (int, num_entry_edges);
6705 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6706 i = 0;
6707 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6708 {
6709 entry_prob[i] = e->probability;
6710 entry_flag[i] = e->flags;
6711 entry_pred[i++] = e->src;
6712 remove_edge (e);
6713 }
6714
6715 if (exit_bb)
6716 {
6717 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6718 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6719 exit_flag = XNEWVEC (int, num_exit_edges);
6720 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6721 i = 0;
6722 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6723 {
6724 exit_prob[i] = e->probability;
6725 exit_flag[i] = e->flags;
6726 exit_succ[i++] = e->dest;
6727 remove_edge (e);
6728 }
6729 }
6730 else
6731 {
6732 num_exit_edges = 0;
6733 exit_succ = NULL;
6734 exit_flag = NULL;
6735 exit_prob = NULL;
6736 }
6737
6738 /* Switch context to the child function to initialize DEST_FN's CFG. */
6739 gcc_assert (dest_cfun->cfg == NULL);
6740 push_cfun (dest_cfun);
6741
6742 init_empty_tree_cfg ();
6743
6744 /* Initialize EH information for the new function. */
6745 eh_map = NULL;
6746 new_label_map = NULL;
6747 if (saved_cfun->eh)
6748 {
6749 eh_region region = NULL;
6750
6751 FOR_EACH_VEC_ELT (bbs, i, bb)
6752 region = find_outermost_region_in_block (saved_cfun, bb, region);
6753
6754 init_eh_for_function ();
6755 if (region != NULL)
6756 {
6757 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6758 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6759 new_label_mapper, new_label_map);
6760 }
6761 }
6762
6763 /* Initialize an empty loop tree. */
6764 struct loops *loops = ggc_alloc_cleared_loops ();
6765 init_loops_structure (dest_cfun, loops, 1);
6766 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6767 set_loops_for_fn (dest_cfun, loops);
6768
6769 /* Move the outlined loop tree part. */
6770 num_nodes = bbs.length ();
6771 FOR_EACH_VEC_ELT (bbs, i, bb)
6772 {
6773 if (bb->loop_father->header == bb)
6774 {
6775 struct loop *this_loop = bb->loop_father;
6776 struct loop *outer = loop_outer (this_loop);
6777 if (outer == loop
6778 /* If the SESE region contains some bbs ending with
6779 a noreturn call, those are considered to belong
6780 to the outermost loop in saved_cfun, rather than
6781 the entry_bb's loop_father. */
6782 || outer == loop0)
6783 {
6784 if (outer != loop)
6785 num_nodes -= this_loop->num_nodes;
6786 flow_loop_tree_node_remove (bb->loop_father);
6787 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6788 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6789 }
6790 }
6791 else if (bb->loop_father == loop0 && loop0 != loop)
6792 num_nodes--;
6793
6794 /* Remove loop exits from the outlined region. */
6795 if (loops_for_fn (saved_cfun)->exits)
6796 FOR_EACH_EDGE (e, ei, bb->succs)
6797 {
6798 void **slot = htab_find_slot_with_hash
6799 (loops_for_fn (saved_cfun)->exits, e,
6800 htab_hash_pointer (e), NO_INSERT);
6801 if (slot)
6802 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6803 }
6804 }
6805
6806
6807 /* Adjust the number of blocks in the tree root of the outlined part. */
6808 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6809
6810 /* Setup a mapping to be used by move_block_to_fn. */
6811 loop->aux = current_loops->tree_root;
6812 loop0->aux = current_loops->tree_root;
6813
6814 pop_cfun ();
6815
6816 /* Move blocks from BBS into DEST_CFUN. */
6817 gcc_assert (bbs.length () >= 2);
6818 after = dest_cfun->cfg->x_entry_block_ptr;
6819 vars_map = pointer_map_create ();
6820
6821 memset (&d, 0, sizeof (d));
6822 d.orig_block = orig_block;
6823 d.new_block = DECL_INITIAL (dest_cfun->decl);
6824 d.from_context = cfun->decl;
6825 d.to_context = dest_cfun->decl;
6826 d.vars_map = vars_map;
6827 d.new_label_map = new_label_map;
6828 d.eh_map = eh_map;
6829 d.remap_decls_p = true;
6830
6831 FOR_EACH_VEC_ELT (bbs, i, bb)
6832 {
6833 /* No need to update edge counts on the last block. It has
6834 already been updated earlier when we detached the region from
6835 the original CFG. */
6836 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6837 after = bb;
6838 }
6839
6840 loop->aux = NULL;
6841 loop0->aux = NULL;
6842 /* Loop sizes are no longer correct, fix them up. */
6843 loop->num_nodes -= num_nodes;
6844 for (struct loop *outer = loop_outer (loop);
6845 outer; outer = loop_outer (outer))
6846 outer->num_nodes -= num_nodes;
6847 loop0->num_nodes -= bbs.length () - num_nodes;
6848
6849 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6850 {
6851 struct loop *aloop;
6852 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6853 if (aloop != NULL)
6854 {
6855 if (aloop->simduid)
6856 {
6857 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6858 d.to_context);
6859 dest_cfun->has_simduid_loops = true;
6860 }
6861 if (aloop->force_vect)
6862 dest_cfun->has_force_vect_loops = true;
6863 }
6864 }
6865
6866 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6867 if (orig_block)
6868 {
6869 tree block;
6870 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6871 == NULL_TREE);
6872 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6873 = BLOCK_SUBBLOCKS (orig_block);
6874 for (block = BLOCK_SUBBLOCKS (orig_block);
6875 block; block = BLOCK_CHAIN (block))
6876 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6877 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6878 }
6879
6880 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6881 vars_map, dest_cfun->decl);
6882
6883 if (new_label_map)
6884 htab_delete (new_label_map);
6885 if (eh_map)
6886 pointer_map_destroy (eh_map);
6887 pointer_map_destroy (vars_map);
6888
6889 /* Rewire the entry and exit blocks. The successor to the entry
6890 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6891 the child function. Similarly, the predecessor of DEST_FN's
6892 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6893 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6894 various CFG manipulation function get to the right CFG.
