re PR c++/58377 (spurious "may be used uninitialized" warning with -Og)
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "except.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
43 #include "target.h"
44
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
47
48 /* Local declarations. */
49
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity = 20;
52
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
57
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
60
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
65
66 static struct pointer_map_t *edge_to_cases;
67
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
71
72 static bitmap touched_switch_bbs;
73
74 /* CFG statistics. */
75 struct cfg_stats_d
76 {
77 long num_merged_labels;
78 };
79
80 static struct cfg_stats_d cfg_stats;
81
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
84
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
87 {
88 location_t locus;
89 int discriminator;
90 };
91
92 /* Hashtable helpers. */
93
94 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
95 {
96 typedef locus_discrim_map value_type;
97 typedef locus_discrim_map compare_type;
98 static inline hashval_t hash (const value_type *);
99 static inline bool equal (const value_type *, const compare_type *);
100 };
101
102 /* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
104
105 inline hashval_t
106 locus_discrim_hasher::hash (const value_type *item)
107 {
108 return LOCATION_LINE (item->locus);
109 }
110
111 /* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
113
114 inline bool
115 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
116 {
117 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
118 }
119
120 static hash_table <locus_discrim_hasher> discriminator_per_locus;
121
122 /* Basic blocks and flowgraphs. */
123 static void make_blocks (gimple_seq);
124 static void factor_computed_gotos (void);
125
126 /* Edges. */
127 static void make_edges (void);
128 static void assign_discriminators (void);
129 static void make_cond_expr_edges (basic_block);
130 static void make_gimple_switch_edges (basic_block);
131 static void make_goto_expr_edges (basic_block);
132 static void make_gimple_asm_edges (basic_block);
133 static edge gimple_redirect_edge_and_branch (edge, basic_block);
134 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
135 static unsigned int split_critical_edges (void);
136
137 /* Various helpers. */
138 static inline bool stmt_starts_bb_p (gimple, gimple);
139 static int gimple_verify_flow_info (void);
140 static void gimple_make_forwarder_block (edge);
141 static gimple first_non_label_stmt (basic_block);
142 static bool verify_gimple_transaction (gimple);
143
144 /* Flowgraph optimization and cleanup. */
145 static void gimple_merge_blocks (basic_block, basic_block);
146 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
147 static void remove_bb (basic_block);
148 static edge find_taken_edge_computed_goto (basic_block, tree);
149 static edge find_taken_edge_cond_expr (basic_block, tree);
150 static edge find_taken_edge_switch_expr (basic_block, tree);
151 static tree find_case_label_for_value (gimple, tree);
152
153 void
154 init_empty_tree_cfg_for_function (struct function *fn)
155 {
156 /* Initialize the basic block array. */
157 init_flow (fn);
158 profile_status_for_function (fn) = PROFILE_ABSENT;
159 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
160 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
161 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn),
163 initial_cfg_capacity);
164
165 /* Build a mapping of labels to their associated blocks. */
166 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
168 initial_cfg_capacity);
169
170 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
172 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
174
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
179 }
180
181 void
182 init_empty_tree_cfg (void)
183 {
184 init_empty_tree_cfg_for_function (cfun);
185 }
186
187 /*---------------------------------------------------------------------------
188 Create basic blocks
189 ---------------------------------------------------------------------------*/
190
191 /* Entry point to the CFG builder for trees. SEQ is the sequence of
192 statements to be added to the flowgraph. */
193
194 static void
195 build_gimple_cfg (gimple_seq seq)
196 {
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
199
200 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
201
202 init_empty_tree_cfg ();
203
204 found_computed_goto = 0;
205 make_blocks (seq);
206
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto)
213 factor_computed_gotos ();
214
215 /* Make sure there is always at least one block, even if it's empty. */
216 if (n_basic_blocks == NUM_FIXED_BLOCKS)
217 create_empty_bb (ENTRY_BLOCK_PTR);
218
219 /* Adjust the size of the array. */
220 if (basic_block_info->length () < (size_t) n_basic_blocks)
221 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
222
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
225
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
230
231 /* Create the edges of the flowgraph. */
232 discriminator_per_locus.create (13);
233 make_edges ();
234 assign_discriminators ();
235 cleanup_dead_labels ();
236 discriminator_per_locus.dispose ();
237 }
238
239 static unsigned int
240 execute_build_cfg (void)
241 {
242 gimple_seq body = gimple_body (current_function_decl);
243
244 build_gimple_cfg (body);
245 gimple_set_body (current_function_decl, NULL);
246 if (dump_file && (dump_flags & TDF_DETAILS))
247 {
248 fprintf (dump_file, "Scope blocks:\n");
249 dump_scope_blocks (dump_file, dump_flags);
250 }
251 cleanup_tree_cfg ();
252 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
253 return 0;
254 }
255
256 namespace {
257
258 const pass_data pass_data_build_cfg =
259 {
260 GIMPLE_PASS, /* type */
261 "cfg", /* name */
262 OPTGROUP_NONE, /* optinfo_flags */
263 false, /* has_gate */
264 true, /* has_execute */
265 TV_TREE_CFG, /* tv_id */
266 PROP_gimple_leh, /* properties_required */
267 ( PROP_cfg | PROP_loops ), /* properties_provided */
268 0, /* properties_destroyed */
269 0, /* todo_flags_start */
270 TODO_verify_stmts, /* todo_flags_finish */
271 };
272
273 class pass_build_cfg : public gimple_opt_pass
274 {
275 public:
276 pass_build_cfg(gcc::context *ctxt)
277 : gimple_opt_pass(pass_data_build_cfg, ctxt)
278 {}
279
280 /* opt_pass methods: */
281 unsigned int execute () { return execute_build_cfg (); }
282
283 }; // class pass_build_cfg
284
285 } // anon namespace
286
287 gimple_opt_pass *
288 make_pass_build_cfg (gcc::context *ctxt)
289 {
290 return new pass_build_cfg (ctxt);
291 }
292
293
294 /* Return true if T is a computed goto. */
295
296 static bool
297 computed_goto_p (gimple t)
298 {
299 return (gimple_code (t) == GIMPLE_GOTO
300 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
301 }
302
303
304 /* Search the CFG for any computed gotos. If found, factor them to a
305 common computed goto site. Also record the location of that site so
306 that we can un-factor the gotos after we have converted back to
307 normal form. */
308
309 static void
310 factor_computed_gotos (void)
311 {
312 basic_block bb;
313 tree factored_label_decl = NULL;
314 tree var = NULL;
315 gimple factored_computed_goto_label = NULL;
316 gimple factored_computed_goto = NULL;
317
318 /* We know there are one or more computed gotos in this function.
319 Examine the last statement in each basic block to see if the block
320 ends with a computed goto. */
321
322 FOR_EACH_BB (bb)
323 {
324 gimple_stmt_iterator gsi = gsi_last_bb (bb);
325 gimple last;
326
327 if (gsi_end_p (gsi))
328 continue;
329
330 last = gsi_stmt (gsi);
331
332 /* Ignore the computed goto we create when we factor the original
333 computed gotos. */
334 if (last == factored_computed_goto)
335 continue;
336
337 /* If the last statement is a computed goto, factor it. */
338 if (computed_goto_p (last))
339 {
340 gimple assignment;
341
342 /* The first time we find a computed goto we need to create
343 the factored goto block and the variable each original
344 computed goto will use for their goto destination. */
345 if (!factored_computed_goto)
346 {
347 basic_block new_bb = create_empty_bb (bb);
348 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
349
350 /* Create the destination of the factored goto. Each original
351 computed goto will put its desired destination into this
352 variable and jump to the label we create immediately
353 below. */
354 var = create_tmp_var (ptr_type_node, "gotovar");
355
356 /* Build a label for the new block which will contain the
357 factored computed goto. */
358 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
359 factored_computed_goto_label
360 = gimple_build_label (factored_label_decl);
361 gsi_insert_after (&new_gsi, factored_computed_goto_label,
362 GSI_NEW_STMT);
363
364 /* Build our new computed goto. */
365 factored_computed_goto = gimple_build_goto (var);
366 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
367 }
368
369 /* Copy the original computed goto's destination into VAR. */
370 assignment = gimple_build_assign (var, gimple_goto_dest (last));
371 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
372
373 /* And re-vector the computed goto to the new destination. */
374 gimple_goto_set_dest (last, factored_label_decl);
375 }
376 }
377 }
378
379
380 /* Build a flowgraph for the sequence of stmts SEQ. */
381
382 static void
383 make_blocks (gimple_seq seq)
384 {
385 gimple_stmt_iterator i = gsi_start (seq);
386 gimple stmt = NULL;
387 bool start_new_block = true;
388 bool first_stmt_of_seq = true;
389 basic_block bb = ENTRY_BLOCK_PTR;
390
391 while (!gsi_end_p (i))
392 {
393 gimple prev_stmt;
394
395 prev_stmt = stmt;
396 stmt = gsi_stmt (i);
397
398 /* If the statement starts a new basic block or if we have determined
399 in a previous pass that we need to create a new block for STMT, do
400 so now. */
401 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
402 {
403 if (!first_stmt_of_seq)
404 gsi_split_seq_before (&i, &seq);
405 bb = create_basic_block (seq, NULL, bb);
406 start_new_block = false;
407 }
408
409 /* Now add STMT to BB and create the subgraphs for special statement
410 codes. */
411 gimple_set_bb (stmt, bb);
412
413 if (computed_goto_p (stmt))
414 found_computed_goto = true;
415
416 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
417 next iteration. */
418 if (stmt_ends_bb_p (stmt))
419 {
420 /* If the stmt can make abnormal goto use a new temporary
421 for the assignment to the LHS. This makes sure the old value
422 of the LHS is available on the abnormal edge. Otherwise
423 we will end up with overlapping life-ranges for abnormal
424 SSA names. */
425 if (gimple_has_lhs (stmt)
426 && stmt_can_make_abnormal_goto (stmt)
427 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
428 {
429 tree lhs = gimple_get_lhs (stmt);
430 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
431 gimple s = gimple_build_assign (lhs, tmp);
432 gimple_set_location (s, gimple_location (stmt));
433 gimple_set_block (s, gimple_block (stmt));
434 gimple_set_lhs (stmt, tmp);
435 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
436 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
437 DECL_GIMPLE_REG_P (tmp) = 1;
438 gsi_insert_after (&i, s, GSI_SAME_STMT);
439 }
440 start_new_block = true;
441 }
442
443 gsi_next (&i);
444 first_stmt_of_seq = false;
445 }
446 }
447
448
449 /* Create and return a new empty basic block after bb AFTER. */
450
451 static basic_block
452 create_bb (void *h, void *e, basic_block after)
453 {
454 basic_block bb;
455
456 gcc_assert (!e);
457
458 /* Create and initialize a new basic block. Since alloc_block uses
459 GC allocation that clears memory to allocate a basic block, we do
460 not have to clear the newly allocated basic block here. */
461 bb = alloc_block ();
462
463 bb->index = last_basic_block;
464 bb->flags = BB_NEW;
465 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
466
467 /* Add the new block to the linked list of blocks. */
468 link_block (bb, after);
469
470 /* Grow the basic block array if needed. */
471 if ((size_t) last_basic_block == basic_block_info->length ())
472 {
473 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
474 vec_safe_grow_cleared (basic_block_info, new_size);
475 }
476
477 /* Add the newly created block to the array. */
478 SET_BASIC_BLOCK (last_basic_block, bb);
479
480 n_basic_blocks++;
481 last_basic_block++;
482
483 return bb;
484 }
485
486
487 /*---------------------------------------------------------------------------
488 Edge creation
489 ---------------------------------------------------------------------------*/
490
491 /* Fold COND_EXPR_COND of each COND_EXPR. */
492
493 void
494 fold_cond_expr_cond (void)
495 {
496 basic_block bb;
497
498 FOR_EACH_BB (bb)
499 {
500 gimple stmt = last_stmt (bb);
501
502 if (stmt && gimple_code (stmt) == GIMPLE_COND)
503 {
504 location_t loc = gimple_location (stmt);
505 tree cond;
506 bool zerop, onep;
507
508 fold_defer_overflow_warnings ();
509 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
510 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
511 if (cond)
512 {
513 zerop = integer_zerop (cond);
514 onep = integer_onep (cond);
515 }
516 else
517 zerop = onep = false;
518
519 fold_undefer_overflow_warnings (zerop || onep,
520 stmt,
521 WARN_STRICT_OVERFLOW_CONDITIONAL);
522 if (zerop)
523 gimple_cond_make_false (stmt);
524 else if (onep)
525 gimple_cond_make_true (stmt);
526 }
527 }
528 }
529
530 /* Join all the blocks in the flowgraph. */
531
532 static void
533 make_edges (void)
534 {
535 basic_block bb;
536 struct omp_region *cur_region = NULL;
537
538 /* Create an edge from entry to the first block with executable
539 statements in it. */
540 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
541
542 /* Traverse the basic block array placing edges. */
543 FOR_EACH_BB (bb)
544 {
545 gimple last = last_stmt (bb);
546 bool fallthru;
547
548 if (last)
549 {
550 enum gimple_code code = gimple_code (last);
551 switch (code)
552 {
553 case GIMPLE_GOTO:
554 make_goto_expr_edges (bb);
555 fallthru = false;
556 break;
557 case GIMPLE_RETURN:
558 make_edge (bb, EXIT_BLOCK_PTR, 0);
559 fallthru = false;
560 break;
561 case GIMPLE_COND:
562 make_cond_expr_edges (bb);
563 fallthru = false;
564 break;
565 case GIMPLE_SWITCH:
566 make_gimple_switch_edges (bb);
567 fallthru = false;
568 break;
569 case GIMPLE_RESX:
570 make_eh_edges (last);
571 fallthru = false;
572 break;
573 case GIMPLE_EH_DISPATCH:
574 fallthru = make_eh_dispatch_edges (last);
575 break;
576
577 case GIMPLE_CALL:
578 /* If this function receives a nonlocal goto, then we need to
579 make edges from this call site to all the nonlocal goto
580 handlers. */
581 if (stmt_can_make_abnormal_goto (last))
582 make_abnormal_goto_edges (bb, true);
583
584 /* If this statement has reachable exception handlers, then
585 create abnormal edges to them. */
586 make_eh_edges (last);
587
588 /* BUILTIN_RETURN is really a return statement. */
589 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
590 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
591 /* Some calls are known not to return. */
592 else
593 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
594 break;
595
596 case GIMPLE_ASSIGN:
597 /* A GIMPLE_ASSIGN may throw internally and thus be considered
598 control-altering. */
599 if (is_ctrl_altering_stmt (last))
600 make_eh_edges (last);
601 fallthru = true;
602 break;
603
604 case GIMPLE_ASM:
605 make_gimple_asm_edges (bb);
606 fallthru = true;
607 break;
608
609 case GIMPLE_OMP_PARALLEL:
610 case GIMPLE_OMP_TASK:
611 case GIMPLE_OMP_FOR:
612 case GIMPLE_OMP_SINGLE:
613 case GIMPLE_OMP_MASTER:
614 case GIMPLE_OMP_ORDERED:
615 case GIMPLE_OMP_CRITICAL:
616 case GIMPLE_OMP_SECTION:
617 cur_region = new_omp_region (bb, code, cur_region);
618 fallthru = true;
619 break;
620
621 case GIMPLE_OMP_SECTIONS:
622 cur_region = new_omp_region (bb, code, cur_region);
623 fallthru = true;
624 break;
625
626 case GIMPLE_OMP_SECTIONS_SWITCH:
627 fallthru = false;
628 break;
629
630 case GIMPLE_OMP_ATOMIC_LOAD:
631 case GIMPLE_OMP_ATOMIC_STORE:
632 fallthru = true;
633 break;
634
635 case GIMPLE_OMP_RETURN:
636 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
637 somewhere other than the next block. This will be
638 created later. */
639 cur_region->exit = bb;
640 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
641 cur_region = cur_region->outer;
642 break;
643
644 case GIMPLE_OMP_CONTINUE:
645 cur_region->cont = bb;
646 switch (cur_region->type)
647 {
648 case GIMPLE_OMP_FOR:
649 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
650 succs edges as abnormal to prevent splitting
651 them. */
652 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
653 /* Make the loopback edge. */
654 make_edge (bb, single_succ (cur_region->entry),
655 EDGE_ABNORMAL);
656
657 /* Create an edge from GIMPLE_OMP_FOR to exit, which
658 corresponds to the case that the body of the loop
659 is not executed at all. */
660 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
661 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
662 fallthru = false;
663 break;
664
665 case GIMPLE_OMP_SECTIONS:
666 /* Wire up the edges into and out of the nested sections. */
667 {
668 basic_block switch_bb = single_succ (cur_region->entry);
669
670 struct omp_region *i;
671 for (i = cur_region->inner; i ; i = i->next)
672 {
673 gcc_assert (i->type == GIMPLE_OMP_SECTION);
674 make_edge (switch_bb, i->entry, 0);
675 make_edge (i->exit, bb, EDGE_FALLTHRU);
676 }
677
678 /* Make the loopback edge to the block with
679 GIMPLE_OMP_SECTIONS_SWITCH. */
680 make_edge (bb, switch_bb, 0);
681
682 /* Make the edge from the switch to exit. */
683 make_edge (switch_bb, bb->next_bb, 0);
684 fallthru = false;
685 }
686 break;
687
688 default:
689 gcc_unreachable ();
690 }
691 break;
692
693 case GIMPLE_TRANSACTION:
694 {
695 tree abort_label = gimple_transaction_label (last);
696 if (abort_label)
697 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
698 fallthru = true;
699 }
700 break;
701
702 default:
703 gcc_assert (!stmt_ends_bb_p (last));
704 fallthru = true;
705 }
706 }
707 else
708 fallthru = true;
709
710 if (fallthru)
711 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
712 }
713
714 if (root_omp_region)
715 free_omp_regions ();
716
717 /* Fold COND_EXPR_COND of each COND_EXPR. */
718 fold_cond_expr_cond ();
719 }
720
721 /* Find the next available discriminator value for LOCUS. The
722 discriminator distinguishes among several basic blocks that
723 share a common locus, allowing for more accurate sample-based
724 profiling. */
725
726 static int
727 next_discriminator_for_locus (location_t locus)
728 {
729 struct locus_discrim_map item;
730 struct locus_discrim_map **slot;
731
732 item.locus = locus;
733 item.discriminator = 0;
734 slot = discriminator_per_locus.find_slot_with_hash (
735 &item, LOCATION_LINE (locus), INSERT);
736 gcc_assert (slot);
737 if (*slot == HTAB_EMPTY_ENTRY)
738 {
739 *slot = XNEW (struct locus_discrim_map);
740 gcc_assert (*slot);
741 (*slot)->locus = locus;
742 (*slot)->discriminator = 0;
743 }
744 (*slot)->discriminator++;
745 return (*slot)->discriminator;
746 }
747
748 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
749
750 static bool
751 same_line_p (location_t locus1, location_t locus2)
752 {
753 expanded_location from, to;
754
755 if (locus1 == locus2)
756 return true;
757
758 from = expand_location (locus1);
759 to = expand_location (locus2);
760
761 if (from.line != to.line)
762 return false;
763 if (from.file == to.file)
764 return true;
765 return (from.file != NULL
766 && to.file != NULL
767 && filename_cmp (from.file, to.file) == 0);
768 }
769
770 /* Assign discriminators to each basic block. */
771
772 static void
773 assign_discriminators (void)
774 {
775 basic_block bb;
776
777 FOR_EACH_BB (bb)
778 {
779 edge e;
780 edge_iterator ei;
781 gimple last = last_stmt (bb);
782 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
783
784 if (locus == UNKNOWN_LOCATION)
785 continue;
786
787 FOR_EACH_EDGE (e, ei, bb->succs)
788 {
789 gimple first = first_non_label_stmt (e->dest);
790 gimple last = last_stmt (e->dest);
791 if ((first && same_line_p (locus, gimple_location (first)))
792 || (last && same_line_p (locus, gimple_location (last))))
793 {
794 if (e->dest->discriminator != 0 && bb->discriminator == 0)
795 bb->discriminator = next_discriminator_for_locus (locus);
796 else
797 e->dest->discriminator = next_discriminator_for_locus (locus);
798 }
799 }
800 }
801 }
802
803 /* Create the edges for a GIMPLE_COND starting at block BB. */
804
805 static void
806 make_cond_expr_edges (basic_block bb)
807 {
808 gimple entry = last_stmt (bb);
809 gimple then_stmt, else_stmt;
810 basic_block then_bb, else_bb;
811 tree then_label, else_label;
812 edge e;
813
814 gcc_assert (entry);
815 gcc_assert (gimple_code (entry) == GIMPLE_COND);
816
817 /* Entry basic blocks for each component. */
818 then_label = gimple_cond_true_label (entry);
819 else_label = gimple_cond_false_label (entry);
820 then_bb = label_to_block (then_label);
821 else_bb = label_to_block (else_label);
822 then_stmt = first_stmt (then_bb);
823 else_stmt = first_stmt (else_bb);
824
825 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
826 e->goto_locus = gimple_location (then_stmt);
827 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
828 if (e)
829 e->goto_locus = gimple_location (else_stmt);
830
831 /* We do not need the labels anymore. */
832 gimple_cond_set_true_label (entry, NULL_TREE);
833 gimple_cond_set_false_label (entry, NULL_TREE);
834 }
835
836
837 /* Called for each element in the hash table (P) as we delete the
838 edge to cases hash table.
839
840 Clear all the TREE_CHAINs to prevent problems with copying of
841 SWITCH_EXPRs and structure sharing rules, then free the hash table
842 element. */
843
844 static bool
845 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
846 void *data ATTRIBUTE_UNUSED)
847 {
848 tree t, next;
849
850 for (t = (tree) *value; t; t = next)
851 {
852 next = CASE_CHAIN (t);
853 CASE_CHAIN (t) = NULL;
854 }
855
856 *value = NULL;
857 return true;
858 }
859
860 /* Start recording information mapping edges to case labels. */
861
862 void
863 start_recording_case_labels (void)
864 {
865 gcc_assert (edge_to_cases == NULL);
866 edge_to_cases = pointer_map_create ();
867 touched_switch_bbs = BITMAP_ALLOC (NULL);
868 }
869
870 /* Return nonzero if we are recording information for case labels. */
871
872 static bool
873 recording_case_labels_p (void)
874 {
875 return (edge_to_cases != NULL);
876 }
877
878 /* Stop recording information mapping edges to case labels and
879 remove any information we have recorded. */
880 void
881 end_recording_case_labels (void)
882 {
883 bitmap_iterator bi;
884 unsigned i;
885 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
886 pointer_map_destroy (edge_to_cases);
887 edge_to_cases = NULL;
888 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
889 {
890 basic_block bb = BASIC_BLOCK (i);
891 if (bb)
892 {
893 gimple stmt = last_stmt (bb);
894 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
895 group_case_labels_stmt (stmt);
896 }
897 }
898 BITMAP_FREE (touched_switch_bbs);
899 }
900
901 /* If we are inside a {start,end}_recording_cases block, then return
902 a chain of CASE_LABEL_EXPRs from T which reference E.
903
904 Otherwise return NULL. */
905
906 static tree
907 get_cases_for_edge (edge e, gimple t)
908 {
909 void **slot;
910 size_t i, n;
911
912 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
913 chains available. Return NULL so the caller can detect this case. */
914 if (!recording_case_labels_p ())
915 return NULL;
916
917 slot = pointer_map_contains (edge_to_cases, e);
918 if (slot)
919 return (tree) *slot;
920
921 /* If we did not find E in the hash table, then this must be the first
922 time we have been queried for information about E & T. Add all the
923 elements from T to the hash table then perform the query again. */
924
925 n = gimple_switch_num_labels (t);
926 for (i = 0; i < n; i++)
927 {
928 tree elt = gimple_switch_label (t, i);
929 tree lab = CASE_LABEL (elt);
930 basic_block label_bb = label_to_block (lab);
931 edge this_edge = find_edge (e->src, label_bb);
932
933 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
934 a new chain. */
935 slot = pointer_map_insert (edge_to_cases, this_edge);
936 CASE_CHAIN (elt) = (tree) *slot;
937 *slot = elt;
938 }
939
940 return (tree) *pointer_map_contains (edge_to_cases, e);
941 }
942
943 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
944
945 static void
946 make_gimple_switch_edges (basic_block bb)
947 {
948 gimple entry = last_stmt (bb);
949 size_t i, n;
950
951 n = gimple_switch_num_labels (entry);
952
953 for (i = 0; i < n; ++i)
954 {
955 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
956 basic_block label_bb = label_to_block (lab);
957 make_edge (bb, label_bb, 0);
958 }
959 }
960
961
962 /* Return the basic block holding label DEST. */
963
964 basic_block
965 label_to_block_fn (struct function *ifun, tree dest)
966 {
967 int uid = LABEL_DECL_UID (dest);
968
969 /* We would die hard when faced by an undefined label. Emit a label to
970 the very first basic block. This will hopefully make even the dataflow
971 and undefined variable warnings quite right. */
972 if (seen_error () && uid < 0)
973 {
974 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
975 gimple stmt;
976
977 stmt = gimple_build_label (dest);
978 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
979 uid = LABEL_DECL_UID (dest);
980 }
981 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
982 return NULL;
983 return (*ifun->cfg->x_label_to_block_map)[uid];
984 }
985
986 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
987 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
988
989 void
990 make_abnormal_goto_edges (basic_block bb, bool for_call)
991 {
992 basic_block target_bb;
993 gimple_stmt_iterator gsi;
994
995 FOR_EACH_BB (target_bb)
996 {
997 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
998 {
999 gimple label_stmt = gsi_stmt (gsi);
1000 tree target;
1001
1002 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1003 break;
1004
1005 target = gimple_label_label (label_stmt);
1006
1007 /* Make an edge to every label block that has been marked as a
1008 potential target for a computed goto or a non-local goto. */
1009 if ((FORCED_LABEL (target) && !for_call)
1010 || (DECL_NONLOCAL (target) && for_call))
1011 {
1012 make_edge (bb, target_bb, EDGE_ABNORMAL);
1013 break;
1014 }
1015 }
1016 if (!gsi_end_p (gsi))
1017 {
1018 /* Make an edge to every setjmp-like call. */
1019 gimple call_stmt = gsi_stmt (gsi);
1020 if (is_gimple_call (call_stmt)
1021 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1022 make_edge (bb, target_bb, EDGE_ABNORMAL);
1023 }
1024 }
1025 }
1026
1027 /* Create edges for a goto statement at block BB. */
1028
1029 static void
1030 make_goto_expr_edges (basic_block bb)
1031 {
1032 gimple_stmt_iterator last = gsi_last_bb (bb);
1033 gimple goto_t = gsi_stmt (last);
1034
1035 /* A simple GOTO creates normal edges. */
1036 if (simple_goto_p (goto_t))
1037 {
1038 tree dest = gimple_goto_dest (goto_t);
1039 basic_block label_bb = label_to_block (dest);
1040 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1041 e->goto_locus = gimple_location (goto_t);
1042 gsi_remove (&last, true);
1043 return;
1044 }
1045
1046 /* A computed GOTO creates abnormal edges. */
1047 make_abnormal_goto_edges (bb, false);
1048 }
1049
1050 /* Create edges for an asm statement with labels at block BB. */
1051
1052 static void
1053 make_gimple_asm_edges (basic_block bb)
1054 {
1055 gimple stmt = last_stmt (bb);
1056 int i, n = gimple_asm_nlabels (stmt);
1057
1058 for (i = 0; i < n; ++i)
1059 {
1060 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1061 basic_block label_bb = label_to_block (label);
1062 make_edge (bb, label_bb, 0);
1063 }
1064 }
1065
1066 /*---------------------------------------------------------------------------
1067 Flowgraph analysis
1068 ---------------------------------------------------------------------------*/
1069
1070 /* Cleanup useless labels in basic blocks. This is something we wish
1071 to do early because it allows us to group case labels before creating
1072 the edges for the CFG, and it speeds up block statement iterators in
1073 all passes later on.
1074 We rerun this pass after CFG is created, to get rid of the labels that
1075 are no longer referenced. After then we do not run it any more, since
1076 (almost) no new labels should be created. */
1077
1078 /* A map from basic block index to the leading label of that block. */
1079 static struct label_record
1080 {
1081 /* The label. */
1082 tree label;
1083
1084 /* True if the label is referenced from somewhere. */
1085 bool used;
1086 } *label_for_bb;
1087
1088 /* Given LABEL return the first label in the same basic block. */
1089
1090 static tree
1091 main_block_label (tree label)
1092 {
1093 basic_block bb = label_to_block (label);
1094 tree main_label = label_for_bb[bb->index].label;
1095
1096 /* label_to_block possibly inserted undefined label into the chain. */
1097 if (!main_label)
1098 {
1099 label_for_bb[bb->index].label = label;
1100 main_label = label;
1101 }
1102
1103 label_for_bb[bb->index].used = true;
1104 return main_label;
1105 }
1106
1107 /* Clean up redundant labels within the exception tree. */
1108
1109 static void
1110 cleanup_dead_labels_eh (void)
1111 {
1112 eh_landing_pad lp;
1113 eh_region r;
1114 tree lab;
1115 int i;
1116
1117 if (cfun->eh == NULL)
1118 return;
1119
1120 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1121 if (lp && lp->post_landing_pad)
1122 {
1123 lab = main_block_label (lp->post_landing_pad);
1124 if (lab != lp->post_landing_pad)
1125 {
1126 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1127 EH_LANDING_PAD_NR (lab) = lp->index;
1128 }
1129 }
1130
1131 FOR_ALL_EH_REGION (r)
1132 switch (r->type)
1133 {
1134 case ERT_CLEANUP:
1135 case ERT_MUST_NOT_THROW:
1136 break;
1137
1138 case ERT_TRY:
1139 {
1140 eh_catch c;
1141 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1142 {
1143 lab = c->label;
1144 if (lab)
1145 c->label = main_block_label (lab);
1146 }
1147 }
1148 break;
1149
1150 case ERT_ALLOWED_EXCEPTIONS:
1151 lab = r->u.allowed.label;
1152 if (lab)
1153 r->u.allowed.label = main_block_label (lab);
1154 break;
1155 }
1156 }
1157
1158
1159 /* Cleanup redundant labels. This is a three-step process:
1160 1) Find the leading label for each block.
