re PR middle-end/59208 (ice in initialize_flags_in_bb)
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
71
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
74
75 /* Local declarations. */
76
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity = 20;
79
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
84
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
87
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
92
93 static struct pointer_map_t *edge_to_cases;
94
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
98
99 static bitmap touched_switch_bbs;
100
101 /* CFG statistics. */
102 struct cfg_stats_d
103 {
104 long num_merged_labels;
105 };
106
107 static struct cfg_stats_d cfg_stats;
108
109 /* Nonzero if we found a computed goto while building basic blocks. */
110 static bool found_computed_goto;
111
112 /* Hash table to store last discriminator assigned for each locus. */
113 struct locus_discrim_map
114 {
115 location_t locus;
116 int discriminator;
117 };
118
119 /* Hashtable helpers. */
120
121 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
122 {
123 typedef locus_discrim_map value_type;
124 typedef locus_discrim_map compare_type;
125 static inline hashval_t hash (const value_type *);
126 static inline bool equal (const value_type *, const compare_type *);
127 };
128
129 /* Trivial hash function for a location_t. ITEM is a pointer to
130 a hash table entry that maps a location_t to a discriminator. */
131
132 inline hashval_t
133 locus_discrim_hasher::hash (const value_type *item)
134 {
135 return LOCATION_LINE (item->locus);
136 }
137
138 /* Equality function for the locus-to-discriminator map. A and B
139 point to the two hash table entries to compare. */
140
141 inline bool
142 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
143 {
144 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 }
146
147 static hash_table <locus_discrim_hasher> discriminator_per_locus;
148
149 /* Basic blocks and flowgraphs. */
150 static void make_blocks (gimple_seq);
151 static void factor_computed_gotos (void);
152
153 /* Edges. */
154 static void make_edges (void);
155 static void assign_discriminators (void);
156 static void make_cond_expr_edges (basic_block);
157 static void make_gimple_switch_edges (basic_block);
158 static void make_goto_expr_edges (basic_block);
159 static void make_gimple_asm_edges (basic_block);
160 static edge gimple_redirect_edge_and_branch (edge, basic_block);
161 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
162 static unsigned int split_critical_edges (void);
163
164 /* Various helpers. */
165 static inline bool stmt_starts_bb_p (gimple, gimple);
166 static int gimple_verify_flow_info (void);
167 static void gimple_make_forwarder_block (edge);
168 static gimple first_non_label_stmt (basic_block);
169 static bool verify_gimple_transaction (gimple);
170
171 /* Flowgraph optimization and cleanup. */
172 static void gimple_merge_blocks (basic_block, basic_block);
173 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
174 static void remove_bb (basic_block);
175 static edge find_taken_edge_computed_goto (basic_block, tree);
176 static edge find_taken_edge_cond_expr (basic_block, tree);
177 static edge find_taken_edge_switch_expr (basic_block, tree);
178 static tree find_case_label_for_value (gimple, tree);
179
180 void
181 init_empty_tree_cfg_for_function (struct function *fn)
182 {
183 /* Initialize the basic block array. */
184 init_flow (fn);
185 profile_status_for_function (fn) = PROFILE_ABSENT;
186 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
187 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
188 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
189 vec_safe_grow_cleared (basic_block_info_for_function (fn),
190 initial_cfg_capacity);
191
192 /* Build a mapping of labels to their associated blocks. */
193 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
194 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
195 initial_cfg_capacity);
196
197 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
198 ENTRY_BLOCK_PTR_FOR_FN (fn));
199 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
200 EXIT_BLOCK_PTR_FOR_FN (fn));
201
202 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
203 = EXIT_BLOCK_PTR_FOR_FN (fn);
204 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
205 = ENTRY_BLOCK_PTR_FOR_FN (fn);
206 }
207
208 void
209 init_empty_tree_cfg (void)
210 {
211 init_empty_tree_cfg_for_function (cfun);
212 }
213
214 /*---------------------------------------------------------------------------
215 Create basic blocks
216 ---------------------------------------------------------------------------*/
217
218 /* Entry point to the CFG builder for trees. SEQ is the sequence of
219 statements to be added to the flowgraph. */
220
221 static void
222 build_gimple_cfg (gimple_seq seq)
223 {
224 /* Register specific gimple functions. */
225 gimple_register_cfg_hooks ();
226
227 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
228
229 init_empty_tree_cfg ();
230
231 found_computed_goto = 0;
232 make_blocks (seq);
233
234 /* Computed gotos are hell to deal with, especially if there are
235 lots of them with a large number of destinations. So we factor
236 them to a common computed goto location before we build the
237 edge list. After we convert back to normal form, we will un-factor
238 the computed gotos since factoring introduces an unwanted jump. */
239 if (found_computed_goto)
240 factor_computed_gotos ();
241
242 /* Make sure there is always at least one block, even if it's empty. */
243 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
244 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
245
246 /* Adjust the size of the array. */
247 if (basic_block_info->length () < (size_t) n_basic_blocks_for_fn (cfun))
248 vec_safe_grow_cleared (basic_block_info, n_basic_blocks_for_fn (cfun));
249
250 /* To speed up statement iterator walks, we first purge dead labels. */
251 cleanup_dead_labels ();
252
253 /* Group case nodes to reduce the number of edges.
254 We do this after cleaning up dead labels because otherwise we miss
255 a lot of obvious case merging opportunities. */
256 group_case_labels ();
257
258 /* Create the edges of the flowgraph. */
259 discriminator_per_locus.create (13);
260 make_edges ();
261 assign_discriminators ();
262 cleanup_dead_labels ();
263 discriminator_per_locus.dispose ();
264 }
265
266
267 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
268 it and set loop->safelen to INT_MAX. We assume that the annotation
269 comes immediately before the condition. */
270
271 static void
272 replace_loop_annotate ()
273 {
274 struct loop *loop;
275 basic_block bb;
276 gimple_stmt_iterator gsi;
277 gimple stmt;
278
279 FOR_EACH_LOOP (loop, 0)
280 {
281 gsi = gsi_last_bb (loop->header);
282 stmt = gsi_stmt (gsi);
283 if (stmt && gimple_code (stmt) == GIMPLE_COND)
284 {
285 gsi_prev_nondebug (&gsi);
286 if (gsi_end_p (gsi))
287 continue;
288 stmt = gsi_stmt (gsi);
289 if (gimple_code (stmt) != GIMPLE_CALL)
290 continue;
291 if (!gimple_call_internal_p (stmt)
292 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
293 continue;
294 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
295 != annot_expr_ivdep_kind)
296 continue;
297 stmt = gimple_build_assign (gimple_call_lhs (stmt),
298 gimple_call_arg (stmt, 0));
299 gsi_replace (&gsi, stmt, true);
300 loop->safelen = INT_MAX;
301 }
302 }
303
304 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
305 FOR_EACH_BB (bb)
306 {
307 gsi = gsi_last_bb (bb);
308 stmt = gsi_stmt (gsi);
309 if (stmt && gimple_code (stmt) == GIMPLE_COND)
310 gsi_prev_nondebug (&gsi);
311 if (gsi_end_p (gsi))
312 continue;
313 stmt = gsi_stmt (gsi);
314 if (gimple_code (stmt) != GIMPLE_CALL)
315 continue;
316 if (!gimple_call_internal_p (stmt)
317 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
318 continue;
319 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
320 != annot_expr_ivdep_kind)
321 continue;
322 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
323 "annotation");
324 stmt = gimple_build_assign (gimple_call_lhs (stmt),
325 gimple_call_arg (stmt, 0));
326 gsi_replace (&gsi, stmt, true);
327 }
328 }
329
330
331 static unsigned int
332 execute_build_cfg (void)
333 {
334 gimple_seq body = gimple_body (current_function_decl);
335
336 build_gimple_cfg (body);
337 gimple_set_body (current_function_decl, NULL);
338 if (dump_file && (dump_flags & TDF_DETAILS))
339 {
340 fprintf (dump_file, "Scope blocks:\n");
341 dump_scope_blocks (dump_file, dump_flags);
342 }
343 cleanup_tree_cfg ();
344 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
345 replace_loop_annotate ();
346 return 0;
347 }
348
349 namespace {
350
351 const pass_data pass_data_build_cfg =
352 {
353 GIMPLE_PASS, /* type */
354 "cfg", /* name */
355 OPTGROUP_NONE, /* optinfo_flags */
356 false, /* has_gate */
357 true, /* has_execute */
358 TV_TREE_CFG, /* tv_id */
359 PROP_gimple_leh, /* properties_required */
360 ( PROP_cfg | PROP_loops ), /* properties_provided */
361 0, /* properties_destroyed */
362 0, /* todo_flags_start */
363 TODO_verify_stmts, /* todo_flags_finish */
364 };
365
366 class pass_build_cfg : public gimple_opt_pass
367 {
368 public:
369 pass_build_cfg (gcc::context *ctxt)
370 : gimple_opt_pass (pass_data_build_cfg, ctxt)
371 {}
372
373 /* opt_pass methods: */
374 unsigned int execute () { return execute_build_cfg (); }
375
376 }; // class pass_build_cfg
377
378 } // anon namespace
379
380 gimple_opt_pass *
381 make_pass_build_cfg (gcc::context *ctxt)
382 {
383 return new pass_build_cfg (ctxt);
384 }
385
386
387 /* Return true if T is a computed goto. */
388
389 static bool
390 computed_goto_p (gimple t)
391 {
392 return (gimple_code (t) == GIMPLE_GOTO
393 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
394 }
395
396 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
397 the other edge points to a bb with just __builtin_unreachable ().
398 I.e. return true for C->M edge in:
399 <bb C>:
400 ...
401 if (something)
402 goto <bb N>;
403 else
404 goto <bb M>;
405 <bb N>:
406 __builtin_unreachable ();
407 <bb M>: */
408
409 bool
410 assert_unreachable_fallthru_edge_p (edge e)
411 {
412 basic_block pred_bb = e->src;
413 gimple last = last_stmt (pred_bb);
414 if (last && gimple_code (last) == GIMPLE_COND)
415 {
416 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
417 if (other_bb == e->dest)
418 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
419 if (EDGE_COUNT (other_bb->succs) == 0)
420 {
421 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
422 gimple stmt;
423
424 if (gsi_end_p (gsi))
425 return false;
426 stmt = gsi_stmt (gsi);
427 if (is_gimple_debug (stmt))
428 {
429 gsi_next_nondebug (&gsi);
430 if (gsi_end_p (gsi))
431 return false;
432 stmt = gsi_stmt (gsi);
433 }
434 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
435 }
436 }
437 return false;
438 }
439
440
441 /* Search the CFG for any computed gotos. If found, factor them to a
442 common computed goto site. Also record the location of that site so
443 that we can un-factor the gotos after we have converted back to
444 normal form. */
445
446 static void
447 factor_computed_gotos (void)
448 {
449 basic_block bb;
450 tree factored_label_decl = NULL;
451 tree var = NULL;
452 gimple factored_computed_goto_label = NULL;
453 gimple factored_computed_goto = NULL;
454
455 /* We know there are one or more computed gotos in this function.
456 Examine the last statement in each basic block to see if the block
457 ends with a computed goto. */
458
459 FOR_EACH_BB (bb)
460 {
461 gimple_stmt_iterator gsi = gsi_last_bb (bb);
462 gimple last;
463
464 if (gsi_end_p (gsi))
465 continue;
466
467 last = gsi_stmt (gsi);
468
469 /* Ignore the computed goto we create when we factor the original
470 computed gotos. */
471 if (last == factored_computed_goto)
472 continue;
473
474 /* If the last statement is a computed goto, factor it. */
475 if (computed_goto_p (last))
476 {
477 gimple assignment;
478
479 /* The first time we find a computed goto we need to create
480 the factored goto block and the variable each original
481 computed goto will use for their goto destination. */
482 if (!factored_computed_goto)
483 {
484 basic_block new_bb = create_empty_bb (bb);
485 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
486
487 /* Create the destination of the factored goto. Each original
488 computed goto will put its desired destination into this
489 variable and jump to the label we create immediately
490 below. */
491 var = create_tmp_var (ptr_type_node, "gotovar");
492
493 /* Build a label for the new block which will contain the
494 factored computed goto. */
495 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
496 factored_computed_goto_label
497 = gimple_build_label (factored_label_decl);
498 gsi_insert_after (&new_gsi, factored_computed_goto_label,
499 GSI_NEW_STMT);
500
501 /* Build our new computed goto. */
502 factored_computed_goto = gimple_build_goto (var);
503 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
504 }
505
506 /* Copy the original computed goto's destination into VAR. */
507 assignment = gimple_build_assign (var, gimple_goto_dest (last));
508 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
509
510 /* And re-vector the computed goto to the new destination. */
511 gimple_goto_set_dest (last, factored_label_decl);
512 }
513 }
514 }
515
516
517 /* Build a flowgraph for the sequence of stmts SEQ. */
518
519 static void
520 make_blocks (gimple_seq seq)
521 {
522 gimple_stmt_iterator i = gsi_start (seq);
523 gimple stmt = NULL;
524 bool start_new_block = true;
525 bool first_stmt_of_seq = true;
526 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
527
528 while (!gsi_end_p (i))
529 {
530 gimple prev_stmt;
531
532 prev_stmt = stmt;
533 stmt = gsi_stmt (i);
534
535 /* If the statement starts a new basic block or if we have determined
536 in a previous pass that we need to create a new block for STMT, do
537 so now. */
538 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
539 {
540 if (!first_stmt_of_seq)
541 gsi_split_seq_before (&i, &seq);
542 bb = create_basic_block (seq, NULL, bb);
543 start_new_block = false;
544 }
545
546 /* Now add STMT to BB and create the subgraphs for special statement
547 codes. */
548 gimple_set_bb (stmt, bb);
549
550 if (computed_goto_p (stmt))
551 found_computed_goto = true;
552
553 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
554 next iteration. */
555 if (stmt_ends_bb_p (stmt))
556 {
557 /* If the stmt can make abnormal goto use a new temporary
558 for the assignment to the LHS. This makes sure the old value
559 of the LHS is available on the abnormal edge. Otherwise
560 we will end up with overlapping life-ranges for abnormal
561 SSA names. */
562 if (gimple_has_lhs (stmt)
563 && stmt_can_make_abnormal_goto (stmt)
564 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
565 {
566 tree lhs = gimple_get_lhs (stmt);
567 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
568 gimple s = gimple_build_assign (lhs, tmp);
569 gimple_set_location (s, gimple_location (stmt));
570 gimple_set_block (s, gimple_block (stmt));
571 gimple_set_lhs (stmt, tmp);
572 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
573 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
574 DECL_GIMPLE_REG_P (tmp) = 1;
575 gsi_insert_after (&i, s, GSI_SAME_STMT);
576 }
577 start_new_block = true;
578 }
579
580 gsi_next (&i);
581 first_stmt_of_seq = false;
582 }
583 }
584
585
586 /* Create and return a new empty basic block after bb AFTER. */
587
588 static basic_block
589 create_bb (void *h, void *e, basic_block after)
590 {
591 basic_block bb;
592
593 gcc_assert (!e);
594
595 /* Create and initialize a new basic block. Since alloc_block uses
596 GC allocation that clears memory to allocate a basic block, we do
597 not have to clear the newly allocated basic block here. */
598 bb = alloc_block ();
599
600 bb->index = last_basic_block;
601 bb->flags = BB_NEW;
602 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
603
604 /* Add the new block to the linked list of blocks. */
605 link_block (bb, after);
606
607 /* Grow the basic block array if needed. */
608 if ((size_t) last_basic_block == basic_block_info->length ())
609 {
610 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
611 vec_safe_grow_cleared (basic_block_info, new_size);
612 }
613
614 /* Add the newly created block to the array. */
615 SET_BASIC_BLOCK (last_basic_block, bb);
616
617 n_basic_blocks_for_fn (cfun)++;
618 last_basic_block++;
619
620 return bb;
621 }
622
623
624 /*---------------------------------------------------------------------------
625 Edge creation
626 ---------------------------------------------------------------------------*/
627
628 /* Fold COND_EXPR_COND of each COND_EXPR. */
629
630 void
631 fold_cond_expr_cond (void)
632 {
633 basic_block bb;
634
635 FOR_EACH_BB (bb)
636 {
637 gimple stmt = last_stmt (bb);
638
639 if (stmt && gimple_code (stmt) == GIMPLE_COND)
640 {
641 location_t loc = gimple_location (stmt);
642 tree cond;
643 bool zerop, onep;
644
645 fold_defer_overflow_warnings ();
646 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
647 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
648 if (cond)
649 {
650 zerop = integer_zerop (cond);
651 onep = integer_onep (cond);
652 }
653 else
654 zerop = onep = false;
655
656 fold_undefer_overflow_warnings (zerop || onep,
657 stmt,
658 WARN_STRICT_OVERFLOW_CONDITIONAL);
659 if (zerop)
660 gimple_cond_make_false (stmt);
661 else if (onep)
662 gimple_cond_make_true (stmt);
663 }
664 }
665 }
666
667 /* Join all the blocks in the flowgraph. */
668
669 static void
670 make_edges (void)
671 {
672 basic_block bb;
673 struct omp_region *cur_region = NULL;
674
675 /* Create an edge from entry to the first block with executable
676 statements in it. */
677 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), BASIC_BLOCK (NUM_FIXED_BLOCKS),
678 EDGE_FALLTHRU);
679
680 /* Traverse the basic block array placing edges. */
681 FOR_EACH_BB (bb)
682 {
683 gimple last = last_stmt (bb);
684 bool fallthru;
685
686 if (last)
687 {
688 enum gimple_code code = gimple_code (last);
689 switch (code)
690 {
691 case GIMPLE_GOTO:
692 make_goto_expr_edges (bb);
693 fallthru = false;
694 break;
695 case GIMPLE_RETURN:
696 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
697 fallthru = false;
698 break;
699 case GIMPLE_COND:
700 make_cond_expr_edges (bb);
701 fallthru = false;
702 break;
703 case GIMPLE_SWITCH:
704 make_gimple_switch_edges (bb);
705 fallthru = false;
706 break;
707 case GIMPLE_RESX:
708 make_eh_edges (last);
709 fallthru = false;
710 break;
711 case GIMPLE_EH_DISPATCH:
712 fallthru = make_eh_dispatch_edges (last);
713 break;
714
715 case GIMPLE_CALL:
716 /* If this function receives a nonlocal goto, then we need to
717 make edges from this call site to all the nonlocal goto
718 handlers. */
719 if (stmt_can_make_abnormal_goto (last))
720 make_abnormal_goto_edges (bb, true);
721
722 /* If this statement has reachable exception handlers, then
723 create abnormal edges to them. */
724 make_eh_edges (last);
725
726 /* BUILTIN_RETURN is really a return statement. */
727 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
728 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0), fallthru =
729 false;
730 /* Some calls are known not to return. */
731 else
732 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
733 break;
734
735 case GIMPLE_ASSIGN:
736 /* A GIMPLE_ASSIGN may throw internally and thus be considered
737 control-altering. */
738 if (is_ctrl_altering_stmt (last))
739 make_eh_edges (last);
740 fallthru = true;
741 break;
742
743 case GIMPLE_ASM:
744 make_gimple_asm_edges (bb);
745 fallthru = true;
746 break;
747
748 CASE_GIMPLE_OMP:
749 fallthru = make_gimple_omp_edges (bb, &cur_region);
750 break;
751
752 case GIMPLE_TRANSACTION:
753 {
754 tree abort_label = gimple_transaction_label (last);
755 if (abort_label)
756 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
757 fallthru = true;
758 }
759 break;
760
761 default:
762 gcc_assert (!stmt_ends_bb_p (last));
763 fallthru = true;
764 }
765 }
766 else
767 fallthru = true;
768
769 if (fallthru)
770 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
771 }
772
773 free_omp_regions ();
774
775 /* Fold COND_EXPR_COND of each COND_EXPR. */
776 fold_cond_expr_cond ();
777 }
778
779 /* Find the next available discriminator value for LOCUS. The
780 discriminator distinguishes among several basic blocks that
781 share a common locus, allowing for more accurate sample-based
782 profiling. */
783
784 static int
785 next_discriminator_for_locus (location_t locus)
786 {
787 struct locus_discrim_map item;
788 struct locus_discrim_map **slot;
789
790 item.locus = locus;
791 item.discriminator = 0;
792 slot = discriminator_per_locus.find_slot_with_hash (
793 &item, LOCATION_LINE (locus), INSERT);
794 gcc_assert (slot);
795 if (*slot == HTAB_EMPTY_ENTRY)
796 {
797 *slot = XNEW (struct locus_discrim_map);
798 gcc_assert (*slot);
799 (*slot)->locus = locus;
800 (*slot)->discriminator = 0;
801 }
802 (*slot)->discriminator++;
803 return (*slot)->discriminator;
804 }
805
806 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
807
808 static bool
809 same_line_p (location_t locus1, location_t locus2)
810 {
811 expanded_location from, to;
812
813 if (locus1 == locus2)
814 return true;
815
816 from = expand_location (locus1);
817 to = expand_location (locus2);
818
819 if (from.line != to.line)
820 return false;
821 if (from.file == to.file)
822 return true;
823 return (from.file != NULL
824 && to.file != NULL
825 && filename_cmp (from.file, to.file) == 0);
826 }
827
828 /* Assign discriminators to each basic block. */
829
830 static void
831 assign_discriminators (void)
832 {
833 basic_block bb;
834
835 FOR_EACH_BB (bb)
836 {
837 edge e;
838 edge_iterator ei;
839 gimple last = last_stmt (bb);
840 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
841
842 if (locus == UNKNOWN_LOCATION)
843 continue;
844
845 FOR_EACH_EDGE (e, ei, bb->succs)
846 {
847 gimple first = first_non_label_stmt (e->dest);
848 gimple last = last_stmt (e->dest);
849 if ((first && same_line_p (locus, gimple_location (first)))
850 || (last && same_line_p (locus, gimple_location (last))))
851 {
852 if (e->dest->discriminator != 0 && bb->discriminator == 0)
853 bb->discriminator = next_discriminator_for_locus (locus);
854 else
855 e->dest->discriminator = next_discriminator_for_locus (locus);
856 }
857 }
858 }
859 }
860
861 /* Create the edges for a GIMPLE_COND starting at block BB. */
862
863 static void
864 make_cond_expr_edges (basic_block bb)
865 {
866 gimple entry = last_stmt (bb);
867 gimple then_stmt, else_stmt;
868 basic_block then_bb, else_bb;
869 tree then_label, else_label;
870 edge e;
871
872 gcc_assert (entry);
873 gcc_assert (gimple_code (entry) == GIMPLE_COND);
874
875 /* Entry basic blocks for each component. */
876 then_label = gimple_cond_true_label (entry);
877 else_label = gimple_cond_false_label (entry);
878 then_bb = label_to_block (then_label);
879 else_bb = label_to_block (else_label);
880 then_stmt = first_stmt (then_bb);
881 else_stmt = first_stmt (else_bb);
882
883 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
884 e->goto_locus = gimple_location (then_stmt);
885 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
886 if (e)
887 e->goto_locus = gimple_location (else_stmt);
888
889 /* We do not need the labels anymore. */
890 gimple_cond_set_true_label (entry, NULL_TREE);
891 gimple_cond_set_false_label (entry, NULL_TREE);
892 }
893
894
895 /* Called for each element in the hash table (P) as we delete the
896 edge to cases hash table.
897
898 Clear all the TREE_CHAINs to prevent problems with copying of
899 SWITCH_EXPRs and structure sharing rules, then free the hash table
900 element. */
901
902 static bool
903 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
904 void *data ATTRIBUTE_UNUSED)
905 {
906 tree t, next;
907
908 for (t = (tree) *value; t; t = next)
909 {
910 next = CASE_CHAIN (t);
911 CASE_CHAIN (t) = NULL;
912 }
913
914 *value = NULL;
915 return true;
916 }
917
918 /* Start recording information mapping edges to case labels. */
919
920 void
921 start_recording_case_labels (void)
922 {
923 gcc_assert (edge_to_cases == NULL);
924 edge_to_cases = pointer_map_create ();
925 touched_switch_bbs = BITMAP_ALLOC (NULL);
926 }
927
928 /* Return nonzero if we are recording information for case labels. */
929
930 static bool
931 recording_case_labels_p (void)
932 {
933 return (edge_to_cases != NULL);
934 }
935
936 /* Stop recording information mapping edges to case labels and
937 remove any information we have recorded. */
938 void
939 end_recording_case_labels (void)
940 {
941 bitmap_iterator bi;
942 unsigned i;
943 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
944 pointer_map_destroy (edge_to_cases);
945 edge_to_cases = NULL;
946 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
947 {
948 basic_block bb = BASIC_BLOCK (i);
949 if (bb)
950 {
951 gimple stmt = last_stmt (bb);
952 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
953 group_case_labels_stmt (stmt);
954 }
955 }
956 BITMAP_FREE (touched_switch_bbs);
957 }
958
959 /* If we are inside a {start,end}_recording_cases block, then return
960 a chain of CASE_LABEL_EXPRs from T which reference E.
961
962 Otherwise return NULL. */
963
964 static tree
965 get_cases_for_edge (edge e, gimple t)
966 {
967 void **slot;
968 size_t i, n;
969
970 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
971 chains available. Return NULL so the caller can detect this case. */
972 if (!recording_case_labels_p ())
973 return NULL;
974
975 slot = pointer_map_contains (edge_to_cases, e);
976 if (slot)
977 return (tree) *slot;
978
979 /* If we did not find E in the hash table, then this must be the first
980 time we have been queried for information about E & T. Add all the
981 elements from T to the hash table then perform the query again. */
982
983 n = gimple_switch_num_labels (t);
984 for (i = 0; i < n; i++)
985 {
986 tree elt = gimple_switch_label (t, i);
987 tree lab = CASE_LABEL (elt);
988 basic_block label_bb = label_to_block (lab);
989 edge this_edge = find_edge (e->src, label_bb);
990
991 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
992 a new chain. */
993 slot = pointer_map_insert (edge_to_cases, this_edge);
994 CASE_CHAIN (elt) = (tree) *slot;
995 *slot = elt;
996 }
997
998 return (tree) *pointer_map_contains (edge_to_cases, e);
999 }
1000
1001 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1002
1003 static void
1004 make_gimple_switch_edges (basic_block bb)
1005 {
1006 gimple entry = last_stmt (bb);
1007 size_t i, n;
1008
1009 n = gimple_switch_num_labels (entry);
1010
1011 for (i = 0; i < n; ++i)
1012 {
1013 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1014 basic_block label_bb = label_to_block (lab);
1015 make_edge (bb, label_bb, 0);
1016 }
1017 }
1018
1019
1020 /* Return the basic block holding label DEST. */
1021
1022 basic_block
1023 label_to_block_fn (struct function *ifun, tree dest)
1024 {
1025 int uid = LABEL_DECL_UID (dest);
1026
1027 /* We would die hard when faced by an undefined label. Emit a label to
1028 the very first basic block. This will hopefully make even the dataflow
1029 and undefined variable warnings quite right. */
1030 if (seen_error () && uid < 0)
1031 {
1032 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
1033 gimple stmt;
1034
1035 stmt = gimple_build_label (dest);
1036 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1037 uid = LABEL_DECL_UID (dest);
1038 }
1039 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1040 return NULL;
1041 return (*ifun->cfg->x_label_to_block_map)[uid];
1042 }
1043
1044 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
1045 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
1046
1047 void
1048 make_abnormal_goto_edges (basic_block bb, bool for_call)
1049 {
1050 basic_block target_bb;
1051 gimple_stmt_iterator gsi;
1052
1053 FOR_EACH_BB (target_bb)
1054 {
1055 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1056 {
1057 gimple label_stmt = gsi_stmt (gsi);
1058 tree target;
1059
1060 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1061 break;
1062
1063 target = gimple_label_label (label_stmt);
1064
1065 /* Make an edge to every label block that has been marked as a
1066 potential target for a computed goto or a non-local goto. */
1067 if ((FORCED_LABEL (target) && !for_call)
1068 || (DECL_NONLOCAL (target) && for_call))
1069 {
1070 make_edge (bb, target_bb, EDGE_ABNORMAL);
1071 break;
1072 }
1073 }
1074 if (!gsi_end_p (gsi)
1075 && is_gimple_debug (gsi_stmt (gsi)))
1076 gsi_next_nondebug (&gsi);
1077 if (!gsi_end_p (gsi))
1078 {
1079 /* Make an edge to every setjmp-like call. */
1080 gimple call_stmt = gsi_stmt (gsi);
1081 if (is_gimple_call (call_stmt)
1082 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1083 make_edge (bb, target_bb, EDGE_ABNORMAL);
1084 }
1085 }
1086 }
1087
1088 /* Create edges for a goto statement at block BB. */
1089
1090 static void
1091 make_goto_expr_edges (basic_block bb)
1092 {
1093 gimple_stmt_iterator last = gsi_last_bb (bb);
1094 gimple goto_t = gsi_stmt (last);
1095
1096 /* A simple GOTO creates normal edges. */
1097 if (simple_goto_p (goto_t))
1098 {
1099 tree dest = gimple_goto_dest (goto_t);
1100 basic_block label_bb = label_to_block (dest);
1101 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1102 e->goto_locus = gimple_location (goto_t);
1103 gsi_remove (&last, true);
1104 return;
1105 }
1106
1107 /* A computed GOTO creates abnormal edges. */
1108 make_abnormal_goto_edges (bb, false);
1109 }
1110
1111 /* Create edges for an asm statement with labels at block BB. */
1112
1113 static void
1114 make_gimple_asm_edges (basic_block bb)
1115 {
1116 gimple stmt = last_stmt (bb);
1117 int i, n = gimple_asm_nlabels (stmt);
1118
1119 for (i = 0; i < n; ++i)
1120 {
1121 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1122 basic_block label_bb = label_to_block (label);
1123 make_edge (bb, label_bb, 0);
1124 }
1125 }
1126
1127 /*---------------------------------------------------------------------------
1128 Flowgraph analysis
1129 ---------------------------------------------------------------------------*/
1130
1131 /* Cleanup useless labels in basic blocks. This is something we wish
1132 to do early because it allows us to group case labels before creating
1133 the edges for the CFG, and it speeds up block statement iterators in
1134 all passes later on.