6895
6896 FIXME, this is silly. The CFG ought to become a parameter to
6897 these helpers. */
6898 push_cfun (dest_cfun);
6899 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6900 if (exit_bb)
6901 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6902 pop_cfun ();
6903
6904 /* Back in the original function, the SESE region has disappeared,
6905 create a new basic block in its place. */
6906 bb = create_empty_bb (entry_pred[0]);
6907 if (current_loops)
6908 add_bb_to_loop (bb, loop);
6909 for (i = 0; i < num_entry_edges; i++)
6910 {
6911 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6912 e->probability = entry_prob[i];
6913 }
6914
6915 for (i = 0; i < num_exit_edges; i++)
6916 {
6917 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6918 e->probability = exit_prob[i];
6919 }
6920
6921 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6922 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6923 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6924 dom_bbs.release ();
6925
6926 if (exit_bb)
6927 {
6928 free (exit_prob);
6929 free (exit_flag);
6930 free (exit_succ);
6931 }
6932 free (entry_prob);
6933 free (entry_flag);
6934 free (entry_pred);
6935 bbs.release ();
6936
6937 return bb;
6938 }
6939
6940
6941 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6942 */
6943
6944 void
6945 dump_function_to_file (tree fndecl, FILE *file, int flags)
6946 {
6947 tree arg, var, old_current_fndecl = current_function_decl;
6948 struct function *dsf;
6949 bool ignore_topmost_bind = false, any_var = false;
6950 basic_block bb;
6951 tree chain;
6952 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6953 && decl_is_tm_clone (fndecl));
6954 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6955
6956 current_function_decl = fndecl;
6957 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6958
6959 arg = DECL_ARGUMENTS (fndecl);
6960 while (arg)
6961 {
6962 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6963 fprintf (file, " ");
6964 print_generic_expr (file, arg, dump_flags);
6965 if (flags & TDF_VERBOSE)
6966 print_node (file, "", arg, 4);
6967 if (DECL_CHAIN (arg))
6968 fprintf (file, ", ");
6969 arg = DECL_CHAIN (arg);
6970 }
6971 fprintf (file, ")\n");
6972
6973 if (flags & TDF_VERBOSE)
6974 print_node (file, "", fndecl, 2);
6975
6976 dsf = DECL_STRUCT_FUNCTION (fndecl);
6977 if (dsf && (flags & TDF_EH))
6978 dump_eh_tree (file, dsf);
6979
6980 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6981 {
6982 dump_node (fndecl, TDF_SLIM | flags, file);
6983 current_function_decl = old_current_fndecl;
6984 return;
6985 }
6986
6987 /* When GIMPLE is lowered, the variables are no longer available in
6988 BIND_EXPRs, so display them separately. */
6989 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6990 {
6991 unsigned ix;
6992 ignore_topmost_bind = true;
6993
6994 fprintf (file, "{\n");
6995 if (!vec_safe_is_empty (fun->local_decls))
6996 FOR_EACH_LOCAL_DECL (fun, ix, var)
6997 {
6998 print_generic_decl (file, var, flags);
6999 if (flags & TDF_VERBOSE)
7000 print_node (file, "", var, 4);
7001 fprintf (file, "\n");
7002
7003 any_var = true;
7004 }
7005 if (gimple_in_ssa_p (cfun))
7006 for (ix = 1; ix < num_ssa_names; ++ix)
7007 {
7008 tree name = ssa_name (ix);
7009 if (name && !SSA_NAME_VAR (name))
7010 {
7011 fprintf (file, " ");
7012 print_generic_expr (file, TREE_TYPE (name), flags);
7013 fprintf (file, " ");
7014 print_generic_expr (file, name, flags);
7015 fprintf (file, ";\n");
7016
7017 any_var = true;
7018 }
7019 }
7020 }
7021
7022 if (fun && fun->decl == fndecl
7023 && fun->cfg
7024 && basic_block_info_for_function (fun))
7025 {
7026 /* If the CFG has been built, emit a CFG-based dump. */
7027 if (!ignore_topmost_bind)
7028 fprintf (file, "{\n");
7029
7030 if (any_var && n_basic_blocks_for_function (fun))
7031 fprintf (file, "\n");
7032
7033 FOR_EACH_BB_FN (bb, fun)
7034 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7035
7036 fprintf (file, "}\n");
7037 }
7038 else if (DECL_SAVED_TREE (fndecl) == NULL)
7039 {
7040 /* The function is now in GIMPLE form but the CFG has not been
7041 built yet. Emit the single sequence of GIMPLE statements
7042 that make up its body. */
7043 gimple_seq body = gimple_body (fndecl);
7044
7045 if (gimple_seq_first_stmt (body)
7046 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7047 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7048 print_gimple_seq (file, body, 0, flags);
7049 else
7050 {
7051 if (!ignore_topmost_bind)
7052 fprintf (file, "{\n");
7053
7054 if (any_var)
7055 fprintf (file, "\n");
7056
7057 print_gimple_seq (file, body, 2, flags);
7058 fprintf (file, "}\n");
7059 }
7060 }
7061 else
7062 {
7063 int indent;
7064
7065 /* Make a tree based dump. */
7066 chain = DECL_SAVED_TREE (fndecl);
7067 if (chain && TREE_CODE (chain) == BIND_EXPR)
7068 {
7069 if (ignore_topmost_bind)
7070 {
7071 chain = BIND_EXPR_BODY (chain);
7072 indent = 2;
7073 }
7074 else
7075 indent = 0;
7076 }
7077 else
7078 {
7079 if (!ignore_topmost_bind)
7080 fprintf (file, "{\n");
7081 indent = 2;
7082 }
7083
7084 if (any_var)
7085 fprintf (file, "\n");
7086
7087 print_generic_stmt_indented (file, chain, flags, indent);
7088 if (ignore_topmost_bind)
7089 fprintf (file, "}\n");
7090 }
7091
7092 if (flags & TDF_ENUMERATE_LOCALS)
7093 dump_enumerated_decls (file, flags);
7094 fprintf (file, "\n\n");
7095
7096 current_function_decl = old_current_fndecl;
7097 }
7098
7099 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7100
7101 DEBUG_FUNCTION void
7102 debug_function (tree fn, int flags)
7103 {
7104 dump_function_to_file (fn, stderr, flags);
7105 }
7106
7107
7108 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7109
7110 static void
7111 print_pred_bbs (FILE *file, basic_block bb)
7112 {
7113 edge e;
7114 edge_iterator ei;
7115
7116 FOR_EACH_EDGE (e, ei, bb->preds)
7117 fprintf (file, "bb_%d ", e->src->index);
7118 }
7119
7120
7121 /* Print on FILE the indexes for the successors of basic_block BB. */
7122
7123 static void
7124 print_succ_bbs (FILE *file, basic_block bb)
7125 {
7126 edge e;
7127 edge_iterator ei;
7128
7129 FOR_EACH_EDGE (e, ei, bb->succs)
7130 fprintf (file, "bb_%d ", e->dest->index);
7131 }
7132
7133 /* Print to FILE the basic block BB following the VERBOSITY level. */
7134
7135 void
7136 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7137 {
7138 char *s_indent = (char *) alloca ((size_t) indent + 1);
7139 memset ((void *) s_indent, ' ', (size_t) indent);
7140 s_indent[indent] = '\0';
7141
7142 /* Print basic_block's header. */
7143 if (verbosity >= 2)
7144 {
7145 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7146 print_pred_bbs (file, bb);
7147 fprintf (file, "}, succs = {");