1161 2) Redirect all references to labels to the leading labels.
1162 3) Cleanup all useless labels. */
1163
1164 void
1165 cleanup_dead_labels (void)
1166 {
1167 basic_block bb;
1168 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1169
1170 /* Find a suitable label for each block. We use the first user-defined
1171 label if there is one, or otherwise just the first label we see. */
1172 FOR_EACH_BB (bb)
1173 {
1174 gimple_stmt_iterator i;
1175
1176 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1177 {
1178 tree label;
1179 gimple stmt = gsi_stmt (i);
1180
1181 if (gimple_code (stmt) != GIMPLE_LABEL)
1182 break;
1183
1184 label = gimple_label_label (stmt);
1185
1186 /* If we have not yet seen a label for the current block,
1187 remember this one and see if there are more labels. */
1188 if (!label_for_bb[bb->index].label)
1189 {
1190 label_for_bb[bb->index].label = label;
1191 continue;
1192 }
1193
1194 /* If we did see a label for the current block already, but it
1195 is an artificially created label, replace it if the current
1196 label is a user defined label. */
1197 if (!DECL_ARTIFICIAL (label)
1198 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1199 {
1200 label_for_bb[bb->index].label = label;
1201 break;
1202 }
1203 }
1204 }
1205
1206 /* Now redirect all jumps/branches to the selected label.
1207 First do so for each block ending in a control statement. */
1208 FOR_EACH_BB (bb)
1209 {
1210 gimple stmt = last_stmt (bb);
1211 tree label, new_label;
1212
1213 if (!stmt)
1214 continue;
1215
1216 switch (gimple_code (stmt))
1217 {
1218 case GIMPLE_COND:
1219 label = gimple_cond_true_label (stmt);
1220 if (label)
1221 {
1222 new_label = main_block_label (label);
1223 if (new_label != label)
1224 gimple_cond_set_true_label (stmt, new_label);
1225 }
1226
1227 label = gimple_cond_false_label (stmt);
1228 if (label)
1229 {
1230 new_label = main_block_label (label);
1231 if (new_label != label)
1232 gimple_cond_set_false_label (stmt, new_label);
1233 }
1234 break;
1235
1236 case GIMPLE_SWITCH:
1237 {
1238 size_t i, n = gimple_switch_num_labels (stmt);
1239
1240 /* Replace all destination labels. */
1241 for (i = 0; i < n; ++i)
1242 {
1243 tree case_label = gimple_switch_label (stmt, i);
1244 label = CASE_LABEL (case_label);
1245 new_label = main_block_label (label);
1246 if (new_label != label)
1247 CASE_LABEL (case_label) = new_label;
1248 }
1249 break;
1250 }
1251
1252 case GIMPLE_ASM:
1253 {
1254 int i, n = gimple_asm_nlabels (stmt);
1255
1256 for (i = 0; i < n; ++i)
1257 {
1258 tree cons = gimple_asm_label_op (stmt, i);
1259 tree label = main_block_label (TREE_VALUE (cons));
1260 TREE_VALUE (cons) = label;
1261 }
1262 break;
1263 }
1264
1265 /* We have to handle gotos until they're removed, and we don't
1266 remove them until after we've created the CFG edges. */
1267 case GIMPLE_GOTO:
1268 if (!computed_goto_p (stmt))
1269 {
1270 label = gimple_goto_dest (stmt);
1271 new_label = main_block_label (label);
1272 if (new_label != label)
1273 gimple_goto_set_dest (stmt, new_label);
1274 }
1275 break;
1276
1277 case GIMPLE_TRANSACTION:
1278 {
1279 tree label = gimple_transaction_label (stmt);
1280 if (label)
1281 {
1282 tree new_label = main_block_label (label);
1283 if (new_label != label)
1284 gimple_transaction_set_label (stmt, new_label);
1285 }
1286 }
1287 break;
1288
1289 default:
1290 break;
1291 }
1292 }
1293
1294 /* Do the same for the exception region tree labels. */
1295 cleanup_dead_labels_eh ();
1296
1297 /* Finally, purge dead labels. All user-defined labels and labels that
1298 can be the target of non-local gotos and labels which have their
1299 address taken are preserved. */
1300 FOR_EACH_BB (bb)
1301 {
1302 gimple_stmt_iterator i;
1303 tree label_for_this_bb = label_for_bb[bb->index].label;
1304
1305 if (!label_for_this_bb)
1306 continue;
1307
1308 /* If the main label of the block is unused, we may still remove it. */
1309 if (!label_for_bb[bb->index].used)
1310 label_for_this_bb = NULL;
1311
1312 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1313 {
1314 tree label;
1315 gimple stmt = gsi_stmt (i);
1316
1317 if (gimple_code (stmt) != GIMPLE_LABEL)
1318 break;
1319
1320 label = gimple_label_label (stmt);
1321
1322 if (label == label_for_this_bb
1323 || !DECL_ARTIFICIAL (label)
1324 || DECL_NONLOCAL (label)
1325 || FORCED_LABEL (label))
1326 gsi_next (&i);
1327 else
1328 gsi_remove (&i, true);
1329 }
1330 }
1331
1332 free (label_for_bb);
1333 }
1334
1335 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1336 the ones jumping to the same label.
1337 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1338
1339 void
1340 group_case_labels_stmt (gimple stmt)
1341 {
1342 int old_size = gimple_switch_num_labels (stmt);
1343 int i, j, new_size = old_size;
1344 basic_block default_bb = NULL;
1345
1346 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1347
1348 /* Look for possible opportunities to merge cases. */
1349 i = 1;
1350 while (i < old_size)
1351 {
1352 tree base_case, base_high;
1353 basic_block base_bb;
1354
1355 base_case = gimple_switch_label (stmt, i);
1356
1357 gcc_assert (base_case);
1358 base_bb = label_to_block (CASE_LABEL (base_case));
1359
1360 /* Discard cases that have the same destination as the
1361 default case. */
1362 if (base_bb == default_bb)
1363 {
1364 gimple_switch_set_label (stmt, i, NULL_TREE);
1365 i++;
1366 new_size--;
1367 continue;
1368 }
1369
1370 base_high = CASE_HIGH (base_case)
1371 ? CASE_HIGH (base_case)
1372 : CASE_LOW (base_case);
1373 i++;
1374
1375 /* Try to merge case labels. Break out when we reach the end
1376 of the label vector or when we cannot merge the next case
1377 label with the current one. */
1378 while (i < old_size)
1379 {
1380 tree merge_case = gimple_switch_label (stmt, i);
1381 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1382 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1383
1384 /* Merge the cases if they jump to the same place,
1385 and their ranges are consecutive. */
1386 if (merge_bb == base_bb
1387 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1388 {
1389 base_high = CASE_HIGH (merge_case) ?
1390 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1391 CASE_HIGH (base_case) = base_high;
1392 gimple_switch_set_label (stmt, i, NULL_TREE);
1393 new_size--;
1394 i++;
1395 }
1396 else
1397 break;
1398 }
1399 }
1400
1401 /* Compress the case labels in the label vector, and adjust the
1402 length of the vector. */
1403 for (i = 0, j = 0; i < new_size; i++)
1404 {
1405 while (! gimple_switch_label (stmt, j))
1406 j++;
1407 gimple_switch_set_label (stmt, i,
1408 gimple_switch_label (stmt, j++));
1409 }
1410
1411 gcc_assert (new_size <= old_size);
1412 gimple_switch_set_num_labels (stmt, new_size);
1413 }
1414
1415 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1416 and scan the sorted vector of cases. Combine the ones jumping to the
1417 same label. */
1418
1419 void
1420 group_case_labels (void)
1421 {
1422 basic_block bb;
1423
1424 FOR_EACH_BB (bb)
1425 {
1426 gimple stmt = last_stmt (bb);
1427 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1428 group_case_labels_stmt (stmt);
1429 }
1430 }
1431
1432 /* Checks whether we can merge block B into block A. */
1433
1434 static bool
1435 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1436 {
1437 gimple stmt;
1438 gimple_stmt_iterator gsi;
1439
1440 if (!single_succ_p (a))
1441 return false;
1442
1443 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1444 return false;
1445
1446 if (single_succ (a) != b)
1447 return false;
1448
1449 if (!single_pred_p (b))
1450 return false;
1451
1452 if (b == EXIT_BLOCK_PTR)
1453 return false;
1454
1455 /* If A ends by a statement causing exceptions or something similar, we
1456 cannot merge the blocks. */
1457 stmt = last_stmt (a);
1458 if (stmt && stmt_ends_bb_p (stmt))
1459 return false;
1460
1461 /* Do not allow a block with only a non-local label to be merged. */
1462 if (stmt
1463 && gimple_code (stmt) == GIMPLE_LABEL
1464 && DECL_NONLOCAL (gimple_label_label (stmt)))
1465 return false;
1466
1467 /* Examine the labels at the beginning of B. */
1468 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1469 {
1470 tree lab;
1471 stmt = gsi_stmt (gsi);
1472 if (gimple_code (stmt) != GIMPLE_LABEL)
1473 break;
1474 lab = gimple_label_label (stmt);
1475
1476 /* Do not remove user forced labels or for -O0 any user labels. */
1477 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1478 return false;
1479 }
1480
1481 /* Protect the loop latches. */
1482 if (current_loops && b->loop_father->latch == b)
1483 return false;
1484
1485 /* It must be possible to eliminate all phi nodes in B. If ssa form
1486 is not up-to-date and a name-mapping is registered, we cannot eliminate
1487 any phis. Symbols marked for renaming are never a problem though. */
1488 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1489 {
1490 gimple phi = gsi_stmt (gsi);
1491 /* Technically only new names matter. */
1492 if (name_registered_for_update_p (PHI_RESULT (phi)))
1493 return false;
1494 }
1495
1496 /* When not optimizing, don't merge if we'd lose goto_locus. */
1497 if (!optimize
1498 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1499 {
1500 location_t goto_locus = single_succ_edge (a)->goto_locus;
1501 gimple_stmt_iterator prev, next;
1502 prev = gsi_last_nondebug_bb (a);
1503 next = gsi_after_labels (b);
1504 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1505 gsi_next_nondebug (&next);
1506 if ((gsi_end_p (prev)
1507 || gimple_location (gsi_stmt (prev)) != goto_locus)
1508 && (gsi_end_p (next)
1509 || gimple_location (gsi_stmt (next)) != goto_locus))
1510 return false;
1511 }
1512
1513 return true;
1514 }
1515
1516 /* Return true if the var whose chain of uses starts at PTR has no
1517 nondebug uses. */
1518 bool
1519 has_zero_uses_1 (const ssa_use_operand_t *head)
1520 {
1521 const ssa_use_operand_t *ptr;
1522
1523 for (ptr = head->next; ptr != head; ptr = ptr->next)
1524 if (!is_gimple_debug (USE_STMT (ptr)))
1525 return false;
1526
1527 return true;
1528 }
1529
1530 /* Return true if the var whose chain of uses starts at PTR has a
1531 single nondebug use. Set USE_P and STMT to that single nondebug
1532 use, if so, or to NULL otherwise. */
1533 bool
1534 single_imm_use_1 (const ssa_use_operand_t *head,
1535 use_operand_p *use_p, gimple *stmt)
1536 {
1537 ssa_use_operand_t *ptr, *single_use = 0;
1538
1539 for (ptr = head->next; ptr != head; ptr = ptr->next)
1540 if (!is_gimple_debug (USE_STMT (ptr)))
1541 {
1542 if (single_use)
1543 {
1544 single_use = NULL;
1545 break;
1546 }
1547 single_use = ptr;
1548 }
1549
1550 if (use_p)
1551 *use_p = single_use;
1552
1553 if (stmt)
1554 *stmt = single_use ? single_use->loc.stmt : NULL;
1555
1556 return !!single_use;
1557 }
1558
1559 /* Replaces all uses of NAME by VAL. */
1560
1561 void
1562 replace_uses_by (tree name, tree val)
1563 {
1564 imm_use_iterator imm_iter;
1565 use_operand_p use;
1566 gimple stmt;
1567 edge e;
1568
1569 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1570 {
1571 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1572 {
1573 replace_exp (use, val);
1574
1575 if (gimple_code (stmt) == GIMPLE_PHI)
1576 {
1577 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1578 if (e->flags & EDGE_ABNORMAL)
1579 {
1580 /* This can only occur for virtual operands, since
1581 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1582 would prevent replacement. */
1583 gcc_checking_assert (virtual_operand_p (name));
1584 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1585 }
1586 }
1587 }
1588
1589 if (gimple_code (stmt) != GIMPLE_PHI)
1590 {
1591 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1592 gimple orig_stmt = stmt;
1593 size_t i;
1594
1595 /* Mark the block if we changed the last stmt in it. */
1596 if (cfgcleanup_altered_bbs
1597 && stmt_ends_bb_p (stmt))
1598 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1599
1600 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1601 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1602 only change sth from non-invariant to invariant, and only
1603 when propagating constants. */
1604 if (is_gimple_min_invariant (val))
1605 for (i = 0; i < gimple_num_ops (stmt); i++)
1606 {
1607 tree op = gimple_op (stmt, i);
1608 /* Operands may be empty here. For example, the labels
1609 of a GIMPLE_COND are nulled out following the creation
1610 of the corresponding CFG edges. */
1611 if (op && TREE_CODE (op) == ADDR_EXPR)
1612 recompute_tree_invariant_for_addr_expr (op);
1613 }
1614
1615 if (fold_stmt (&gsi))
1616 stmt = gsi_stmt (gsi);
1617
1618 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1619 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1620
1621 update_stmt (stmt);
1622 }
1623 }
1624
1625 gcc_checking_assert (has_zero_uses (name));
1626
1627 /* Also update the trees stored in loop structures. */
1628 if (current_loops)
1629 {
1630 struct loop *loop;
1631 loop_iterator li;
1632
1633 FOR_EACH_LOOP (li, loop, 0)
1634 {
1635 substitute_in_loop_info (loop, name, val);
1636 }
1637 }
1638 }
1639
1640 /* Merge block B into block A. */
1641
1642 static void
1643 gimple_merge_blocks (basic_block a, basic_block b)
1644 {
1645 gimple_stmt_iterator last, gsi, psi;
1646
1647 if (dump_file)
1648 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1649
1650 /* Remove all single-valued PHI nodes from block B of the form
1651 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1652 gsi = gsi_last_bb (a);
1653 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1654 {
1655 gimple phi = gsi_stmt (psi);
1656 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1657 gimple copy;
1658 bool may_replace_uses = (virtual_operand_p (def)
1659 || may_propagate_copy (def, use));
1660
1661 /* In case we maintain loop closed ssa form, do not propagate arguments
1662 of loop exit phi nodes. */
1663 if (current_loops
1664 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1665 && !virtual_operand_p (def)
1666 && TREE_CODE (use) == SSA_NAME
1667 && a->loop_father != b->loop_father)
1668 may_replace_uses = false;
1669
1670 if (!may_replace_uses)
1671 {
1672 gcc_assert (!virtual_operand_p (def));
1673
1674 /* Note that just emitting the copies is fine -- there is no problem
1675 with ordering of phi nodes. This is because A is the single
1676 predecessor of B, therefore results of the phi nodes cannot
1677 appear as arguments of the phi nodes. */
1678 copy = gimple_build_assign (def, use);
1679 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1680 remove_phi_node (&psi, false);
1681 }
1682 else
1683 {
1684 /* If we deal with a PHI for virtual operands, we can simply
1685 propagate these without fussing with folding or updating
1686 the stmt. */
1687 if (virtual_operand_p (def))
1688 {
1689 imm_use_iterator iter;
1690 use_operand_p use_p;
1691 gimple stmt;
1692
1693 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1694 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1695 SET_USE (use_p, use);
1696
1697 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1698 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1699 }
1700 else
1701 replace_uses_by (def, use);
1702
1703 remove_phi_node (&psi, true);
1704 }
1705 }
1706
1707 /* Ensure that B follows A. */
1708 move_block_after (b, a);
1709
1710 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1711 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1712
1713 /* Remove labels from B and set gimple_bb to A for other statements. */
1714 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1715 {
1716 gimple stmt = gsi_stmt (gsi);
1717 if (gimple_code (stmt) == GIMPLE_LABEL)
1718 {
1719 tree label = gimple_label_label (stmt);
1720 int lp_nr;
1721
1722 gsi_remove (&gsi, false);
1723
1724 /* Now that we can thread computed gotos, we might have
1725 a situation where we have a forced label in block B
1726 However, the label at the start of block B might still be
1727 used in other ways (think about the runtime checking for
1728 Fortran assigned gotos). So we can not just delete the
1729 label. Instead we move the label to the start of block A. */
1730 if (FORCED_LABEL (label))
1731 {
1732 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1733 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1734 }
1735 /* Other user labels keep around in a form of a debug stmt. */
1736 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1737 {
1738 gimple dbg = gimple_build_debug_bind (label,
1739 integer_zero_node,
1740 stmt);
1741 gimple_debug_bind_reset_value (dbg);
1742 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1743 }
1744
1745 lp_nr = EH_LANDING_PAD_NR (label);
1746 if (lp_nr)
1747 {
1748 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1749 lp->post_landing_pad = NULL;
1750 }
1751 }
1752 else
1753 {
1754 gimple_set_bb (stmt, a);
1755 gsi_next (&gsi);
1756 }
1757 }
1758
1759 /* Merge the sequences. */
1760 last = gsi_last_bb (a);
1761 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1762 set_bb_seq (b, NULL);
1763
1764 if (cfgcleanup_altered_bbs)
1765 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1766 }
1767
1768
1769 /* Return the one of two successors of BB that is not reachable by a
1770 complex edge, if there is one. Else, return BB. We use
1771 this in optimizations that use post-dominators for their heuristics,
1772 to catch the cases in C++ where function calls are involved. */
1773
1774 basic_block
1775 single_noncomplex_succ (basic_block bb)
1776 {
1777 edge e0, e1;
1778 if (EDGE_COUNT (bb->succs) != 2)
1779 return bb;
1780
1781 e0 = EDGE_SUCC (bb, 0);
1782 e1 = EDGE_SUCC (bb, 1);
1783 if (e0->flags & EDGE_COMPLEX)
1784 return e1->dest;
1785 if (e1->flags & EDGE_COMPLEX)
1786 return e0->dest;
1787
1788 return bb;
1789 }
1790
1791 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1792
1793 void
1794 notice_special_calls (gimple call)
1795 {
1796 int flags = gimple_call_flags (call);
1797
1798 if (flags & ECF_MAY_BE_ALLOCA)
1799 cfun->calls_alloca = true;
1800 if (flags & ECF_RETURNS_TWICE)
1801 cfun->calls_setjmp = true;
1802 }
1803
1804
1805 /* Clear flags set by notice_special_calls. Used by dead code removal
1806 to update the flags. */
1807
1808 void
1809 clear_special_calls (void)
1810 {
1811 cfun->calls_alloca = false;
1812 cfun->calls_setjmp = false;
1813 }
1814
1815 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1816
1817 static void
1818 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1819 {
1820 /* Since this block is no longer reachable, we can just delete all
1821 of its PHI nodes. */
1822 remove_phi_nodes (bb);
1823
1824 /* Remove edges to BB's successors. */
1825 while (EDGE_COUNT (bb->succs) > 0)
1826 remove_edge (EDGE_SUCC (bb, 0));
1827 }
1828
1829
1830 /* Remove statements of basic block BB. */
1831
1832 static void
1833 remove_bb (basic_block bb)
1834 {
1835 gimple_stmt_iterator i;
1836
1837 if (dump_file)
1838 {
1839 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1840 if (dump_flags & TDF_DETAILS)
1841 {
1842 dump_bb (dump_file, bb, 0, dump_flags);
1843 fprintf (dump_file, "\n");
1844 }
1845 }
1846
1847 if (current_loops)
1848 {
1849 struct loop *loop = bb->loop_father;
1850
1851 /* If a loop gets removed, clean up the information associated
1852 with it. */
1853 if (loop->latch == bb
1854 || loop->header == bb)
1855 free_numbers_of_iterations_estimates_loop (loop);
1856 }
1857
1858 /* Remove all the instructions in the block. */
1859 if (bb_seq (bb) != NULL)
1860 {
1861 /* Walk backwards so as to get a chance to substitute all
1862 released DEFs into debug stmts. See
1863 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1864 details. */
1865 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1866 {
1867 gimple stmt = gsi_stmt (i);
1868 if (gimple_code (stmt) == GIMPLE_LABEL
1869 && (FORCED_LABEL (gimple_label_label (stmt))
1870 || DECL_NONLOCAL (gimple_label_label (stmt))))
1871 {
1872 basic_block new_bb;
1873 gimple_stmt_iterator new_gsi;
1874
1875 /* A non-reachable non-local label may still be referenced.
1876 But it no longer needs to carry the extra semantics of
1877 non-locality. */
1878 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1879 {
1880 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1881 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1882 }
1883
1884 new_bb = bb->prev_bb;
1885 new_gsi = gsi_start_bb (new_bb);
1886 gsi_remove (&i, false);
1887 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1888 }
1889 else
1890 {
1891 /* Release SSA definitions if we are in SSA. Note that we
1892 may be called when not in SSA. For example,
1893 final_cleanup calls this function via
1894 cleanup_tree_cfg. */
1895 if (gimple_in_ssa_p (cfun))
1896 release_defs (stmt);
1897
1898 gsi_remove (&i, true);
1899 }
1900
1901 if (gsi_end_p (i))
1902 i = gsi_last_bb (bb);
1903 else
1904 gsi_prev (&i);
1905 }
1906 }
1907
1908 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1909 bb->il.gimple.seq = NULL;
1910 bb->il.gimple.phi_nodes = NULL;
1911 }
1912
1913
1914 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1915 predicate VAL, return the edge that will be taken out of the block.
1916 If VAL does not match a unique edge, NULL is returned. */
1917
1918 edge
1919 find_taken_edge (basic_block bb, tree val)
1920 {
1921 gimple stmt;
1922
1923 stmt = last_stmt (bb);
1924
1925 gcc_assert (stmt);
1926 gcc_assert (is_ctrl_stmt (stmt));
1927
1928 if (val == NULL)
1929 return NULL;
1930
1931 if (!is_gimple_min_invariant (val))
1932 return NULL;
1933
1934 if (gimple_code (stmt) == GIMPLE_COND)
1935 return find_taken_edge_cond_expr (bb, val);
1936
1937 if (gimple_code (stmt) == GIMPLE_SWITCH)
1938 return find_taken_edge_switch_expr (bb, val);
1939
1940 if (computed_goto_p (stmt))
1941 {
1942 /* Only optimize if the argument is a label, if the argument is
1943 not a label then we can not construct a proper CFG.
1944
1945 It may be the case that we only need to allow the LABEL_REF to
1946 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1947 appear inside a LABEL_EXPR just to be safe. */
1948 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1949 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1950 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1951 return NULL;
1952 }
1953
1954 gcc_unreachable ();
1955 }
1956
1957 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1958 statement, determine which of the outgoing edges will be taken out of the
1959 block. Return NULL if either edge may be taken. */
1960
1961 static edge
1962 find_taken_edge_computed_goto (basic_block bb, tree val)
1963 {
1964 basic_block dest;
1965 edge e = NULL;
1966
1967 dest = label_to_block (val);
1968 if (dest)
1969 {
1970 e = find_edge (bb, dest);
1971 gcc_assert (e != NULL);
1972 }
1973
1974 return e;
1975 }
1976
1977 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1978 statement, determine which of the two edges will be taken out of the
1979 block. Return NULL if either edge may be taken. */
1980
1981 static edge
1982 find_taken_edge_cond_expr (basic_block bb, tree val)
1983 {
1984 edge true_edge, false_edge;
1985
1986 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1987
1988 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1989 return (integer_zerop (val) ? false_edge : true_edge);
1990 }
1991
1992 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1993 statement, determine which edge will be taken out of the block. Return
1994 NULL if any edge may be taken. */
1995
1996 static edge
1997 find_taken_edge_switch_expr (basic_block bb, tree val)
1998 {
1999 basic_block dest_bb;
2000 edge e;
2001 gimple switch_stmt;
2002 tree taken_case;
2003
2004 switch_stmt = last_stmt (bb);
2005 taken_case = find_case_label_for_value (switch_stmt, val);
2006 dest_bb = label_to_block (CASE_LABEL (taken_case));
2007
2008 e = find_edge (bb, dest_bb);
2009 gcc_assert (e);
2010 return e;
2011 }
2012
2013
2014 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2015 We can make optimal use here of the fact that the case labels are
2016 sorted: We can do a binary search for a case matching VAL. */
2017
2018 static tree
2019 find_case_label_for_value (gimple switch_stmt, tree val)
2020 {
2021 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2022 tree default_case = gimple_switch_default_label (switch_stmt);
2023
2024 for (low = 0, high = n; high - low > 1; )
2025 {
2026 size_t i = (high + low) / 2;
2027 tree t = gimple_switch_label (switch_stmt, i);
2028 int cmp;
2029
2030 /* Cache the result of comparing CASE_LOW and val. */
2031 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2032
2033 if (cmp > 0)
2034 high = i;
2035 else
2036 low = i;
2037
2038 if (CASE_HIGH (t) == NULL)
2039 {
2040 /* A singe-valued case label. */
2041 if (cmp == 0)
2042 return t;
2043 }
2044 else
2045 {
2046 /* A case range. We can only handle integer ranges. */
2047 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2048 return t;
2049 }
2050 }
2051
2052 return default_case;
2053 }
2054
2055
2056 /* Dump a basic block on stderr. */
2057
2058 void
2059 gimple_debug_bb (basic_block bb)
2060 {
2061 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2062 }
2063
2064
2065 /* Dump basic block with index N on stderr. */
2066
2067 basic_block
2068 gimple_debug_bb_n (int n)
2069 {
2070 gimple_debug_bb (BASIC_BLOCK (n));
2071 return BASIC_BLOCK (n);
2072 }
2073
2074
2075 /* Dump the CFG on stderr.
2076
2077 FLAGS are the same used by the tree dumping functions
2078 (see TDF_* in dumpfile.h). */
2079
2080 void
2081 gimple_debug_cfg (int flags)
2082 {
2083 gimple_dump_cfg (stderr, flags);
2084 }
2085
2086
2087 /* Dump the program showing basic block boundaries on the given FILE.
2088
2089 FLAGS are the same used by the tree dumping functions (see TDF_* in
2090 tree.h). */
2091
2092 void
2093 gimple_dump_cfg (FILE *file, int flags)
2094 {
2095 if (flags & TDF_DETAILS)
2096 {
2097 dump_function_header (file, current_function_decl, flags);
2098 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2099 n_basic_blocks, n_edges, last_basic_block);
2100
2101 brief_dump_cfg (file, flags | TDF_COMMENT);
2102 fprintf (file, "\n");
2103 }
2104
2105 if (flags & TDF_STATS)
2106 dump_cfg_stats (file);
2107
2108 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2109 }
2110
2111
2112 /* Dump CFG statistics on FILE. */
2113
2114 void
2115 dump_cfg_stats (FILE *file)
2116 {
2117 static long max_num_merged_labels = 0;
2118 unsigned long size, total = 0;
2119 long num_edges;
2120 basic_block bb;
2121 const char * const fmt_str = "%-30s%-13s%12s\n";
2122 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2123 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2124 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2125 const char *funcname = current_function_name ();
2126
2127 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2128
2129 fprintf (file, "---------------------------------------------------------\n");
2130 fprintf (file, fmt_str, "", " Number of ", "Memory");
2131 fprintf (file, fmt_str, "", " instances ", "used ");
2132 fprintf (file, "---------------------------------------------------------\n");
2133
2134 size = n_basic_blocks * sizeof (struct basic_block_def);
2135 total += size;
2136 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2137 SCALE (size), LABEL (size));
2138
2139 num_edges = 0;
2140 FOR_EACH_BB (bb)
2141 num_edges += EDGE_COUNT (bb->succs);
2142 size = num_edges * sizeof (struct edge_def);
2143 total += size;
2144 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2145
2146 fprintf (file, "---------------------------------------------------------\n");
2147 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2148 LABEL (total));
2149 fprintf (file, "---------------------------------------------------------\n");
2150 fprintf (file, "\n");
2151
2152 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2153 max_num_merged_labels = cfg_stats.num_merged_labels;
2154
2155 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2156 cfg_stats.num_merged_labels, max_num_merged_labels);
2157
2158 fprintf (file, "\n");
2159 }
2160
2161
2162 /* Dump CFG statistics on stderr. Keep extern so that it's always
2163 linked in the final executable. */
2164
2165 DEBUG_FUNCTION void
2166 debug_cfg_stats (void)
2167 {
2168 dump_cfg_stats (stderr);
2169 }
2170
2171 /*---------------------------------------------------------------------------
2172 Miscellaneous helpers
2173 ---------------------------------------------------------------------------*/
2174
2175 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2176 flow. Transfers of control flow associated with EH are excluded. */
2177
2178 static bool
2179 call_can_make_abnormal_goto (gimple t)
2180 {
2181 /* If the function has no non-local labels, then a call cannot make an
2182 abnormal transfer of control. */
2183 if (!cfun->has_nonlocal_label
2184 && !cfun->calls_setjmp)
2185 return false;
2186
2187 /* Likewise if the call has no side effects. */
2188 if (!gimple_has_side_effects (t))
2189 return false;
2190
2191 /* Likewise if the called function is leaf. */
2192 if (gimple_call_flags (t) & ECF_LEAF)
2193 return false;
2194
2195 return true;
2196 }
2197
2198
2199 /* Return true if T can make an abnormal transfer of control flow.