1135 We rerun this pass after CFG is created, to get rid of the labels that
1136 are no longer referenced. After then we do not run it any more, since
1137 (almost) no new labels should be created. */
1138
1139 /* A map from basic block index to the leading label of that block. */
1140 static struct label_record
1141 {
1142 /* The label. */
1143 tree label;
1144
1145 /* True if the label is referenced from somewhere. */
1146 bool used;
1147 } *label_for_bb;
1148
1149 /* Given LABEL return the first label in the same basic block. */
1150
1151 static tree
1152 main_block_label (tree label)
1153 {
1154 basic_block bb = label_to_block (label);
1155 tree main_label = label_for_bb[bb->index].label;
1156
1157 /* label_to_block possibly inserted undefined label into the chain. */
1158 if (!main_label)
1159 {
1160 label_for_bb[bb->index].label = label;
1161 main_label = label;
1162 }
1163
1164 label_for_bb[bb->index].used = true;
1165 return main_label;
1166 }
1167
1168 /* Clean up redundant labels within the exception tree. */
1169
1170 static void
1171 cleanup_dead_labels_eh (void)
1172 {
1173 eh_landing_pad lp;
1174 eh_region r;
1175 tree lab;
1176 int i;
1177
1178 if (cfun->eh == NULL)
1179 return;
1180
1181 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1182 if (lp && lp->post_landing_pad)
1183 {
1184 lab = main_block_label (lp->post_landing_pad);
1185 if (lab != lp->post_landing_pad)
1186 {
1187 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1188 EH_LANDING_PAD_NR (lab) = lp->index;
1189 }
1190 }
1191
1192 FOR_ALL_EH_REGION (r)
1193 switch (r->type)
1194 {
1195 case ERT_CLEANUP:
1196 case ERT_MUST_NOT_THROW:
1197 break;
1198
1199 case ERT_TRY:
1200 {
1201 eh_catch c;
1202 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1203 {
1204 lab = c->label;
1205 if (lab)
1206 c->label = main_block_label (lab);
1207 }
1208 }
1209 break;
1210
1211 case ERT_ALLOWED_EXCEPTIONS:
1212 lab = r->u.allowed.label;
1213 if (lab)
1214 r->u.allowed.label = main_block_label (lab);
1215 break;
1216 }
1217 }
1218
1219
1220 /* Cleanup redundant labels. This is a three-step process:
1221 1) Find the leading label for each block.
1222 2) Redirect all references to labels to the leading labels.
1223 3) Cleanup all useless labels. */
1224
1225 void
1226 cleanup_dead_labels (void)
1227 {
1228 basic_block bb;
1229 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1230
1231 /* Find a suitable label for each block. We use the first user-defined
1232 label if there is one, or otherwise just the first label we see. */
1233 FOR_EACH_BB (bb)
1234 {
1235 gimple_stmt_iterator i;
1236
1237 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1238 {
1239 tree label;
1240 gimple stmt = gsi_stmt (i);
1241
1242 if (gimple_code (stmt) != GIMPLE_LABEL)
1243 break;
1244
1245 label = gimple_label_label (stmt);
1246
1247 /* If we have not yet seen a label for the current block,
1248 remember this one and see if there are more labels. */
1249 if (!label_for_bb[bb->index].label)
1250 {
1251 label_for_bb[bb->index].label = label;
1252 continue;
1253 }
1254
1255 /* If we did see a label for the current block already, but it
1256 is an artificially created label, replace it if the current
1257 label is a user defined label. */
1258 if (!DECL_ARTIFICIAL (label)
1259 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1260 {
1261 label_for_bb[bb->index].label = label;
1262 break;
1263 }
1264 }
1265 }
1266
1267 /* Now redirect all jumps/branches to the selected label.
1268 First do so for each block ending in a control statement. */
1269 FOR_EACH_BB (bb)
1270 {
1271 gimple stmt = last_stmt (bb);
1272 tree label, new_label;
1273
1274 if (!stmt)
1275 continue;
1276
1277 switch (gimple_code (stmt))
1278 {
1279 case GIMPLE_COND:
1280 label = gimple_cond_true_label (stmt);
1281 if (label)
1282 {
1283 new_label = main_block_label (label);
1284 if (new_label != label)
1285 gimple_cond_set_true_label (stmt, new_label);
1286 }
1287
1288 label = gimple_cond_false_label (stmt);
1289 if (label)
1290 {
1291 new_label = main_block_label (label);
1292 if (new_label != label)
1293 gimple_cond_set_false_label (stmt, new_label);
1294 }
1295 break;
1296
1297 case GIMPLE_SWITCH:
1298 {
1299 size_t i, n = gimple_switch_num_labels (stmt);
1300
1301 /* Replace all destination labels. */
1302 for (i = 0; i < n; ++i)
1303 {
1304 tree case_label = gimple_switch_label (stmt, i);
1305 label = CASE_LABEL (case_label);
1306 new_label = main_block_label (label);
1307 if (new_label != label)
1308 CASE_LABEL (case_label) = new_label;
1309 }
1310 break;
1311 }
1312
1313 case GIMPLE_ASM:
1314 {
1315 int i, n = gimple_asm_nlabels (stmt);
1316
1317 for (i = 0; i < n; ++i)
1318 {
1319 tree cons = gimple_asm_label_op (stmt, i);
1320 tree label = main_block_label (TREE_VALUE (cons));
1321 TREE_VALUE (cons) = label;
1322 }
1323 break;
1324 }
1325
1326 /* We have to handle gotos until they're removed, and we don't
1327 remove them until after we've created the CFG edges. */
1328 case GIMPLE_GOTO:
1329 if (!computed_goto_p (stmt))
1330 {
1331 label = gimple_goto_dest (stmt);
1332 new_label = main_block_label (label);
1333 if (new_label != label)
1334 gimple_goto_set_dest (stmt, new_label);
1335 }
1336 break;
1337
1338 case GIMPLE_TRANSACTION:
1339 {
1340 tree label = gimple_transaction_label (stmt);
1341 if (label)
1342 {
1343 tree new_label = main_block_label (label);
1344 if (new_label != label)
1345 gimple_transaction_set_label (stmt, new_label);
1346 }
1347 }
1348 break;
1349
1350 default:
1351 break;
1352 }
1353 }
1354
1355 /* Do the same for the exception region tree labels. */
1356 cleanup_dead_labels_eh ();
1357
1358 /* Finally, purge dead labels. All user-defined labels and labels that
1359 can be the target of non-local gotos and labels which have their
1360 address taken are preserved. */
1361 FOR_EACH_BB (bb)
1362 {
1363 gimple_stmt_iterator i;
1364 tree label_for_this_bb = label_for_bb[bb->index].label;
1365
1366 if (!label_for_this_bb)
1367 continue;
1368
1369 /* If the main label of the block is unused, we may still remove it. */
1370 if (!label_for_bb[bb->index].used)
1371 label_for_this_bb = NULL;
1372
1373 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1374 {
1375 tree label;
1376 gimple stmt = gsi_stmt (i);
1377
1378 if (gimple_code (stmt) != GIMPLE_LABEL)
1379 break;
1380
1381 label = gimple_label_label (stmt);
1382
1383 if (label == label_for_this_bb
1384 || !DECL_ARTIFICIAL (label)
1385 || DECL_NONLOCAL (label)
1386 || FORCED_LABEL (label))
1387 gsi_next (&i);
1388 else
1389 gsi_remove (&i, true);
1390 }
1391 }
1392
1393 free (label_for_bb);
1394 }
1395
1396 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1397 the ones jumping to the same label.
1398 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1399
1400 void
1401 group_case_labels_stmt (gimple stmt)
1402 {
1403 int old_size = gimple_switch_num_labels (stmt);
1404 int i, j, new_size = old_size;
1405 basic_block default_bb = NULL;
1406
1407 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1408
1409 /* Look for possible opportunities to merge cases. */
1410 i = 1;
1411 while (i < old_size)
1412 {
1413 tree base_case, base_high;
1414 basic_block base_bb;
1415
1416 base_case = gimple_switch_label (stmt, i);
1417
1418 gcc_assert (base_case);
1419 base_bb = label_to_block (CASE_LABEL (base_case));
1420
1421 /* Discard cases that have the same destination as the
1422 default case. */
1423 if (base_bb == default_bb)
1424 {
1425 gimple_switch_set_label (stmt, i, NULL_TREE);
1426 i++;
1427 new_size--;
1428 continue;
1429 }
1430
1431 base_high = CASE_HIGH (base_case)
1432 ? CASE_HIGH (base_case)
1433 : CASE_LOW (base_case);
1434 i++;
1435
1436 /* Try to merge case labels. Break out when we reach the end
1437 of the label vector or when we cannot merge the next case
1438 label with the current one. */
1439 while (i < old_size)
1440 {
1441 tree merge_case = gimple_switch_label (stmt, i);
1442 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1443 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1444
1445 /* Merge the cases if they jump to the same place,
1446 and their ranges are consecutive. */
1447 if (merge_bb == base_bb
1448 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1449 {
1450 base_high = CASE_HIGH (merge_case) ?
1451 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1452 CASE_HIGH (base_case) = base_high;
1453 gimple_switch_set_label (stmt, i, NULL_TREE);
1454 new_size--;
1455 i++;
1456 }
1457 else
1458 break;
1459 }
1460 }
1461
1462 /* Compress the case labels in the label vector, and adjust the
1463 length of the vector. */
1464 for (i = 0, j = 0; i < new_size; i++)
1465 {
1466 while (! gimple_switch_label (stmt, j))
1467 j++;
1468 gimple_switch_set_label (stmt, i,
1469 gimple_switch_label (stmt, j++));
1470 }
1471
1472 gcc_assert (new_size <= old_size);
1473 gimple_switch_set_num_labels (stmt, new_size);
1474 }
1475
1476 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1477 and scan the sorted vector of cases. Combine the ones jumping to the
1478 same label. */
1479
1480 void
1481 group_case_labels (void)
1482 {
1483 basic_block bb;
1484
1485 FOR_EACH_BB (bb)
1486 {
1487 gimple stmt = last_stmt (bb);
1488 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1489 group_case_labels_stmt (stmt);
1490 }
1491 }
1492
1493 /* Checks whether we can merge block B into block A. */
1494
1495 static bool
1496 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1497 {
1498 gimple stmt;
1499 gimple_stmt_iterator gsi;
1500
1501 if (!single_succ_p (a))
1502 return false;
1503
1504 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1505 return false;
1506
1507 if (single_succ (a) != b)
1508 return false;
1509
1510 if (!single_pred_p (b))
1511 return false;
1512
1513 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1514 return false;
1515
1516 /* If A ends by a statement causing exceptions or something similar, we
1517 cannot merge the blocks. */
1518 stmt = last_stmt (a);
1519 if (stmt && stmt_ends_bb_p (stmt))
1520 return false;
1521
1522 /* Do not allow a block with only a non-local label to be merged. */
1523 if (stmt
1524 && gimple_code (stmt) == GIMPLE_LABEL
1525 && DECL_NONLOCAL (gimple_label_label (stmt)))
1526 return false;
1527
1528 /* Examine the labels at the beginning of B. */
1529 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1530 {
1531 tree lab;
1532 stmt = gsi_stmt (gsi);
1533 if (gimple_code (stmt) != GIMPLE_LABEL)
1534 break;
1535 lab = gimple_label_label (stmt);
1536
1537 /* Do not remove user forced labels or for -O0 any user labels. */
1538 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1539 return false;
1540 }
1541
1542 /* Protect the loop latches. */
1543 if (current_loops && b->loop_father->latch == b)
1544 return false;
1545
1546 /* It must be possible to eliminate all phi nodes in B. If ssa form
1547 is not up-to-date and a name-mapping is registered, we cannot eliminate
1548 any phis. Symbols marked for renaming are never a problem though. */
1549 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1550 {
1551 gimple phi = gsi_stmt (gsi);
1552 /* Technically only new names matter. */
1553 if (name_registered_for_update_p (PHI_RESULT (phi)))
1554 return false;
1555 }
1556
1557 /* When not optimizing, don't merge if we'd lose goto_locus. */
1558 if (!optimize
1559 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1560 {
1561 location_t goto_locus = single_succ_edge (a)->goto_locus;
1562 gimple_stmt_iterator prev, next;
1563 prev = gsi_last_nondebug_bb (a);
1564 next = gsi_after_labels (b);
1565 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1566 gsi_next_nondebug (&next);
1567 if ((gsi_end_p (prev)
1568 || gimple_location (gsi_stmt (prev)) != goto_locus)
1569 && (gsi_end_p (next)
1570 || gimple_location (gsi_stmt (next)) != goto_locus))
1571 return false;
1572 }
1573
1574 return true;
1575 }
1576
1577 /* Replaces all uses of NAME by VAL. */
1578
1579 void
1580 replace_uses_by (tree name, tree val)
1581 {
1582 imm_use_iterator imm_iter;
1583 use_operand_p use;
1584 gimple stmt;
1585 edge e;
1586
1587 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1588 {
1589 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1590 {
1591 replace_exp (use, val);
1592
1593 if (gimple_code (stmt) == GIMPLE_PHI)
1594 {
1595 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1596 if (e->flags & EDGE_ABNORMAL)
1597 {
1598 /* This can only occur for virtual operands, since
1599 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1600 would prevent replacement. */
1601 gcc_checking_assert (virtual_operand_p (name));
1602 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1603 }
1604 }
1605 }
1606
1607 if (gimple_code (stmt) != GIMPLE_PHI)
1608 {
1609 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1610 gimple orig_stmt = stmt;
1611 size_t i;
1612
1613 /* Mark the block if we changed the last stmt in it. */
1614 if (cfgcleanup_altered_bbs
1615 && stmt_ends_bb_p (stmt))
1616 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1617
1618 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1619 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1620 only change sth from non-invariant to invariant, and only
1621 when propagating constants. */
1622 if (is_gimple_min_invariant (val))
1623 for (i = 0; i < gimple_num_ops (stmt); i++)
1624 {
1625 tree op = gimple_op (stmt, i);
1626 /* Operands may be empty here. For example, the labels
1627 of a GIMPLE_COND are nulled out following the creation
1628 of the corresponding CFG edges. */
1629 if (op && TREE_CODE (op) == ADDR_EXPR)
1630 recompute_tree_invariant_for_addr_expr (op);
1631 }
1632
1633 if (fold_stmt (&gsi))
1634 stmt = gsi_stmt (gsi);
1635
1636 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1637 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1638
1639 update_stmt (stmt);
1640 }
1641 }
1642
1643 gcc_checking_assert (has_zero_uses (name));
1644
1645 /* Also update the trees stored in loop structures. */
1646 if (current_loops)
1647 {
1648 struct loop *loop;
1649
1650 FOR_EACH_LOOP (loop, 0)
1651 {
1652 substitute_in_loop_info (loop, name, val);
1653 }
1654 }
1655 }
1656
1657 /* Merge block B into block A. */
1658
1659 static void
1660 gimple_merge_blocks (basic_block a, basic_block b)
1661 {
1662 gimple_stmt_iterator last, gsi, psi;
1663
1664 if (dump_file)
1665 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1666
1667 /* Remove all single-valued PHI nodes from block B of the form
1668 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1669 gsi = gsi_last_bb (a);
1670 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1671 {
1672 gimple phi = gsi_stmt (psi);
1673 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1674 gimple copy;
1675 bool may_replace_uses = (virtual_operand_p (def)
1676 || may_propagate_copy (def, use));
1677
1678 /* In case we maintain loop closed ssa form, do not propagate arguments
1679 of loop exit phi nodes. */
1680 if (current_loops
1681 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1682 && !virtual_operand_p (def)
1683 && TREE_CODE (use) == SSA_NAME
1684 && a->loop_father != b->loop_father)
1685 may_replace_uses = false;
1686
1687 if (!may_replace_uses)
1688 {
1689 gcc_assert (!virtual_operand_p (def));
1690
1691 /* Note that just emitting the copies is fine -- there is no problem
1692 with ordering of phi nodes. This is because A is the single
1693 predecessor of B, therefore results of the phi nodes cannot
1694 appear as arguments of the phi nodes. */
1695 copy = gimple_build_assign (def, use);
1696 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1697 remove_phi_node (&psi, false);
1698 }
1699 else
1700 {
1701 /* If we deal with a PHI for virtual operands, we can simply
1702 propagate these without fussing with folding or updating
1703 the stmt. */
1704 if (virtual_operand_p (def))
1705 {
1706 imm_use_iterator iter;
1707 use_operand_p use_p;
1708 gimple stmt;
1709
1710 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1711 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1712 SET_USE (use_p, use);
1713
1714 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1715 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1716 }
1717 else
1718 replace_uses_by (def, use);
1719
1720 remove_phi_node (&psi, true);
1721 }
1722 }
1723
1724 /* Ensure that B follows A. */
1725 move_block_after (b, a);
1726
1727 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1728 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1729
1730 /* Remove labels from B and set gimple_bb to A for other statements. */
1731 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1732 {
1733 gimple stmt = gsi_stmt (gsi);
1734 if (gimple_code (stmt) == GIMPLE_LABEL)
1735 {
1736 tree label = gimple_label_label (stmt);
1737 int lp_nr;
1738
1739 gsi_remove (&gsi, false);
1740
1741 /* Now that we can thread computed gotos, we might have
1742 a situation where we have a forced label in block B
1743 However, the label at the start of block B might still be
1744 used in other ways (think about the runtime checking for
1745 Fortran assigned gotos). So we can not just delete the
1746 label. Instead we move the label to the start of block A. */
1747 if (FORCED_LABEL (label))
1748 {
1749 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1750 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1751 }
1752 /* Other user labels keep around in a form of a debug stmt. */
1753 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1754 {
1755 gimple dbg = gimple_build_debug_bind (label,
1756 integer_zero_node,
1757 stmt);
1758 gimple_debug_bind_reset_value (dbg);
1759 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1760 }
1761
1762 lp_nr = EH_LANDING_PAD_NR (label);
1763 if (lp_nr)
1764 {
1765 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1766 lp->post_landing_pad = NULL;
1767 }
1768 }
1769 else
1770 {
1771 gimple_set_bb (stmt, a);
1772 gsi_next (&gsi);
1773 }
1774 }
1775
1776 /* Merge the sequences. */
1777 last = gsi_last_bb (a);
1778 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1779 set_bb_seq (b, NULL);
1780
1781 if (cfgcleanup_altered_bbs)
1782 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1783 }
1784
1785
1786 /* Return the one of two successors of BB that is not reachable by a
1787 complex edge, if there is one. Else, return BB. We use
1788 this in optimizations that use post-dominators for their heuristics,
1789 to catch the cases in C++ where function calls are involved. */
1790
1791 basic_block
1792 single_noncomplex_succ (basic_block bb)
1793 {
1794 edge e0, e1;
1795 if (EDGE_COUNT (bb->succs) != 2)
1796 return bb;
1797
1798 e0 = EDGE_SUCC (bb, 0);
1799 e1 = EDGE_SUCC (bb, 1);
1800 if (e0->flags & EDGE_COMPLEX)
1801 return e1->dest;
1802 if (e1->flags & EDGE_COMPLEX)
1803 return e0->dest;
1804
1805 return bb;
1806 }
1807
1808 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1809
1810 void
1811 notice_special_calls (gimple call)
1812 {
1813 int flags = gimple_call_flags (call);
1814
1815 if (flags & ECF_MAY_BE_ALLOCA)
1816 cfun->calls_alloca = true;
1817 if (flags & ECF_RETURNS_TWICE)
1818 cfun->calls_setjmp = true;
1819 }
1820
1821
1822 /* Clear flags set by notice_special_calls. Used by dead code removal
1823 to update the flags. */
1824
1825 void
1826 clear_special_calls (void)
1827 {
1828 cfun->calls_alloca = false;
1829 cfun->calls_setjmp = false;
1830 }
1831
1832 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1833
1834 static void
1835 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1836 {
1837 /* Since this block is no longer reachable, we can just delete all
1838 of its PHI nodes. */
1839 remove_phi_nodes (bb);
1840
1841 /* Remove edges to BB's successors. */
1842 while (EDGE_COUNT (bb->succs) > 0)
1843 remove_edge (EDGE_SUCC (bb, 0));
1844 }
1845
1846
1847 /* Remove statements of basic block BB. */
1848
1849 static void
1850 remove_bb (basic_block bb)
1851 {
1852 gimple_stmt_iterator i;
1853
1854 if (dump_file)
1855 {
1856 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1857 if (dump_flags & TDF_DETAILS)
1858 {
1859 dump_bb (dump_file, bb, 0, dump_flags);
1860 fprintf (dump_file, "\n");
1861 }
1862 }
1863
1864 if (current_loops)
1865 {
1866 struct loop *loop = bb->loop_father;
1867
1868 /* If a loop gets removed, clean up the information associated
1869 with it. */
1870 if (loop->latch == bb
1871 || loop->header == bb)
1872 free_numbers_of_iterations_estimates_loop (loop);
1873 }
1874
1875 /* Remove all the instructions in the block. */
1876 if (bb_seq (bb) != NULL)
1877 {
1878 /* Walk backwards so as to get a chance to substitute all
1879 released DEFs into debug stmts. See
1880 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1881 details. */
1882 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1883 {
1884 gimple stmt = gsi_stmt (i);
1885 if (gimple_code (stmt) == GIMPLE_LABEL
1886 && (FORCED_LABEL (gimple_label_label (stmt))
1887 || DECL_NONLOCAL (gimple_label_label (stmt))))
1888 {
1889 basic_block new_bb;
1890 gimple_stmt_iterator new_gsi;
1891
1892 /* A non-reachable non-local label may still be referenced.
1893 But it no longer needs to carry the extra semantics of
1894 non-locality. */
1895 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1896 {
1897 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1898 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1899 }
1900
1901 new_bb = bb->prev_bb;
1902 new_gsi = gsi_start_bb (new_bb);
1903 gsi_remove (&i, false);
1904 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1905 }
1906 else
1907 {
1908 /* Release SSA definitions if we are in SSA. Note that we
1909 may be called when not in SSA. For example,
1910 final_cleanup calls this function via
1911 cleanup_tree_cfg. */
1912 if (gimple_in_ssa_p (cfun))
1913 release_defs (stmt);
1914
1915 gsi_remove (&i, true);
1916 }
1917
1918 if (gsi_end_p (i))
1919 i = gsi_last_bb (bb);
1920 else
1921 gsi_prev (&i);
1922 }
1923 }
1924
1925 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1926 bb->il.gimple.seq = NULL;
1927 bb->il.gimple.phi_nodes = NULL;
1928 }
1929
1930
1931 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1932 predicate VAL, return the edge that will be taken out of the block.
1933 If VAL does not match a unique edge, NULL is returned. */
1934
1935 edge
1936 find_taken_edge (basic_block bb, tree val)
1937 {
1938 gimple stmt;
1939
1940 stmt = last_stmt (bb);
1941
1942 gcc_assert (stmt);
1943 gcc_assert (is_ctrl_stmt (stmt));
1944
1945 if (val == NULL)
1946 return NULL;
1947
1948 if (!is_gimple_min_invariant (val))
1949 return NULL;
1950
1951 if (gimple_code (stmt) == GIMPLE_COND)
1952 return find_taken_edge_cond_expr (bb, val);
1953
1954 if (gimple_code (stmt) == GIMPLE_SWITCH)
1955 return find_taken_edge_switch_expr (bb, val);
1956
1957 if (computed_goto_p (stmt))
1958 {
1959 /* Only optimize if the argument is a label, if the argument is
1960 not a label then we can not construct a proper CFG.
1961
1962 It may be the case that we only need to allow the LABEL_REF to
1963 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1964 appear inside a LABEL_EXPR just to be safe. */
1965 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1966 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1967 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1968 return NULL;
1969 }
1970
1971 gcc_unreachable ();
1972 }
1973
1974 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1975 statement, determine which of the outgoing edges will be taken out of the
1976 block. Return NULL if either edge may be taken. */
1977
1978 static edge
1979 find_taken_edge_computed_goto (basic_block bb, tree val)
1980 {
1981 basic_block dest;
1982 edge e = NULL;
1983
1984 dest = label_to_block (val);
1985 if (dest)
1986 {
1987 e = find_edge (bb, dest);
1988 gcc_assert (e != NULL);
1989 }
1990
1991 return e;
1992 }
1993
1994 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1995 statement, determine which of the two edges will be taken out of the
1996 block. Return NULL if either edge may be taken. */
1997
1998 static edge
1999 find_taken_edge_cond_expr (basic_block bb, tree val)
2000 {
2001 edge true_edge, false_edge;
2002
2003 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2004
2005 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2006 return (integer_zerop (val) ? false_edge : true_edge);
2007 }
2008
2009 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2010 statement, determine which edge will be taken out of the block. Return
2011 NULL if any edge may be taken. */
2012
2013 static edge
2014 find_taken_edge_switch_expr (basic_block bb, tree val)
2015 {
2016 basic_block dest_bb;
2017 edge e;
2018 gimple switch_stmt;
2019 tree taken_case;
2020
2021 switch_stmt = last_stmt (bb);
2022 taken_case = find_case_label_for_value (switch_stmt, val);
2023 dest_bb = label_to_block (CASE_LABEL (taken_case));
2024
2025 e = find_edge (bb, dest_bb);
2026 gcc_assert (e);
2027 return e;
2028 }
2029
2030
2031 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2032 We can make optimal use here of the fact that the case labels are
2033 sorted: We can do a binary search for a case matching VAL. */
2034
2035 static tree
2036 find_case_label_for_value (gimple switch_stmt, tree val)
2037 {
2038 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2039 tree default_case = gimple_switch_default_label (switch_stmt);
2040
2041 for (low = 0, high = n; high - low > 1; )
2042 {
2043 size_t i = (high + low) / 2;
2044 tree t = gimple_switch_label (switch_stmt, i);
2045 int cmp;
2046
2047 /* Cache the result of comparing CASE_LOW and val. */
2048 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2049
2050 if (cmp > 0)
2051 high = i;
2052 else
2053 low = i;
2054
2055 if (CASE_HIGH (t) == NULL)
2056 {
2057 /* A singe-valued case label. */
2058 if (cmp == 0)
2059 return t;
2060 }
2061 else
2062 {
2063 /* A case range. We can only handle integer ranges. */
2064 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2065 return t;
2066 }
2067 }
2068
2069 return default_case;
2070 }
2071
2072
2073 /* Dump a basic block on stderr. */
2074
2075 void
2076 gimple_debug_bb (basic_block bb)
2077 {
2078 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2079 }
2080
2081
2082 /* Dump basic block with index N on stderr. */
2083
2084 basic_block
2085 gimple_debug_bb_n (int n)
2086 {
2087 gimple_debug_bb (BASIC_BLOCK (n));
2088 return BASIC_BLOCK (n);
2089 }
2090
2091
2092 /* Dump the CFG on stderr.
2093
2094 FLAGS are the same used by the tree dumping functions
2095 (see TDF_* in dumpfile.h). */
2096
2097 void
2098 gimple_debug_cfg (int flags)
2099 {
2100 gimple_dump_cfg (stderr, flags);
2101 }
2102
2103
2104 /* Dump the program showing basic block boundaries on the given FILE.
2105
2106 FLAGS are the same used by the tree dumping functions (see TDF_* in
2107 tree.h). */
2108
2109 void
2110 gimple_dump_cfg (FILE *file, int flags)
2111 {
2112 if (flags & TDF_DETAILS)
2113 {
2114 dump_function_header (file, current_function_decl, flags);
2115 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2116 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2117 last_basic_block);
2118
2119 brief_dump_cfg (file, flags | TDF_COMMENT);
2120 fprintf (file, "\n");
2121 }
2122
2123 if (flags & TDF_STATS)
2124 dump_cfg_stats (file);
2125
2126 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2127 }
2128
2129
2130 /* Dump CFG statistics on FILE. */
2131
2132 void
2133 dump_cfg_stats (FILE *file)
2134 {
2135 static long max_num_merged_labels = 0;
2136 unsigned long size, total = 0;
2137 long num_edges;
2138 basic_block bb;
2139 const char * const fmt_str = "%-30s%-13s%12s\n";
2140 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2141 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2142 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2143 const char *funcname = current_function_name ();
2144
2145 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2146
2147 fprintf (file, "---------------------------------------------------------\n");
2148 fprintf (file, fmt_str, "", " Number of ", "Memory");
2149 fprintf (file, fmt_str, "", " instances ", "used ");
2150 fprintf (file, "---------------------------------------------------------\n");
2151
2152 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2153 total += size;
2154 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2155 SCALE (size), LABEL (size));
2156
2157 num_edges = 0;
2158 FOR_EACH_BB (bb)
2159 num_edges += EDGE_COUNT (bb->succs);
2160 size = num_edges * sizeof (struct edge_def);
2161 total += size;
2162 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2163
2164 fprintf (file, "---------------------------------------------------------\n");
2165 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2166 LABEL (total));
2167 fprintf (file, "---------------------------------------------------------\n");
2168 fprintf (file, "\n");
2169
2170 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2171 max_num_merged_labels = cfg_stats.num_merged_labels;
2172
2173 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2174 cfg_stats.num_merged_labels, max_num_merged_labels);
2175
2176 fprintf (file, "\n");
2177 }
2178
2179
2180 /* Dump CFG statistics on stderr. Keep extern so that it's always
2181 linked in the final executable. */
2182
2183 DEBUG_FUNCTION void
2184 debug_cfg_stats (void)
2185 {
2186 dump_cfg_stats (stderr);
2187 }
2188
2189 /*---------------------------------------------------------------------------
2190 Miscellaneous helpers
2191 ---------------------------------------------------------------------------*/
2192
2193 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2194 flow. Transfers of control flow associated with EH are excluded. */
2195
2196 static bool
2197 call_can_make_abnormal_goto (gimple t)
2198 {
2199 /* If the function has no non-local labels, then a call cannot make an
2200 abnormal transfer of control. */
2201 if (!cfun->has_nonlocal_label
2202 && !cfun->calls_setjmp)
2203 return false;
2204
2205 /* Likewise if the call has no side effects. */
2206 if (!gimple_has_side_effects (t))
2207 return false;
2208
2209 /* Likewise if the called function is leaf. */
2210 if (gimple_call_flags (t) & ECF_LEAF)
2211 return false;
2212
2213 return true;
2214 }
2215
2216
2217 /* Return true if T can make an abnormal transfer of control flow.