7148 print_succ_bbs (file, bb);
7149 fprintf (file, "})\n");
7150 }
7151
7152 /* Print basic_block's body. */
7153 if (verbosity >= 3)
7154 {
7155 fprintf (file, "%s {\n", s_indent);
7156 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7157 fprintf (file, "%s }\n", s_indent);
7158 }
7159 }
7160
7161 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7162
7163 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7164 VERBOSITY level this outputs the contents of the loop, or just its
7165 structure. */
7166
7167 static void
7168 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7169 {
7170 char *s_indent;
7171 basic_block bb;
7172
7173 if (loop == NULL)
7174 return;
7175
7176 s_indent = (char *) alloca ((size_t) indent + 1);
7177 memset ((void *) s_indent, ' ', (size_t) indent);
7178 s_indent[indent] = '\0';
7179
7180 /* Print loop's header. */
7181 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7182 if (loop->header)
7183 fprintf (file, "header = %d", loop->header->index);
7184 else
7185 {
7186 fprintf (file, "deleted)\n");
7187 return;
7188 }
7189 if (loop->latch)
7190 fprintf (file, ", latch = %d", loop->latch->index);
7191 else
7192 fprintf (file, ", multiple latches");
7193 fprintf (file, ", niter = ");
7194 print_generic_expr (file, loop->nb_iterations, 0);
7195
7196 if (loop->any_upper_bound)
7197 {
7198 fprintf (file, ", upper_bound = ");
7199 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7200 }
7201
7202 if (loop->any_estimate)
7203 {
7204 fprintf (file, ", estimate = ");
7205 dump_double_int (file, loop->nb_iterations_estimate, true);
7206 }
7207 fprintf (file, ")\n");
7208
7209 /* Print loop's body. */
7210 if (verbosity >= 1)
7211 {
7212 fprintf (file, "%s{\n", s_indent);
7213 FOR_EACH_BB (bb)
7214 if (bb->loop_father == loop)
7215 print_loops_bb (file, bb, indent, verbosity);
7216
7217 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7218 fprintf (file, "%s}\n", s_indent);
7219 }
7220 }
7221
7222 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7223 spaces. Following VERBOSITY level this outputs the contents of the
7224 loop, or just its structure. */
7225
7226 static void
7227 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7228 int verbosity)
7229 {
7230 if (loop == NULL)
7231 return;
7232
7233 print_loop (file, loop, indent, verbosity);
7234 print_loop_and_siblings (file, loop->next, indent, verbosity);
7235 }
7236
7237 /* Follow a CFG edge from the entry point of the program, and on entry
7238 of a loop, pretty print the loop structure on FILE. */
7239
7240 void
7241 print_loops (FILE *file, int verbosity)
7242 {
7243 basic_block bb;
7244
7245 bb = ENTRY_BLOCK_PTR;
7246 if (bb && bb->loop_father)
7247 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7248 }
7249
7250 /* Dump a loop. */
7251
7252 DEBUG_FUNCTION void
7253 debug (struct loop &ref)
7254 {
7255 print_loop (stderr, &ref, 0, /*verbosity*/0);
7256 }
7257
7258 DEBUG_FUNCTION void
7259 debug (struct loop *ptr)
7260 {
7261 if (ptr)
7262 debug (*ptr);
7263 else
7264 fprintf (stderr, "<nil>\n");
7265 }
7266
7267 /* Dump a loop verbosely. */
7268
7269 DEBUG_FUNCTION void
7270 debug_verbose (struct loop &ref)
7271 {
7272 print_loop (stderr, &ref, 0, /*verbosity*/3);
7273 }
7274
7275 DEBUG_FUNCTION void
7276 debug_verbose (struct loop *ptr)
7277 {
7278 if (ptr)
7279 debug (*ptr);
7280 else
7281 fprintf (stderr, "<nil>\n");
7282 }
7283
7284
7285 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7286
7287 DEBUG_FUNCTION void
7288 debug_loops (int verbosity)
7289 {
7290 print_loops (stderr, verbosity);
7291 }
7292
7293 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7294
7295 DEBUG_FUNCTION void
7296 debug_loop (struct loop *loop, int verbosity)
7297 {
7298 print_loop (stderr, loop, 0, verbosity);
7299 }
7300
7301 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7302 level. */
7303
7304 DEBUG_FUNCTION void
7305 debug_loop_num (unsigned num, int verbosity)
7306 {
7307 debug_loop (get_loop (cfun, num), verbosity);
7308 }
7309
7310 /* Return true if BB ends with a call, possibly followed by some
7311 instructions that must stay with the call. Return false,
7312 otherwise. */
7313
7314 static bool
7315 gimple_block_ends_with_call_p (basic_block bb)
7316 {
7317 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7318 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7319 }
7320
7321
7322 /* Return true if BB ends with a conditional branch. Return false,
7323 otherwise. */
7324
7325 static bool
7326 gimple_block_ends_with_condjump_p (const_basic_block bb)
7327 {
7328 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7329 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7330 }
7331
7332
7333 /* Return true if we need to add fake edge to exit at statement T.
7334 Helper function for gimple_flow_call_edges_add. */
7335
7336 static bool
7337 need_fake_edge_p (gimple t)
7338 {
7339 tree fndecl = NULL_TREE;
7340 int call_flags = 0;
7341
7342 /* NORETURN and LONGJMP calls already have an edge to exit.
7343 CONST and PURE calls do not need one.
7344 We don't currently check for CONST and PURE here, although
7345 it would be a good idea, because those attributes are
7346 figured out from the RTL in mark_constant_function, and
7347 the counter incrementation code from -fprofile-arcs
7348 leads to different results from -fbranch-probabilities. */
7349 if (is_gimple_call (t))
7350 {
7351 fndecl = gimple_call_fndecl (t);
7352 call_flags = gimple_call_flags (t);
7353 }
7354
7355 if (is_gimple_call (t)
7356 && fndecl
7357 && DECL_BUILT_IN (fndecl)
7358 && (call_flags & ECF_NOTHROW)
7359 && !(call_flags & ECF_RETURNS_TWICE)
7360 /* fork() doesn't really return twice, but the effect of
7361 wrapping it in __gcov_fork() which calls __gcov_flush()
7362 and clears the counters before forking has the same
7363 effect as returning twice. Force a fake edge. */
7364 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7365 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7366 return false;
7367
7368 if (is_gimple_call (t))
7369 {
7370 edge_iterator ei;
7371 edge e;
7372 basic_block bb;
7373
7374 if (!(call_flags & ECF_NORETURN))
7375 return true;
7376
7377 bb = gimple_bb (t);
7378 FOR_EACH_EDGE (e, ei, bb->succs)
7379 if ((e->flags & EDGE_FAKE) == 0)
7380 return true;
7381 }
7382
7383 if (gimple_code (t) == GIMPLE_ASM
7384 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7385 return true;
7386
7387 return false;
7388 }
7389
7390
7391 /* Add fake edges to the function exit for any non constant and non
7392 noreturn calls (or noreturn calls with EH/abnormal edges),
7393 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7394 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7395 that were split.