2200 Transfers of control flow associated with EH are excluded. */
2201
2202 bool
2203 stmt_can_make_abnormal_goto (gimple t)
2204 {
2205 if (computed_goto_p (t))
2206 return true;
2207 if (is_gimple_call (t))
2208 return call_can_make_abnormal_goto (t);
2209 return false;
2210 }
2211
2212
2213 /* Return true if T represents a stmt that always transfers control. */
2214
2215 bool
2216 is_ctrl_stmt (gimple t)
2217 {
2218 switch (gimple_code (t))
2219 {
2220 case GIMPLE_COND:
2221 case GIMPLE_SWITCH:
2222 case GIMPLE_GOTO:
2223 case GIMPLE_RETURN:
2224 case GIMPLE_RESX:
2225 return true;
2226 default:
2227 return false;
2228 }
2229 }
2230
2231
2232 /* Return true if T is a statement that may alter the flow of control
2233 (e.g., a call to a non-returning function). */
2234
2235 bool
2236 is_ctrl_altering_stmt (gimple t)
2237 {
2238 gcc_assert (t);
2239
2240 switch (gimple_code (t))
2241 {
2242 case GIMPLE_CALL:
2243 {
2244 int flags = gimple_call_flags (t);
2245
2246 /* A call alters control flow if it can make an abnormal goto. */
2247 if (call_can_make_abnormal_goto (t))
2248 return true;
2249
2250 /* A call also alters control flow if it does not return. */
2251 if (flags & ECF_NORETURN)
2252 return true;
2253
2254 /* TM ending statements have backedges out of the transaction.
2255 Return true so we split the basic block containing them.
2256 Note that the TM_BUILTIN test is merely an optimization. */
2257 if ((flags & ECF_TM_BUILTIN)
2258 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2259 return true;
2260
2261 /* BUILT_IN_RETURN call is same as return statement. */
2262 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2263 return true;
2264 }
2265 break;
2266
2267 case GIMPLE_EH_DISPATCH:
2268 /* EH_DISPATCH branches to the individual catch handlers at
2269 this level of a try or allowed-exceptions region. It can
2270 fallthru to the next statement as well. */
2271 return true;
2272
2273 case GIMPLE_ASM:
2274 if (gimple_asm_nlabels (t) > 0)
2275 return true;
2276 break;
2277
2278 CASE_GIMPLE_OMP:
2279 /* OpenMP directives alter control flow. */
2280 return true;
2281
2282 case GIMPLE_TRANSACTION:
2283 /* A transaction start alters control flow. */
2284 return true;
2285
2286 default:
2287 break;
2288 }
2289
2290 /* If a statement can throw, it alters control flow. */
2291 return stmt_can_throw_internal (t);
2292 }
2293
2294
2295 /* Return true if T is a simple local goto. */
2296
2297 bool
2298 simple_goto_p (gimple t)
2299 {
2300 return (gimple_code (t) == GIMPLE_GOTO
2301 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2302 }
2303
2304
2305 /* Return true if STMT should start a new basic block. PREV_STMT is
2306 the statement preceding STMT. It is used when STMT is a label or a
2307 case label. Labels should only start a new basic block if their
2308 previous statement wasn't a label. Otherwise, sequence of labels
2309 would generate unnecessary basic blocks that only contain a single
2310 label. */
2311
2312 static inline bool
2313 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2314 {
2315 if (stmt == NULL)
2316 return false;
2317
2318 /* Labels start a new basic block only if the preceding statement
2319 wasn't a label of the same type. This prevents the creation of
2320 consecutive blocks that have nothing but a single label. */
2321 if (gimple_code (stmt) == GIMPLE_LABEL)
2322 {
2323 /* Nonlocal and computed GOTO targets always start a new block. */
2324 if (DECL_NONLOCAL (gimple_label_label (stmt))
2325 || FORCED_LABEL (gimple_label_label (stmt)))
2326 return true;
2327
2328 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2329 {
2330 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2331 return true;
2332
2333 cfg_stats.num_merged_labels++;
2334 return false;
2335 }
2336 else
2337 return true;
2338 }
2339 else if (gimple_code (stmt) == GIMPLE_CALL
2340 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2341 /* setjmp acts similar to a nonlocal GOTO target and thus should
2342 start a new block. */
2343 return true;
2344
2345 return false;
2346 }
2347
2348
2349 /* Return true if T should end a basic block. */
2350
2351 bool
2352 stmt_ends_bb_p (gimple t)
2353 {
2354 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2355 }
2356
2357 /* Remove block annotations and other data structures. */
2358
2359 void
2360 delete_tree_cfg_annotations (void)
2361 {
2362 vec_free (label_to_block_map);
2363 }
2364
2365
2366 /* Return the first statement in basic block BB. */
2367
2368 gimple
2369 first_stmt (basic_block bb)
2370 {
2371 gimple_stmt_iterator i = gsi_start_bb (bb);
2372 gimple stmt = NULL;
2373
2374 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2375 {
2376 gsi_next (&i);
2377 stmt = NULL;
2378 }
2379 return stmt;
2380 }
2381
2382 /* Return the first non-label statement in basic block BB. */
2383
2384 static gimple
2385 first_non_label_stmt (basic_block bb)
2386 {
2387 gimple_stmt_iterator i = gsi_start_bb (bb);
2388 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2389 gsi_next (&i);
2390 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2391 }
2392
2393 /* Return the last statement in basic block BB. */
2394
2395 gimple
2396 last_stmt (basic_block bb)
2397 {
2398 gimple_stmt_iterator i = gsi_last_bb (bb);
2399 gimple stmt = NULL;
2400
2401 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2402 {
2403 gsi_prev (&i);
2404 stmt = NULL;
2405 }
2406 return stmt;
2407 }
2408
2409 /* Return the last statement of an otherwise empty block. Return NULL
2410 if the block is totally empty, or if it contains more than one
2411 statement. */
2412
2413 gimple
2414 last_and_only_stmt (basic_block bb)
2415 {
2416 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2417 gimple last, prev;
2418
2419 if (gsi_end_p (i))
2420 return NULL;
2421
2422 last = gsi_stmt (i);
2423 gsi_prev_nondebug (&i);
2424 if (gsi_end_p (i))
2425 return last;
2426
2427 /* Empty statements should no longer appear in the instruction stream.
2428 Everything that might have appeared before should be deleted by
2429 remove_useless_stmts, and the optimizers should just gsi_remove
2430 instead of smashing with build_empty_stmt.
2431
2432 Thus the only thing that should appear here in a block containing
2433 one executable statement is a label. */
2434 prev = gsi_stmt (i);
2435 if (gimple_code (prev) == GIMPLE_LABEL)
2436 return last;
2437 else
2438 return NULL;
2439 }
2440
2441 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2442
2443 static void
2444 reinstall_phi_args (edge new_edge, edge old_edge)
2445 {
2446 edge_var_map_vector *v;
2447 edge_var_map *vm;
2448 int i;
2449 gimple_stmt_iterator phis;
2450
2451 v = redirect_edge_var_map_vector (old_edge);
2452 if (!v)
2453 return;
2454
2455 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2456 v->iterate (i, &vm) && !gsi_end_p (phis);
2457 i++, gsi_next (&phis))
2458 {
2459 gimple phi = gsi_stmt (phis);
2460 tree result = redirect_edge_var_map_result (vm);
2461 tree arg = redirect_edge_var_map_def (vm);
2462
2463 gcc_assert (result == gimple_phi_result (phi));
2464
2465 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2466 }
2467
2468 redirect_edge_var_map_clear (old_edge);
2469 }
2470
2471 /* Returns the basic block after which the new basic block created
2472 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2473 near its "logical" location. This is of most help to humans looking
2474 at debugging dumps. */
2475
2476 static basic_block
2477 split_edge_bb_loc (edge edge_in)
2478 {
2479 basic_block dest = edge_in->dest;
2480 basic_block dest_prev = dest->prev_bb;
2481
2482 if (dest_prev)
2483 {
2484 edge e = find_edge (dest_prev, dest);
2485 if (e && !(e->flags & EDGE_COMPLEX))
2486 return edge_in->src;
2487 }
2488 return dest_prev;
2489 }
2490
2491 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2492 Abort on abnormal edges. */
2493
2494 static basic_block
2495 gimple_split_edge (edge edge_in)
2496 {
2497 basic_block new_bb, after_bb, dest;
2498 edge new_edge, e;
2499
2500 /* Abnormal edges cannot be split. */
2501 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2502
2503 dest = edge_in->dest;
2504
2505 after_bb = split_edge_bb_loc (edge_in);
2506
2507 new_bb = create_empty_bb (after_bb);
2508 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2509 new_bb->count = edge_in->count;
2510 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2511 new_edge->probability = REG_BR_PROB_BASE;
2512 new_edge->count = edge_in->count;
2513
2514 e = redirect_edge_and_branch (edge_in, new_bb);
2515 gcc_assert (e == edge_in);
2516 reinstall_phi_args (new_edge, e);
2517
2518 return new_bb;
2519 }
2520
2521
2522 /* Verify properties of the address expression T with base object BASE. */
2523
2524 static tree
2525 verify_address (tree t, tree base)
2526 {
2527 bool old_constant;
2528 bool old_side_effects;
2529 bool new_constant;
2530 bool new_side_effects;
2531
2532 old_constant = TREE_CONSTANT (t);
2533 old_side_effects = TREE_SIDE_EFFECTS (t);
2534
2535 recompute_tree_invariant_for_addr_expr (t);
2536 new_side_effects = TREE_SIDE_EFFECTS (t);
2537 new_constant = TREE_CONSTANT (t);
2538
2539 if (old_constant != new_constant)
2540 {
2541 error ("constant not recomputed when ADDR_EXPR changed");
2542 return t;
2543 }
2544 if (old_side_effects != new_side_effects)
2545 {
2546 error ("side effects not recomputed when ADDR_EXPR changed");
2547 return t;
2548 }
2549
2550 if (!(TREE_CODE (base) == VAR_DECL
2551 || TREE_CODE (base) == PARM_DECL
2552 || TREE_CODE (base) == RESULT_DECL))
2553 return NULL_TREE;
2554
2555 if (DECL_GIMPLE_REG_P (base))
2556 {
2557 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2558 return base;
2559 }
2560
2561 return NULL_TREE;
2562 }
2563
2564 /* Callback for walk_tree, check that all elements with address taken are
2565 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2566 inside a PHI node. */
2567
2568 static tree
2569 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2570 {
2571 tree t = *tp, x;
2572
2573 if (TYPE_P (t))
2574 *walk_subtrees = 0;
2575
2576 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2577 #define CHECK_OP(N, MSG) \
2578 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2579 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2580
2581 switch (TREE_CODE (t))
2582 {
2583 case SSA_NAME:
2584 if (SSA_NAME_IN_FREE_LIST (t))
2585 {
2586 error ("SSA name in freelist but still referenced");
2587 return *tp;
2588 }
2589 break;
2590
2591 case INDIRECT_REF:
2592 error ("INDIRECT_REF in gimple IL");
2593 return t;
2594
2595 case MEM_REF:
2596 x = TREE_OPERAND (t, 0);
2597 if (!POINTER_TYPE_P (TREE_TYPE (x))
2598 || !is_gimple_mem_ref_addr (x))
2599 {
2600 error ("invalid first operand of MEM_REF");
2601 return x;
2602 }
2603 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2604 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2605 {
2606 error ("invalid offset operand of MEM_REF");
2607 return TREE_OPERAND (t, 1);
2608 }
2609 if (TREE_CODE (x) == ADDR_EXPR
2610 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2611 return x;
2612 *walk_subtrees = 0;
2613 break;
2614
2615 case ASSERT_EXPR:
2616 x = fold (ASSERT_EXPR_COND (t));
2617 if (x == boolean_false_node)
2618 {
2619 error ("ASSERT_EXPR with an always-false condition");
2620 return *tp;
2621 }
2622 break;
2623
2624 case MODIFY_EXPR:
2625 error ("MODIFY_EXPR not expected while having tuples");
2626 return *tp;
2627
2628 case ADDR_EXPR:
2629 {
2630 tree tem;
2631
2632 gcc_assert (is_gimple_address (t));
2633
2634 /* Skip any references (they will be checked when we recurse down the
2635 tree) and ensure that any variable used as a prefix is marked
2636 addressable. */
2637 for (x = TREE_OPERAND (t, 0);
2638 handled_component_p (x);
2639 x = TREE_OPERAND (x, 0))
2640 ;
2641
2642 if ((tem = verify_address (t, x)))
2643 return tem;
2644
2645 if (!(TREE_CODE (x) == VAR_DECL
2646 || TREE_CODE (x) == PARM_DECL
2647 || TREE_CODE (x) == RESULT_DECL))
2648 return NULL;
2649
2650 if (!TREE_ADDRESSABLE (x))
2651 {
2652 error ("address taken, but ADDRESSABLE bit not set");
2653 return x;
2654 }
2655
2656 break;
2657 }
2658
2659 case COND_EXPR:
2660 x = COND_EXPR_COND (t);
2661 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2662 {
2663 error ("non-integral used in condition");
2664 return x;
2665 }
2666 if (!is_gimple_condexpr (x))
2667 {
2668 error ("invalid conditional operand");
2669 return x;
2670 }
2671 break;
2672
2673 case NON_LVALUE_EXPR:
2674 case TRUTH_NOT_EXPR:
2675 gcc_unreachable ();
2676
2677 CASE_CONVERT:
2678 case FIX_TRUNC_EXPR:
2679 case FLOAT_EXPR:
2680 case NEGATE_EXPR:
2681 case ABS_EXPR:
2682 case BIT_NOT_EXPR:
2683 CHECK_OP (0, "invalid operand to unary operator");
2684 break;
2685
2686 case REALPART_EXPR:
2687 case IMAGPART_EXPR:
2688 case BIT_FIELD_REF:
2689 if (!is_gimple_reg_type (TREE_TYPE (t)))
2690 {
2691 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2692 return t;
2693 }
2694
2695 if (TREE_CODE (t) == BIT_FIELD_REF)
2696 {
2697 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2698 || !host_integerp (TREE_OPERAND (t, 2), 1))
2699 {
2700 error ("invalid position or size operand to BIT_FIELD_REF");
2701 return t;
2702 }
2703 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2704 && (TYPE_PRECISION (TREE_TYPE (t))
2705 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2706 {
2707 error ("integral result type precision does not match "
2708 "field size of BIT_FIELD_REF");
2709 return t;
2710 }
2711 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2712 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2713 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2714 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2715 {
2716 error ("mode precision of non-integral result does not "
2717 "match field size of BIT_FIELD_REF");
2718 return t;
2719 }
2720 }
2721 t = TREE_OPERAND (t, 0);
2722
2723 /* Fall-through. */
2724 case COMPONENT_REF:
2725 case ARRAY_REF:
2726 case ARRAY_RANGE_REF:
2727 case VIEW_CONVERT_EXPR:
2728 /* We have a nest of references. Verify that each of the operands
2729 that determine where to reference is either a constant or a variable,
2730 verify that the base is valid, and then show we've already checked
2731 the subtrees. */
2732 while (handled_component_p (t))
2733 {
2734 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2735 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2736 else if (TREE_CODE (t) == ARRAY_REF
2737 || TREE_CODE (t) == ARRAY_RANGE_REF)
2738 {
2739 CHECK_OP (1, "invalid array index");
2740 if (TREE_OPERAND (t, 2))
2741 CHECK_OP (2, "invalid array lower bound");
2742 if (TREE_OPERAND (t, 3))
2743 CHECK_OP (3, "invalid array stride");
2744 }
2745 else if (TREE_CODE (t) == BIT_FIELD_REF
2746 || TREE_CODE (t) == REALPART_EXPR
2747 || TREE_CODE (t) == IMAGPART_EXPR)
2748 {
2749 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2750 "REALPART_EXPR");
2751 return t;
2752 }
2753
2754 t = TREE_OPERAND (t, 0);
2755 }
2756
2757 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2758 {
2759 error ("invalid reference prefix");
2760 return t;
2761 }
2762 *walk_subtrees = 0;
2763 break;
2764 case PLUS_EXPR:
2765 case MINUS_EXPR:
2766 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2767 POINTER_PLUS_EXPR. */
2768 if (POINTER_TYPE_P (TREE_TYPE (t)))
2769 {
2770 error ("invalid operand to plus/minus, type is a pointer");
2771 return t;
2772 }
2773 CHECK_OP (0, "invalid operand to binary operator");
2774 CHECK_OP (1, "invalid operand to binary operator");
2775 break;
2776
2777 case POINTER_PLUS_EXPR:
2778 /* Check to make sure the first operand is a pointer or reference type. */
2779 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2780 {
2781 error ("invalid operand to pointer plus, first operand is not a pointer");
2782 return t;
2783 }
2784 /* Check to make sure the second operand is a ptrofftype. */
2785 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2786 {
2787 error ("invalid operand to pointer plus, second operand is not an "
2788 "integer type of appropriate width");
2789 return t;
2790 }
2791 /* FALLTHROUGH */
2792 case LT_EXPR:
2793 case LE_EXPR:
2794 case GT_EXPR:
2795 case GE_EXPR:
2796 case EQ_EXPR:
2797 case NE_EXPR:
2798 case UNORDERED_EXPR:
2799 case ORDERED_EXPR:
2800 case UNLT_EXPR:
2801 case UNLE_EXPR:
2802 case UNGT_EXPR:
2803 case UNGE_EXPR:
2804 case UNEQ_EXPR:
2805 case LTGT_EXPR:
2806 case MULT_EXPR:
2807 case TRUNC_DIV_EXPR:
2808 case CEIL_DIV_EXPR:
2809 case FLOOR_DIV_EXPR:
2810 case ROUND_DIV_EXPR:
2811 case TRUNC_MOD_EXPR:
2812 case CEIL_MOD_EXPR:
2813 case FLOOR_MOD_EXPR:
2814 case ROUND_MOD_EXPR:
2815 case RDIV_EXPR:
2816 case EXACT_DIV_EXPR:
2817 case MIN_EXPR:
2818 case MAX_EXPR:
2819 case LSHIFT_EXPR:
2820 case RSHIFT_EXPR:
2821 case LROTATE_EXPR:
2822 case RROTATE_EXPR:
2823 case BIT_IOR_EXPR:
2824 case BIT_XOR_EXPR:
2825 case BIT_AND_EXPR:
2826 CHECK_OP (0, "invalid operand to binary operator");
2827 CHECK_OP (1, "invalid operand to binary operator");
2828 break;
2829
2830 case CONSTRUCTOR:
2831 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2832 *walk_subtrees = 0;
2833 break;
2834
2835 case CASE_LABEL_EXPR:
2836 if (CASE_CHAIN (t))
2837 {
2838 error ("invalid CASE_CHAIN");
2839 return t;
2840 }
2841 break;
2842
2843 default:
2844 break;
2845 }
2846 return NULL;
2847
2848 #undef CHECK_OP
2849 }
2850
2851
2852 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2853 Returns true if there is an error, otherwise false. */
2854
2855 static bool
2856 verify_types_in_gimple_min_lval (tree expr)
2857 {
2858 tree op;
2859
2860 if (is_gimple_id (expr))
2861 return false;
2862
2863 if (TREE_CODE (expr) != TARGET_MEM_REF
2864 && TREE_CODE (expr) != MEM_REF)
2865 {
2866 error ("invalid expression for min lvalue");
2867 return true;
2868 }
2869
2870 /* TARGET_MEM_REFs are strange beasts. */
2871 if (TREE_CODE (expr) == TARGET_MEM_REF)
2872 return false;
2873
2874 op = TREE_OPERAND (expr, 0);
2875 if (!is_gimple_val (op))
2876 {
2877 error ("invalid operand in indirect reference");
2878 debug_generic_stmt (op);
2879 return true;
2880 }
2881 /* Memory references now generally can involve a value conversion. */
2882
2883 return false;
2884 }
2885
2886 /* Verify if EXPR is a valid GIMPLE reference expression. If
2887 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2888 if there is an error, otherwise false. */
2889
2890 static bool
2891 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2892 {
2893 while (handled_component_p (expr))
2894 {
2895 tree op = TREE_OPERAND (expr, 0);
2896
2897 if (TREE_CODE (expr) == ARRAY_REF
2898 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2899 {
2900 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2901 || (TREE_OPERAND (expr, 2)
2902 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2903 || (TREE_OPERAND (expr, 3)
2904 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2905 {
2906 error ("invalid operands to array reference");
2907 debug_generic_stmt (expr);
2908 return true;
2909 }
2910 }
2911
2912 /* Verify if the reference array element types are compatible. */
2913 if (TREE_CODE (expr) == ARRAY_REF
2914 && !useless_type_conversion_p (TREE_TYPE (expr),
2915 TREE_TYPE (TREE_TYPE (op))))
2916 {
2917 error ("type mismatch in array reference");
2918 debug_generic_stmt (TREE_TYPE (expr));
2919 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2920 return true;
2921 }
2922 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2923 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2924 TREE_TYPE (TREE_TYPE (op))))
2925 {
2926 error ("type mismatch in array range reference");
2927 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2928 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2929 return true;
2930 }
2931
2932 if ((TREE_CODE (expr) == REALPART_EXPR
2933 || TREE_CODE (expr) == IMAGPART_EXPR)
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_TYPE (op))))
2936 {
2937 error ("type mismatch in real/imagpart reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2940 return true;
2941 }
2942
2943 if (TREE_CODE (expr) == COMPONENT_REF
2944 && !useless_type_conversion_p (TREE_TYPE (expr),
2945 TREE_TYPE (TREE_OPERAND (expr, 1))))
2946 {
2947 error ("type mismatch in component reference");
2948 debug_generic_stmt (TREE_TYPE (expr));
2949 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2950 return true;
2951 }
2952
2953 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2954 {
2955 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2956 that their operand is not an SSA name or an invariant when
2957 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2958 bug). Otherwise there is nothing to verify, gross mismatches at
2959 most invoke undefined behavior. */
2960 if (require_lvalue
2961 && (TREE_CODE (op) == SSA_NAME
2962 || is_gimple_min_invariant (op)))
2963 {
2964 error ("conversion of an SSA_NAME on the left hand side");
2965 debug_generic_stmt (expr);
2966 return true;
2967 }
2968 else if (TREE_CODE (op) == SSA_NAME
2969 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2970 {
2971 error ("conversion of register to a different size");
2972 debug_generic_stmt (expr);
2973 return true;
2974 }
2975 else if (!handled_component_p (op))
2976 return false;
2977 }
2978
2979 expr = op;
2980 }
2981
2982 if (TREE_CODE (expr) == MEM_REF)
2983 {
2984 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2985 {
2986 error ("invalid address operand in MEM_REF");
2987 debug_generic_stmt (expr);
2988 return true;
2989 }
2990 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2991 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2992 {
2993 error ("invalid offset operand in MEM_REF");
2994 debug_generic_stmt (expr);
2995 return true;
2996 }
2997 }
2998 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2999 {
3000 if (!TMR_BASE (expr)
3001 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3002 {
3003 error ("invalid address operand in TARGET_MEM_REF");
3004 return true;
3005 }
3006 if (!TMR_OFFSET (expr)
3007 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3008 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3009 {
3010 error ("invalid offset operand in TARGET_MEM_REF");
3011 debug_generic_stmt (expr);
3012 return true;
3013 }
3014 }
3015
3016 return ((require_lvalue || !is_gimple_min_invariant (expr))
3017 && verify_types_in_gimple_min_lval (expr));
3018 }
3019
3020 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3021 list of pointer-to types that is trivially convertible to DEST. */
3022
3023 static bool
3024 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3025 {
3026 tree src;
3027
3028 if (!TYPE_POINTER_TO (src_obj))
3029 return true;
3030
3031 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3032 if (useless_type_conversion_p (dest, src))
3033 return true;
3034
3035 return false;
3036 }
3037
3038 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3039 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3040
3041 static bool
3042 valid_fixed_convert_types_p (tree type1, tree type2)
3043 {
3044 return (FIXED_POINT_TYPE_P (type1)
3045 && (INTEGRAL_TYPE_P (type2)
3046 || SCALAR_FLOAT_TYPE_P (type2)
3047 || FIXED_POINT_TYPE_P (type2)));
3048 }
3049
3050 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3051 is a problem, otherwise false. */
3052
3053 static bool
3054 verify_gimple_call (gimple stmt)
3055 {
3056 tree fn = gimple_call_fn (stmt);
3057 tree fntype, fndecl;
3058 unsigned i;
3059
3060 if (gimple_call_internal_p (stmt))
3061 {
3062 if (fn)
3063 {
3064 error ("gimple call has two targets");
3065 debug_generic_stmt (fn);
3066 return true;
3067 }
3068 }
3069 else
3070 {
3071 if (!fn)
3072 {
3073 error ("gimple call has no target");
3074 return true;
3075 }
3076 }
3077
3078 if (fn && !is_gimple_call_addr (fn))
3079 {
3080 error ("invalid function in gimple call");
3081 debug_generic_stmt (fn);
3082 return true;
3083 }
3084
3085 if (fn
3086 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3087 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3088 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3089 {
3090 error ("non-function in gimple call");
3091 return true;
3092 }
3093
3094 fndecl = gimple_call_fndecl (stmt);
3095 if (fndecl
3096 && TREE_CODE (fndecl) == FUNCTION_DECL
3097 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3098 && !DECL_PURE_P (fndecl)
3099 && !TREE_READONLY (fndecl))
3100 {
3101 error ("invalid pure const state for function");
3102 return true;
3103 }
3104
3105 if (gimple_call_lhs (stmt)
3106 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3107 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3108 {
3109 error ("invalid LHS in gimple call");
3110 return true;
3111 }
3112
3113 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3114 {
3115 error ("LHS in noreturn call");
3116 return true;
3117 }
3118
3119 fntype = gimple_call_fntype (stmt);
3120 if (fntype
3121 && gimple_call_lhs (stmt)
3122 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3123 TREE_TYPE (fntype))
3124 /* ??? At least C++ misses conversions at assignments from
3125 void * call results.
3126 ??? Java is completely off. Especially with functions
3127 returning java.lang.Object.
3128 For now simply allow arbitrary pointer type conversions. */
3129 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3130 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3131 {
3132 error ("invalid conversion in gimple call");
3133 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3134 debug_generic_stmt (TREE_TYPE (fntype));
3135 return true;
3136 }
3137
3138 if (gimple_call_chain (stmt)
3139 && !is_gimple_val (gimple_call_chain (stmt)))
3140 {
3141 error ("invalid static chain in gimple call");
3142 debug_generic_stmt (gimple_call_chain (stmt));
3143 return true;
3144 }
3145
3146 /* If there is a static chain argument, this should not be an indirect
3147 call, and the decl should have DECL_STATIC_CHAIN set. */
3148 if (gimple_call_chain (stmt))
3149 {
3150 if (!gimple_call_fndecl (stmt))
3151 {
3152 error ("static chain in indirect gimple call");
3153 return true;
3154 }
3155 fn = TREE_OPERAND (fn, 0);
3156
3157 if (!DECL_STATIC_CHAIN (fn))
3158 {
3159 error ("static chain with function that doesn%'t use one");
3160 return true;
3161 }
3162 }
3163
3164 /* ??? The C frontend passes unpromoted arguments in case it
3165 didn't see a function declaration before the call. So for now
3166 leave the call arguments mostly unverified. Once we gimplify
3167 unit-at-a-time we have a chance to fix this. */
3168
3169 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3170 {
3171 tree arg = gimple_call_arg (stmt, i);
3172 if ((is_gimple_reg_type (TREE_TYPE (arg))
3173 && !is_gimple_val (arg))
3174 || (!is_gimple_reg_type (TREE_TYPE (arg))
3175 && !is_gimple_lvalue (arg)))
3176 {
3177 error ("invalid argument to gimple call");
3178 debug_generic_expr (arg);
3179 return true;
3180 }
3181 }
3182
3183 return false;
3184 }
3185
3186 /* Verifies the gimple comparison with the result type TYPE and
3187 the operands OP0 and OP1. */
3188
3189 static bool
3190 verify_gimple_comparison (tree type, tree op0, tree op1)
3191 {
3192 tree op0_type = TREE_TYPE (op0);
3193 tree op1_type = TREE_TYPE (op1);
3194
3195 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3196 {
3197 error ("invalid operands in gimple comparison");
3198 return true;
3199 }
3200
3201 /* For comparisons we do not have the operations type as the
3202 effective type the comparison is carried out in. Instead
3203 we require that either the first operand is trivially
3204 convertible into the second, or the other way around.