2218 Transfers of control flow associated with EH are excluded. */
2219
2220 bool
2221 stmt_can_make_abnormal_goto (gimple t)
2222 {
2223 if (computed_goto_p (t))
2224 return true;
2225 if (is_gimple_call (t))
2226 return call_can_make_abnormal_goto (t);
2227 return false;
2228 }
2229
2230
2231 /* Return true if T represents a stmt that always transfers control. */
2232
2233 bool
2234 is_ctrl_stmt (gimple t)
2235 {
2236 switch (gimple_code (t))
2237 {
2238 case GIMPLE_COND:
2239 case GIMPLE_SWITCH:
2240 case GIMPLE_GOTO:
2241 case GIMPLE_RETURN:
2242 case GIMPLE_RESX:
2243 return true;
2244 default:
2245 return false;
2246 }
2247 }
2248
2249
2250 /* Return true if T is a statement that may alter the flow of control
2251 (e.g., a call to a non-returning function). */
2252
2253 bool
2254 is_ctrl_altering_stmt (gimple t)
2255 {
2256 gcc_assert (t);
2257
2258 switch (gimple_code (t))
2259 {
2260 case GIMPLE_CALL:
2261 {
2262 int flags = gimple_call_flags (t);
2263
2264 /* A call alters control flow if it can make an abnormal goto. */
2265 if (call_can_make_abnormal_goto (t))
2266 return true;
2267
2268 /* A call also alters control flow if it does not return. */
2269 if (flags & ECF_NORETURN)
2270 return true;
2271
2272 /* TM ending statements have backedges out of the transaction.
2273 Return true so we split the basic block containing them.
2274 Note that the TM_BUILTIN test is merely an optimization. */
2275 if ((flags & ECF_TM_BUILTIN)
2276 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2277 return true;
2278
2279 /* BUILT_IN_RETURN call is same as return statement. */
2280 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2281 return true;
2282 }
2283 break;
2284
2285 case GIMPLE_EH_DISPATCH:
2286 /* EH_DISPATCH branches to the individual catch handlers at
2287 this level of a try or allowed-exceptions region. It can
2288 fallthru to the next statement as well. */
2289 return true;
2290
2291 case GIMPLE_ASM:
2292 if (gimple_asm_nlabels (t) > 0)
2293 return true;
2294 break;
2295
2296 CASE_GIMPLE_OMP:
2297 /* OpenMP directives alter control flow. */
2298 return true;
2299
2300 case GIMPLE_TRANSACTION:
2301 /* A transaction start alters control flow. */
2302 return true;
2303
2304 default:
2305 break;
2306 }
2307
2308 /* If a statement can throw, it alters control flow. */
2309 return stmt_can_throw_internal (t);
2310 }
2311
2312
2313 /* Return true if T is a simple local goto. */
2314
2315 bool
2316 simple_goto_p (gimple t)
2317 {
2318 return (gimple_code (t) == GIMPLE_GOTO
2319 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2320 }
2321
2322
2323 /* Return true if STMT should start a new basic block. PREV_STMT is
2324 the statement preceding STMT. It is used when STMT is a label or a
2325 case label. Labels should only start a new basic block if their
2326 previous statement wasn't a label. Otherwise, sequence of labels
2327 would generate unnecessary basic blocks that only contain a single
2328 label. */
2329
2330 static inline bool
2331 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2332 {
2333 if (stmt == NULL)
2334 return false;
2335
2336 /* Labels start a new basic block only if the preceding statement
2337 wasn't a label of the same type. This prevents the creation of
2338 consecutive blocks that have nothing but a single label. */
2339 if (gimple_code (stmt) == GIMPLE_LABEL)
2340 {
2341 /* Nonlocal and computed GOTO targets always start a new block. */
2342 if (DECL_NONLOCAL (gimple_label_label (stmt))
2343 || FORCED_LABEL (gimple_label_label (stmt)))
2344 return true;
2345
2346 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2347 {
2348 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2349 return true;
2350
2351 cfg_stats.num_merged_labels++;
2352 return false;
2353 }
2354 else
2355 return true;
2356 }
2357 else if (gimple_code (stmt) == GIMPLE_CALL
2358 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2359 /* setjmp acts similar to a nonlocal GOTO target and thus should
2360 start a new block. */
2361 return true;
2362
2363 return false;
2364 }
2365
2366
2367 /* Return true if T should end a basic block. */
2368
2369 bool
2370 stmt_ends_bb_p (gimple t)
2371 {
2372 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2373 }
2374
2375 /* Remove block annotations and other data structures. */
2376
2377 void
2378 delete_tree_cfg_annotations (void)
2379 {
2380 vec_free (label_to_block_map);
2381 }
2382
2383
2384 /* Return the first statement in basic block BB. */
2385
2386 gimple
2387 first_stmt (basic_block bb)
2388 {
2389 gimple_stmt_iterator i = gsi_start_bb (bb);
2390 gimple stmt = NULL;
2391
2392 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2393 {
2394 gsi_next (&i);
2395 stmt = NULL;
2396 }
2397 return stmt;
2398 }
2399
2400 /* Return the first non-label statement in basic block BB. */
2401
2402 static gimple
2403 first_non_label_stmt (basic_block bb)
2404 {
2405 gimple_stmt_iterator i = gsi_start_bb (bb);
2406 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2407 gsi_next (&i);
2408 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2409 }
2410
2411 /* Return the last statement in basic block BB. */
2412
2413 gimple
2414 last_stmt (basic_block bb)
2415 {
2416 gimple_stmt_iterator i = gsi_last_bb (bb);
2417 gimple stmt = NULL;
2418
2419 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2420 {
2421 gsi_prev (&i);
2422 stmt = NULL;
2423 }
2424 return stmt;
2425 }
2426
2427 /* Return the last statement of an otherwise empty block. Return NULL
2428 if the block is totally empty, or if it contains more than one
2429 statement. */
2430
2431 gimple
2432 last_and_only_stmt (basic_block bb)
2433 {
2434 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2435 gimple last, prev;
2436
2437 if (gsi_end_p (i))
2438 return NULL;
2439
2440 last = gsi_stmt (i);
2441 gsi_prev_nondebug (&i);
2442 if (gsi_end_p (i))
2443 return last;
2444
2445 /* Empty statements should no longer appear in the instruction stream.
2446 Everything that might have appeared before should be deleted by
2447 remove_useless_stmts, and the optimizers should just gsi_remove
2448 instead of smashing with build_empty_stmt.
2449
2450 Thus the only thing that should appear here in a block containing
2451 one executable statement is a label. */
2452 prev = gsi_stmt (i);
2453 if (gimple_code (prev) == GIMPLE_LABEL)
2454 return last;
2455 else
2456 return NULL;
2457 }
2458
2459 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2460
2461 static void
2462 reinstall_phi_args (edge new_edge, edge old_edge)
2463 {
2464 edge_var_map_vector *v;
2465 edge_var_map *vm;
2466 int i;
2467 gimple_stmt_iterator phis;
2468
2469 v = redirect_edge_var_map_vector (old_edge);
2470 if (!v)
2471 return;
2472
2473 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2474 v->iterate (i, &vm) && !gsi_end_p (phis);
2475 i++, gsi_next (&phis))
2476 {
2477 gimple phi = gsi_stmt (phis);
2478 tree result = redirect_edge_var_map_result (vm);
2479 tree arg = redirect_edge_var_map_def (vm);
2480
2481 gcc_assert (result == gimple_phi_result (phi));
2482
2483 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2484 }
2485
2486 redirect_edge_var_map_clear (old_edge);
2487 }
2488
2489 /* Returns the basic block after which the new basic block created
2490 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2491 near its "logical" location. This is of most help to humans looking
2492 at debugging dumps. */
2493
2494 static basic_block
2495 split_edge_bb_loc (edge edge_in)
2496 {
2497 basic_block dest = edge_in->dest;
2498 basic_block dest_prev = dest->prev_bb;
2499
2500 if (dest_prev)
2501 {
2502 edge e = find_edge (dest_prev, dest);
2503 if (e && !(e->flags & EDGE_COMPLEX))
2504 return edge_in->src;
2505 }
2506 return dest_prev;
2507 }
2508
2509 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2510 Abort on abnormal edges. */
2511
2512 static basic_block
2513 gimple_split_edge (edge edge_in)
2514 {
2515 basic_block new_bb, after_bb, dest;
2516 edge new_edge, e;
2517
2518 /* Abnormal edges cannot be split. */
2519 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2520
2521 dest = edge_in->dest;
2522
2523 after_bb = split_edge_bb_loc (edge_in);
2524
2525 new_bb = create_empty_bb (after_bb);
2526 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2527 new_bb->count = edge_in->count;
2528 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2529 new_edge->probability = REG_BR_PROB_BASE;
2530 new_edge->count = edge_in->count;
2531
2532 e = redirect_edge_and_branch (edge_in, new_bb);
2533 gcc_assert (e == edge_in);
2534 reinstall_phi_args (new_edge, e);
2535
2536 return new_bb;
2537 }
2538
2539
2540 /* Verify properties of the address expression T with base object BASE. */
2541
2542 static tree
2543 verify_address (tree t, tree base)
2544 {
2545 bool old_constant;
2546 bool old_side_effects;
2547 bool new_constant;
2548 bool new_side_effects;
2549
2550 old_constant = TREE_CONSTANT (t);
2551 old_side_effects = TREE_SIDE_EFFECTS (t);
2552
2553 recompute_tree_invariant_for_addr_expr (t);
2554 new_side_effects = TREE_SIDE_EFFECTS (t);
2555 new_constant = TREE_CONSTANT (t);
2556
2557 if (old_constant != new_constant)
2558 {
2559 error ("constant not recomputed when ADDR_EXPR changed");
2560 return t;
2561 }
2562 if (old_side_effects != new_side_effects)
2563 {
2564 error ("side effects not recomputed when ADDR_EXPR changed");
2565 return t;
2566 }
2567
2568 if (!(TREE_CODE (base) == VAR_DECL
2569 || TREE_CODE (base) == PARM_DECL
2570 || TREE_CODE (base) == RESULT_DECL))
2571 return NULL_TREE;
2572
2573 if (DECL_GIMPLE_REG_P (base))
2574 {
2575 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2576 return base;
2577 }
2578
2579 return NULL_TREE;
2580 }
2581
2582 /* Callback for walk_tree, check that all elements with address taken are
2583 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2584 inside a PHI node. */
2585
2586 static tree
2587 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2588 {
2589 tree t = *tp, x;
2590
2591 if (TYPE_P (t))
2592 *walk_subtrees = 0;
2593
2594 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2595 #define CHECK_OP(N, MSG) \
2596 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2597 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2598
2599 switch (TREE_CODE (t))
2600 {
2601 case SSA_NAME:
2602 if (SSA_NAME_IN_FREE_LIST (t))
2603 {
2604 error ("SSA name in freelist but still referenced");
2605 return *tp;
2606 }
2607 break;
2608
2609 case INDIRECT_REF:
2610 error ("INDIRECT_REF in gimple IL");
2611 return t;
2612
2613 case MEM_REF:
2614 x = TREE_OPERAND (t, 0);
2615 if (!POINTER_TYPE_P (TREE_TYPE (x))
2616 || !is_gimple_mem_ref_addr (x))
2617 {
2618 error ("invalid first operand of MEM_REF");
2619 return x;
2620 }
2621 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2622 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2623 {
2624 error ("invalid offset operand of MEM_REF");
2625 return TREE_OPERAND (t, 1);
2626 }
2627 if (TREE_CODE (x) == ADDR_EXPR
2628 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2629 return x;
2630 *walk_subtrees = 0;
2631 break;
2632
2633 case ASSERT_EXPR:
2634 x = fold (ASSERT_EXPR_COND (t));
2635 if (x == boolean_false_node)
2636 {
2637 error ("ASSERT_EXPR with an always-false condition");
2638 return *tp;
2639 }
2640 break;
2641
2642 case MODIFY_EXPR:
2643 error ("MODIFY_EXPR not expected while having tuples");
2644 return *tp;
2645
2646 case ADDR_EXPR:
2647 {
2648 tree tem;
2649
2650 gcc_assert (is_gimple_address (t));
2651
2652 /* Skip any references (they will be checked when we recurse down the
2653 tree) and ensure that any variable used as a prefix is marked
2654 addressable. */
2655 for (x = TREE_OPERAND (t, 0);
2656 handled_component_p (x);
2657 x = TREE_OPERAND (x, 0))
2658 ;
2659
2660 if ((tem = verify_address (t, x)))
2661 return tem;
2662
2663 if (!(TREE_CODE (x) == VAR_DECL
2664 || TREE_CODE (x) == PARM_DECL
2665 || TREE_CODE (x) == RESULT_DECL))
2666 return NULL;
2667
2668 if (!TREE_ADDRESSABLE (x))
2669 {
2670 error ("address taken, but ADDRESSABLE bit not set");
2671 return x;
2672 }
2673
2674 break;
2675 }
2676
2677 case COND_EXPR:
2678 x = COND_EXPR_COND (t);
2679 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2680 {
2681 error ("non-integral used in condition");
2682 return x;
2683 }
2684 if (!is_gimple_condexpr (x))
2685 {
2686 error ("invalid conditional operand");
2687 return x;
2688 }
2689 break;
2690
2691 case NON_LVALUE_EXPR:
2692 case TRUTH_NOT_EXPR:
2693 gcc_unreachable ();
2694
2695 CASE_CONVERT:
2696 case FIX_TRUNC_EXPR:
2697 case FLOAT_EXPR:
2698 case NEGATE_EXPR:
2699 case ABS_EXPR:
2700 case BIT_NOT_EXPR:
2701 CHECK_OP (0, "invalid operand to unary operator");
2702 break;
2703
2704 case REALPART_EXPR:
2705 case IMAGPART_EXPR:
2706 case BIT_FIELD_REF:
2707 if (!is_gimple_reg_type (TREE_TYPE (t)))
2708 {
2709 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2710 return t;
2711 }
2712
2713 if (TREE_CODE (t) == BIT_FIELD_REF)
2714 {
2715 tree t0 = TREE_OPERAND (t, 0);
2716 tree t1 = TREE_OPERAND (t, 1);
2717 tree t2 = TREE_OPERAND (t, 2);
2718 if (!tree_fits_uhwi_p (t1)
2719 || !tree_fits_uhwi_p (t2))
2720 {
2721 error ("invalid position or size operand to BIT_FIELD_REF");
2722 return t;
2723 }
2724 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2725 && (TYPE_PRECISION (TREE_TYPE (t))
2726 != tree_to_uhwi (t1)))
2727 {
2728 error ("integral result type precision does not match "
2729 "field size of BIT_FIELD_REF");
2730 return t;
2731 }
2732 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2734 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2735 != tree_to_uhwi (t1)))
2736 {
2737 error ("mode precision of non-integral result does not "
2738 "match field size of BIT_FIELD_REF");
2739 return t;
2740 }
2741 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2742 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2743 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2744 {
2745 error ("position plus size exceeds size of referenced object in "
2746 "BIT_FIELD_REF");
2747 return t;
2748 }
2749 }
2750 t = TREE_OPERAND (t, 0);
2751
2752 /* Fall-through. */
2753 case COMPONENT_REF:
2754 case ARRAY_REF:
2755 case ARRAY_RANGE_REF:
2756 case VIEW_CONVERT_EXPR:
2757 /* We have a nest of references. Verify that each of the operands
2758 that determine where to reference is either a constant or a variable,
2759 verify that the base is valid, and then show we've already checked
2760 the subtrees. */
2761 while (handled_component_p (t))
2762 {
2763 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2764 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2765 else if (TREE_CODE (t) == ARRAY_REF
2766 || TREE_CODE (t) == ARRAY_RANGE_REF)
2767 {
2768 CHECK_OP (1, "invalid array index");
2769 if (TREE_OPERAND (t, 2))
2770 CHECK_OP (2, "invalid array lower bound");
2771 if (TREE_OPERAND (t, 3))
2772 CHECK_OP (3, "invalid array stride");
2773 }
2774 else if (TREE_CODE (t) == BIT_FIELD_REF
2775 || TREE_CODE (t) == REALPART_EXPR
2776 || TREE_CODE (t) == IMAGPART_EXPR)
2777 {
2778 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2779 "REALPART_EXPR");
2780 return t;
2781 }
2782
2783 t = TREE_OPERAND (t, 0);
2784 }
2785
2786 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2787 {
2788 error ("invalid reference prefix");
2789 return t;
2790 }
2791 *walk_subtrees = 0;
2792 break;
2793 case PLUS_EXPR:
2794 case MINUS_EXPR:
2795 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2796 POINTER_PLUS_EXPR. */
2797 if (POINTER_TYPE_P (TREE_TYPE (t)))
2798 {
2799 error ("invalid operand to plus/minus, type is a pointer");
2800 return t;
2801 }
2802 CHECK_OP (0, "invalid operand to binary operator");
2803 CHECK_OP (1, "invalid operand to binary operator");
2804 break;
2805
2806 case POINTER_PLUS_EXPR:
2807 /* Check to make sure the first operand is a pointer or reference type. */
2808 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2809 {
2810 error ("invalid operand to pointer plus, first operand is not a pointer");
2811 return t;
2812 }
2813 /* Check to make sure the second operand is a ptrofftype. */
2814 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2815 {
2816 error ("invalid operand to pointer plus, second operand is not an "
2817 "integer type of appropriate width");
2818 return t;
2819 }
2820 /* FALLTHROUGH */
2821 case LT_EXPR:
2822 case LE_EXPR:
2823 case GT_EXPR:
2824 case GE_EXPR:
2825 case EQ_EXPR:
2826 case NE_EXPR:
2827 case UNORDERED_EXPR:
2828 case ORDERED_EXPR:
2829 case UNLT_EXPR:
2830 case UNLE_EXPR:
2831 case UNGT_EXPR:
2832 case UNGE_EXPR:
2833 case UNEQ_EXPR:
2834 case LTGT_EXPR:
2835 case MULT_EXPR:
2836 case TRUNC_DIV_EXPR:
2837 case CEIL_DIV_EXPR:
2838 case FLOOR_DIV_EXPR:
2839 case ROUND_DIV_EXPR:
2840 case TRUNC_MOD_EXPR:
2841 case CEIL_MOD_EXPR:
2842 case FLOOR_MOD_EXPR:
2843 case ROUND_MOD_EXPR:
2844 case RDIV_EXPR:
2845 case EXACT_DIV_EXPR:
2846 case MIN_EXPR:
2847 case MAX_EXPR:
2848 case LSHIFT_EXPR:
2849 case RSHIFT_EXPR:
2850 case LROTATE_EXPR:
2851 case RROTATE_EXPR:
2852 case BIT_IOR_EXPR:
2853 case BIT_XOR_EXPR:
2854 case BIT_AND_EXPR:
2855 CHECK_OP (0, "invalid operand to binary operator");
2856 CHECK_OP (1, "invalid operand to binary operator");
2857 break;
2858
2859 case CONSTRUCTOR:
2860 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2861 *walk_subtrees = 0;
2862 break;
2863
2864 case CASE_LABEL_EXPR:
2865 if (CASE_CHAIN (t))
2866 {
2867 error ("invalid CASE_CHAIN");
2868 return t;
2869 }
2870 break;
2871
2872 default:
2873 break;
2874 }
2875 return NULL;
2876
2877 #undef CHECK_OP
2878 }
2879
2880
2881 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2882 Returns true if there is an error, otherwise false. */
2883
2884 static bool
2885 verify_types_in_gimple_min_lval (tree expr)
2886 {
2887 tree op;
2888
2889 if (is_gimple_id (expr))
2890 return false;
2891
2892 if (TREE_CODE (expr) != TARGET_MEM_REF
2893 && TREE_CODE (expr) != MEM_REF)
2894 {
2895 error ("invalid expression for min lvalue");
2896 return true;
2897 }
2898
2899 /* TARGET_MEM_REFs are strange beasts. */
2900 if (TREE_CODE (expr) == TARGET_MEM_REF)
2901 return false;
2902
2903 op = TREE_OPERAND (expr, 0);
2904 if (!is_gimple_val (op))
2905 {
2906 error ("invalid operand in indirect reference");
2907 debug_generic_stmt (op);
2908 return true;
2909 }
2910 /* Memory references now generally can involve a value conversion. */
2911
2912 return false;
2913 }
2914
2915 /* Verify if EXPR is a valid GIMPLE reference expression. If
2916 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2917 if there is an error, otherwise false. */
2918
2919 static bool
2920 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2921 {
2922 while (handled_component_p (expr))
2923 {
2924 tree op = TREE_OPERAND (expr, 0);
2925
2926 if (TREE_CODE (expr) == ARRAY_REF
2927 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2928 {
2929 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2930 || (TREE_OPERAND (expr, 2)
2931 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2932 || (TREE_OPERAND (expr, 3)
2933 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2934 {
2935 error ("invalid operands to array reference");
2936 debug_generic_stmt (expr);
2937 return true;
2938 }
2939 }
2940
2941 /* Verify if the reference array element types are compatible. */
2942 if (TREE_CODE (expr) == ARRAY_REF
2943 && !useless_type_conversion_p (TREE_TYPE (expr),
2944 TREE_TYPE (TREE_TYPE (op))))
2945 {
2946 error ("type mismatch in array reference");
2947 debug_generic_stmt (TREE_TYPE (expr));
2948 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2949 return true;
2950 }
2951 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2952 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2953 TREE_TYPE (TREE_TYPE (op))))
2954 {
2955 error ("type mismatch in array range reference");
2956 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2957 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2958 return true;
2959 }
2960
2961 if ((TREE_CODE (expr) == REALPART_EXPR
2962 || TREE_CODE (expr) == IMAGPART_EXPR)
2963 && !useless_type_conversion_p (TREE_TYPE (expr),
2964 TREE_TYPE (TREE_TYPE (op))))
2965 {
2966 error ("type mismatch in real/imagpart reference");
2967 debug_generic_stmt (TREE_TYPE (expr));
2968 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2969 return true;
2970 }
2971
2972 if (TREE_CODE (expr) == COMPONENT_REF
2973 && !useless_type_conversion_p (TREE_TYPE (expr),
2974 TREE_TYPE (TREE_OPERAND (expr, 1))))
2975 {
2976 error ("type mismatch in component reference");
2977 debug_generic_stmt (TREE_TYPE (expr));
2978 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2979 return true;
2980 }
2981
2982 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2983 {
2984 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2985 that their operand is not an SSA name or an invariant when
2986 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2987 bug). Otherwise there is nothing to verify, gross mismatches at
2988 most invoke undefined behavior. */
2989 if (require_lvalue
2990 && (TREE_CODE (op) == SSA_NAME
2991 || is_gimple_min_invariant (op)))
2992 {
2993 error ("conversion of an SSA_NAME on the left hand side");
2994 debug_generic_stmt (expr);
2995 return true;
2996 }
2997 else if (TREE_CODE (op) == SSA_NAME
2998 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2999 {
3000 error ("conversion of register to a different size");
3001 debug_generic_stmt (expr);
3002 return true;
3003 }
3004 else if (!handled_component_p (op))
3005 return false;
3006 }
3007
3008 expr = op;
3009 }
3010
3011 if (TREE_CODE (expr) == MEM_REF)
3012 {
3013 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3014 {
3015 error ("invalid address operand in MEM_REF");
3016 debug_generic_stmt (expr);
3017 return true;
3018 }
3019 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3020 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3021 {
3022 error ("invalid offset operand in MEM_REF");
3023 debug_generic_stmt (expr);
3024 return true;
3025 }
3026 }
3027 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3028 {
3029 if (!TMR_BASE (expr)
3030 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3031 {
3032 error ("invalid address operand in TARGET_MEM_REF");
3033 return true;
3034 }
3035 if (!TMR_OFFSET (expr)
3036 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3037 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3038 {
3039 error ("invalid offset operand in TARGET_MEM_REF");
3040 debug_generic_stmt (expr);
3041 return true;
3042 }
3043 }
3044
3045 return ((require_lvalue || !is_gimple_min_invariant (expr))
3046 && verify_types_in_gimple_min_lval (expr));
3047 }
3048
3049 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3050 list of pointer-to types that is trivially convertible to DEST. */
3051
3052 static bool
3053 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3054 {
3055 tree src;
3056
3057 if (!TYPE_POINTER_TO (src_obj))
3058 return true;
3059
3060 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3061 if (useless_type_conversion_p (dest, src))
3062 return true;
3063
3064 return false;
3065 }
3066
3067 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3068 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3069
3070 static bool
3071 valid_fixed_convert_types_p (tree type1, tree type2)
3072 {
3073 return (FIXED_POINT_TYPE_P (type1)
3074 && (INTEGRAL_TYPE_P (type2)
3075 || SCALAR_FLOAT_TYPE_P (type2)
3076 || FIXED_POINT_TYPE_P (type2)));
3077 }
3078
3079 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3080 is a problem, otherwise false. */
3081
3082 static bool
3083 verify_gimple_call (gimple stmt)
3084 {
3085 tree fn = gimple_call_fn (stmt);
3086 tree fntype, fndecl;
3087 unsigned i;
3088
3089 if (gimple_call_internal_p (stmt))
3090 {
3091 if (fn)
3092 {
3093 error ("gimple call has two targets");
3094 debug_generic_stmt (fn);
3095 return true;
3096 }
3097 }
3098 else
3099 {
3100 if (!fn)
3101 {
3102 error ("gimple call has no target");
3103 return true;
3104 }
3105 }
3106
3107 if (fn && !is_gimple_call_addr (fn))
3108 {
3109 error ("invalid function in gimple call");
3110 debug_generic_stmt (fn);
3111 return true;
3112 }
3113
3114 if (fn
3115 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3116 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3117 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3118 {
3119 error ("non-function in gimple call");
3120 return true;
3121 }
3122
3123 fndecl = gimple_call_fndecl (stmt);
3124 if (fndecl
3125 && TREE_CODE (fndecl) == FUNCTION_DECL
3126 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3127 && !DECL_PURE_P (fndecl)
3128 && !TREE_READONLY (fndecl))
3129 {
3130 error ("invalid pure const state for function");
3131 return true;
3132 }
3133
3134 if (gimple_call_lhs (stmt)
3135 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3136 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3137 {
3138 error ("invalid LHS in gimple call");
3139 return true;
3140 }
3141
3142 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3143 {
3144 error ("LHS in noreturn call");
3145 return true;
3146 }
3147
3148 fntype = gimple_call_fntype (stmt);
3149 if (fntype
3150 && gimple_call_lhs (stmt)
3151 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3152 TREE_TYPE (fntype))
3153 /* ??? At least C++ misses conversions at assignments from
3154 void * call results.
3155 ??? Java is completely off. Especially with functions
3156 returning java.lang.Object.
3157 For now simply allow arbitrary pointer type conversions. */
3158 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3159 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3160 {
3161 error ("invalid conversion in gimple call");
3162 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3163 debug_generic_stmt (TREE_TYPE (fntype));
3164 return true;
3165 }
3166
3167 if (gimple_call_chain (stmt)
3168 && !is_gimple_val (gimple_call_chain (stmt)))
3169 {
3170 error ("invalid static chain in gimple call");
3171 debug_generic_stmt (gimple_call_chain (stmt));
3172 return true;
3173 }
3174
3175 /* If there is a static chain argument, this should not be an indirect
3176 call, and the decl should have DECL_STATIC_CHAIN set. */
3177 if (gimple_call_chain (stmt))
3178 {
3179 if (!gimple_call_fndecl (stmt))
3180 {
3181 error ("static chain in indirect gimple call");
3182 return true;
3183 }
3184 fn = TREE_OPERAND (fn, 0);
3185
3186 if (!DECL_STATIC_CHAIN (fn))
3187 {
3188 error ("static chain with function that doesn%'t use one");
3189 return true;
3190 }
3191 }
3192
3193 /* ??? The C frontend passes unpromoted arguments in case it
3194 didn't see a function declaration before the call. So for now
3195 leave the call arguments mostly unverified. Once we gimplify
3196 unit-at-a-time we have a chance to fix this. */
3197
3198 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3199 {
3200 tree arg = gimple_call_arg (stmt, i);
3201 if ((is_gimple_reg_type (TREE_TYPE (arg))
3202 && !is_gimple_val (arg))
3203 || (!is_gimple_reg_type (TREE_TYPE (arg))
3204 && !is_gimple_lvalue (arg)))
3205 {
3206 error ("invalid argument to gimple call");
3207 debug_generic_expr (arg);
3208 return true;
3209 }
3210 }
3211
3212 return false;
3213 }
3214
3215 /* Verifies the gimple comparison with the result type TYPE and
3216 the operands OP0 and OP1. */
3217
3218 static bool
3219 verify_gimple_comparison (tree type, tree op0, tree op1)
3220 {
3221 tree op0_type = TREE_TYPE (op0);
3222 tree op1_type = TREE_TYPE (op1);
3223
3224 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3225 {
3226 error ("invalid operands in gimple comparison");
3227 return true;
3228 }
3229
3230 /* For comparisons we do not have the operations type as the
3231 effective type the comparison is carried out in. Instead
3232 we require that either the first operand is trivially
3233 convertible into the second, or the other way around.