7396
7397 The goal is to expose cases in which entering a basic block does
7398 not imply that all subsequent instructions must be executed. */
7399
7400 static int
7401 gimple_flow_call_edges_add (sbitmap blocks)
7402 {
7403 int i;
7404 int blocks_split = 0;
7405 int last_bb = last_basic_block;
7406 bool check_last_block = false;
7407
7408 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7409 return 0;
7410
7411 if (! blocks)
7412 check_last_block = true;
7413 else
7414 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7415
7416 /* In the last basic block, before epilogue generation, there will be
7417 a fallthru edge to EXIT. Special care is required if the last insn
7418 of the last basic block is a call because make_edge folds duplicate
7419 edges, which would result in the fallthru edge also being marked
7420 fake, which would result in the fallthru edge being removed by
7421 remove_fake_edges, which would result in an invalid CFG.
7422
7423 Moreover, we can't elide the outgoing fake edge, since the block
7424 profiler needs to take this into account in order to solve the minimal
7425 spanning tree in the case that the call doesn't return.
7426
7427 Handle this by adding a dummy instruction in a new last basic block. */
7428 if (check_last_block)
7429 {
7430 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7431 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7432 gimple t = NULL;
7433
7434 if (!gsi_end_p (gsi))
7435 t = gsi_stmt (gsi);
7436
7437 if (t && need_fake_edge_p (t))
7438 {
7439 edge e;
7440
7441 e = find_edge (bb, EXIT_BLOCK_PTR);
7442 if (e)
7443 {
7444 gsi_insert_on_edge (e, gimple_build_nop ());
7445 gsi_commit_edge_inserts ();
7446 }
7447 }
7448 }
7449
7450 /* Now add fake edges to the function exit for any non constant
7451 calls since there is no way that we can determine if they will
7452 return or not... */
7453 for (i = 0; i < last_bb; i++)
7454 {
7455 basic_block bb = BASIC_BLOCK (i);
7456 gimple_stmt_iterator gsi;
7457 gimple stmt, last_stmt;
7458
7459 if (!bb)
7460 continue;
7461
7462 if (blocks && !bitmap_bit_p (blocks, i))
7463 continue;
7464
7465 gsi = gsi_last_nondebug_bb (bb);
7466 if (!gsi_end_p (gsi))
7467 {
7468 last_stmt = gsi_stmt (gsi);
7469 do
7470 {
7471 stmt = gsi_stmt (gsi);
7472 if (need_fake_edge_p (stmt))
7473 {
7474 edge e;
7475
7476 /* The handling above of the final block before the
7477 epilogue should be enough to verify that there is
7478 no edge to the exit block in CFG already.
7479 Calling make_edge in such case would cause us to
7480 mark that edge as fake and remove it later. */
7481 #ifdef ENABLE_CHECKING
7482 if (stmt == last_stmt)
7483 {
7484 e = find_edge (bb, EXIT_BLOCK_PTR);
7485 gcc_assert (e == NULL);
7486 }
7487 #endif
7488
7489 /* Note that the following may create a new basic block
7490 and renumber the existing basic blocks. */
7491 if (stmt != last_stmt)
7492 {
7493 e = split_block (bb, stmt);
7494 if (e)
7495 blocks_split++;
7496 }
7497 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7498 }
7499 gsi_prev (&gsi);
7500 }
7501 while (!gsi_end_p (gsi));
7502 }
7503 }
7504
7505 if (blocks_split)
7506 verify_flow_info ();
7507
7508 return blocks_split;
7509 }
7510
7511 /* Removes edge E and all the blocks dominated by it, and updates dominance
7512 information. The IL in E->src needs to be updated separately.
7513 If dominance info is not available, only the edge E is removed.*/
7514
7515 void
7516 remove_edge_and_dominated_blocks (edge e)
7517 {
7518 vec<basic_block> bbs_to_remove = vNULL;
7519 vec<basic_block> bbs_to_fix_dom = vNULL;
7520 bitmap df, df_idom;
7521 edge f;
7522 edge_iterator ei;
7523 bool none_removed = false;
7524 unsigned i;
7525 basic_block bb, dbb;
7526 bitmap_iterator bi;
7527
7528 if (!dom_info_available_p (CDI_DOMINATORS))
7529 {
7530 remove_edge (e);
7531 return;
7532 }
7533
7534 /* No updating is needed for edges to exit. */
7535 if (e->dest == EXIT_BLOCK_PTR)
7536 {
7537 if (cfgcleanup_altered_bbs)
7538 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7539 remove_edge (e);
7540 return;
7541 }
7542
7543 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7544 that is not dominated by E->dest, then this set is empty. Otherwise,
7545 all the basic blocks dominated by E->dest are removed.