3205 Because we special-case pointers to void we allow
3206 comparisons of pointers with the same mode as well. */
3207 if (!useless_type_conversion_p (op0_type, op1_type)
3208 && !useless_type_conversion_p (op1_type, op0_type)
3209 && (!POINTER_TYPE_P (op0_type)
3210 || !POINTER_TYPE_P (op1_type)
3211 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3212 {
3213 error ("mismatching comparison operand types");
3214 debug_generic_expr (op0_type);
3215 debug_generic_expr (op1_type);
3216 return true;
3217 }
3218
3219 /* The resulting type of a comparison may be an effective boolean type. */
3220 if (INTEGRAL_TYPE_P (type)
3221 && (TREE_CODE (type) == BOOLEAN_TYPE
3222 || TYPE_PRECISION (type) == 1))
3223 {
3224 if (TREE_CODE (op0_type) == VECTOR_TYPE
3225 || TREE_CODE (op1_type) == VECTOR_TYPE)
3226 {
3227 error ("vector comparison returning a boolean");
3228 debug_generic_expr (op0_type);
3229 debug_generic_expr (op1_type);
3230 return true;
3231 }
3232 }
3233 /* Or an integer vector type with the same size and element count
3234 as the comparison operand types. */
3235 else if (TREE_CODE (type) == VECTOR_TYPE
3236 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3237 {
3238 if (TREE_CODE (op0_type) != VECTOR_TYPE
3239 || TREE_CODE (op1_type) != VECTOR_TYPE)
3240 {
3241 error ("non-vector operands in vector comparison");
3242 debug_generic_expr (op0_type);
3243 debug_generic_expr (op1_type);
3244 return true;
3245 }
3246
3247 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3248 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3249 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3250 /* The result of a vector comparison is of signed
3251 integral type. */
3252 || TYPE_UNSIGNED (TREE_TYPE (type)))
3253 {
3254 error ("invalid vector comparison resulting type");
3255 debug_generic_expr (type);
3256 return true;
3257 }
3258 }
3259 else
3260 {
3261 error ("bogus comparison result type");
3262 debug_generic_expr (type);
3263 return true;
3264 }
3265
3266 return false;
3267 }
3268
3269 /* Verify a gimple assignment statement STMT with an unary rhs.
3270 Returns true if anything is wrong. */
3271
3272 static bool
3273 verify_gimple_assign_unary (gimple stmt)
3274 {
3275 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3276 tree lhs = gimple_assign_lhs (stmt);
3277 tree lhs_type = TREE_TYPE (lhs);
3278 tree rhs1 = gimple_assign_rhs1 (stmt);
3279 tree rhs1_type = TREE_TYPE (rhs1);
3280
3281 if (!is_gimple_reg (lhs))
3282 {
3283 error ("non-register as LHS of unary operation");
3284 return true;
3285 }
3286
3287 if (!is_gimple_val (rhs1))
3288 {
3289 error ("invalid operand in unary operation");
3290 return true;
3291 }
3292
3293 /* First handle conversions. */
3294 switch (rhs_code)
3295 {
3296 CASE_CONVERT:
3297 {
3298 /* Allow conversions from pointer type to integral type only if
3299 there is no sign or zero extension involved.
3300 For targets were the precision of ptrofftype doesn't match that
3301 of pointers we need to allow arbitrary conversions to ptrofftype. */
3302 if ((POINTER_TYPE_P (lhs_type)
3303 && INTEGRAL_TYPE_P (rhs1_type))
3304 || (POINTER_TYPE_P (rhs1_type)
3305 && INTEGRAL_TYPE_P (lhs_type)
3306 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3307 || ptrofftype_p (sizetype))))
3308 return false;
3309
3310 /* Allow conversion from integral to offset type and vice versa. */
3311 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3312 && INTEGRAL_TYPE_P (rhs1_type))
3313 || (INTEGRAL_TYPE_P (lhs_type)
3314 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3315 return false;
3316
3317 /* Otherwise assert we are converting between types of the
3318 same kind. */
3319 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3320 {
3321 error ("invalid types in nop conversion");
3322 debug_generic_expr (lhs_type);
3323 debug_generic_expr (rhs1_type);
3324 return true;
3325 }
3326
3327 return false;
3328 }
3329
3330 case ADDR_SPACE_CONVERT_EXPR:
3331 {
3332 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3333 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3334 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3335 {
3336 error ("invalid types in address space conversion");
3337 debug_generic_expr (lhs_type);
3338 debug_generic_expr (rhs1_type);
3339 return true;
3340 }
3341
3342 return false;
3343 }
3344
3345 case FIXED_CONVERT_EXPR:
3346 {
3347 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3348 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3349 {
3350 error ("invalid types in fixed-point conversion");
3351 debug_generic_expr (lhs_type);
3352 debug_generic_expr (rhs1_type);
3353 return true;
3354 }
3355
3356 return false;
3357 }
3358
3359 case FLOAT_EXPR:
3360 {
3361 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3362 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3363 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3364 {
3365 error ("invalid types in conversion to floating point");
3366 debug_generic_expr (lhs_type);
3367 debug_generic_expr (rhs1_type);
3368 return true;
3369 }
3370
3371 return false;
3372 }
3373
3374 case FIX_TRUNC_EXPR:
3375 {
3376 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3377 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3378 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3379 {
3380 error ("invalid types in conversion to integer");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 return true;
3384 }
3385
3386 return false;
3387 }
3388
3389 case VEC_UNPACK_HI_EXPR:
3390 case VEC_UNPACK_LO_EXPR:
3391 case REDUC_MAX_EXPR:
3392 case REDUC_MIN_EXPR:
3393 case REDUC_PLUS_EXPR:
3394 case VEC_UNPACK_FLOAT_HI_EXPR:
3395 case VEC_UNPACK_FLOAT_LO_EXPR:
3396 /* FIXME. */
3397 return false;
3398
3399 case NEGATE_EXPR:
3400 case ABS_EXPR:
3401 case BIT_NOT_EXPR:
3402 case PAREN_EXPR:
3403 case NON_LVALUE_EXPR:
3404 case CONJ_EXPR:
3405 break;
3406
3407 default:
3408 gcc_unreachable ();
3409 }
3410
3411 /* For the remaining codes assert there is no conversion involved. */
3412 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3413 {
3414 error ("non-trivial conversion in unary operation");
3415 debug_generic_expr (lhs_type);
3416 debug_generic_expr (rhs1_type);
3417 return true;
3418 }
3419
3420 return false;
3421 }
3422
3423 /* Verify a gimple assignment statement STMT with a binary rhs.
3424 Returns true if anything is wrong. */
3425
3426 static bool
3427 verify_gimple_assign_binary (gimple stmt)
3428 {
3429 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3430 tree lhs = gimple_assign_lhs (stmt);
3431 tree lhs_type = TREE_TYPE (lhs);
3432 tree rhs1 = gimple_assign_rhs1 (stmt);
3433 tree rhs1_type = TREE_TYPE (rhs1);
3434 tree rhs2 = gimple_assign_rhs2 (stmt);
3435 tree rhs2_type = TREE_TYPE (rhs2);
3436
3437 if (!is_gimple_reg (lhs))
3438 {
3439 error ("non-register as LHS of binary operation");
3440 return true;
3441 }
3442
3443 if (!is_gimple_val (rhs1)
3444 || !is_gimple_val (rhs2))
3445 {
3446 error ("invalid operands in binary operation");
3447 return true;
3448 }
3449
3450 /* First handle operations that involve different types. */
3451 switch (rhs_code)
3452 {
3453 case COMPLEX_EXPR:
3454 {
3455 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3456 || !(INTEGRAL_TYPE_P (rhs1_type)
3457 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3458 || !(INTEGRAL_TYPE_P (rhs2_type)
3459 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3460 {
3461 error ("type mismatch in complex expression");
3462 debug_generic_expr (lhs_type);
3463 debug_generic_expr (rhs1_type);
3464 debug_generic_expr (rhs2_type);
3465 return true;
3466 }
3467
3468 return false;
3469 }
3470
3471 case LSHIFT_EXPR:
3472 case RSHIFT_EXPR:
3473 case LROTATE_EXPR:
3474 case RROTATE_EXPR:
3475 {
3476 /* Shifts and rotates are ok on integral types, fixed point
3477 types and integer vector types. */
3478 if ((!INTEGRAL_TYPE_P (rhs1_type)
3479 && !FIXED_POINT_TYPE_P (rhs1_type)
3480 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3481 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3482 || (!INTEGRAL_TYPE_P (rhs2_type)
3483 /* Vector shifts of vectors are also ok. */
3484 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3485 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3486 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3487 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3488 || !useless_type_conversion_p (lhs_type, rhs1_type))
3489 {
3490 error ("type mismatch in shift expression");
3491 debug_generic_expr (lhs_type);
3492 debug_generic_expr (rhs1_type);
3493 debug_generic_expr (rhs2_type);
3494 return true;
3495 }
3496
3497 return false;
3498 }
3499
3500 case VEC_LSHIFT_EXPR:
3501 case VEC_RSHIFT_EXPR:
3502 {
3503 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3504 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3505 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3506 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3507 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3508 || (!INTEGRAL_TYPE_P (rhs2_type)
3509 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3510 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3511 || !useless_type_conversion_p (lhs_type, rhs1_type))
3512 {
3513 error ("type mismatch in vector shift expression");
3514 debug_generic_expr (lhs_type);
3515 debug_generic_expr (rhs1_type);
3516 debug_generic_expr (rhs2_type);
3517 return true;
3518 }
3519 /* For shifting a vector of non-integral components we
3520 only allow shifting by a constant multiple of the element size. */
3521 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3522 && (TREE_CODE (rhs2) != INTEGER_CST
3523 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3524 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3525 {
3526 error ("non-element sized vector shift of floating point vector");
3527 return true;
3528 }
3529
3530 return false;
3531 }
3532
3533 case WIDEN_LSHIFT_EXPR:
3534 {
3535 if (!INTEGRAL_TYPE_P (lhs_type)
3536 || !INTEGRAL_TYPE_P (rhs1_type)
3537 || TREE_CODE (rhs2) != INTEGER_CST
3538 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3539 {
3540 error ("type mismatch in widening vector shift expression");
3541 debug_generic_expr (lhs_type);
3542 debug_generic_expr (rhs1_type);
3543 debug_generic_expr (rhs2_type);
3544 return true;
3545 }
3546
3547 return false;
3548 }
3549
3550 case VEC_WIDEN_LSHIFT_HI_EXPR:
3551 case VEC_WIDEN_LSHIFT_LO_EXPR:
3552 {
3553 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3554 || TREE_CODE (lhs_type) != VECTOR_TYPE
3555 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3556 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3557 || TREE_CODE (rhs2) != INTEGER_CST
3558 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3559 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3560 {
3561 error ("type mismatch in widening vector shift expression");
3562 debug_generic_expr (lhs_type);
3563 debug_generic_expr (rhs1_type);
3564 debug_generic_expr (rhs2_type);
3565 return true;
3566 }
3567
3568 return false;
3569 }
3570
3571 case PLUS_EXPR:
3572 case MINUS_EXPR:
3573 {
3574 tree lhs_etype = lhs_type;
3575 tree rhs1_etype = rhs1_type;
3576 tree rhs2_etype = rhs2_type;
3577 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3578 {
3579 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3580 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3581 {
3582 error ("invalid non-vector operands to vector valued plus");
3583 return true;
3584 }
3585 lhs_etype = TREE_TYPE (lhs_type);
3586 rhs1_etype = TREE_TYPE (rhs1_type);
3587 rhs2_etype = TREE_TYPE (rhs2_type);
3588 }
3589 if (POINTER_TYPE_P (lhs_etype)
3590 || POINTER_TYPE_P (rhs1_etype)
3591 || POINTER_TYPE_P (rhs2_etype))
3592 {
3593 error ("invalid (pointer) operands to plus/minus");
3594 return true;
3595 }
3596
3597 /* Continue with generic binary expression handling. */
3598 break;
3599 }
3600
3601 case POINTER_PLUS_EXPR:
3602 {
3603 if (!POINTER_TYPE_P (rhs1_type)
3604 || !useless_type_conversion_p (lhs_type, rhs1_type)
3605 || !ptrofftype_p (rhs2_type))
3606 {
3607 error ("type mismatch in pointer plus expression");
3608 debug_generic_stmt (lhs_type);
3609 debug_generic_stmt (rhs1_type);
3610 debug_generic_stmt (rhs2_type);
3611 return true;
3612 }
3613
3614 return false;
3615 }
3616
3617 case TRUTH_ANDIF_EXPR:
3618 case TRUTH_ORIF_EXPR:
3619 case TRUTH_AND_EXPR:
3620 case TRUTH_OR_EXPR:
3621 case TRUTH_XOR_EXPR:
3622
3623 gcc_unreachable ();
3624
3625 case LT_EXPR:
3626 case LE_EXPR:
3627 case GT_EXPR:
3628 case GE_EXPR:
3629 case EQ_EXPR:
3630 case NE_EXPR:
3631 case UNORDERED_EXPR:
3632 case ORDERED_EXPR:
3633 case UNLT_EXPR:
3634 case UNLE_EXPR:
3635 case UNGT_EXPR:
3636 case UNGE_EXPR:
3637 case UNEQ_EXPR:
3638 case LTGT_EXPR:
3639 /* Comparisons are also binary, but the result type is not
3640 connected to the operand types. */
3641 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3642
3643 case WIDEN_MULT_EXPR:
3644 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3645 return true;
3646 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3647 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3648
3649 case WIDEN_SUM_EXPR:
3650 case VEC_WIDEN_MULT_HI_EXPR:
3651 case VEC_WIDEN_MULT_LO_EXPR:
3652 case VEC_WIDEN_MULT_EVEN_EXPR:
3653 case VEC_WIDEN_MULT_ODD_EXPR:
3654 case VEC_PACK_TRUNC_EXPR:
3655 case VEC_PACK_SAT_EXPR:
3656 case VEC_PACK_FIX_TRUNC_EXPR:
3657 /* FIXME. */
3658 return false;
3659
3660 case MULT_EXPR:
3661 case MULT_HIGHPART_EXPR:
3662 case TRUNC_DIV_EXPR:
3663 case CEIL_DIV_EXPR:
3664 case FLOOR_DIV_EXPR:
3665 case ROUND_DIV_EXPR:
3666 case TRUNC_MOD_EXPR:
3667 case CEIL_MOD_EXPR:
3668 case FLOOR_MOD_EXPR:
3669 case ROUND_MOD_EXPR:
3670 case RDIV_EXPR:
3671 case EXACT_DIV_EXPR:
3672 case MIN_EXPR:
3673 case MAX_EXPR:
3674 case BIT_IOR_EXPR:
3675 case BIT_XOR_EXPR:
3676 case BIT_AND_EXPR:
3677 /* Continue with generic binary expression handling. */
3678 break;
3679
3680 default:
3681 gcc_unreachable ();
3682 }
3683
3684 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3685 || !useless_type_conversion_p (lhs_type, rhs2_type))
3686 {
3687 error ("type mismatch in binary expression");
3688 debug_generic_stmt (lhs_type);
3689 debug_generic_stmt (rhs1_type);
3690 debug_generic_stmt (rhs2_type);
3691 return true;
3692 }
3693
3694 return false;
3695 }
3696
3697 /* Verify a gimple assignment statement STMT with a ternary rhs.
3698 Returns true if anything is wrong. */
3699
3700 static bool
3701 verify_gimple_assign_ternary (gimple stmt)
3702 {
3703 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3704 tree lhs = gimple_assign_lhs (stmt);
3705 tree lhs_type = TREE_TYPE (lhs);
3706 tree rhs1 = gimple_assign_rhs1 (stmt);
3707 tree rhs1_type = TREE_TYPE (rhs1);
3708 tree rhs2 = gimple_assign_rhs2 (stmt);
3709 tree rhs2_type = TREE_TYPE (rhs2);
3710 tree rhs3 = gimple_assign_rhs3 (stmt);
3711 tree rhs3_type = TREE_TYPE (rhs3);
3712
3713 if (!is_gimple_reg (lhs))
3714 {
3715 error ("non-register as LHS of ternary operation");
3716 return true;
3717 }
3718
3719 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3720 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3721 || !is_gimple_val (rhs2)
3722 || !is_gimple_val (rhs3))
3723 {
3724 error ("invalid operands in ternary operation");
3725 return true;
3726 }
3727
3728 /* First handle operations that involve different types. */
3729 switch (rhs_code)
3730 {
3731 case WIDEN_MULT_PLUS_EXPR:
3732 case WIDEN_MULT_MINUS_EXPR:
3733 if ((!INTEGRAL_TYPE_P (rhs1_type)
3734 && !FIXED_POINT_TYPE_P (rhs1_type))
3735 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3736 || !useless_type_conversion_p (lhs_type, rhs3_type)
3737 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3738 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3739 {
3740 error ("type mismatch in widening multiply-accumulate expression");
3741 debug_generic_expr (lhs_type);
3742 debug_generic_expr (rhs1_type);
3743 debug_generic_expr (rhs2_type);
3744 debug_generic_expr (rhs3_type);
3745 return true;
3746 }
3747 break;
3748
3749 case FMA_EXPR:
3750 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3751 || !useless_type_conversion_p (lhs_type, rhs2_type)
3752 || !useless_type_conversion_p (lhs_type, rhs3_type))
3753 {
3754 error ("type mismatch in fused multiply-add expression");
3755 debug_generic_expr (lhs_type);
3756 debug_generic_expr (rhs1_type);
3757 debug_generic_expr (rhs2_type);
3758 debug_generic_expr (rhs3_type);
3759 return true;
3760 }
3761 break;
3762
3763 case COND_EXPR:
3764 case VEC_COND_EXPR:
3765 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3766 || !useless_type_conversion_p (lhs_type, rhs3_type))
3767 {
3768 error ("type mismatch in conditional expression");
3769 debug_generic_expr (lhs_type);
3770 debug_generic_expr (rhs2_type);
3771 debug_generic_expr (rhs3_type);
3772 return true;
3773 }
3774 break;
3775
3776 case VEC_PERM_EXPR:
3777 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3778 || !useless_type_conversion_p (lhs_type, rhs2_type))
3779 {
3780 error ("type mismatch in vector permute expression");
3781 debug_generic_expr (lhs_type);
3782 debug_generic_expr (rhs1_type);
3783 debug_generic_expr (rhs2_type);
3784 debug_generic_expr (rhs3_type);
3785 return true;
3786 }
3787
3788 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3789 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3790 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3791 {
3792 error ("vector types expected in vector permute expression");
3793 debug_generic_expr (lhs_type);
3794 debug_generic_expr (rhs1_type);
3795 debug_generic_expr (rhs2_type);
3796 debug_generic_expr (rhs3_type);
3797 return true;
3798 }
3799
3800 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3801 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3802 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3803 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3804 != TYPE_VECTOR_SUBPARTS (lhs_type))
3805 {
3806 error ("vectors with different element number found "
3807 "in vector permute expression");
3808 debug_generic_expr (lhs_type);
3809 debug_generic_expr (rhs1_type);
3810 debug_generic_expr (rhs2_type);
3811 debug_generic_expr (rhs3_type);
3812 return true;
3813 }
3814
3815 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3816 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3817 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3818 {
3819 error ("invalid mask type in vector permute expression");
3820 debug_generic_expr (lhs_type);
3821 debug_generic_expr (rhs1_type);
3822 debug_generic_expr (rhs2_type);
3823 debug_generic_expr (rhs3_type);
3824 return true;
3825 }
3826
3827 return false;
3828
3829 case DOT_PROD_EXPR:
3830 case REALIGN_LOAD_EXPR:
3831 /* FIXME. */
3832 return false;
3833
3834 default:
3835 gcc_unreachable ();
3836 }
3837 return false;
3838 }
3839
3840 /* Verify a gimple assignment statement STMT with a single rhs.
3841 Returns true if anything is wrong. */
3842
3843 static bool
3844 verify_gimple_assign_single (gimple stmt)
3845 {
3846 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3847 tree lhs = gimple_assign_lhs (stmt);
3848 tree lhs_type = TREE_TYPE (lhs);
3849 tree rhs1 = gimple_assign_rhs1 (stmt);
3850 tree rhs1_type = TREE_TYPE (rhs1);
3851 bool res = false;
3852
3853 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3854 {
3855 error ("non-trivial conversion at assignment");
3856 debug_generic_expr (lhs_type);
3857 debug_generic_expr (rhs1_type);
3858 return true;
3859 }
3860
3861 if (gimple_clobber_p (stmt)
3862 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3863 {
3864 error ("non-decl/MEM_REF LHS in clobber statement");
3865 debug_generic_expr (lhs);
3866 return true;
3867 }
3868
3869 if (handled_component_p (lhs))
3870 res |= verify_types_in_gimple_reference (lhs, true);
3871
3872 /* Special codes we cannot handle via their class. */
3873 switch (rhs_code)
3874 {
3875 case ADDR_EXPR:
3876 {
3877 tree op = TREE_OPERAND (rhs1, 0);
3878 if (!is_gimple_addressable (op))
3879 {
3880 error ("invalid operand in unary expression");
3881 return true;
3882 }
3883
3884 /* Technically there is no longer a need for matching types, but
3885 gimple hygiene asks for this check. In LTO we can end up
3886 combining incompatible units and thus end up with addresses
3887 of globals that change their type to a common one. */
3888 if (!in_lto_p
3889 && !types_compatible_p (TREE_TYPE (op),
3890 TREE_TYPE (TREE_TYPE (rhs1)))
3891 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3892 TREE_TYPE (op)))
3893 {
3894 error ("type mismatch in address expression");
3895 debug_generic_stmt (TREE_TYPE (rhs1));
3896 debug_generic_stmt (TREE_TYPE (op));
3897 return true;
3898 }
3899
3900 return verify_types_in_gimple_reference (op, true);
3901 }
3902
3903 /* tcc_reference */
3904 case INDIRECT_REF:
3905 error ("INDIRECT_REF in gimple IL");
3906 return true;
3907
3908 case COMPONENT_REF:
3909 case BIT_FIELD_REF:
3910 case ARRAY_REF:
3911 case ARRAY_RANGE_REF:
3912 case VIEW_CONVERT_EXPR:
3913 case REALPART_EXPR:
3914 case IMAGPART_EXPR:
3915 case TARGET_MEM_REF:
3916 case MEM_REF:
3917 if (!is_gimple_reg (lhs)
3918 && is_gimple_reg_type (TREE_TYPE (lhs)))
3919 {
3920 error ("invalid rhs for gimple memory store");
3921 debug_generic_stmt (lhs);
3922 debug_generic_stmt (rhs1);
3923 return true;
3924 }
3925 return res || verify_types_in_gimple_reference (rhs1, false);
3926
3927 /* tcc_constant */
3928 case SSA_NAME:
3929 case INTEGER_CST:
3930 case REAL_CST:
3931 case FIXED_CST:
3932 case COMPLEX_CST:
3933 case VECTOR_CST:
3934 case STRING_CST:
3935 return res;
3936
3937 /* tcc_declaration */
3938 case CONST_DECL:
3939 return res;
3940 case VAR_DECL:
3941 case PARM_DECL:
3942 if (!is_gimple_reg (lhs)
3943 && !is_gimple_reg (rhs1)
3944 && is_gimple_reg_type (TREE_TYPE (lhs)))
3945 {
3946 error ("invalid rhs for gimple memory store");
3947 debug_generic_stmt (lhs);
3948 debug_generic_stmt (rhs1);
3949 return true;
3950 }
3951 return res;
3952
3953 case CONSTRUCTOR:
3954 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3955 {
3956 unsigned int i;
3957 tree elt_i, elt_v, elt_t = NULL_TREE;
3958
3959 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3960 return res;
3961 /* For vector CONSTRUCTORs we require that either it is empty
3962 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3963 (then the element count must be correct to cover the whole
3964 outer vector and index must be NULL on all elements, or it is
3965 a CONSTRUCTOR of scalar elements, where we as an exception allow
3966 smaller number of elements (assuming zero filling) and
3967 consecutive indexes as compared to NULL indexes (such
3968 CONSTRUCTORs can appear in the IL from FEs). */
3969 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3970 {
3971 if (elt_t == NULL_TREE)
3972 {
3973 elt_t = TREE_TYPE (elt_v);
3974 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3975 {
3976 tree elt_t = TREE_TYPE (elt_v);
3977 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3978 TREE_TYPE (elt_t)))
3979 {
3980 error ("incorrect type of vector CONSTRUCTOR"
3981 " elements");
3982 debug_generic_stmt (rhs1);
3983 return true;
3984 }
3985 else if (CONSTRUCTOR_NELTS (rhs1)
3986 * TYPE_VECTOR_SUBPARTS (elt_t)
3987 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3988 {
3989 error ("incorrect number of vector CONSTRUCTOR"
3990 " elements");
3991 debug_generic_stmt (rhs1);
3992 return true;
3993 }
3994 }
3995 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3996 elt_t))
3997 {
3998 error ("incorrect type of vector CONSTRUCTOR elements");
3999 debug_generic_stmt (rhs1);
4000 return true;
4001 }
4002 else if (CONSTRUCTOR_NELTS (rhs1)
4003 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4004 {
4005 error ("incorrect number of vector CONSTRUCTOR elements");
4006 debug_generic_stmt (rhs1);
4007 return true;
4008 }
4009 }
4010 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4011 {
4012 error ("incorrect type of vector CONSTRUCTOR elements");
4013 debug_generic_stmt (rhs1);
4014 return true;
4015 }
4016 if (elt_i != NULL_TREE
4017 && (TREE_CODE (elt_t) == VECTOR_TYPE
4018 || TREE_CODE (elt_i) != INTEGER_CST
4019 || compare_tree_int (elt_i, i) != 0))
4020 {
4021 error ("vector CONSTRUCTOR with non-NULL element index");
4022 debug_generic_stmt (rhs1);
4023 return true;
4024 }
4025 }
4026 }
4027 return res;
4028 case OBJ_TYPE_REF:
4029 case ASSERT_EXPR:
4030 case WITH_SIZE_EXPR:
4031 /* FIXME. */
4032 return res;
4033
4034 default:;
4035 }
4036
4037 return res;
4038 }
4039
4040 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4041 is a problem, otherwise false. */
4042
4043 static bool
4044 verify_gimple_assign (gimple stmt)
4045 {
4046 switch (gimple_assign_rhs_class (stmt))
4047 {
4048 case GIMPLE_SINGLE_RHS:
4049 return verify_gimple_assign_single (stmt);
4050
4051 case GIMPLE_UNARY_RHS:
4052 return verify_gimple_assign_unary (stmt);
4053
4054 case GIMPLE_BINARY_RHS:
4055 return verify_gimple_assign_binary (stmt);
4056
4057 case GIMPLE_TERNARY_RHS:
4058 return verify_gimple_assign_ternary (stmt);
4059
4060 default:
4061 gcc_unreachable ();
4062 }
4063 }
4064
4065 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4066 is a problem, otherwise false. */
4067
4068 static bool
4069 verify_gimple_return (gimple stmt)
4070 {
4071 tree op = gimple_return_retval (stmt);
4072 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4073
4074 /* We cannot test for present return values as we do not fix up missing
4075 return values from the original source. */
4076 if (op == NULL)
4077 return false;
4078
4079 if (!is_gimple_val (op)
4080 && TREE_CODE (op) != RESULT_DECL)
4081 {
4082 error ("invalid operand in return statement");
4083 debug_generic_stmt (op);
4084 return true;
4085 }
4086
4087 if ((TREE_CODE (op) == RESULT_DECL
4088 && DECL_BY_REFERENCE (op))
4089 || (TREE_CODE (op) == SSA_NAME
4090 && SSA_NAME_VAR (op)
4091 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4092 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4093 op = TREE_TYPE (op);
4094
4095 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4096 {
4097 error ("invalid conversion in return statement");
4098 debug_generic_stmt (restype);
4099 debug_generic_stmt (TREE_TYPE (op));
4100 return true;
4101 }
4102
4103 return false;
4104 }
4105
4106
4107 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4108 is a problem, otherwise false. */
4109
4110 static bool
4111 verify_gimple_goto (gimple stmt)
4112 {
4113 tree dest = gimple_goto_dest (stmt);
4114
4115 /* ??? We have two canonical forms of direct goto destinations, a
4116 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4117 if (TREE_CODE (dest) != LABEL_DECL
4118 && (!is_gimple_val (dest)
4119 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4120 {
4121 error ("goto destination is neither a label nor a pointer");
4122 return true;
4123 }
4124
4125 return false;
4126 }
4127
4128 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4129 is a problem, otherwise false. */
4130
4131 static bool
4132 verify_gimple_switch (gimple stmt)
4133 {
4134 unsigned int i, n;
4135 tree elt, prev_upper_bound = NULL_TREE;
4136 tree index_type, elt_type = NULL_TREE;
4137
4138 if (!is_gimple_val (gimple_switch_index (stmt)))
4139 {
4140 error ("invalid operand to switch statement");
4141 debug_generic_stmt (gimple_switch_index (stmt));
4142 return true;
4143 }
4144
4145 index_type = TREE_TYPE (gimple_switch_index (stmt));
4146 if (! INTEGRAL_TYPE_P (index_type))
4147 {
4148 error ("non-integral type switch statement");
4149 debug_generic_expr (index_type);
4150 return true;
4151 }
4152
4153 elt = gimple_switch_label (stmt, 0);
4154 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4155 {
4156 error ("invalid default case label in switch statement");
4157 debug_generic_expr (elt);
4158 return true;
4159 }
4160
4161 n = gimple_switch_num_labels (stmt);
4162 for (i = 1; i < n; i++)
4163 {
4164 elt = gimple_switch_label (stmt, i);
4165
4166 if (! CASE_LOW (elt))
4167 {
4168 error ("invalid case label in switch statement");
4169 debug_generic_expr (elt);
4170 return true;
4171 }
4172 if (CASE_HIGH (elt)
4173 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4174 {
4175 error ("invalid case range in switch statement");
4176 debug_generic_expr (elt);
4177 return true;
4178 }
4179
4180 if (elt_type)
4181 {
4182 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4183 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4184 {
4185 error ("type mismatch for case label in switch statement");
4186 debug_generic_expr (elt);
4187 return true;
4188 }
4189 }
4190 else
4191 {
4192 elt_type = TREE_TYPE (CASE_LOW (elt));
4193 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4194 {
4195 error ("type precision mismatch in switch statement");
4196 return true;
4197 }
4198 }
4199
4200 if (prev_upper_bound)
4201 {
4202 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4203 {
4204 error ("case labels not sorted in switch statement");
4205 return true;
4206 }
4207 }
4208
4209 prev_upper_bound = CASE_HIGH (elt);
4210 if (! prev_upper_bound)
4211 prev_upper_bound = CASE_LOW (elt);
4212 }
4213
4214 return false;
4215 }
4216
4217 /* Verify a gimple debug statement STMT.
