cfgloop.h (struct loop): Move force_vectorize down.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
71
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
74
75 /* Local declarations. */
76
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity = 20;
79
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
84
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
87
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
92
93 static struct pointer_map_t *edge_to_cases;
94
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
98
99 static bitmap touched_switch_bbs;
100
101 /* CFG statistics. */
102 struct cfg_stats_d
103 {
104 long num_merged_labels;
105 };
106
107 static struct cfg_stats_d cfg_stats;
108
109 /* Hash table to store last discriminator assigned for each locus. */
110 struct locus_discrim_map
111 {
112 location_t locus;
113 int discriminator;
114 };
115
116 /* Hashtable helpers. */
117
118 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
119 {
120 typedef locus_discrim_map value_type;
121 typedef locus_discrim_map compare_type;
122 static inline hashval_t hash (const value_type *);
123 static inline bool equal (const value_type *, const compare_type *);
124 };
125
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
128
129 inline hashval_t
130 locus_discrim_hasher::hash (const value_type *item)
131 {
132 return LOCATION_LINE (item->locus);
133 }
134
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
137
138 inline bool
139 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
140 {
141 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
142 }
143
144 static hash_table <locus_discrim_hasher> discriminator_per_locus;
145
146 /* Basic blocks and flowgraphs. */
147 static void make_blocks (gimple_seq);
148
149 /* Edges. */
150 static void make_edges (void);
151 static void assign_discriminators (void);
152 static void make_cond_expr_edges (basic_block);
153 static void make_gimple_switch_edges (basic_block);
154 static bool make_goto_expr_edges (basic_block);
155 static void make_gimple_asm_edges (basic_block);
156 static edge gimple_redirect_edge_and_branch (edge, basic_block);
157 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
158
159 /* Various helpers. */
160 static inline bool stmt_starts_bb_p (gimple, gimple);
161 static int gimple_verify_flow_info (void);
162 static void gimple_make_forwarder_block (edge);
163 static gimple first_non_label_stmt (basic_block);
164 static bool verify_gimple_transaction (gimple);
165
166 /* Flowgraph optimization and cleanup. */
167 static void gimple_merge_blocks (basic_block, basic_block);
168 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
169 static void remove_bb (basic_block);
170 static edge find_taken_edge_computed_goto (basic_block, tree);
171 static edge find_taken_edge_cond_expr (basic_block, tree);
172 static edge find_taken_edge_switch_expr (basic_block, tree);
173 static tree find_case_label_for_value (gimple, tree);
174
175 void
176 init_empty_tree_cfg_for_function (struct function *fn)
177 {
178 /* Initialize the basic block array. */
179 init_flow (fn);
180 profile_status_for_fn (fn) = PROFILE_ABSENT;
181 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
182 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
183 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
184 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
185 initial_cfg_capacity);
186
187 /* Build a mapping of labels to their associated blocks. */
188 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
189 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
190 initial_cfg_capacity);
191
192 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
193 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
194
195 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
196 = EXIT_BLOCK_PTR_FOR_FN (fn);
197 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
198 = ENTRY_BLOCK_PTR_FOR_FN (fn);
199 }
200
201 void
202 init_empty_tree_cfg (void)
203 {
204 init_empty_tree_cfg_for_function (cfun);
205 }
206
207 /*---------------------------------------------------------------------------
208 Create basic blocks
209 ---------------------------------------------------------------------------*/
210
211 /* Entry point to the CFG builder for trees. SEQ is the sequence of
212 statements to be added to the flowgraph. */
213
214 static void
215 build_gimple_cfg (gimple_seq seq)
216 {
217 /* Register specific gimple functions. */
218 gimple_register_cfg_hooks ();
219
220 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
221
222 init_empty_tree_cfg ();
223
224 make_blocks (seq);
225
226 /* Make sure there is always at least one block, even if it's empty. */
227 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
228 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
229
230 /* Adjust the size of the array. */
231 if (basic_block_info_for_fn (cfun)->length ()
232 < (size_t) n_basic_blocks_for_fn (cfun))
233 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
234 n_basic_blocks_for_fn (cfun));
235
236 /* To speed up statement iterator walks, we first purge dead labels. */
237 cleanup_dead_labels ();
238
239 /* Group case nodes to reduce the number of edges.
240 We do this after cleaning up dead labels because otherwise we miss
241 a lot of obvious case merging opportunities. */
242 group_case_labels ();
243
244 /* Create the edges of the flowgraph. */
245 discriminator_per_locus.create (13);
246 make_edges ();
247 assign_discriminators ();
248 cleanup_dead_labels ();
249 discriminator_per_locus.dispose ();
250 }
251
252
253 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
254 them and propagate the information to the loop. We assume that the
255 annotations come immediately before the condition of the loop. */
256
257 static void
258 replace_loop_annotate ()
259 {
260 struct loop *loop;
261 basic_block bb;
262 gimple_stmt_iterator gsi;
263 gimple stmt;
264
265 FOR_EACH_LOOP (loop, 0)
266 {
267 gsi = gsi_last_bb (loop->header);
268 stmt = gsi_stmt (gsi);
269 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
270 continue;
271 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 {
273 stmt = gsi_stmt (gsi);
274 if (gimple_code (stmt) != GIMPLE_CALL)
275 break;
276 if (!gimple_call_internal_p (stmt)
277 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
278 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
280 {
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_no_vector_kind:
285 loop->dont_vectorize = true;
286 break;
287 case annot_expr_vector_kind:
288 loop->force_vectorize = true;
289 cfun->has_force_vectorize_loops = true;
290 break;
291 default:
292 gcc_unreachable ();
293 }
294 stmt = gimple_build_assign (gimple_call_lhs (stmt),
295 gimple_call_arg (stmt, 0));
296 gsi_replace (&gsi, stmt, true);
297 }
298 }
299
300 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
301 FOR_EACH_BB_FN (bb, cfun)
302 {
303 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
304 {
305 stmt = gsi_stmt (gsi);
306 if (gimple_code (stmt) != GIMPLE_CALL)
307 break;
308 if (!gimple_call_internal_p (stmt)
309 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
310 break;
311 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
312 {
313 case annot_expr_ivdep_kind:
314 case annot_expr_no_vector_kind:
315 case annot_expr_vector_kind:
316 break;
317 default:
318 gcc_unreachable ();
319 }
320 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
321 stmt = gimple_build_assign (gimple_call_lhs (stmt),
322 gimple_call_arg (stmt, 0));
323 gsi_replace (&gsi, stmt, true);
324 }
325 }
326 }
327
328
329 static unsigned int
330 execute_build_cfg (void)
331 {
332 gimple_seq body = gimple_body (current_function_decl);
333
334 build_gimple_cfg (body);
335 gimple_set_body (current_function_decl, NULL);
336 if (dump_file && (dump_flags & TDF_DETAILS))
337 {
338 fprintf (dump_file, "Scope blocks:\n");
339 dump_scope_blocks (dump_file, dump_flags);
340 }
341 cleanup_tree_cfg ();
342 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
343 replace_loop_annotate ();
344 return 0;
345 }
346
347 namespace {
348
349 const pass_data pass_data_build_cfg =
350 {
351 GIMPLE_PASS, /* type */
352 "cfg", /* name */
353 OPTGROUP_NONE, /* optinfo_flags */
354 false, /* has_gate */
355 true, /* has_execute */
356 TV_TREE_CFG, /* tv_id */
357 PROP_gimple_leh, /* properties_required */
358 ( PROP_cfg | PROP_loops ), /* properties_provided */
359 0, /* properties_destroyed */
360 0, /* todo_flags_start */
361 TODO_verify_stmts, /* todo_flags_finish */
362 };
363
364 class pass_build_cfg : public gimple_opt_pass
365 {
366 public:
367 pass_build_cfg (gcc::context *ctxt)
368 : gimple_opt_pass (pass_data_build_cfg, ctxt)
369 {}
370
371 /* opt_pass methods: */
372 unsigned int execute () { return execute_build_cfg (); }
373
374 }; // class pass_build_cfg
375
376 } // anon namespace
377
378 gimple_opt_pass *
379 make_pass_build_cfg (gcc::context *ctxt)
380 {
381 return new pass_build_cfg (ctxt);
382 }
383
384
385 /* Return true if T is a computed goto. */
386
387 bool
388 computed_goto_p (gimple t)
389 {
390 return (gimple_code (t) == GIMPLE_GOTO
391 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
392 }
393
394 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
395 the other edge points to a bb with just __builtin_unreachable ().
396 I.e. return true for C->M edge in:
397 <bb C>:
398 ...
399 if (something)
400 goto <bb N>;
401 else
402 goto <bb M>;
403 <bb N>:
404 __builtin_unreachable ();
405 <bb M>: */
406
407 bool
408 assert_unreachable_fallthru_edge_p (edge e)
409 {
410 basic_block pred_bb = e->src;
411 gimple last = last_stmt (pred_bb);
412 if (last && gimple_code (last) == GIMPLE_COND)
413 {
414 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
415 if (other_bb == e->dest)
416 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
417 if (EDGE_COUNT (other_bb->succs) == 0)
418 {
419 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
420 gimple stmt;
421
422 if (gsi_end_p (gsi))
423 return false;
424 stmt = gsi_stmt (gsi);
425 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
426 {
427 gsi_next (&gsi);
428 if (gsi_end_p (gsi))
429 return false;
430 stmt = gsi_stmt (gsi);
431 }
432 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
433 }
434 }
435 return false;
436 }
437
438
439 /* Build a flowgraph for the sequence of stmts SEQ. */
440
441 static void
442 make_blocks (gimple_seq seq)
443 {
444 gimple_stmt_iterator i = gsi_start (seq);
445 gimple stmt = NULL;
446 bool start_new_block = true;
447 bool first_stmt_of_seq = true;
448 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
449
450 while (!gsi_end_p (i))
451 {
452 gimple prev_stmt;
453
454 prev_stmt = stmt;
455 stmt = gsi_stmt (i);
456
457 /* If the statement starts a new basic block or if we have determined
458 in a previous pass that we need to create a new block for STMT, do
459 so now. */
460 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
461 {
462 if (!first_stmt_of_seq)
463 gsi_split_seq_before (&i, &seq);
464 bb = create_basic_block (seq, NULL, bb);
465 start_new_block = false;
466 }
467
468 /* Now add STMT to BB and create the subgraphs for special statement
469 codes. */
470 gimple_set_bb (stmt, bb);
471
472 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
473 next iteration. */
474 if (stmt_ends_bb_p (stmt))
475 {
476 /* If the stmt can make abnormal goto use a new temporary
477 for the assignment to the LHS. This makes sure the old value
478 of the LHS is available on the abnormal edge. Otherwise
479 we will end up with overlapping life-ranges for abnormal
480 SSA names. */
481 if (gimple_has_lhs (stmt)
482 && stmt_can_make_abnormal_goto (stmt)
483 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
484 {
485 tree lhs = gimple_get_lhs (stmt);
486 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
487 gimple s = gimple_build_assign (lhs, tmp);
488 gimple_set_location (s, gimple_location (stmt));
489 gimple_set_block (s, gimple_block (stmt));
490 gimple_set_lhs (stmt, tmp);
491 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
492 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
493 DECL_GIMPLE_REG_P (tmp) = 1;
494 gsi_insert_after (&i, s, GSI_SAME_STMT);
495 }
496 start_new_block = true;
497 }
498
499 gsi_next (&i);
500 first_stmt_of_seq = false;
501 }
502 }
503
504
505 /* Create and return a new empty basic block after bb AFTER. */
506
507 static basic_block
508 create_bb (void *h, void *e, basic_block after)
509 {
510 basic_block bb;
511
512 gcc_assert (!e);
513
514 /* Create and initialize a new basic block. Since alloc_block uses
515 GC allocation that clears memory to allocate a basic block, we do
516 not have to clear the newly allocated basic block here. */
517 bb = alloc_block ();
518
519 bb->index = last_basic_block_for_fn (cfun);
520 bb->flags = BB_NEW;
521 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
522
523 /* Add the new block to the linked list of blocks. */
524 link_block (bb, after);
525
526 /* Grow the basic block array if needed. */
527 if ((size_t) last_basic_block_for_fn (cfun)
528 == basic_block_info_for_fn (cfun)->length ())
529 {
530 size_t new_size =
531 (last_basic_block_for_fn (cfun)
532 + (last_basic_block_for_fn (cfun) + 3) / 4);
533 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
534 }
535
536 /* Add the newly created block to the array. */
537 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
538
539 n_basic_blocks_for_fn (cfun)++;
540 last_basic_block_for_fn (cfun)++;
541
542 return bb;
543 }
544
545
546 /*---------------------------------------------------------------------------
547 Edge creation
548 ---------------------------------------------------------------------------*/
549
550 /* Fold COND_EXPR_COND of each COND_EXPR. */
551
552 void
553 fold_cond_expr_cond (void)
554 {
555 basic_block bb;
556
557 FOR_EACH_BB_FN (bb, cfun)
558 {
559 gimple stmt = last_stmt (bb);
560
561 if (stmt && gimple_code (stmt) == GIMPLE_COND)
562 {
563 location_t loc = gimple_location (stmt);
564 tree cond;
565 bool zerop, onep;
566
567 fold_defer_overflow_warnings ();
568 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
569 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
570 if (cond)
571 {
572 zerop = integer_zerop (cond);
573 onep = integer_onep (cond);
574 }
575 else
576 zerop = onep = false;
577
578 fold_undefer_overflow_warnings (zerop || onep,
579 stmt,
580 WARN_STRICT_OVERFLOW_CONDITIONAL);
581 if (zerop)
582 gimple_cond_make_false (stmt);
583 else if (onep)
584 gimple_cond_make_true (stmt);
585 }
586 }
587 }
588
589 /* If basic block BB has an abnormal edge to a basic block
590 containing IFN_ABNORMAL_DISPATCHER internal call, return
591 that the dispatcher's basic block, otherwise return NULL. */
592
593 basic_block
594 get_abnormal_succ_dispatcher (basic_block bb)
595 {
596 edge e;
597 edge_iterator ei;
598
599 FOR_EACH_EDGE (e, ei, bb->succs)
600 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
601 {
602 gimple_stmt_iterator gsi
603 = gsi_start_nondebug_after_labels_bb (e->dest);
604 gimple g = gsi_stmt (gsi);
605 if (g
606 && is_gimple_call (g)
607 && gimple_call_internal_p (g)
608 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
609 return e->dest;
610 }
611 return NULL;
612 }
613
614 /* Helper function for make_edges. Create a basic block with
615 with ABNORMAL_DISPATCHER internal call in it if needed, and
616 create abnormal edges from BBS to it and from it to FOR_BB
617 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
618
619 static void
620 handle_abnormal_edges (basic_block *dispatcher_bbs,
621 basic_block for_bb, int *bb_to_omp_idx,
622 auto_vec<basic_block> *bbs, bool computed_goto)
623 {
624 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
625 unsigned int idx = 0;
626 basic_block bb;
627 bool inner = false;
628
629 if (bb_to_omp_idx)
630 {
631 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
632 if (bb_to_omp_idx[for_bb->index] != 0)
633 inner = true;
634 }
635
636 /* If the dispatcher has been created already, then there are basic
637 blocks with abnormal edges to it, so just make a new edge to
638 for_bb. */
639 if (*dispatcher == NULL)
640 {
641 /* Check if there are any basic blocks that need to have
642 abnormal edges to this dispatcher. If there are none, return
643 early. */
644 if (bb_to_omp_idx == NULL)
645 {
646 if (bbs->is_empty ())
647 return;
648 }
649 else
650 {
651 FOR_EACH_VEC_ELT (*bbs, idx, bb)
652 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
653 break;
654 if (bb == NULL)
655 return;
656 }
657
658 /* Create the dispatcher bb. */
659 *dispatcher = create_basic_block (NULL, NULL, for_bb);
660 if (computed_goto)
661 {
662 /* Factor computed gotos into a common computed goto site. Also
663 record the location of that site so that we can un-factor the
664 gotos after we have converted back to normal form. */
665 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
666
667 /* Create the destination of the factored goto. Each original
668 computed goto will put its desired destination into this
669 variable and jump to the label we create immediately below. */
670 tree var = create_tmp_var (ptr_type_node, "gotovar");
671
672 /* Build a label for the new block which will contain the
673 factored computed goto. */
674 tree factored_label_decl
675 = create_artificial_label (UNKNOWN_LOCATION);
676 gimple factored_computed_goto_label
677 = gimple_build_label (factored_label_decl);
678 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
679
680 /* Build our new computed goto. */
681 gimple factored_computed_goto = gimple_build_goto (var);
682 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
683
684 FOR_EACH_VEC_ELT (*bbs, idx, bb)
685 {
686 if (bb_to_omp_idx
687 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
688 continue;
689
690 gsi = gsi_last_bb (bb);
691 gimple last = gsi_stmt (gsi);
692
693 gcc_assert (computed_goto_p (last));
694
695 /* Copy the original computed goto's destination into VAR. */
696 gimple assignment
697 = gimple_build_assign (var, gimple_goto_dest (last));
698 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
699
700 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
701 e->goto_locus = gimple_location (last);
702 gsi_remove (&gsi, true);
703 }
704 }
705 else
706 {
707 tree arg = inner ? boolean_true_node : boolean_false_node;
708 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
709 1, arg);
710 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
711 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
712
713 /* Create predecessor edges of the dispatcher. */
714 FOR_EACH_VEC_ELT (*bbs, idx, bb)
715 {
716 if (bb_to_omp_idx
717 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
718 continue;
719 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
720 }
721 }
722 }
723
724 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
725 }
726
727 /* Join all the blocks in the flowgraph. */
728
729 static void
730 make_edges (void)
731 {
732 basic_block bb;
733 struct omp_region *cur_region = NULL;
734 auto_vec<basic_block> ab_edge_goto;
735 auto_vec<basic_block> ab_edge_call;
736 int *bb_to_omp_idx = NULL;
737 int cur_omp_region_idx = 0;
738
739 /* Create an edge from entry to the first block with executable
740 statements in it. */
741 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
742 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
743 EDGE_FALLTHRU);
744
745 /* Traverse the basic block array placing edges. */
746 FOR_EACH_BB_FN (bb, cfun)
747 {
748 gimple last = last_stmt (bb);
749 bool fallthru;
750
751 if (bb_to_omp_idx)
752 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
753
754 if (last)
755 {
756 enum gimple_code code = gimple_code (last);
757 switch (code)
758 {
759 case GIMPLE_GOTO:
760 if (make_goto_expr_edges (bb))
761 ab_edge_goto.safe_push (bb);
762 fallthru = false;
763 break;
764 case GIMPLE_RETURN:
765 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
766 fallthru = false;
767 break;
768 case GIMPLE_COND:
769 make_cond_expr_edges (bb);
770 fallthru = false;
771 break;
772 case GIMPLE_SWITCH:
773 make_gimple_switch_edges (bb);
774 fallthru = false;
775 break;
776 case GIMPLE_RESX:
777 make_eh_edges (last);
778 fallthru = false;
779 break;
780 case GIMPLE_EH_DISPATCH:
781 fallthru = make_eh_dispatch_edges (last);
782 break;
783
784 case GIMPLE_CALL:
785 /* If this function receives a nonlocal goto, then we need to
786 make edges from this call site to all the nonlocal goto
787 handlers. */
788 if (stmt_can_make_abnormal_goto (last))
789 ab_edge_call.safe_push (bb);
790
791 /* If this statement has reachable exception handlers, then
792 create abnormal edges to them. */
793 make_eh_edges (last);
794
795 /* BUILTIN_RETURN is really a return statement. */
796 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
797 {
798 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
799 fallthru = false;
800 }
801 /* Some calls are known not to return. */
802 else
803 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
804 break;
805
806 case GIMPLE_ASSIGN:
807 /* A GIMPLE_ASSIGN may throw internally and thus be considered
808 control-altering. */
809 if (is_ctrl_altering_stmt (last))
810 make_eh_edges (last);
811 fallthru = true;
812 break;
813
814 case GIMPLE_ASM:
815 make_gimple_asm_edges (bb);
816 fallthru = true;
817 break;
818
819 CASE_GIMPLE_OMP:
820 fallthru = make_gimple_omp_edges (bb, &cur_region,
821 &cur_omp_region_idx);
822 if (cur_region && bb_to_omp_idx == NULL)
823 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
824 break;
825
826 case GIMPLE_TRANSACTION:
827 {
828 tree abort_label = gimple_transaction_label (last);
829 if (abort_label)
830 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
831 fallthru = true;
832 }
833 break;
834
835 default:
836 gcc_assert (!stmt_ends_bb_p (last));
837 fallthru = true;
838 }
839 }
840 else
841 fallthru = true;
842
843 if (fallthru)
844 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
845 }
846
847 /* Computed gotos are hell to deal with, especially if there are
848 lots of them with a large number of destinations. So we factor
849 them to a common computed goto location before we build the
850 edge list. After we convert back to normal form, we will un-factor
851 the computed gotos since factoring introduces an unwanted jump.