3234 Because we special-case pointers to void we allow
3235 comparisons of pointers with the same mode as well. */
3236 if (!useless_type_conversion_p (op0_type, op1_type)
3237 && !useless_type_conversion_p (op1_type, op0_type)
3238 && (!POINTER_TYPE_P (op0_type)
3239 || !POINTER_TYPE_P (op1_type)
3240 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3241 {
3242 error ("mismatching comparison operand types");
3243 debug_generic_expr (op0_type);
3244 debug_generic_expr (op1_type);
3245 return true;
3246 }
3247
3248 /* The resulting type of a comparison may be an effective boolean type. */
3249 if (INTEGRAL_TYPE_P (type)
3250 && (TREE_CODE (type) == BOOLEAN_TYPE
3251 || TYPE_PRECISION (type) == 1))
3252 {
3253 if (TREE_CODE (op0_type) == VECTOR_TYPE
3254 || TREE_CODE (op1_type) == VECTOR_TYPE)
3255 {
3256 error ("vector comparison returning a boolean");
3257 debug_generic_expr (op0_type);
3258 debug_generic_expr (op1_type);
3259 return true;
3260 }
3261 }
3262 /* Or an integer vector type with the same size and element count
3263 as the comparison operand types. */
3264 else if (TREE_CODE (type) == VECTOR_TYPE
3265 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3266 {
3267 if (TREE_CODE (op0_type) != VECTOR_TYPE
3268 || TREE_CODE (op1_type) != VECTOR_TYPE)
3269 {
3270 error ("non-vector operands in vector comparison");
3271 debug_generic_expr (op0_type);
3272 debug_generic_expr (op1_type);
3273 return true;
3274 }
3275
3276 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3277 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3278 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3279 /* The result of a vector comparison is of signed
3280 integral type. */
3281 || TYPE_UNSIGNED (TREE_TYPE (type)))
3282 {
3283 error ("invalid vector comparison resulting type");
3284 debug_generic_expr (type);
3285 return true;
3286 }
3287 }
3288 else
3289 {
3290 error ("bogus comparison result type");
3291 debug_generic_expr (type);
3292 return true;
3293 }
3294
3295 return false;
3296 }
3297
3298 /* Verify a gimple assignment statement STMT with an unary rhs.
3299 Returns true if anything is wrong. */
3300
3301 static bool
3302 verify_gimple_assign_unary (gimple stmt)
3303 {
3304 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3305 tree lhs = gimple_assign_lhs (stmt);
3306 tree lhs_type = TREE_TYPE (lhs);
3307 tree rhs1 = gimple_assign_rhs1 (stmt);
3308 tree rhs1_type = TREE_TYPE (rhs1);
3309
3310 if (!is_gimple_reg (lhs))
3311 {
3312 error ("non-register as LHS of unary operation");
3313 return true;
3314 }
3315
3316 if (!is_gimple_val (rhs1))
3317 {
3318 error ("invalid operand in unary operation");
3319 return true;
3320 }
3321
3322 /* First handle conversions. */
3323 switch (rhs_code)
3324 {
3325 CASE_CONVERT:
3326 {
3327 /* Allow conversions from pointer type to integral type only if
3328 there is no sign or zero extension involved.
3329 For targets were the precision of ptrofftype doesn't match that
3330 of pointers we need to allow arbitrary conversions to ptrofftype. */
3331 if ((POINTER_TYPE_P (lhs_type)
3332 && INTEGRAL_TYPE_P (rhs1_type))
3333 || (POINTER_TYPE_P (rhs1_type)
3334 && INTEGRAL_TYPE_P (lhs_type)
3335 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3336 || ptrofftype_p (sizetype))))
3337 return false;
3338
3339 /* Allow conversion from integral to offset type and vice versa. */
3340 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3341 && INTEGRAL_TYPE_P (rhs1_type))
3342 || (INTEGRAL_TYPE_P (lhs_type)
3343 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3344 return false;
3345
3346 /* Otherwise assert we are converting between types of the
3347 same kind. */
3348 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3349 {
3350 error ("invalid types in nop conversion");
3351 debug_generic_expr (lhs_type);
3352 debug_generic_expr (rhs1_type);
3353 return true;
3354 }
3355
3356 return false;
3357 }
3358
3359 case ADDR_SPACE_CONVERT_EXPR:
3360 {
3361 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3362 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3363 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3364 {
3365 error ("invalid types in address space conversion");
3366 debug_generic_expr (lhs_type);
3367 debug_generic_expr (rhs1_type);
3368 return true;
3369 }
3370
3371 return false;
3372 }
3373
3374 case FIXED_CONVERT_EXPR:
3375 {
3376 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3377 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3378 {
3379 error ("invalid types in fixed-point conversion");
3380 debug_generic_expr (lhs_type);
3381 debug_generic_expr (rhs1_type);
3382 return true;
3383 }
3384
3385 return false;
3386 }
3387
3388 case FLOAT_EXPR:
3389 {
3390 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3391 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3392 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3393 {
3394 error ("invalid types in conversion to floating point");
3395 debug_generic_expr (lhs_type);
3396 debug_generic_expr (rhs1_type);
3397 return true;
3398 }
3399
3400 return false;
3401 }
3402
3403 case FIX_TRUNC_EXPR:
3404 {
3405 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3406 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3407 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3408 {
3409 error ("invalid types in conversion to integer");
3410 debug_generic_expr (lhs_type);
3411 debug_generic_expr (rhs1_type);
3412 return true;
3413 }
3414
3415 return false;
3416 }
3417
3418 case VEC_UNPACK_HI_EXPR:
3419 case VEC_UNPACK_LO_EXPR:
3420 case REDUC_MAX_EXPR:
3421 case REDUC_MIN_EXPR:
3422 case REDUC_PLUS_EXPR:
3423 case VEC_UNPACK_FLOAT_HI_EXPR:
3424 case VEC_UNPACK_FLOAT_LO_EXPR:
3425 /* FIXME. */
3426 return false;
3427
3428 case NEGATE_EXPR:
3429 case ABS_EXPR:
3430 case BIT_NOT_EXPR:
3431 case PAREN_EXPR:
3432 case NON_LVALUE_EXPR:
3433 case CONJ_EXPR:
3434 break;
3435
3436 default:
3437 gcc_unreachable ();
3438 }
3439
3440 /* For the remaining codes assert there is no conversion involved. */
3441 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3442 {
3443 error ("non-trivial conversion in unary operation");
3444 debug_generic_expr (lhs_type);
3445 debug_generic_expr (rhs1_type);
3446 return true;
3447 }
3448
3449 return false;
3450 }
3451
3452 /* Verify a gimple assignment statement STMT with a binary rhs.
3453 Returns true if anything is wrong. */
3454
3455 static bool
3456 verify_gimple_assign_binary (gimple stmt)
3457 {
3458 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3459 tree lhs = gimple_assign_lhs (stmt);
3460 tree lhs_type = TREE_TYPE (lhs);
3461 tree rhs1 = gimple_assign_rhs1 (stmt);
3462 tree rhs1_type = TREE_TYPE (rhs1);
3463 tree rhs2 = gimple_assign_rhs2 (stmt);
3464 tree rhs2_type = TREE_TYPE (rhs2);
3465
3466 if (!is_gimple_reg (lhs))
3467 {
3468 error ("non-register as LHS of binary operation");
3469 return true;
3470 }
3471
3472 if (!is_gimple_val (rhs1)
3473 || !is_gimple_val (rhs2))
3474 {
3475 error ("invalid operands in binary operation");
3476 return true;
3477 }
3478
3479 /* First handle operations that involve different types. */
3480 switch (rhs_code)
3481 {
3482 case COMPLEX_EXPR:
3483 {
3484 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3485 || !(INTEGRAL_TYPE_P (rhs1_type)
3486 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3487 || !(INTEGRAL_TYPE_P (rhs2_type)
3488 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3489 {
3490 error ("type mismatch in complex expression");
3491 debug_generic_expr (lhs_type);
3492 debug_generic_expr (rhs1_type);
3493 debug_generic_expr (rhs2_type);
3494 return true;
3495 }
3496
3497 return false;
3498 }
3499
3500 case LSHIFT_EXPR:
3501 case RSHIFT_EXPR:
3502 case LROTATE_EXPR:
3503 case RROTATE_EXPR:
3504 {
3505 /* Shifts and rotates are ok on integral types, fixed point
3506 types and integer vector types. */
3507 if ((!INTEGRAL_TYPE_P (rhs1_type)
3508 && !FIXED_POINT_TYPE_P (rhs1_type)
3509 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3510 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3511 || (!INTEGRAL_TYPE_P (rhs2_type)
3512 /* Vector shifts of vectors are also ok. */
3513 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3514 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3515 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3516 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3517 || !useless_type_conversion_p (lhs_type, rhs1_type))
3518 {
3519 error ("type mismatch in shift expression");
3520 debug_generic_expr (lhs_type);
3521 debug_generic_expr (rhs1_type);
3522 debug_generic_expr (rhs2_type);
3523 return true;
3524 }
3525
3526 return false;
3527 }
3528
3529 case VEC_LSHIFT_EXPR:
3530 case VEC_RSHIFT_EXPR:
3531 {
3532 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3533 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3534 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3535 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3536 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3537 || (!INTEGRAL_TYPE_P (rhs2_type)
3538 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3539 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3540 || !useless_type_conversion_p (lhs_type, rhs1_type))
3541 {
3542 error ("type mismatch in vector shift expression");
3543 debug_generic_expr (lhs_type);
3544 debug_generic_expr (rhs1_type);
3545 debug_generic_expr (rhs2_type);
3546 return true;
3547 }
3548 /* For shifting a vector of non-integral components we
3549 only allow shifting by a constant multiple of the element size. */
3550 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3551 && (TREE_CODE (rhs2) != INTEGER_CST
3552 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3553 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3554 {
3555 error ("non-element sized vector shift of floating point vector");
3556 return true;
3557 }
3558
3559 return false;
3560 }
3561
3562 case WIDEN_LSHIFT_EXPR:
3563 {
3564 if (!INTEGRAL_TYPE_P (lhs_type)
3565 || !INTEGRAL_TYPE_P (rhs1_type)
3566 || TREE_CODE (rhs2) != INTEGER_CST
3567 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3568 {
3569 error ("type mismatch in widening vector shift expression");
3570 debug_generic_expr (lhs_type);
3571 debug_generic_expr (rhs1_type);
3572 debug_generic_expr (rhs2_type);
3573 return true;
3574 }
3575
3576 return false;
3577 }
3578
3579 case VEC_WIDEN_LSHIFT_HI_EXPR:
3580 case VEC_WIDEN_LSHIFT_LO_EXPR:
3581 {
3582 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3583 || TREE_CODE (lhs_type) != VECTOR_TYPE
3584 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3585 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3586 || TREE_CODE (rhs2) != INTEGER_CST
3587 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3588 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3589 {
3590 error ("type mismatch in widening vector shift expression");
3591 debug_generic_expr (lhs_type);
3592 debug_generic_expr (rhs1_type);
3593 debug_generic_expr (rhs2_type);
3594 return true;
3595 }
3596
3597 return false;
3598 }
3599
3600 case PLUS_EXPR:
3601 case MINUS_EXPR:
3602 {
3603 tree lhs_etype = lhs_type;
3604 tree rhs1_etype = rhs1_type;
3605 tree rhs2_etype = rhs2_type;
3606 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3607 {
3608 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3609 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3610 {
3611 error ("invalid non-vector operands to vector valued plus");
3612 return true;
3613 }
3614 lhs_etype = TREE_TYPE (lhs_type);
3615 rhs1_etype = TREE_TYPE (rhs1_type);
3616 rhs2_etype = TREE_TYPE (rhs2_type);
3617 }
3618 if (POINTER_TYPE_P (lhs_etype)
3619 || POINTER_TYPE_P (rhs1_etype)
3620 || POINTER_TYPE_P (rhs2_etype))
3621 {
3622 error ("invalid (pointer) operands to plus/minus");
3623 return true;
3624 }
3625
3626 /* Continue with generic binary expression handling. */
3627 break;
3628 }
3629
3630 case POINTER_PLUS_EXPR:
3631 {
3632 if (!POINTER_TYPE_P (rhs1_type)
3633 || !useless_type_conversion_p (lhs_type, rhs1_type)
3634 || !ptrofftype_p (rhs2_type))
3635 {
3636 error ("type mismatch in pointer plus expression");
3637 debug_generic_stmt (lhs_type);
3638 debug_generic_stmt (rhs1_type);
3639 debug_generic_stmt (rhs2_type);
3640 return true;
3641 }
3642
3643 return false;
3644 }
3645
3646 case TRUTH_ANDIF_EXPR:
3647 case TRUTH_ORIF_EXPR:
3648 case TRUTH_AND_EXPR:
3649 case TRUTH_OR_EXPR:
3650 case TRUTH_XOR_EXPR:
3651
3652 gcc_unreachable ();
3653
3654 case LT_EXPR:
3655 case LE_EXPR:
3656 case GT_EXPR:
3657 case GE_EXPR:
3658 case EQ_EXPR:
3659 case NE_EXPR:
3660 case UNORDERED_EXPR:
3661 case ORDERED_EXPR:
3662 case UNLT_EXPR:
3663 case UNLE_EXPR:
3664 case UNGT_EXPR:
3665 case UNGE_EXPR:
3666 case UNEQ_EXPR:
3667 case LTGT_EXPR:
3668 /* Comparisons are also binary, but the result type is not
3669 connected to the operand types. */
3670 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3671
3672 case WIDEN_MULT_EXPR:
3673 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3674 return true;
3675 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3676 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3677
3678 case WIDEN_SUM_EXPR:
3679 case VEC_WIDEN_MULT_HI_EXPR:
3680 case VEC_WIDEN_MULT_LO_EXPR:
3681 case VEC_WIDEN_MULT_EVEN_EXPR:
3682 case VEC_WIDEN_MULT_ODD_EXPR:
3683 case VEC_PACK_TRUNC_EXPR:
3684 case VEC_PACK_SAT_EXPR:
3685 case VEC_PACK_FIX_TRUNC_EXPR:
3686 /* FIXME. */
3687 return false;
3688
3689 case MULT_EXPR:
3690 case MULT_HIGHPART_EXPR:
3691 case TRUNC_DIV_EXPR:
3692 case CEIL_DIV_EXPR:
3693 case FLOOR_DIV_EXPR:
3694 case ROUND_DIV_EXPR:
3695 case TRUNC_MOD_EXPR:
3696 case CEIL_MOD_EXPR:
3697 case FLOOR_MOD_EXPR:
3698 case ROUND_MOD_EXPR:
3699 case RDIV_EXPR:
3700 case EXACT_DIV_EXPR:
3701 case MIN_EXPR:
3702 case MAX_EXPR:
3703 case BIT_IOR_EXPR:
3704 case BIT_XOR_EXPR:
3705 case BIT_AND_EXPR:
3706 /* Continue with generic binary expression handling. */
3707 break;
3708
3709 default:
3710 gcc_unreachable ();
3711 }
3712
3713 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3714 || !useless_type_conversion_p (lhs_type, rhs2_type))
3715 {
3716 error ("type mismatch in binary expression");
3717 debug_generic_stmt (lhs_type);
3718 debug_generic_stmt (rhs1_type);
3719 debug_generic_stmt (rhs2_type);
3720 return true;
3721 }
3722
3723 return false;
3724 }
3725
3726 /* Verify a gimple assignment statement STMT with a ternary rhs.
3727 Returns true if anything is wrong. */
3728
3729 static bool
3730 verify_gimple_assign_ternary (gimple stmt)
3731 {
3732 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3733 tree lhs = gimple_assign_lhs (stmt);
3734 tree lhs_type = TREE_TYPE (lhs);
3735 tree rhs1 = gimple_assign_rhs1 (stmt);
3736 tree rhs1_type = TREE_TYPE (rhs1);
3737 tree rhs2 = gimple_assign_rhs2 (stmt);
3738 tree rhs2_type = TREE_TYPE (rhs2);
3739 tree rhs3 = gimple_assign_rhs3 (stmt);
3740 tree rhs3_type = TREE_TYPE (rhs3);
3741
3742 if (!is_gimple_reg (lhs))
3743 {
3744 error ("non-register as LHS of ternary operation");
3745 return true;
3746 }
3747
3748 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3749 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3750 || !is_gimple_val (rhs2)
3751 || !is_gimple_val (rhs3))
3752 {
3753 error ("invalid operands in ternary operation");
3754 return true;
3755 }
3756
3757 /* First handle operations that involve different types. */
3758 switch (rhs_code)
3759 {
3760 case WIDEN_MULT_PLUS_EXPR:
3761 case WIDEN_MULT_MINUS_EXPR:
3762 if ((!INTEGRAL_TYPE_P (rhs1_type)
3763 && !FIXED_POINT_TYPE_P (rhs1_type))
3764 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3765 || !useless_type_conversion_p (lhs_type, rhs3_type)
3766 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3767 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3768 {
3769 error ("type mismatch in widening multiply-accumulate expression");
3770 debug_generic_expr (lhs_type);
3771 debug_generic_expr (rhs1_type);
3772 debug_generic_expr (rhs2_type);
3773 debug_generic_expr (rhs3_type);
3774 return true;
3775 }
3776 break;
3777
3778 case FMA_EXPR:
3779 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3780 || !useless_type_conversion_p (lhs_type, rhs2_type)
3781 || !useless_type_conversion_p (lhs_type, rhs3_type))
3782 {
3783 error ("type mismatch in fused multiply-add expression");
3784 debug_generic_expr (lhs_type);
3785 debug_generic_expr (rhs1_type);
3786 debug_generic_expr (rhs2_type);
3787 debug_generic_expr (rhs3_type);
3788 return true;
3789 }
3790 break;
3791
3792 case COND_EXPR:
3793 case VEC_COND_EXPR:
3794 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3795 || !useless_type_conversion_p (lhs_type, rhs3_type))
3796 {
3797 error ("type mismatch in conditional expression");
3798 debug_generic_expr (lhs_type);
3799 debug_generic_expr (rhs2_type);
3800 debug_generic_expr (rhs3_type);
3801 return true;
3802 }
3803 break;
3804
3805 case VEC_PERM_EXPR:
3806 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3807 || !useless_type_conversion_p (lhs_type, rhs2_type))
3808 {
3809 error ("type mismatch in vector permute expression");
3810 debug_generic_expr (lhs_type);
3811 debug_generic_expr (rhs1_type);
3812 debug_generic_expr (rhs2_type);
3813 debug_generic_expr (rhs3_type);
3814 return true;
3815 }
3816
3817 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3818 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3819 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3820 {
3821 error ("vector types expected in vector permute expression");
3822 debug_generic_expr (lhs_type);
3823 debug_generic_expr (rhs1_type);
3824 debug_generic_expr (rhs2_type);
3825 debug_generic_expr (rhs3_type);
3826 return true;
3827 }
3828
3829 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3830 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3831 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3832 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3833 != TYPE_VECTOR_SUBPARTS (lhs_type))
3834 {
3835 error ("vectors with different element number found "
3836 "in vector permute expression");
3837 debug_generic_expr (lhs_type);
3838 debug_generic_expr (rhs1_type);
3839 debug_generic_expr (rhs2_type);
3840 debug_generic_expr (rhs3_type);
3841 return true;
3842 }
3843
3844 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3845 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3846 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3847 {
3848 error ("invalid mask type in vector permute expression");
3849 debug_generic_expr (lhs_type);
3850 debug_generic_expr (rhs1_type);
3851 debug_generic_expr (rhs2_type);
3852 debug_generic_expr (rhs3_type);
3853 return true;
3854 }
3855
3856 return false;
3857
3858 case DOT_PROD_EXPR:
3859 case REALIGN_LOAD_EXPR:
3860 /* FIXME. */
3861 return false;
3862
3863 default:
3864 gcc_unreachable ();
3865 }
3866 return false;
3867 }
3868
3869 /* Verify a gimple assignment statement STMT with a single rhs.
3870 Returns true if anything is wrong. */
3871
3872 static bool
3873 verify_gimple_assign_single (gimple stmt)
3874 {
3875 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3876 tree lhs = gimple_assign_lhs (stmt);
3877 tree lhs_type = TREE_TYPE (lhs);
3878 tree rhs1 = gimple_assign_rhs1 (stmt);
3879 tree rhs1_type = TREE_TYPE (rhs1);
3880 bool res = false;
3881
3882 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3883 {
3884 error ("non-trivial conversion at assignment");
3885 debug_generic_expr (lhs_type);
3886 debug_generic_expr (rhs1_type);
3887 return true;
3888 }
3889
3890 if (gimple_clobber_p (stmt)
3891 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3892 {
3893 error ("non-decl/MEM_REF LHS in clobber statement");
3894 debug_generic_expr (lhs);
3895 return true;
3896 }
3897
3898 if (handled_component_p (lhs))
3899 res |= verify_types_in_gimple_reference (lhs, true);
3900
3901 /* Special codes we cannot handle via their class. */
3902 switch (rhs_code)
3903 {
3904 case ADDR_EXPR:
3905 {
3906 tree op = TREE_OPERAND (rhs1, 0);
3907 if (!is_gimple_addressable (op))
3908 {
3909 error ("invalid operand in unary expression");
3910 return true;
3911 }
3912
3913 /* Technically there is no longer a need for matching types, but
3914 gimple hygiene asks for this check. In LTO we can end up
3915 combining incompatible units and thus end up with addresses
3916 of globals that change their type to a common one. */
3917 if (!in_lto_p
3918 && !types_compatible_p (TREE_TYPE (op),
3919 TREE_TYPE (TREE_TYPE (rhs1)))
3920 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3921 TREE_TYPE (op)))
3922 {
3923 error ("type mismatch in address expression");
3924 debug_generic_stmt (TREE_TYPE (rhs1));
3925 debug_generic_stmt (TREE_TYPE (op));
3926 return true;
3927 }
3928
3929 return verify_types_in_gimple_reference (op, true);
3930 }
3931
3932 /* tcc_reference */
3933 case INDIRECT_REF:
3934 error ("INDIRECT_REF in gimple IL");
3935 return true;
3936
3937 case COMPONENT_REF:
3938 case BIT_FIELD_REF:
3939 case ARRAY_REF:
3940 case ARRAY_RANGE_REF:
3941 case VIEW_CONVERT_EXPR:
3942 case REALPART_EXPR:
3943 case IMAGPART_EXPR:
3944 case TARGET_MEM_REF:
3945 case MEM_REF:
3946 if (!is_gimple_reg (lhs)
3947 && is_gimple_reg_type (TREE_TYPE (lhs)))
3948 {
3949 error ("invalid rhs for gimple memory store");
3950 debug_generic_stmt (lhs);
3951 debug_generic_stmt (rhs1);
3952 return true;
3953 }
3954 return res || verify_types_in_gimple_reference (rhs1, false);
3955
3956 /* tcc_constant */
3957 case SSA_NAME:
3958 case INTEGER_CST:
3959 case REAL_CST:
3960 case FIXED_CST:
3961 case COMPLEX_CST:
3962 case VECTOR_CST:
3963 case STRING_CST:
3964 return res;
3965
3966 /* tcc_declaration */
3967 case CONST_DECL:
3968 return res;
3969 case VAR_DECL:
3970 case PARM_DECL:
3971 if (!is_gimple_reg (lhs)
3972 && !is_gimple_reg (rhs1)
3973 && is_gimple_reg_type (TREE_TYPE (lhs)))
3974 {
3975 error ("invalid rhs for gimple memory store");
3976 debug_generic_stmt (lhs);
3977 debug_generic_stmt (rhs1);
3978 return true;
3979 }
3980 return res;
3981
3982 case CONSTRUCTOR:
3983 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3984 {
3985 unsigned int i;
3986 tree elt_i, elt_v, elt_t = NULL_TREE;
3987
3988 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3989 return res;
3990 /* For vector CONSTRUCTORs we require that either it is empty
3991 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3992 (then the element count must be correct to cover the whole
3993 outer vector and index must be NULL on all elements, or it is
3994 a CONSTRUCTOR of scalar elements, where we as an exception allow
3995 smaller number of elements (assuming zero filling) and
3996 consecutive indexes as compared to NULL indexes (such
3997 CONSTRUCTORs can appear in the IL from FEs). */
3998 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3999 {
4000 if (elt_t == NULL_TREE)
4001 {
4002 elt_t = TREE_TYPE (elt_v);
4003 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4004 {
4005 tree elt_t = TREE_TYPE (elt_v);
4006 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4007 TREE_TYPE (elt_t)))
4008 {
4009 error ("incorrect type of vector CONSTRUCTOR"
4010 " elements");
4011 debug_generic_stmt (rhs1);
4012 return true;
4013 }
4014 else if (CONSTRUCTOR_NELTS (rhs1)
4015 * TYPE_VECTOR_SUBPARTS (elt_t)
4016 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4017 {
4018 error ("incorrect number of vector CONSTRUCTOR"
4019 " elements");
4020 debug_generic_stmt (rhs1);
4021 return true;
4022 }
4023 }
4024 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4025 elt_t))
4026 {
4027 error ("incorrect type of vector CONSTRUCTOR elements");
4028 debug_generic_stmt (rhs1);
4029 return true;
4030 }
4031 else if (CONSTRUCTOR_NELTS (rhs1)
4032 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4033 {
4034 error ("incorrect number of vector CONSTRUCTOR elements");
4035 debug_generic_stmt (rhs1);
4036 return true;
4037 }
4038 }
4039 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4040 {
4041 error ("incorrect type of vector CONSTRUCTOR elements");
4042 debug_generic_stmt (rhs1);
4043 return true;
4044 }
4045 if (elt_i != NULL_TREE
4046 && (TREE_CODE (elt_t) == VECTOR_TYPE
4047 || TREE_CODE (elt_i) != INTEGER_CST
4048 || compare_tree_int (elt_i, i) != 0))
4049 {
4050 error ("vector CONSTRUCTOR with non-NULL element index");
4051 debug_generic_stmt (rhs1);
4052 return true;
4053 }
4054 }
4055 }
4056 return res;
4057 case OBJ_TYPE_REF:
4058 case ASSERT_EXPR:
4059 case WITH_SIZE_EXPR:
4060 /* FIXME. */
4061 return res;
4062
4063 default:;
4064 }
4065
4066 return res;
4067 }
4068
4069 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4070 is a problem, otherwise false. */
4071
4072 static bool
4073 verify_gimple_assign (gimple stmt)
4074 {
4075 switch (gimple_assign_rhs_class (stmt))
4076 {
4077 case GIMPLE_SINGLE_RHS:
4078 return verify_gimple_assign_single (stmt);
4079
4080 case GIMPLE_UNARY_RHS:
4081 return verify_gimple_assign_unary (stmt);
4082
4083 case GIMPLE_BINARY_RHS:
4084 return verify_gimple_assign_binary (stmt);
4085
4086 case GIMPLE_TERNARY_RHS:
4087 return verify_gimple_assign_ternary (stmt);
4088
4089 default:
4090 gcc_unreachable ();
4091 }
4092 }
4093
4094 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4095 is a problem, otherwise false. */
4096
4097 static bool
4098 verify_gimple_return (gimple stmt)
4099 {
4100 tree op = gimple_return_retval (stmt);
4101 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4102
4103 /* We cannot test for present return values as we do not fix up missing
4104 return values from the original source. */
4105 if (op == NULL)
4106 return false;
4107
4108 if (!is_gimple_val (op)
4109 && TREE_CODE (op) != RESULT_DECL)
4110 {
4111 error ("invalid operand in return statement");
4112 debug_generic_stmt (op);
4113 return true;
4114 }
4115
4116 if ((TREE_CODE (op) == RESULT_DECL
4117 && DECL_BY_REFERENCE (op))
4118 || (TREE_CODE (op) == SSA_NAME
4119 && SSA_NAME_VAR (op)
4120 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4121 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4122 op = TREE_TYPE (op);
4123
4124 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4125 {
4126 error ("invalid conversion in return statement");
4127 debug_generic_stmt (restype);
4128 debug_generic_stmt (TREE_TYPE (op));
4129 return true;
4130 }
4131
4132 return false;
4133 }
4134
4135
4136 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4137 is a problem, otherwise false. */
4138
4139 static bool
4140 verify_gimple_goto (gimple stmt)
4141 {
4142 tree dest = gimple_goto_dest (stmt);
4143
4144 /* ??? We have two canonical forms of direct goto destinations, a
4145 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4146 if (TREE_CODE (dest) != LABEL_DECL
4147 && (!is_gimple_val (dest)
4148 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4149 {
4150 error ("goto destination is neither a label nor a pointer");
4151 return true;
4152 }
4153
4154 return false;
4155 }
4156
4157 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4158 is a problem, otherwise false. */
4159
4160 static bool
4161 verify_gimple_switch (gimple stmt)
4162 {
4163 unsigned int i, n;
4164 tree elt, prev_upper_bound = NULL_TREE;
4165 tree index_type, elt_type = NULL_TREE;
4166
4167 if (!is_gimple_val (gimple_switch_index (stmt)))
4168 {
4169 error ("invalid operand to switch statement");
4170 debug_generic_stmt (gimple_switch_index (stmt));
4171 return true;
4172 }
4173
4174 index_type = TREE_TYPE (gimple_switch_index (stmt));
4175 if (! INTEGRAL_TYPE_P (index_type))
4176 {
4177 error ("non-integral type switch statement");
4178 debug_generic_expr (index_type);
4179 return true;
4180 }
4181
4182 elt = gimple_switch_label (stmt, 0);
4183 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4184 {
4185 error ("invalid default case label in switch statement");
4186 debug_generic_expr (elt);
4187 return true;
4188 }
4189
4190 n = gimple_switch_num_labels (stmt);
4191 for (i = 1; i < n; i++)
4192 {
4193 elt = gimple_switch_label (stmt, i);
4194
4195 if (! CASE_LOW (elt))
4196 {
4197 error ("invalid case label in switch statement");
4198 debug_generic_expr (elt);
4199 return true;
4200 }
4201 if (CASE_HIGH (elt)
4202 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4203 {
4204 error ("invalid case range in switch statement");
4205 debug_generic_expr (elt);
4206 return true;
4207 }
4208
4209 if (elt_type)
4210 {
4211 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4212 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4213 {
4214 error ("type mismatch for case label in switch statement");
4215 debug_generic_expr (elt);
4216 return true;
4217 }
4218 }
4219 else
4220 {
4221 elt_type = TREE_TYPE (CASE_LOW (elt));
4222 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4223 {
4224 error ("type precision mismatch in switch statement");
4225 return true;
4226 }
4227 }
4228
4229 if (prev_upper_bound)
4230 {
4231 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4232 {
4233 error ("case labels not sorted in switch statement");
4234 return true;
4235 }
4236 }
4237
4238 prev_upper_bound = CASE_HIGH (elt);
4239 if (! prev_upper_bound)
4240 prev_upper_bound = CASE_LOW (elt);
4241 }
4242
4243 return false;
4244 }
4245
4246 /* Verify a gimple debug statement STMT.
4247 Returns true if anything is wrong. */
4248
4249 static bool
4250 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4251 {
4252 /* There isn't much that could be wrong in a gimple debug stmt. A
4253 gimple debug bind stmt, for example, maps a tree, that's usually
4254 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4255 component or member of an aggregate type, to another tree, that
4256 can be an arbitrary expression. These stmts expand into debug
4257 insns, and are converted to debug notes by var-tracking.c. */
4258 return false;
4259 }
4260
4261 /* Verify a gimple label statement STMT.