4218 Returns true if anything is wrong. */
4219
4220 static bool
4221 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4222 {
4223 /* There isn't much that could be wrong in a gimple debug stmt. A
4224 gimple debug bind stmt, for example, maps a tree, that's usually
4225 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4226 component or member of an aggregate type, to another tree, that
4227 can be an arbitrary expression. These stmts expand into debug
4228 insns, and are converted to debug notes by var-tracking.c. */
4229 return false;
4230 }
4231
4232 /* Verify a gimple label statement STMT.
4233 Returns true if anything is wrong. */
4234
4235 static bool
4236 verify_gimple_label (gimple stmt)
4237 {
4238 tree decl = gimple_label_label (stmt);
4239 int uid;
4240 bool err = false;
4241
4242 if (TREE_CODE (decl) != LABEL_DECL)
4243 return true;
4244 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4245 && DECL_CONTEXT (decl) != current_function_decl)
4246 {
4247 error ("label's context is not the current function decl");
4248 err |= true;
4249 }
4250
4251 uid = LABEL_DECL_UID (decl);
4252 if (cfun->cfg
4253 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4254 {
4255 error ("incorrect entry in label_to_block_map");
4256 err |= true;
4257 }
4258
4259 uid = EH_LANDING_PAD_NR (decl);
4260 if (uid)
4261 {
4262 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4263 if (decl != lp->post_landing_pad)
4264 {
4265 error ("incorrect setting of landing pad number");
4266 err |= true;
4267 }
4268 }
4269
4270 return err;
4271 }
4272
4273 /* Verify the GIMPLE statement STMT. Returns true if there is an
4274 error, otherwise false. */
4275
4276 static bool
4277 verify_gimple_stmt (gimple stmt)
4278 {
4279 switch (gimple_code (stmt))
4280 {
4281 case GIMPLE_ASSIGN:
4282 return verify_gimple_assign (stmt);
4283
4284 case GIMPLE_LABEL:
4285 return verify_gimple_label (stmt);
4286
4287 case GIMPLE_CALL:
4288 return verify_gimple_call (stmt);
4289
4290 case GIMPLE_COND:
4291 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4292 {
4293 error ("invalid comparison code in gimple cond");
4294 return true;
4295 }
4296 if (!(!gimple_cond_true_label (stmt)
4297 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4298 || !(!gimple_cond_false_label (stmt)
4299 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4300 {
4301 error ("invalid labels in gimple cond");
4302 return true;
4303 }
4304
4305 return verify_gimple_comparison (boolean_type_node,
4306 gimple_cond_lhs (stmt),
4307 gimple_cond_rhs (stmt));
4308
4309 case GIMPLE_GOTO:
4310 return verify_gimple_goto (stmt);
4311
4312 case GIMPLE_SWITCH:
4313 return verify_gimple_switch (stmt);
4314
4315 case GIMPLE_RETURN:
4316 return verify_gimple_return (stmt);
4317
4318 case GIMPLE_ASM:
4319 return false;
4320
4321 case GIMPLE_TRANSACTION:
4322 return verify_gimple_transaction (stmt);
4323
4324 /* Tuples that do not have tree operands. */
4325 case GIMPLE_NOP:
4326 case GIMPLE_PREDICT:
4327 case GIMPLE_RESX:
4328 case GIMPLE_EH_DISPATCH:
4329 case GIMPLE_EH_MUST_NOT_THROW:
4330 return false;
4331
4332 CASE_GIMPLE_OMP:
4333 /* OpenMP directives are validated by the FE and never operated
4334 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4335 non-gimple expressions when the main index variable has had
4336 its address taken. This does not affect the loop itself
4337 because the header of an GIMPLE_OMP_FOR is merely used to determine
4338 how to setup the parallel iteration. */
4339 return false;
4340
4341 case GIMPLE_DEBUG:
4342 return verify_gimple_debug (stmt);
4343
4344 default:
4345 gcc_unreachable ();
4346 }
4347 }
4348
4349 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4350 and false otherwise. */
4351
4352 static bool
4353 verify_gimple_phi (gimple phi)
4354 {
4355 bool err = false;
4356 unsigned i;
4357 tree phi_result = gimple_phi_result (phi);
4358 bool virtual_p;
4359
4360 if (!phi_result)
4361 {
4362 error ("invalid PHI result");
4363 return true;
4364 }
4365
4366 virtual_p = virtual_operand_p (phi_result);
4367 if (TREE_CODE (phi_result) != SSA_NAME
4368 || (virtual_p
4369 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4370 {
4371 error ("invalid PHI result");
4372 err = true;
4373 }
4374
4375 for (i = 0; i < gimple_phi_num_args (phi); i++)
4376 {
4377 tree t = gimple_phi_arg_def (phi, i);
4378
4379 if (!t)
4380 {
4381 error ("missing PHI def");
4382 err |= true;
4383 continue;
4384 }
4385 /* Addressable variables do have SSA_NAMEs but they
4386 are not considered gimple values. */
4387 else if ((TREE_CODE (t) == SSA_NAME
4388 && virtual_p != virtual_operand_p (t))
4389 || (virtual_p
4390 && (TREE_CODE (t) != SSA_NAME
4391 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4392 || (!virtual_p
4393 && !is_gimple_val (t)))
4394 {
4395 error ("invalid PHI argument");
4396 debug_generic_expr (t);
4397 err |= true;
4398 }
4399 #ifdef ENABLE_TYPES_CHECKING
4400 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4401 {
4402 error ("incompatible types in PHI argument %u", i);
4403 debug_generic_stmt (TREE_TYPE (phi_result));
4404 debug_generic_stmt (TREE_TYPE (t));
4405 err |= true;
4406 }
4407 #endif
4408 }
4409
4410 return err;
4411 }
4412
4413 /* Verify the GIMPLE statements inside the sequence STMTS. */
4414
4415 static bool
4416 verify_gimple_in_seq_2 (gimple_seq stmts)
4417 {
4418 gimple_stmt_iterator ittr;
4419 bool err = false;
4420
4421 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4422 {
4423 gimple stmt = gsi_stmt (ittr);
4424
4425 switch (gimple_code (stmt))
4426 {
4427 case GIMPLE_BIND:
4428 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4429 break;
4430
4431 case GIMPLE_TRY:
4432 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4433 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4434 break;
4435
4436 case GIMPLE_EH_FILTER:
4437 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4438 break;
4439
4440 case GIMPLE_EH_ELSE:
4441 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4442 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4443 break;
4444
4445 case GIMPLE_CATCH:
4446 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4447 break;
4448
4449 case GIMPLE_TRANSACTION:
4450 err |= verify_gimple_transaction (stmt);
4451 break;
4452
4453 default:
4454 {
4455 bool err2 = verify_gimple_stmt (stmt);
4456 if (err2)
4457 debug_gimple_stmt (stmt);
4458 err |= err2;
4459 }
4460 }
4461 }
4462
4463 return err;
4464 }
4465
4466 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4467 is a problem, otherwise false. */
4468
4469 static bool
4470 verify_gimple_transaction (gimple stmt)
4471 {
4472 tree lab = gimple_transaction_label (stmt);
4473 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4474 return true;
4475 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4476 }
4477
4478
4479 /* Verify the GIMPLE statements inside the statement list STMTS. */
4480
4481 DEBUG_FUNCTION void
4482 verify_gimple_in_seq (gimple_seq stmts)
4483 {
4484 timevar_push (TV_TREE_STMT_VERIFY);
4485 if (verify_gimple_in_seq_2 (stmts))
4486 internal_error ("verify_gimple failed");
4487 timevar_pop (TV_TREE_STMT_VERIFY);
4488 }
4489
4490 /* Return true when the T can be shared. */
4491
4492 bool
4493 tree_node_can_be_shared (tree t)
4494 {
4495 if (IS_TYPE_OR_DECL_P (t)
4496 || is_gimple_min_invariant (t)
4497 || TREE_CODE (t) == SSA_NAME
4498 || t == error_mark_node
4499 || TREE_CODE (t) == IDENTIFIER_NODE)
4500 return true;
4501
4502 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4503 return true;
4504
4505 if (DECL_P (t))
4506 return true;
4507
4508 return false;
4509 }
4510
4511 /* Called via walk_tree. Verify tree sharing. */
4512
4513 static tree
4514 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4515 {
4516 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4517
4518 if (tree_node_can_be_shared (*tp))
4519 {
4520 *walk_subtrees = false;
4521 return NULL;
4522 }
4523
4524 if (pointer_set_insert (visited, *tp))
4525 return *tp;
4526
4527 return NULL;
4528 }
4529
4530 /* Called via walk_gimple_stmt. Verify tree sharing. */
4531
4532 static tree
4533 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4534 {
4535 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4536 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4537 }
4538
4539 static bool eh_error_found;
4540 static int
4541 verify_eh_throw_stmt_node (void **slot, void *data)
4542 {
4543 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4544 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4545
4546 if (!pointer_set_contains (visited, node->stmt))
4547 {
4548 error ("dead STMT in EH table");
4549 debug_gimple_stmt (node->stmt);
4550 eh_error_found = true;
4551 }
4552 return 1;
4553 }
4554
4555 /* Verify if the location LOCs block is in BLOCKS. */
4556
4557 static bool
4558 verify_location (pointer_set_t *blocks, location_t loc)
4559 {
4560 tree block = LOCATION_BLOCK (loc);
4561 if (block != NULL_TREE
4562 && !pointer_set_contains (blocks, block))
4563 {
4564 error ("location references block not in block tree");
4565 return true;
4566 }
4567 if (block != NULL_TREE)
4568 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4569 return false;
4570 }
4571
4572 /* Called via walk_tree. Verify that expressions have no blocks. */
4573
4574 static tree
4575 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4576 {
4577 if (!EXPR_P (*tp))
4578 {
4579 *walk_subtrees = false;
4580 return NULL;
4581 }
4582
4583 location_t loc = EXPR_LOCATION (*tp);
4584 if (LOCATION_BLOCK (loc) != NULL)
4585 return *tp;
4586
4587 return NULL;
4588 }
4589
4590 /* Called via walk_tree. Verify locations of expressions. */
4591
4592 static tree
4593 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4594 {
4595 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4596
4597 if (TREE_CODE (*tp) == VAR_DECL
4598 && DECL_HAS_DEBUG_EXPR_P (*tp))
4599 {
4600 tree t = DECL_DEBUG_EXPR (*tp);
4601 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4602 if (addr)
4603 return addr;
4604 }
4605 if ((TREE_CODE (*tp) == VAR_DECL
4606 || TREE_CODE (*tp) == PARM_DECL
4607 || TREE_CODE (*tp) == RESULT_DECL)
4608 && DECL_HAS_VALUE_EXPR_P (*tp))
4609 {
4610 tree t = DECL_VALUE_EXPR (*tp);
4611 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4612 if (addr)
4613 return addr;
4614 }
4615
4616 if (!EXPR_P (*tp))
4617 {
4618 *walk_subtrees = false;
4619 return NULL;
4620 }
4621
4622 location_t loc = EXPR_LOCATION (*tp);
4623 if (verify_location (blocks, loc))
4624 return *tp;
4625
4626 return NULL;
4627 }
4628
4629 /* Called via walk_gimple_op. Verify locations of expressions. */
4630
4631 static tree
4632 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4633 {
4634 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4635 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4636 }
4637
4638 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4639
4640 static void
4641 collect_subblocks (pointer_set_t *blocks, tree block)
4642 {
4643 tree t;
4644 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4645 {
4646 pointer_set_insert (blocks, t);
4647 collect_subblocks (blocks, t);
4648 }
4649 }
4650
4651 /* Verify the GIMPLE statements in the CFG of FN. */
4652
4653 DEBUG_FUNCTION void
4654 verify_gimple_in_cfg (struct function *fn)
4655 {
4656 basic_block bb;
4657 bool err = false;
4658 struct pointer_set_t *visited, *visited_stmts, *blocks;
4659
4660 timevar_push (TV_TREE_STMT_VERIFY);
4661 visited = pointer_set_create ();
4662 visited_stmts = pointer_set_create ();
4663
4664 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4665 blocks = pointer_set_create ();
4666 if (DECL_INITIAL (fn->decl))
4667 {
4668 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4669 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4670 }
4671
4672 FOR_EACH_BB_FN (bb, fn)
4673 {
4674 gimple_stmt_iterator gsi;
4675
4676 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4677 {
4678 gimple phi = gsi_stmt (gsi);
4679 bool err2 = false;
4680 unsigned i;
4681
4682 pointer_set_insert (visited_stmts, phi);
4683
4684 if (gimple_bb (phi) != bb)
4685 {
4686 error ("gimple_bb (phi) is set to a wrong basic block");
4687 err2 = true;
4688 }
4689
4690 err2 |= verify_gimple_phi (phi);
4691
4692 /* Only PHI arguments have locations. */
4693 if (gimple_location (phi) != UNKNOWN_LOCATION)
4694 {
4695 error ("PHI node with location");
4696 err2 = true;
4697 }
4698
4699 for (i = 0; i < gimple_phi_num_args (phi); i++)
4700 {
4701 tree arg = gimple_phi_arg_def (phi, i);
4702 tree addr = walk_tree (&arg, verify_node_sharing_1,
4703 visited, NULL);
4704 if (addr)
4705 {
4706 error ("incorrect sharing of tree nodes");
4707 debug_generic_expr (addr);
4708 err2 |= true;
4709 }
4710 location_t loc = gimple_phi_arg_location (phi, i);
4711 if (virtual_operand_p (gimple_phi_result (phi))
4712 && loc != UNKNOWN_LOCATION)
4713 {
4714 error ("virtual PHI with argument locations");
4715 err2 = true;
4716 }
4717 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4718 if (addr)
4719 {
4720 debug_generic_expr (addr);
4721 err2 = true;
4722 }
4723 err2 |= verify_location (blocks, loc);
4724 }
4725
4726 if (err2)
4727 debug_gimple_stmt (phi);
4728 err |= err2;
4729 }
4730
4731 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4732 {
4733 gimple stmt = gsi_stmt (gsi);
4734 bool err2 = false;
4735 struct walk_stmt_info wi;
4736 tree addr;
4737 int lp_nr;
4738
4739 pointer_set_insert (visited_stmts, stmt);
4740
4741 if (gimple_bb (stmt) != bb)
4742 {
4743 error ("gimple_bb (stmt) is set to a wrong basic block");
4744 err2 = true;
4745 }
4746
4747 err2 |= verify_gimple_stmt (stmt);
4748 err2 |= verify_location (blocks, gimple_location (stmt));
4749
4750 memset (&wi, 0, sizeof (wi));
4751 wi.info = (void *) visited;
4752 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4753 if (addr)
4754 {
4755 error ("incorrect sharing of tree nodes");
4756 debug_generic_expr (addr);
4757 err2 |= true;
4758 }
4759
4760 memset (&wi, 0, sizeof (wi));
4761 wi.info = (void *) blocks;
4762 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4763 if (addr)
4764 {
4765 debug_generic_expr (addr);
4766 err2 |= true;
4767 }
4768
4769 /* ??? Instead of not checking these stmts at all the walker
4770 should know its context via wi. */
4771 if (!is_gimple_debug (stmt)
4772 && !is_gimple_omp (stmt))
4773 {
4774 memset (&wi, 0, sizeof (wi));
4775 addr = walk_gimple_op (stmt, verify_expr, &wi);
4776 if (addr)
4777 {
4778 debug_generic_expr (addr);
4779 inform (gimple_location (stmt), "in statement");
4780 err2 |= true;
4781 }
4782 }
4783
4784 /* If the statement is marked as part of an EH region, then it is
4785 expected that the statement could throw. Verify that when we
4786 have optimizations that simplify statements such that we prove
4787 that they cannot throw, that we update other data structures
4788 to match. */
4789 lp_nr = lookup_stmt_eh_lp (stmt);
4790 if (lp_nr != 0)
4791 {
4792 if (!stmt_could_throw_p (stmt))
4793 {
4794 error ("statement marked for throw, but doesn%'t");
4795 err2 |= true;
4796 }
4797 else if (lp_nr > 0
4798 && !gsi_one_before_end_p (gsi)
4799 && stmt_can_throw_internal (stmt))
4800 {
4801 error ("statement marked for throw in middle of block");
4802 err2 |= true;
4803 }
4804 }
4805
4806 if (err2)
4807 debug_gimple_stmt (stmt);
4808 err |= err2;
4809 }
4810 }
4811
4812 eh_error_found = false;
4813 if (get_eh_throw_stmt_table (cfun))
4814 htab_traverse (get_eh_throw_stmt_table (cfun),
4815 verify_eh_throw_stmt_node,
4816 visited_stmts);
4817
4818 if (err || eh_error_found)
4819 internal_error ("verify_gimple failed");
4820
4821 pointer_set_destroy (visited);
4822 pointer_set_destroy (visited_stmts);
4823 pointer_set_destroy (blocks);
4824 verify_histograms ();
4825 timevar_pop (TV_TREE_STMT_VERIFY);
4826 }
4827
4828
4829 /* Verifies that the flow information is OK. */
4830
4831 static int
4832 gimple_verify_flow_info (void)
4833 {
4834 int err = 0;
4835 basic_block bb;
4836 gimple_stmt_iterator gsi;
4837 gimple stmt;
4838 edge e;
4839 edge_iterator ei;
4840
4841 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4842 {
4843 error ("ENTRY_BLOCK has IL associated with it");
4844 err = 1;
4845 }
4846
4847 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4848 {
4849 error ("EXIT_BLOCK has IL associated with it");
4850 err = 1;
4851 }
4852
4853 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4854 if (e->flags & EDGE_FALLTHRU)
4855 {
4856 error ("fallthru to exit from bb %d", e->src->index);
4857 err = 1;
4858 }
4859
4860 FOR_EACH_BB (bb)
4861 {
4862 bool found_ctrl_stmt = false;
4863
4864 stmt = NULL;
4865
4866 /* Skip labels on the start of basic block. */
4867 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4868 {
4869 tree label;
4870 gimple prev_stmt = stmt;
4871
4872 stmt = gsi_stmt (gsi);
4873
4874 if (gimple_code (stmt) != GIMPLE_LABEL)
4875 break;
4876
4877 label = gimple_label_label (stmt);
4878 if (prev_stmt && DECL_NONLOCAL (label))
4879 {
4880 error ("nonlocal label ");
4881 print_generic_expr (stderr, label, 0);
4882 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4883 bb->index);
4884 err = 1;
4885 }
4886
4887 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4888 {
4889 error ("EH landing pad label ");
4890 print_generic_expr (stderr, label, 0);
4891 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4892 bb->index);
4893 err = 1;
4894 }
4895
4896 if (label_to_block (label) != bb)
4897 {
4898 error ("label ");
4899 print_generic_expr (stderr, label, 0);
4900 fprintf (stderr, " to block does not match in bb %d",
4901 bb->index);
4902 err = 1;
4903 }
4904
4905 if (decl_function_context (label) != current_function_decl)
4906 {
4907 error ("label ");
4908 print_generic_expr (stderr, label, 0);
4909 fprintf (stderr, " has incorrect context in bb %d",
4910 bb->index);
4911 err = 1;
4912 }
4913 }
4914
4915 /* Verify that body of basic block BB is free of control flow. */
4916 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4917 {
4918 gimple stmt = gsi_stmt (gsi);
4919
4920 if (found_ctrl_stmt)
4921 {
4922 error ("control flow in the middle of basic block %d",
4923 bb->index);
4924 err = 1;
4925 }
4926
4927 if (stmt_ends_bb_p (stmt))
4928 found_ctrl_stmt = true;
4929
4930 if (gimple_code (stmt) == GIMPLE_LABEL)
4931 {
4932 error ("label ");
4933 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4934 fprintf (stderr, " in the middle of basic block %d", bb->index);
4935 err = 1;
4936 }
4937 }
4938
4939 gsi = gsi_last_bb (bb);
4940 if (gsi_end_p (gsi))
4941 continue;
4942
4943 stmt = gsi_stmt (gsi);
4944
4945 if (gimple_code (stmt) == GIMPLE_LABEL)
4946 continue;
4947
4948 err |= verify_eh_edges (stmt);
4949
4950 if (is_ctrl_stmt (stmt))
4951 {
4952 FOR_EACH_EDGE (e, ei, bb->succs)
4953 if (e->flags & EDGE_FALLTHRU)
4954 {
4955 error ("fallthru edge after a control statement in bb %d",
4956 bb->index);
4957 err = 1;
4958 }
4959 }
4960
4961 if (gimple_code (stmt) != GIMPLE_COND)
4962 {
4963 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4964 after anything else but if statement. */
4965 FOR_EACH_EDGE (e, ei, bb->succs)
4966 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4967 {
4968 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4969 bb->index);
4970 err = 1;
4971 }
4972 }
4973
4974 switch (gimple_code (stmt))
4975 {
4976 case GIMPLE_COND:
4977 {
4978 edge true_edge;
4979 edge false_edge;
4980
4981 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4982
4983 if (!true_edge
4984 || !false_edge
4985 || !(true_edge->flags & EDGE_TRUE_VALUE)
4986 || !(false_edge->flags & EDGE_FALSE_VALUE)
4987 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4988 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4989 || EDGE_COUNT (bb->succs) >= 3)
4990 {
4991 error ("wrong outgoing edge flags at end of bb %d",
4992 bb->index);
4993 err = 1;
4994 }
4995 }
4996 break;
4997
4998 case GIMPLE_GOTO:
4999 if (simple_goto_p (stmt))
5000 {
5001 error ("explicit goto at end of bb %d", bb->index);
5002 err = 1;
5003 }
5004 else
5005 {
5006 /* FIXME. We should double check that the labels in the
5007 destination blocks have their address taken. */
5008 FOR_EACH_EDGE (e, ei, bb->succs)
5009 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5010 | EDGE_FALSE_VALUE))
5011 || !(e->flags & EDGE_ABNORMAL))
5012 {
5013 error ("wrong outgoing edge flags at end of bb %d",
5014 bb->index);
5015 err = 1;
5016 }
5017 }
5018 break;
5019
5020 case GIMPLE_CALL:
5021 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5022 break;
5023 /* ... fallthru ... */
5024 case GIMPLE_RETURN:
5025 if (!single_succ_p (bb)
5026 || (single_succ_edge (bb)->flags
5027 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5028 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5029 {
5030 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5031 err = 1;
5032 }
5033 if (single_succ (bb) != EXIT_BLOCK_PTR)
5034 {
5035 error ("return edge does not point to exit in bb %d",
5036 bb->index);
5037 err = 1;
5038 }
5039 break;
5040
5041 case GIMPLE_SWITCH:
5042 {
5043 tree prev;
5044 edge e;
5045 size_t i, n;
5046
5047 n = gimple_switch_num_labels (stmt);
5048
5049 /* Mark all the destination basic blocks. */
5050 for (i = 0; i < n; ++i)
5051 {
5052 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5053 basic_block label_bb = label_to_block (lab);
5054 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5055 label_bb->aux = (void *)1;
5056 }
5057
5058 /* Verify that the case labels are sorted. */
5059 prev = gimple_switch_label (stmt, 0);
5060 for (i = 1; i < n; ++i)
5061 {
5062 tree c = gimple_switch_label (stmt, i);
5063 if (!CASE_LOW (c))
5064 {
5065 error ("found default case not at the start of "
5066 "case vector");
5067 err = 1;
5068 continue;
5069 }
5070 if (CASE_LOW (prev)
5071 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5072 {
5073 error ("case labels not sorted: ");
5074 print_generic_expr (stderr, prev, 0);
5075 fprintf (stderr," is greater than ");
5076 print_generic_expr (stderr, c, 0);
5077 fprintf (stderr," but comes before it.\n");
5078 err = 1;
5079 }
5080 prev = c;
5081 }
5082 /* VRP will remove the default case if it can prove it will
5083 never be executed. So do not verify there always exists
5084 a default case here. */
5085
5086 FOR_EACH_EDGE (e, ei, bb->succs)
5087 {
5088 if (!e->dest->aux)
5089 {
5090 error ("extra outgoing edge %d->%d",
5091 bb->index, e->dest->index);
5092 err = 1;
5093 }
5094
5095 e->dest->aux = (void *)2;
5096 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5097 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5098 {
5099 error ("wrong outgoing edge flags at end of bb %d",
5100 bb->index);
5101 err = 1;
5102 }
5103 }
5104
5105 /* Check that we have all of them. */
5106 for (i = 0; i < n; ++i)
5107 {
5108 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5109 basic_block label_bb = label_to_block (lab);
5110
5111 if (label_bb->aux != (void *)2)
5112 {
5113 error ("missing edge %i->%i", bb->index, label_bb->index);
5114 err = 1;
5115 }
5116 }
5117
5118 FOR_EACH_EDGE (e, ei, bb->succs)
5119 e->dest->aux = (void *)0;
5120 }
5121 break;
5122
5123 case GIMPLE_EH_DISPATCH:
5124 err |= verify_eh_dispatch_edge (stmt);
5125 break;
5126
5127 default:
5128 break;
5129 }
5130 }
5131
5132 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5133 verify_dominators (CDI_DOMINATORS);
5134
5135 return err;
5136 }
5137
5138
5139 /* Updates phi nodes after creating a forwarder block joined
5140 by edge FALLTHRU. */
5141
5142 static void
5143 gimple_make_forwarder_block (edge fallthru)
5144 {
5145 edge e;
5146 edge_iterator ei;
5147 basic_block dummy, bb;
5148 tree var;
5149 gimple_stmt_iterator gsi;
5150
5151 dummy = fallthru->src;
5152 bb = fallthru->dest;
5153
5154 if (single_pred_p (bb))
5155 return;
5156
5157 /* If we redirected a branch we must create new PHI nodes at the
5158 start of BB. */
5159 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5160 {
5161 gimple phi, new_phi;
5162
5163 phi = gsi_stmt (gsi);
5164 var = gimple_phi_result (phi);
5165 new_phi = create_phi_node (var, bb);
5166 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5167 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5168 UNKNOWN_LOCATION);
5169 }
5170
5171 /* Add the arguments we have stored on edges. */
5172 FOR_EACH_EDGE (e, ei, bb->preds)
5173 {
5174 if (e == fallthru)
5175 continue;
5176
5177 flush_pending_stmts (e);
5178 }
5179 }
5180
5181
5182 /* Return a non-special label in the head of basic block BLOCK.
5183 Create one if it doesn't exist. */
5184
5185 tree
5186 gimple_block_label (basic_block bb)
5187 {
5188 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5189 bool first = true;
5190 tree label;
5191 gimple stmt;
5192
5193 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5194 {
5195 stmt = gsi_stmt (i);
5196 if (gimple_code (stmt) != GIMPLE_LABEL)
5197 break;
5198 label = gimple_label_label (stmt);
5199 if (!DECL_NONLOCAL (label))
5200 {
5201 if (!first)
5202 gsi_move_before (&i, &s);
5203 return label;
5204 }
5205 }
5206
5207 label = create_artificial_label (UNKNOWN_LOCATION);
5208 stmt = gimple_build_label (label);
5209 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5210 return label;
5211 }
5212
5213
5214 /* Attempt to perform edge redirection by replacing a possibly complex
5215 jump instruction by a goto or by removing the jump completely.