852 For non-local gotos and abnormal edges from calls to calls that return
853 twice or forced labels, factor the abnormal edges too, by having all
854 abnormal edges from the calls go to a common artificial basic block
855 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
856 basic block to all forced labels and calls returning twice.
857 We do this per-OpenMP structured block, because those regions
858 are guaranteed to be single entry single exit by the standard,
859 so it is not allowed to enter or exit such regions abnormally this way,
860 thus all computed gotos, non-local gotos and setjmp/longjmp calls
861 must not transfer control across SESE region boundaries. */
862 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
863 {
864 gimple_stmt_iterator gsi;
865 basic_block dispatcher_bb_array[2] = { NULL, NULL };
866 basic_block *dispatcher_bbs = dispatcher_bb_array;
867 int count = n_basic_blocks_for_fn (cfun);
868
869 if (bb_to_omp_idx)
870 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
871
872 FOR_EACH_BB_FN (bb, cfun)
873 {
874 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
875 {
876 gimple label_stmt = gsi_stmt (gsi);
877 tree target;
878
879 if (gimple_code (label_stmt) != GIMPLE_LABEL)
880 break;
881
882 target = gimple_label_label (label_stmt);
883
884 /* Make an edge to every label block that has been marked as a
885 potential target for a computed goto or a non-local goto. */
886 if (FORCED_LABEL (target))
887 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
888 &ab_edge_goto, true);
889 if (DECL_NONLOCAL (target))
890 {
891 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
892 &ab_edge_call, false);
893 break;
894 }
895 }
896
897 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
898 gsi_next_nondebug (&gsi);
899 if (!gsi_end_p (gsi))
900 {
901 /* Make an edge to every setjmp-like call. */
902 gimple call_stmt = gsi_stmt (gsi);
903 if (is_gimple_call (call_stmt)
904 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
905 || gimple_call_builtin_p (call_stmt,
906 BUILT_IN_SETJMP_RECEIVER)))
907 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
908 &ab_edge_call, false);
909 }
910 }
911
912 if (bb_to_omp_idx)
913 XDELETE (dispatcher_bbs);
914 }
915
916 XDELETE (bb_to_omp_idx);
917
918 free_omp_regions ();
919
920 /* Fold COND_EXPR_COND of each COND_EXPR. */
921 fold_cond_expr_cond ();
922 }
923
924 /* Find the next available discriminator value for LOCUS. The
925 discriminator distinguishes among several basic blocks that
926 share a common locus, allowing for more accurate sample-based
927 profiling. */
928
929 static int
930 next_discriminator_for_locus (location_t locus)
931 {
932 struct locus_discrim_map item;
933 struct locus_discrim_map **slot;
934
935 item.locus = locus;
936 item.discriminator = 0;
937 slot = discriminator_per_locus.find_slot_with_hash (
938 &item, LOCATION_LINE (locus), INSERT);
939 gcc_assert (slot);
940 if (*slot == HTAB_EMPTY_ENTRY)
941 {
942 *slot = XNEW (struct locus_discrim_map);
943 gcc_assert (*slot);
944 (*slot)->locus = locus;
945 (*slot)->discriminator = 0;
946 }
947 (*slot)->discriminator++;
948 return (*slot)->discriminator;
949 }
950
951 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
952
953 static bool
954 same_line_p (location_t locus1, location_t locus2)
955 {
956 expanded_location from, to;
957
958 if (locus1 == locus2)
959 return true;
960
961 from = expand_location (locus1);
962 to = expand_location (locus2);
963
964 if (from.line != to.line)
965 return false;
966 if (from.file == to.file)
967 return true;
968 return (from.file != NULL
969 && to.file != NULL
970 && filename_cmp (from.file, to.file) == 0);
971 }
972
973 /* Assign discriminators to each basic block. */
974
975 static void
976 assign_discriminators (void)
977 {
978 basic_block bb;
979
980 FOR_EACH_BB_FN (bb, cfun)
981 {
982 edge e;
983 edge_iterator ei;
984 gimple last = last_stmt (bb);
985 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
986
987 if (locus == UNKNOWN_LOCATION)
988 continue;
989
990 FOR_EACH_EDGE (e, ei, bb->succs)
991 {
992 gimple first = first_non_label_stmt (e->dest);
993 gimple last = last_stmt (e->dest);
994 if ((first && same_line_p (locus, gimple_location (first)))
995 || (last && same_line_p (locus, gimple_location (last))))
996 {
997 if (e->dest->discriminator != 0 && bb->discriminator == 0)
998 bb->discriminator = next_discriminator_for_locus (locus);
999 else
1000 e->dest->discriminator = next_discriminator_for_locus (locus);
1001 }
1002 }
1003 }
1004 }
1005
1006 /* Create the edges for a GIMPLE_COND starting at block BB. */
1007
1008 static void
1009 make_cond_expr_edges (basic_block bb)
1010 {
1011 gimple entry = last_stmt (bb);
1012 gimple then_stmt, else_stmt;
1013 basic_block then_bb, else_bb;
1014 tree then_label, else_label;
1015 edge e;
1016
1017 gcc_assert (entry);
1018 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1019
1020 /* Entry basic blocks for each component. */
1021 then_label = gimple_cond_true_label (entry);
1022 else_label = gimple_cond_false_label (entry);
1023 then_bb = label_to_block (then_label);
1024 else_bb = label_to_block (else_label);
1025 then_stmt = first_stmt (then_bb);
1026 else_stmt = first_stmt (else_bb);
1027
1028 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1029 e->goto_locus = gimple_location (then_stmt);
1030 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1031 if (e)
1032 e->goto_locus = gimple_location (else_stmt);
1033
1034 /* We do not need the labels anymore. */
1035 gimple_cond_set_true_label (entry, NULL_TREE);
1036 gimple_cond_set_false_label (entry, NULL_TREE);
1037 }
1038
1039
1040 /* Called for each element in the hash table (P) as we delete the
1041 edge to cases hash table.
1042
1043 Clear all the TREE_CHAINs to prevent problems with copying of
1044 SWITCH_EXPRs and structure sharing rules, then free the hash table
1045 element. */
1046
1047 static bool
1048 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
1049 void *data ATTRIBUTE_UNUSED)
1050 {
1051 tree t, next;
1052
1053 for (t = (tree) *value; t; t = next)
1054 {
1055 next = CASE_CHAIN (t);
1056 CASE_CHAIN (t) = NULL;
1057 }
1058
1059 *value = NULL;
1060 return true;
1061 }
1062
1063 /* Start recording information mapping edges to case labels. */
1064
1065 void
1066 start_recording_case_labels (void)
1067 {
1068 gcc_assert (edge_to_cases == NULL);
1069 edge_to_cases = pointer_map_create ();
1070 touched_switch_bbs = BITMAP_ALLOC (NULL);
1071 }
1072
1073 /* Return nonzero if we are recording information for case labels. */
1074
1075 static bool
1076 recording_case_labels_p (void)
1077 {
1078 return (edge_to_cases != NULL);
1079 }
1080
1081 /* Stop recording information mapping edges to case labels and
1082 remove any information we have recorded. */
1083 void
1084 end_recording_case_labels (void)
1085 {
1086 bitmap_iterator bi;
1087 unsigned i;
1088 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
1089 pointer_map_destroy (edge_to_cases);
1090 edge_to_cases = NULL;
1091 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1092 {
1093 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1094 if (bb)
1095 {
1096 gimple stmt = last_stmt (bb);
1097 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1098 group_case_labels_stmt (stmt);
1099 }
1100 }
1101 BITMAP_FREE (touched_switch_bbs);
1102 }
1103
1104 /* If we are inside a {start,end}_recording_cases block, then return
1105 a chain of CASE_LABEL_EXPRs from T which reference E.
1106
1107 Otherwise return NULL. */
1108
1109 static tree
1110 get_cases_for_edge (edge e, gimple t)
1111 {
1112 void **slot;
1113 size_t i, n;
1114
1115 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1116 chains available. Return NULL so the caller can detect this case. */
1117 if (!recording_case_labels_p ())
1118 return NULL;
1119
1120 slot = pointer_map_contains (edge_to_cases, e);
1121 if (slot)
1122 return (tree) *slot;
1123
1124 /* If we did not find E in the hash table, then this must be the first
1125 time we have been queried for information about E & T. Add all the
1126 elements from T to the hash table then perform the query again. */
1127
1128 n = gimple_switch_num_labels (t);
1129 for (i = 0; i < n; i++)
1130 {
1131 tree elt = gimple_switch_label (t, i);
1132 tree lab = CASE_LABEL (elt);
1133 basic_block label_bb = label_to_block (lab);
1134 edge this_edge = find_edge (e->src, label_bb);
1135
1136 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1137 a new chain. */
1138 slot = pointer_map_insert (edge_to_cases, this_edge);
1139 CASE_CHAIN (elt) = (tree) *slot;
1140 *slot = elt;
1141 }
1142
1143 return (tree) *pointer_map_contains (edge_to_cases, e);
1144 }
1145
1146 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1147
1148 static void
1149 make_gimple_switch_edges (basic_block bb)
1150 {
1151 gimple entry = last_stmt (bb);
1152 size_t i, n;
1153
1154 n = gimple_switch_num_labels (entry);
1155
1156 for (i = 0; i < n; ++i)
1157 {
1158 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1159 basic_block label_bb = label_to_block (lab);
1160 make_edge (bb, label_bb, 0);
1161 }
1162 }
1163
1164
1165 /* Return the basic block holding label DEST. */
1166
1167 basic_block
1168 label_to_block_fn (struct function *ifun, tree dest)
1169 {
1170 int uid = LABEL_DECL_UID (dest);
1171
1172 /* We would die hard when faced by an undefined label. Emit a label to
1173 the very first basic block. This will hopefully make even the dataflow
1174 and undefined variable warnings quite right. */
1175 if (seen_error () && uid < 0)
1176 {
1177 gimple_stmt_iterator gsi =
1178 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1179 gimple stmt;
1180
1181 stmt = gimple_build_label (dest);
1182 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1183 uid = LABEL_DECL_UID (dest);
1184 }
1185 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1186 return NULL;
1187 return (*ifun->cfg->x_label_to_block_map)[uid];
1188 }
1189
1190 /* Create edges for a goto statement at block BB. Returns true
1191 if abnormal edges should be created. */
1192
1193 static bool
1194 make_goto_expr_edges (basic_block bb)
1195 {
1196 gimple_stmt_iterator last = gsi_last_bb (bb);
1197 gimple goto_t = gsi_stmt (last);
1198
1199 /* A simple GOTO creates normal edges. */
1200 if (simple_goto_p (goto_t))
1201 {
1202 tree dest = gimple_goto_dest (goto_t);
1203 basic_block label_bb = label_to_block (dest);
1204 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1205 e->goto_locus = gimple_location (goto_t);
1206 gsi_remove (&last, true);
1207 return false;
1208 }
1209
1210 /* A computed GOTO creates abnormal edges. */
1211 return true;
1212 }
1213
1214 /* Create edges for an asm statement with labels at block BB. */
1215
1216 static void
1217 make_gimple_asm_edges (basic_block bb)
1218 {
1219 gimple stmt = last_stmt (bb);
1220 int i, n = gimple_asm_nlabels (stmt);
1221
1222 for (i = 0; i < n; ++i)
1223 {
1224 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1225 basic_block label_bb = label_to_block (label);
1226 make_edge (bb, label_bb, 0);
1227 }
1228 }
1229
1230 /*---------------------------------------------------------------------------
1231 Flowgraph analysis
1232 ---------------------------------------------------------------------------*/
1233
1234 /* Cleanup useless labels in basic blocks. This is something we wish
1235 to do early because it allows us to group case labels before creating
1236 the edges for the CFG, and it speeds up block statement iterators in
1237 all passes later on.
1238 We rerun this pass after CFG is created, to get rid of the labels that
1239 are no longer referenced. After then we do not run it any more, since
1240 (almost) no new labels should be created. */
1241
1242 /* A map from basic block index to the leading label of that block. */
1243 static struct label_record
1244 {
1245 /* The label. */
1246 tree label;
1247
1248 /* True if the label is referenced from somewhere. */
1249 bool used;
1250 } *label_for_bb;
1251
1252 /* Given LABEL return the first label in the same basic block. */
1253
1254 static tree
1255 main_block_label (tree label)
1256 {
1257 basic_block bb = label_to_block (label);
1258 tree main_label = label_for_bb[bb->index].label;
1259
1260 /* label_to_block possibly inserted undefined label into the chain. */
1261 if (!main_label)
1262 {
1263 label_for_bb[bb->index].label = label;
1264 main_label = label;
1265 }
1266
1267 label_for_bb[bb->index].used = true;
1268 return main_label;
1269 }
1270
1271 /* Clean up redundant labels within the exception tree. */
1272
1273 static void
1274 cleanup_dead_labels_eh (void)
1275 {
1276 eh_landing_pad lp;
1277 eh_region r;
1278 tree lab;
1279 int i;
1280
1281 if (cfun->eh == NULL)
1282 return;
1283
1284 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1285 if (lp && lp->post_landing_pad)
1286 {
1287 lab = main_block_label (lp->post_landing_pad);
1288 if (lab != lp->post_landing_pad)
1289 {
1290 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1291 EH_LANDING_PAD_NR (lab) = lp->index;
1292 }
1293 }
1294
1295 FOR_ALL_EH_REGION (r)
1296 switch (r->type)
1297 {
1298 case ERT_CLEANUP:
1299 case ERT_MUST_NOT_THROW:
1300 break;
1301
1302 case ERT_TRY:
1303 {
1304 eh_catch c;
1305 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1306 {
1307 lab = c->label;
1308 if (lab)
1309 c->label = main_block_label (lab);
1310 }
1311 }
1312 break;
1313
1314 case ERT_ALLOWED_EXCEPTIONS:
1315 lab = r->u.allowed.label;
1316 if (lab)
1317 r->u.allowed.label = main_block_label (lab);
1318 break;
1319 }
1320 }
1321
1322
1323 /* Cleanup redundant labels. This is a three-step process:
1324 1) Find the leading label for each block.
1325 2) Redirect all references to labels to the leading labels.
1326 3) Cleanup all useless labels. */
1327
1328 void
1329 cleanup_dead_labels (void)
1330 {
1331 basic_block bb;
1332 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1333
1334 /* Find a suitable label for each block. We use the first user-defined
1335 label if there is one, or otherwise just the first label we see. */
1336 FOR_EACH_BB_FN (bb, cfun)
1337 {
1338 gimple_stmt_iterator i;
1339
1340 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1341 {
1342 tree label;
1343 gimple stmt = gsi_stmt (i);
1344
1345 if (gimple_code (stmt) != GIMPLE_LABEL)
1346 break;
1347
1348 label = gimple_label_label (stmt);
1349
1350 /* If we have not yet seen a label for the current block,
1351 remember this one and see if there are more labels. */
1352 if (!label_for_bb[bb->index].label)
1353 {
1354 label_for_bb[bb->index].label = label;
1355 continue;
1356 }
1357
1358 /* If we did see a label for the current block already, but it
1359 is an artificially created label, replace it if the current
1360 label is a user defined label. */
1361 if (!DECL_ARTIFICIAL (label)
1362 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1363 {
1364 label_for_bb[bb->index].label = label;
1365 break;
1366 }
1367 }
1368 }
1369
1370 /* Now redirect all jumps/branches to the selected label.
1371 First do so for each block ending in a control statement. */
1372 FOR_EACH_BB_FN (bb, cfun)
1373 {
1374 gimple stmt = last_stmt (bb);
1375 tree label, new_label;
1376
1377 if (!stmt)
1378 continue;
1379
1380 switch (gimple_code (stmt))
1381 {
1382 case GIMPLE_COND:
1383 label = gimple_cond_true_label (stmt);
1384 if (label)
1385 {
1386 new_label = main_block_label (label);
1387 if (new_label != label)
1388 gimple_cond_set_true_label (stmt, new_label);
1389 }
1390
1391 label = gimple_cond_false_label (stmt);
1392 if (label)
1393 {
1394 new_label = main_block_label (label);
1395 if (new_label != label)
1396 gimple_cond_set_false_label (stmt, new_label);
1397 }
1398 break;
1399
1400 case GIMPLE_SWITCH:
1401 {
1402 size_t i, n = gimple_switch_num_labels (stmt);
1403
1404 /* Replace all destination labels. */
1405 for (i = 0; i < n; ++i)
1406 {
1407 tree case_label = gimple_switch_label (stmt, i);
1408 label = CASE_LABEL (case_label);
1409 new_label = main_block_label (label);
1410 if (new_label != label)
1411 CASE_LABEL (case_label) = new_label;
1412 }
1413 break;
1414 }
1415
1416 case GIMPLE_ASM:
1417 {
1418 int i, n = gimple_asm_nlabels (stmt);
1419
1420 for (i = 0; i < n; ++i)
1421 {
1422 tree cons = gimple_asm_label_op (stmt, i);
1423 tree label = main_block_label (TREE_VALUE (cons));
1424 TREE_VALUE (cons) = label;
1425 }
1426 break;
1427 }
1428
1429 /* We have to handle gotos until they're removed, and we don't
1430 remove them until after we've created the CFG edges. */
1431 case GIMPLE_GOTO:
1432 if (!computed_goto_p (stmt))
1433 {
1434 label = gimple_goto_dest (stmt);
1435 new_label = main_block_label (label);
1436 if (new_label != label)
1437 gimple_goto_set_dest (stmt, new_label);
1438 }
1439 break;
1440
1441 case GIMPLE_TRANSACTION:
1442 {
1443 tree label = gimple_transaction_label (stmt);
1444 if (label)
1445 {
1446 tree new_label = main_block_label (label);
1447 if (new_label != label)
1448 gimple_transaction_set_label (stmt, new_label);
1449 }
1450 }
1451 break;
1452
1453 default:
1454 break;
1455 }
1456 }
1457
1458 /* Do the same for the exception region tree labels. */
1459 cleanup_dead_labels_eh ();
1460
1461 /* Finally, purge dead labels. All user-defined labels and labels that
1462 can be the target of non-local gotos and labels which have their
1463 address taken are preserved. */
1464 FOR_EACH_BB_FN (bb, cfun)
1465 {
1466 gimple_stmt_iterator i;
1467 tree label_for_this_bb = label_for_bb[bb->index].label;
1468
1469 if (!label_for_this_bb)
1470 continue;
1471
1472 /* If the main label of the block is unused, we may still remove it. */
1473 if (!label_for_bb[bb->index].used)
1474 label_for_this_bb = NULL;
1475
1476 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1477 {
1478 tree label;
1479 gimple stmt = gsi_stmt (i);
1480
1481 if (gimple_code (stmt) != GIMPLE_LABEL)
1482 break;
1483
1484 label = gimple_label_label (stmt);
1485
1486 if (label == label_for_this_bb
1487 || !DECL_ARTIFICIAL (label)
1488 || DECL_NONLOCAL (label)
1489 || FORCED_LABEL (label))
1490 gsi_next (&i);
1491 else
1492 gsi_remove (&i, true);
1493 }
1494 }
1495
1496 free (label_for_bb);
1497 }
1498
1499 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1500 the ones jumping to the same label.