4262 Returns true if anything is wrong. */
4263
4264 static bool
4265 verify_gimple_label (gimple stmt)
4266 {
4267 tree decl = gimple_label_label (stmt);
4268 int uid;
4269 bool err = false;
4270
4271 if (TREE_CODE (decl) != LABEL_DECL)
4272 return true;
4273 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4274 && DECL_CONTEXT (decl) != current_function_decl)
4275 {
4276 error ("label's context is not the current function decl");
4277 err |= true;
4278 }
4279
4280 uid = LABEL_DECL_UID (decl);
4281 if (cfun->cfg
4282 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4283 {
4284 error ("incorrect entry in label_to_block_map");
4285 err |= true;
4286 }
4287
4288 uid = EH_LANDING_PAD_NR (decl);
4289 if (uid)
4290 {
4291 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4292 if (decl != lp->post_landing_pad)
4293 {
4294 error ("incorrect setting of landing pad number");
4295 err |= true;
4296 }
4297 }
4298
4299 return err;
4300 }
4301
4302 /* Verify the GIMPLE statement STMT. Returns true if there is an
4303 error, otherwise false. */
4304
4305 static bool
4306 verify_gimple_stmt (gimple stmt)
4307 {
4308 switch (gimple_code (stmt))
4309 {
4310 case GIMPLE_ASSIGN:
4311 return verify_gimple_assign (stmt);
4312
4313 case GIMPLE_LABEL:
4314 return verify_gimple_label (stmt);
4315
4316 case GIMPLE_CALL:
4317 return verify_gimple_call (stmt);
4318
4319 case GIMPLE_COND:
4320 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4321 {
4322 error ("invalid comparison code in gimple cond");
4323 return true;
4324 }
4325 if (!(!gimple_cond_true_label (stmt)
4326 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4327 || !(!gimple_cond_false_label (stmt)
4328 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4329 {
4330 error ("invalid labels in gimple cond");
4331 return true;
4332 }
4333
4334 return verify_gimple_comparison (boolean_type_node,
4335 gimple_cond_lhs (stmt),
4336 gimple_cond_rhs (stmt));
4337
4338 case GIMPLE_GOTO:
4339 return verify_gimple_goto (stmt);
4340
4341 case GIMPLE_SWITCH:
4342 return verify_gimple_switch (stmt);
4343
4344 case GIMPLE_RETURN:
4345 return verify_gimple_return (stmt);
4346
4347 case GIMPLE_ASM:
4348 return false;
4349
4350 case GIMPLE_TRANSACTION:
4351 return verify_gimple_transaction (stmt);
4352
4353 /* Tuples that do not have tree operands. */
4354 case GIMPLE_NOP:
4355 case GIMPLE_PREDICT:
4356 case GIMPLE_RESX:
4357 case GIMPLE_EH_DISPATCH:
4358 case GIMPLE_EH_MUST_NOT_THROW:
4359 return false;
4360
4361 CASE_GIMPLE_OMP:
4362 /* OpenMP directives are validated by the FE and never operated
4363 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4364 non-gimple expressions when the main index variable has had
4365 its address taken. This does not affect the loop itself
4366 because the header of an GIMPLE_OMP_FOR is merely used to determine
4367 how to setup the parallel iteration. */
4368 return false;
4369
4370 case GIMPLE_DEBUG:
4371 return verify_gimple_debug (stmt);
4372
4373 default:
4374 gcc_unreachable ();
4375 }
4376 }
4377
4378 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4379 and false otherwise. */
4380
4381 static bool
4382 verify_gimple_phi (gimple phi)
4383 {
4384 bool err = false;
4385 unsigned i;
4386 tree phi_result = gimple_phi_result (phi);
4387 bool virtual_p;
4388
4389 if (!phi_result)
4390 {
4391 error ("invalid PHI result");
4392 return true;
4393 }
4394
4395 virtual_p = virtual_operand_p (phi_result);
4396 if (TREE_CODE (phi_result) != SSA_NAME
4397 || (virtual_p
4398 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4399 {
4400 error ("invalid PHI result");
4401 err = true;
4402 }
4403
4404 for (i = 0; i < gimple_phi_num_args (phi); i++)
4405 {
4406 tree t = gimple_phi_arg_def (phi, i);
4407
4408 if (!t)
4409 {
4410 error ("missing PHI def");
4411 err |= true;
4412 continue;
4413 }
4414 /* Addressable variables do have SSA_NAMEs but they
4415 are not considered gimple values. */
4416 else if ((TREE_CODE (t) == SSA_NAME
4417 && virtual_p != virtual_operand_p (t))
4418 || (virtual_p
4419 && (TREE_CODE (t) != SSA_NAME
4420 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4421 || (!virtual_p
4422 && !is_gimple_val (t)))
4423 {
4424 error ("invalid PHI argument");
4425 debug_generic_expr (t);
4426 err |= true;
4427 }
4428 #ifdef ENABLE_TYPES_CHECKING
4429 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4430 {
4431 error ("incompatible types in PHI argument %u", i);
4432 debug_generic_stmt (TREE_TYPE (phi_result));
4433 debug_generic_stmt (TREE_TYPE (t));
4434 err |= true;
4435 }
4436 #endif
4437 }
4438
4439 return err;
4440 }
4441
4442 /* Verify the GIMPLE statements inside the sequence STMTS. */
4443
4444 static bool
4445 verify_gimple_in_seq_2 (gimple_seq stmts)
4446 {
4447 gimple_stmt_iterator ittr;
4448 bool err = false;
4449
4450 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4451 {
4452 gimple stmt = gsi_stmt (ittr);
4453
4454 switch (gimple_code (stmt))
4455 {
4456 case GIMPLE_BIND:
4457 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4458 break;
4459
4460 case GIMPLE_TRY:
4461 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4462 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4463 break;
4464
4465 case GIMPLE_EH_FILTER:
4466 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4467 break;
4468
4469 case GIMPLE_EH_ELSE:
4470 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4471 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4472 break;
4473
4474 case GIMPLE_CATCH:
4475 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4476 break;
4477
4478 case GIMPLE_TRANSACTION:
4479 err |= verify_gimple_transaction (stmt);
4480 break;
4481
4482 default:
4483 {
4484 bool err2 = verify_gimple_stmt (stmt);
4485 if (err2)
4486 debug_gimple_stmt (stmt);
4487 err |= err2;
4488 }
4489 }
4490 }
4491
4492 return err;
4493 }
4494
4495 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4496 is a problem, otherwise false. */
4497
4498 static bool
4499 verify_gimple_transaction (gimple stmt)
4500 {
4501 tree lab = gimple_transaction_label (stmt);
4502 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4503 return true;
4504 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4505 }
4506
4507
4508 /* Verify the GIMPLE statements inside the statement list STMTS. */
4509
4510 DEBUG_FUNCTION void
4511 verify_gimple_in_seq (gimple_seq stmts)
4512 {
4513 timevar_push (TV_TREE_STMT_VERIFY);
4514 if (verify_gimple_in_seq_2 (stmts))
4515 internal_error ("verify_gimple failed");
4516 timevar_pop (TV_TREE_STMT_VERIFY);
4517 }
4518
4519 /* Return true when the T can be shared. */
4520
4521 static bool
4522 tree_node_can_be_shared (tree t)
4523 {
4524 if (IS_TYPE_OR_DECL_P (t)
4525 || is_gimple_min_invariant (t)
4526 || TREE_CODE (t) == SSA_NAME
4527 || t == error_mark_node
4528 || TREE_CODE (t) == IDENTIFIER_NODE)
4529 return true;
4530
4531 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4532 return true;
4533
4534 if (DECL_P (t))
4535 return true;
4536
4537 return false;
4538 }
4539
4540 /* Called via walk_tree. Verify tree sharing. */
4541
4542 static tree
4543 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4544 {
4545 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4546
4547 if (tree_node_can_be_shared (*tp))
4548 {
4549 *walk_subtrees = false;
4550 return NULL;
4551 }
4552
4553 if (pointer_set_insert (visited, *tp))
4554 return *tp;
4555
4556 return NULL;
4557 }
4558
4559 /* Called via walk_gimple_stmt. Verify tree sharing. */
4560
4561 static tree
4562 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4563 {
4564 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4565 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4566 }
4567
4568 static bool eh_error_found;
4569 static int
4570 verify_eh_throw_stmt_node (void **slot, void *data)
4571 {
4572 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4573 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4574
4575 if (!pointer_set_contains (visited, node->stmt))
4576 {
4577 error ("dead STMT in EH table");
4578 debug_gimple_stmt (node->stmt);
4579 eh_error_found = true;
4580 }
4581 return 1;
4582 }
4583
4584 /* Verify if the location LOCs block is in BLOCKS. */
4585
4586 static bool
4587 verify_location (pointer_set_t *blocks, location_t loc)
4588 {
4589 tree block = LOCATION_BLOCK (loc);
4590 if (block != NULL_TREE
4591 && !pointer_set_contains (blocks, block))
4592 {
4593 error ("location references block not in block tree");
4594 return true;
4595 }
4596 if (block != NULL_TREE)
4597 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4598 return false;
4599 }
4600
4601 /* Called via walk_tree. Verify that expressions have no blocks. */
4602
4603 static tree
4604 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4605 {
4606 if (!EXPR_P (*tp))
4607 {
4608 *walk_subtrees = false;
4609 return NULL;
4610 }
4611
4612 location_t loc = EXPR_LOCATION (*tp);
4613 if (LOCATION_BLOCK (loc) != NULL)
4614 return *tp;
4615
4616 return NULL;
4617 }
4618
4619 /* Called via walk_tree. Verify locations of expressions. */
4620
4621 static tree
4622 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4623 {
4624 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4625
4626 if (TREE_CODE (*tp) == VAR_DECL
4627 && DECL_HAS_DEBUG_EXPR_P (*tp))
4628 {
4629 tree t = DECL_DEBUG_EXPR (*tp);
4630 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4631 if (addr)
4632 return addr;
4633 }
4634 if ((TREE_CODE (*tp) == VAR_DECL
4635 || TREE_CODE (*tp) == PARM_DECL
4636 || TREE_CODE (*tp) == RESULT_DECL)
4637 && DECL_HAS_VALUE_EXPR_P (*tp))
4638 {
4639 tree t = DECL_VALUE_EXPR (*tp);
4640 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4641 if (addr)
4642 return addr;
4643 }
4644
4645 if (!EXPR_P (*tp))
4646 {
4647 *walk_subtrees = false;
4648 return NULL;
4649 }
4650
4651 location_t loc = EXPR_LOCATION (*tp);
4652 if (verify_location (blocks, loc))
4653 return *tp;
4654
4655 return NULL;
4656 }
4657
4658 /* Called via walk_gimple_op. Verify locations of expressions. */
4659
4660 static tree
4661 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4662 {
4663 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4664 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4665 }
4666
4667 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4668
4669 static void
4670 collect_subblocks (pointer_set_t *blocks, tree block)
4671 {
4672 tree t;
4673 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4674 {
4675 pointer_set_insert (blocks, t);
4676 collect_subblocks (blocks, t);
4677 }
4678 }
4679
4680 /* Verify the GIMPLE statements in the CFG of FN. */
4681
4682 DEBUG_FUNCTION void
4683 verify_gimple_in_cfg (struct function *fn)
4684 {
4685 basic_block bb;
4686 bool err = false;
4687 struct pointer_set_t *visited, *visited_stmts, *blocks;
4688
4689 timevar_push (TV_TREE_STMT_VERIFY);
4690 visited = pointer_set_create ();
4691 visited_stmts = pointer_set_create ();
4692
4693 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4694 blocks = pointer_set_create ();
4695 if (DECL_INITIAL (fn->decl))
4696 {
4697 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4698 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4699 }
4700
4701 FOR_EACH_BB_FN (bb, fn)
4702 {
4703 gimple_stmt_iterator gsi;
4704
4705 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4706 {
4707 gimple phi = gsi_stmt (gsi);
4708 bool err2 = false;
4709 unsigned i;
4710
4711 pointer_set_insert (visited_stmts, phi);
4712
4713 if (gimple_bb (phi) != bb)
4714 {
4715 error ("gimple_bb (phi) is set to a wrong basic block");
4716 err2 = true;
4717 }
4718
4719 err2 |= verify_gimple_phi (phi);
4720
4721 /* Only PHI arguments have locations. */
4722 if (gimple_location (phi) != UNKNOWN_LOCATION)
4723 {
4724 error ("PHI node with location");
4725 err2 = true;
4726 }
4727
4728 for (i = 0; i < gimple_phi_num_args (phi); i++)
4729 {
4730 tree arg = gimple_phi_arg_def (phi, i);
4731 tree addr = walk_tree (&arg, verify_node_sharing_1,
4732 visited, NULL);
4733 if (addr)
4734 {
4735 error ("incorrect sharing of tree nodes");
4736 debug_generic_expr (addr);
4737 err2 |= true;
4738 }
4739 location_t loc = gimple_phi_arg_location (phi, i);
4740 if (virtual_operand_p (gimple_phi_result (phi))
4741 && loc != UNKNOWN_LOCATION)
4742 {
4743 error ("virtual PHI with argument locations");
4744 err2 = true;
4745 }
4746 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4747 if (addr)
4748 {
4749 debug_generic_expr (addr);
4750 err2 = true;
4751 }
4752 err2 |= verify_location (blocks, loc);
4753 }
4754
4755 if (err2)
4756 debug_gimple_stmt (phi);
4757 err |= err2;
4758 }
4759
4760 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4761 {
4762 gimple stmt = gsi_stmt (gsi);
4763 bool err2 = false;
4764 struct walk_stmt_info wi;
4765 tree addr;
4766 int lp_nr;
4767
4768 pointer_set_insert (visited_stmts, stmt);
4769
4770 if (gimple_bb (stmt) != bb)
4771 {
4772 error ("gimple_bb (stmt) is set to a wrong basic block");
4773 err2 = true;
4774 }
4775
4776 err2 |= verify_gimple_stmt (stmt);
4777 err2 |= verify_location (blocks, gimple_location (stmt));
4778
4779 memset (&wi, 0, sizeof (wi));
4780 wi.info = (void *) visited;
4781 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4782 if (addr)
4783 {
4784 error ("incorrect sharing of tree nodes");
4785 debug_generic_expr (addr);
4786 err2 |= true;
4787 }
4788
4789 memset (&wi, 0, sizeof (wi));
4790 wi.info = (void *) blocks;
4791 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4792 if (addr)
4793 {
4794 debug_generic_expr (addr);
4795 err2 |= true;
4796 }
4797
4798 /* ??? Instead of not checking these stmts at all the walker
4799 should know its context via wi. */
4800 if (!is_gimple_debug (stmt)
4801 && !is_gimple_omp (stmt))
4802 {
4803 memset (&wi, 0, sizeof (wi));
4804 addr = walk_gimple_op (stmt, verify_expr, &wi);
4805 if (addr)
4806 {
4807 debug_generic_expr (addr);
4808 inform (gimple_location (stmt), "in statement");
4809 err2 |= true;
4810 }
4811 }
4812
4813 /* If the statement is marked as part of an EH region, then it is
4814 expected that the statement could throw. Verify that when we
4815 have optimizations that simplify statements such that we prove
4816 that they cannot throw, that we update other data structures
4817 to match. */
4818 lp_nr = lookup_stmt_eh_lp (stmt);
4819 if (lp_nr != 0)
4820 {
4821 if (!stmt_could_throw_p (stmt))
4822 {
4823 error ("statement marked for throw, but doesn%'t");
4824 err2 |= true;
4825 }
4826 else if (lp_nr > 0
4827 && !gsi_one_before_end_p (gsi)
4828 && stmt_can_throw_internal (stmt))
4829 {
4830 error ("statement marked for throw in middle of block");
4831 err2 |= true;
4832 }
4833 }
4834
4835 if (err2)
4836 debug_gimple_stmt (stmt);
4837 err |= err2;
4838 }
4839 }
4840
4841 eh_error_found = false;
4842 if (get_eh_throw_stmt_table (cfun))
4843 htab_traverse (get_eh_throw_stmt_table (cfun),
4844 verify_eh_throw_stmt_node,
4845 visited_stmts);
4846
4847 if (err || eh_error_found)
4848 internal_error ("verify_gimple failed");
4849
4850 pointer_set_destroy (visited);
4851 pointer_set_destroy (visited_stmts);
4852 pointer_set_destroy (blocks);
4853 verify_histograms ();
4854 timevar_pop (TV_TREE_STMT_VERIFY);
4855 }
4856
4857
4858 /* Verifies that the flow information is OK. */
4859
4860 static int
4861 gimple_verify_flow_info (void)
4862 {
4863 int err = 0;
4864 basic_block bb;
4865 gimple_stmt_iterator gsi;
4866 gimple stmt;
4867 edge e;
4868 edge_iterator ei;
4869
4870 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4871 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4872 {
4873 error ("ENTRY_BLOCK has IL associated with it");
4874 err = 1;
4875 }
4876
4877 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4878 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4879 {
4880 error ("EXIT_BLOCK has IL associated with it");
4881 err = 1;
4882 }
4883
4884 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4885 if (e->flags & EDGE_FALLTHRU)
4886 {
4887 error ("fallthru to exit from bb %d", e->src->index);
4888 err = 1;
4889 }
4890
4891 FOR_EACH_BB (bb)
4892 {
4893 bool found_ctrl_stmt = false;
4894
4895 stmt = NULL;
4896
4897 /* Skip labels on the start of basic block. */
4898 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4899 {
4900 tree label;
4901 gimple prev_stmt = stmt;
4902
4903 stmt = gsi_stmt (gsi);
4904
4905 if (gimple_code (stmt) != GIMPLE_LABEL)
4906 break;
4907
4908 label = gimple_label_label (stmt);
4909 if (prev_stmt && DECL_NONLOCAL (label))
4910 {
4911 error ("nonlocal label ");
4912 print_generic_expr (stderr, label, 0);
4913 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4914 bb->index);
4915 err = 1;
4916 }
4917
4918 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4919 {
4920 error ("EH landing pad label ");
4921 print_generic_expr (stderr, label, 0);
4922 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4923 bb->index);
4924 err = 1;
4925 }
4926
4927 if (label_to_block (label) != bb)
4928 {
4929 error ("label ");
4930 print_generic_expr (stderr, label, 0);
4931 fprintf (stderr, " to block does not match in bb %d",
4932 bb->index);
4933 err = 1;
4934 }
4935
4936 if (decl_function_context (label) != current_function_decl)
4937 {
4938 error ("label ");
4939 print_generic_expr (stderr, label, 0);
4940 fprintf (stderr, " has incorrect context in bb %d",
4941 bb->index);
4942 err = 1;
4943 }
4944 }
4945
4946 /* Verify that body of basic block BB is free of control flow. */
4947 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4948 {
4949 gimple stmt = gsi_stmt (gsi);
4950
4951 if (found_ctrl_stmt)
4952 {
4953 error ("control flow in the middle of basic block %d",
4954 bb->index);
4955 err = 1;
4956 }
4957
4958 if (stmt_ends_bb_p (stmt))
4959 found_ctrl_stmt = true;
4960
4961 if (gimple_code (stmt) == GIMPLE_LABEL)
4962 {
4963 error ("label ");
4964 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4965 fprintf (stderr, " in the middle of basic block %d", bb->index);
4966 err = 1;
4967 }
4968 }
4969
4970 gsi = gsi_last_bb (bb);
4971 if (gsi_end_p (gsi))
4972 continue;
4973
4974 stmt = gsi_stmt (gsi);
4975
4976 if (gimple_code (stmt) == GIMPLE_LABEL)
4977 continue;
4978
4979 err |= verify_eh_edges (stmt);
4980
4981 if (is_ctrl_stmt (stmt))
4982 {
4983 FOR_EACH_EDGE (e, ei, bb->succs)
4984 if (e->flags & EDGE_FALLTHRU)
4985 {
4986 error ("fallthru edge after a control statement in bb %d",
4987 bb->index);
4988 err = 1;
4989 }
4990 }
4991
4992 if (gimple_code (stmt) != GIMPLE_COND)
4993 {
4994 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4995 after anything else but if statement. */
4996 FOR_EACH_EDGE (e, ei, bb->succs)
4997 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4998 {
4999 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5000 bb->index);
5001 err = 1;
5002 }
5003 }
5004
5005 switch (gimple_code (stmt))
5006 {
5007 case GIMPLE_COND:
5008 {
5009 edge true_edge;
5010 edge false_edge;
5011
5012 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5013
5014 if (!true_edge
5015 || !false_edge
5016 || !(true_edge->flags & EDGE_TRUE_VALUE)
5017 || !(false_edge->flags & EDGE_FALSE_VALUE)
5018 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5019 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5020 || EDGE_COUNT (bb->succs) >= 3)
5021 {
5022 error ("wrong outgoing edge flags at end of bb %d",
5023 bb->index);
5024 err = 1;
5025 }
5026 }
5027 break;
5028
5029 case GIMPLE_GOTO:
5030 if (simple_goto_p (stmt))
5031 {
5032 error ("explicit goto at end of bb %d", bb->index);
5033 err = 1;
5034 }
5035 else
5036 {
5037 /* FIXME. We should double check that the labels in the
5038 destination blocks have their address taken. */
5039 FOR_EACH_EDGE (e, ei, bb->succs)
5040 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5041 | EDGE_FALSE_VALUE))
5042 || !(e->flags & EDGE_ABNORMAL))
5043 {
5044 error ("wrong outgoing edge flags at end of bb %d",
5045 bb->index);
5046 err = 1;
5047 }
5048 }
5049 break;
5050
5051 case GIMPLE_CALL:
5052 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5053 break;
5054 /* ... fallthru ... */
5055 case GIMPLE_RETURN:
5056 if (!single_succ_p (bb)
5057 || (single_succ_edge (bb)->flags
5058 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5059 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5060 {
5061 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5062 err = 1;
5063 }
5064 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5065 {
5066 error ("return edge does not point to exit in bb %d",
5067 bb->index);
5068 err = 1;
5069 }
5070 break;
5071
5072 case GIMPLE_SWITCH:
5073 {
5074 tree prev;
5075 edge e;
5076 size_t i, n;
5077
5078 n = gimple_switch_num_labels (stmt);
5079
5080 /* Mark all the destination basic blocks. */
5081 for (i = 0; i < n; ++i)
5082 {
5083 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5084 basic_block label_bb = label_to_block (lab);
5085 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5086 label_bb->aux = (void *)1;
5087 }
5088
5089 /* Verify that the case labels are sorted. */
5090 prev = gimple_switch_label (stmt, 0);
5091 for (i = 1; i < n; ++i)
5092 {
5093 tree c = gimple_switch_label (stmt, i);
5094 if (!CASE_LOW (c))
5095 {
5096 error ("found default case not at the start of "
5097 "case vector");
5098 err = 1;
5099 continue;
5100 }
5101 if (CASE_LOW (prev)
5102 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5103 {
5104 error ("case labels not sorted: ");
5105 print_generic_expr (stderr, prev, 0);
5106 fprintf (stderr," is greater than ");
5107 print_generic_expr (stderr, c, 0);
5108 fprintf (stderr," but comes before it.\n");
5109 err = 1;
5110 }
5111 prev = c;
5112 }
5113 /* VRP will remove the default case if it can prove it will
5114 never be executed. So do not verify there always exists
5115 a default case here. */
5116
5117 FOR_EACH_EDGE (e, ei, bb->succs)
5118 {
5119 if (!e->dest->aux)
5120 {
5121 error ("extra outgoing edge %d->%d",
5122 bb->index, e->dest->index);
5123 err = 1;
5124 }
5125
5126 e->dest->aux = (void *)2;
5127 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5128 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5129 {
5130 error ("wrong outgoing edge flags at end of bb %d",
5131 bb->index);
5132 err = 1;
5133 }
5134 }
5135
5136 /* Check that we have all of them. */
5137 for (i = 0; i < n; ++i)
5138 {
5139 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5140 basic_block label_bb = label_to_block (lab);
5141
5142 if (label_bb->aux != (void *)2)
5143 {
5144 error ("missing edge %i->%i", bb->index, label_bb->index);
5145 err = 1;
5146 }
5147 }
5148
5149 FOR_EACH_EDGE (e, ei, bb->succs)
5150 e->dest->aux = (void *)0;
5151 }
5152 break;
5153
5154 case GIMPLE_EH_DISPATCH:
5155 err |= verify_eh_dispatch_edge (stmt);
5156 break;
5157
5158 default:
5159 break;
5160 }
5161 }
5162
5163 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5164 verify_dominators (CDI_DOMINATORS);
5165
5166 return err;
5167 }
5168
5169
5170 /* Updates phi nodes after creating a forwarder block joined
5171 by edge FALLTHRU. */
5172
5173 static void
5174 gimple_make_forwarder_block (edge fallthru)
5175 {
5176 edge e;
5177 edge_iterator ei;
5178 basic_block dummy, bb;
5179 tree var;
5180 gimple_stmt_iterator gsi;
5181
5182 dummy = fallthru->src;
5183 bb = fallthru->dest;
5184
5185 if (single_pred_p (bb))
5186 return;
5187
5188 /* If we redirected a branch we must create new PHI nodes at the
5189 start of BB. */
5190 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5191 {
5192 gimple phi, new_phi;
5193
5194 phi = gsi_stmt (gsi);
5195 var = gimple_phi_result (phi);
5196 new_phi = create_phi_node (var, bb);
5197 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5198 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5199 UNKNOWN_LOCATION);
5200 }
5201
5202 /* Add the arguments we have stored on edges. */
5203 FOR_EACH_EDGE (e, ei, bb->preds)
5204 {
5205 if (e == fallthru)
5206 continue;
5207
5208 flush_pending_stmts (e);
5209 }
5210 }
5211
5212
5213 /* Return a non-special label in the head of basic block BLOCK.
5214 Create one if it doesn't exist. */
5215
5216 tree
5217 gimple_block_label (basic_block bb)
5218 {
5219 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5220 bool first = true;
5221 tree label;
5222 gimple stmt;
5223
5224 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5225 {
5226 stmt = gsi_stmt (i);
5227 if (gimple_code (stmt) != GIMPLE_LABEL)
5228 break;
5229 label = gimple_label_label (stmt);
5230 if (!DECL_NONLOCAL (label))
5231 {
5232 if (!first)
5233 gsi_move_before (&i, &s);
5234 return label;
5235 }
5236 }
5237
5238 label = create_artificial_label (UNKNOWN_LOCATION);
5239 stmt = gimple_build_label (label);
5240 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5241 return label;
5242 }
5243
5244
5245 /* Attempt to perform edge redirection by replacing a possibly complex
5246 jump instruction by a goto or by removing the jump completely.