5216 This can apply only if all edges now point to the same block. The
5217 parameters and return values are equivalent to
5218 redirect_edge_and_branch. */
5219
5220 static edge
5221 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5222 {
5223 basic_block src = e->src;
5224 gimple_stmt_iterator i;
5225 gimple stmt;
5226
5227 /* We can replace or remove a complex jump only when we have exactly
5228 two edges. */
5229 if (EDGE_COUNT (src->succs) != 2
5230 /* Verify that all targets will be TARGET. Specifically, the
5231 edge that is not E must also go to TARGET. */
5232 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5233 return NULL;
5234
5235 i = gsi_last_bb (src);
5236 if (gsi_end_p (i))
5237 return NULL;
5238
5239 stmt = gsi_stmt (i);
5240
5241 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5242 {
5243 gsi_remove (&i, true);
5244 e = ssa_redirect_edge (e, target);
5245 e->flags = EDGE_FALLTHRU;
5246 return e;
5247 }
5248
5249 return NULL;
5250 }
5251
5252
5253 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5254 edge representing the redirected branch. */
5255
5256 static edge
5257 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5258 {
5259 basic_block bb = e->src;
5260 gimple_stmt_iterator gsi;
5261 edge ret;
5262 gimple stmt;
5263
5264 if (e->flags & EDGE_ABNORMAL)
5265 return NULL;
5266
5267 if (e->dest == dest)
5268 return NULL;
5269
5270 if (e->flags & EDGE_EH)
5271 return redirect_eh_edge (e, dest);
5272
5273 if (e->src != ENTRY_BLOCK_PTR)
5274 {
5275 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5276 if (ret)
5277 return ret;
5278 }
5279
5280 gsi = gsi_last_bb (bb);
5281 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5282
5283 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5284 {
5285 case GIMPLE_COND:
5286 /* For COND_EXPR, we only need to redirect the edge. */
5287 break;
5288
5289 case GIMPLE_GOTO:
5290 /* No non-abnormal edges should lead from a non-simple goto, and
5291 simple ones should be represented implicitly. */
5292 gcc_unreachable ();
5293
5294 case GIMPLE_SWITCH:
5295 {
5296 tree label = gimple_block_label (dest);
5297 tree cases = get_cases_for_edge (e, stmt);
5298
5299 /* If we have a list of cases associated with E, then use it
5300 as it's a lot faster than walking the entire case vector. */
5301 if (cases)
5302 {
5303 edge e2 = find_edge (e->src, dest);
5304 tree last, first;
5305
5306 first = cases;
5307 while (cases)
5308 {
5309 last = cases;
5310 CASE_LABEL (cases) = label;
5311 cases = CASE_CHAIN (cases);
5312 }
5313
5314 /* If there was already an edge in the CFG, then we need
5315 to move all the cases associated with E to E2. */
5316 if (e2)
5317 {
5318 tree cases2 = get_cases_for_edge (e2, stmt);
5319
5320 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5321 CASE_CHAIN (cases2) = first;
5322 }
5323 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5324 }
5325 else
5326 {
5327 size_t i, n = gimple_switch_num_labels (stmt);
5328
5329 for (i = 0; i < n; i++)
5330 {
5331 tree elt = gimple_switch_label (stmt, i);
5332 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5333 CASE_LABEL (elt) = label;
5334 }
5335 }
5336 }
5337 break;
5338
5339 case GIMPLE_ASM:
5340 {
5341 int i, n = gimple_asm_nlabels (stmt);
5342 tree label = NULL;
5343
5344 for (i = 0; i < n; ++i)
5345 {
5346 tree cons = gimple_asm_label_op (stmt, i);
5347 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5348 {
5349 if (!label)
5350 label = gimple_block_label (dest);
5351 TREE_VALUE (cons) = label;
5352 }
5353 }
5354
5355 /* If we didn't find any label matching the former edge in the
5356 asm labels, we must be redirecting the fallthrough
5357 edge. */
5358 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5359 }
5360 break;
5361
5362 case GIMPLE_RETURN:
5363 gsi_remove (&gsi, true);
5364 e->flags |= EDGE_FALLTHRU;
5365 break;
5366
5367 case GIMPLE_OMP_RETURN:
5368 case GIMPLE_OMP_CONTINUE:
5369 case GIMPLE_OMP_SECTIONS_SWITCH:
5370 case GIMPLE_OMP_FOR:
5371 /* The edges from OMP constructs can be simply redirected. */
5372 break;
5373
5374 case GIMPLE_EH_DISPATCH:
5375 if (!(e->flags & EDGE_FALLTHRU))
5376 redirect_eh_dispatch_edge (stmt, e, dest);
5377 break;
5378
5379 case GIMPLE_TRANSACTION:
5380 /* The ABORT edge has a stored label associated with it, otherwise
5381 the edges are simply redirectable. */
5382 if (e->flags == 0)
5383 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5384 break;
5385
5386 default:
5387 /* Otherwise it must be a fallthru edge, and we don't need to
5388 do anything besides redirecting it. */
5389 gcc_assert (e->flags & EDGE_FALLTHRU);
5390 break;
5391 }
5392
5393 /* Update/insert PHI nodes as necessary. */
5394
5395 /* Now update the edges in the CFG. */
5396 e = ssa_redirect_edge (e, dest);
5397
5398 return e;
5399 }
5400
5401 /* Returns true if it is possible to remove edge E by redirecting
5402 it to the destination of the other edge from E->src. */
5403
5404 static bool
5405 gimple_can_remove_branch_p (const_edge e)
5406 {
5407 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5408 return false;
5409
5410 return true;
5411 }
5412
5413 /* Simple wrapper, as we can always redirect fallthru edges. */
5414
5415 static basic_block
5416 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5417 {
5418 e = gimple_redirect_edge_and_branch (e, dest);
5419 gcc_assert (e);
5420
5421 return NULL;
5422 }
5423
5424
5425 /* Splits basic block BB after statement STMT (but at least after the
5426 labels). If STMT is NULL, BB is split just after the labels. */
5427
5428 static basic_block
5429 gimple_split_block (basic_block bb, void *stmt)
5430 {
5431 gimple_stmt_iterator gsi;
5432 gimple_stmt_iterator gsi_tgt;
5433 gimple act;
5434 gimple_seq list;
5435 basic_block new_bb;
5436 edge e;
5437 edge_iterator ei;
5438
5439 new_bb = create_empty_bb (bb);
5440
5441 /* Redirect the outgoing edges. */
5442 new_bb->succs = bb->succs;
5443 bb->succs = NULL;
5444 FOR_EACH_EDGE (e, ei, new_bb->succs)
5445 e->src = new_bb;
5446
5447 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5448 stmt = NULL;
5449
5450 /* Move everything from GSI to the new basic block. */
5451 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5452 {
5453 act = gsi_stmt (gsi);
5454 if (gimple_code (act) == GIMPLE_LABEL)
5455 continue;
5456
5457 if (!stmt)
5458 break;
5459
5460 if (stmt == act)
5461 {
5462 gsi_next (&gsi);
5463 break;
5464 }
5465 }
5466
5467 if (gsi_end_p (gsi))
5468 return new_bb;
5469
5470 /* Split the statement list - avoid re-creating new containers as this
5471 brings ugly quadratic memory consumption in the inliner.
5472 (We are still quadratic since we need to update stmt BB pointers,
5473 sadly.) */
5474 gsi_split_seq_before (&gsi, &list);
5475 set_bb_seq (new_bb, list);
5476 for (gsi_tgt = gsi_start (list);
5477 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5478 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5479
5480 return new_bb;
5481 }
5482
5483
5484 /* Moves basic block BB after block AFTER. */
5485
5486 static bool
5487 gimple_move_block_after (basic_block bb, basic_block after)
5488 {
5489 if (bb->prev_bb == after)
5490 return true;
5491
5492 unlink_block (bb);
5493 link_block (bb, after);
5494
5495 return true;
5496 }
5497
5498
5499 /* Return TRUE if block BB has no executable statements, otherwise return
5500 FALSE. */
5501
5502 bool
5503 gimple_empty_block_p (basic_block bb)
5504 {
5505 /* BB must have no executable statements. */
5506 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5507 if (phi_nodes (bb))
5508 return false;
5509 if (gsi_end_p (gsi))
5510 return true;
5511 if (is_gimple_debug (gsi_stmt (gsi)))
5512 gsi_next_nondebug (&gsi);
5513 return gsi_end_p (gsi);
5514 }
5515
5516
5517 /* Split a basic block if it ends with a conditional branch and if the
5518 other part of the block is not empty. */
5519
5520 static basic_block
5521 gimple_split_block_before_cond_jump (basic_block bb)
5522 {
5523 gimple last, split_point;
5524 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5525 if (gsi_end_p (gsi))
5526 return NULL;
5527 last = gsi_stmt (gsi);
5528 if (gimple_code (last) != GIMPLE_COND
5529 && gimple_code (last) != GIMPLE_SWITCH)
5530 return NULL;
5531 gsi_prev_nondebug (&gsi);
5532 split_point = gsi_stmt (gsi);
5533 return split_block (bb, split_point)->dest;
5534 }
5535
5536
5537 /* Return true if basic_block can be duplicated. */
5538
5539 static bool
5540 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5541 {
5542 return true;
5543 }
5544
5545 /* Create a duplicate of the basic block BB. NOTE: This does not
5546 preserve SSA form. */
5547
5548 static basic_block
5549 gimple_duplicate_bb (basic_block bb)
5550 {
5551 basic_block new_bb;
5552 gimple_stmt_iterator gsi, gsi_tgt;
5553 gimple_seq phis = phi_nodes (bb);
5554 gimple phi, stmt, copy;
5555
5556 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5557
5558 /* Copy the PHI nodes. We ignore PHI node arguments here because
5559 the incoming edges have not been setup yet. */
5560 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5561 {
5562 phi = gsi_stmt (gsi);
5563 copy = create_phi_node (NULL_TREE, new_bb);
5564 create_new_def_for (gimple_phi_result (phi), copy,
5565 gimple_phi_result_ptr (copy));
5566 }
5567
5568 gsi_tgt = gsi_start_bb (new_bb);
5569 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5570 {
5571 def_operand_p def_p;
5572 ssa_op_iter op_iter;
5573 tree lhs;
5574
5575 stmt = gsi_stmt (gsi);
5576 if (gimple_code (stmt) == GIMPLE_LABEL)
5577 continue;
5578
5579 /* Don't duplicate label debug stmts. */
5580 if (gimple_debug_bind_p (stmt)
5581 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5582 == LABEL_DECL)
5583 continue;
5584
5585 /* Create a new copy of STMT and duplicate STMT's virtual
5586 operands. */
5587 copy = gimple_copy (stmt);
5588 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5589
5590 maybe_duplicate_eh_stmt (copy, stmt);
5591 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5592
5593 /* When copying around a stmt writing into a local non-user
5594 aggregate, make sure it won't share stack slot with other
5595 vars. */
5596 lhs = gimple_get_lhs (stmt);
5597 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5598 {
5599 tree base = get_base_address (lhs);
5600 if (base
5601 && (TREE_CODE (base) == VAR_DECL
5602 || TREE_CODE (base) == RESULT_DECL)
5603 && DECL_IGNORED_P (base)
5604 && !TREE_STATIC (base)
5605 && !DECL_EXTERNAL (base)
5606 && (TREE_CODE (base) != VAR_DECL
5607 || !DECL_HAS_VALUE_EXPR_P (base)))
5608 DECL_NONSHAREABLE (base) = 1;
5609 }
5610
5611 /* Create new names for all the definitions created by COPY and
5612 add replacement mappings for each new name. */
5613 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5614 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5615 }
5616
5617 return new_bb;
5618 }
5619
5620 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5621
5622 static void
5623 add_phi_args_after_copy_edge (edge e_copy)
5624 {
5625 basic_block bb, bb_copy = e_copy->src, dest;
5626 edge e;
5627 edge_iterator ei;
5628 gimple phi, phi_copy;
5629 tree def;
5630 gimple_stmt_iterator psi, psi_copy;
5631
5632 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5633 return;
5634
5635 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5636
5637 if (e_copy->dest->flags & BB_DUPLICATED)
5638 dest = get_bb_original (e_copy->dest);
5639 else
5640 dest = e_copy->dest;
5641
5642 e = find_edge (bb, dest);
5643 if (!e)
5644 {
5645 /* During loop unrolling the target of the latch edge is copied.
5646 In this case we are not looking for edge to dest, but to
5647 duplicated block whose original was dest. */
5648 FOR_EACH_EDGE (e, ei, bb->succs)
5649 {
5650 if ((e->dest->flags & BB_DUPLICATED)
5651 && get_bb_original (e->dest) == dest)
5652 break;
5653 }
5654
5655 gcc_assert (e != NULL);
5656 }
5657
5658 for (psi = gsi_start_phis (e->dest),
5659 psi_copy = gsi_start_phis (e_copy->dest);
5660 !gsi_end_p (psi);
5661 gsi_next (&psi), gsi_next (&psi_copy))
5662 {
5663 phi = gsi_stmt (psi);
5664 phi_copy = gsi_stmt (psi_copy);
5665 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5666 add_phi_arg (phi_copy, def, e_copy,
5667 gimple_phi_arg_location_from_edge (phi, e));
5668 }
5669 }
5670
5671
5672 /* Basic block BB_COPY was created by code duplication. Add phi node
5673 arguments for edges going out of BB_COPY. The blocks that were
5674 duplicated have BB_DUPLICATED set. */
5675
5676 void
5677 add_phi_args_after_copy_bb (basic_block bb_copy)
5678 {
5679 edge e_copy;
5680 edge_iterator ei;
5681
5682 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5683 {
5684 add_phi_args_after_copy_edge (e_copy);
5685 }
5686 }
5687
5688 /* Blocks in REGION_COPY array of length N_REGION were created by
5689 duplication of basic blocks. Add phi node arguments for edges
5690 going from these blocks. If E_COPY is not NULL, also add
5691 phi node arguments for its destination.*/
5692
5693 void
5694 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5695 edge e_copy)
5696 {
5697 unsigned i;
5698
5699 for (i = 0; i < n_region; i++)
5700 region_copy[i]->flags |= BB_DUPLICATED;
5701
5702 for (i = 0; i < n_region; i++)
5703 add_phi_args_after_copy_bb (region_copy[i]);
5704 if (e_copy)
5705 add_phi_args_after_copy_edge (e_copy);
5706
5707 for (i = 0; i < n_region; i++)
5708 region_copy[i]->flags &= ~BB_DUPLICATED;
5709 }
5710
5711 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5712 important exit edge EXIT. By important we mean that no SSA name defined
5713 inside region is live over the other exit edges of the region. All entry
5714 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5715 to the duplicate of the region. Dominance and loop information is
5716 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5717 UPDATE_DOMINANCE is false then we assume that the caller will update the
5718 dominance information after calling this function. The new basic
5719 blocks are stored to REGION_COPY in the same order as they had in REGION,
5720 provided that REGION_COPY is not NULL.
5721 The function returns false if it is unable to copy the region,
5722 true otherwise. */
5723
5724 bool
5725 gimple_duplicate_sese_region (edge entry, edge exit,
5726 basic_block *region, unsigned n_region,
5727 basic_block *region_copy,
5728 bool update_dominance)
5729 {
5730 unsigned i;
5731 bool free_region_copy = false, copying_header = false;
5732 struct loop *loop = entry->dest->loop_father;
5733 edge exit_copy;
5734 vec<basic_block> doms;
5735 edge redirected;
5736 int total_freq = 0, entry_freq = 0;
5737 gcov_type total_count = 0, entry_count = 0;
5738
5739 if (!can_copy_bbs_p (region, n_region))
5740 return false;
5741
5742 /* Some sanity checking. Note that we do not check for all possible
5743 missuses of the functions. I.e. if you ask to copy something weird,
5744 it will work, but the state of structures probably will not be
5745 correct. */
5746 for (i = 0; i < n_region; i++)
5747 {
5748 /* We do not handle subloops, i.e. all the blocks must belong to the
5749 same loop. */
5750 if (region[i]->loop_father != loop)
5751 return false;
5752
5753 if (region[i] != entry->dest
5754 && region[i] == loop->header)
5755 return false;
5756 }
5757
5758 set_loop_copy (loop, loop);
5759
5760 /* In case the function is used for loop header copying (which is the primary
5761 use), ensure that EXIT and its copy will be new latch and entry edges. */
5762 if (loop->header == entry->dest)
5763 {
5764 copying_header = true;
5765 set_loop_copy (loop, loop_outer (loop));
5766
5767 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5768 return false;
5769
5770 for (i = 0; i < n_region; i++)
5771 if (region[i] != exit->src
5772 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5773 return false;
5774 }
5775
5776 if (!region_copy)
5777 {
5778 region_copy = XNEWVEC (basic_block, n_region);
5779 free_region_copy = true;
5780 }
5781
5782 initialize_original_copy_tables ();
5783
5784 /* Record blocks outside the region that are dominated by something
5785 inside. */
5786 if (update_dominance)
5787 {
5788 doms.create (0);
5789 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5790 }
5791
5792 if (entry->dest->count)
5793 {
5794 total_count = entry->dest->count;
5795 entry_count = entry->count;
5796 /* Fix up corner cases, to avoid division by zero or creation of negative
5797 frequencies. */
5798 if (entry_count > total_count)
5799 entry_count = total_count;
5800 }
5801 else
5802 {
5803 total_freq = entry->dest->frequency;
5804 entry_freq = EDGE_FREQUENCY (entry);
5805 /* Fix up corner cases, to avoid division by zero or creation of negative
5806 frequencies. */
5807 if (total_freq == 0)
5808 total_freq = 1;
5809 else if (entry_freq > total_freq)
5810 entry_freq = total_freq;
5811 }
5812
5813 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5814 split_edge_bb_loc (entry), update_dominance);
5815 if (total_count)
5816 {
5817 scale_bbs_frequencies_gcov_type (region, n_region,
5818 total_count - entry_count,
5819 total_count);
5820 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5821 total_count);
5822 }
5823 else
5824 {
5825 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5826 total_freq);
5827 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5828 }
5829
5830 if (copying_header)
5831 {
5832 loop->header = exit->dest;
5833 loop->latch = exit->src;
5834 }
5835
5836 /* Redirect the entry and add the phi node arguments. */
5837 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5838 gcc_assert (redirected != NULL);
5839 flush_pending_stmts (entry);
5840
5841 /* Concerning updating of dominators: We must recount dominators
5842 for entry block and its copy. Anything that is outside of the
5843 region, but was dominated by something inside needs recounting as
5844 well. */
5845 if (update_dominance)
5846 {
5847 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5848 doms.safe_push (get_bb_original (entry->dest));
5849 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5850 doms.release ();
5851 }
5852
5853 /* Add the other PHI node arguments. */
5854 add_phi_args_after_copy (region_copy, n_region, NULL);
5855
5856 if (free_region_copy)
5857 free (region_copy);
5858
5859 free_original_copy_tables ();
5860 return true;
5861 }
5862
5863 /* Checks if BB is part of the region defined by N_REGION BBS. */
5864 static bool
5865 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5866 {
5867 unsigned int n;
5868
5869 for (n = 0; n < n_region; n++)
5870 {
5871 if (bb == bbs[n])
5872 return true;
5873 }
5874 return false;
5875 }
5876
5877 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5878 are stored to REGION_COPY in the same order in that they appear
5879 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5880 the region, EXIT an exit from it. The condition guarding EXIT
5881 is moved to ENTRY. Returns true if duplication succeeds, false
5882 otherwise.
5883
5884 For example,
5885
5886 some_code;
5887 if (cond)
5888 A;
5889 else
5890 B;
5891
5892 is transformed to
5893
5894 if (cond)
5895 {
5896 some_code;
5897 A;
5898 }
5899 else
5900 {
5901 some_code;
5902 B;
5903 }
5904 */
5905
5906 bool
5907 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5908 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5909 basic_block *region_copy ATTRIBUTE_UNUSED)
5910 {
5911 unsigned i;
5912 bool free_region_copy = false;
5913 struct loop *loop = exit->dest->loop_father;
5914 struct loop *orig_loop = entry->dest->loop_father;
5915 basic_block switch_bb, entry_bb, nentry_bb;
5916 vec<basic_block> doms;
5917 int total_freq = 0, exit_freq = 0;
5918 gcov_type total_count = 0, exit_count = 0;
5919 edge exits[2], nexits[2], e;
5920 gimple_stmt_iterator gsi;
5921 gimple cond_stmt;
5922 edge sorig, snew;
5923 basic_block exit_bb;
5924 gimple_stmt_iterator psi;
5925 gimple phi;
5926 tree def;
5927 struct loop *target, *aloop, *cloop;
5928
5929 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5930 exits[0] = exit;
5931 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5932
5933 if (!can_copy_bbs_p (region, n_region))
5934 return false;
5935
5936 initialize_original_copy_tables ();
5937 set_loop_copy (orig_loop, loop);
5938
5939 target= loop;
5940 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5941 {
5942 if (bb_part_of_region_p (aloop->header, region, n_region))
5943 {
5944 cloop = duplicate_loop (aloop, target);
5945 duplicate_subloops (aloop, cloop);
5946 }
5947 }
5948
5949 if (!region_copy)
5950 {
5951 region_copy = XNEWVEC (basic_block, n_region);
5952 free_region_copy = true;
5953 }
5954
5955 gcc_assert (!need_ssa_update_p (cfun));
5956
5957 /* Record blocks outside the region that are dominated by something
5958 inside. */
5959 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5960
5961 if (exit->src->count)
5962 {
5963 total_count = exit->src->count;
5964 exit_count = exit->count;
5965 /* Fix up corner cases, to avoid division by zero or creation of negative
5966 frequencies. */
5967 if (exit_count > total_count)
5968 exit_count = total_count;
5969 }
5970 else
5971 {
5972 total_freq = exit->src->frequency;
5973 exit_freq = EDGE_FREQUENCY (exit);
5974 /* Fix up corner cases, to avoid division by zero or creation of negative
5975 frequencies. */
5976 if (total_freq == 0)
5977 total_freq = 1;
5978 if (exit_freq > total_freq)
5979 exit_freq = total_freq;
5980 }
5981
5982 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5983 split_edge_bb_loc (exit), true);
5984 if (total_count)
5985 {
5986 scale_bbs_frequencies_gcov_type (region, n_region,
5987 total_count - exit_count,
5988 total_count);
5989 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5990 total_count);
5991 }
5992 else
5993 {
5994 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5995 total_freq);
5996 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5997 }
5998
5999 /* Create the switch block, and put the exit condition to it. */
6000 entry_bb = entry->dest;
6001 nentry_bb = get_bb_copy (entry_bb);
6002 if (!last_stmt (entry->src)
6003 || !stmt_ends_bb_p (last_stmt (entry->src)))
6004 switch_bb = entry->src;
6005 else
6006 switch_bb = split_edge (entry);
6007 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6008
6009 gsi = gsi_last_bb (switch_bb);
6010 cond_stmt = last_stmt (exit->src);
6011 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6012 cond_stmt = gimple_copy (cond_stmt);
6013
6014 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6015
6016 sorig = single_succ_edge (switch_bb);
6017 sorig->flags = exits[1]->flags;
6018 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6019
6020 /* Register the new edge from SWITCH_BB in loop exit lists. */
6021 rescan_loop_exit (snew, true, false);
6022
6023 /* Add the PHI node arguments. */
6024 add_phi_args_after_copy (region_copy, n_region, snew);
6025
6026 /* Get rid of now superfluous conditions and associated edges (and phi node
6027 arguments). */
6028 exit_bb = exit->dest;
6029
6030 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6031 PENDING_STMT (e) = NULL;
6032
6033 /* The latch of ORIG_LOOP was copied, and so was the backedge
6034 to the original header. We redirect this backedge to EXIT_BB. */
6035 for (i = 0; i < n_region; i++)
6036 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6037 {
6038 gcc_assert (single_succ_edge (region_copy[i]));
6039 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6040 PENDING_STMT (e) = NULL;
6041 for (psi = gsi_start_phis (exit_bb);
6042 !gsi_end_p (psi);
6043 gsi_next (&psi))
6044 {
6045 phi = gsi_stmt (psi);
6046 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6047 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6048 }
6049 }
6050 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6051 PENDING_STMT (e) = NULL;
6052
6053 /* Anything that is outside of the region, but was dominated by something
6054 inside needs to update dominance info. */
6055 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6056 doms.release ();
6057 /* Update the SSA web. */
6058 update_ssa (TODO_update_ssa);
6059
6060 if (free_region_copy)
6061 free (region_copy);
6062
6063 free_original_copy_tables ();
6064 return true;
6065 }
6066
6067 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6068 adding blocks when the dominator traversal reaches EXIT. This
6069 function silently assumes that ENTRY strictly dominates EXIT. */
6070
6071 void
6072 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6073 vec<basic_block> *bbs_p)
6074 {
6075 basic_block son;
6076
6077 for (son = first_dom_son (CDI_DOMINATORS, entry);
6078 son;
6079 son = next_dom_son (CDI_DOMINATORS, son))
6080 {
6081 bbs_p->safe_push (son);
6082 if (son != exit)
6083 gather_blocks_in_sese_region (son, exit, bbs_p);
6084 }
6085 }
6086
6087 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6088 The duplicates are recorded in VARS_MAP. */
6089
6090 static void
6091 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6092 tree to_context)
6093 {
6094 tree t = *tp, new_t;
6095 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6096 void **loc;
6097
6098 if (DECL_CONTEXT (t) == to_context)
6099 return;
6100
6101 loc = pointer_map_contains (vars_map, t);
6102
6103 if (!loc)
6104 {
6105 loc = pointer_map_insert (vars_map, t);
6106
6107 if (SSA_VAR_P (t))
6108 {
6109 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6110 add_local_decl (f, new_t);
6111 }
6112 else
6113 {
6114 gcc_assert (TREE_CODE (t) == CONST_DECL);
6115 new_t = copy_node (t);
6116 }
6117 DECL_CONTEXT (new_t) = to_context;
6118
6119 *loc = new_t;
6120 }
6121 else
6122 new_t = (tree) *loc;
6123
6124 *tp = new_t;
6125 }
6126
6127
6128 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6129 VARS_MAP maps old ssa names and var_decls to the new ones. */
6130
6131 static tree
6132 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6133 tree to_context)
6134 {
6135 void **loc;
6136 tree new_name;
6137
6138 gcc_assert (!virtual_operand_p (name));
6139
6140 loc = pointer_map_contains (vars_map, name);
6141
6142 if (!loc)
6143 {
6144 tree decl = SSA_NAME_VAR (name);
6145 if (decl)
6146 {
6147 replace_by_duplicate_decl (&decl, vars_map, to_context);
6148 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6149 decl, SSA_NAME_DEF_STMT (name));
6150 if (SSA_NAME_IS_DEFAULT_DEF (name))
6151 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6152 decl, new_name);
6153 }
6154 else
6155 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6156 name, SSA_NAME_DEF_STMT (name));
6157
6158 loc = pointer_map_insert (vars_map, name);
6159 *loc = new_name;
6160 }
6161 else
6162 new_name = (tree) *loc;
6163
6164 return new_name;
6165 }
6166
6167 struct move_stmt_d
6168 {
6169 tree orig_block;
6170 tree new_block;
6171 tree from_context;
6172 tree to_context;
6173 struct pointer_map_t *vars_map;
6174 htab_t new_label_map;
6175 struct pointer_map_t *eh_map;
6176 bool remap_decls_p;
6177 };
6178
6179 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6180 contained in *TP if it has been ORIG_BLOCK previously and change the
6181 DECL_CONTEXT of every local variable referenced in *TP. */
6182
6183 static tree
6184 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6185 {
6186 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6187 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6188 tree t = *tp;
6189
6190 if (EXPR_P (t))
6191 {
6192 tree block = TREE_BLOCK (t);
6193 if (block == p->orig_block
6194 || (p->orig_block == NULL_TREE
6195 && block != NULL_TREE))
6196 TREE_SET_BLOCK (t, p->new_block);
6197 #ifdef ENABLE_CHECKING
6198 else if (block != NULL_TREE)
6199 {
6200 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6201 block = BLOCK_SUPERCONTEXT (block);
6202 gcc_assert (block == p->orig_block);
6203 }
6204 #endif
6205 }
6206 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6207 {
6208 if (TREE_CODE (t) == SSA_NAME)
6209 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6210 else if (TREE_CODE (t) == LABEL_DECL)
6211 {
6212 if (p->new_label_map)
6213 {
6214 struct tree_map in, *out;
6215 in.base.from = t;
6216 out = (struct tree_map *)
6217 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6218 if (out)
6219 *tp = t = out->to;
6220 }
6221
6222 DECL_CONTEXT (t) = p->to_context;
6223 }
6224 else if (p->remap_decls_p)
6225 {
6226 /* Replace T with its duplicate. T should no longer appear in the
6227 parent function, so this looks wasteful; however, it may appear
6228 in referenced_vars, and more importantly, as virtual operands of
6229 statements, and in alias lists of other variables. It would be
6230 quite difficult to expunge it from all those places. ??? It might
6231 suffice to do this for addressable variables. */
6232 if ((TREE_CODE (t) == VAR_DECL
6233 && !is_global_var (t))
6234 || TREE_CODE (t) == CONST_DECL)
6235 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6236 }
6237 *walk_subtrees = 0;
6238 }
6239 else if (TYPE_P (t))
6240 *walk_subtrees = 0;
6241
6242 return NULL_TREE;
6243 }
6244
6245 /* Helper for move_stmt_r. Given an EH region number for the source
6246 function, map that to the duplicate EH regio number in the dest. */
6247
6248 static int
6249 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6250 {
6251 eh_region old_r, new_r;
6252 void **slot;
6253
6254 old_r = get_eh_region_from_number (old_nr);
6255 slot = pointer_map_contains (p->eh_map, old_r);
6256 new_r = (eh_region) *slot;
6257
6258 return new_r->index;
6259 }
6260
6261 /* Similar, but operate on INTEGER_CSTs. */
6262
6263 static tree
6264 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6265 {
6266 int old_nr, new_nr;
6267
6268 old_nr = tree_low_cst (old_t_nr, 0);
6269 new_nr = move_stmt_eh_region_nr (old_nr, p);
6270
6271 return build_int_cst (integer_type_node, new_nr);
6272 }
6273
6274 /* Like move_stmt_op, but for gimple statements.
6275
6276 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6277 contained in the current statement in *GSI_P and change the
6278 DECL_CONTEXT of every local variable referenced in the current
6279 statement. */
6280
6281 static tree
6282 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6283 struct walk_stmt_info *wi)
6284 {
6285 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6286 gimple stmt = gsi_stmt (*gsi_p);
6287 tree block = gimple_block (stmt);
6288
6289 if (block == p->orig_block
6290 || (p->orig_block == NULL_TREE
6291 && block != NULL_TREE))
6292 gimple_set_block (stmt, p->new_block);
6293
6294 switch (gimple_code (stmt))
6295 {
6296 case GIMPLE_CALL:
6297 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6298 {
6299 tree r, fndecl = gimple_call_fndecl (stmt);
6300 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6301 switch (DECL_FUNCTION_CODE (fndecl))
6302 {
6303 case BUILT_IN_EH_COPY_VALUES:
6304 r = gimple_call_arg (stmt, 1);
6305 r = move_stmt_eh_region_tree_nr (r, p);
6306 gimple_call_set_arg (stmt, 1, r);
6307 /* FALLTHRU */
6308
6309 case BUILT_IN_EH_POINTER:
6310 case BUILT_IN_EH_FILTER:
6311 r = gimple_call_arg (stmt, 0);
6312 r = move_stmt_eh_region_tree_nr (r, p);
6313 gimple_call_set_arg (stmt, 0, r);
6314 break;
6315
6316 default:
6317 break;
6318 }
6319 }
6320 break;
6321
6322 case GIMPLE_RESX:
6323 {
6324 int r = gimple_resx_region (stmt);
6325 r = move_stmt_eh_region_nr (r, p);
6326 gimple_resx_set_region (stmt, r);
6327 }
6328 break;
6329
6330 case GIMPLE_EH_DISPATCH:
6331 {
6332 int r = gimple_eh_dispatch_region (stmt);
6333 r = move_stmt_eh_region_nr (r, p);
6334 gimple_eh_dispatch_set_region (stmt, r);
6335 }
6336 break;
6337
6338 case GIMPLE_OMP_RETURN:
6339 case GIMPLE_OMP_CONTINUE:
6340 break;
6341 default:
6342 if (is_gimple_omp (stmt))
6343 {
6344 /* Do not remap variables inside OMP directives. Variables
6345 referenced in clauses and directive header belong to the
6346 parent function and should not be moved into the child
6347 function. */
6348 bool save_remap_decls_p = p->remap_decls_p;
6349 p->remap_decls_p = false;
6350 *handled_ops_p = true;
6351
6352 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6353 move_stmt_op, wi);
6354
6355 p->remap_decls_p = save_remap_decls_p;
6356 }
6357 break;
6358 }
6359
6360 return NULL_TREE;
6361 }
6362
6363 /* Move basic block BB from function CFUN to function DEST_FN. The
6364 block is moved out of the original linked list and placed after
6365 block AFTER in the new list. Also, the block is removed from the
6366 original array of blocks and placed in DEST_FN's array of blocks.