1501 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1502
1503 void
1504 group_case_labels_stmt (gimple stmt)
1505 {
1506 int old_size = gimple_switch_num_labels (stmt);
1507 int i, j, new_size = old_size;
1508 basic_block default_bb = NULL;
1509
1510 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1511
1512 /* Look for possible opportunities to merge cases. */
1513 i = 1;
1514 while (i < old_size)
1515 {
1516 tree base_case, base_high;
1517 basic_block base_bb;
1518
1519 base_case = gimple_switch_label (stmt, i);
1520
1521 gcc_assert (base_case);
1522 base_bb = label_to_block (CASE_LABEL (base_case));
1523
1524 /* Discard cases that have the same destination as the
1525 default case. */
1526 if (base_bb == default_bb)
1527 {
1528 gimple_switch_set_label (stmt, i, NULL_TREE);
1529 i++;
1530 new_size--;
1531 continue;
1532 }
1533
1534 base_high = CASE_HIGH (base_case)
1535 ? CASE_HIGH (base_case)
1536 : CASE_LOW (base_case);
1537 i++;
1538
1539 /* Try to merge case labels. Break out when we reach the end
1540 of the label vector or when we cannot merge the next case
1541 label with the current one. */
1542 while (i < old_size)
1543 {
1544 tree merge_case = gimple_switch_label (stmt, i);
1545 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1546 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1547
1548 /* Merge the cases if they jump to the same place,
1549 and their ranges are consecutive. */
1550 if (merge_bb == base_bb
1551 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1552 {
1553 base_high = CASE_HIGH (merge_case) ?
1554 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1555 CASE_HIGH (base_case) = base_high;
1556 gimple_switch_set_label (stmt, i, NULL_TREE);
1557 new_size--;
1558 i++;
1559 }
1560 else
1561 break;
1562 }
1563 }
1564
1565 /* Compress the case labels in the label vector, and adjust the
1566 length of the vector. */
1567 for (i = 0, j = 0; i < new_size; i++)
1568 {
1569 while (! gimple_switch_label (stmt, j))
1570 j++;
1571 gimple_switch_set_label (stmt, i,
1572 gimple_switch_label (stmt, j++));
1573 }
1574
1575 gcc_assert (new_size <= old_size);
1576 gimple_switch_set_num_labels (stmt, new_size);
1577 }
1578
1579 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1580 and scan the sorted vector of cases. Combine the ones jumping to the
1581 same label. */
1582
1583 void
1584 group_case_labels (void)
1585 {
1586 basic_block bb;
1587
1588 FOR_EACH_BB_FN (bb, cfun)
1589 {
1590 gimple stmt = last_stmt (bb);
1591 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1592 group_case_labels_stmt (stmt);
1593 }
1594 }
1595
1596 /* Checks whether we can merge block B into block A. */
1597
1598 static bool
1599 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1600 {
1601 gimple stmt;
1602 gimple_stmt_iterator gsi;
1603
1604 if (!single_succ_p (a))
1605 return false;
1606
1607 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1608 return false;
1609
1610 if (single_succ (a) != b)
1611 return false;
1612
1613 if (!single_pred_p (b))
1614 return false;
1615
1616 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1617 return false;
1618
1619 /* If A ends by a statement causing exceptions or something similar, we
1620 cannot merge the blocks. */
1621 stmt = last_stmt (a);
1622 if (stmt && stmt_ends_bb_p (stmt))
1623 return false;
1624
1625 /* Do not allow a block with only a non-local label to be merged. */
1626 if (stmt
1627 && gimple_code (stmt) == GIMPLE_LABEL
1628 && DECL_NONLOCAL (gimple_label_label (stmt)))
1629 return false;
1630
1631 /* Examine the labels at the beginning of B. */
1632 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1633 {
1634 tree lab;
1635 stmt = gsi_stmt (gsi);
1636 if (gimple_code (stmt) != GIMPLE_LABEL)
1637 break;
1638 lab = gimple_label_label (stmt);
1639
1640 /* Do not remove user forced labels or for -O0 any user labels. */
1641 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1642 return false;
1643 }
1644
1645 /* Protect the loop latches. */
1646 if (current_loops && b->loop_father->latch == b)
1647 return false;
1648
1649 /* It must be possible to eliminate all phi nodes in B. If ssa form
1650 is not up-to-date and a name-mapping is registered, we cannot eliminate
1651 any phis. Symbols marked for renaming are never a problem though. */
1652 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1653 {
1654 gimple phi = gsi_stmt (gsi);
1655 /* Technically only new names matter. */
1656 if (name_registered_for_update_p (PHI_RESULT (phi)))
1657 return false;
1658 }
1659
1660 /* When not optimizing, don't merge if we'd lose goto_locus. */
1661 if (!optimize
1662 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1663 {
1664 location_t goto_locus = single_succ_edge (a)->goto_locus;
1665 gimple_stmt_iterator prev, next;
1666 prev = gsi_last_nondebug_bb (a);
1667 next = gsi_after_labels (b);
1668 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1669 gsi_next_nondebug (&next);
1670 if ((gsi_end_p (prev)
1671 || gimple_location (gsi_stmt (prev)) != goto_locus)
1672 && (gsi_end_p (next)
1673 || gimple_location (gsi_stmt (next)) != goto_locus))
1674 return false;
1675 }
1676
1677 return true;
1678 }
1679
1680 /* Replaces all uses of NAME by VAL. */
1681
1682 void
1683 replace_uses_by (tree name, tree val)
1684 {
1685 imm_use_iterator imm_iter;
1686 use_operand_p use;
1687 gimple stmt;
1688 edge e;
1689
1690 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1691 {
1692 /* Mark the block if we change the last stmt in it. */
1693 if (cfgcleanup_altered_bbs
1694 && stmt_ends_bb_p (stmt))
1695 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1696
1697 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1698 {
1699 replace_exp (use, val);
1700
1701 if (gimple_code (stmt) == GIMPLE_PHI)
1702 {
1703 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1704 if (e->flags & EDGE_ABNORMAL)
1705 {
1706 /* This can only occur for virtual operands, since
1707 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1708 would prevent replacement. */
1709 gcc_checking_assert (virtual_operand_p (name));
1710 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1711 }
1712 }
1713 }
1714
1715 if (gimple_code (stmt) != GIMPLE_PHI)
1716 {
1717 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1718 gimple orig_stmt = stmt;
1719 size_t i;
1720
1721 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1722 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1723 only change sth from non-invariant to invariant, and only
1724 when propagating constants. */
1725 if (is_gimple_min_invariant (val))
1726 for (i = 0; i < gimple_num_ops (stmt); i++)
1727 {
1728 tree op = gimple_op (stmt, i);
1729 /* Operands may be empty here. For example, the labels
1730 of a GIMPLE_COND are nulled out following the creation
1731 of the corresponding CFG edges. */
1732 if (op && TREE_CODE (op) == ADDR_EXPR)
1733 recompute_tree_invariant_for_addr_expr (op);
1734 }
1735
1736 if (fold_stmt (&gsi))
1737 stmt = gsi_stmt (gsi);
1738
1739 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1740 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1741
1742 update_stmt (stmt);
1743 }
1744 }
1745
1746 gcc_checking_assert (has_zero_uses (name));
1747
1748 /* Also update the trees stored in loop structures. */
1749 if (current_loops)
1750 {
1751 struct loop *loop;
1752
1753 FOR_EACH_LOOP (loop, 0)
1754 {
1755 substitute_in_loop_info (loop, name, val);
1756 }
1757 }
1758 }
1759
1760 /* Merge block B into block A. */
1761
1762 static void
1763 gimple_merge_blocks (basic_block a, basic_block b)
1764 {
1765 gimple_stmt_iterator last, gsi, psi;
1766
1767 if (dump_file)
1768 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1769
1770 /* Remove all single-valued PHI nodes from block B of the form
1771 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1772 gsi = gsi_last_bb (a);
1773 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1774 {
1775 gimple phi = gsi_stmt (psi);
1776 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1777 gimple copy;
1778 bool may_replace_uses = (virtual_operand_p (def)
1779 || may_propagate_copy (def, use));
1780
1781 /* In case we maintain loop closed ssa form, do not propagate arguments
1782 of loop exit phi nodes. */
1783 if (current_loops
1784 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1785 && !virtual_operand_p (def)
1786 && TREE_CODE (use) == SSA_NAME
1787 && a->loop_father != b->loop_father)
1788 may_replace_uses = false;
1789
1790 if (!may_replace_uses)
1791 {
1792 gcc_assert (!virtual_operand_p (def));
1793
1794 /* Note that just emitting the copies is fine -- there is no problem
1795 with ordering of phi nodes. This is because A is the single
1796 predecessor of B, therefore results of the phi nodes cannot
1797 appear as arguments of the phi nodes. */
1798 copy = gimple_build_assign (def, use);
1799 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1800 remove_phi_node (&psi, false);
1801 }
1802 else
1803 {
1804 /* If we deal with a PHI for virtual operands, we can simply
1805 propagate these without fussing with folding or updating
1806 the stmt. */
1807 if (virtual_operand_p (def))
1808 {
1809 imm_use_iterator iter;
1810 use_operand_p use_p;
1811 gimple stmt;
1812
1813 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1814 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1815 SET_USE (use_p, use);
1816
1817 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1818 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1819 }
1820 else
1821 replace_uses_by (def, use);
1822
1823 remove_phi_node (&psi, true);
1824 }
1825 }
1826
1827 /* Ensure that B follows A. */
1828 move_block_after (b, a);
1829
1830 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1831 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1832
1833 /* Remove labels from B and set gimple_bb to A for other statements. */
1834 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1835 {
1836 gimple stmt = gsi_stmt (gsi);
1837 if (gimple_code (stmt) == GIMPLE_LABEL)
1838 {
1839 tree label = gimple_label_label (stmt);
1840 int lp_nr;
1841
1842 gsi_remove (&gsi, false);
1843
1844 /* Now that we can thread computed gotos, we might have
1845 a situation where we have a forced label in block B
1846 However, the label at the start of block B might still be
1847 used in other ways (think about the runtime checking for
1848 Fortran assigned gotos). So we can not just delete the
1849 label. Instead we move the label to the start of block A. */
1850 if (FORCED_LABEL (label))
1851 {
1852 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1853 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1854 }
1855 /* Other user labels keep around in a form of a debug stmt. */
1856 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1857 {
1858 gimple dbg = gimple_build_debug_bind (label,
1859 integer_zero_node,
1860 stmt);
1861 gimple_debug_bind_reset_value (dbg);
1862 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1863 }
1864
1865 lp_nr = EH_LANDING_PAD_NR (label);
1866 if (lp_nr)
1867 {
1868 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1869 lp->post_landing_pad = NULL;
1870 }
1871 }
1872 else
1873 {
1874 gimple_set_bb (stmt, a);
1875 gsi_next (&gsi);
1876 }
1877 }
1878
1879 /* Merge the sequences. */
1880 last = gsi_last_bb (a);
1881 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1882 set_bb_seq (b, NULL);
1883
1884 if (cfgcleanup_altered_bbs)
1885 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1886 }
1887
1888
1889 /* Return the one of two successors of BB that is not reachable by a
1890 complex edge, if there is one. Else, return BB. We use
1891 this in optimizations that use post-dominators for their heuristics,
1892 to catch the cases in C++ where function calls are involved. */
1893
1894 basic_block
1895 single_noncomplex_succ (basic_block bb)
1896 {
1897 edge e0, e1;
1898 if (EDGE_COUNT (bb->succs) != 2)
1899 return bb;
1900
1901 e0 = EDGE_SUCC (bb, 0);
1902 e1 = EDGE_SUCC (bb, 1);
1903 if (e0->flags & EDGE_COMPLEX)
1904 return e1->dest;
1905 if (e1->flags & EDGE_COMPLEX)
1906 return e0->dest;
1907
1908 return bb;
1909 }
1910
1911 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1912
1913 void
1914 notice_special_calls (gimple call)
1915 {
1916 int flags = gimple_call_flags (call);
1917
1918 if (flags & ECF_MAY_BE_ALLOCA)
1919 cfun->calls_alloca = true;
1920 if (flags & ECF_RETURNS_TWICE)
1921 cfun->calls_setjmp = true;
1922 }
1923
1924
1925 /* Clear flags set by notice_special_calls. Used by dead code removal
1926 to update the flags. */
1927
1928 void
1929 clear_special_calls (void)
1930 {
1931 cfun->calls_alloca = false;
1932 cfun->calls_setjmp = false;
1933 }
1934
1935 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1936
1937 static void
1938 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1939 {
1940 /* Since this block is no longer reachable, we can just delete all
1941 of its PHI nodes. */
1942 remove_phi_nodes (bb);
1943
1944 /* Remove edges to BB's successors. */
1945 while (EDGE_COUNT (bb->succs) > 0)
1946 remove_edge (EDGE_SUCC (bb, 0));
1947 }
1948
1949
1950 /* Remove statements of basic block BB. */
1951
1952 static void
1953 remove_bb (basic_block bb)
1954 {
1955 gimple_stmt_iterator i;
1956
1957 if (dump_file)
1958 {
1959 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1960 if (dump_flags & TDF_DETAILS)
1961 {
1962 dump_bb (dump_file, bb, 0, dump_flags);
1963 fprintf (dump_file, "\n");
1964 }
1965 }
1966
1967 if (current_loops)
1968 {
1969 struct loop *loop = bb->loop_father;
1970
1971 /* If a loop gets removed, clean up the information associated
1972 with it. */
1973 if (loop->latch == bb
1974 || loop->header == bb)
1975 free_numbers_of_iterations_estimates_loop (loop);
1976 }
1977
1978 /* Remove all the instructions in the block. */
1979 if (bb_seq (bb) != NULL)
1980 {
1981 /* Walk backwards so as to get a chance to substitute all
1982 released DEFs into debug stmts. See
1983 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1984 details. */
1985 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1986 {
1987 gimple stmt = gsi_stmt (i);
1988 if (gimple_code (stmt) == GIMPLE_LABEL
1989 && (FORCED_LABEL (gimple_label_label (stmt))
1990 || DECL_NONLOCAL (gimple_label_label (stmt))))
1991 {
1992 basic_block new_bb;
1993 gimple_stmt_iterator new_gsi;
1994
1995 /* A non-reachable non-local label may still be referenced.
1996 But it no longer needs to carry the extra semantics of
1997 non-locality. */
1998 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1999 {
2000 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2001 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2002 }
2003
2004 new_bb = bb->prev_bb;
2005 new_gsi = gsi_start_bb (new_bb);
2006 gsi_remove (&i, false);
2007 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2008 }
2009 else
2010 {
2011 /* Release SSA definitions if we are in SSA. Note that we
2012 may be called when not in SSA. For example,
2013 final_cleanup calls this function via
2014 cleanup_tree_cfg. */
2015 if (gimple_in_ssa_p (cfun))
2016 release_defs (stmt);
2017
2018 gsi_remove (&i, true);
2019 }
2020
2021 if (gsi_end_p (i))
2022 i = gsi_last_bb (bb);
2023 else
2024 gsi_prev (&i);
2025 }
2026 }
2027
2028 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2029 bb->il.gimple.seq = NULL;
2030 bb->il.gimple.phi_nodes = NULL;
2031 }
2032
2033
2034 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2035 predicate VAL, return the edge that will be taken out of the block.
2036 If VAL does not match a unique edge, NULL is returned. */
2037
2038 edge
2039 find_taken_edge (basic_block bb, tree val)
2040 {
2041 gimple stmt;
2042
2043 stmt = last_stmt (bb);
2044
2045 gcc_assert (stmt);
2046 gcc_assert (is_ctrl_stmt (stmt));
2047
2048 if (val == NULL)
2049 return NULL;
2050
2051 if (!is_gimple_min_invariant (val))
2052 return NULL;
2053
2054 if (gimple_code (stmt) == GIMPLE_COND)
2055 return find_taken_edge_cond_expr (bb, val);
2056
2057 if (gimple_code (stmt) == GIMPLE_SWITCH)
2058 return find_taken_edge_switch_expr (bb, val);
2059
2060 if (computed_goto_p (stmt))
2061 {
2062 /* Only optimize if the argument is a label, if the argument is
2063 not a label then we can not construct a proper CFG.
2064
2065 It may be the case that we only need to allow the LABEL_REF to
2066 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2067 appear inside a LABEL_EXPR just to be safe. */
2068 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2069 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2070 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2071 return NULL;
2072 }
2073
2074 gcc_unreachable ();
2075 }
2076
2077 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2078 statement, determine which of the outgoing edges will be taken out of the
2079 block. Return NULL if either edge may be taken. */
2080
2081 static edge
2082 find_taken_edge_computed_goto (basic_block bb, tree val)
2083 {
2084 basic_block dest;
2085 edge e = NULL;
2086
2087 dest = label_to_block (val);
2088 if (dest)
2089 {
2090 e = find_edge (bb, dest);
2091 gcc_assert (e != NULL);
2092 }
2093
2094 return e;
2095 }
2096
2097 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2098 statement, determine which of the two edges will be taken out of the
2099 block. Return NULL if either edge may be taken. */
2100
2101 static edge
2102 find_taken_edge_cond_expr (basic_block bb, tree val)
2103 {
2104 edge true_edge, false_edge;
2105
2106 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2107
2108 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2109 return (integer_zerop (val) ? false_edge : true_edge);
2110 }
2111
2112 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2113 statement, determine which edge will be taken out of the block. Return
2114 NULL if any edge may be taken. */
2115
2116 static edge
2117 find_taken_edge_switch_expr (basic_block bb, tree val)
2118 {
2119 basic_block dest_bb;
2120 edge e;
2121 gimple switch_stmt;
2122 tree taken_case;
2123
2124 switch_stmt = last_stmt (bb);
2125 taken_case = find_case_label_for_value (switch_stmt, val);
2126 dest_bb = label_to_block (CASE_LABEL (taken_case));
2127
2128 e = find_edge (bb, dest_bb);
2129 gcc_assert (e);
2130 return e;
2131 }
2132
2133
2134 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2135 We can make optimal use here of the fact that the case labels are
2136 sorted: We can do a binary search for a case matching VAL. */
2137
2138 static tree
2139 find_case_label_for_value (gimple switch_stmt, tree val)
2140 {
2141 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2142 tree default_case = gimple_switch_default_label (switch_stmt);
2143
2144 for (low = 0, high = n; high - low > 1; )
2145 {
2146 size_t i = (high + low) / 2;
2147 tree t = gimple_switch_label (switch_stmt, i);
2148 int cmp;
2149
2150 /* Cache the result of comparing CASE_LOW and val. */
2151 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2152
2153 if (cmp > 0)
2154 high = i;
2155 else
2156 low = i;
2157
2158 if (CASE_HIGH (t) == NULL)
2159 {
2160 /* A singe-valued case label. */
2161 if (cmp == 0)
2162 return t;
2163 }
2164 else
2165 {
2166 /* A case range. We can only handle integer ranges. */
2167 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2168 return t;
2169 }
2170 }
2171
2172 return default_case;
2173 }
2174
2175
2176 /* Dump a basic block on stderr. */
2177
2178 void
2179 gimple_debug_bb (basic_block bb)
2180 {
2181 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2182 }
2183
2184
2185 /* Dump basic block with index N on stderr. */
2186
2187 basic_block
2188 gimple_debug_bb_n (int n)
2189 {
2190 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2191 return BASIC_BLOCK_FOR_FN (cfun, n);
2192 }
2193
2194
2195 /* Dump the CFG on stderr.
2196
2197 FLAGS are the same used by the tree dumping functions
2198 (see TDF_* in dumpfile.h). */
2199
2200 void
2201 gimple_debug_cfg (int flags)
2202 {
2203 gimple_dump_cfg (stderr, flags);
2204 }
2205
2206
2207 /* Dump the program showing basic block boundaries on the given FILE.