7546
7547 Also, to DF_IDOM we store the immediate dominators of the blocks in
7548 the dominance frontier of E (i.e., of the successors of the
7549 removed blocks, if there are any, and of E->dest otherwise). */
7550 FOR_EACH_EDGE (f, ei, e->dest->preds)
7551 {
7552 if (f == e)
7553 continue;
7554
7555 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7556 {
7557 none_removed = true;
7558 break;
7559 }
7560 }
7561
7562 df = BITMAP_ALLOC (NULL);
7563 df_idom = BITMAP_ALLOC (NULL);
7564
7565 if (none_removed)
7566 bitmap_set_bit (df_idom,
7567 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7568 else
7569 {
7570 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7571 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7572 {
7573 FOR_EACH_EDGE (f, ei, bb->succs)
7574 {
7575 if (f->dest != EXIT_BLOCK_PTR)
7576 bitmap_set_bit (df, f->dest->index);
7577 }
7578 }
7579 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7580 bitmap_clear_bit (df, bb->index);
7581
7582 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7583 {
7584 bb = BASIC_BLOCK (i);
7585 bitmap_set_bit (df_idom,
7586 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7587 }
7588 }
7589
7590 if (cfgcleanup_altered_bbs)
7591 {
7592 /* Record the set of the altered basic blocks. */
7593 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7594 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7595 }
7596
7597 /* Remove E and the cancelled blocks. */
7598 if (none_removed)
7599 remove_edge (e);
7600 else
7601 {
7602 /* Walk backwards so as to get a chance to substitute all
7603 released DEFs into debug stmts. See
7604 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7605 details. */
7606 for (i = bbs_to_remove.length (); i-- > 0; )
7607 delete_basic_block (bbs_to_remove[i]);
7608 }
7609
7610 /* Update the dominance information. The immediate dominator may change only
7611 for blocks whose immediate dominator belongs to DF_IDOM:
7612
7613 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7614 removal. Let Z the arbitrary block such that idom(Z) = Y and
7615 Z dominates X after the removal. Before removal, there exists a path P
7616 from Y to X that avoids Z. Let F be the last edge on P that is
7617 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7618 dominates W, and because of P, Z does not dominate W), and W belongs to
7619 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7620 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7621 {
7622 bb = BASIC_BLOCK (i);
7623 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7624 dbb;
7625 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7626 bbs_to_fix_dom.safe_push (dbb);
7627 }
7628
7629 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7630
7631 BITMAP_FREE (df);
7632 BITMAP_FREE (df_idom);
7633 bbs_to_remove.release ();
7634 bbs_to_fix_dom.release ();
7635 }
7636
7637 /* Purge dead EH edges from basic block BB. */
7638
7639 bool
7640 gimple_purge_dead_eh_edges (basic_block bb)
7641 {
7642 bool changed = false;
7643 edge e;
7644 edge_iterator ei;
7645 gimple stmt = last_stmt (bb);
7646
7647 if (stmt && stmt_can_throw_internal (stmt))
7648 return false;
7649
7650 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7651 {
7652 if (e->flags & EDGE_EH)
7653 {
7654 remove_edge_and_dominated_blocks (e);
7655 changed = true;
7656 }
7657 else
7658 ei_next (&ei);
7659 }
7660
7661 return changed;
7662 }
7663
7664 /* Purge dead EH edges from basic block listed in BLOCKS. */
7665
7666 bool
7667 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7668 {
7669 bool changed = false;
7670 unsigned i;
7671 bitmap_iterator bi;
7672
7673 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7674 {
7675 basic_block bb = BASIC_BLOCK (i);
7676
7677 /* Earlier gimple_purge_dead_eh_edges could have removed
7678 this basic block already. */
7679 gcc_assert (bb || changed);
7680 if (bb != NULL)
7681 changed |= gimple_purge_dead_eh_edges (bb);
7682 }
7683
7684 return changed;
7685 }
7686
7687 /* Purge dead abnormal call edges from basic block BB. */
7688
7689 bool
7690 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7691 {
7692 bool changed = false;
7693 edge e;
7694 edge_iterator ei;
7695 gimple stmt = last_stmt (bb);
7696
7697 if (!cfun->has_nonlocal_label
7698 && !cfun->calls_setjmp)
7699 return false;
7700
7701 if (stmt && stmt_can_make_abnormal_goto (stmt))
7702 return false;
7703
7704 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7705 {
7706 if (e->flags & EDGE_ABNORMAL)
7707 {
7708 if (e->flags & EDGE_FALLTHRU)
7709 e->flags &= ~EDGE_ABNORMAL;
7710 else
7711 remove_edge_and_dominated_blocks (e);
7712 changed = true;
7713 }
7714 else
7715 ei_next (&ei);
7716 }
7717
7718 return changed;
7719 }
7720
7721 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7722
7723 bool
7724 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7725 {
7726 bool changed = false;
7727 unsigned i;
7728 bitmap_iterator bi;
7729
7730 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7731 {
7732 basic_block bb = BASIC_BLOCK (i);
7733
7734 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7735 this basic block already. */
7736 gcc_assert (bb || changed);
7737 if (bb != NULL)
7738 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7739 }
7740
7741 return changed;
7742 }
7743
7744 /* This function is called whenever a new edge is created or
7745 redirected. */
7746
7747 static void
7748 gimple_execute_on_growing_pred (edge e)
7749 {
7750 basic_block bb = e->dest;
7751
7752 if (!gimple_seq_empty_p (phi_nodes (bb)))
7753 reserve_phi_args_for_new_edge (bb);
7754 }
7755
7756 /* This function is called immediately before edge E is removed from
7757 the edge vector E->dest->preds. */
7758
7759 static void
7760 gimple_execute_on_shrinking_pred (edge e)
7761 {
7762 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7763 remove_phi_args (e);
7764 }
7765
7766 /*---------------------------------------------------------------------------
7767 Helper functions for Loop versioning
7768 ---------------------------------------------------------------------------*/
7769
7770 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7771 of 'first'. Both of them are dominated by 'new_head' basic block. When
7772 'new_head' was created by 'second's incoming edge it received phi arguments
7773 on the edge by split_edge(). Later, additional edge 'e' was created to
7774 connect 'new_head' and 'first'. Now this routine adds phi args on this
7775 additional edge 'e' that new_head to second edge received as part of edge
7776 splitting. */
7777
7778 static void
7779 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7780 basic_block new_head, edge e)
7781 {
7782 gimple phi1, phi2;
7783 gimple_stmt_iterator psi1, psi2;
7784 tree def;
7785 edge e2 = find_edge (new_head, second);
7786
7787 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7788 edge, we should always have an edge from NEW_HEAD to SECOND. */
7789 gcc_assert (e2 != NULL);
7790
7791 /* Browse all 'second' basic block phi nodes and add phi args to
7792 edge 'e' for 'first' head. PHI args are always in correct order. */
7793
7794 for (psi2 = gsi_start_phis (second),
7795 psi1 = gsi_start_phis (first);
7796 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7797 gsi_next (&psi2), gsi_next (&psi1))
7798 {
7799 phi1 = gsi_stmt (psi1);
7800 phi2 = gsi_stmt (psi2);
7801 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7802 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7803 }
7804 }
7805
7806
7807 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7808 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7809 the destination of the ELSE part. */
7810
7811 static void
7812 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7813 basic_block second_head ATTRIBUTE_UNUSED,
7814 basic_block cond_bb, void *cond_e)
7815 {
7816 gimple_stmt_iterator gsi;
7817 gimple new_cond_expr;
7818 tree cond_expr = (tree) cond_e;
7819 edge e0;
7820
7821 /* Build new conditional expr */
7822 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7823 NULL_TREE, NULL_TREE);
7824
7825 /* Add new cond in cond_bb. */
7826 gsi = gsi_last_bb (cond_bb);
7827 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7828
7829 /* Adjust edges appropriately to connect new head with first head
7830 as well as second head. */
7831 e0 = single_succ_edge (cond_bb);
7832 e0->flags &= ~EDGE_FALLTHRU;
7833 e0->flags |= EDGE_FALSE_VALUE;
7834 }
7835
7836
7837 /* Do book-keeping of basic block BB for the profile consistency checker.