6367 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6368 updated to reflect the moved edges.
6369
6370 The local variables are remapped to new instances, VARS_MAP is used
6371 to record the mapping. */
6372
6373 static void
6374 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6375 basic_block after, bool update_edge_count_p,
6376 struct move_stmt_d *d)
6377 {
6378 struct control_flow_graph *cfg;
6379 edge_iterator ei;
6380 edge e;
6381 gimple_stmt_iterator si;
6382 unsigned old_len, new_len;
6383
6384 /* Remove BB from dominance structures. */
6385 delete_from_dominance_info (CDI_DOMINATORS, bb);
6386
6387 /* Move BB from its current loop to the copy in the new function. */
6388 if (current_loops)
6389 {
6390 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6391 if (new_loop)
6392 bb->loop_father = new_loop;
6393 }
6394
6395 /* Link BB to the new linked list. */
6396 move_block_after (bb, after);
6397
6398 /* Update the edge count in the corresponding flowgraphs. */
6399 if (update_edge_count_p)
6400 FOR_EACH_EDGE (e, ei, bb->succs)
6401 {
6402 cfun->cfg->x_n_edges--;
6403 dest_cfun->cfg->x_n_edges++;
6404 }
6405
6406 /* Remove BB from the original basic block array. */
6407 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6408 cfun->cfg->x_n_basic_blocks--;
6409
6410 /* Grow DEST_CFUN's basic block array if needed. */
6411 cfg = dest_cfun->cfg;
6412 cfg->x_n_basic_blocks++;
6413 if (bb->index >= cfg->x_last_basic_block)
6414 cfg->x_last_basic_block = bb->index + 1;
6415
6416 old_len = vec_safe_length (cfg->x_basic_block_info);
6417 if ((unsigned) cfg->x_last_basic_block >= old_len)
6418 {
6419 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6420 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6421 }
6422
6423 (*cfg->x_basic_block_info)[bb->index] = bb;
6424
6425 /* Remap the variables in phi nodes. */
6426 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6427 {
6428 gimple phi = gsi_stmt (si);
6429 use_operand_p use;
6430 tree op = PHI_RESULT (phi);
6431 ssa_op_iter oi;
6432 unsigned i;
6433
6434 if (virtual_operand_p (op))
6435 {
6436 /* Remove the phi nodes for virtual operands (alias analysis will be
6437 run for the new function, anyway). */
6438 remove_phi_node (&si, true);
6439 continue;
6440 }
6441
6442 SET_PHI_RESULT (phi,
6443 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6444 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6445 {
6446 op = USE_FROM_PTR (use);
6447 if (TREE_CODE (op) == SSA_NAME)
6448 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6449 }
6450
6451 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6452 {
6453 location_t locus = gimple_phi_arg_location (phi, i);
6454 tree block = LOCATION_BLOCK (locus);
6455
6456 if (locus == UNKNOWN_LOCATION)
6457 continue;
6458 if (d->orig_block == NULL_TREE || block == d->orig_block)
6459 {
6460 if (d->new_block == NULL_TREE)
6461 locus = LOCATION_LOCUS (locus);
6462 else
6463 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6464 gimple_phi_arg_set_location (phi, i, locus);
6465 }
6466 }
6467
6468 gsi_next (&si);
6469 }
6470
6471 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6472 {
6473 gimple stmt = gsi_stmt (si);
6474 struct walk_stmt_info wi;
6475
6476 memset (&wi, 0, sizeof (wi));
6477 wi.info = d;
6478 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6479
6480 if (gimple_code (stmt) == GIMPLE_LABEL)
6481 {
6482 tree label = gimple_label_label (stmt);
6483 int uid = LABEL_DECL_UID (label);
6484
6485 gcc_assert (uid > -1);
6486
6487 old_len = vec_safe_length (cfg->x_label_to_block_map);
6488 if (old_len <= (unsigned) uid)
6489 {
6490 new_len = 3 * uid / 2 + 1;
6491 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6492 }
6493
6494 (*cfg->x_label_to_block_map)[uid] = bb;
6495 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6496
6497 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6498
6499 if (uid >= dest_cfun->cfg->last_label_uid)
6500 dest_cfun->cfg->last_label_uid = uid + 1;
6501 }
6502
6503 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6504 remove_stmt_from_eh_lp_fn (cfun, stmt);
6505
6506 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6507 gimple_remove_stmt_histograms (cfun, stmt);
6508
6509 /* We cannot leave any operands allocated from the operand caches of
6510 the current function. */
6511 free_stmt_operands (stmt);
6512 push_cfun (dest_cfun);
6513 update_stmt (stmt);
6514 pop_cfun ();
6515 }
6516
6517 FOR_EACH_EDGE (e, ei, bb->succs)
6518 if (e->goto_locus != UNKNOWN_LOCATION)
6519 {
6520 tree block = LOCATION_BLOCK (e->goto_locus);
6521 if (d->orig_block == NULL_TREE
6522 || block == d->orig_block)
6523 e->goto_locus = d->new_block ?
6524 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6525 LOCATION_LOCUS (e->goto_locus);
6526 }
6527 }
6528
6529 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6530 the outermost EH region. Use REGION as the incoming base EH region. */
6531
6532 static eh_region
6533 find_outermost_region_in_block (struct function *src_cfun,
6534 basic_block bb, eh_region region)
6535 {
6536 gimple_stmt_iterator si;
6537
6538 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6539 {
6540 gimple stmt = gsi_stmt (si);
6541 eh_region stmt_region;
6542 int lp_nr;
6543
6544 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6545 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6546 if (stmt_region)
6547 {
6548 if (region == NULL)
6549 region = stmt_region;
6550 else if (stmt_region != region)
6551 {
6552 region = eh_region_outermost (src_cfun, stmt_region, region);
6553 gcc_assert (region != NULL);
6554 }
6555 }
6556 }
6557
6558 return region;
6559 }
6560
6561 static tree
6562 new_label_mapper (tree decl, void *data)
6563 {
6564 htab_t hash = (htab_t) data;
6565 struct tree_map *m;
6566 void **slot;
6567
6568 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6569
6570 m = XNEW (struct tree_map);
6571 m->hash = DECL_UID (decl);
6572 m->base.from = decl;
6573 m->to = create_artificial_label (UNKNOWN_LOCATION);
6574 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6575 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6576 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6577
6578 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6579 gcc_assert (*slot == NULL);
6580
6581 *slot = m;
6582
6583 return m->to;
6584 }
6585
6586 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6587 subblocks. */
6588
6589 static void
6590 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6591 tree to_context)
6592 {
6593 tree *tp, t;
6594
6595 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6596 {
6597 t = *tp;
6598 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6599 continue;
6600 replace_by_duplicate_decl (&t, vars_map, to_context);
6601 if (t != *tp)
6602 {
6603 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6604 {
6605 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6606 DECL_HAS_VALUE_EXPR_P (t) = 1;
6607 }
6608 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6609 *tp = t;
6610 }
6611 }
6612
6613 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6614 replace_block_vars_by_duplicates (block, vars_map, to_context);
6615 }
6616
6617 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6618 from FN1 to FN2. */
6619
6620 static void
6621 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6622 struct loop *loop)
6623 {
6624 /* Discard it from the old loop array. */
6625 (*get_loops (fn1))[loop->num] = NULL;
6626
6627 /* Place it in the new loop array, assigning it a new number. */
6628 loop->num = number_of_loops (fn2);
6629 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6630
6631 /* Recurse to children. */
6632 for (loop = loop->inner; loop; loop = loop->next)
6633 fixup_loop_arrays_after_move (fn1, fn2, loop);
6634 }
6635
6636 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6637 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6638 single basic block in the original CFG and the new basic block is
6639 returned. DEST_CFUN must not have a CFG yet.
6640
6641 Note that the region need not be a pure SESE region. Blocks inside
6642 the region may contain calls to abort/exit. The only restriction
6643 is that ENTRY_BB should be the only entry point and it must
6644 dominate EXIT_BB.
6645
6646 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6647 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6648 to the new function.
6649
6650 All local variables referenced in the region are assumed to be in
6651 the corresponding BLOCK_VARS and unexpanded variable lists
6652 associated with DEST_CFUN. */
6653
6654 basic_block
6655 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6656 basic_block exit_bb, tree orig_block)
6657 {
6658 vec<basic_block> bbs, dom_bbs;
6659 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6660 basic_block after, bb, *entry_pred, *exit_succ, abb;
6661 struct function *saved_cfun = cfun;
6662 int *entry_flag, *exit_flag;
6663 unsigned *entry_prob, *exit_prob;
6664 unsigned i, num_entry_edges, num_exit_edges;
6665 edge e;
6666 edge_iterator ei;
6667 htab_t new_label_map;
6668 struct pointer_map_t *vars_map, *eh_map;
6669 struct loop *loop = entry_bb->loop_father;
6670 struct move_stmt_d d;
6671
6672 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6673 region. */
6674 gcc_assert (entry_bb != exit_bb
6675 && (!exit_bb
6676 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6677
6678 /* Collect all the blocks in the region. Manually add ENTRY_BB
6679 because it won't be added by dfs_enumerate_from. */
6680 bbs.create (0);
6681 bbs.safe_push (entry_bb);
6682 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6683
6684 /* The blocks that used to be dominated by something in BBS will now be
6685 dominated by the new block. */
6686 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6687 bbs.address (),
6688 bbs.length ());
6689
6690 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6691 the predecessor edges to ENTRY_BB and the successor edges to
6692 EXIT_BB so that we can re-attach them to the new basic block that
6693 will replace the region. */
6694 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6695 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6696 entry_flag = XNEWVEC (int, num_entry_edges);
6697 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6698 i = 0;
6699 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6700 {
6701 entry_prob[i] = e->probability;
6702 entry_flag[i] = e->flags;
6703 entry_pred[i++] = e->src;
6704 remove_edge (e);
6705 }
6706
6707 if (exit_bb)
6708 {
6709 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6710 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6711 exit_flag = XNEWVEC (int, num_exit_edges);
6712 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6713 i = 0;
6714 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6715 {
6716 exit_prob[i] = e->probability;
6717 exit_flag[i] = e->flags;
6718 exit_succ[i++] = e->dest;
6719 remove_edge (e);
6720 }
6721 }
6722 else
6723 {
6724 num_exit_edges = 0;
6725 exit_succ = NULL;
6726 exit_flag = NULL;
6727 exit_prob = NULL;
6728 }
6729
6730 /* Switch context to the child function to initialize DEST_FN's CFG. */
6731 gcc_assert (dest_cfun->cfg == NULL);
6732 push_cfun (dest_cfun);
6733
6734 init_empty_tree_cfg ();
6735
6736 /* Initialize EH information for the new function. */
6737 eh_map = NULL;
6738 new_label_map = NULL;
6739 if (saved_cfun->eh)
6740 {
6741 eh_region region = NULL;
6742
6743 FOR_EACH_VEC_ELT (bbs, i, bb)
6744 region = find_outermost_region_in_block (saved_cfun, bb, region);
6745
6746 init_eh_for_function ();
6747 if (region != NULL)
6748 {
6749 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6750 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6751 new_label_mapper, new_label_map);
6752 }
6753 }
6754
6755 /* Initialize an empty loop tree. */
6756 struct loops *loops = ggc_alloc_cleared_loops ();
6757 init_loops_structure (dest_cfun, loops, 1);
6758 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6759 set_loops_for_fn (dest_cfun, loops);
6760
6761 /* Move the outlined loop tree part. */
6762 FOR_EACH_VEC_ELT (bbs, i, bb)
6763 {
6764 if (bb->loop_father->header == bb
6765 && loop_outer (bb->loop_father) == loop)
6766 {
6767 struct loop *loop = bb->loop_father;
6768 flow_loop_tree_node_remove (bb->loop_father);
6769 flow_loop_tree_node_add (get_loop (dest_cfun, 0), loop);
6770 fixup_loop_arrays_after_move (saved_cfun, cfun, loop);
6771 }
6772
6773 /* Remove loop exits from the outlined region. */
6774 if (loops_for_fn (saved_cfun)->exits)
6775 FOR_EACH_EDGE (e, ei, bb->succs)
6776 {
6777 void **slot = htab_find_slot_with_hash
6778 (loops_for_fn (saved_cfun)->exits, e,
6779 htab_hash_pointer (e), NO_INSERT);
6780 if (slot)
6781 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6782 }
6783 }
6784
6785
6786 /* Adjust the number of blocks in the tree root of the outlined part. */
6787 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6788
6789 /* Setup a mapping to be used by move_block_to_fn. */
6790 loop->aux = current_loops->tree_root;
6791
6792 pop_cfun ();
6793
6794 /* Move blocks from BBS into DEST_CFUN. */
6795 gcc_assert (bbs.length () >= 2);
6796 after = dest_cfun->cfg->x_entry_block_ptr;
6797 vars_map = pointer_map_create ();
6798
6799 memset (&d, 0, sizeof (d));
6800 d.orig_block = orig_block;
6801 d.new_block = DECL_INITIAL (dest_cfun->decl);
6802 d.from_context = cfun->decl;
6803 d.to_context = dest_cfun->decl;
6804 d.vars_map = vars_map;
6805 d.new_label_map = new_label_map;
6806 d.eh_map = eh_map;
6807 d.remap_decls_p = true;
6808
6809 FOR_EACH_VEC_ELT (bbs, i, bb)
6810 {
6811 /* No need to update edge counts on the last block. It has
6812 already been updated earlier when we detached the region from
6813 the original CFG. */
6814 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6815 after = bb;
6816 }
6817
6818 loop->aux = NULL;
6819 /* Loop sizes are no longer correct, fix them up. */
6820 loop->num_nodes -= bbs.length ();
6821 for (struct loop *outer = loop_outer (loop);
6822 outer; outer = loop_outer (outer))
6823 outer->num_nodes -= bbs.length ();
6824
6825 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6826 if (orig_block)
6827 {
6828 tree block;
6829 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6830 == NULL_TREE);
6831 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6832 = BLOCK_SUBBLOCKS (orig_block);
6833 for (block = BLOCK_SUBBLOCKS (orig_block);
6834 block; block = BLOCK_CHAIN (block))
6835 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6836 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6837 }
6838
6839 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6840 vars_map, dest_cfun->decl);
6841
6842 if (new_label_map)
6843 htab_delete (new_label_map);
6844 if (eh_map)
6845 pointer_map_destroy (eh_map);
6846 pointer_map_destroy (vars_map);
6847
6848 /* Rewire the entry and exit blocks. The successor to the entry
6849 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6850 the child function. Similarly, the predecessor of DEST_FN's
6851 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6852 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6853 various CFG manipulation function get to the right CFG.
6854
6855 FIXME, this is silly. The CFG ought to become a parameter to
6856 these helpers. */
6857 push_cfun (dest_cfun);
6858 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6859 if (exit_bb)
6860 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6861 pop_cfun ();
6862
6863 /* Back in the original function, the SESE region has disappeared,
6864 create a new basic block in its place. */
6865 bb = create_empty_bb (entry_pred[0]);
6866 if (current_loops)
6867 add_bb_to_loop (bb, loop);
6868 for (i = 0; i < num_entry_edges; i++)
6869 {
6870 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6871 e->probability = entry_prob[i];
6872 }
6873
6874 for (i = 0; i < num_exit_edges; i++)
6875 {
6876 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6877 e->probability = exit_prob[i];
6878 }
6879
6880 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6881 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6882 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6883 dom_bbs.release ();
6884
6885 if (exit_bb)
6886 {
6887 free (exit_prob);
6888 free (exit_flag);
6889 free (exit_succ);
6890 }
6891 free (entry_prob);
6892 free (entry_flag);
6893 free (entry_pred);
6894 bbs.release ();
6895
6896 return bb;
6897 }
6898
6899
6900 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6901 */
6902
6903 void
6904 dump_function_to_file (tree fndecl, FILE *file, int flags)
6905 {
6906 tree arg, var, old_current_fndecl = current_function_decl;
6907 struct function *dsf;
6908 bool ignore_topmost_bind = false, any_var = false;
6909 basic_block bb;
6910 tree chain;
6911 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6912 && decl_is_tm_clone (fndecl));
6913 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6914
6915 current_function_decl = fndecl;
6916 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6917
6918 arg = DECL_ARGUMENTS (fndecl);
6919 while (arg)
6920 {
6921 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6922 fprintf (file, " ");
6923 print_generic_expr (file, arg, dump_flags);
6924 if (flags & TDF_VERBOSE)
6925 print_node (file, "", arg, 4);
6926 if (DECL_CHAIN (arg))
6927 fprintf (file, ", ");
6928 arg = DECL_CHAIN (arg);
6929 }
6930 fprintf (file, ")\n");
6931
6932 if (flags & TDF_VERBOSE)
6933 print_node (file, "", fndecl, 2);
6934
6935 dsf = DECL_STRUCT_FUNCTION (fndecl);
6936 if (dsf && (flags & TDF_EH))
6937 dump_eh_tree (file, dsf);
6938
6939 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6940 {
6941 dump_node (fndecl, TDF_SLIM | flags, file);
6942 current_function_decl = old_current_fndecl;
6943 return;
6944 }
6945
6946 /* When GIMPLE is lowered, the variables are no longer available in
6947 BIND_EXPRs, so display them separately. */
6948 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6949 {
6950 unsigned ix;
6951 ignore_topmost_bind = true;
6952
6953 fprintf (file, "{\n");
6954 if (!vec_safe_is_empty (fun->local_decls))
6955 FOR_EACH_LOCAL_DECL (fun, ix, var)
6956 {
6957 print_generic_decl (file, var, flags);
6958 if (flags & TDF_VERBOSE)
6959 print_node (file, "", var, 4);
6960 fprintf (file, "\n");
6961
6962 any_var = true;
6963 }
6964 if (gimple_in_ssa_p (cfun))
6965 for (ix = 1; ix < num_ssa_names; ++ix)
6966 {
6967 tree name = ssa_name (ix);
6968 if (name && !SSA_NAME_VAR (name))
6969 {
6970 fprintf (file, " ");
6971 print_generic_expr (file, TREE_TYPE (name), flags);
6972 fprintf (file, " ");
6973 print_generic_expr (file, name, flags);
6974 fprintf (file, ";\n");
6975
6976 any_var = true;
6977 }
6978 }
6979 }
6980
6981 if (fun && fun->decl == fndecl
6982 && fun->cfg
6983 && basic_block_info_for_function (fun))
6984 {
6985 /* If the CFG has been built, emit a CFG-based dump. */
6986 if (!ignore_topmost_bind)
6987 fprintf (file, "{\n");
6988
6989 if (any_var && n_basic_blocks_for_function (fun))
6990 fprintf (file, "\n");
6991
6992 FOR_EACH_BB_FN (bb, fun)
6993 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6994
6995 fprintf (file, "}\n");
6996 }
6997 else if (DECL_SAVED_TREE (fndecl) == NULL)
6998 {
6999 /* The function is now in GIMPLE form but the CFG has not been
7000 built yet. Emit the single sequence of GIMPLE statements
7001 that make up its body. */
7002 gimple_seq body = gimple_body (fndecl);
7003
7004 if (gimple_seq_first_stmt (body)
7005 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7006 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7007 print_gimple_seq (file, body, 0, flags);
7008 else
7009 {
7010 if (!ignore_topmost_bind)
7011 fprintf (file, "{\n");
7012
7013 if (any_var)
7014 fprintf (file, "\n");
7015
7016 print_gimple_seq (file, body, 2, flags);
7017 fprintf (file, "}\n");
7018 }
7019 }
7020 else
7021 {
7022 int indent;
7023
7024 /* Make a tree based dump. */
7025 chain = DECL_SAVED_TREE (fndecl);
7026 if (chain && TREE_CODE (chain) == BIND_EXPR)
7027 {
7028 if (ignore_topmost_bind)
7029 {
7030 chain = BIND_EXPR_BODY (chain);
7031 indent = 2;
7032 }
7033 else
7034 indent = 0;
7035 }
7036 else
7037 {
7038 if (!ignore_topmost_bind)
7039 fprintf (file, "{\n");
7040 indent = 2;
7041 }
7042
7043 if (any_var)
7044 fprintf (file, "\n");
7045
7046 print_generic_stmt_indented (file, chain, flags, indent);
7047 if (ignore_topmost_bind)
7048 fprintf (file, "}\n");
7049 }
7050
7051 if (flags & TDF_ENUMERATE_LOCALS)
7052 dump_enumerated_decls (file, flags);
7053 fprintf (file, "\n\n");
7054
7055 current_function_decl = old_current_fndecl;
7056 }
7057
7058 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7059
7060 DEBUG_FUNCTION void
7061 debug_function (tree fn, int flags)
7062 {
7063 dump_function_to_file (fn, stderr, flags);
7064 }
7065
7066
7067 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7068
7069 static void
7070 print_pred_bbs (FILE *file, basic_block bb)
7071 {
7072 edge e;
7073 edge_iterator ei;
7074
7075 FOR_EACH_EDGE (e, ei, bb->preds)
7076 fprintf (file, "bb_%d ", e->src->index);
7077 }
7078
7079
7080 /* Print on FILE the indexes for the successors of basic_block BB. */
7081
7082 static void
7083 print_succ_bbs (FILE *file, basic_block bb)
7084 {
7085 edge e;
7086 edge_iterator ei;
7087
7088 FOR_EACH_EDGE (e, ei, bb->succs)
7089 fprintf (file, "bb_%d ", e->dest->index);
7090 }
7091
7092 /* Print to FILE the basic block BB following the VERBOSITY level. */
7093
7094 void
7095 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7096 {
7097 char *s_indent = (char *) alloca ((size_t) indent + 1);
7098 memset ((void *) s_indent, ' ', (size_t) indent);
7099 s_indent[indent] = '\0';
7100
7101 /* Print basic_block's header. */
7102 if (verbosity >= 2)
7103 {
7104 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7105 print_pred_bbs (file, bb);
7106 fprintf (file, "}, succs = {");
7107 print_succ_bbs (file, bb);
7108 fprintf (file, "})\n");
7109 }
7110
7111 /* Print basic_block's body. */
7112 if (verbosity >= 3)
7113 {
7114 fprintf (file, "%s {\n", s_indent);
7115 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7116 fprintf (file, "%s }\n", s_indent);
7117 }
7118 }
7119
7120 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7121
7122 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7123 VERBOSITY level this outputs the contents of the loop, or just its
7124 structure. */
7125
7126 static void
7127 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7128 {
7129 char *s_indent;
7130 basic_block bb;
7131
7132 if (loop == NULL)
7133 return;
7134
7135 s_indent = (char *) alloca ((size_t) indent + 1);
7136 memset ((void *) s_indent, ' ', (size_t) indent);
7137 s_indent[indent] = '\0';
7138
7139 /* Print loop's header. */
7140 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7141 if (loop->header)
7142 fprintf (file, "header = %d", loop->header->index);
7143 else
7144 {
7145 fprintf (file, "deleted)\n");
7146 return;
7147 }
7148 if (loop->latch)
7149 fprintf (file, ", latch = %d", loop->latch->index);
7150 else
7151 fprintf (file, ", multiple latches");
7152 fprintf (file, ", niter = ");
7153 print_generic_expr (file, loop->nb_iterations, 0);
7154
7155 if (loop->any_upper_bound)
7156 {
7157 fprintf (file, ", upper_bound = ");
7158 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7159 }
7160
7161 if (loop->any_estimate)
7162 {
7163 fprintf (file, ", estimate = ");
7164 dump_double_int (file, loop->nb_iterations_estimate, true);
7165 }
7166 fprintf (file, ")\n");
7167
7168 /* Print loop's body. */
7169 if (verbosity >= 1)
7170 {
7171 fprintf (file, "%s{\n", s_indent);
7172 FOR_EACH_BB (bb)
7173 if (bb->loop_father == loop)
7174 print_loops_bb (file, bb, indent, verbosity);
7175
7176 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7177 fprintf (file, "%s}\n", s_indent);
7178 }
7179 }
7180
7181 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7182 spaces. Following VERBOSITY level this outputs the contents of the
7183 loop, or just its structure. */
7184
7185 static void
7186 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7187 int verbosity)
7188 {
7189 if (loop == NULL)
7190 return;
7191
7192 print_loop (file, loop, indent, verbosity);
7193 print_loop_and_siblings (file, loop->next, indent, verbosity);
7194 }
7195
7196 /* Follow a CFG edge from the entry point of the program, and on entry
7197 of a loop, pretty print the loop structure on FILE. */
7198
7199 void
7200 print_loops (FILE *file, int verbosity)
7201 {
7202 basic_block bb;
7203
7204 bb = ENTRY_BLOCK_PTR;
7205 if (bb && bb->loop_father)
7206 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7207 }
7208
7209 /* Dump a loop. */
7210
7211 DEBUG_FUNCTION void
7212 debug (struct loop &ref)
7213 {
7214 print_loop (stderr, &ref, 0, /*verbosity*/0);
7215 }
7216
7217 DEBUG_FUNCTION void
7218 debug (struct loop *ptr)
7219 {
7220 if (ptr)
7221 debug (*ptr);
7222 else
7223 fprintf (stderr, "<nil>\n");
7224 }
7225
7226 /* Dump a loop verbosely. */
7227
7228 DEBUG_FUNCTION void
7229 debug_verbose (struct loop &ref)
7230 {
7231 print_loop (stderr, &ref, 0, /*verbosity*/3);
7232 }
7233
7234 DEBUG_FUNCTION void
7235 debug_verbose (struct loop *ptr)
7236 {
7237 if (ptr)
7238 debug (*ptr);
7239 else
7240 fprintf (stderr, "<nil>\n");
7241 }
7242
7243
7244 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7245
7246 DEBUG_FUNCTION void
7247 debug_loops (int verbosity)
7248 {
7249 print_loops (stderr, verbosity);
7250 }
7251
7252 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7253
7254 DEBUG_FUNCTION void
7255 debug_loop (struct loop *loop, int verbosity)
7256 {
7257 print_loop (stderr, loop, 0, verbosity);
7258 }
7259
7260 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7261 level. */
7262
7263 DEBUG_FUNCTION void
7264 debug_loop_num (unsigned num, int verbosity)
7265 {
7266 debug_loop (get_loop (cfun, num), verbosity);
7267 }
7268
7269 /* Return true if BB ends with a call, possibly followed by some
7270 instructions that must stay with the call. Return false,
7271 otherwise. */
7272
7273 static bool
7274 gimple_block_ends_with_call_p (basic_block bb)
7275 {
7276 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7277 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7278 }
7279
7280
7281 /* Return true if BB ends with a conditional branch. Return false,
7282 otherwise. */
7283
7284 static bool
7285 gimple_block_ends_with_condjump_p (const_basic_block bb)
7286 {
7287 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7288 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7289 }
7290
7291
7292 /* Return true if we need to add fake edge to exit at statement T.
7293 Helper function for gimple_flow_call_edges_add. */
7294
7295 static bool
7296 need_fake_edge_p (gimple t)
7297 {
7298 tree fndecl = NULL_TREE;
7299 int call_flags = 0;
7300
7301 /* NORETURN and LONGJMP calls already have an edge to exit.
7302 CONST and PURE calls do not need one.
7303 We don't currently check for CONST and PURE here, although
7304 it would be a good idea, because those attributes are
7305 figured out from the RTL in mark_constant_function, and
7306 the counter incrementation code from -fprofile-arcs
7307 leads to different results from -fbranch-probabilities. */
7308 if (is_gimple_call (t))
7309 {
7310 fndecl = gimple_call_fndecl (t);
7311 call_flags = gimple_call_flags (t);
7312 }
7313
7314 if (is_gimple_call (t)
7315 && fndecl
7316 && DECL_BUILT_IN (fndecl)
7317 && (call_flags & ECF_NOTHROW)
7318 && !(call_flags & ECF_RETURNS_TWICE)
7319 /* fork() doesn't really return twice, but the effect of
7320 wrapping it in __gcov_fork() which calls __gcov_flush()
7321 and clears the counters before forking has the same
7322 effect as returning twice. Force a fake edge. */
7323 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7324 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7325 return false;
7326
7327 if (is_gimple_call (t))
7328 {
7329 edge_iterator ei;
7330 edge e;
7331 basic_block bb;
7332
7333 if (!(call_flags & ECF_NORETURN))
7334 return true;
7335
7336 bb = gimple_bb (t);
7337 FOR_EACH_EDGE (e, ei, bb->succs)
7338 if ((e->flags & EDGE_FAKE) == 0)
7339 return true;
7340 }
7341
7342 if (gimple_code (t) == GIMPLE_ASM
7343 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7344 return true;
7345
7346 return false;
7347 }
7348
7349
7350 /* Add fake edges to the function exit for any non constant and non
7351 noreturn calls (or noreturn calls with EH/abnormal edges),
7352 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7353 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7354 that were split.