2208
2209 FLAGS are the same used by the tree dumping functions (see TDF_* in
2210 tree.h). */
2211
2212 void
2213 gimple_dump_cfg (FILE *file, int flags)
2214 {
2215 if (flags & TDF_DETAILS)
2216 {
2217 dump_function_header (file, current_function_decl, flags);
2218 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2219 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2220 last_basic_block_for_fn (cfun));
2221
2222 brief_dump_cfg (file, flags | TDF_COMMENT);
2223 fprintf (file, "\n");
2224 }
2225
2226 if (flags & TDF_STATS)
2227 dump_cfg_stats (file);
2228
2229 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2230 }
2231
2232
2233 /* Dump CFG statistics on FILE. */
2234
2235 void
2236 dump_cfg_stats (FILE *file)
2237 {
2238 static long max_num_merged_labels = 0;
2239 unsigned long size, total = 0;
2240 long num_edges;
2241 basic_block bb;
2242 const char * const fmt_str = "%-30s%-13s%12s\n";
2243 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2244 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2245 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2246 const char *funcname = current_function_name ();
2247
2248 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2249
2250 fprintf (file, "---------------------------------------------------------\n");
2251 fprintf (file, fmt_str, "", " Number of ", "Memory");
2252 fprintf (file, fmt_str, "", " instances ", "used ");
2253 fprintf (file, "---------------------------------------------------------\n");
2254
2255 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2256 total += size;
2257 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2258 SCALE (size), LABEL (size));
2259
2260 num_edges = 0;
2261 FOR_EACH_BB_FN (bb, cfun)
2262 num_edges += EDGE_COUNT (bb->succs);
2263 size = num_edges * sizeof (struct edge_def);
2264 total += size;
2265 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2266
2267 fprintf (file, "---------------------------------------------------------\n");
2268 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2269 LABEL (total));
2270 fprintf (file, "---------------------------------------------------------\n");
2271 fprintf (file, "\n");
2272
2273 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2274 max_num_merged_labels = cfg_stats.num_merged_labels;
2275
2276 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2277 cfg_stats.num_merged_labels, max_num_merged_labels);
2278
2279 fprintf (file, "\n");
2280 }
2281
2282
2283 /* Dump CFG statistics on stderr. Keep extern so that it's always
2284 linked in the final executable. */
2285
2286 DEBUG_FUNCTION void
2287 debug_cfg_stats (void)
2288 {
2289 dump_cfg_stats (stderr);
2290 }
2291
2292 /*---------------------------------------------------------------------------
2293 Miscellaneous helpers
2294 ---------------------------------------------------------------------------*/
2295
2296 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2297 flow. Transfers of control flow associated with EH are excluded. */
2298
2299 static bool
2300 call_can_make_abnormal_goto (gimple t)
2301 {
2302 /* If the function has no non-local labels, then a call cannot make an
2303 abnormal transfer of control. */
2304 if (!cfun->has_nonlocal_label
2305 && !cfun->calls_setjmp)
2306 return false;
2307
2308 /* Likewise if the call has no side effects. */
2309 if (!gimple_has_side_effects (t))
2310 return false;
2311
2312 /* Likewise if the called function is leaf. */
2313 if (gimple_call_flags (t) & ECF_LEAF)
2314 return false;
2315
2316 return true;
2317 }
2318
2319
2320 /* Return true if T can make an abnormal transfer of control flow.
2321 Transfers of control flow associated with EH are excluded. */
2322
2323 bool
2324 stmt_can_make_abnormal_goto (gimple t)
2325 {
2326 if (computed_goto_p (t))
2327 return true;
2328 if (is_gimple_call (t))
2329 return call_can_make_abnormal_goto (t);
2330 return false;
2331 }
2332
2333
2334 /* Return true if T represents a stmt that always transfers control. */
2335
2336 bool
2337 is_ctrl_stmt (gimple t)
2338 {
2339 switch (gimple_code (t))
2340 {
2341 case GIMPLE_COND:
2342 case GIMPLE_SWITCH:
2343 case GIMPLE_GOTO:
2344 case GIMPLE_RETURN:
2345 case GIMPLE_RESX:
2346 return true;
2347 default:
2348 return false;
2349 }
2350 }
2351
2352
2353 /* Return true if T is a statement that may alter the flow of control
2354 (e.g., a call to a non-returning function). */
2355
2356 bool
2357 is_ctrl_altering_stmt (gimple t)
2358 {
2359 gcc_assert (t);
2360
2361 switch (gimple_code (t))
2362 {
2363 case GIMPLE_CALL:
2364 {
2365 int flags = gimple_call_flags (t);
2366
2367 /* A call alters control flow if it can make an abnormal goto. */
2368 if (call_can_make_abnormal_goto (t))
2369 return true;
2370
2371 /* A call also alters control flow if it does not return. */
2372 if (flags & ECF_NORETURN)
2373 return true;
2374
2375 /* TM ending statements have backedges out of the transaction.
2376 Return true so we split the basic block containing them.
2377 Note that the TM_BUILTIN test is merely an optimization. */
2378 if ((flags & ECF_TM_BUILTIN)
2379 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2380 return true;
2381
2382 /* BUILT_IN_RETURN call is same as return statement. */
2383 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2384 return true;
2385 }
2386 break;
2387
2388 case GIMPLE_EH_DISPATCH:
2389 /* EH_DISPATCH branches to the individual catch handlers at
2390 this level of a try or allowed-exceptions region. It can
2391 fallthru to the next statement as well. */
2392 return true;
2393
2394 case GIMPLE_ASM:
2395 if (gimple_asm_nlabels (t) > 0)
2396 return true;
2397 break;
2398
2399 CASE_GIMPLE_OMP:
2400 /* OpenMP directives alter control flow. */
2401 return true;
2402
2403 case GIMPLE_TRANSACTION:
2404 /* A transaction start alters control flow. */
2405 return true;
2406
2407 default:
2408 break;
2409 }
2410
2411 /* If a statement can throw, it alters control flow. */
2412 return stmt_can_throw_internal (t);
2413 }
2414
2415
2416 /* Return true if T is a simple local goto. */
2417
2418 bool
2419 simple_goto_p (gimple t)
2420 {
2421 return (gimple_code (t) == GIMPLE_GOTO
2422 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2423 }
2424
2425
2426 /* Return true if STMT should start a new basic block. PREV_STMT is
2427 the statement preceding STMT. It is used when STMT is a label or a
2428 case label. Labels should only start a new basic block if their
2429 previous statement wasn't a label. Otherwise, sequence of labels
2430 would generate unnecessary basic blocks that only contain a single
2431 label. */
2432
2433 static inline bool
2434 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2435 {
2436 if (stmt == NULL)
2437 return false;
2438
2439 /* Labels start a new basic block only if the preceding statement
2440 wasn't a label of the same type. This prevents the creation of
2441 consecutive blocks that have nothing but a single label. */
2442 if (gimple_code (stmt) == GIMPLE_LABEL)
2443 {
2444 /* Nonlocal and computed GOTO targets always start a new block. */
2445 if (DECL_NONLOCAL (gimple_label_label (stmt))
2446 || FORCED_LABEL (gimple_label_label (stmt)))
2447 return true;
2448
2449 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2450 {
2451 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2452 return true;
2453
2454 cfg_stats.num_merged_labels++;
2455 return false;
2456 }
2457 else
2458 return true;
2459 }
2460 else if (gimple_code (stmt) == GIMPLE_CALL
2461 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2462 /* setjmp acts similar to a nonlocal GOTO target and thus should
2463 start a new block. */
2464 return true;
2465
2466 return false;
2467 }
2468
2469
2470 /* Return true if T should end a basic block. */
2471
2472 bool
2473 stmt_ends_bb_p (gimple t)
2474 {
2475 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2476 }
2477
2478 /* Remove block annotations and other data structures. */
2479
2480 void
2481 delete_tree_cfg_annotations (void)
2482 {
2483 vec_free (label_to_block_map_for_fn (cfun));
2484 }
2485
2486
2487 /* Return the first statement in basic block BB. */
2488
2489 gimple
2490 first_stmt (basic_block bb)
2491 {
2492 gimple_stmt_iterator i = gsi_start_bb (bb);
2493 gimple stmt = NULL;
2494
2495 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2496 {
2497 gsi_next (&i);
2498 stmt = NULL;
2499 }
2500 return stmt;
2501 }
2502
2503 /* Return the first non-label statement in basic block BB. */
2504
2505 static gimple
2506 first_non_label_stmt (basic_block bb)
2507 {
2508 gimple_stmt_iterator i = gsi_start_bb (bb);
2509 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2510 gsi_next (&i);
2511 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2512 }
2513
2514 /* Return the last statement in basic block BB. */
2515
2516 gimple
2517 last_stmt (basic_block bb)
2518 {
2519 gimple_stmt_iterator i = gsi_last_bb (bb);
2520 gimple stmt = NULL;
2521
2522 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2523 {
2524 gsi_prev (&i);
2525 stmt = NULL;
2526 }
2527 return stmt;
2528 }
2529
2530 /* Return the last statement of an otherwise empty block. Return NULL
2531 if the block is totally empty, or if it contains more than one
2532 statement. */
2533
2534 gimple
2535 last_and_only_stmt (basic_block bb)
2536 {
2537 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2538 gimple last, prev;
2539
2540 if (gsi_end_p (i))
2541 return NULL;
2542
2543 last = gsi_stmt (i);
2544 gsi_prev_nondebug (&i);
2545 if (gsi_end_p (i))
2546 return last;
2547
2548 /* Empty statements should no longer appear in the instruction stream.
2549 Everything that might have appeared before should be deleted by
2550 remove_useless_stmts, and the optimizers should just gsi_remove
2551 instead of smashing with build_empty_stmt.
2552
2553 Thus the only thing that should appear here in a block containing
2554 one executable statement is a label. */
2555 prev = gsi_stmt (i);
2556 if (gimple_code (prev) == GIMPLE_LABEL)
2557 return last;
2558 else
2559 return NULL;
2560 }
2561
2562 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2563
2564 static void
2565 reinstall_phi_args (edge new_edge, edge old_edge)
2566 {
2567 edge_var_map_vector *v;
2568 edge_var_map *vm;
2569 int i;
2570 gimple_stmt_iterator phis;
2571
2572 v = redirect_edge_var_map_vector (old_edge);
2573 if (!v)
2574 return;
2575
2576 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2577 v->iterate (i, &vm) && !gsi_end_p (phis);
2578 i++, gsi_next (&phis))
2579 {
2580 gimple phi = gsi_stmt (phis);
2581 tree result = redirect_edge_var_map_result (vm);
2582 tree arg = redirect_edge_var_map_def (vm);
2583
2584 gcc_assert (result == gimple_phi_result (phi));
2585
2586 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2587 }
2588
2589 redirect_edge_var_map_clear (old_edge);
2590 }
2591
2592 /* Returns the basic block after which the new basic block created
2593 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2594 near its "logical" location. This is of most help to humans looking
2595 at debugging dumps. */
2596
2597 static basic_block
2598 split_edge_bb_loc (edge edge_in)
2599 {
2600 basic_block dest = edge_in->dest;
2601 basic_block dest_prev = dest->prev_bb;
2602
2603 if (dest_prev)
2604 {
2605 edge e = find_edge (dest_prev, dest);
2606 if (e && !(e->flags & EDGE_COMPLEX))
2607 return edge_in->src;
2608 }
2609 return dest_prev;
2610 }
2611
2612 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2613 Abort on abnormal edges. */
2614
2615 static basic_block
2616 gimple_split_edge (edge edge_in)
2617 {
2618 basic_block new_bb, after_bb, dest;
2619 edge new_edge, e;
2620
2621 /* Abnormal edges cannot be split. */
2622 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2623
2624 dest = edge_in->dest;
2625
2626 after_bb = split_edge_bb_loc (edge_in);
2627
2628 new_bb = create_empty_bb (after_bb);
2629 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2630 new_bb->count = edge_in->count;
2631 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2632 new_edge->probability = REG_BR_PROB_BASE;
2633 new_edge->count = edge_in->count;
2634
2635 e = redirect_edge_and_branch (edge_in, new_bb);
2636 gcc_assert (e == edge_in);
2637 reinstall_phi_args (new_edge, e);
2638
2639 return new_bb;
2640 }
2641
2642
2643 /* Verify properties of the address expression T with base object BASE. */
2644
2645 static tree
2646 verify_address (tree t, tree base)
2647 {
2648 bool old_constant;
2649 bool old_side_effects;
2650 bool new_constant;
2651 bool new_side_effects;
2652
2653 old_constant = TREE_CONSTANT (t);
2654 old_side_effects = TREE_SIDE_EFFECTS (t);
2655
2656 recompute_tree_invariant_for_addr_expr (t);
2657 new_side_effects = TREE_SIDE_EFFECTS (t);
2658 new_constant = TREE_CONSTANT (t);
2659
2660 if (old_constant != new_constant)
2661 {
2662 error ("constant not recomputed when ADDR_EXPR changed");
2663 return t;
2664 }
2665 if (old_side_effects != new_side_effects)
2666 {
2667 error ("side effects not recomputed when ADDR_EXPR changed");
2668 return t;
2669 }
2670
2671 if (!(TREE_CODE (base) == VAR_DECL
2672 || TREE_CODE (base) == PARM_DECL
2673 || TREE_CODE (base) == RESULT_DECL))
2674 return NULL_TREE;
2675
2676 if (DECL_GIMPLE_REG_P (base))
2677 {
2678 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2679 return base;
2680 }
2681
2682 return NULL_TREE;
2683 }
2684
2685 /* Callback for walk_tree, check that all elements with address taken are
2686 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2687 inside a PHI node. */
2688
2689 static tree
2690 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2691 {
2692 tree t = *tp, x;
2693
2694 if (TYPE_P (t))
2695 *walk_subtrees = 0;
2696
2697 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2698 #define CHECK_OP(N, MSG) \
2699 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2700 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2701
2702 switch (TREE_CODE (t))
2703 {
2704 case SSA_NAME:
2705 if (SSA_NAME_IN_FREE_LIST (t))
2706 {
2707 error ("SSA name in freelist but still referenced");
2708 return *tp;
2709 }
2710 break;
2711
2712 case INDIRECT_REF:
2713 error ("INDIRECT_REF in gimple IL");
2714 return t;
2715
2716 case MEM_REF:
2717 x = TREE_OPERAND (t, 0);
2718 if (!POINTER_TYPE_P (TREE_TYPE (x))
2719 || !is_gimple_mem_ref_addr (x))
2720 {
2721 error ("invalid first operand of MEM_REF");
2722 return x;
2723 }
2724 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2725 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2726 {
2727 error ("invalid offset operand of MEM_REF");
2728 return TREE_OPERAND (t, 1);
2729 }
2730 if (TREE_CODE (x) == ADDR_EXPR
2731 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2732 return x;
2733 *walk_subtrees = 0;
2734 break;
2735
2736 case ASSERT_EXPR:
2737 x = fold (ASSERT_EXPR_COND (t));
2738 if (x == boolean_false_node)
2739 {
2740 error ("ASSERT_EXPR with an always-false condition");
2741 return *tp;
2742 }
2743 break;
2744
2745 case MODIFY_EXPR:
2746 error ("MODIFY_EXPR not expected while having tuples");
2747 return *tp;
2748
2749 case ADDR_EXPR:
2750 {
2751 tree tem;
2752
2753 gcc_assert (is_gimple_address (t));
2754
2755 /* Skip any references (they will be checked when we recurse down the
2756 tree) and ensure that any variable used as a prefix is marked
2757 addressable. */
2758 for (x = TREE_OPERAND (t, 0);
2759 handled_component_p (x);
2760 x = TREE_OPERAND (x, 0))
2761 ;
2762
2763 if ((tem = verify_address (t, x)))
2764 return tem;
2765
2766 if (!(TREE_CODE (x) == VAR_DECL
2767 || TREE_CODE (x) == PARM_DECL
2768 || TREE_CODE (x) == RESULT_DECL))
2769 return NULL;
2770
2771 if (!TREE_ADDRESSABLE (x))
2772 {
2773 error ("address taken, but ADDRESSABLE bit not set");
2774 return x;
2775 }
2776
2777 break;
2778 }
2779
2780 case COND_EXPR:
2781 x = COND_EXPR_COND (t);
2782 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2783 {
2784 error ("non-integral used in condition");
2785 return x;
2786 }
2787 if (!is_gimple_condexpr (x))
2788 {
2789 error ("invalid conditional operand");
2790 return x;
2791 }
2792 break;
2793
2794 case NON_LVALUE_EXPR:
2795 case TRUTH_NOT_EXPR:
2796 gcc_unreachable ();
2797
2798 CASE_CONVERT:
2799 case FIX_TRUNC_EXPR:
2800 case FLOAT_EXPR:
2801 case NEGATE_EXPR:
2802 case ABS_EXPR:
2803 case BIT_NOT_EXPR:
2804 CHECK_OP (0, "invalid operand to unary operator");
2805 break;
2806
2807 case REALPART_EXPR:
2808 case IMAGPART_EXPR:
2809 case BIT_FIELD_REF:
2810 if (!is_gimple_reg_type (TREE_TYPE (t)))
2811 {
2812 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2813 return t;
2814 }
2815
2816 if (TREE_CODE (t) == BIT_FIELD_REF)
2817 {
2818 tree t0 = TREE_OPERAND (t, 0);
2819 tree t1 = TREE_OPERAND (t, 1);
2820 tree t2 = TREE_OPERAND (t, 2);
2821 if (!tree_fits_uhwi_p (t1)
2822 || !tree_fits_uhwi_p (t2))
2823 {
2824 error ("invalid position or size operand to BIT_FIELD_REF");
2825 return t;
2826 }
2827 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2828 && (TYPE_PRECISION (TREE_TYPE (t))
2829 != tree_to_uhwi (t1)))
2830 {
2831 error ("integral result type precision does not match "
2832 "field size of BIT_FIELD_REF");
2833 return t;
2834 }
2835 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2836 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2837 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2838 != tree_to_uhwi (t1)))
2839 {
2840 error ("mode precision of non-integral result does not "
2841 "match field size of BIT_FIELD_REF");
2842 return t;
2843 }
2844 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2845 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2846 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2847 {
2848 error ("position plus size exceeds size of referenced object in "
2849 "BIT_FIELD_REF");
2850 return t;
2851 }
2852 }
2853 t = TREE_OPERAND (t, 0);
2854
2855 /* Fall-through. */
2856 case COMPONENT_REF:
2857 case ARRAY_REF:
2858 case ARRAY_RANGE_REF:
2859 case VIEW_CONVERT_EXPR:
2860 /* We have a nest of references. Verify that each of the operands
2861 that determine where to reference is either a constant or a variable,
2862 verify that the base is valid, and then show we've already checked
2863 the subtrees. */
2864 while (handled_component_p (t))
2865 {
2866 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2867 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2868 else if (TREE_CODE (t) == ARRAY_REF
2869 || TREE_CODE (t) == ARRAY_RANGE_REF)
2870 {
2871 CHECK_OP (1, "invalid array index");
2872 if (TREE_OPERAND (t, 2))
2873 CHECK_OP (2, "invalid array lower bound");
2874 if (TREE_OPERAND (t, 3))
2875 CHECK_OP (3, "invalid array stride");
2876 }
2877 else if (TREE_CODE (t) == BIT_FIELD_REF
2878 || TREE_CODE (t) == REALPART_EXPR
2879 || TREE_CODE (t) == IMAGPART_EXPR)
2880 {
2881 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2882 "REALPART_EXPR");
2883 return t;
2884 }
2885
2886 t = TREE_OPERAND (t, 0);
2887 }
2888
2889 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2890 {