5247 This can apply only if all edges now point to the same block. The
5248 parameters and return values are equivalent to
5249 redirect_edge_and_branch. */
5250
5251 static edge
5252 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5253 {
5254 basic_block src = e->src;
5255 gimple_stmt_iterator i;
5256 gimple stmt;
5257
5258 /* We can replace or remove a complex jump only when we have exactly
5259 two edges. */
5260 if (EDGE_COUNT (src->succs) != 2
5261 /* Verify that all targets will be TARGET. Specifically, the
5262 edge that is not E must also go to TARGET. */
5263 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5264 return NULL;
5265
5266 i = gsi_last_bb (src);
5267 if (gsi_end_p (i))
5268 return NULL;
5269
5270 stmt = gsi_stmt (i);
5271
5272 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5273 {
5274 gsi_remove (&i, true);
5275 e = ssa_redirect_edge (e, target);
5276 e->flags = EDGE_FALLTHRU;
5277 return e;
5278 }
5279
5280 return NULL;
5281 }
5282
5283
5284 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5285 edge representing the redirected branch. */
5286
5287 static edge
5288 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5289 {
5290 basic_block bb = e->src;
5291 gimple_stmt_iterator gsi;
5292 edge ret;
5293 gimple stmt;
5294
5295 if (e->flags & EDGE_ABNORMAL)
5296 return NULL;
5297
5298 if (e->dest == dest)
5299 return NULL;
5300
5301 if (e->flags & EDGE_EH)
5302 return redirect_eh_edge (e, dest);
5303
5304 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5305 {
5306 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5307 if (ret)
5308 return ret;
5309 }
5310
5311 gsi = gsi_last_bb (bb);
5312 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5313
5314 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5315 {
5316 case GIMPLE_COND:
5317 /* For COND_EXPR, we only need to redirect the edge. */
5318 break;
5319
5320 case GIMPLE_GOTO:
5321 /* No non-abnormal edges should lead from a non-simple goto, and
5322 simple ones should be represented implicitly. */
5323 gcc_unreachable ();
5324
5325 case GIMPLE_SWITCH:
5326 {
5327 tree label = gimple_block_label (dest);
5328 tree cases = get_cases_for_edge (e, stmt);
5329
5330 /* If we have a list of cases associated with E, then use it
5331 as it's a lot faster than walking the entire case vector. */
5332 if (cases)
5333 {
5334 edge e2 = find_edge (e->src, dest);
5335 tree last, first;
5336
5337 first = cases;
5338 while (cases)
5339 {
5340 last = cases;
5341 CASE_LABEL (cases) = label;
5342 cases = CASE_CHAIN (cases);
5343 }
5344
5345 /* If there was already an edge in the CFG, then we need
5346 to move all the cases associated with E to E2. */
5347 if (e2)
5348 {
5349 tree cases2 = get_cases_for_edge (e2, stmt);
5350
5351 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5352 CASE_CHAIN (cases2) = first;
5353 }
5354 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5355 }
5356 else
5357 {
5358 size_t i, n = gimple_switch_num_labels (stmt);
5359
5360 for (i = 0; i < n; i++)
5361 {
5362 tree elt = gimple_switch_label (stmt, i);
5363 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5364 CASE_LABEL (elt) = label;
5365 }
5366 }
5367 }
5368 break;
5369
5370 case GIMPLE_ASM:
5371 {
5372 int i, n = gimple_asm_nlabels (stmt);
5373 tree label = NULL;
5374
5375 for (i = 0; i < n; ++i)
5376 {
5377 tree cons = gimple_asm_label_op (stmt, i);
5378 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5379 {
5380 if (!label)
5381 label = gimple_block_label (dest);
5382 TREE_VALUE (cons) = label;
5383 }
5384 }
5385
5386 /* If we didn't find any label matching the former edge in the
5387 asm labels, we must be redirecting the fallthrough
5388 edge. */
5389 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5390 }
5391 break;
5392
5393 case GIMPLE_RETURN:
5394 gsi_remove (&gsi, true);
5395 e->flags |= EDGE_FALLTHRU;
5396 break;
5397
5398 case GIMPLE_OMP_RETURN:
5399 case GIMPLE_OMP_CONTINUE:
5400 case GIMPLE_OMP_SECTIONS_SWITCH:
5401 case GIMPLE_OMP_FOR:
5402 /* The edges from OMP constructs can be simply redirected. */
5403 break;
5404
5405 case GIMPLE_EH_DISPATCH:
5406 if (!(e->flags & EDGE_FALLTHRU))
5407 redirect_eh_dispatch_edge (stmt, e, dest);
5408 break;
5409
5410 case GIMPLE_TRANSACTION:
5411 /* The ABORT edge has a stored label associated with it, otherwise
5412 the edges are simply redirectable. */
5413 if (e->flags == 0)
5414 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5415 break;
5416
5417 default:
5418 /* Otherwise it must be a fallthru edge, and we don't need to
5419 do anything besides redirecting it. */
5420 gcc_assert (e->flags & EDGE_FALLTHRU);
5421 break;
5422 }
5423
5424 /* Update/insert PHI nodes as necessary. */
5425
5426 /* Now update the edges in the CFG. */
5427 e = ssa_redirect_edge (e, dest);
5428
5429 return e;
5430 }
5431
5432 /* Returns true if it is possible to remove edge E by redirecting
5433 it to the destination of the other edge from E->src. */
5434
5435 static bool
5436 gimple_can_remove_branch_p (const_edge e)
5437 {
5438 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5439 return false;
5440
5441 return true;
5442 }
5443
5444 /* Simple wrapper, as we can always redirect fallthru edges. */
5445
5446 static basic_block
5447 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5448 {
5449 e = gimple_redirect_edge_and_branch (e, dest);
5450 gcc_assert (e);
5451
5452 return NULL;
5453 }
5454
5455
5456 /* Splits basic block BB after statement STMT (but at least after the
5457 labels). If STMT is NULL, BB is split just after the labels. */
5458
5459 static basic_block
5460 gimple_split_block (basic_block bb, void *stmt)
5461 {
5462 gimple_stmt_iterator gsi;
5463 gimple_stmt_iterator gsi_tgt;
5464 gimple act;
5465 gimple_seq list;
5466 basic_block new_bb;
5467 edge e;
5468 edge_iterator ei;
5469
5470 new_bb = create_empty_bb (bb);
5471
5472 /* Redirect the outgoing edges. */
5473 new_bb->succs = bb->succs;
5474 bb->succs = NULL;
5475 FOR_EACH_EDGE (e, ei, new_bb->succs)
5476 e->src = new_bb;
5477
5478 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5479 stmt = NULL;
5480
5481 /* Move everything from GSI to the new basic block. */
5482 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5483 {
5484 act = gsi_stmt (gsi);
5485 if (gimple_code (act) == GIMPLE_LABEL)
5486 continue;
5487
5488 if (!stmt)
5489 break;
5490
5491 if (stmt == act)
5492 {
5493 gsi_next (&gsi);
5494 break;
5495 }
5496 }
5497
5498 if (gsi_end_p (gsi))
5499 return new_bb;
5500
5501 /* Split the statement list - avoid re-creating new containers as this
5502 brings ugly quadratic memory consumption in the inliner.
5503 (We are still quadratic since we need to update stmt BB pointers,
5504 sadly.) */
5505 gsi_split_seq_before (&gsi, &list);
5506 set_bb_seq (new_bb, list);
5507 for (gsi_tgt = gsi_start (list);
5508 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5509 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5510
5511 return new_bb;
5512 }
5513
5514
5515 /* Moves basic block BB after block AFTER. */
5516
5517 static bool
5518 gimple_move_block_after (basic_block bb, basic_block after)
5519 {
5520 if (bb->prev_bb == after)
5521 return true;
5522
5523 unlink_block (bb);
5524 link_block (bb, after);
5525
5526 return true;
5527 }
5528
5529
5530 /* Return TRUE if block BB has no executable statements, otherwise return
5531 FALSE. */
5532
5533 static bool
5534 gimple_empty_block_p (basic_block bb)
5535 {
5536 /* BB must have no executable statements. */
5537 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5538 if (phi_nodes (bb))
5539 return false;
5540 if (gsi_end_p (gsi))
5541 return true;
5542 if (is_gimple_debug (gsi_stmt (gsi)))
5543 gsi_next_nondebug (&gsi);
5544 return gsi_end_p (gsi);
5545 }
5546
5547
5548 /* Split a basic block if it ends with a conditional branch and if the
5549 other part of the block is not empty. */
5550
5551 static basic_block
5552 gimple_split_block_before_cond_jump (basic_block bb)
5553 {
5554 gimple last, split_point;
5555 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5556 if (gsi_end_p (gsi))
5557 return NULL;
5558 last = gsi_stmt (gsi);
5559 if (gimple_code (last) != GIMPLE_COND
5560 && gimple_code (last) != GIMPLE_SWITCH)
5561 return NULL;
5562 gsi_prev_nondebug (&gsi);
5563 split_point = gsi_stmt (gsi);
5564 return split_block (bb, split_point)->dest;
5565 }
5566
5567
5568 /* Return true if basic_block can be duplicated. */
5569
5570 static bool
5571 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5572 {
5573 return true;
5574 }
5575
5576 /* Create a duplicate of the basic block BB. NOTE: This does not
5577 preserve SSA form. */
5578
5579 static basic_block
5580 gimple_duplicate_bb (basic_block bb)
5581 {
5582 basic_block new_bb;
5583 gimple_stmt_iterator gsi, gsi_tgt;
5584 gimple_seq phis = phi_nodes (bb);
5585 gimple phi, stmt, copy;
5586
5587 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5588
5589 /* Copy the PHI nodes. We ignore PHI node arguments here because
5590 the incoming edges have not been setup yet. */
5591 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5592 {
5593 phi = gsi_stmt (gsi);
5594 copy = create_phi_node (NULL_TREE, new_bb);
5595 create_new_def_for (gimple_phi_result (phi), copy,
5596 gimple_phi_result_ptr (copy));
5597 gimple_set_uid (copy, gimple_uid (phi));
5598 }
5599
5600 gsi_tgt = gsi_start_bb (new_bb);
5601 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5602 {
5603 def_operand_p def_p;
5604 ssa_op_iter op_iter;
5605 tree lhs;
5606
5607 stmt = gsi_stmt (gsi);
5608 if (gimple_code (stmt) == GIMPLE_LABEL)
5609 continue;
5610
5611 /* Don't duplicate label debug stmts. */
5612 if (gimple_debug_bind_p (stmt)
5613 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5614 == LABEL_DECL)
5615 continue;
5616
5617 /* Create a new copy of STMT and duplicate STMT's virtual
5618 operands. */
5619 copy = gimple_copy (stmt);
5620 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5621
5622 maybe_duplicate_eh_stmt (copy, stmt);
5623 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5624
5625 /* When copying around a stmt writing into a local non-user
5626 aggregate, make sure it won't share stack slot with other
5627 vars. */
5628 lhs = gimple_get_lhs (stmt);
5629 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5630 {
5631 tree base = get_base_address (lhs);
5632 if (base
5633 && (TREE_CODE (base) == VAR_DECL
5634 || TREE_CODE (base) == RESULT_DECL)
5635 && DECL_IGNORED_P (base)
5636 && !TREE_STATIC (base)
5637 && !DECL_EXTERNAL (base)
5638 && (TREE_CODE (base) != VAR_DECL
5639 || !DECL_HAS_VALUE_EXPR_P (base)))
5640 DECL_NONSHAREABLE (base) = 1;
5641 }
5642
5643 /* Create new names for all the definitions created by COPY and
5644 add replacement mappings for each new name. */
5645 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5646 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5647 }
5648
5649 return new_bb;
5650 }
5651
5652 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5653
5654 static void
5655 add_phi_args_after_copy_edge (edge e_copy)
5656 {
5657 basic_block bb, bb_copy = e_copy->src, dest;
5658 edge e;
5659 edge_iterator ei;
5660 gimple phi, phi_copy;
5661 tree def;
5662 gimple_stmt_iterator psi, psi_copy;
5663
5664 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5665 return;
5666
5667 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5668
5669 if (e_copy->dest->flags & BB_DUPLICATED)
5670 dest = get_bb_original (e_copy->dest);
5671 else
5672 dest = e_copy->dest;
5673
5674 e = find_edge (bb, dest);
5675 if (!e)
5676 {
5677 /* During loop unrolling the target of the latch edge is copied.
5678 In this case we are not looking for edge to dest, but to
5679 duplicated block whose original was dest. */
5680 FOR_EACH_EDGE (e, ei, bb->succs)
5681 {
5682 if ((e->dest->flags & BB_DUPLICATED)
5683 && get_bb_original (e->dest) == dest)
5684 break;
5685 }
5686
5687 gcc_assert (e != NULL);
5688 }
5689
5690 for (psi = gsi_start_phis (e->dest),
5691 psi_copy = gsi_start_phis (e_copy->dest);
5692 !gsi_end_p (psi);
5693 gsi_next (&psi), gsi_next (&psi_copy))
5694 {
5695 phi = gsi_stmt (psi);
5696 phi_copy = gsi_stmt (psi_copy);
5697 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5698 add_phi_arg (phi_copy, def, e_copy,
5699 gimple_phi_arg_location_from_edge (phi, e));
5700 }
5701 }
5702
5703
5704 /* Basic block BB_COPY was created by code duplication. Add phi node
5705 arguments for edges going out of BB_COPY. The blocks that were
5706 duplicated have BB_DUPLICATED set. */
5707
5708 void
5709 add_phi_args_after_copy_bb (basic_block bb_copy)
5710 {
5711 edge e_copy;
5712 edge_iterator ei;
5713
5714 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5715 {
5716 add_phi_args_after_copy_edge (e_copy);
5717 }
5718 }
5719
5720 /* Blocks in REGION_COPY array of length N_REGION were created by
5721 duplication of basic blocks. Add phi node arguments for edges
5722 going from these blocks. If E_COPY is not NULL, also add
5723 phi node arguments for its destination.*/
5724
5725 void
5726 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5727 edge e_copy)
5728 {
5729 unsigned i;
5730
5731 for (i = 0; i < n_region; i++)
5732 region_copy[i]->flags |= BB_DUPLICATED;
5733
5734 for (i = 0; i < n_region; i++)
5735 add_phi_args_after_copy_bb (region_copy[i]);
5736 if (e_copy)
5737 add_phi_args_after_copy_edge (e_copy);
5738
5739 for (i = 0; i < n_region; i++)
5740 region_copy[i]->flags &= ~BB_DUPLICATED;
5741 }
5742
5743 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5744 important exit edge EXIT. By important we mean that no SSA name defined
5745 inside region is live over the other exit edges of the region. All entry
5746 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5747 to the duplicate of the region. Dominance and loop information is
5748 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5749 UPDATE_DOMINANCE is false then we assume that the caller will update the
5750 dominance information after calling this function. The new basic
5751 blocks are stored to REGION_COPY in the same order as they had in REGION,
5752 provided that REGION_COPY is not NULL.
5753 The function returns false if it is unable to copy the region,
5754 true otherwise. */
5755
5756 bool
5757 gimple_duplicate_sese_region (edge entry, edge exit,
5758 basic_block *region, unsigned n_region,
5759 basic_block *region_copy,
5760 bool update_dominance)
5761 {
5762 unsigned i;
5763 bool free_region_copy = false, copying_header = false;
5764 struct loop *loop = entry->dest->loop_father;
5765 edge exit_copy;
5766 vec<basic_block> doms;
5767 edge redirected;
5768 int total_freq = 0, entry_freq = 0;
5769 gcov_type total_count = 0, entry_count = 0;
5770
5771 if (!can_copy_bbs_p (region, n_region))
5772 return false;
5773
5774 /* Some sanity checking. Note that we do not check for all possible
5775 missuses of the functions. I.e. if you ask to copy something weird,
5776 it will work, but the state of structures probably will not be
5777 correct. */
5778 for (i = 0; i < n_region; i++)
5779 {
5780 /* We do not handle subloops, i.e. all the blocks must belong to the
5781 same loop. */
5782 if (region[i]->loop_father != loop)
5783 return false;
5784
5785 if (region[i] != entry->dest
5786 && region[i] == loop->header)
5787 return false;
5788 }
5789
5790 set_loop_copy (loop, loop);
5791
5792 /* In case the function is used for loop header copying (which is the primary
5793 use), ensure that EXIT and its copy will be new latch and entry edges. */
5794 if (loop->header == entry->dest)
5795 {
5796 copying_header = true;
5797 set_loop_copy (loop, loop_outer (loop));
5798
5799 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5800 return false;
5801
5802 for (i = 0; i < n_region; i++)
5803 if (region[i] != exit->src
5804 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5805 return false;
5806 }
5807
5808 if (!region_copy)
5809 {
5810 region_copy = XNEWVEC (basic_block, n_region);
5811 free_region_copy = true;
5812 }
5813
5814 initialize_original_copy_tables ();
5815
5816 /* Record blocks outside the region that are dominated by something
5817 inside. */
5818 if (update_dominance)
5819 {
5820 doms.create (0);
5821 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5822 }
5823
5824 if (entry->dest->count)
5825 {
5826 total_count = entry->dest->count;
5827 entry_count = entry->count;
5828 /* Fix up corner cases, to avoid division by zero or creation of negative
5829 frequencies. */
5830 if (entry_count > total_count)
5831 entry_count = total_count;
5832 }
5833 else
5834 {
5835 total_freq = entry->dest->frequency;
5836 entry_freq = EDGE_FREQUENCY (entry);
5837 /* Fix up corner cases, to avoid division by zero or creation of negative
5838 frequencies. */
5839 if (total_freq == 0)
5840 total_freq = 1;
5841 else if (entry_freq > total_freq)
5842 entry_freq = total_freq;
5843 }
5844
5845 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5846 split_edge_bb_loc (entry), update_dominance);
5847 if (total_count)
5848 {
5849 scale_bbs_frequencies_gcov_type (region, n_region,
5850 total_count - entry_count,
5851 total_count);
5852 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5853 total_count);
5854 }
5855 else
5856 {
5857 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5858 total_freq);
5859 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5860 }
5861
5862 if (copying_header)
5863 {
5864 loop->header = exit->dest;
5865 loop->latch = exit->src;
5866 }
5867
5868 /* Redirect the entry and add the phi node arguments. */
5869 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5870 gcc_assert (redirected != NULL);
5871 flush_pending_stmts (entry);
5872
5873 /* Concerning updating of dominators: We must recount dominators
5874 for entry block and its copy. Anything that is outside of the
5875 region, but was dominated by something inside needs recounting as
5876 well. */
5877 if (update_dominance)
5878 {
5879 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5880 doms.safe_push (get_bb_original (entry->dest));
5881 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5882 doms.release ();
5883 }
5884
5885 /* Add the other PHI node arguments. */
5886 add_phi_args_after_copy (region_copy, n_region, NULL);
5887
5888 if (free_region_copy)
5889 free (region_copy);
5890
5891 free_original_copy_tables ();
5892 return true;
5893 }
5894
5895 /* Checks if BB is part of the region defined by N_REGION BBS. */
5896 static bool
5897 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5898 {
5899 unsigned int n;
5900
5901 for (n = 0; n < n_region; n++)
5902 {
5903 if (bb == bbs[n])
5904 return true;
5905 }
5906 return false;
5907 }
5908
5909 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5910 are stored to REGION_COPY in the same order in that they appear
5911 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5912 the region, EXIT an exit from it. The condition guarding EXIT
5913 is moved to ENTRY. Returns true if duplication succeeds, false
5914 otherwise.
5915
5916 For example,
5917
5918 some_code;
5919 if (cond)
5920 A;
5921 else
5922 B;
5923
5924 is transformed to
5925
5926 if (cond)
5927 {
5928 some_code;
5929 A;
5930 }
5931 else
5932 {
5933 some_code;
5934 B;
5935 }
5936 */
5937
5938 bool
5939 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5940 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5941 basic_block *region_copy ATTRIBUTE_UNUSED)
5942 {
5943 unsigned i;
5944 bool free_region_copy = false;
5945 struct loop *loop = exit->dest->loop_father;
5946 struct loop *orig_loop = entry->dest->loop_father;
5947 basic_block switch_bb, entry_bb, nentry_bb;
5948 vec<basic_block> doms;
5949 int total_freq = 0, exit_freq = 0;
5950 gcov_type total_count = 0, exit_count = 0;
5951 edge exits[2], nexits[2], e;
5952 gimple_stmt_iterator gsi;
5953 gimple cond_stmt;
5954 edge sorig, snew;
5955 basic_block exit_bb;
5956 gimple_stmt_iterator psi;
5957 gimple phi;
5958 tree def;
5959 struct loop *target, *aloop, *cloop;
5960
5961 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5962 exits[0] = exit;
5963 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5964
5965 if (!can_copy_bbs_p (region, n_region))
5966 return false;
5967
5968 initialize_original_copy_tables ();
5969 set_loop_copy (orig_loop, loop);
5970
5971 target= loop;
5972 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5973 {
5974 if (bb_part_of_region_p (aloop->header, region, n_region))
5975 {
5976 cloop = duplicate_loop (aloop, target);
5977 duplicate_subloops (aloop, cloop);
5978 }
5979 }
5980
5981 if (!region_copy)
5982 {
5983 region_copy = XNEWVEC (basic_block, n_region);
5984 free_region_copy = true;
5985 }
5986
5987 gcc_assert (!need_ssa_update_p (cfun));
5988
5989 /* Record blocks outside the region that are dominated by something
5990 inside. */
5991 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5992
5993 if (exit->src->count)
5994 {
5995 total_count = exit->src->count;
5996 exit_count = exit->count;
5997 /* Fix up corner cases, to avoid division by zero or creation of negative
5998 frequencies. */
5999 if (exit_count > total_count)
6000 exit_count = total_count;
6001 }
6002 else
6003 {
6004 total_freq = exit->src->frequency;
6005 exit_freq = EDGE_FREQUENCY (exit);
6006 /* Fix up corner cases, to avoid division by zero or creation of negative
6007 frequencies. */
6008 if (total_freq == 0)
6009 total_freq = 1;
6010 if (exit_freq > total_freq)
6011 exit_freq = total_freq;
6012 }
6013
6014 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6015 split_edge_bb_loc (exit), true);
6016 if (total_count)
6017 {
6018 scale_bbs_frequencies_gcov_type (region, n_region,
6019 total_count - exit_count,
6020 total_count);
6021 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6022 total_count);
6023 }
6024 else
6025 {
6026 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6027 total_freq);
6028 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6029 }
6030
6031 /* Create the switch block, and put the exit condition to it. */
6032 entry_bb = entry->dest;
6033 nentry_bb = get_bb_copy (entry_bb);
6034 if (!last_stmt (entry->src)
6035 || !stmt_ends_bb_p (last_stmt (entry->src)))
6036 switch_bb = entry->src;
6037 else
6038 switch_bb = split_edge (entry);
6039 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6040
6041 gsi = gsi_last_bb (switch_bb);
6042 cond_stmt = last_stmt (exit->src);
6043 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6044 cond_stmt = gimple_copy (cond_stmt);
6045
6046 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6047
6048 sorig = single_succ_edge (switch_bb);
6049 sorig->flags = exits[1]->flags;
6050 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6051
6052 /* Register the new edge from SWITCH_BB in loop exit lists. */
6053 rescan_loop_exit (snew, true, false);
6054
6055 /* Add the PHI node arguments. */
6056 add_phi_args_after_copy (region_copy, n_region, snew);
6057
6058 /* Get rid of now superfluous conditions and associated edges (and phi node
6059 arguments). */
6060 exit_bb = exit->dest;
6061
6062 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6063 PENDING_STMT (e) = NULL;
6064
6065 /* The latch of ORIG_LOOP was copied, and so was the backedge
6066 to the original header. We redirect this backedge to EXIT_BB. */
6067 for (i = 0; i < n_region; i++)
6068 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6069 {
6070 gcc_assert (single_succ_edge (region_copy[i]));
6071 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6072 PENDING_STMT (e) = NULL;
6073 for (psi = gsi_start_phis (exit_bb);
6074 !gsi_end_p (psi);
6075 gsi_next (&psi))
6076 {
6077 phi = gsi_stmt (psi);
6078 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6079 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6080 }
6081 }
6082 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6083 PENDING_STMT (e) = NULL;
6084
6085 /* Anything that is outside of the region, but was dominated by something
6086 inside needs to update dominance info. */
6087 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6088 doms.release ();
6089 /* Update the SSA web. */
6090 update_ssa (TODO_update_ssa);
6091
6092 if (free_region_copy)
6093 free (region_copy);
6094
6095 free_original_copy_tables ();
6096 return true;
6097 }
6098
6099 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6100 adding blocks when the dominator traversal reaches EXIT. This
6101 function silently assumes that ENTRY strictly dominates EXIT. */
6102
6103 void
6104 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6105 vec<basic_block> *bbs_p)
6106 {
6107 basic_block son;
6108
6109 for (son = first_dom_son (CDI_DOMINATORS, entry);
6110 son;
6111 son = next_dom_son (CDI_DOMINATORS, son))
6112 {
6113 bbs_p->safe_push (son);
6114 if (son != exit)
6115 gather_blocks_in_sese_region (son, exit, bbs_p);
6116 }
6117 }
6118
6119 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6120 The duplicates are recorded in VARS_MAP. */
6121
6122 static void
6123 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6124 tree to_context)
6125 {
6126 tree t = *tp, new_t;
6127 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6128 void **loc;
6129
6130 if (DECL_CONTEXT (t) == to_context)
6131 return;
6132
6133 loc = pointer_map_contains (vars_map, t);
6134
6135 if (!loc)
6136 {
6137 loc = pointer_map_insert (vars_map, t);
6138
6139 if (SSA_VAR_P (t))
6140 {
6141 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6142 add_local_decl (f, new_t);
6143 }
6144 else
6145 {
6146 gcc_assert (TREE_CODE (t) == CONST_DECL);
6147 new_t = copy_node (t);
6148 }
6149 DECL_CONTEXT (new_t) = to_context;
6150
6151 *loc = new_t;
6152 }
6153 else
6154 new_t = (tree) *loc;
6155
6156 *tp = new_t;
6157 }
6158
6159
6160 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6161 VARS_MAP maps old ssa names and var_decls to the new ones. */
6162
6163 static tree
6164 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6165 tree to_context)
6166 {
6167 void **loc;
6168 tree new_name;
6169
6170 gcc_assert (!virtual_operand_p (name));
6171
6172 loc = pointer_map_contains (vars_map, name);
6173
6174 if (!loc)
6175 {
6176 tree decl = SSA_NAME_VAR (name);
6177 if (decl)
6178 {
6179 replace_by_duplicate_decl (&decl, vars_map, to_context);
6180 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6181 decl, SSA_NAME_DEF_STMT (name));
6182 if (SSA_NAME_IS_DEFAULT_DEF (name))
6183 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6184 decl, new_name);
6185 }
6186 else
6187 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6188 name, SSA_NAME_DEF_STMT (name));
6189
6190 loc = pointer_map_insert (vars_map, name);
6191 *loc = new_name;
6192 }
6193 else
6194 new_name = (tree) *loc;
6195
6196 return new_name;
6197 }
6198
6199 struct move_stmt_d
6200 {
6201 tree orig_block;
6202 tree new_block;
6203 tree from_context;
6204 tree to_context;
6205 struct pointer_map_t *vars_map;
6206 htab_t new_label_map;
6207 struct pointer_map_t *eh_map;
6208 bool remap_decls_p;
6209 };
6210
6211 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6212 contained in *TP if it has been ORIG_BLOCK previously and change the
6213 DECL_CONTEXT of every local variable referenced in *TP. */
6214
6215 static tree
6216 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6217 {
6218 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6219 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6220 tree t = *tp;
6221
6222 if (EXPR_P (t))
6223 {
6224 tree block = TREE_BLOCK (t);
6225 if (block == p->orig_block
6226 || (p->orig_block == NULL_TREE
6227 && block != NULL_TREE))
6228 TREE_SET_BLOCK (t, p->new_block);
6229 #ifdef ENABLE_CHECKING
6230 else if (block != NULL_TREE)
6231 {
6232 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6233 block = BLOCK_SUPERCONTEXT (block);
6234 gcc_assert (block == p->orig_block);
6235 }
6236 #endif
6237 }
6238 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6239 {
6240 if (TREE_CODE (t) == SSA_NAME)
6241 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6242 else if (TREE_CODE (t) == LABEL_DECL)
6243 {
6244 if (p->new_label_map)
6245 {
6246 struct tree_map in, *out;
6247 in.base.from = t;
6248 out = (struct tree_map *)
6249 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6250 if (out)
6251 *tp = t = out->to;
6252 }
6253
6254 DECL_CONTEXT (t) = p->to_context;
6255 }
6256 else if (p->remap_decls_p)
6257 {
6258 /* Replace T with its duplicate. T should no longer appear in the
6259 parent function, so this looks wasteful; however, it may appear
6260 in referenced_vars, and more importantly, as virtual operands of
6261 statements, and in alias lists of other variables. It would be
6262 quite difficult to expunge it from all those places. ??? It might
6263 suffice to do this for addressable variables. */
6264 if ((TREE_CODE (t) == VAR_DECL
6265 && !is_global_var (t))
6266 || TREE_CODE (t) == CONST_DECL)
6267 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6268 }
6269 *walk_subtrees = 0;
6270 }
6271 else if (TYPE_P (t))
6272 *walk_subtrees = 0;
6273
6274 return NULL_TREE;
6275 }
6276
6277 /* Helper for move_stmt_r. Given an EH region number for the source
6278 function, map that to the duplicate EH regio number in the dest. */
6279
6280 static int
6281 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6282 {
6283 eh_region old_r, new_r;
6284 void **slot;
6285
6286 old_r = get_eh_region_from_number (old_nr);
6287 slot = pointer_map_contains (p->eh_map, old_r);
6288 new_r = (eh_region) *slot;
6289
6290 return new_r->index;
6291 }
6292
6293 /* Similar, but operate on INTEGER_CSTs. */
6294
6295 static tree
6296 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6297 {
6298 int old_nr, new_nr;
6299
6300 old_nr = tree_to_shwi (old_t_nr);
6301 new_nr = move_stmt_eh_region_nr (old_nr, p);
6302
6303 return build_int_cst (integer_type_node, new_nr);
6304 }
6305
6306 /* Like move_stmt_op, but for gimple statements.
6307
6308 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6309 contained in the current statement in *GSI_P and change the
6310 DECL_CONTEXT of every local variable referenced in the current
6311 statement. */
6312
6313 static tree
6314 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6315 struct walk_stmt_info *wi)
6316 {
6317 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6318 gimple stmt = gsi_stmt (*gsi_p);
6319 tree block = gimple_block (stmt);
6320
6321 if (block == p->orig_block
6322 || (p->orig_block == NULL_TREE
6323 && block != NULL_TREE))
6324 gimple_set_block (stmt, p->new_block);
6325
6326 switch (gimple_code (stmt))
6327 {
6328 case GIMPLE_CALL:
6329 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6330 {
6331 tree r, fndecl = gimple_call_fndecl (stmt);
6332 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6333 switch (DECL_FUNCTION_CODE (fndecl))
6334 {
6335 case BUILT_IN_EH_COPY_VALUES:
6336 r = gimple_call_arg (stmt, 1);
6337 r = move_stmt_eh_region_tree_nr (r, p);
6338 gimple_call_set_arg (stmt, 1, r);
6339 /* FALLTHRU */
6340
6341 case BUILT_IN_EH_POINTER:
6342 case BUILT_IN_EH_FILTER:
6343 r = gimple_call_arg (stmt, 0);
6344 r = move_stmt_eh_region_tree_nr (r, p);
6345 gimple_call_set_arg (stmt, 0, r);
6346 break;
6347
6348 default:
6349 break;
6350 }
6351 }
6352 break;
6353
6354 case GIMPLE_RESX:
6355 {
6356 int r = gimple_resx_region (stmt);
6357 r = move_stmt_eh_region_nr (r, p);
6358 gimple_resx_set_region (stmt, r);
6359 }
6360 break;
6361
6362 case GIMPLE_EH_DISPATCH:
6363 {
6364 int r = gimple_eh_dispatch_region (stmt);
6365 r = move_stmt_eh_region_nr (r, p);
6366 gimple_eh_dispatch_set_region (stmt, r);
6367 }
6368 break;
6369
6370 case GIMPLE_OMP_RETURN:
6371 case GIMPLE_OMP_CONTINUE:
6372 break;
6373 default:
6374 if (is_gimple_omp (stmt))
6375 {
6376 /* Do not remap variables inside OMP directives. Variables
6377 referenced in clauses and directive header belong to the
6378 parent function and should not be moved into the child
6379 function. */
6380 bool save_remap_decls_p = p->remap_decls_p;
6381 p->remap_decls_p = false;
6382 *handled_ops_p = true;
6383
6384 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6385 move_stmt_op, wi);
6386
6387 p->remap_decls_p = save_remap_decls_p;
6388 }
6389 break;
6390 }
6391
6392 return NULL_TREE;
6393 }
6394
6395 /* Move basic block BB from function CFUN to function DEST_FN. The
6396 block is moved out of the original linked list and placed after
6397 block AFTER in the new list. Also, the block is removed from the
6398 original array of blocks and placed in DEST_FN's array of blocks.
6399 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6400 updated to reflect the moved edges.