7838 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7839 then do post-pass accounting. Store the counting in RECORD. */
7840 static void
7841 gimple_account_profile_record (basic_block bb, int after_pass,
7842 struct profile_record *record)
7843 {
7844 gimple_stmt_iterator i;
7845 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7846 {
7847 record->size[after_pass]
7848 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7849 if (profile_status == PROFILE_READ)
7850 record->time[after_pass]
7851 += estimate_num_insns (gsi_stmt (i),
7852 &eni_time_weights) * bb->count;
7853 else if (profile_status == PROFILE_GUESSED)
7854 record->time[after_pass]
7855 += estimate_num_insns (gsi_stmt (i),
7856 &eni_time_weights) * bb->frequency;
7857 }
7858 }
7859
7860 struct cfg_hooks gimple_cfg_hooks = {
7861 "gimple",
7862 gimple_verify_flow_info,
7863 gimple_dump_bb, /* dump_bb */
7864 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7865 create_bb, /* create_basic_block */
7866 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7867 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7868 gimple_can_remove_branch_p, /* can_remove_branch_p */
7869 remove_bb, /* delete_basic_block */
7870 gimple_split_block, /* split_block */
7871 gimple_move_block_after, /* move_block_after */
7872 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7873 gimple_merge_blocks, /* merge_blocks */
7874 gimple_predict_edge, /* predict_edge */
7875 gimple_predicted_by_p, /* predicted_by_p */
7876 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7877 gimple_duplicate_bb, /* duplicate_block */
7878 gimple_split_edge, /* split_edge */
7879 gimple_make_forwarder_block, /* make_forward_block */
7880 NULL, /* tidy_fallthru_edge */
7881 NULL, /* force_nonfallthru */
7882 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7883 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7884 gimple_flow_call_edges_add, /* flow_call_edges_add */
7885 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7886 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7887 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7888 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7889 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7890 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7891 flush_pending_stmts, /* flush_pending_stmts */
7892 gimple_empty_block_p, /* block_empty_p */
7893 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7894 gimple_account_profile_record,
7895 };
7896
7897
7898 /* Split all critical edges. */
7899
7900 static unsigned int
7901 split_critical_edges (void)
7902 {
7903 basic_block bb;
7904 edge e;
7905 edge_iterator ei;
7906
7907 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7908 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7909 mappings around the calls to split_edge. */
7910 start_recording_case_labels ();
7911 FOR_ALL_BB (bb)
7912 {
7913 FOR_EACH_EDGE (e, ei, bb->succs)
7914 {
7915 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7916 split_edge (e);
7917 /* PRE inserts statements to edges and expects that
7918 since split_critical_edges was done beforehand, committing edge
7919 insertions will not split more edges. In addition to critical
7920 edges we must split edges that have multiple successors and
7921 end by control flow statements, such as RESX.
7922 Go ahead and split them too. This matches the logic in
7923 gimple_find_edge_insert_loc. */
7924 else if ((!single_pred_p (e->dest)
7925 || !gimple_seq_empty_p (phi_nodes (e->dest))
7926 || e->dest == EXIT_BLOCK_PTR)
7927 && e->src != ENTRY_BLOCK_PTR
7928 && !(e->flags & EDGE_ABNORMAL))
7929 {
7930 gimple_stmt_iterator gsi;
7931
7932 gsi = gsi_last_bb (e->src);
7933 if (!gsi_end_p (gsi)
7934 && stmt_ends_bb_p (gsi_stmt (gsi))
7935 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7936 && !gimple_call_builtin_p (gsi_stmt (gsi),
7937 BUILT_IN_RETURN)))
7938 split_edge (e);
7939 }
7940 }
7941 }
7942 end_recording_case_labels ();
7943 return 0;
7944 }
7945
7946 namespace {
7947
7948 const pass_data pass_data_split_crit_edges =
7949 {
7950 GIMPLE_PASS, /* type */
7951 "crited", /* name */
7952 OPTGROUP_NONE, /* optinfo_flags */
7953 false, /* has_gate */
7954 true, /* has_execute */
7955 TV_TREE_SPLIT_EDGES, /* tv_id */
7956 PROP_cfg, /* properties_required */
7957 PROP_no_crit_edges, /* properties_provided */
7958 0, /* properties_destroyed */
7959 0, /* todo_flags_start */
7960 TODO_verify_flow, /* todo_flags_finish */
7961 };
7962
7963 class pass_split_crit_edges : public gimple_opt_pass
7964 {
7965 public:
7966 pass_split_crit_edges (gcc::context *ctxt)
7967 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
7968 {}
7969
7970 /* opt_pass methods: */
7971 unsigned int execute () { return split_critical_edges (); }
7972
7973 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
7974 }; // class pass_split_crit_edges
7975
7976 } // anon namespace
7977
7978 gimple_opt_pass *
7979 make_pass_split_crit_edges (gcc::context *ctxt)
7980 {
7981 return new pass_split_crit_edges (ctxt);
7982 }
7983
7984
7985 /* Build a ternary operation and gimplify it. Emit code before GSI.
7986 Return the gimple_val holding the result. */
7987
7988 tree
7989 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7990 tree type, tree a, tree b, tree c)
7991 {
7992 tree ret;
7993 location_t loc = gimple_location (gsi_stmt (*gsi));
7994
7995 ret = fold_build3_loc (loc, code, type, a, b, c);
7996 STRIP_NOPS (ret);
7997
7998 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7999 GSI_SAME_STMT);
8000 }
8001
8002 /* Build a binary operation and gimplify it. Emit code before GSI.
8003 Return the gimple_val holding the result. */
8004
8005 tree
8006 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8007 tree type, tree a, tree b)
8008 {
8009 tree ret;
8010
8011 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8012 STRIP_NOPS (ret);
8013
8014 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8015 GSI_SAME_STMT);
8016 }
8017
8018 /* Build a unary operation and gimplify it. Emit code before GSI.