2891 error ("invalid reference prefix");
2892 return t;
2893 }
2894 *walk_subtrees = 0;
2895 break;
2896 case PLUS_EXPR:
2897 case MINUS_EXPR:
2898 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2899 POINTER_PLUS_EXPR. */
2900 if (POINTER_TYPE_P (TREE_TYPE (t)))
2901 {
2902 error ("invalid operand to plus/minus, type is a pointer");
2903 return t;
2904 }
2905 CHECK_OP (0, "invalid operand to binary operator");
2906 CHECK_OP (1, "invalid operand to binary operator");
2907 break;
2908
2909 case POINTER_PLUS_EXPR:
2910 /* Check to make sure the first operand is a pointer or reference type. */
2911 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2912 {
2913 error ("invalid operand to pointer plus, first operand is not a pointer");
2914 return t;
2915 }
2916 /* Check to make sure the second operand is a ptrofftype. */
2917 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2918 {
2919 error ("invalid operand to pointer plus, second operand is not an "
2920 "integer type of appropriate width");
2921 return t;
2922 }
2923 /* FALLTHROUGH */
2924 case LT_EXPR:
2925 case LE_EXPR:
2926 case GT_EXPR:
2927 case GE_EXPR:
2928 case EQ_EXPR:
2929 case NE_EXPR:
2930 case UNORDERED_EXPR:
2931 case ORDERED_EXPR:
2932 case UNLT_EXPR:
2933 case UNLE_EXPR:
2934 case UNGT_EXPR:
2935 case UNGE_EXPR:
2936 case UNEQ_EXPR:
2937 case LTGT_EXPR:
2938 case MULT_EXPR:
2939 case TRUNC_DIV_EXPR:
2940 case CEIL_DIV_EXPR:
2941 case FLOOR_DIV_EXPR:
2942 case ROUND_DIV_EXPR:
2943 case TRUNC_MOD_EXPR:
2944 case CEIL_MOD_EXPR:
2945 case FLOOR_MOD_EXPR:
2946 case ROUND_MOD_EXPR:
2947 case RDIV_EXPR:
2948 case EXACT_DIV_EXPR:
2949 case MIN_EXPR:
2950 case MAX_EXPR:
2951 case LSHIFT_EXPR:
2952 case RSHIFT_EXPR:
2953 case LROTATE_EXPR:
2954 case RROTATE_EXPR:
2955 case BIT_IOR_EXPR:
2956 case BIT_XOR_EXPR:
2957 case BIT_AND_EXPR:
2958 CHECK_OP (0, "invalid operand to binary operator");
2959 CHECK_OP (1, "invalid operand to binary operator");
2960 break;
2961
2962 case CONSTRUCTOR:
2963 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2964 *walk_subtrees = 0;
2965 break;
2966
2967 case CASE_LABEL_EXPR:
2968 if (CASE_CHAIN (t))
2969 {
2970 error ("invalid CASE_CHAIN");
2971 return t;
2972 }
2973 break;
2974
2975 default:
2976 break;
2977 }
2978 return NULL;
2979
2980 #undef CHECK_OP
2981 }
2982
2983
2984 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2985 Returns true if there is an error, otherwise false. */
2986
2987 static bool
2988 verify_types_in_gimple_min_lval (tree expr)
2989 {
2990 tree op;
2991
2992 if (is_gimple_id (expr))
2993 return false;
2994
2995 if (TREE_CODE (expr) != TARGET_MEM_REF
2996 && TREE_CODE (expr) != MEM_REF)
2997 {
2998 error ("invalid expression for min lvalue");
2999 return true;
3000 }
3001
3002 /* TARGET_MEM_REFs are strange beasts. */
3003 if (TREE_CODE (expr) == TARGET_MEM_REF)
3004 return false;
3005
3006 op = TREE_OPERAND (expr, 0);
3007 if (!is_gimple_val (op))
3008 {
3009 error ("invalid operand in indirect reference");
3010 debug_generic_stmt (op);
3011 return true;
3012 }
3013 /* Memory references now generally can involve a value conversion. */
3014
3015 return false;
3016 }
3017
3018 /* Verify if EXPR is a valid GIMPLE reference expression. If
3019 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3020 if there is an error, otherwise false. */
3021
3022 static bool
3023 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3024 {
3025 while (handled_component_p (expr))
3026 {
3027 tree op = TREE_OPERAND (expr, 0);
3028
3029 if (TREE_CODE (expr) == ARRAY_REF
3030 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3031 {
3032 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3033 || (TREE_OPERAND (expr, 2)
3034 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3035 || (TREE_OPERAND (expr, 3)
3036 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3037 {
3038 error ("invalid operands to array reference");
3039 debug_generic_stmt (expr);
3040 return true;
3041 }
3042 }
3043
3044 /* Verify if the reference array element types are compatible. */
3045 if (TREE_CODE (expr) == ARRAY_REF
3046 && !useless_type_conversion_p (TREE_TYPE (expr),
3047 TREE_TYPE (TREE_TYPE (op))))
3048 {
3049 error ("type mismatch in array reference");
3050 debug_generic_stmt (TREE_TYPE (expr));
3051 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3052 return true;
3053 }
3054 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3055 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3056 TREE_TYPE (TREE_TYPE (op))))
3057 {
3058 error ("type mismatch in array range reference");
3059 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3060 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3061 return true;
3062 }
3063
3064 if ((TREE_CODE (expr) == REALPART_EXPR
3065 || TREE_CODE (expr) == IMAGPART_EXPR)
3066 && !useless_type_conversion_p (TREE_TYPE (expr),
3067 TREE_TYPE (TREE_TYPE (op))))
3068 {
3069 error ("type mismatch in real/imagpart reference");
3070 debug_generic_stmt (TREE_TYPE (expr));
3071 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3072 return true;
3073 }
3074
3075 if (TREE_CODE (expr) == COMPONENT_REF
3076 && !useless_type_conversion_p (TREE_TYPE (expr),
3077 TREE_TYPE (TREE_OPERAND (expr, 1))))
3078 {
3079 error ("type mismatch in component reference");
3080 debug_generic_stmt (TREE_TYPE (expr));
3081 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3082 return true;
3083 }
3084
3085 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3086 {
3087 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3088 that their operand is not an SSA name or an invariant when
3089 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3090 bug). Otherwise there is nothing to verify, gross mismatches at
3091 most invoke undefined behavior. */
3092 if (require_lvalue
3093 && (TREE_CODE (op) == SSA_NAME
3094 || is_gimple_min_invariant (op)))
3095 {
3096 error ("conversion of an SSA_NAME on the left hand side");
3097 debug_generic_stmt (expr);
3098 return true;
3099 }
3100 else if (TREE_CODE (op) == SSA_NAME
3101 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3102 {
3103 error ("conversion of register to a different size");
3104 debug_generic_stmt (expr);
3105 return true;
3106 }
3107 else if (!handled_component_p (op))
3108 return false;
3109 }
3110
3111 expr = op;
3112 }
3113
3114 if (TREE_CODE (expr) == MEM_REF)
3115 {
3116 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3117 {
3118 error ("invalid address operand in MEM_REF");
3119 debug_generic_stmt (expr);
3120 return true;
3121 }
3122 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3123 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3124 {
3125 error ("invalid offset operand in MEM_REF");
3126 debug_generic_stmt (expr);
3127 return true;
3128 }
3129 }
3130 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3131 {
3132 if (!TMR_BASE (expr)
3133 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3134 {
3135 error ("invalid address operand in TARGET_MEM_REF");
3136 return true;
3137 }
3138 if (!TMR_OFFSET (expr)
3139 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3140 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3141 {
3142 error ("invalid offset operand in TARGET_MEM_REF");
3143 debug_generic_stmt (expr);
3144 return true;
3145 }
3146 }
3147
3148 return ((require_lvalue || !is_gimple_min_invariant (expr))
3149 && verify_types_in_gimple_min_lval (expr));
3150 }
3151
3152 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3153 list of pointer-to types that is trivially convertible to DEST. */
3154
3155 static bool
3156 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3157 {
3158 tree src;
3159
3160 if (!TYPE_POINTER_TO (src_obj))
3161 return true;
3162
3163 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3164 if (useless_type_conversion_p (dest, src))
3165 return true;
3166
3167 return false;
3168 }
3169
3170 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3171 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3172
3173 static bool
3174 valid_fixed_convert_types_p (tree type1, tree type2)
3175 {
3176 return (FIXED_POINT_TYPE_P (type1)
3177 && (INTEGRAL_TYPE_P (type2)
3178 || SCALAR_FLOAT_TYPE_P (type2)
3179 || FIXED_POINT_TYPE_P (type2)));
3180 }
3181
3182 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3183 is a problem, otherwise false. */
3184
3185 static bool
3186 verify_gimple_call (gimple stmt)
3187 {
3188 tree fn = gimple_call_fn (stmt);
3189 tree fntype, fndecl;
3190 unsigned i;
3191
3192 if (gimple_call_internal_p (stmt))
3193 {
3194 if (fn)
3195 {
3196 error ("gimple call has two targets");
3197 debug_generic_stmt (fn);
3198 return true;
3199 }
3200 }
3201 else
3202 {
3203 if (!fn)
3204 {
3205 error ("gimple call has no target");
3206 return true;
3207 }
3208 }
3209
3210 if (fn && !is_gimple_call_addr (fn))
3211 {
3212 error ("invalid function in gimple call");
3213 debug_generic_stmt (fn);
3214 return true;
3215 }
3216
3217 if (fn
3218 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3219 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3220 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3221 {
3222 error ("non-function in gimple call");
3223 return true;
3224 }
3225
3226 fndecl = gimple_call_fndecl (stmt);
3227 if (fndecl
3228 && TREE_CODE (fndecl) == FUNCTION_DECL
3229 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3230 && !DECL_PURE_P (fndecl)
3231 && !TREE_READONLY (fndecl))
3232 {
3233 error ("invalid pure const state for function");
3234 return true;
3235 }
3236
3237 if (gimple_call_lhs (stmt)
3238 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3239 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3240 {
3241 error ("invalid LHS in gimple call");
3242 return true;
3243 }
3244
3245 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3246 {
3247 error ("LHS in noreturn call");
3248 return true;
3249 }
3250
3251 fntype = gimple_call_fntype (stmt);
3252 if (fntype
3253 && gimple_call_lhs (stmt)
3254 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3255 TREE_TYPE (fntype))
3256 /* ??? At least C++ misses conversions at assignments from
3257 void * call results.
3258 ??? Java is completely off. Especially with functions
3259 returning java.lang.Object.
3260 For now simply allow arbitrary pointer type conversions. */
3261 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3262 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3263 {
3264 error ("invalid conversion in gimple call");
3265 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3266 debug_generic_stmt (TREE_TYPE (fntype));
3267 return true;
3268 }
3269
3270 if (gimple_call_chain (stmt)
3271 && !is_gimple_val (gimple_call_chain (stmt)))
3272 {
3273 error ("invalid static chain in gimple call");
3274 debug_generic_stmt (gimple_call_chain (stmt));
3275 return true;
3276 }
3277
3278 /* If there is a static chain argument, this should not be an indirect
3279 call, and the decl should have DECL_STATIC_CHAIN set. */
3280 if (gimple_call_chain (stmt))
3281 {
3282 if (!gimple_call_fndecl (stmt))
3283 {
3284 error ("static chain in indirect gimple call");
3285 return true;
3286 }
3287 fn = TREE_OPERAND (fn, 0);
3288
3289 if (!DECL_STATIC_CHAIN (fn))
3290 {
3291 error ("static chain with function that doesn%'t use one");
3292 return true;
3293 }
3294 }
3295
3296 /* ??? The C frontend passes unpromoted arguments in case it
3297 didn't see a function declaration before the call. So for now
3298 leave the call arguments mostly unverified. Once we gimplify
3299 unit-at-a-time we have a chance to fix this. */
3300
3301 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3302 {
3303 tree arg = gimple_call_arg (stmt, i);
3304 if ((is_gimple_reg_type (TREE_TYPE (arg))
3305 && !is_gimple_val (arg))
3306 || (!is_gimple_reg_type (TREE_TYPE (arg))
3307 && !is_gimple_lvalue (arg)))
3308 {
3309 error ("invalid argument to gimple call");
3310 debug_generic_expr (arg);
3311 return true;
3312 }
3313 }
3314
3315 return false;
3316 }
3317
3318 /* Verifies the gimple comparison with the result type TYPE and
3319 the operands OP0 and OP1. */
3320
3321 static bool
3322 verify_gimple_comparison (tree type, tree op0, tree op1)
3323 {
3324 tree op0_type = TREE_TYPE (op0);
3325 tree op1_type = TREE_TYPE (op1);
3326
3327 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3328 {
3329 error ("invalid operands in gimple comparison");
3330 return true;
3331 }
3332
3333 /* For comparisons we do not have the operations type as the
3334 effective type the comparison is carried out in. Instead
3335 we require that either the first operand is trivially
3336 convertible into the second, or the other way around.
3337 Because we special-case pointers to void we allow
3338 comparisons of pointers with the same mode as well. */
3339 if (!useless_type_conversion_p (op0_type, op1_type)
3340 && !useless_type_conversion_p (op1_type, op0_type)
3341 && (!POINTER_TYPE_P (op0_type)
3342 || !POINTER_TYPE_P (op1_type)
3343 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3344 {
3345 error ("mismatching comparison operand types");
3346 debug_generic_expr (op0_type);
3347 debug_generic_expr (op1_type);
3348 return true;
3349 }
3350
3351 /* The resulting type of a comparison may be an effective boolean type. */
3352 if (INTEGRAL_TYPE_P (type)
3353 && (TREE_CODE (type) == BOOLEAN_TYPE
3354 || TYPE_PRECISION (type) == 1))
3355 {
3356 if (TREE_CODE (op0_type) == VECTOR_TYPE
3357 || TREE_CODE (op1_type) == VECTOR_TYPE)
3358 {
3359 error ("vector comparison returning a boolean");
3360 debug_generic_expr (op0_type);
3361 debug_generic_expr (op1_type);
3362 return true;
3363 }
3364 }
3365 /* Or an integer vector type with the same size and element count
3366 as the comparison operand types. */
3367 else if (TREE_CODE (type) == VECTOR_TYPE
3368 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3369 {
3370 if (TREE_CODE (op0_type) != VECTOR_TYPE
3371 || TREE_CODE (op1_type) != VECTOR_TYPE)
3372 {
3373 error ("non-vector operands in vector comparison");
3374 debug_generic_expr (op0_type);
3375 debug_generic_expr (op1_type);
3376 return true;
3377 }
3378
3379 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3380 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3381 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3382 /* The result of a vector comparison is of signed
3383 integral type. */
3384 || TYPE_UNSIGNED (TREE_TYPE (type)))
3385 {
3386 error ("invalid vector comparison resulting type");
3387 debug_generic_expr (type);
3388 return true;
3389 }
3390 }
3391 else
3392 {
3393 error ("bogus comparison result type");
3394 debug_generic_expr (type);
3395 return true;
3396 }
3397
3398 return false;
3399 }
3400
3401 /* Verify a gimple assignment statement STMT with an unary rhs.
3402 Returns true if anything is wrong. */
3403
3404 static bool
3405 verify_gimple_assign_unary (gimple stmt)
3406 {
3407 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3408 tree lhs = gimple_assign_lhs (stmt);
3409 tree lhs_type = TREE_TYPE (lhs);
3410 tree rhs1 = gimple_assign_rhs1 (stmt);
3411 tree rhs1_type = TREE_TYPE (rhs1);
3412
3413 if (!is_gimple_reg (lhs))
3414 {
3415 error ("non-register as LHS of unary operation");
3416 return true;
3417 }
3418
3419 if (!is_gimple_val (rhs1))
3420 {
3421 error ("invalid operand in unary operation");
3422 return true;
3423 }
3424
3425 /* First handle conversions. */
3426 switch (rhs_code)
3427 {
3428 CASE_CONVERT:
3429 {
3430 /* Allow conversions from pointer type to integral type only if
3431 there is no sign or zero extension involved.
3432 For targets were the precision of ptrofftype doesn't match that
3433 of pointers we need to allow arbitrary conversions to ptrofftype. */
3434 if ((POINTER_TYPE_P (lhs_type)
3435 && INTEGRAL_TYPE_P (rhs1_type))
3436 || (POINTER_TYPE_P (rhs1_type)
3437 && INTEGRAL_TYPE_P (lhs_type)
3438 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3439 || ptrofftype_p (sizetype))))
3440 return false;
3441
3442 /* Allow conversion from integral to offset type and vice versa. */
3443 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3444 && INTEGRAL_TYPE_P (rhs1_type))
3445 || (INTEGRAL_TYPE_P (lhs_type)
3446 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3447 return false;
3448
3449 /* Otherwise assert we are converting between types of the
3450 same kind. */
3451 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3452 {
3453 error ("invalid types in nop conversion");
3454 debug_generic_expr (lhs_type);
3455 debug_generic_expr (rhs1_type);
3456 return true;
3457 }
3458
3459 return false;
3460 }
3461
3462 case ADDR_SPACE_CONVERT_EXPR:
3463 {
3464 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3465 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3466 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3467 {
3468 error ("invalid types in address space conversion");
3469 debug_generic_expr (lhs_type);
3470 debug_generic_expr (rhs1_type);
3471 return true;
3472 }
3473
3474 return false;
3475 }
3476
3477 case FIXED_CONVERT_EXPR:
3478 {
3479 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3480 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3481 {
3482 error ("invalid types in fixed-point conversion");
3483 debug_generic_expr (lhs_type);
3484 debug_generic_expr (rhs1_type);
3485 return true;
3486 }
3487
3488 return false;
3489 }
3490
3491 case FLOAT_EXPR:
3492 {
3493 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3494 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3495 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3496 {
3497 error ("invalid types in conversion to floating point");
3498 debug_generic_expr (lhs_type);
3499 debug_generic_expr (rhs1_type);
3500 return true;
3501 }
3502
3503 return false;
3504 }
3505
3506 case FIX_TRUNC_EXPR:
3507 {
3508 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3509 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3510 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3511 {
3512 error ("invalid types in conversion to integer");
3513 debug_generic_expr (lhs_type);
3514 debug_generic_expr (rhs1_type);
3515 return true;
3516 }
3517
3518 return false;
3519 }
3520
3521 case VEC_UNPACK_HI_EXPR:
3522 case VEC_UNPACK_LO_EXPR:
3523 case REDUC_MAX_EXPR:
3524 case REDUC_MIN_EXPR:
3525 case REDUC_PLUS_EXPR:
3526 case VEC_UNPACK_FLOAT_HI_EXPR:
3527 case VEC_UNPACK_FLOAT_LO_EXPR:
3528 /* FIXME. */
3529 return false;
3530
3531 case NEGATE_EXPR:
3532 case ABS_EXPR:
3533 case BIT_NOT_EXPR:
3534 case PAREN_EXPR:
3535 case NON_LVALUE_EXPR:
3536 case CONJ_EXPR:
3537 break;
3538
3539 default:
3540 gcc_unreachable ();
3541 }
3542
3543 /* For the remaining codes assert there is no conversion involved. */
3544 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3545 {
3546 error ("non-trivial conversion in unary operation");
3547 debug_generic_expr (lhs_type);
3548 debug_generic_expr (rhs1_type);
3549 return true;
3550 }
3551
3552 return false;
3553 }
3554
3555 /* Verify a gimple assignment statement STMT with a binary rhs.