6401
6402 The local variables are remapped to new instances, VARS_MAP is used
6403 to record the mapping. */
6404
6405 static void
6406 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6407 basic_block after, bool update_edge_count_p,
6408 struct move_stmt_d *d)
6409 {
6410 struct control_flow_graph *cfg;
6411 edge_iterator ei;
6412 edge e;
6413 gimple_stmt_iterator si;
6414 unsigned old_len, new_len;
6415
6416 /* Remove BB from dominance structures. */
6417 delete_from_dominance_info (CDI_DOMINATORS, bb);
6418
6419 /* Move BB from its current loop to the copy in the new function. */
6420 if (current_loops)
6421 {
6422 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6423 if (new_loop)
6424 bb->loop_father = new_loop;
6425 }
6426
6427 /* Link BB to the new linked list. */
6428 move_block_after (bb, after);
6429
6430 /* Update the edge count in the corresponding flowgraphs. */
6431 if (update_edge_count_p)
6432 FOR_EACH_EDGE (e, ei, bb->succs)
6433 {
6434 cfun->cfg->x_n_edges--;
6435 dest_cfun->cfg->x_n_edges++;
6436 }
6437
6438 /* Remove BB from the original basic block array. */
6439 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6440 cfun->cfg->x_n_basic_blocks--;
6441
6442 /* Grow DEST_CFUN's basic block array if needed. */
6443 cfg = dest_cfun->cfg;
6444 cfg->x_n_basic_blocks++;
6445 if (bb->index >= cfg->x_last_basic_block)
6446 cfg->x_last_basic_block = bb->index + 1;
6447
6448 old_len = vec_safe_length (cfg->x_basic_block_info);
6449 if ((unsigned) cfg->x_last_basic_block >= old_len)
6450 {
6451 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6452 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6453 }
6454
6455 (*cfg->x_basic_block_info)[bb->index] = bb;
6456
6457 /* Remap the variables in phi nodes. */
6458 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6459 {
6460 gimple phi = gsi_stmt (si);
6461 use_operand_p use;
6462 tree op = PHI_RESULT (phi);
6463 ssa_op_iter oi;
6464 unsigned i;
6465
6466 if (virtual_operand_p (op))
6467 {
6468 /* Remove the phi nodes for virtual operands (alias analysis will be
6469 run for the new function, anyway). */
6470 remove_phi_node (&si, true);
6471 continue;
6472 }
6473
6474 SET_PHI_RESULT (phi,
6475 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6476 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6477 {
6478 op = USE_FROM_PTR (use);
6479 if (TREE_CODE (op) == SSA_NAME)
6480 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6481 }
6482
6483 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6484 {
6485 location_t locus = gimple_phi_arg_location (phi, i);
6486 tree block = LOCATION_BLOCK (locus);
6487
6488 if (locus == UNKNOWN_LOCATION)
6489 continue;
6490 if (d->orig_block == NULL_TREE || block == d->orig_block)
6491 {
6492 if (d->new_block == NULL_TREE)
6493 locus = LOCATION_LOCUS (locus);
6494 else
6495 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6496 gimple_phi_arg_set_location (phi, i, locus);
6497 }
6498 }
6499
6500 gsi_next (&si);
6501 }
6502
6503 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6504 {
6505 gimple stmt = gsi_stmt (si);
6506 struct walk_stmt_info wi;
6507
6508 memset (&wi, 0, sizeof (wi));
6509 wi.info = d;
6510 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6511
6512 if (gimple_code (stmt) == GIMPLE_LABEL)
6513 {
6514 tree label = gimple_label_label (stmt);
6515 int uid = LABEL_DECL_UID (label);
6516
6517 gcc_assert (uid > -1);
6518
6519 old_len = vec_safe_length (cfg->x_label_to_block_map);
6520 if (old_len <= (unsigned) uid)
6521 {
6522 new_len = 3 * uid / 2 + 1;
6523 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6524 }
6525
6526 (*cfg->x_label_to_block_map)[uid] = bb;
6527 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6528
6529 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6530
6531 if (uid >= dest_cfun->cfg->last_label_uid)
6532 dest_cfun->cfg->last_label_uid = uid + 1;
6533 }
6534
6535 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6536 remove_stmt_from_eh_lp_fn (cfun, stmt);
6537
6538 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6539 gimple_remove_stmt_histograms (cfun, stmt);
6540
6541 /* We cannot leave any operands allocated from the operand caches of
6542 the current function. */
6543 free_stmt_operands (cfun, stmt);
6544 push_cfun (dest_cfun);
6545 update_stmt (stmt);
6546 pop_cfun ();
6547 }
6548
6549 FOR_EACH_EDGE (e, ei, bb->succs)
6550 if (e->goto_locus != UNKNOWN_LOCATION)
6551 {
6552 tree block = LOCATION_BLOCK (e->goto_locus);
6553 if (d->orig_block == NULL_TREE
6554 || block == d->orig_block)
6555 e->goto_locus = d->new_block ?
6556 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6557 LOCATION_LOCUS (e->goto_locus);
6558 }
6559 }
6560
6561 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6562 the outermost EH region. Use REGION as the incoming base EH region. */
6563
6564 static eh_region
6565 find_outermost_region_in_block (struct function *src_cfun,
6566 basic_block bb, eh_region region)
6567 {
6568 gimple_stmt_iterator si;
6569
6570 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6571 {
6572 gimple stmt = gsi_stmt (si);
6573 eh_region stmt_region;
6574 int lp_nr;
6575
6576 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6577 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6578 if (stmt_region)
6579 {
6580 if (region == NULL)
6581 region = stmt_region;
6582 else if (stmt_region != region)
6583 {
6584 region = eh_region_outermost (src_cfun, stmt_region, region);
6585 gcc_assert (region != NULL);
6586 }
6587 }
6588 }
6589
6590 return region;
6591 }
6592
6593 static tree
6594 new_label_mapper (tree decl, void *data)
6595 {
6596 htab_t hash = (htab_t) data;
6597 struct tree_map *m;
6598 void **slot;
6599
6600 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6601
6602 m = XNEW (struct tree_map);
6603 m->hash = DECL_UID (decl);
6604 m->base.from = decl;
6605 m->to = create_artificial_label (UNKNOWN_LOCATION);
6606 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6607 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6608 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6609
6610 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6611 gcc_assert (*slot == NULL);
6612
6613 *slot = m;
6614
6615 return m->to;
6616 }
6617
6618 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6619 subblocks. */
6620
6621 static void
6622 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6623 tree to_context)
6624 {
6625 tree *tp, t;
6626
6627 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6628 {
6629 t = *tp;
6630 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6631 continue;
6632 replace_by_duplicate_decl (&t, vars_map, to_context);
6633 if (t != *tp)
6634 {
6635 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6636 {
6637 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6638 DECL_HAS_VALUE_EXPR_P (t) = 1;
6639 }
6640 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6641 *tp = t;
6642 }
6643 }
6644
6645 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6646 replace_block_vars_by_duplicates (block, vars_map, to_context);
6647 }
6648
6649 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6650 from FN1 to FN2. */
6651
6652 static void
6653 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6654 struct loop *loop)
6655 {
6656 /* Discard it from the old loop array. */
6657 (*get_loops (fn1))[loop->num] = NULL;
6658
6659 /* Place it in the new loop array, assigning it a new number. */
6660 loop->num = number_of_loops (fn2);
6661 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6662
6663 /* Recurse to children. */
6664 for (loop = loop->inner; loop; loop = loop->next)
6665 fixup_loop_arrays_after_move (fn1, fn2, loop);
6666 }
6667
6668 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6669 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6670 single basic block in the original CFG and the new basic block is
6671 returned. DEST_CFUN must not have a CFG yet.
6672
6673 Note that the region need not be a pure SESE region. Blocks inside
6674 the region may contain calls to abort/exit. The only restriction
6675 is that ENTRY_BB should be the only entry point and it must
6676 dominate EXIT_BB.
6677
6678 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6679 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6680 to the new function.
6681
6682 All local variables referenced in the region are assumed to be in
6683 the corresponding BLOCK_VARS and unexpanded variable lists
6684 associated with DEST_CFUN. */
6685
6686 basic_block
6687 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6688 basic_block exit_bb, tree orig_block)
6689 {
6690 vec<basic_block> bbs, dom_bbs;
6691 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6692 basic_block after, bb, *entry_pred, *exit_succ, abb;
6693 struct function *saved_cfun = cfun;
6694 int *entry_flag, *exit_flag;
6695 unsigned *entry_prob, *exit_prob;
6696 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6697 edge e;
6698 edge_iterator ei;
6699 htab_t new_label_map;
6700 struct pointer_map_t *vars_map, *eh_map;
6701 struct loop *loop = entry_bb->loop_father;
6702 struct loop *loop0 = get_loop (saved_cfun, 0);
6703 struct move_stmt_d d;
6704
6705 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6706 region. */
6707 gcc_assert (entry_bb != exit_bb
6708 && (!exit_bb
6709 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6710
6711 /* Collect all the blocks in the region. Manually add ENTRY_BB
6712 because it won't be added by dfs_enumerate_from. */
6713 bbs.create (0);
6714 bbs.safe_push (entry_bb);
6715 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6716
6717 /* The blocks that used to be dominated by something in BBS will now be
6718 dominated by the new block. */
6719 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6720 bbs.address (),
6721 bbs.length ());
6722
6723 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6724 the predecessor edges to ENTRY_BB and the successor edges to
6725 EXIT_BB so that we can re-attach them to the new basic block that
6726 will replace the region. */
6727 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6728 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6729 entry_flag = XNEWVEC (int, num_entry_edges);
6730 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6731 i = 0;
6732 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6733 {
6734 entry_prob[i] = e->probability;
6735 entry_flag[i] = e->flags;
6736 entry_pred[i++] = e->src;
6737 remove_edge (e);
6738 }
6739
6740 if (exit_bb)
6741 {
6742 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6743 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6744 exit_flag = XNEWVEC (int, num_exit_edges);
6745 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6746 i = 0;
6747 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6748 {
6749 exit_prob[i] = e->probability;
6750 exit_flag[i] = e->flags;
6751 exit_succ[i++] = e->dest;
6752 remove_edge (e);
6753 }
6754 }
6755 else
6756 {
6757 num_exit_edges = 0;
6758 exit_succ = NULL;
6759 exit_flag = NULL;
6760 exit_prob = NULL;
6761 }
6762
6763 /* Switch context to the child function to initialize DEST_FN's CFG. */
6764 gcc_assert (dest_cfun->cfg == NULL);
6765 push_cfun (dest_cfun);
6766
6767 init_empty_tree_cfg ();
6768
6769 /* Initialize EH information for the new function. */
6770 eh_map = NULL;
6771 new_label_map = NULL;
6772 if (saved_cfun->eh)
6773 {
6774 eh_region region = NULL;
6775
6776 FOR_EACH_VEC_ELT (bbs, i, bb)
6777 region = find_outermost_region_in_block (saved_cfun, bb, region);
6778
6779 init_eh_for_function ();
6780 if (region != NULL)
6781 {
6782 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6783 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6784 new_label_mapper, new_label_map);
6785 }
6786 }
6787
6788 /* Initialize an empty loop tree. */
6789 struct loops *loops = ggc_alloc_cleared_loops ();
6790 init_loops_structure (dest_cfun, loops, 1);
6791 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6792 set_loops_for_fn (dest_cfun, loops);
6793
6794 /* Move the outlined loop tree part. */
6795 num_nodes = bbs.length ();
6796 FOR_EACH_VEC_ELT (bbs, i, bb)
6797 {
6798 if (bb->loop_father->header == bb)
6799 {
6800 struct loop *this_loop = bb->loop_father;
6801 struct loop *outer = loop_outer (this_loop);
6802 if (outer == loop
6803 /* If the SESE region contains some bbs ending with
6804 a noreturn call, those are considered to belong
6805 to the outermost loop in saved_cfun, rather than
6806 the entry_bb's loop_father. */
6807 || outer == loop0)
6808 {
6809 if (outer != loop)
6810 num_nodes -= this_loop->num_nodes;
6811 flow_loop_tree_node_remove (bb->loop_father);
6812 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6813 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6814 }
6815 }
6816 else if (bb->loop_father == loop0 && loop0 != loop)
6817 num_nodes--;
6818
6819 /* Remove loop exits from the outlined region. */
6820 if (loops_for_fn (saved_cfun)->exits)
6821 FOR_EACH_EDGE (e, ei, bb->succs)
6822 {
6823 void **slot = htab_find_slot_with_hash
6824 (loops_for_fn (saved_cfun)->exits, e,
6825 htab_hash_pointer (e), NO_INSERT);
6826 if (slot)
6827 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6828 }
6829 }
6830
6831
6832 /* Adjust the number of blocks in the tree root of the outlined part. */
6833 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6834
6835 /* Setup a mapping to be used by move_block_to_fn. */
6836 loop->aux = current_loops->tree_root;
6837 loop0->aux = current_loops->tree_root;
6838
6839 pop_cfun ();
6840
6841 /* Move blocks from BBS into DEST_CFUN. */
6842 gcc_assert (bbs.length () >= 2);
6843 after = dest_cfun->cfg->x_entry_block_ptr;
6844 vars_map = pointer_map_create ();
6845
6846 memset (&d, 0, sizeof (d));
6847 d.orig_block = orig_block;
6848 d.new_block = DECL_INITIAL (dest_cfun->decl);
6849 d.from_context = cfun->decl;
6850 d.to_context = dest_cfun->decl;
6851 d.vars_map = vars_map;
6852 d.new_label_map = new_label_map;
6853 d.eh_map = eh_map;
6854 d.remap_decls_p = true;
6855
6856 FOR_EACH_VEC_ELT (bbs, i, bb)
6857 {
6858 /* No need to update edge counts on the last block. It has
6859 already been updated earlier when we detached the region from
6860 the original CFG. */
6861 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6862 after = bb;
6863 }
6864
6865 loop->aux = NULL;
6866 loop0->aux = NULL;
6867 /* Loop sizes are no longer correct, fix them up. */
6868 loop->num_nodes -= num_nodes;
6869 for (struct loop *outer = loop_outer (loop);
6870 outer; outer = loop_outer (outer))
6871 outer->num_nodes -= num_nodes;
6872 loop0->num_nodes -= bbs.length () - num_nodes;
6873
6874 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6875 {
6876 struct loop *aloop;
6877 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6878 if (aloop != NULL)
6879 {
6880 if (aloop->simduid)
6881 {
6882 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6883 d.to_context);
6884 dest_cfun->has_simduid_loops = true;
6885 }
6886 if (aloop->force_vect)
6887 dest_cfun->has_force_vect_loops = true;
6888 }
6889 }
6890
6891 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6892 if (orig_block)
6893 {
6894 tree block;
6895 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6896 == NULL_TREE);
6897 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6898 = BLOCK_SUBBLOCKS (orig_block);
6899 for (block = BLOCK_SUBBLOCKS (orig_block);
6900 block; block = BLOCK_CHAIN (block))
6901 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6902 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6903 }
6904
6905 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6906 vars_map, dest_cfun->decl);
6907
6908 if (new_label_map)
6909 htab_delete (new_label_map);
6910 if (eh_map)
6911 pointer_map_destroy (eh_map);
6912 pointer_map_destroy (vars_map);
6913
6914 /* Rewire the entry and exit blocks. The successor to the entry
6915 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6916 the child function. Similarly, the predecessor of DEST_FN's
6917 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6918 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6919 various CFG manipulation function get to the right CFG.
6920
6921 FIXME, this is silly. The CFG ought to become a parameter to
6922 these helpers. */
6923 push_cfun (dest_cfun);
6924 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
6925 if (exit_bb)
6926 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
6927 pop_cfun ();
6928
6929 /* Back in the original function, the SESE region has disappeared,
6930 create a new basic block in its place. */
6931 bb = create_empty_bb (entry_pred[0]);
6932 if (current_loops)
6933 add_bb_to_loop (bb, loop);
6934 for (i = 0; i < num_entry_edges; i++)
6935 {
6936 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6937 e->probability = entry_prob[i];
6938 }
6939
6940 for (i = 0; i < num_exit_edges; i++)
6941 {
6942 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6943 e->probability = exit_prob[i];
6944 }
6945
6946 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6947 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6948 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6949 dom_bbs.release ();
6950
6951 if (exit_bb)
6952 {
6953 free (exit_prob);
6954 free (exit_flag);
6955 free (exit_succ);
6956 }
6957 free (entry_prob);
6958 free (entry_flag);
6959 free (entry_pred);
6960 bbs.release ();
6961
6962 return bb;
6963 }
6964
6965
6966 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6967 */
6968
6969 void
6970 dump_function_to_file (tree fndecl, FILE *file, int flags)
6971 {
6972 tree arg, var, old_current_fndecl = current_function_decl;
6973 struct function *dsf;
6974 bool ignore_topmost_bind = false, any_var = false;
6975 basic_block bb;
6976 tree chain;
6977 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6978 && decl_is_tm_clone (fndecl));
6979 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6980
6981 current_function_decl = fndecl;
6982 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6983
6984 arg = DECL_ARGUMENTS (fndecl);
6985 while (arg)
6986 {
6987 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6988 fprintf (file, " ");
6989 print_generic_expr (file, arg, dump_flags);
6990 if (flags & TDF_VERBOSE)
6991 print_node (file, "", arg, 4);
6992 if (DECL_CHAIN (arg))
6993 fprintf (file, ", ");
6994 arg = DECL_CHAIN (arg);
6995 }
6996 fprintf (file, ")\n");
6997
6998 if (flags & TDF_VERBOSE)
6999 print_node (file, "", fndecl, 2);
7000
7001 dsf = DECL_STRUCT_FUNCTION (fndecl);
7002 if (dsf && (flags & TDF_EH))
7003 dump_eh_tree (file, dsf);
7004
7005 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7006 {
7007 dump_node (fndecl, TDF_SLIM | flags, file);
7008 current_function_decl = old_current_fndecl;
7009 return;
7010 }
7011
7012 /* When GIMPLE is lowered, the variables are no longer available in
7013 BIND_EXPRs, so display them separately. */
7014 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7015 {
7016 unsigned ix;
7017 ignore_topmost_bind = true;
7018
7019 fprintf (file, "{\n");
7020 if (!vec_safe_is_empty (fun->local_decls))
7021 FOR_EACH_LOCAL_DECL (fun, ix, var)
7022 {
7023 print_generic_decl (file, var, flags);
7024 if (flags & TDF_VERBOSE)
7025 print_node (file, "", var, 4);
7026 fprintf (file, "\n");
7027
7028 any_var = true;
7029 }
7030 if (gimple_in_ssa_p (cfun))
7031 for (ix = 1; ix < num_ssa_names; ++ix)
7032 {
7033 tree name = ssa_name (ix);
7034 if (name && !SSA_NAME_VAR (name))
7035 {
7036 fprintf (file, " ");
7037 print_generic_expr (file, TREE_TYPE (name), flags);
7038 fprintf (file, " ");
7039 print_generic_expr (file, name, flags);
7040 fprintf (file, ";\n");
7041
7042 any_var = true;
7043 }
7044 }
7045 }
7046
7047 if (fun && fun->decl == fndecl
7048 && fun->cfg
7049 && basic_block_info_for_function (fun))
7050 {
7051 /* If the CFG has been built, emit a CFG-based dump. */
7052 if (!ignore_topmost_bind)
7053 fprintf (file, "{\n");
7054
7055 if (any_var && n_basic_blocks_for_fn (fun))
7056 fprintf (file, "\n");
7057
7058 FOR_EACH_BB_FN (bb, fun)
7059 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7060
7061 fprintf (file, "}\n");
7062 }
7063 else if (DECL_SAVED_TREE (fndecl) == NULL)
7064 {
7065 /* The function is now in GIMPLE form but the CFG has not been
7066 built yet. Emit the single sequence of GIMPLE statements
7067 that make up its body. */
7068 gimple_seq body = gimple_body (fndecl);
7069
7070 if (gimple_seq_first_stmt (body)
7071 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7072 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7073 print_gimple_seq (file, body, 0, flags);
7074 else
7075 {
7076 if (!ignore_topmost_bind)
7077 fprintf (file, "{\n");
7078
7079 if (any_var)
7080 fprintf (file, "\n");
7081
7082 print_gimple_seq (file, body, 2, flags);
7083 fprintf (file, "}\n");
7084 }
7085 }
7086 else
7087 {
7088 int indent;
7089
7090 /* Make a tree based dump. */
7091 chain = DECL_SAVED_TREE (fndecl);
7092 if (chain && TREE_CODE (chain) == BIND_EXPR)
7093 {
7094 if (ignore_topmost_bind)
7095 {
7096 chain = BIND_EXPR_BODY (chain);
7097 indent = 2;
7098 }
7099 else
7100 indent = 0;
7101 }
7102 else
7103 {
7104 if (!ignore_topmost_bind)
7105 fprintf (file, "{\n");
7106 indent = 2;
7107 }
7108
7109 if (any_var)
7110 fprintf (file, "\n");
7111
7112 print_generic_stmt_indented (file, chain, flags, indent);
7113 if (ignore_topmost_bind)
7114 fprintf (file, "}\n");
7115 }
7116
7117 if (flags & TDF_ENUMERATE_LOCALS)
7118 dump_enumerated_decls (file, flags);
7119 fprintf (file, "\n\n");
7120
7121 current_function_decl = old_current_fndecl;
7122 }
7123
7124 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7125
7126 DEBUG_FUNCTION void
7127 debug_function (tree fn, int flags)
7128 {
7129 dump_function_to_file (fn, stderr, flags);
7130 }
7131
7132
7133 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7134
7135 static void
7136 print_pred_bbs (FILE *file, basic_block bb)
7137 {
7138 edge e;
7139 edge_iterator ei;
7140
7141 FOR_EACH_EDGE (e, ei, bb->preds)
7142 fprintf (file, "bb_%d ", e->src->index);
7143 }
7144
7145
7146 /* Print on FILE the indexes for the successors of basic_block BB. */
7147
7148 static void
7149 print_succ_bbs (FILE *file, basic_block bb)
7150 {
7151 edge e;
7152 edge_iterator ei;
7153
7154 FOR_EACH_EDGE (e, ei, bb->succs)
7155 fprintf (file, "bb_%d ", e->dest->index);
7156 }
7157
7158 /* Print to FILE the basic block BB following the VERBOSITY level. */
7159
7160 void
7161 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7162 {
7163 char *s_indent = (char *) alloca ((size_t) indent + 1);
7164 memset ((void *) s_indent, ' ', (size_t) indent);
7165 s_indent[indent] = '\0';
7166
7167 /* Print basic_block's header. */
7168 if (verbosity >= 2)
7169 {
7170 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7171 print_pred_bbs (file, bb);
7172 fprintf (file, "}, succs = {");
7173 print_succ_bbs (file, bb);
7174 fprintf (file, "})\n");
7175 }
7176
7177 /* Print basic_block's body. */
7178 if (verbosity >= 3)
7179 {
7180 fprintf (file, "%s {\n", s_indent);
7181 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7182 fprintf (file, "%s }\n", s_indent);
7183 }
7184 }
7185
7186 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7187
7188 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7189 VERBOSITY level this outputs the contents of the loop, or just its
7190 structure. */
7191
7192 static void
7193 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7194 {
7195 char *s_indent;
7196 basic_block bb;
7197
7198 if (loop == NULL)
7199 return;
7200
7201 s_indent = (char *) alloca ((size_t) indent + 1);
7202 memset ((void *) s_indent, ' ', (size_t) indent);
7203 s_indent[indent] = '\0';
7204
7205 /* Print loop's header. */
7206 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7207 if (loop->header)
7208 fprintf (file, "header = %d", loop->header->index);
7209 else
7210 {
7211 fprintf (file, "deleted)\n");
7212 return;
7213 }
7214 if (loop->latch)
7215 fprintf (file, ", latch = %d", loop->latch->index);
7216 else
7217 fprintf (file, ", multiple latches");
7218 fprintf (file, ", niter = ");
7219 print_generic_expr (file, loop->nb_iterations, 0);
7220
7221 if (loop->any_upper_bound)
7222 {
7223 fprintf (file, ", upper_bound = ");
7224 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7225 }
7226
7227 if (loop->any_estimate)
7228 {
7229 fprintf (file, ", estimate = ");
7230 dump_double_int (file, loop->nb_iterations_estimate, true);
7231 }
7232 fprintf (file, ")\n");
7233
7234 /* Print loop's body. */
7235 if (verbosity >= 1)
7236 {
7237 fprintf (file, "%s{\n", s_indent);
7238 FOR_EACH_BB (bb)
7239 if (bb->loop_father == loop)
7240 print_loops_bb (file, bb, indent, verbosity);
7241
7242 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7243 fprintf (file, "%s}\n", s_indent);
7244 }
7245 }
7246
7247 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7248 spaces. Following VERBOSITY level this outputs the contents of the
7249 loop, or just its structure. */
7250
7251 static void
7252 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7253 int verbosity)
7254 {
7255 if (loop == NULL)
7256 return;
7257
7258 print_loop (file, loop, indent, verbosity);
7259 print_loop_and_siblings (file, loop->next, indent, verbosity);
7260 }
7261
7262 /* Follow a CFG edge from the entry point of the program, and on entry
7263 of a loop, pretty print the loop structure on FILE. */
7264
7265 void
7266 print_loops (FILE *file, int verbosity)
7267 {
7268 basic_block bb;
7269
7270 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7271 if (bb && bb->loop_father)
7272 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7273 }
7274
7275 /* Dump a loop. */
7276
7277 DEBUG_FUNCTION void
7278 debug (struct loop &ref)
7279 {
7280 print_loop (stderr, &ref, 0, /*verbosity*/0);
7281 }
7282
7283 DEBUG_FUNCTION void
7284 debug (struct loop *ptr)
7285 {
7286 if (ptr)
7287 debug (*ptr);
7288 else
7289 fprintf (stderr, "<nil>\n");
7290 }
7291
7292 /* Dump a loop verbosely. */
7293
7294 DEBUG_FUNCTION void
7295 debug_verbose (struct loop &ref)
7296 {
7297 print_loop (stderr, &ref, 0, /*verbosity*/3);
7298 }
7299
7300 DEBUG_FUNCTION void
7301 debug_verbose (struct loop *ptr)
7302 {
7303 if (ptr)
7304 debug (*ptr);
7305 else
7306 fprintf (stderr, "<nil>\n");
7307 }
7308
7309
7310 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7311
7312 DEBUG_FUNCTION void
7313 debug_loops (int verbosity)
7314 {
7315 print_loops (stderr, verbosity);
7316 }
7317
7318 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7319
7320 DEBUG_FUNCTION void
7321 debug_loop (struct loop *loop, int verbosity)
7322 {
7323 print_loop (stderr, loop, 0, verbosity);
7324 }
7325
7326 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7327 level. */
7328
7329 DEBUG_FUNCTION void
7330 debug_loop_num (unsigned num, int verbosity)
7331 {
7332 debug_loop (get_loop (cfun, num), verbosity);
7333 }
7334
7335 /* Return true if BB ends with a call, possibly followed by some
7336 instructions that must stay with the call. Return false,
7337 otherwise. */
7338
7339 static bool
7340 gimple_block_ends_with_call_p (basic_block bb)
7341 {
7342 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7343 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7344 }
7345
7346
7347 /* Return true if BB ends with a conditional branch. Return false,
7348 otherwise. */
7349
7350 static bool
7351 gimple_block_ends_with_condjump_p (const_basic_block bb)
7352 {
7353 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7354 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7355 }
7356
7357
7358 /* Return true if we need to add fake edge to exit at statement T.
7359 Helper function for gimple_flow_call_edges_add. */
7360
7361 static bool
7362 need_fake_edge_p (gimple t)
7363 {
7364 tree fndecl = NULL_TREE;
7365 int call_flags = 0;
7366
7367 /* NORETURN and LONGJMP calls already have an edge to exit.
7368 CONST and PURE calls do not need one.
7369 We don't currently check for CONST and PURE here, although
7370 it would be a good idea, because those attributes are
7371 figured out from the RTL in mark_constant_function, and
7372 the counter incrementation code from -fprofile-arcs
7373 leads to different results from -fbranch-probabilities. */
7374 if (is_gimple_call (t))
7375 {
7376 fndecl = gimple_call_fndecl (t);
7377 call_flags = gimple_call_flags (t);
7378 }
7379
7380 if (is_gimple_call (t)
7381 && fndecl
7382 && DECL_BUILT_IN (fndecl)
7383 && (call_flags & ECF_NOTHROW)
7384 && !(call_flags & ECF_RETURNS_TWICE)
7385 /* fork() doesn't really return twice, but the effect of
7386 wrapping it in __gcov_fork() which calls __gcov_flush()
7387 and clears the counters before forking has the same
7388 effect as returning twice. Force a fake edge. */
7389 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7390 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7391 return false;
7392
7393 if (is_gimple_call (t))
7394 {
7395 edge_iterator ei;
7396 edge e;
7397 basic_block bb;
7398
7399 if (!(call_flags & ECF_NORETURN))
7400 return true;
7401
7402 bb = gimple_bb (t);
7403 FOR_EACH_EDGE (e, ei, bb->succs)
7404 if ((e->flags & EDGE_FAKE) == 0)
7405 return true;
7406 }
7407
7408 if (gimple_code (t) == GIMPLE_ASM
7409 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7410 return true;
7411
7412 return false;
7413 }
7414
7415
7416 /* Add fake edges to the function exit for any non constant and non
7417 noreturn calls (or noreturn calls with EH/abnormal edges),
7418 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7419 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7420 that were split.
7421
7422 The goal is to expose cases in which entering a basic block does
7423 not imply that all subsequent instructions must be executed. */
7424
7425 static int
7426 gimple_flow_call_edges_add (sbitmap blocks)
7427 {
7428 int i;
7429 int blocks_split = 0;
7430 int last_bb = last_basic_block;
7431 bool check_last_block = false;
7432
7433 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7434 return 0;
7435
7436 if (! blocks)
7437 check_last_block = true;
7438 else
7439 check_last_block = bitmap_bit_p (blocks,
7440 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7441
7442 /* In the last basic block, before epilogue generation, there will be
7443 a fallthru edge to EXIT. Special care is required if the last insn
7444 of the last basic block is a call because make_edge folds duplicate
7445 edges, which would result in the fallthru edge also being marked
7446 fake, which would result in the fallthru edge being removed by
7447 remove_fake_edges, which would result in an invalid CFG.
7448
7449 Moreover, we can't elide the outgoing fake edge, since the block
7450 profiler needs to take this into account in order to solve the minimal
7451 spanning tree in the case that the call doesn't return.