7355
7356 The goal is to expose cases in which entering a basic block does
7357 not imply that all subsequent instructions must be executed. */
7358
7359 static int
7360 gimple_flow_call_edges_add (sbitmap blocks)
7361 {
7362 int i;
7363 int blocks_split = 0;
7364 int last_bb = last_basic_block;
7365 bool check_last_block = false;
7366
7367 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7368 return 0;
7369
7370 if (! blocks)
7371 check_last_block = true;
7372 else
7373 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7374
7375 /* In the last basic block, before epilogue generation, there will be
7376 a fallthru edge to EXIT. Special care is required if the last insn
7377 of the last basic block is a call because make_edge folds duplicate
7378 edges, which would result in the fallthru edge also being marked
7379 fake, which would result in the fallthru edge being removed by
7380 remove_fake_edges, which would result in an invalid CFG.
7381
7382 Moreover, we can't elide the outgoing fake edge, since the block
7383 profiler needs to take this into account in order to solve the minimal
7384 spanning tree in the case that the call doesn't return.
7385
7386 Handle this by adding a dummy instruction in a new last basic block. */
7387 if (check_last_block)
7388 {
7389 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7390 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7391 gimple t = NULL;
7392
7393 if (!gsi_end_p (gsi))
7394 t = gsi_stmt (gsi);
7395
7396 if (t && need_fake_edge_p (t))
7397 {
7398 edge e;
7399
7400 e = find_edge (bb, EXIT_BLOCK_PTR);
7401 if (e)
7402 {
7403 gsi_insert_on_edge (e, gimple_build_nop ());
7404 gsi_commit_edge_inserts ();
7405 }
7406 }
7407 }
7408
7409 /* Now add fake edges to the function exit for any non constant
7410 calls since there is no way that we can determine if they will
7411 return or not... */
7412 for (i = 0; i < last_bb; i++)
7413 {
7414 basic_block bb = BASIC_BLOCK (i);
7415 gimple_stmt_iterator gsi;
7416 gimple stmt, last_stmt;
7417
7418 if (!bb)
7419 continue;
7420
7421 if (blocks && !bitmap_bit_p (blocks, i))
7422 continue;
7423
7424 gsi = gsi_last_nondebug_bb (bb);
7425 if (!gsi_end_p (gsi))
7426 {
7427 last_stmt = gsi_stmt (gsi);
7428 do
7429 {
7430 stmt = gsi_stmt (gsi);
7431 if (need_fake_edge_p (stmt))
7432 {
7433 edge e;
7434
7435 /* The handling above of the final block before the
7436 epilogue should be enough to verify that there is
7437 no edge to the exit block in CFG already.
7438 Calling make_edge in such case would cause us to
7439 mark that edge as fake and remove it later. */
7440 #ifdef ENABLE_CHECKING
7441 if (stmt == last_stmt)
7442 {
7443 e = find_edge (bb, EXIT_BLOCK_PTR);
7444 gcc_assert (e == NULL);
7445 }
7446 #endif
7447
7448 /* Note that the following may create a new basic block
7449 and renumber the existing basic blocks. */
7450 if (stmt != last_stmt)
7451 {
7452 e = split_block (bb, stmt);
7453 if (e)
7454 blocks_split++;
7455 }
7456 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7457 }
7458 gsi_prev (&gsi);
7459 }
7460 while (!gsi_end_p (gsi));
7461 }
7462 }
7463
7464 if (blocks_split)
7465 verify_flow_info ();
7466
7467 return blocks_split;
7468 }
7469
7470 /* Removes edge E and all the blocks dominated by it, and updates dominance
7471 information. The IL in E->src needs to be updated separately.
7472 If dominance info is not available, only the edge E is removed.*/
7473
7474 void
7475 remove_edge_and_dominated_blocks (edge e)
7476 {
7477 vec<basic_block> bbs_to_remove = vNULL;
7478 vec<basic_block> bbs_to_fix_dom = vNULL;
7479 bitmap df, df_idom;
7480 edge f;
7481 edge_iterator ei;
7482 bool none_removed = false;
7483 unsigned i;
7484 basic_block bb, dbb;
7485 bitmap_iterator bi;
7486
7487 if (!dom_info_available_p (CDI_DOMINATORS))
7488 {
7489 remove_edge (e);
7490 return;
7491 }
7492
7493 /* No updating is needed for edges to exit. */
7494 if (e->dest == EXIT_BLOCK_PTR)
7495 {
7496 if (cfgcleanup_altered_bbs)
7497 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7498 remove_edge (e);
7499 return;
7500 }
7501
7502 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7503 that is not dominated by E->dest, then this set is empty. Otherwise,
7504 all the basic blocks dominated by E->dest are removed.
7505
7506 Also, to DF_IDOM we store the immediate dominators of the blocks in
7507 the dominance frontier of E (i.e., of the successors of the
7508 removed blocks, if there are any, and of E->dest otherwise). */
7509 FOR_EACH_EDGE (f, ei, e->dest->preds)
7510 {
7511 if (f == e)
7512 continue;
7513
7514 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7515 {
7516 none_removed = true;
7517 break;
7518 }
7519 }
7520
7521 df = BITMAP_ALLOC (NULL);
7522 df_idom = BITMAP_ALLOC (NULL);
7523
7524 if (none_removed)
7525 bitmap_set_bit (df_idom,
7526 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7527 else
7528 {
7529 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7530 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7531 {
7532 FOR_EACH_EDGE (f, ei, bb->succs)
7533 {
7534 if (f->dest != EXIT_BLOCK_PTR)
7535 bitmap_set_bit (df, f->dest->index);
7536 }
7537 }
7538 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7539 bitmap_clear_bit (df, bb->index);
7540
7541 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7542 {
7543 bb = BASIC_BLOCK (i);
7544 bitmap_set_bit (df_idom,
7545 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7546 }
7547 }
7548
7549 if (cfgcleanup_altered_bbs)
7550 {
7551 /* Record the set of the altered basic blocks. */
7552 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7553 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7554 }
7555
7556 /* Remove E and the cancelled blocks. */
7557 if (none_removed)
7558 remove_edge (e);
7559 else
7560 {
7561 /* Walk backwards so as to get a chance to substitute all
7562 released DEFs into debug stmts. See
7563 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7564 details. */
7565 for (i = bbs_to_remove.length (); i-- > 0; )
7566 delete_basic_block (bbs_to_remove[i]);
7567 }
7568
7569 /* Update the dominance information. The immediate dominator may change only
7570 for blocks whose immediate dominator belongs to DF_IDOM:
7571
7572 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7573 removal. Let Z the arbitrary block such that idom(Z) = Y and
7574 Z dominates X after the removal. Before removal, there exists a path P
7575 from Y to X that avoids Z. Let F be the last edge on P that is
7576 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7577 dominates W, and because of P, Z does not dominate W), and W belongs to
7578 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7579 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7580 {
7581 bb = BASIC_BLOCK (i);
7582 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7583 dbb;
7584 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7585 bbs_to_fix_dom.safe_push (dbb);
7586 }
7587
7588 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7589
7590 BITMAP_FREE (df);
7591 BITMAP_FREE (df_idom);
7592 bbs_to_remove.release ();
7593 bbs_to_fix_dom.release ();
7594 }
7595
7596 /* Purge dead EH edges from basic block BB. */
7597
7598 bool
7599 gimple_purge_dead_eh_edges (basic_block bb)
7600 {
7601 bool changed = false;
7602 edge e;
7603 edge_iterator ei;
7604 gimple stmt = last_stmt (bb);
7605
7606 if (stmt && stmt_can_throw_internal (stmt))
7607 return false;
7608
7609 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7610 {
7611 if (e->flags & EDGE_EH)
7612 {
7613 remove_edge_and_dominated_blocks (e);
7614 changed = true;
7615 }
7616 else
7617 ei_next (&ei);
7618 }
7619
7620 return changed;
7621 }
7622
7623 /* Purge dead EH edges from basic block listed in BLOCKS. */
7624
7625 bool
7626 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7627 {
7628 bool changed = false;
7629 unsigned i;
7630 bitmap_iterator bi;
7631
7632 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7633 {
7634 basic_block bb = BASIC_BLOCK (i);
7635
7636 /* Earlier gimple_purge_dead_eh_edges could have removed
7637 this basic block already. */
7638 gcc_assert (bb || changed);
7639 if (bb != NULL)
7640 changed |= gimple_purge_dead_eh_edges (bb);
7641 }
7642
7643 return changed;
7644 }
7645
7646 /* Purge dead abnormal call edges from basic block BB. */
7647
7648 bool
7649 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7650 {
7651 bool changed = false;
7652 edge e;
7653 edge_iterator ei;
7654 gimple stmt = last_stmt (bb);
7655
7656 if (!cfun->has_nonlocal_label
7657 && !cfun->calls_setjmp)
7658 return false;
7659
7660 if (stmt && stmt_can_make_abnormal_goto (stmt))
7661 return false;
7662
7663 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7664 {
7665 if (e->flags & EDGE_ABNORMAL)
7666 {
7667 if (e->flags & EDGE_FALLTHRU)
7668 e->flags &= ~EDGE_ABNORMAL;
7669 else
7670 remove_edge_and_dominated_blocks (e);
7671 changed = true;
7672 }
7673 else
7674 ei_next (&ei);
7675 }
7676
7677 return changed;
7678 }
7679
7680 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7681
7682 bool
7683 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7684 {
7685 bool changed = false;
7686 unsigned i;
7687 bitmap_iterator bi;
7688
7689 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7690 {
7691 basic_block bb = BASIC_BLOCK (i);
7692
7693 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7694 this basic block already. */
7695 gcc_assert (bb || changed);
7696 if (bb != NULL)
7697 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7698 }
7699
7700 return changed;
7701 }
7702
7703 /* This function is called whenever a new edge is created or
7704 redirected. */
7705
7706 static void
7707 gimple_execute_on_growing_pred (edge e)
7708 {
7709 basic_block bb = e->dest;
7710
7711 if (!gimple_seq_empty_p (phi_nodes (bb)))
7712 reserve_phi_args_for_new_edge (bb);
7713 }
7714
7715 /* This function is called immediately before edge E is removed from
7716 the edge vector E->dest->preds. */
7717
7718 static void
7719 gimple_execute_on_shrinking_pred (edge e)
7720 {
7721 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7722 remove_phi_args (e);
7723 }
7724
7725 /*---------------------------------------------------------------------------
7726 Helper functions for Loop versioning
7727 ---------------------------------------------------------------------------*/
7728
7729 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7730 of 'first'. Both of them are dominated by 'new_head' basic block. When
7731 'new_head' was created by 'second's incoming edge it received phi arguments
7732 on the edge by split_edge(). Later, additional edge 'e' was created to
7733 connect 'new_head' and 'first'. Now this routine adds phi args on this
7734 additional edge 'e' that new_head to second edge received as part of edge
7735 splitting. */
7736
7737 static void
7738 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7739 basic_block new_head, edge e)
7740 {
7741 gimple phi1, phi2;
7742 gimple_stmt_iterator psi1, psi2;
7743 tree def;
7744 edge e2 = find_edge (new_head, second);
7745
7746 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7747 edge, we should always have an edge from NEW_HEAD to SECOND. */
7748 gcc_assert (e2 != NULL);
7749
7750 /* Browse all 'second' basic block phi nodes and add phi args to
7751 edge 'e' for 'first' head. PHI args are always in correct order. */
7752
7753 for (psi2 = gsi_start_phis (second),
7754 psi1 = gsi_start_phis (first);
7755 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7756 gsi_next (&psi2), gsi_next (&psi1))
7757 {
7758 phi1 = gsi_stmt (psi1);
7759 phi2 = gsi_stmt (psi2);
7760 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7761 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7762 }
7763 }
7764
7765
7766 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7767 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7768 the destination of the ELSE part. */
7769
7770 static void
7771 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7772 basic_block second_head ATTRIBUTE_UNUSED,
7773 basic_block cond_bb, void *cond_e)
7774 {
7775 gimple_stmt_iterator gsi;
7776 gimple new_cond_expr;
7777 tree cond_expr = (tree) cond_e;
7778 edge e0;
7779
7780 /* Build new conditional expr */
7781 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7782 NULL_TREE, NULL_TREE);
7783
7784 /* Add new cond in cond_bb. */
7785 gsi = gsi_last_bb (cond_bb);
7786 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7787
7788 /* Adjust edges appropriately to connect new head with first head
7789 as well as second head. */
7790 e0 = single_succ_edge (cond_bb);
7791 e0->flags &= ~EDGE_FALLTHRU;
7792 e0->flags |= EDGE_FALSE_VALUE;
7793 }
7794
7795
7796 /* Do book-keeping of basic block BB for the profile consistency checker.
7797 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7798 then do post-pass accounting. Store the counting in RECORD. */
7799 static void
7800 gimple_account_profile_record (basic_block bb, int after_pass,
7801 struct profile_record *record)
7802 {
7803 gimple_stmt_iterator i;
7804 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7805 {
7806 record->size[after_pass]
7807 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7808 if (profile_status == PROFILE_READ)
7809 record->time[after_pass]
7810 += estimate_num_insns (gsi_stmt (i),
7811 &eni_time_weights) * bb->count;
7812 else if (profile_status == PROFILE_GUESSED)
7813 record->time[after_pass]
7814 += estimate_num_insns (gsi_stmt (i),
7815 &eni_time_weights) * bb->frequency;
7816 }
7817 }
7818
7819 struct cfg_hooks gimple_cfg_hooks = {
7820 "gimple",
7821 gimple_verify_flow_info,
7822 gimple_dump_bb, /* dump_bb */
7823 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7824 create_bb, /* create_basic_block */
7825 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7826 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7827 gimple_can_remove_branch_p, /* can_remove_branch_p */
7828 remove_bb, /* delete_basic_block */
7829 gimple_split_block, /* split_block */
7830 gimple_move_block_after, /* move_block_after */
7831 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7832 gimple_merge_blocks, /* merge_blocks */
7833 gimple_predict_edge, /* predict_edge */
7834 gimple_predicted_by_p, /* predicted_by_p */
7835 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7836 gimple_duplicate_bb, /* duplicate_block */
7837 gimple_split_edge, /* split_edge */
7838 gimple_make_forwarder_block, /* make_forward_block */
7839 NULL, /* tidy_fallthru_edge */
7840 NULL, /* force_nonfallthru */
7841 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7842 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7843 gimple_flow_call_edges_add, /* flow_call_edges_add */
7844 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7845 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7846 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7847 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7848 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7849 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7850 flush_pending_stmts, /* flush_pending_stmts */
7851 gimple_empty_block_p, /* block_empty_p */
7852 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7853 gimple_account_profile_record,
7854 };
7855
7856
7857 /* Split all critical edges. */
7858
7859 static unsigned int
7860 split_critical_edges (void)
7861 {
7862 basic_block bb;
7863 edge e;
7864 edge_iterator ei;
7865
7866 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7867 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7868 mappings around the calls to split_edge. */
7869 start_recording_case_labels ();
7870 FOR_ALL_BB (bb)
7871 {
7872 FOR_EACH_EDGE (e, ei, bb->succs)
7873 {
7874 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7875 split_edge (e);
7876 /* PRE inserts statements to edges and expects that
7877 since split_critical_edges was done beforehand, committing edge
7878 insertions will not split more edges. In addition to critical
7879 edges we must split edges that have multiple successors and
7880 end by control flow statements, such as RESX.
7881 Go ahead and split them too. This matches the logic in
7882 gimple_find_edge_insert_loc. */
7883 else if ((!single_pred_p (e->dest)
7884 || !gimple_seq_empty_p (phi_nodes (e->dest))
7885 || e->dest == EXIT_BLOCK_PTR)
7886 && e->src != ENTRY_BLOCK_PTR
7887 && !(e->flags & EDGE_ABNORMAL))
7888 {
7889 gimple_stmt_iterator gsi;
7890
7891 gsi = gsi_last_bb (e->src);
7892 if (!gsi_end_p (gsi)
7893 && stmt_ends_bb_p (gsi_stmt (gsi))
7894 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7895 && !gimple_call_builtin_p (gsi_stmt (gsi),
7896 BUILT_IN_RETURN)))
7897 split_edge (e);
7898 }
7899 }
7900 }
7901 end_recording_case_labels ();
7902 return 0;
7903 }
7904
7905 namespace {
7906
7907 const pass_data pass_data_split_crit_edges =
7908 {
7909 GIMPLE_PASS, /* type */
7910 "crited", /* name */
7911 OPTGROUP_NONE, /* optinfo_flags */
7912 false, /* has_gate */
7913 true, /* has_execute */
7914 TV_TREE_SPLIT_EDGES, /* tv_id */
7915 PROP_cfg, /* properties_required */
7916 PROP_no_crit_edges, /* properties_provided */
7917 0, /* properties_destroyed */
7918 0, /* todo_flags_start */
7919 TODO_verify_flow, /* todo_flags_finish */
7920 };
7921
7922 class pass_split_crit_edges : public gimple_opt_pass
7923 {
7924 public:
7925 pass_split_crit_edges(gcc::context *ctxt)
7926 : gimple_opt_pass(pass_data_split_crit_edges, ctxt)
7927 {}
7928
7929 /* opt_pass methods: */
7930 unsigned int execute () { return split_critical_edges (); }
7931
7932 opt_pass * clone () { return new pass_split_crit_edges (ctxt_); }
7933 }; // class pass_split_crit_edges
7934
7935 } // anon namespace
7936
7937 gimple_opt_pass *
7938 make_pass_split_crit_edges (gcc::context *ctxt)
7939 {
7940 return new pass_split_crit_edges (ctxt);
7941 }
7942
7943
7944 /* Build a ternary operation and gimplify it. Emit code before GSI.
7945 Return the gimple_val holding the result. */
7946
7947 tree
7948 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7949 tree type, tree a, tree b, tree c)
7950 {
7951 tree ret;
7952 location_t loc = gimple_location (gsi_stmt (*gsi));
7953
7954 ret = fold_build3_loc (loc, code, type, a, b, c);
7955 STRIP_NOPS (ret);
7956
7957 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7958 GSI_SAME_STMT);
7959 }
7960
7961 /* Build a binary operation and gimplify it. Emit code before GSI.
7962 Return the gimple_val holding the result. */
7963
7964 tree
7965 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7966 tree type, tree a, tree b)
7967 {
7968 tree ret;
7969
7970 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7971 STRIP_NOPS (ret);
7972
7973 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7974 GSI_SAME_STMT);
7975 }
7976
7977 /* Build a unary operation and gimplify it. Emit code before GSI.
7978 Return the gimple_val holding the result. */
7979
7980 tree
7981 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7982 tree a)
7983 {
7984 tree ret;
7985
7986 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7987 STRIP_NOPS (ret);
7988
7989 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7990 GSI_SAME_STMT);
7991 }
7992
7993
7994 \f
7995 /* Emit return warnings. */
7996
7997 static unsigned int
7998 execute_warn_function_return (void)
7999 {
8000 source_location location;
8001 gimple last;
8002 edge e;
8003 edge_iterator ei;
8004
8005 if (!targetm.warn_func_return (cfun->decl))
8006 return 0;
8007
8008 /* If we have a path to EXIT, then we do return. */
8009 if (TREE_THIS_VOLATILE (cfun->decl)
8010 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
8011 {
8012 location = UNKNOWN_LOCATION;
8013 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8014 {
8015 last = last_stmt (e->src);
8016 if ((gimple_code (last) == GIMPLE_RETURN
8017 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8018 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8019 break;
8020 }
8021 if (location == UNKNOWN_LOCATION)
8022 location = cfun->function_end_locus;
8023 warning_at (location, 0, "%<noreturn%> function does return");
8024 }
8025
8026 /* If we see "return;" in some basic block, then we do reach the end
8027 without returning a value. */
8028 else if (warn_return_type
8029 && !TREE_NO_WARNING (cfun->decl)
8030 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
8031 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8032 {
8033 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8034 {
8035 gimple last = last_stmt (e->src);
8036 if (gimple_code (last) == GIMPLE_RETURN
8037 && gimple_return_retval (last) == NULL
8038 && !gimple_no_warning_p (last))
8039 {
8040 location = gimple_location (last);
8041 if (location == UNKNOWN_LOCATION)
8042 location = cfun->function_end_locus;
8043 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8044 TREE_NO_WARNING (cfun->decl) = 1;
8045 break;
8046 }
8047 }
8048 }
8049 return 0;
8050 }
8051
8052
8053 /* Given a basic block B which ends with a conditional and has
8054 precisely two successors, determine which of the edges is taken if
8055 the conditional is true and which is taken if the conditional is
8056 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8057
8058 void
8059 extract_true_false_edges_from_block (basic_block b,
8060 edge *true_edge,
8061 edge *false_edge)
8062 {
8063 edge e = EDGE_SUCC (b, 0);
8064
8065 if (e->flags & EDGE_TRUE_VALUE)
8066 {
8067 *true_edge = e;
8068 *false_edge = EDGE_SUCC (b, 1);
8069 }
8070 else
8071 {
8072 *false_edge = e;
8073 *true_edge = EDGE_SUCC (b, 1);
8074 }
8075 }
8076
8077 namespace {
8078
8079 const pass_data pass_data_warn_function_return =
8080 {
8081 GIMPLE_PASS, /* type */
8082 "*warn_function_return", /* name */
8083 OPTGROUP_NONE, /* optinfo_flags */
8084 false, /* has_gate */
8085 true, /* has_execute */
8086 TV_NONE, /* tv_id */
8087 PROP_cfg, /* properties_required */
8088 0, /* properties_provided */
8089 0, /* properties_destroyed */
8090 0, /* todo_flags_start */
8091 0, /* todo_flags_finish */
8092 };
8093
8094 class pass_warn_function_return : public gimple_opt_pass
8095 {
8096 public:
8097 pass_warn_function_return(gcc::context *ctxt)
8098 : gimple_opt_pass(pass_data_warn_function_return, ctxt)
8099 {}
8100
8101 /* opt_pass methods: */
8102 unsigned int execute () { return execute_warn_function_return (); }
8103
8104 }; // class pass_warn_function_return
8105
8106 } // anon namespace
8107
8108 gimple_opt_pass *
8109 make_pass_warn_function_return (gcc::context *ctxt)
8110 {
8111 return new pass_warn_function_return (ctxt);
8112 }
8113
8114 /* Emit noreturn warnings. */
8115
8116 static unsigned int
8117 execute_warn_function_noreturn (void)
8118 {
8119 if (!TREE_THIS_VOLATILE (current_function_decl)
8120 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
8121 warn_function_noreturn (current_function_decl);
8122 return 0;
8123 }
8124
8125 static bool
8126 gate_warn_function_noreturn (void)
8127 {
8128 return warn_suggest_attribute_noreturn;
8129 }
8130
8131 namespace {
8132
8133 const pass_data pass_data_warn_function_noreturn =
8134 {
8135 GIMPLE_PASS, /* type */
8136 "*warn_function_noreturn", /* name */
8137 OPTGROUP_NONE, /* optinfo_flags */
8138 true, /* has_gate */
8139 true, /* has_execute */
8140 TV_NONE, /* tv_id */
8141 PROP_cfg, /* properties_required */
8142 0, /* properties_provided */
8143 0, /* properties_destroyed */
8144 0, /* todo_flags_start */
8145 0, /* todo_flags_finish */
8146 };
8147
8148 class pass_warn_function_noreturn : public gimple_opt_pass
8149 {
8150 public:
8151 pass_warn_function_noreturn(gcc::context *ctxt)
8152 : gimple_opt_pass(pass_data_warn_function_noreturn, ctxt)
8153 {}
8154
8155 /* opt_pass methods: */
8156 bool gate () { return gate_warn_function_noreturn (); }
8157 unsigned int execute () { return execute_warn_function_noreturn (); }
8158
8159 }; // class pass_warn_function_noreturn
8160
8161 } // anon namespace
8162
8163 gimple_opt_pass *
8164 make_pass_warn_function_noreturn (gcc::context *ctxt)
8165 {
8166 return new pass_warn_function_noreturn (ctxt);
8167 }
8168
8169
8170 /* Walk a gimplified function and warn for functions whose return value is
8171 ignored and attribute((warn_unused_result)) is set. This is done before
8172 inlining, so we don't have to worry about that. */
8173
8174 static void
8175 do_warn_unused_result (gimple_seq seq)
8176 {
8177 tree fdecl, ftype;
8178 gimple_stmt_iterator i;
8179
8180 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8181 {
8182 gimple g = gsi_stmt (i);
8183
8184 switch (gimple_code (g))
8185 {
8186 case GIMPLE_BIND:
8187 do_warn_unused_result (gimple_bind_body (g));
8188 break;
8189 case GIMPLE_TRY:
8190 do_warn_unused_result (gimple_try_eval (g));
8191 do_warn_unused_result (gimple_try_cleanup (g));
8192 break;
8193 case GIMPLE_CATCH:
8194 do_warn_unused_result (gimple_catch_handler (g));
8195 break;
8196 case GIMPLE_EH_FILTER:
8197 do_warn_unused_result (gimple_eh_filter_failure (g));
8198 break;
8199
8200 case GIMPLE_CALL:
8201 if (gimple_call_lhs (g))
8202 break;
8203 if (gimple_call_internal_p (g))
8204 break;
8205
8206 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8207 LHS. All calls whose value is ignored should be
8208 represented like this. Look for the attribute. */
8209 fdecl = gimple_call_fndecl (g);
8210 ftype = gimple_call_fntype (g);
8211
8212 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8213 {
8214 location_t loc = gimple_location (g);
8215
8216 if (fdecl)
8217 warning_at (loc, OPT_Wunused_result,
8218 "ignoring return value of %qD, "
8219 "declared with attribute warn_unused_result",
8220 fdecl);
8221 else
8222 warning_at (loc, OPT_Wunused_result,
8223 "ignoring return value of function "
8224 "declared with attribute warn_unused_result");
8225 }
8226 break;
8227
8228 default:
8229 /* Not a container, not a call, or a call whose value is used. */
8230 break;
8231 }
8232 }
8233 }
8234
8235 static unsigned int
8236 run_warn_unused_result (void)
8237 {
8238 do_warn_unused_result (gimple_body (current_function_decl));
8239 return 0;
8240 }
8241
8242 static bool
8243 gate_warn_unused_result (void)
8244 {
8245 return flag_warn_unused_result;
8246 }
8247
8248 namespace {
8249
8250 const pass_data pass_data_warn_unused_result =
8251 {
8252 GIMPLE_PASS, /* type */
8253 "*warn_unused_result", /* name */
8254 OPTGROUP_NONE, /* optinfo_flags */
8255 true, /* has_gate */
8256 true, /* has_execute */
8257 TV_NONE, /* tv_id */
8258 PROP_gimple_any, /* properties_required */
8259 0, /* properties_provided */
8260 0, /* properties_destroyed */
8261 0, /* todo_flags_start */
8262 0, /* todo_flags_finish */
8263 };
8264
8265 class pass_warn_unused_result : public gimple_opt_pass
8266 {
8267 public:
8268 pass_warn_unused_result(gcc::context *ctxt)
8269 : gimple_opt_pass(pass_data_warn_unused_result, ctxt)
8270 {}
8271
8272 /* opt_pass methods: */
8273 bool gate () { return gate_warn_unused_result (); }
8274 unsigned int execute () { return run_warn_unused_result (); }
8275
8276 }; // class pass_warn_unused_result
8277
8278 } // anon namespace
8279
8280 gimple_opt_pass *
8281 make_pass_warn_unused_result (gcc::context *ctxt)
8282 {
8283 return new pass_warn_unused_result (ctxt);
8284 }
8285
8286
8287 /* Garbage collection support for edge_def. */
8288
8289 extern void gt_ggc_mx (tree&);
8290 extern void gt_ggc_mx (gimple&);
8291 extern void gt_ggc_mx (rtx&);
8292 extern void gt_ggc_mx (basic_block&);
8293
8294 void
8295 gt_ggc_mx (edge_def *e)
8296 {
8297 tree block = LOCATION_BLOCK (e->goto_locus);
8298 gt_ggc_mx (e->src);
8299 gt_ggc_mx (e->dest);
8300 if (current_ir_type () == IR_GIMPLE)
8301 gt_ggc_mx (e->insns.g);
8302 else
8303 gt_ggc_mx (e->insns.r);
8304 gt_ggc_mx (block);
8305 }
8306
8307 /* PCH support for edge_def. */
8308
8309 extern void gt_pch_nx (tree&);
8310 extern void gt_pch_nx (gimple&);
8311 extern void gt_pch_nx (rtx&);
8312 extern void gt_pch_nx (basic_block&);
8313
8314 void
8315 gt_pch_nx (edge_def *e)
8316 {
8317 tree block = LOCATION_BLOCK (e->goto_locus);
8318 gt_pch_nx (e->src);
8319 gt_pch_nx (e->dest);
8320 if (current_ir_type () == IR_GIMPLE)
8321 gt_pch_nx (e->insns.g);
8322 else
8323 gt_pch_nx (e->insns.r);
8324 gt_pch_nx (block);
8325 }
8326
8327 void
8328 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8329 {
8330 tree block = LOCATION_BLOCK (e->goto_locus);
8331 op (&(e->src), cookie);
8332 op (&(e->dest), cookie);
8333 if (current_ir_type () == IR_GIMPLE)
8334 op (&(e->insns.g), cookie);
8335 else
8336 op (&(e->insns.r), cookie);
8337 op (&(block), cookie);
8338 }