3556 Returns true if anything is wrong. */
3557
3558 static bool
3559 verify_gimple_assign_binary (gimple stmt)
3560 {
3561 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3562 tree lhs = gimple_assign_lhs (stmt);
3563 tree lhs_type = TREE_TYPE (lhs);
3564 tree rhs1 = gimple_assign_rhs1 (stmt);
3565 tree rhs1_type = TREE_TYPE (rhs1);
3566 tree rhs2 = gimple_assign_rhs2 (stmt);
3567 tree rhs2_type = TREE_TYPE (rhs2);
3568
3569 if (!is_gimple_reg (lhs))
3570 {
3571 error ("non-register as LHS of binary operation");
3572 return true;
3573 }
3574
3575 if (!is_gimple_val (rhs1)
3576 || !is_gimple_val (rhs2))
3577 {
3578 error ("invalid operands in binary operation");
3579 return true;
3580 }
3581
3582 /* First handle operations that involve different types. */
3583 switch (rhs_code)
3584 {
3585 case COMPLEX_EXPR:
3586 {
3587 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3588 || !(INTEGRAL_TYPE_P (rhs1_type)
3589 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3590 || !(INTEGRAL_TYPE_P (rhs2_type)
3591 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3592 {
3593 error ("type mismatch in complex expression");
3594 debug_generic_expr (lhs_type);
3595 debug_generic_expr (rhs1_type);
3596 debug_generic_expr (rhs2_type);
3597 return true;
3598 }
3599
3600 return false;
3601 }
3602
3603 case LSHIFT_EXPR:
3604 case RSHIFT_EXPR:
3605 case LROTATE_EXPR:
3606 case RROTATE_EXPR:
3607 {
3608 /* Shifts and rotates are ok on integral types, fixed point
3609 types and integer vector types. */
3610 if ((!INTEGRAL_TYPE_P (rhs1_type)
3611 && !FIXED_POINT_TYPE_P (rhs1_type)
3612 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3613 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3614 || (!INTEGRAL_TYPE_P (rhs2_type)
3615 /* Vector shifts of vectors are also ok. */
3616 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3617 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3618 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3619 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3620 || !useless_type_conversion_p (lhs_type, rhs1_type))
3621 {
3622 error ("type mismatch in shift expression");
3623 debug_generic_expr (lhs_type);
3624 debug_generic_expr (rhs1_type);
3625 debug_generic_expr (rhs2_type);
3626 return true;
3627 }
3628
3629 return false;
3630 }
3631
3632 case VEC_LSHIFT_EXPR:
3633 case VEC_RSHIFT_EXPR:
3634 {
3635 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3636 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3637 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3638 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3639 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3640 || (!INTEGRAL_TYPE_P (rhs2_type)
3641 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3642 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3643 || !useless_type_conversion_p (lhs_type, rhs1_type))
3644 {
3645 error ("type mismatch in vector shift expression");
3646 debug_generic_expr (lhs_type);
3647 debug_generic_expr (rhs1_type);
3648 debug_generic_expr (rhs2_type);
3649 return true;
3650 }
3651 /* For shifting a vector of non-integral components we
3652 only allow shifting by a constant multiple of the element size. */
3653 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3654 && (TREE_CODE (rhs2) != INTEGER_CST
3655 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3656 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3657 {
3658 error ("non-element sized vector shift of floating point vector");
3659 return true;
3660 }
3661
3662 return false;
3663 }
3664
3665 case WIDEN_LSHIFT_EXPR:
3666 {
3667 if (!INTEGRAL_TYPE_P (lhs_type)
3668 || !INTEGRAL_TYPE_P (rhs1_type)
3669 || TREE_CODE (rhs2) != INTEGER_CST
3670 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3671 {
3672 error ("type mismatch in widening vector shift expression");
3673 debug_generic_expr (lhs_type);
3674 debug_generic_expr (rhs1_type);
3675 debug_generic_expr (rhs2_type);
3676 return true;
3677 }
3678
3679 return false;
3680 }
3681
3682 case VEC_WIDEN_LSHIFT_HI_EXPR:
3683 case VEC_WIDEN_LSHIFT_LO_EXPR:
3684 {
3685 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3686 || TREE_CODE (lhs_type) != VECTOR_TYPE
3687 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3688 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3689 || TREE_CODE (rhs2) != INTEGER_CST
3690 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3691 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3692 {
3693 error ("type mismatch in widening vector shift expression");
3694 debug_generic_expr (lhs_type);
3695 debug_generic_expr (rhs1_type);
3696 debug_generic_expr (rhs2_type);
3697 return true;
3698 }
3699
3700 return false;
3701 }
3702
3703 case PLUS_EXPR:
3704 case MINUS_EXPR:
3705 {
3706 tree lhs_etype = lhs_type;
3707 tree rhs1_etype = rhs1_type;
3708 tree rhs2_etype = rhs2_type;
3709 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3710 {
3711 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3712 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3713 {
3714 error ("invalid non-vector operands to vector valued plus");
3715 return true;
3716 }
3717 lhs_etype = TREE_TYPE (lhs_type);
3718 rhs1_etype = TREE_TYPE (rhs1_type);
3719 rhs2_etype = TREE_TYPE (rhs2_type);
3720 }
3721 if (POINTER_TYPE_P (lhs_etype)
3722 || POINTER_TYPE_P (rhs1_etype)
3723 || POINTER_TYPE_P (rhs2_etype))
3724 {
3725 error ("invalid (pointer) operands to plus/minus");
3726 return true;
3727 }
3728
3729 /* Continue with generic binary expression handling. */
3730 break;
3731 }
3732
3733 case POINTER_PLUS_EXPR:
3734 {
3735 if (!POINTER_TYPE_P (rhs1_type)
3736 || !useless_type_conversion_p (lhs_type, rhs1_type)
3737 || !ptrofftype_p (rhs2_type))
3738 {
3739 error ("type mismatch in pointer plus expression");
3740 debug_generic_stmt (lhs_type);
3741 debug_generic_stmt (rhs1_type);
3742 debug_generic_stmt (rhs2_type);
3743 return true;
3744 }
3745
3746 return false;
3747 }
3748
3749 case TRUTH_ANDIF_EXPR:
3750 case TRUTH_ORIF_EXPR:
3751 case TRUTH_AND_EXPR:
3752 case TRUTH_OR_EXPR:
3753 case TRUTH_XOR_EXPR:
3754
3755 gcc_unreachable ();
3756
3757 case LT_EXPR:
3758 case LE_EXPR:
3759 case GT_EXPR:
3760 case GE_EXPR:
3761 case EQ_EXPR:
3762 case NE_EXPR:
3763 case UNORDERED_EXPR:
3764 case ORDERED_EXPR:
3765 case UNLT_EXPR:
3766 case UNLE_EXPR:
3767 case UNGT_EXPR:
3768 case UNGE_EXPR:
3769 case UNEQ_EXPR:
3770 case LTGT_EXPR:
3771 /* Comparisons are also binary, but the result type is not
3772 connected to the operand types. */
3773 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3774
3775 case WIDEN_MULT_EXPR:
3776 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3777 return true;
3778 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3779 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3780
3781 case WIDEN_SUM_EXPR:
3782 case VEC_WIDEN_MULT_HI_EXPR:
3783 case VEC_WIDEN_MULT_LO_EXPR:
3784 case VEC_WIDEN_MULT_EVEN_EXPR:
3785 case VEC_WIDEN_MULT_ODD_EXPR:
3786 case VEC_PACK_TRUNC_EXPR:
3787 case VEC_PACK_SAT_EXPR:
3788 case VEC_PACK_FIX_TRUNC_EXPR:
3789 /* FIXME. */
3790 return false;
3791
3792 case MULT_EXPR:
3793 case MULT_HIGHPART_EXPR:
3794 case TRUNC_DIV_EXPR:
3795 case CEIL_DIV_EXPR:
3796 case FLOOR_DIV_EXPR:
3797 case ROUND_DIV_EXPR:
3798 case TRUNC_MOD_EXPR:
3799 case CEIL_MOD_EXPR:
3800 case FLOOR_MOD_EXPR:
3801 case ROUND_MOD_EXPR:
3802 case RDIV_EXPR:
3803 case EXACT_DIV_EXPR:
3804 case MIN_EXPR:
3805 case MAX_EXPR:
3806 case BIT_IOR_EXPR:
3807 case BIT_XOR_EXPR:
3808 case BIT_AND_EXPR:
3809 /* Continue with generic binary expression handling. */
3810 break;
3811
3812 default:
3813 gcc_unreachable ();
3814 }
3815
3816 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3817 || !useless_type_conversion_p (lhs_type, rhs2_type))
3818 {
3819 error ("type mismatch in binary expression");
3820 debug_generic_stmt (lhs_type);
3821 debug_generic_stmt (rhs1_type);
3822 debug_generic_stmt (rhs2_type);
3823 return true;
3824 }
3825
3826 return false;
3827 }
3828
3829 /* Verify a gimple assignment statement STMT with a ternary rhs.
3830 Returns true if anything is wrong. */
3831
3832 static bool
3833 verify_gimple_assign_ternary (gimple stmt)
3834 {
3835 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3836 tree lhs = gimple_assign_lhs (stmt);
3837 tree lhs_type = TREE_TYPE (lhs);
3838 tree rhs1 = gimple_assign_rhs1 (stmt);
3839 tree rhs1_type = TREE_TYPE (rhs1);
3840 tree rhs2 = gimple_assign_rhs2 (stmt);
3841 tree rhs2_type = TREE_TYPE (rhs2);
3842 tree rhs3 = gimple_assign_rhs3 (stmt);
3843 tree rhs3_type = TREE_TYPE (rhs3);
3844
3845 if (!is_gimple_reg (lhs))
3846 {
3847 error ("non-register as LHS of ternary operation");
3848 return true;
3849 }
3850
3851 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3852 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3853 || !is_gimple_val (rhs2)
3854 || !is_gimple_val (rhs3))
3855 {
3856 error ("invalid operands in ternary operation");
3857 return true;
3858 }
3859
3860 /* First handle operations that involve different types. */
3861 switch (rhs_code)
3862 {
3863 case WIDEN_MULT_PLUS_EXPR:
3864 case WIDEN_MULT_MINUS_EXPR:
3865 if ((!INTEGRAL_TYPE_P (rhs1_type)
3866 && !FIXED_POINT_TYPE_P (rhs1_type))
3867 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3868 || !useless_type_conversion_p (lhs_type, rhs3_type)
3869 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3870 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3871 {
3872 error ("type mismatch in widening multiply-accumulate expression");
3873 debug_generic_expr (lhs_type);
3874 debug_generic_expr (rhs1_type);
3875 debug_generic_expr (rhs2_type);
3876 debug_generic_expr (rhs3_type);
3877 return true;
3878 }
3879 break;
3880
3881 case FMA_EXPR:
3882 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3883 || !useless_type_conversion_p (lhs_type, rhs2_type)
3884 || !useless_type_conversion_p (lhs_type, rhs3_type))
3885 {
3886 error ("type mismatch in fused multiply-add expression");
3887 debug_generic_expr (lhs_type);
3888 debug_generic_expr (rhs1_type);
3889 debug_generic_expr (rhs2_type);
3890 debug_generic_expr (rhs3_type);
3891 return true;
3892 }
3893 break;
3894
3895 case COND_EXPR:
3896 case VEC_COND_EXPR:
3897 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3898 || !useless_type_conversion_p (lhs_type, rhs3_type))
3899 {
3900 error ("type mismatch in conditional expression");
3901 debug_generic_expr (lhs_type);
3902 debug_generic_expr (rhs2_type);
3903 debug_generic_expr (rhs3_type);
3904 return true;
3905 }
3906 break;
3907
3908 case VEC_PERM_EXPR:
3909 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3910 || !useless_type_conversion_p (lhs_type, rhs2_type))
3911 {
3912 error ("type mismatch in vector permute expression");
3913 debug_generic_expr (lhs_type);
3914 debug_generic_expr (rhs1_type);
3915 debug_generic_expr (rhs2_type);
3916 debug_generic_expr (rhs3_type);
3917 return true;
3918 }
3919
3920 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3921 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3922 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3923 {
3924 error ("vector types expected in vector permute expression");
3925 debug_generic_expr (lhs_type);
3926 debug_generic_expr (rhs1_type);
3927 debug_generic_expr (rhs2_type);
3928 debug_generic_expr (rhs3_type);
3929 return true;
3930 }
3931
3932 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3933 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3934 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3935 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3936 != TYPE_VECTOR_SUBPARTS (lhs_type))
3937 {
3938 error ("vectors with different element number found "
3939 "in vector permute expression");
3940 debug_generic_expr (lhs_type);
3941 debug_generic_expr (rhs1_type);
3942 debug_generic_expr (rhs2_type);
3943 debug_generic_expr (rhs3_type);
3944 return true;
3945 }
3946
3947 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3948 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3949 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3950 {
3951 error ("invalid mask type in vector permute expression");
3952 debug_generic_expr (lhs_type);
3953 debug_generic_expr (rhs1_type);
3954 debug_generic_expr (rhs2_type);
3955 debug_generic_expr (rhs3_type);
3956 return true;
3957 }
3958
3959 return false;
3960
3961 case DOT_PROD_EXPR:
3962 case REALIGN_LOAD_EXPR:
3963 /* FIXME. */
3964 return false;
3965
3966 default:
3967 gcc_unreachable ();
3968 }
3969 return false;
3970 }
3971
3972 /* Verify a gimple assignment statement STMT with a single rhs.
3973 Returns true if anything is wrong. */
3974
3975 static bool
3976 verify_gimple_assign_single (gimple stmt)
3977 {
3978 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3979 tree lhs = gimple_assign_lhs (stmt);
3980 tree lhs_type = TREE_TYPE (lhs);
3981 tree rhs1 = gimple_assign_rhs1 (stmt);
3982 tree rhs1_type = TREE_TYPE (rhs1);
3983 bool res = false;
3984
3985 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3986 {
3987 error ("non-trivial conversion at assignment");
3988 debug_generic_expr (lhs_type);
3989 debug_generic_expr (rhs1_type);
3990 return true;
3991 }
3992
3993 if (gimple_clobber_p (stmt)
3994 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3995 {
3996 error ("non-decl/MEM_REF LHS in clobber statement");
3997 debug_generic_expr (lhs);
3998 return true;
3999 }
4000
4001 if (handled_component_p (lhs)
4002 || TREE_CODE (lhs) == MEM_REF
4003 || TREE_CODE (lhs) == TARGET_MEM_REF)
4004 res |= verify_types_in_gimple_reference (lhs, true);
4005
4006 /* Special codes we cannot handle via their class. */
4007 switch (rhs_code)
4008 {
4009 case ADDR_EXPR:
4010 {
4011 tree op = TREE_OPERAND (rhs1, 0);
4012 if (!is_gimple_addressable (op))
4013 {
4014 error ("invalid operand in unary expression");
4015 return true;
4016 }
4017
4018 /* Technically there is no longer a need for matching types, but
4019 gimple hygiene asks for this check. In LTO we can end up
4020 combining incompatible units and thus end up with addresses
4021 of globals that change their type to a common one. */
4022 if (!in_lto_p
4023 && !types_compatible_p (TREE_TYPE (op),
4024 TREE_TYPE (TREE_TYPE (rhs1)))
4025 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4026 TREE_TYPE (op)))
4027 {
4028 error ("type mismatch in address expression");
4029 debug_generic_stmt (TREE_TYPE (rhs1));
4030 debug_generic_stmt (TREE_TYPE (op));
4031 return true;
4032 }
4033
4034 return verify_types_in_gimple_reference (op, true);
4035 }
4036
4037 /* tcc_reference */
4038 case INDIRECT_REF:
4039 error ("INDIRECT_REF in gimple IL");
4040 return true;
4041
4042 case COMPONENT_REF:
4043 case BIT_FIELD_REF:
4044 case ARRAY_REF:
4045 case ARRAY_RANGE_REF:
4046 case VIEW_CONVERT_EXPR:
4047 case REALPART_EXPR:
4048 case IMAGPART_EXPR:
4049 case TARGET_MEM_REF:
4050 case MEM_REF:
4051 if (!is_gimple_reg (lhs)
4052 && is_gimple_reg_type (TREE_TYPE (lhs)))
4053 {
4054 error ("invalid rhs for gimple memory store");
4055 debug_generic_stmt (lhs);
4056 debug_generic_stmt (rhs1);
4057 return true;
4058 }
4059 return res || verify_types_in_gimple_reference (rhs1, false);
4060
4061 /* tcc_constant */
4062 case SSA_NAME:
4063 case INTEGER_CST:
4064 case REAL_CST:
4065 case FIXED_CST:
4066 case COMPLEX_CST:
4067 case VECTOR_CST:
4068 case STRING_CST:
4069 return res;
4070
4071 /* tcc_declaration */
4072 case CONST_DECL:
4073 return res;
4074 case VAR_DECL:
4075 case PARM_DECL:
4076 if (!is_gimple_reg (lhs)
4077 && !is_gimple_reg (rhs1)
4078 && is_gimple_reg_type (TREE_TYPE (lhs)))
4079 {
4080 error ("invalid rhs for gimple memory store");
4081 debug_generic_stmt (lhs);
4082 debug_generic_stmt (rhs1);
4083 return true;
4084 }
4085 return res;
4086
4087 case CONSTRUCTOR:
4088 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4089 {
4090 unsigned int i;
4091 tree elt_i, elt_v, elt_t = NULL_TREE;
4092
4093 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4094 return res;
4095 /* For vector CONSTRUCTORs we require that either it is empty
4096 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4097 (then the element count must be correct to cover the whole
4098 outer vector and index must be NULL on all elements, or it is
4099 a CONSTRUCTOR of scalar elements, where we as an exception allow
4100 smaller number of elements (assuming zero filling) and
4101 consecutive indexes as compared to NULL indexes (such
4102 CONSTRUCTORs can appear in the IL from FEs). */
4103 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4104 {
4105 if (elt_t == NULL_TREE)
4106 {
4107 elt_t = TREE_TYPE (elt_v);
4108 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4109 {
4110 tree elt_t = TREE_TYPE (elt_v);
4111 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4112 TREE_TYPE (elt_t)))
4113 {
4114 error ("incorrect type of vector CONSTRUCTOR"
4115 " elements");
4116 debug_generic_stmt (rhs1);
4117 return true;
4118 }
4119 else if (CONSTRUCTOR_NELTS (rhs1)
4120 * TYPE_VECTOR_SUBPARTS (elt_t)
4121 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4122 {
4123 error ("incorrect number of vector CONSTRUCTOR"
4124 " elements");
4125 debug_generic_stmt (rhs1);
4126 return true;
4127 }
4128 }
4129 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4130 elt_t))
4131 {
4132 error ("incorrect type of vector CONSTRUCTOR elements");
4133 debug_generic_stmt (rhs1);
4134 return true;
4135 }
4136 else if (CONSTRUCTOR_NELTS (rhs1)
4137 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4138 {
4139 error ("incorrect number of vector CONSTRUCTOR elements");
4140 debug_generic_stmt (rhs1);
4141 return true;
4142 }
4143 }
4144 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4145 {
4146 error ("incorrect type of vector CONSTRUCTOR elements");
4147 debug_generic_stmt (rhs1);
4148 return true;
4149 }
4150 if (elt_i != NULL_TREE
4151 && (TREE_CODE (elt_t) == VECTOR_TYPE
4152 || TREE_CODE (elt_i) != INTEGER_CST
4153 || compare_tree_int (elt_i, i) != 0))
4154 {
4155 error ("vector CONSTRUCTOR with non-NULL element index");
4156 debug_generic_stmt (rhs1);
4157 return true;
4158 }
4159 }
4160 }
4161 return res;
4162 case OBJ_TYPE_REF:
4163 case ASSERT_EXPR:
4164 case WITH_SIZE_EXPR:
4165 /* FIXME. */
4166 return res;
4167
4168 default:;
4169 }
4170
4171 return res;
4172 }
4173
4174 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4175 is a problem, otherwise false. */
4176
4177 static bool
4178 verify_gimple_assign (gimple stmt)
4179 {
4180 switch (gimple_assign_rhs_class (stmt))
4181 {
4182 case GIMPLE_SINGLE_RHS:
4183 return verify_gimple_assign_single (stmt);
4184
4185 case GIMPLE_UNARY_RHS:
4186 return verify_gimple_assign_unary (stmt);
4187
4188 case GIMPLE_BINARY_RHS:
4189 return verify_gimple_assign_binary (stmt);
4190
4191 case GIMPLE_TERNARY_RHS:
4192 return verify_gimple_assign_ternary (stmt);
4193
4194 default:
4195 gcc_unreachable ();
4196 }
4197 }
4198
4199 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4200 is a problem, otherwise false. */
4201
4202 static bool
4203 verify_gimple_return (gimple stmt)
4204 {
4205 tree op = gimple_return_retval (stmt);
4206 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4207
4208 /* We cannot test for present return values as we do not fix up missing
4209 return values from the original source. */
4210 if (op == NULL)
4211 return false;
4212
4213 if (!is_gimple_val (op)
4214 && TREE_CODE (op) != RESULT_DECL)
4215 {
4216 error ("invalid operand in return statement");
4217 debug_generic_stmt (op);
4218 return true;
4219 }
4220
4221 if ((TREE_CODE (op) == RESULT_DECL
4222 && DECL_BY_REFERENCE (op))
4223 || (TREE_CODE (op) == SSA_NAME
4224 && SSA_NAME_VAR (op)
4225 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4226 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4227 op = TREE_TYPE (op);
4228
4229 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4230 {
4231 error ("invalid conversion in return statement");
4232 debug_generic_stmt (restype);
4233 debug_generic_stmt (TREE_TYPE (op));
4234 return true;
4235 }
4236
4237 return false;
4238 }
4239
4240
4241 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4242 is a problem, otherwise false. */
4243
4244 static bool
4245 verify_gimple_goto (gimple stmt)
4246 {
4247 tree dest = gimple_goto_dest (stmt);
4248
4249 /* ??? We have two canonical forms of direct goto destinations, a
4250 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4251 if (TREE_CODE (dest) != LABEL_DECL
4252 && (!is_gimple_val (dest)
4253 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4254 {
4255 error ("goto destination is neither a label nor a pointer");
4256 return true;
4257 }
4258
4259 return false;
4260 }
4261
4262 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4263 is a problem, otherwise false. */
4264
4265 static bool
4266 verify_gimple_switch (gimple stmt)
4267 {
4268 unsigned int i, n;
4269 tree elt, prev_upper_bound = NULL_TREE;
4270 tree index_type, elt_type = NULL_TREE;
4271
4272 if (!is_gimple_val (gimple_switch_index (stmt)))
4273 {
4274 error ("invalid operand to switch statement");
4275 debug_generic_stmt (gimple_switch_index (stmt));
4276 return true;
4277 }
4278
4279 index_type = TREE_TYPE (gimple_switch_index (stmt));
4280 if (! INTEGRAL_TYPE_P (index_type))
4281 {
4282 error ("non-integral type switch statement");
4283 debug_generic_expr (index_type);
4284 return true;
4285 }
4286
4287 elt = gimple_switch_label (stmt, 0);
4288 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4289 {
4290 error ("invalid default case label in switch statement");
4291 debug_generic_expr (elt);
4292 return true;
4293 }
4294
4295 n = gimple_switch_num_labels (stmt);
4296 for (i = 1; i < n; i++)
4297 {
4298 elt = gimple_switch_label (stmt, i);
4299
4300 if (! CASE_LOW (elt))
4301 {
4302 error ("invalid case label in switch statement");
4303 debug_generic_expr (elt);
4304 return true;
4305 }
4306 if (CASE_HIGH (elt)
4307 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4308 {
4309 error ("invalid case range in switch statement");
4310 debug_generic_expr (elt);
4311 return true;
4312 }
4313
4314 if (elt_type)
4315 {
4316 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4317 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4318 {
4319 error ("type mismatch for case label in switch statement");
4320 debug_generic_expr (elt);
4321 return true;
4322 }
4323 }
4324 else
4325 {
4326 elt_type = TREE_TYPE (CASE_LOW (elt));
4327 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4328 {
4329 error ("type precision mismatch in switch statement");
4330 return true;
4331 }
4332 }
4333
4334 if (prev_upper_bound)
4335 {
4336 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4337 {
4338 error ("case labels not sorted in switch statement");
4339 return true;
4340 }
4341 }
4342
4343 prev_upper_bound = CASE_HIGH (elt);
4344 if (! prev_upper_bound)
4345 prev_upper_bound = CASE_LOW (elt);
4346 }
4347
4348 return false;
4349 }
4350
4351 /* Verify a gimple debug statement STMT.