7452
7453 Handle this by adding a dummy instruction in a new last basic block. */
7454 if (check_last_block)
7455 {
7456 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7457 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7458 gimple t = NULL;
7459
7460 if (!gsi_end_p (gsi))
7461 t = gsi_stmt (gsi);
7462
7463 if (t && need_fake_edge_p (t))
7464 {
7465 edge e;
7466
7467 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7468 if (e)
7469 {
7470 gsi_insert_on_edge (e, gimple_build_nop ());
7471 gsi_commit_edge_inserts ();
7472 }
7473 }
7474 }
7475
7476 /* Now add fake edges to the function exit for any non constant
7477 calls since there is no way that we can determine if they will
7478 return or not... */
7479 for (i = 0; i < last_bb; i++)
7480 {
7481 basic_block bb = BASIC_BLOCK (i);
7482 gimple_stmt_iterator gsi;
7483 gimple stmt, last_stmt;
7484
7485 if (!bb)
7486 continue;
7487
7488 if (blocks && !bitmap_bit_p (blocks, i))
7489 continue;
7490
7491 gsi = gsi_last_nondebug_bb (bb);
7492 if (!gsi_end_p (gsi))
7493 {
7494 last_stmt = gsi_stmt (gsi);
7495 do
7496 {
7497 stmt = gsi_stmt (gsi);
7498 if (need_fake_edge_p (stmt))
7499 {
7500 edge e;
7501
7502 /* The handling above of the final block before the
7503 epilogue should be enough to verify that there is
7504 no edge to the exit block in CFG already.
7505 Calling make_edge in such case would cause us to
7506 mark that edge as fake and remove it later. */
7507 #ifdef ENABLE_CHECKING
7508 if (stmt == last_stmt)
7509 {
7510 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7511 gcc_assert (e == NULL);
7512 }
7513 #endif
7514
7515 /* Note that the following may create a new basic block
7516 and renumber the existing basic blocks. */
7517 if (stmt != last_stmt)
7518 {
7519 e = split_block (bb, stmt);
7520 if (e)
7521 blocks_split++;
7522 }
7523 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7524 }
7525 gsi_prev (&gsi);
7526 }
7527 while (!gsi_end_p (gsi));
7528 }
7529 }
7530
7531 if (blocks_split)
7532 verify_flow_info ();
7533
7534 return blocks_split;
7535 }
7536
7537 /* Removes edge E and all the blocks dominated by it, and updates dominance
7538 information. The IL in E->src needs to be updated separately.
7539 If dominance info is not available, only the edge E is removed.*/
7540
7541 void
7542 remove_edge_and_dominated_blocks (edge e)
7543 {
7544 vec<basic_block> bbs_to_remove = vNULL;
7545 vec<basic_block> bbs_to_fix_dom = vNULL;
7546 bitmap df, df_idom;
7547 edge f;
7548 edge_iterator ei;
7549 bool none_removed = false;
7550 unsigned i;
7551 basic_block bb, dbb;
7552 bitmap_iterator bi;
7553
7554 if (!dom_info_available_p (CDI_DOMINATORS))
7555 {
7556 remove_edge (e);
7557 return;
7558 }
7559
7560 /* No updating is needed for edges to exit. */
7561 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7562 {
7563 if (cfgcleanup_altered_bbs)
7564 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7565 remove_edge (e);
7566 return;
7567 }
7568
7569 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7570 that is not dominated by E->dest, then this set is empty. Otherwise,
7571 all the basic blocks dominated by E->dest are removed.
7572
7573 Also, to DF_IDOM we store the immediate dominators of the blocks in
7574 the dominance frontier of E (i.e., of the successors of the
7575 removed blocks, if there are any, and of E->dest otherwise). */
7576 FOR_EACH_EDGE (f, ei, e->dest->preds)
7577 {
7578 if (f == e)
7579 continue;
7580
7581 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7582 {
7583 none_removed = true;
7584 break;
7585 }
7586 }
7587
7588 df = BITMAP_ALLOC (NULL);
7589 df_idom = BITMAP_ALLOC (NULL);
7590
7591 if (none_removed)
7592 bitmap_set_bit (df_idom,
7593 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7594 else
7595 {
7596 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7597 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7598 {
7599 FOR_EACH_EDGE (f, ei, bb->succs)
7600 {
7601 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7602 bitmap_set_bit (df, f->dest->index);
7603 }
7604 }
7605 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7606 bitmap_clear_bit (df, bb->index);
7607
7608 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7609 {
7610 bb = BASIC_BLOCK (i);
7611 bitmap_set_bit (df_idom,
7612 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7613 }
7614 }
7615
7616 if (cfgcleanup_altered_bbs)
7617 {
7618 /* Record the set of the altered basic blocks. */
7619 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7620 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7621 }
7622
7623 /* Remove E and the cancelled blocks. */
7624 if (none_removed)
7625 remove_edge (e);
7626 else
7627 {
7628 /* Walk backwards so as to get a chance to substitute all
7629 released DEFs into debug stmts. See
7630 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7631 details. */
7632 for (i = bbs_to_remove.length (); i-- > 0; )
7633 delete_basic_block (bbs_to_remove[i]);
7634 }
7635
7636 /* Update the dominance information. The immediate dominator may change only
7637 for blocks whose immediate dominator belongs to DF_IDOM:
7638
7639 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7640 removal. Let Z the arbitrary block such that idom(Z) = Y and
7641 Z dominates X after the removal. Before removal, there exists a path P
7642 from Y to X that avoids Z. Let F be the last edge on P that is
7643 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7644 dominates W, and because of P, Z does not dominate W), and W belongs to
7645 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7646 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7647 {
7648 bb = BASIC_BLOCK (i);
7649 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7650 dbb;
7651 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7652 bbs_to_fix_dom.safe_push (dbb);
7653 }
7654
7655 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7656
7657 BITMAP_FREE (df);
7658 BITMAP_FREE (df_idom);
7659 bbs_to_remove.release ();
7660 bbs_to_fix_dom.release ();
7661 }
7662
7663 /* Purge dead EH edges from basic block BB. */
7664
7665 bool
7666 gimple_purge_dead_eh_edges (basic_block bb)
7667 {
7668 bool changed = false;
7669 edge e;
7670 edge_iterator ei;
7671 gimple stmt = last_stmt (bb);
7672
7673 if (stmt && stmt_can_throw_internal (stmt))
7674 return false;
7675
7676 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7677 {
7678 if (e->flags & EDGE_EH)
7679 {
7680 remove_edge_and_dominated_blocks (e);
7681 changed = true;
7682 }
7683 else
7684 ei_next (&ei);
7685 }
7686
7687 return changed;
7688 }
7689
7690 /* Purge dead EH edges from basic block listed in BLOCKS. */
7691
7692 bool
7693 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7694 {
7695 bool changed = false;
7696 unsigned i;
7697 bitmap_iterator bi;
7698
7699 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7700 {
7701 basic_block bb = BASIC_BLOCK (i);
7702
7703 /* Earlier gimple_purge_dead_eh_edges could have removed
7704 this basic block already. */
7705 gcc_assert (bb || changed);
7706 if (bb != NULL)
7707 changed |= gimple_purge_dead_eh_edges (bb);
7708 }
7709
7710 return changed;
7711 }
7712
7713 /* Purge dead abnormal call edges from basic block BB. */
7714
7715 bool
7716 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7717 {
7718 bool changed = false;
7719 edge e;
7720 edge_iterator ei;
7721 gimple stmt = last_stmt (bb);
7722
7723 if (!cfun->has_nonlocal_label
7724 && !cfun->calls_setjmp)
7725 return false;
7726
7727 if (stmt && stmt_can_make_abnormal_goto (stmt))
7728 return false;
7729
7730 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7731 {
7732 if (e->flags & EDGE_ABNORMAL)
7733 {
7734 if (e->flags & EDGE_FALLTHRU)
7735 e->flags &= ~EDGE_ABNORMAL;
7736 else
7737 remove_edge_and_dominated_blocks (e);
7738 changed = true;
7739 }
7740 else
7741 ei_next (&ei);
7742 }
7743
7744 return changed;
7745 }
7746
7747 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7748
7749 bool
7750 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7751 {
7752 bool changed = false;
7753 unsigned i;
7754 bitmap_iterator bi;
7755
7756 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7757 {
7758 basic_block bb = BASIC_BLOCK (i);
7759
7760 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7761 this basic block already. */
7762 gcc_assert (bb || changed);
7763 if (bb != NULL)
7764 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7765 }
7766
7767 return changed;
7768 }
7769
7770 /* This function is called whenever a new edge is created or
7771 redirected. */
7772
7773 static void
7774 gimple_execute_on_growing_pred (edge e)
7775 {
7776 basic_block bb = e->dest;
7777
7778 if (!gimple_seq_empty_p (phi_nodes (bb)))
7779 reserve_phi_args_for_new_edge (bb);
7780 }
7781
7782 /* This function is called immediately before edge E is removed from
7783 the edge vector E->dest->preds. */
7784
7785 static void
7786 gimple_execute_on_shrinking_pred (edge e)
7787 {
7788 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7789 remove_phi_args (e);
7790 }
7791
7792 /*---------------------------------------------------------------------------
7793 Helper functions for Loop versioning
7794 ---------------------------------------------------------------------------*/
7795
7796 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7797 of 'first'. Both of them are dominated by 'new_head' basic block. When
7798 'new_head' was created by 'second's incoming edge it received phi arguments
7799 on the edge by split_edge(). Later, additional edge 'e' was created to
7800 connect 'new_head' and 'first'. Now this routine adds phi args on this
7801 additional edge 'e' that new_head to second edge received as part of edge
7802 splitting. */
7803
7804 static void
7805 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7806 basic_block new_head, edge e)
7807 {
7808 gimple phi1, phi2;
7809 gimple_stmt_iterator psi1, psi2;
7810 tree def;
7811 edge e2 = find_edge (new_head, second);
7812
7813 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7814 edge, we should always have an edge from NEW_HEAD to SECOND. */
7815 gcc_assert (e2 != NULL);
7816
7817 /* Browse all 'second' basic block phi nodes and add phi args to
7818 edge 'e' for 'first' head. PHI args are always in correct order. */
7819
7820 for (psi2 = gsi_start_phis (second),
7821 psi1 = gsi_start_phis (first);
7822 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7823 gsi_next (&psi2), gsi_next (&psi1))
7824 {
7825 phi1 = gsi_stmt (psi1);
7826 phi2 = gsi_stmt (psi2);
7827 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7828 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7829 }
7830 }
7831
7832
7833 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7834 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7835 the destination of the ELSE part. */
7836
7837 static void
7838 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7839 basic_block second_head ATTRIBUTE_UNUSED,
7840 basic_block cond_bb, void *cond_e)
7841 {
7842 gimple_stmt_iterator gsi;
7843 gimple new_cond_expr;
7844 tree cond_expr = (tree) cond_e;
7845 edge e0;
7846
7847 /* Build new conditional expr */
7848 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7849 NULL_TREE, NULL_TREE);
7850
7851 /* Add new cond in cond_bb. */
7852 gsi = gsi_last_bb (cond_bb);
7853 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7854
7855 /* Adjust edges appropriately to connect new head with first head
7856 as well as second head. */
7857 e0 = single_succ_edge (cond_bb);
7858 e0->flags &= ~EDGE_FALLTHRU;
7859 e0->flags |= EDGE_FALSE_VALUE;
7860 }
7861
7862
7863 /* Do book-keeping of basic block BB for the profile consistency checker.
7864 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7865 then do post-pass accounting. Store the counting in RECORD. */
7866 static void
7867 gimple_account_profile_record (basic_block bb, int after_pass,
7868 struct profile_record *record)
7869 {
7870 gimple_stmt_iterator i;
7871 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7872 {
7873 record->size[after_pass]
7874 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7875 if (profile_status == PROFILE_READ)
7876 record->time[after_pass]
7877 += estimate_num_insns (gsi_stmt (i),
7878 &eni_time_weights) * bb->count;
7879 else if (profile_status == PROFILE_GUESSED)
7880 record->time[after_pass]
7881 += estimate_num_insns (gsi_stmt (i),
7882 &eni_time_weights) * bb->frequency;
7883 }
7884 }
7885
7886 struct cfg_hooks gimple_cfg_hooks = {
7887 "gimple",
7888 gimple_verify_flow_info,
7889 gimple_dump_bb, /* dump_bb */
7890 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7891 create_bb, /* create_basic_block */
7892 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7893 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7894 gimple_can_remove_branch_p, /* can_remove_branch_p */
7895 remove_bb, /* delete_basic_block */
7896 gimple_split_block, /* split_block */
7897 gimple_move_block_after, /* move_block_after */
7898 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7899 gimple_merge_blocks, /* merge_blocks */
7900 gimple_predict_edge, /* predict_edge */
7901 gimple_predicted_by_p, /* predicted_by_p */
7902 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7903 gimple_duplicate_bb, /* duplicate_block */
7904 gimple_split_edge, /* split_edge */
7905 gimple_make_forwarder_block, /* make_forward_block */
7906 NULL, /* tidy_fallthru_edge */
7907 NULL, /* force_nonfallthru */
7908 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7909 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7910 gimple_flow_call_edges_add, /* flow_call_edges_add */
7911 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7912 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7913 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7914 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7915 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7916 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7917 flush_pending_stmts, /* flush_pending_stmts */
7918 gimple_empty_block_p, /* block_empty_p */
7919 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7920 gimple_account_profile_record,
7921 };
7922
7923
7924 /* Split all critical edges. */
7925
7926 static unsigned int
7927 split_critical_edges (void)
7928 {
7929 basic_block bb;
7930 edge e;
7931 edge_iterator ei;
7932
7933 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7934 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7935 mappings around the calls to split_edge. */
7936 start_recording_case_labels ();
7937 FOR_ALL_BB (bb)
7938 {
7939 FOR_EACH_EDGE (e, ei, bb->succs)
7940 {
7941 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7942 split_edge (e);
7943 /* PRE inserts statements to edges and expects that
7944 since split_critical_edges was done beforehand, committing edge
7945 insertions will not split more edges. In addition to critical
7946 edges we must split edges that have multiple successors and
7947 end by control flow statements, such as RESX.
7948 Go ahead and split them too. This matches the logic in
7949 gimple_find_edge_insert_loc. */
7950 else if ((!single_pred_p (e->dest)
7951 || !gimple_seq_empty_p (phi_nodes (e->dest))
7952 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7953 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
7954 && !(e->flags & EDGE_ABNORMAL))
7955 {
7956 gimple_stmt_iterator gsi;
7957
7958 gsi = gsi_last_bb (e->src);
7959 if (!gsi_end_p (gsi)
7960 && stmt_ends_bb_p (gsi_stmt (gsi))
7961 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7962 && !gimple_call_builtin_p (gsi_stmt (gsi),
7963 BUILT_IN_RETURN)))
7964 split_edge (e);
7965 }
7966 }
7967 }
7968 end_recording_case_labels ();
7969 return 0;
7970 }
7971
7972 namespace {
7973
7974 const pass_data pass_data_split_crit_edges =
7975 {
7976 GIMPLE_PASS, /* type */
7977 "crited", /* name */
7978 OPTGROUP_NONE, /* optinfo_flags */
7979 false, /* has_gate */
7980 true, /* has_execute */
7981 TV_TREE_SPLIT_EDGES, /* tv_id */
7982 PROP_cfg, /* properties_required */
7983 PROP_no_crit_edges, /* properties_provided */
7984 0, /* properties_destroyed */
7985 0, /* todo_flags_start */
7986 TODO_verify_flow, /* todo_flags_finish */
7987 };
7988
7989 class pass_split_crit_edges : public gimple_opt_pass
7990 {
7991 public:
7992 pass_split_crit_edges (gcc::context *ctxt)
7993 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
7994 {}
7995
7996 /* opt_pass methods: */
7997 unsigned int execute () { return split_critical_edges (); }
7998
7999 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8000 }; // class pass_split_crit_edges
8001
8002 } // anon namespace
8003
8004 gimple_opt_pass *
8005 make_pass_split_crit_edges (gcc::context *ctxt)
8006 {
8007 return new pass_split_crit_edges (ctxt);
8008 }
8009
8010
8011 /* Build a ternary operation and gimplify it. Emit code before GSI.
8012 Return the gimple_val holding the result. */
8013
8014 tree
8015 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8016 tree type, tree a, tree b, tree c)
8017 {
8018 tree ret;
8019 location_t loc = gimple_location (gsi_stmt (*gsi));
8020
8021 ret = fold_build3_loc (loc, code, type, a, b, c);
8022 STRIP_NOPS (ret);
8023
8024 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8025 GSI_SAME_STMT);
8026 }
8027
8028 /* Build a binary operation and gimplify it. Emit code before GSI.
8029 Return the gimple_val holding the result. */
8030
8031 tree
8032 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8033 tree type, tree a, tree b)
8034 {
8035 tree ret;
8036
8037 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8038 STRIP_NOPS (ret);
8039
8040 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8041 GSI_SAME_STMT);
8042 }
8043
8044 /* Build a unary operation and gimplify it. Emit code before GSI.
8045 Return the gimple_val holding the result. */
8046
8047 tree
8048 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8049 tree a)
8050 {
8051 tree ret;
8052
8053 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8054 STRIP_NOPS (ret);
8055
8056 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8057 GSI_SAME_STMT);
8058 }
8059
8060
8061 \f
8062 /* Emit return warnings. */
8063
8064 static unsigned int
8065 execute_warn_function_return (void)
8066 {
8067 source_location location;
8068 gimple last;
8069 edge e;
8070 edge_iterator ei;
8071
8072 if (!targetm.warn_func_return (cfun->decl))
8073 return 0;
8074
8075 /* If we have a path to EXIT, then we do return. */
8076 if (TREE_THIS_VOLATILE (cfun->decl)
8077 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
8078 {
8079 location = UNKNOWN_LOCATION;
8080 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8081 {
8082 last = last_stmt (e->src);
8083 if ((gimple_code (last) == GIMPLE_RETURN
8084 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8085 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8086 break;
8087 }
8088 if (location == UNKNOWN_LOCATION)
8089 location = cfun->function_end_locus;
8090 warning_at (location, 0, "%<noreturn%> function does return");
8091 }
8092
8093 /* If we see "return;" in some basic block, then we do reach the end
8094 without returning a value. */
8095 else if (warn_return_type
8096 && !TREE_NO_WARNING (cfun->decl)
8097 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
8098 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8099 {
8100 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8101 {
8102 gimple last = last_stmt (e->src);
8103 if (gimple_code (last) == GIMPLE_RETURN
8104 && gimple_return_retval (last) == NULL
8105 && !gimple_no_warning_p (last))
8106 {
8107 location = gimple_location (last);
8108 if (location == UNKNOWN_LOCATION)
8109 location = cfun->function_end_locus;
8110 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8111 TREE_NO_WARNING (cfun->decl) = 1;
8112 break;
8113 }
8114 }
8115 }
8116 return 0;
8117 }
8118
8119
8120 /* Given a basic block B which ends with a conditional and has
8121 precisely two successors, determine which of the edges is taken if
8122 the conditional is true and which is taken if the conditional is
8123 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8124
8125 void
8126 extract_true_false_edges_from_block (basic_block b,
8127 edge *true_edge,
8128 edge *false_edge)
8129 {
8130 edge e = EDGE_SUCC (b, 0);
8131
8132 if (e->flags & EDGE_TRUE_VALUE)
8133 {
8134 *true_edge = e;
8135 *false_edge = EDGE_SUCC (b, 1);
8136 }
8137 else
8138 {
8139 *false_edge = e;
8140 *true_edge = EDGE_SUCC (b, 1);
8141 }
8142 }
8143
8144 namespace {
8145
8146 const pass_data pass_data_warn_function_return =
8147 {
8148 GIMPLE_PASS, /* type */
8149 "*warn_function_return", /* name */
8150 OPTGROUP_NONE, /* optinfo_flags */
8151 false, /* has_gate */
8152 true, /* has_execute */
8153 TV_NONE, /* tv_id */
8154 PROP_cfg, /* properties_required */
8155 0, /* properties_provided */
8156 0, /* properties_destroyed */
8157 0, /* todo_flags_start */
8158 0, /* todo_flags_finish */
8159 };
8160
8161 class pass_warn_function_return : public gimple_opt_pass
8162 {
8163 public:
8164 pass_warn_function_return (gcc::context *ctxt)
8165 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8166 {}
8167
8168 /* opt_pass methods: */
8169 unsigned int execute () { return execute_warn_function_return (); }
8170
8171 }; // class pass_warn_function_return
8172
8173 } // anon namespace
8174
8175 gimple_opt_pass *
8176 make_pass_warn_function_return (gcc::context *ctxt)
8177 {
8178 return new pass_warn_function_return (ctxt);
8179 }
8180
8181 /* Walk a gimplified function and warn for functions whose return value is
8182 ignored and attribute((warn_unused_result)) is set. This is done before
8183 inlining, so we don't have to worry about that. */
8184
8185 static void
8186 do_warn_unused_result (gimple_seq seq)
8187 {
8188 tree fdecl, ftype;
8189 gimple_stmt_iterator i;
8190
8191 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8192 {
8193 gimple g = gsi_stmt (i);
8194
8195 switch (gimple_code (g))
8196 {
8197 case GIMPLE_BIND:
8198 do_warn_unused_result (gimple_bind_body (g));
8199 break;
8200 case GIMPLE_TRY:
8201 do_warn_unused_result (gimple_try_eval (g));
8202 do_warn_unused_result (gimple_try_cleanup (g));
8203 break;
8204 case GIMPLE_CATCH:
8205 do_warn_unused_result (gimple_catch_handler (g));
8206 break;
8207 case GIMPLE_EH_FILTER:
8208 do_warn_unused_result (gimple_eh_filter_failure (g));
8209 break;
8210
8211 case GIMPLE_CALL:
8212 if (gimple_call_lhs (g))
8213 break;
8214 if (gimple_call_internal_p (g))
8215 break;
8216
8217 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8218 LHS. All calls whose value is ignored should be
8219 represented like this. Look for the attribute. */
8220 fdecl = gimple_call_fndecl (g);
8221 ftype = gimple_call_fntype (g);
8222
8223 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8224 {
8225 location_t loc = gimple_location (g);
8226
8227 if (fdecl)
8228 warning_at (loc, OPT_Wunused_result,
8229 "ignoring return value of %qD, "
8230 "declared with attribute warn_unused_result",
8231 fdecl);
8232 else
8233 warning_at (loc, OPT_Wunused_result,
8234 "ignoring return value of function "
8235 "declared with attribute warn_unused_result");
8236 }
8237 break;
8238
8239 default:
8240 /* Not a container, not a call, or a call whose value is used. */
8241 break;
8242 }
8243 }
8244 }
8245
8246 static unsigned int
8247 run_warn_unused_result (void)
8248 {
8249 do_warn_unused_result (gimple_body (current_function_decl));
8250 return 0;
8251 }
8252
8253 static bool
8254 gate_warn_unused_result (void)
8255 {
8256 return flag_warn_unused_result;
8257 }
8258
8259 namespace {
8260
8261 const pass_data pass_data_warn_unused_result =
8262 {
8263 GIMPLE_PASS, /* type */
8264 "*warn_unused_result", /* name */
8265 OPTGROUP_NONE, /* optinfo_flags */
8266 true, /* has_gate */
8267 true, /* has_execute */
8268 TV_NONE, /* tv_id */
8269 PROP_gimple_any, /* properties_required */
8270 0, /* properties_provided */
8271 0, /* properties_destroyed */
8272 0, /* todo_flags_start */
8273 0, /* todo_flags_finish */
8274 };
8275
8276 class pass_warn_unused_result : public gimple_opt_pass
8277 {
8278 public:
8279 pass_warn_unused_result (gcc::context *ctxt)
8280 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8281 {}
8282
8283 /* opt_pass methods: */
8284 bool gate () { return gate_warn_unused_result (); }
8285 unsigned int execute () { return run_warn_unused_result (); }
8286
8287 }; // class pass_warn_unused_result
8288
8289 } // anon namespace
8290
8291 gimple_opt_pass *
8292 make_pass_warn_unused_result (gcc::context *ctxt)
8293 {
8294 return new pass_warn_unused_result (ctxt);
8295 }
8296
8297 /* IPA passes, compilation of earlier functions or inlining
8298 might have changed some properties, such as marked functions nothrow,
8299 pure, const or noreturn.
8300 Remove redundant edges and basic blocks, and create new ones if necessary.
8301
8302 This pass can't be executed as stand alone pass from pass manager, because
8303 in between inlining and this fixup the verify_flow_info would fail. */
8304
8305 unsigned int
8306 execute_fixup_cfg (void)
8307 {
8308 basic_block bb;
8309 gimple_stmt_iterator gsi;
8310 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8311 gcov_type count_scale;
8312 edge e;
8313 edge_iterator ei;
8314
8315 count_scale
8316 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8317 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8318
8319 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8320 cgraph_get_node (current_function_decl)->count;
8321 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8322 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8323 count_scale);
8324
8325 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8326 e->count = apply_scale (e->count, count_scale);
8327
8328 FOR_EACH_BB (bb)
8329 {
8330 bb->count = apply_scale (bb->count, count_scale);
8331 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8332 {
8333 gimple stmt = gsi_stmt (gsi);
8334 tree decl = is_gimple_call (stmt)
8335 ? gimple_call_fndecl (stmt)
8336 : NULL;
8337 if (decl)
8338 {
8339 int flags = gimple_call_flags (stmt);
8340 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8341 {
8342 if (gimple_purge_dead_abnormal_call_edges (bb))
8343 todo |= TODO_cleanup_cfg;
8344
8345 if (gimple_in_ssa_p (cfun))
8346 {
8347 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8348 update_stmt (stmt);
8349 }
8350 }
8351
8352 if (flags & ECF_NORETURN
8353 && fixup_noreturn_call (stmt))
8354 todo |= TODO_cleanup_cfg;
8355 }
8356
8357 if (maybe_clean_eh_stmt (stmt)
8358 && gimple_purge_dead_eh_edges (bb))
8359 todo |= TODO_cleanup_cfg;
8360 }
8361
8362 FOR_EACH_EDGE (e, ei, bb->succs)
8363 e->count = apply_scale (e->count, count_scale);
8364
8365 /* If we have a basic block with no successors that does not
8366 end with a control statement or a noreturn call end it with
8367 a call to __builtin_unreachable. This situation can occur
8368 when inlining a noreturn call that does in fact return. */
8369 if (EDGE_COUNT (bb->succs) == 0)
8370 {
8371 gimple stmt = last_stmt (bb);
8372 if (!stmt
8373 || (!is_ctrl_stmt (stmt)
8374 && (!is_gimple_call (stmt)
8375 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8376 {
8377 stmt = gimple_build_call
8378 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8379 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8380 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8381 }
8382 }
8383 }
8384 if (count_scale != REG_BR_PROB_BASE)
8385 compute_function_frequency ();
8386
8387 /* We just processed all calls. */
8388 if (cfun->gimple_df)
8389 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8390
8391 /* Dump a textual representation of the flowgraph. */
8392 if (dump_file)
8393 gimple_dump_cfg (dump_file, dump_flags);
8394
8395 if (current_loops
8396 && (todo & TODO_cleanup_cfg))
8397 loops_state_set (LOOPS_NEED_FIXUP);
8398
8399 return todo;
8400 }
8401
8402 namespace {
8403
8404 const pass_data pass_data_fixup_cfg =
8405 {
8406 GIMPLE_PASS, /* type */
8407 "*free_cfg_annotations", /* name */
8408 OPTGROUP_NONE, /* optinfo_flags */
8409 false, /* has_gate */
8410 true, /* has_execute */
8411 TV_NONE, /* tv_id */
8412 PROP_cfg, /* properties_required */
8413 0, /* properties_provided */
8414 0, /* properties_destroyed */
8415 0, /* todo_flags_start */
8416 0, /* todo_flags_finish */
8417 };
8418
8419 class pass_fixup_cfg : public gimple_opt_pass
8420 {
8421 public:
8422 pass_fixup_cfg (gcc::context *ctxt)
8423 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8424 {}
8425
8426 /* opt_pass methods: */
8427 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8428 unsigned int execute () { return execute_fixup_cfg (); }
8429
8430 }; // class pass_fixup_cfg
8431
8432 } // anon namespace
8433
8434 gimple_opt_pass *
8435 make_pass_fixup_cfg (gcc::context *ctxt)
8436 {
8437 return new pass_fixup_cfg (ctxt);
8438 }
8439
8440 /* Garbage collection support for edge_def. */
8441
8442 extern void gt_ggc_mx (tree&);
8443 extern void gt_ggc_mx (gimple&);
8444 extern void gt_ggc_mx (rtx&);
8445 extern void gt_ggc_mx (basic_block&);
8446
8447 void
8448 gt_ggc_mx (edge_def *e)
8449 {
8450 tree block = LOCATION_BLOCK (e->goto_locus);
8451 gt_ggc_mx (e->src);
8452 gt_ggc_mx (e->dest);
8453 if (current_ir_type () == IR_GIMPLE)
8454 gt_ggc_mx (e->insns.g);
8455 else
8456 gt_ggc_mx (e->insns.r);
8457 gt_ggc_mx (block);
8458 }
8459
8460 /* PCH support for edge_def. */
8461
8462 extern void gt_pch_nx (tree&);
8463 extern void gt_pch_nx (gimple&);
8464 extern void gt_pch_nx (rtx&);
8465 extern void gt_pch_nx (basic_block&);
8466
8467 void
8468 gt_pch_nx (edge_def *e)
8469 {
8470 tree block = LOCATION_BLOCK (e->goto_locus);
8471 gt_pch_nx (e->src);
8472 gt_pch_nx (e->dest);
8473 if (current_ir_type () == IR_GIMPLE)
8474 gt_pch_nx (e->insns.g);
8475 else
8476 gt_pch_nx (e->insns.r);
8477 gt_pch_nx (block);
8478 }
8479
8480 void
8481 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8482 {
8483 tree block = LOCATION_BLOCK (e->goto_locus);
8484 op (&(e->src), cookie);
8485 op (&(e->dest), cookie);
8486 if (current_ir_type () == IR_GIMPLE)
8487 op (&(e->insns.g), cookie);
8488 else
8489 op (&(e->insns.r), cookie);
8490 op (&(block), cookie);
8491 }