8019 Return the gimple_val holding the result. */
8020
8021 tree
8022 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8023 tree a)
8024 {
8025 tree ret;
8026
8027 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8028 STRIP_NOPS (ret);
8029
8030 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8031 GSI_SAME_STMT);
8032 }
8033
8034
8035 \f
8036 /* Emit return warnings. */
8037
8038 static unsigned int
8039 execute_warn_function_return (void)
8040 {
8041 source_location location;
8042 gimple last;
8043 edge e;
8044 edge_iterator ei;
8045
8046 if (!targetm.warn_func_return (cfun->decl))
8047 return 0;
8048
8049 /* If we have a path to EXIT, then we do return. */
8050 if (TREE_THIS_VOLATILE (cfun->decl)
8051 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
8052 {
8053 location = UNKNOWN_LOCATION;
8054 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8055 {
8056 last = last_stmt (e->src);
8057 if ((gimple_code (last) == GIMPLE_RETURN
8058 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8059 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8060 break;
8061 }
8062 if (location == UNKNOWN_LOCATION)
8063 location = cfun->function_end_locus;
8064 warning_at (location, 0, "%<noreturn%> function does return");
8065 }
8066
8067 /* If we see "return;" in some basic block, then we do reach the end
8068 without returning a value. */
8069 else if (warn_return_type
8070 && !TREE_NO_WARNING (cfun->decl)
8071 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
8072 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8073 {
8074 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8075 {
8076 gimple last = last_stmt (e->src);
8077 if (gimple_code (last) == GIMPLE_RETURN
8078 && gimple_return_retval (last) == NULL
8079 && !gimple_no_warning_p (last))
8080 {
8081 location = gimple_location (last);
8082 if (location == UNKNOWN_LOCATION)
8083 location = cfun->function_end_locus;
8084 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8085 TREE_NO_WARNING (cfun->decl) = 1;
8086 break;
8087 }
8088 }
8089 }
8090 return 0;
8091 }
8092
8093
8094 /* Given a basic block B which ends with a conditional and has
8095 precisely two successors, determine which of the edges is taken if
8096 the conditional is true and which is taken if the conditional is
8097 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8098
8099 void
8100 extract_true_false_edges_from_block (basic_block b,
8101 edge *true_edge,
8102 edge *false_edge)
8103 {
8104 edge e = EDGE_SUCC (b, 0);
8105
8106 if (e->flags & EDGE_TRUE_VALUE)
8107 {
8108 *true_edge = e;
8109 *false_edge = EDGE_SUCC (b, 1);
8110 }
8111 else
8112 {
8113 *false_edge = e;
8114 *true_edge = EDGE_SUCC (b, 1);
8115 }
8116 }
8117
8118 namespace {
8119
8120 const pass_data pass_data_warn_function_return =
8121 {
8122 GIMPLE_PASS, /* type */
8123 "*warn_function_return", /* name */
8124 OPTGROUP_NONE, /* optinfo_flags */
8125 false, /* has_gate */
8126 true, /* has_execute */
8127 TV_NONE, /* tv_id */
8128 PROP_cfg, /* properties_required */
8129 0, /* properties_provided */
8130 0, /* properties_destroyed */
8131 0, /* todo_flags_start */
8132 0, /* todo_flags_finish */
8133 };
8134
8135 class pass_warn_function_return : public gimple_opt_pass
8136 {
8137 public:
8138 pass_warn_function_return (gcc::context *ctxt)
8139 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8140 {}
8141
8142 /* opt_pass methods: */
8143 unsigned int execute () { return execute_warn_function_return (); }
8144
8145 }; // class pass_warn_function_return
8146
8147 } // anon namespace
8148
8149 gimple_opt_pass *
8150 make_pass_warn_function_return (gcc::context *ctxt)
8151 {
8152 return new pass_warn_function_return (ctxt);
8153 }
8154
8155 /* Walk a gimplified function and warn for functions whose return value is
8156 ignored and attribute((warn_unused_result)) is set. This is done before
8157 inlining, so we don't have to worry about that. */
8158
8159 static void
8160 do_warn_unused_result (gimple_seq seq)
8161 {
8162 tree fdecl, ftype;
8163 gimple_stmt_iterator i;
8164
8165 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8166 {
8167 gimple g = gsi_stmt (i);
8168
8169 switch (gimple_code (g))
8170 {
8171 case GIMPLE_BIND:
8172 do_warn_unused_result (gimple_bind_body (g));
8173 break;
8174 case GIMPLE_TRY:
8175 do_warn_unused_result (gimple_try_eval (g));
8176 do_warn_unused_result (gimple_try_cleanup (g));
8177 break;
8178 case GIMPLE_CATCH:
8179 do_warn_unused_result (gimple_catch_handler (g));
8180 break;
8181 case GIMPLE_EH_FILTER:
8182 do_warn_unused_result (gimple_eh_filter_failure (g));
8183 break;
8184
8185 case GIMPLE_CALL:
8186 if (gimple_call_lhs (g))
8187 break;
8188 if (gimple_call_internal_p (g))
8189 break;
8190
8191 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8192 LHS. All calls whose value is ignored should be
8193 represented like this. Look for the attribute. */
8194 fdecl = gimple_call_fndecl (g);
8195 ftype = gimple_call_fntype (g);
8196
8197 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8198 {
8199 location_t loc = gimple_location (g);
8200
8201 if (fdecl)
8202 warning_at (loc, OPT_Wunused_result,
8203 "ignoring return value of %qD, "
8204 "declared with attribute warn_unused_result",
8205 fdecl);
8206 else
8207 warning_at (loc, OPT_Wunused_result,
8208 "ignoring return value of function "
8209 "declared with attribute warn_unused_result");
8210 }
8211 break;
8212
8213 default:
8214 /* Not a container, not a call, or a call whose value is used. */
8215 break;
8216 }
8217 }
8218 }
8219
8220 static unsigned int
8221 run_warn_unused_result (void)
8222 {
8223 do_warn_unused_result (gimple_body (current_function_decl));
8224 return 0;
8225 }
8226
8227 static bool
8228 gate_warn_unused_result (void)
8229 {
8230 return flag_warn_unused_result;
8231 }
8232
8233 namespace {
8234
8235 const pass_data pass_data_warn_unused_result =
8236 {
8237 GIMPLE_PASS, /* type */
8238 "*warn_unused_result", /* name */
8239 OPTGROUP_NONE, /* optinfo_flags */
8240 true, /* has_gate */
8241 true, /* has_execute */
8242 TV_NONE, /* tv_id */
8243 PROP_gimple_any, /* properties_required */
8244 0, /* properties_provided */
8245 0, /* properties_destroyed */
8246 0, /* todo_flags_start */
8247 0, /* todo_flags_finish */
8248 };
8249
8250 class pass_warn_unused_result : public gimple_opt_pass
8251 {
8252 public:
8253 pass_warn_unused_result (gcc::context *ctxt)
8254 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8255 {}
8256
8257 /* opt_pass methods: */
8258 bool gate () { return gate_warn_unused_result (); }
8259 unsigned int execute () { return run_warn_unused_result (); }
8260
8261 }; // class pass_warn_unused_result
8262
8263 } // anon namespace
8264
8265 gimple_opt_pass *
8266 make_pass_warn_unused_result (gcc::context *ctxt)
8267 {
8268 return new pass_warn_unused_result (ctxt);
8269 }
8270
8271 /* IPA passes, compilation of earlier functions or inlining
8272 might have changed some properties, such as marked functions nothrow,
8273 pure, const or noreturn.