4352 Returns true if anything is wrong. */
4353
4354 static bool
4355 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4356 {
4357 /* There isn't much that could be wrong in a gimple debug stmt. A
4358 gimple debug bind stmt, for example, maps a tree, that's usually
4359 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4360 component or member of an aggregate type, to another tree, that
4361 can be an arbitrary expression. These stmts expand into debug
4362 insns, and are converted to debug notes by var-tracking.c. */
4363 return false;
4364 }
4365
4366 /* Verify a gimple label statement STMT.
4367 Returns true if anything is wrong. */
4368
4369 static bool
4370 verify_gimple_label (gimple stmt)
4371 {
4372 tree decl = gimple_label_label (stmt);
4373 int uid;
4374 bool err = false;
4375
4376 if (TREE_CODE (decl) != LABEL_DECL)
4377 return true;
4378 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4379 && DECL_CONTEXT (decl) != current_function_decl)
4380 {
4381 error ("label's context is not the current function decl");
4382 err |= true;
4383 }
4384
4385 uid = LABEL_DECL_UID (decl);
4386 if (cfun->cfg
4387 && (uid == -1
4388 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4389 {
4390 error ("incorrect entry in label_to_block_map");
4391 err |= true;
4392 }
4393
4394 uid = EH_LANDING_PAD_NR (decl);
4395 if (uid)
4396 {
4397 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4398 if (decl != lp->post_landing_pad)
4399 {
4400 error ("incorrect setting of landing pad number");
4401 err |= true;
4402 }
4403 }
4404
4405 return err;
4406 }
4407
4408 /* Verify the GIMPLE statement STMT. Returns true if there is an
4409 error, otherwise false. */
4410
4411 static bool
4412 verify_gimple_stmt (gimple stmt)
4413 {
4414 switch (gimple_code (stmt))
4415 {
4416 case GIMPLE_ASSIGN:
4417 return verify_gimple_assign (stmt);
4418
4419 case GIMPLE_LABEL:
4420 return verify_gimple_label (stmt);
4421
4422 case GIMPLE_CALL:
4423 return verify_gimple_call (stmt);
4424
4425 case GIMPLE_COND:
4426 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4427 {
4428 error ("invalid comparison code in gimple cond");
4429 return true;
4430 }
4431 if (!(!gimple_cond_true_label (stmt)
4432 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4433 || !(!gimple_cond_false_label (stmt)
4434 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4435 {
4436 error ("invalid labels in gimple cond");
4437 return true;
4438 }
4439
4440 return verify_gimple_comparison (boolean_type_node,
4441 gimple_cond_lhs (stmt),
4442 gimple_cond_rhs (stmt));
4443
4444 case GIMPLE_GOTO:
4445 return verify_gimple_goto (stmt);
4446
4447 case GIMPLE_SWITCH:
4448 return verify_gimple_switch (stmt);
4449
4450 case GIMPLE_RETURN:
4451 return verify_gimple_return (stmt);
4452
4453 case GIMPLE_ASM:
4454 return false;
4455
4456 case GIMPLE_TRANSACTION:
4457 return verify_gimple_transaction (stmt);
4458
4459 /* Tuples that do not have tree operands. */
4460 case GIMPLE_NOP:
4461 case GIMPLE_PREDICT:
4462 case GIMPLE_RESX:
4463 case GIMPLE_EH_DISPATCH:
4464 case GIMPLE_EH_MUST_NOT_THROW:
4465 return false;
4466
4467 CASE_GIMPLE_OMP:
4468 /* OpenMP directives are validated by the FE and never operated
4469 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4470 non-gimple expressions when the main index variable has had
4471 its address taken. This does not affect the loop itself
4472 because the header of an GIMPLE_OMP_FOR is merely used to determine
4473 how to setup the parallel iteration. */
4474 return false;
4475
4476 case GIMPLE_DEBUG:
4477 return verify_gimple_debug (stmt);
4478
4479 default:
4480 gcc_unreachable ();
4481 }
4482 }
4483
4484 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4485 and false otherwise. */
4486
4487 static bool
4488 verify_gimple_phi (gimple phi)
4489 {
4490 bool err = false;
4491 unsigned i;
4492 tree phi_result = gimple_phi_result (phi);
4493 bool virtual_p;
4494
4495 if (!phi_result)
4496 {
4497 error ("invalid PHI result");
4498 return true;
4499 }
4500
4501 virtual_p = virtual_operand_p (phi_result);
4502 if (TREE_CODE (phi_result) != SSA_NAME
4503 || (virtual_p
4504 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4505 {
4506 error ("invalid PHI result");
4507 err = true;
4508 }
4509
4510 for (i = 0; i < gimple_phi_num_args (phi); i++)
4511 {
4512 tree t = gimple_phi_arg_def (phi, i);
4513
4514 if (!t)
4515 {
4516 error ("missing PHI def");
4517 err |= true;
4518 continue;
4519 }
4520 /* Addressable variables do have SSA_NAMEs but they
4521 are not considered gimple values. */
4522 else if ((TREE_CODE (t) == SSA_NAME
4523 && virtual_p != virtual_operand_p (t))
4524 || (virtual_p
4525 && (TREE_CODE (t) != SSA_NAME
4526 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4527 || (!virtual_p
4528 && !is_gimple_val (t)))
4529 {
4530 error ("invalid PHI argument");
4531 debug_generic_expr (t);
4532 err |= true;
4533 }
4534 #ifdef ENABLE_TYPES_CHECKING
4535 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4536 {
4537 error ("incompatible types in PHI argument %u", i);
4538 debug_generic_stmt (TREE_TYPE (phi_result));
4539 debug_generic_stmt (TREE_TYPE (t));
4540 err |= true;
4541 }
4542 #endif
4543 }
4544
4545 return err;
4546 }
4547
4548 /* Verify the GIMPLE statements inside the sequence STMTS. */
4549
4550 static bool
4551 verify_gimple_in_seq_2 (gimple_seq stmts)
4552 {
4553 gimple_stmt_iterator ittr;
4554 bool err = false;
4555
4556 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4557 {
4558 gimple stmt = gsi_stmt (ittr);
4559
4560 switch (gimple_code (stmt))
4561 {
4562 case GIMPLE_BIND:
4563 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4564 break;
4565
4566 case GIMPLE_TRY:
4567 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4568 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4569 break;
4570
4571 case GIMPLE_EH_FILTER:
4572 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4573 break;
4574
4575 case GIMPLE_EH_ELSE:
4576 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4577 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4578 break;
4579
4580 case GIMPLE_CATCH:
4581 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4582 break;
4583
4584 case GIMPLE_TRANSACTION:
4585 err |= verify_gimple_transaction (stmt);
4586 break;
4587
4588 default:
4589 {
4590 bool err2 = verify_gimple_stmt (stmt);
4591 if (err2)
4592 debug_gimple_stmt (stmt);
4593 err |= err2;
4594 }
4595 }
4596 }
4597
4598 return err;
4599 }
4600
4601 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4602 is a problem, otherwise false. */
4603
4604 static bool
4605 verify_gimple_transaction (gimple stmt)
4606 {
4607 tree lab = gimple_transaction_label (stmt);
4608 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4609 return true;
4610 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4611 }
4612
4613
4614 /* Verify the GIMPLE statements inside the statement list STMTS. */
4615
4616 DEBUG_FUNCTION void
4617 verify_gimple_in_seq (gimple_seq stmts)
4618 {
4619 timevar_push (TV_TREE_STMT_VERIFY);
4620 if (verify_gimple_in_seq_2 (stmts))
4621 internal_error ("verify_gimple failed");
4622 timevar_pop (TV_TREE_STMT_VERIFY);
4623 }
4624
4625 /* Return true when the T can be shared. */
4626
4627 static bool
4628 tree_node_can_be_shared (tree t)
4629 {
4630 if (IS_TYPE_OR_DECL_P (t)
4631 || is_gimple_min_invariant (t)
4632 || TREE_CODE (t) == SSA_NAME
4633 || t == error_mark_node
4634 || TREE_CODE (t) == IDENTIFIER_NODE)
4635 return true;
4636
4637 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4638 return true;
4639
4640 if (DECL_P (t))
4641 return true;
4642
4643 return false;
4644 }
4645
4646 /* Called via walk_tree. Verify tree sharing. */
4647
4648 static tree
4649 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4650 {
4651 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4652
4653 if (tree_node_can_be_shared (*tp))
4654 {
4655 *walk_subtrees = false;
4656 return NULL;
4657 }
4658
4659 if (pointer_set_insert (visited, *tp))
4660 return *tp;
4661
4662 return NULL;
4663 }
4664
4665 /* Called via walk_gimple_stmt. Verify tree sharing. */
4666
4667 static tree
4668 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4669 {
4670 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4671 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4672 }
4673
4674 static bool eh_error_found;
4675 static int
4676 verify_eh_throw_stmt_node (void **slot, void *data)
4677 {
4678 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4679 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4680
4681 if (!pointer_set_contains (visited, node->stmt))
4682 {
4683 error ("dead STMT in EH table");
4684 debug_gimple_stmt (node->stmt);
4685 eh_error_found = true;
4686 }
4687 return 1;
4688 }
4689
4690 /* Verify if the location LOCs block is in BLOCKS. */
4691
4692 static bool
4693 verify_location (pointer_set_t *blocks, location_t loc)
4694 {
4695 tree block = LOCATION_BLOCK (loc);
4696 if (block != NULL_TREE
4697 && !pointer_set_contains (blocks, block))
4698 {
4699 error ("location references block not in block tree");
4700 return true;
4701 }
4702 if (block != NULL_TREE)
4703 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4704 return false;
4705 }
4706
4707 /* Called via walk_tree. Verify that expressions have no blocks. */
4708
4709 static tree
4710 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4711 {
4712 if (!EXPR_P (*tp))
4713 {
4714 *walk_subtrees = false;
4715 return NULL;
4716 }
4717
4718 location_t loc = EXPR_LOCATION (*tp);
4719 if (LOCATION_BLOCK (loc) != NULL)
4720 return *tp;
4721
4722 return NULL;
4723 }
4724
4725 /* Called via walk_tree. Verify locations of expressions. */
4726
4727 static tree
4728 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4729 {
4730 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4731
4732 if (TREE_CODE (*tp) == VAR_DECL
4733 && DECL_HAS_DEBUG_EXPR_P (*tp))
4734 {
4735 tree t = DECL_DEBUG_EXPR (*tp);
4736 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4737 if (addr)
4738 return addr;
4739 }
4740 if ((TREE_CODE (*tp) == VAR_DECL
4741 || TREE_CODE (*tp) == PARM_DECL
4742 || TREE_CODE (*tp) == RESULT_DECL)
4743 && DECL_HAS_VALUE_EXPR_P (*tp))
4744 {
4745 tree t = DECL_VALUE_EXPR (*tp);
4746 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4747 if (addr)
4748 return addr;
4749 }
4750
4751 if (!EXPR_P (*tp))
4752 {
4753 *walk_subtrees = false;
4754 return NULL;
4755 }
4756
4757 location_t loc = EXPR_LOCATION (*tp);
4758 if (verify_location (blocks, loc))
4759 return *tp;
4760
4761 return NULL;
4762 }
4763
4764 /* Called via walk_gimple_op. Verify locations of expressions. */
4765
4766 static tree
4767 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4768 {
4769 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4770 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4771 }
4772
4773 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4774
4775 static void
4776 collect_subblocks (pointer_set_t *blocks, tree block)
4777 {
4778 tree t;
4779 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4780 {
4781 pointer_set_insert (blocks, t);
4782 collect_subblocks (blocks, t);
4783 }
4784 }
4785
4786 /* Verify the GIMPLE statements in the CFG of FN. */
4787
4788 DEBUG_FUNCTION void
4789 verify_gimple_in_cfg (struct function *fn)
4790 {
4791 basic_block bb;
4792 bool err = false;
4793 struct pointer_set_t *visited, *visited_stmts, *blocks;
4794
4795 timevar_push (TV_TREE_STMT_VERIFY);
4796 visited = pointer_set_create ();
4797 visited_stmts = pointer_set_create ();
4798
4799 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4800 blocks = pointer_set_create ();
4801 if (DECL_INITIAL (fn->decl))
4802 {
4803 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4804 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4805 }
4806
4807 FOR_EACH_BB_FN (bb, fn)
4808 {
4809 gimple_stmt_iterator gsi;
4810
4811 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4812 {
4813 gimple phi = gsi_stmt (gsi);
4814 bool err2 = false;
4815 unsigned i;
4816
4817 pointer_set_insert (visited_stmts, phi);
4818
4819 if (gimple_bb (phi) != bb)
4820 {
4821 error ("gimple_bb (phi) is set to a wrong basic block");
4822 err2 = true;
4823 }
4824
4825 err2 |= verify_gimple_phi (phi);
4826
4827 /* Only PHI arguments have locations. */
4828 if (gimple_location (phi) != UNKNOWN_LOCATION)
4829 {
4830 error ("PHI node with location");
4831 err2 = true;
4832 }
4833
4834 for (i = 0; i < gimple_phi_num_args (phi); i++)
4835 {
4836 tree arg = gimple_phi_arg_def (phi, i);
4837 tree addr = walk_tree (&arg, verify_node_sharing_1,
4838 visited, NULL);
4839 if (addr)
4840 {
4841 error ("incorrect sharing of tree nodes");
4842 debug_generic_expr (addr);
4843 err2 |= true;
4844 }
4845 location_t loc = gimple_phi_arg_location (phi, i);
4846 if (virtual_operand_p (gimple_phi_result (phi))
4847 && loc != UNKNOWN_LOCATION)
4848 {
4849 error ("virtual PHI with argument locations");
4850 err2 = true;
4851 }
4852 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4853 if (addr)
4854 {
4855 debug_generic_expr (addr);
4856 err2 = true;
4857 }
4858 err2 |= verify_location (blocks, loc);
4859 }
4860
4861 if (err2)
4862 debug_gimple_stmt (phi);
4863 err |= err2;
4864 }
4865
4866 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4867 {
4868 gimple stmt = gsi_stmt (gsi);
4869 bool err2 = false;
4870 struct walk_stmt_info wi;
4871 tree addr;
4872 int lp_nr;
4873
4874 pointer_set_insert (visited_stmts, stmt);
4875
4876 if (gimple_bb (stmt) != bb)
4877 {
4878 error ("gimple_bb (stmt) is set to a wrong basic block");
4879 err2 = true;
4880 }
4881
4882 err2 |= verify_gimple_stmt (stmt);
4883 err2 |= verify_location (blocks, gimple_location (stmt));
4884
4885 memset (&wi, 0, sizeof (wi));
4886 wi.info = (void *) visited;
4887 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4888 if (addr)
4889 {
4890 error ("incorrect sharing of tree nodes");
4891 debug_generic_expr (addr);
4892 err2 |= true;
4893 }
4894
4895 memset (&wi, 0, sizeof (wi));
4896 wi.info = (void *) blocks;
4897 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4898 if (addr)
4899 {
4900 debug_generic_expr (addr);
4901 err2 |= true;
4902 }
4903
4904 /* ??? Instead of not checking these stmts at all the walker
4905 should know its context via wi. */
4906 if (!is_gimple_debug (stmt)
4907 && !is_gimple_omp (stmt))
4908 {
4909 memset (&wi, 0, sizeof (wi));
4910 addr = walk_gimple_op (stmt, verify_expr, &wi);
4911 if (addr)
4912 {
4913 debug_generic_expr (addr);
4914 inform (gimple_location (stmt), "in statement");
4915 err2 |= true;
4916 }
4917 }
4918
4919 /* If the statement is marked as part of an EH region, then it is
4920 expected that the statement could throw. Verify that when we
4921 have optimizations that simplify statements such that we prove
4922 that they cannot throw, that we update other data structures
4923 to match. */
4924 lp_nr = lookup_stmt_eh_lp (stmt);
4925 if (lp_nr != 0)
4926 {
4927 if (!stmt_could_throw_p (stmt))
4928 {
4929 error ("statement marked for throw, but doesn%'t");
4930 err2 |= true;
4931 }
4932 else if (lp_nr > 0
4933 && !gsi_one_before_end_p (gsi)
4934 && stmt_can_throw_internal (stmt))
4935 {
4936 error ("statement marked for throw in middle of block");
4937 err2 |= true;
4938 }
4939 }
4940
4941 if (err2)
4942 debug_gimple_stmt (stmt);
4943 err |= err2;
4944 }
4945 }
4946
4947 eh_error_found = false;
4948 if (get_eh_throw_stmt_table (cfun))
4949 htab_traverse (get_eh_throw_stmt_table (cfun),
4950 verify_eh_throw_stmt_node,
4951 visited_stmts);
4952
4953 if (err || eh_error_found)
4954 internal_error ("verify_gimple failed");
4955
4956 pointer_set_destroy (visited);
4957 pointer_set_destroy (visited_stmts);
4958 pointer_set_destroy (blocks);
4959 verify_histograms ();
4960 timevar_pop (TV_TREE_STMT_VERIFY);
4961 }
4962
4963
4964 /* Verifies that the flow information is OK. */
4965
4966 static int
4967 gimple_verify_flow_info (void)
4968 {
4969 int err = 0;
4970 basic_block bb;
4971 gimple_stmt_iterator gsi;
4972 gimple stmt;
4973 edge e;
4974 edge_iterator ei;
4975
4976 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4977 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4978 {
4979 error ("ENTRY_BLOCK has IL associated with it");
4980 err = 1;
4981 }
4982
4983 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4984 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4985 {
4986 error ("EXIT_BLOCK has IL associated with it");
4987 err = 1;
4988 }
4989
4990 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4991 if (e->flags & EDGE_FALLTHRU)
4992 {
4993 error ("fallthru to exit from bb %d", e->src->index);
4994 err = 1;
4995 }
4996
4997 FOR_EACH_BB_FN (bb, cfun)
4998 {
4999 bool found_ctrl_stmt = false;
5000
5001 stmt = NULL;
5002
5003 /* Skip labels on the start of basic block. */
5004 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5005 {
5006 tree label;
5007 gimple prev_stmt = stmt;
5008
5009 stmt = gsi_stmt (gsi);
5010
5011 if (gimple_code (stmt) != GIMPLE_LABEL)
5012 break;
5013
5014 label = gimple_label_label (stmt);
5015 if (prev_stmt && DECL_NONLOCAL (label))
5016 {
5017 error ("nonlocal label ");
5018 print_generic_expr (stderr, label, 0);
5019 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5020 bb->index);
5021 err = 1;
5022 }
5023
5024 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5025 {
5026 error ("EH landing pad label ");
5027 print_generic_expr (stderr, label, 0);
5028 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5029 bb->index);
5030 err = 1;
5031 }
5032
5033 if (label_to_block (label) != bb)
5034 {
5035 error ("label ");
5036 print_generic_expr (stderr, label, 0);
5037 fprintf (stderr, " to block does not match in bb %d",
5038 bb->index);
5039 err = 1;
5040 }
5041
5042 if (decl_function_context (label) != current_function_decl)
5043 {
5044 error ("label ");
5045 print_generic_expr (stderr, label, 0);
5046 fprintf (stderr, " has incorrect context in bb %d",
5047 bb->index);
5048 err = 1;
5049 }
5050 }
5051
5052 /* Verify that body of basic block BB is free of control flow. */
5053 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5054 {
5055 gimple stmt = gsi_stmt (gsi);
5056
5057 if (found_ctrl_stmt)
5058 {
5059 error ("control flow in the middle of basic block %d",
5060 bb->index);
5061 err = 1;
5062 }
5063
5064 if (stmt_ends_bb_p (stmt))
5065 found_ctrl_stmt = true;
5066
5067 if (gimple_code (stmt) == GIMPLE_LABEL)
5068 {
5069 error ("label ");