8274 Remove redundant edges and basic blocks, and create new ones if necessary.
8275
8276 This pass can't be executed as stand alone pass from pass manager, because
8277 in between inlining and this fixup the verify_flow_info would fail. */
8278
8279 unsigned int
8280 execute_fixup_cfg (void)
8281 {
8282 basic_block bb;
8283 gimple_stmt_iterator gsi;
8284 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8285 gcov_type count_scale;
8286 edge e;
8287 edge_iterator ei;
8288
8289 count_scale
8290 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8291 ENTRY_BLOCK_PTR->count);
8292
8293 ENTRY_BLOCK_PTR->count = cgraph_get_node (current_function_decl)->count;
8294 EXIT_BLOCK_PTR->count = apply_scale (EXIT_BLOCK_PTR->count,
8295 count_scale);
8296
8297 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
8298 e->count = apply_scale (e->count, count_scale);
8299
8300 FOR_EACH_BB (bb)
8301 {
8302 bb->count = apply_scale (bb->count, count_scale);
8303 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8304 {
8305 gimple stmt = gsi_stmt (gsi);
8306 tree decl = is_gimple_call (stmt)
8307 ? gimple_call_fndecl (stmt)
8308 : NULL;
8309 if (decl)
8310 {
8311 int flags = gimple_call_flags (stmt);
8312 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8313 {
8314 if (gimple_purge_dead_abnormal_call_edges (bb))
8315 todo |= TODO_cleanup_cfg;
8316
8317 if (gimple_in_ssa_p (cfun))
8318 {
8319 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8320 update_stmt (stmt);
8321 }
8322 }
8323
8324 if (flags & ECF_NORETURN
8325 && fixup_noreturn_call (stmt))
8326 todo |= TODO_cleanup_cfg;
8327 }
8328
8329 if (maybe_clean_eh_stmt (stmt)
8330 && gimple_purge_dead_eh_edges (bb))
8331 todo |= TODO_cleanup_cfg;
8332 }
8333
8334 FOR_EACH_EDGE (e, ei, bb->succs)
8335 e->count = apply_scale (e->count, count_scale);
8336
8337 /* If we have a basic block with no successors that does not
8338 end with a control statement or a noreturn call end it with
8339 a call to __builtin_unreachable. This situation can occur
8340 when inlining a noreturn call that does in fact return. */
8341 if (EDGE_COUNT (bb->succs) == 0)
8342 {
8343 gimple stmt = last_stmt (bb);
8344 if (!stmt
8345 || (!is_ctrl_stmt (stmt)
8346 && (!is_gimple_call (stmt)
8347 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8348 {
8349 stmt = gimple_build_call
8350 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8351 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8352 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8353 }
8354 }
8355 }
8356 if (count_scale != REG_BR_PROB_BASE)
8357 compute_function_frequency ();
8358
8359 /* We just processed all calls. */
8360 if (cfun->gimple_df)
8361 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8362
8363 /* Dump a textual representation of the flowgraph. */
8364 if (dump_file)
8365 gimple_dump_cfg (dump_file, dump_flags);
8366
8367 if (current_loops
8368 && (todo & TODO_cleanup_cfg))
8369 loops_state_set (LOOPS_NEED_FIXUP);
8370
8371 return todo;
8372 }
8373
8374 namespace {
8375
8376 const pass_data pass_data_fixup_cfg =
8377 {
8378 GIMPLE_PASS, /* type */
8379 "*free_cfg_annotations", /* name */
8380 OPTGROUP_NONE, /* optinfo_flags */
8381 false, /* has_gate */
8382 true, /* has_execute */
8383 TV_NONE, /* tv_id */
8384 PROP_cfg, /* properties_required */
8385 0, /* properties_provided */
8386 0, /* properties_destroyed */
8387 0, /* todo_flags_start */
8388 0, /* todo_flags_finish */
8389 };
8390
8391 class pass_fixup_cfg : public gimple_opt_pass
8392 {
8393 public:
8394 pass_fixup_cfg (gcc::context *ctxt)
8395 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8396 {}
8397
8398 /* opt_pass methods: */
8399 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8400 unsigned int execute () { return execute_fixup_cfg (); }
8401
8402 }; // class pass_fixup_cfg
8403
8404 } // anon namespace
8405
8406 gimple_opt_pass *
8407 make_pass_fixup_cfg (gcc::context *ctxt)
8408 {
8409 return new pass_fixup_cfg (ctxt);
8410 }
8411
8412 /* Garbage collection support for edge_def. */
8413
8414 extern void gt_ggc_mx (tree&);
8415 extern void gt_ggc_mx (gimple&);
8416 extern void gt_ggc_mx (rtx&);
8417 extern void gt_ggc_mx (basic_block&);
8418
8419 void
8420 gt_ggc_mx (edge_def *e)
8421 {
8422 tree block = LOCATION_BLOCK (e->goto_locus);
8423 gt_ggc_mx (e->src);
8424 gt_ggc_mx (e->dest);
8425 if (current_ir_type () == IR_GIMPLE)
8426 gt_ggc_mx (e->insns.g);
8427 else
8428 gt_ggc_mx (e->insns.r);
8429 gt_ggc_mx (block);
8430 }
8431
8432 /* PCH support for edge_def. */
8433
8434 extern void gt_pch_nx (tree&);
8435 extern void gt_pch_nx (gimple&);
8436 extern void gt_pch_nx (rtx&);
8437 extern void gt_pch_nx (basic_block&);
8438
8439 void
8440 gt_pch_nx (edge_def *e)
8441 {
8442 tree block = LOCATION_BLOCK (e->goto_locus);
8443 gt_pch_nx (e->src);
8444 gt_pch_nx (e->dest);
8445 if (current_ir_type () == IR_GIMPLE)
8446 gt_pch_nx (e->insns.g);
8447 else
8448 gt_pch_nx (e->insns.r);
8449 gt_pch_nx (block);
8450 }
8451
8452 void
8453 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8454 {
8455 tree block = LOCATION_BLOCK (e->goto_locus);
8456 op (&(e->src), cookie);
8457 op (&(e->dest), cookie);
8458 if (current_ir_type () == IR_GIMPLE)
8459 op (&(e->insns.g), cookie);
8460 else
8461 op (&(e->insns.r), cookie);
8462 op (&(block), cookie);
8463 }