5070 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5071 fprintf (stderr, " in the middle of basic block %d", bb->index);
5072 err = 1;
5073 }
5074 }
5075
5076 gsi = gsi_last_bb (bb);
5077 if (gsi_end_p (gsi))
5078 continue;
5079
5080 stmt = gsi_stmt (gsi);
5081
5082 if (gimple_code (stmt) == GIMPLE_LABEL)
5083 continue;
5084
5085 err |= verify_eh_edges (stmt);
5086
5087 if (is_ctrl_stmt (stmt))
5088 {
5089 FOR_EACH_EDGE (e, ei, bb->succs)
5090 if (e->flags & EDGE_FALLTHRU)
5091 {
5092 error ("fallthru edge after a control statement in bb %d",
5093 bb->index);
5094 err = 1;
5095 }
5096 }
5097
5098 if (gimple_code (stmt) != GIMPLE_COND)
5099 {
5100 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5101 after anything else but if statement. */
5102 FOR_EACH_EDGE (e, ei, bb->succs)
5103 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5104 {
5105 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5106 bb->index);
5107 err = 1;
5108 }
5109 }
5110
5111 switch (gimple_code (stmt))
5112 {
5113 case GIMPLE_COND:
5114 {
5115 edge true_edge;
5116 edge false_edge;
5117
5118 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5119
5120 if (!true_edge
5121 || !false_edge
5122 || !(true_edge->flags & EDGE_TRUE_VALUE)
5123 || !(false_edge->flags & EDGE_FALSE_VALUE)
5124 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5125 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5126 || EDGE_COUNT (bb->succs) >= 3)
5127 {
5128 error ("wrong outgoing edge flags at end of bb %d",
5129 bb->index);
5130 err = 1;
5131 }
5132 }
5133 break;
5134
5135 case GIMPLE_GOTO:
5136 if (simple_goto_p (stmt))
5137 {
5138 error ("explicit goto at end of bb %d", bb->index);
5139 err = 1;
5140 }
5141 else
5142 {
5143 /* FIXME. We should double check that the labels in the
5144 destination blocks have their address taken. */
5145 FOR_EACH_EDGE (e, ei, bb->succs)
5146 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5147 | EDGE_FALSE_VALUE))
5148 || !(e->flags & EDGE_ABNORMAL))
5149 {
5150 error ("wrong outgoing edge flags at end of bb %d",
5151 bb->index);
5152 err = 1;
5153 }
5154 }
5155 break;
5156
5157 case GIMPLE_CALL:
5158 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5159 break;
5160 /* ... fallthru ... */
5161 case GIMPLE_RETURN:
5162 if (!single_succ_p (bb)
5163 || (single_succ_edge (bb)->flags
5164 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5165 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5166 {
5167 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5168 err = 1;
5169 }
5170 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5171 {
5172 error ("return edge does not point to exit in bb %d",
5173 bb->index);
5174 err = 1;
5175 }
5176 break;
5177
5178 case GIMPLE_SWITCH:
5179 {
5180 tree prev;
5181 edge e;
5182 size_t i, n;
5183
5184 n = gimple_switch_num_labels (stmt);
5185
5186 /* Mark all the destination basic blocks. */
5187 for (i = 0; i < n; ++i)
5188 {
5189 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5190 basic_block label_bb = label_to_block (lab);
5191 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5192 label_bb->aux = (void *)1;
5193 }
5194
5195 /* Verify that the case labels are sorted. */
5196 prev = gimple_switch_label (stmt, 0);
5197 for (i = 1; i < n; ++i)
5198 {
5199 tree c = gimple_switch_label (stmt, i);
5200 if (!CASE_LOW (c))
5201 {
5202 error ("found default case not at the start of "
5203 "case vector");
5204 err = 1;
5205 continue;
5206 }
5207 if (CASE_LOW (prev)
5208 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5209 {
5210 error ("case labels not sorted: ");
5211 print_generic_expr (stderr, prev, 0);
5212 fprintf (stderr," is greater than ");
5213 print_generic_expr (stderr, c, 0);
5214 fprintf (stderr," but comes before it.\n");
5215 err = 1;
5216 }
5217 prev = c;
5218 }
5219 /* VRP will remove the default case if it can prove it will
5220 never be executed. So do not verify there always exists
5221 a default case here. */
5222
5223 FOR_EACH_EDGE (e, ei, bb->succs)
5224 {
5225 if (!e->dest->aux)
5226 {
5227 error ("extra outgoing edge %d->%d",
5228 bb->index, e->dest->index);
5229 err = 1;
5230 }
5231
5232 e->dest->aux = (void *)2;
5233 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5234 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5235 {
5236 error ("wrong outgoing edge flags at end of bb %d",
5237 bb->index);
5238 err = 1;
5239 }
5240 }
5241
5242 /* Check that we have all of them. */
5243 for (i = 0; i < n; ++i)
5244 {
5245 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5246 basic_block label_bb = label_to_block (lab);
5247
5248 if (label_bb->aux != (void *)2)
5249 {
5250 error ("missing edge %i->%i", bb->index, label_bb->index);
5251 err = 1;
5252 }
5253 }
5254
5255 FOR_EACH_EDGE (e, ei, bb->succs)
5256 e->dest->aux = (void *)0;
5257 }
5258 break;
5259
5260 case GIMPLE_EH_DISPATCH:
5261 err |= verify_eh_dispatch_edge (stmt);
5262 break;
5263
5264 default:
5265 break;
5266 }
5267 }
5268
5269 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5270 verify_dominators (CDI_DOMINATORS);
5271
5272 return err;
5273 }
5274
5275
5276 /* Updates phi nodes after creating a forwarder block joined
5277 by edge FALLTHRU. */
5278
5279 static void
5280 gimple_make_forwarder_block (edge fallthru)
5281 {
5282 edge e;
5283 edge_iterator ei;
5284 basic_block dummy, bb;
5285 tree var;
5286 gimple_stmt_iterator gsi;
5287
5288 dummy = fallthru->src;
5289 bb = fallthru->dest;
5290
5291 if (single_pred_p (bb))
5292 return;
5293
5294 /* If we redirected a branch we must create new PHI nodes at the
5295 start of BB. */
5296 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5297 {
5298 gimple phi, new_phi;
5299
5300 phi = gsi_stmt (gsi);
5301 var = gimple_phi_result (phi);
5302 new_phi = create_phi_node (var, bb);
5303 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5304 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5305 UNKNOWN_LOCATION);
5306 }
5307
5308 /* Add the arguments we have stored on edges. */
5309 FOR_EACH_EDGE (e, ei, bb->preds)
5310 {
5311 if (e == fallthru)
5312 continue;
5313
5314 flush_pending_stmts (e);
5315 }
5316 }
5317
5318
5319 /* Return a non-special label in the head of basic block BLOCK.
5320 Create one if it doesn't exist. */
5321
5322 tree
5323 gimple_block_label (basic_block bb)
5324 {
5325 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5326 bool first = true;
5327 tree label;
5328 gimple stmt;
5329
5330 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5331 {
5332 stmt = gsi_stmt (i);
5333 if (gimple_code (stmt) != GIMPLE_LABEL)
5334 break;
5335 label = gimple_label_label (stmt);
5336 if (!DECL_NONLOCAL (label))
5337 {
5338 if (!first)
5339 gsi_move_before (&i, &s);
5340 return label;
5341 }
5342 }
5343
5344 label = create_artificial_label (UNKNOWN_LOCATION);
5345 stmt = gimple_build_label (label);
5346 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5347 return label;
5348 }
5349
5350
5351 /* Attempt to perform edge redirection by replacing a possibly complex
5352 jump instruction by a goto or by removing the jump completely.
5353 This can apply only if all edges now point to the same block. The
5354 parameters and return values are equivalent to
5355 redirect_edge_and_branch. */
5356
5357 static edge
5358 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5359 {
5360 basic_block src = e->src;
5361 gimple_stmt_iterator i;
5362 gimple stmt;
5363
5364 /* We can replace or remove a complex jump only when we have exactly
5365 two edges. */
5366 if (EDGE_COUNT (src->succs) != 2
5367 /* Verify that all targets will be TARGET. Specifically, the
5368 edge that is not E must also go to TARGET. */
5369 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5370 return NULL;
5371
5372 i = gsi_last_bb (src);
5373 if (gsi_end_p (i))
5374 return NULL;
5375
5376 stmt = gsi_stmt (i);
5377
5378 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5379 {
5380 gsi_remove (&i, true);
5381 e = ssa_redirect_edge (e, target);
5382 e->flags = EDGE_FALLTHRU;
5383 return e;
5384 }
5385
5386 return NULL;
5387 }
5388
5389
5390 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5391 edge representing the redirected branch. */
5392
5393 static edge
5394 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5395 {
5396 basic_block bb = e->src;
5397 gimple_stmt_iterator gsi;
5398 edge ret;
5399 gimple stmt;
5400
5401 if (e->flags & EDGE_ABNORMAL)
5402 return NULL;
5403
5404 if (e->dest == dest)
5405 return NULL;
5406
5407 if (e->flags & EDGE_EH)
5408 return redirect_eh_edge (e, dest);
5409
5410 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5411 {
5412 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5413 if (ret)
5414 return ret;
5415 }
5416
5417 gsi = gsi_last_bb (bb);
5418 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5419
5420 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5421 {
5422 case GIMPLE_COND:
5423 /* For COND_EXPR, we only need to redirect the edge. */
5424 break;
5425
5426 case GIMPLE_GOTO:
5427 /* No non-abnormal edges should lead from a non-simple goto, and
5428 simple ones should be represented implicitly. */
5429 gcc_unreachable ();
5430
5431 case GIMPLE_SWITCH:
5432 {
5433 tree label = gimple_block_label (dest);
5434 tree cases = get_cases_for_edge (e, stmt);
5435
5436 /* If we have a list of cases associated with E, then use it
5437 as it's a lot faster than walking the entire case vector. */
5438 if (cases)
5439 {
5440 edge e2 = find_edge (e->src, dest);
5441 tree last, first;
5442
5443 first = cases;
5444 while (cases)
5445 {
5446 last = cases;
5447 CASE_LABEL (cases) = label;
5448 cases = CASE_CHAIN (cases);
5449 }
5450
5451 /* If there was already an edge in the CFG, then we need
5452 to move all the cases associated with E to E2. */
5453 if (e2)
5454 {
5455 tree cases2 = get_cases_for_edge (e2, stmt);
5456
5457 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5458 CASE_CHAIN (cases2) = first;
5459 }
5460 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5461 }
5462 else
5463 {
5464 size_t i, n = gimple_switch_num_labels (stmt);
5465
5466 for (i = 0; i < n; i++)
5467 {
5468 tree elt = gimple_switch_label (stmt, i);
5469 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5470 CASE_LABEL (elt) = label;
5471 }
5472 }
5473 }
5474 break;
5475
5476 case GIMPLE_ASM:
5477 {
5478 int i, n = gimple_asm_nlabels (stmt);
5479 tree label = NULL;
5480
5481 for (i = 0; i < n; ++i)
5482 {
5483 tree cons = gimple_asm_label_op (stmt, i);
5484 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5485 {
5486 if (!label)
5487 label = gimple_block_label (dest);
5488 TREE_VALUE (cons) = label;
5489 }
5490 }
5491
5492 /* If we didn't find any label matching the former edge in the
5493 asm labels, we must be redirecting the fallthrough
5494 edge. */
5495 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5496 }
5497 break;
5498
5499 case GIMPLE_RETURN:
5500 gsi_remove (&gsi, true);
5501 e->flags |= EDGE_FALLTHRU;
5502 break;
5503
5504 case GIMPLE_OMP_RETURN:
5505 case GIMPLE_OMP_CONTINUE:
5506 case GIMPLE_OMP_SECTIONS_SWITCH:
5507 case GIMPLE_OMP_FOR:
5508 /* The edges from OMP constructs can be simply redirected. */
5509 break;
5510
5511 case GIMPLE_EH_DISPATCH:
5512 if (!(e->flags & EDGE_FALLTHRU))
5513 redirect_eh_dispatch_edge (stmt, e, dest);
5514 break;
5515
5516 case GIMPLE_TRANSACTION:
5517 /* The ABORT edge has a stored label associated with it, otherwise
5518 the edges are simply redirectable. */
5519 if (e->flags == 0)
5520 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5521 break;
5522
5523 default:
5524 /* Otherwise it must be a fallthru edge, and we don't need to
5525 do anything besides redirecting it. */
5526 gcc_assert (e->flags & EDGE_FALLTHRU);
5527 break;
5528 }
5529
5530 /* Update/insert PHI nodes as necessary. */
5531
5532 /* Now update the edges in the CFG. */
5533 e = ssa_redirect_edge (e, dest);
5534
5535 return e;
5536 }
5537
5538 /* Returns true if it is possible to remove edge E by redirecting
5539 it to the destination of the other edge from E->src. */
5540
5541 static bool
5542 gimple_can_remove_branch_p (const_edge e)
5543 {
5544 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5545 return false;
5546
5547 return true;
5548 }
5549
5550 /* Simple wrapper, as we can always redirect fallthru edges. */
5551
5552 static basic_block
5553 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5554 {
5555 e = gimple_redirect_edge_and_branch (e, dest);
5556 gcc_assert (e);
5557
5558 return NULL;
5559 }
5560
5561
5562 /* Splits basic block BB after statement STMT (but at least after the
5563 labels). If STMT is NULL, BB is split just after the labels. */
5564
5565 static basic_block
5566 gimple_split_block (basic_block bb, void *stmt)
5567 {
5568 gimple_stmt_iterator gsi;
5569 gimple_stmt_iterator gsi_tgt;
5570 gimple act;
5571 gimple_seq list;
5572 basic_block new_bb;
5573 edge e;
5574 edge_iterator ei;
5575
5576 new_bb = create_empty_bb (bb);
5577
5578 /* Redirect the outgoing edges. */
5579 new_bb->succs = bb->succs;
5580 bb->succs = NULL;
5581 FOR_EACH_EDGE (e, ei, new_bb->succs)
5582 e->src = new_bb;
5583
5584 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5585 stmt = NULL;
5586
5587 /* Move everything from GSI to the new basic block. */
5588 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5589 {
5590 act = gsi_stmt (gsi);
5591 if (gimple_code (act) == GIMPLE_LABEL)
5592 continue;
5593
5594 if (!stmt)
5595 break;
5596
5597 if (stmt == act)
5598 {
5599 gsi_next (&gsi);
5600 break;
5601 }
5602 }
5603
5604 if (gsi_end_p (gsi))
5605 return new_bb;
5606
5607 /* Split the statement list - avoid re-creating new containers as this
5608 brings ugly quadratic memory consumption in the inliner.
5609 (We are still quadratic since we need to update stmt BB pointers,
5610 sadly.) */
5611 gsi_split_seq_before (&gsi, &list);
5612 set_bb_seq (new_bb, list);
5613 for (gsi_tgt = gsi_start (list);
5614 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5615 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5616
5617 return new_bb;
5618 }
5619
5620
5621 /* Moves basic block BB after block AFTER. */
5622
5623 static bool
5624 gimple_move_block_after (basic_block bb, basic_block after)
5625 {
5626 if (bb->prev_bb == after)
5627 return true;
5628
5629 unlink_block (bb);
5630 link_block (bb, after);
5631
5632 return true;
5633 }
5634
5635
5636 /* Return TRUE if block BB has no executable statements, otherwise return
5637 FALSE. */
5638
5639 static bool
5640 gimple_empty_block_p (basic_block bb)
5641 {
5642 /* BB must have no executable statements. */
5643 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5644 if (phi_nodes (bb))
5645 return false;
5646 if (gsi_end_p (gsi))
5647 return true;
5648 if (is_gimple_debug (gsi_stmt (gsi)))
5649 gsi_next_nondebug (&gsi);
5650 return gsi_end_p (gsi);
5651 }
5652
5653
5654 /* Split a basic block if it ends with a conditional branch and if the
5655 other part of the block is not empty. */
5656
5657 static basic_block
5658 gimple_split_block_before_cond_jump (basic_block bb)
5659 {
5660 gimple last, split_point;
5661 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5662 if (gsi_end_p (gsi))
5663 return NULL;
5664 last = gsi_stmt (gsi);
5665 if (gimple_code (last) != GIMPLE_COND
5666 && gimple_code (last) != GIMPLE_SWITCH)
5667 return NULL;
5668 gsi_prev_nondebug (&gsi);
5669 split_point = gsi_stmt (gsi);
5670 return split_block (bb, split_point)->dest;
5671 }
5672
5673
5674 /* Return true if basic_block can be duplicated. */
5675
5676 static bool
5677 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5678 {
5679 return true;
5680 }
5681
5682 /* Create a duplicate of the basic block BB. NOTE: This does not
5683 preserve SSA form. */
5684
5685 static basic_block
5686 gimple_duplicate_bb (basic_block bb)
5687 {
5688 basic_block new_bb;
5689 gimple_stmt_iterator gsi, gsi_tgt;
5690 gimple_seq phis = phi_nodes (bb);
5691 gimple phi, stmt, copy;
5692
5693 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5694
5695 /* Copy the PHI nodes. We ignore PHI node arguments here because
5696 the incoming edges have not been setup yet. */
5697 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5698 {
5699 phi = gsi_stmt (gsi);
5700 copy = create_phi_node (NULL_TREE, new_bb);
5701 create_new_def_for (gimple_phi_result (phi), copy,
5702 gimple_phi_result_ptr (copy));
5703 gimple_set_uid (copy, gimple_uid (phi));
5704 }
5705
5706 gsi_tgt = gsi_start_bb (new_bb);
5707 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5708 {
5709 def_operand_p def_p;
5710 ssa_op_iter op_iter;
5711 tree lhs;
5712
5713 stmt = gsi_stmt (gsi);
5714 if (gimple_code (stmt) == GIMPLE_LABEL)
5715 continue;
5716
5717 /* Don't duplicate label debug stmts. */
5718 if (gimple_debug_bind_p (stmt)
5719 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5720 == LABEL_DECL)
5721 continue;
5722
5723 /* Create a new copy of STMT and duplicate STMT's virtual
5724 operands. */
5725 copy = gimple_copy (stmt);
5726 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5727
5728 maybe_duplicate_eh_stmt (copy, stmt);
5729 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5730
5731 /* When copying around a stmt writing into a local non-user
5732 aggregate, make sure it won't share stack slot with other
5733 vars. */
5734 lhs = gimple_get_lhs (stmt);
5735 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5736 {
5737 tree base = get_base_address (lhs);
5738 if (base
5739 && (TREE_CODE (base) == VAR_DECL
5740 || TREE_CODE (base) == RESULT_DECL)
5741 && DECL_IGNORED_P (base)
5742 && !TREE_STATIC (base)
5743 && !DECL_EXTERNAL (base)
5744 && (TREE_CODE (base) != VAR_DECL
5745 || !DECL_HAS_VALUE_EXPR_P (base)))
5746 DECL_NONSHAREABLE (base) = 1;
5747 }
5748
5749 /* Create new names for all the definitions created by COPY and
5750 add replacement mappings for each new name. */
5751 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5752 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5753 }
5754
5755 return new_bb;
5756 }
5757
5758 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5759
5760 static void
5761 add_phi_args_after_copy_edge (edge e_copy)
5762 {
5763 basic_block bb, bb_copy = e_copy->src, dest;
5764 edge e;
5765 edge_iterator ei;
5766 gimple phi, phi_copy;
5767 tree def;
5768 gimple_stmt_iterator psi, psi_copy;
5769
5770 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5771 return;
5772
5773 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5774
5775 if (e_copy->dest->flags & BB_DUPLICATED)
5776 dest = get_bb_original (e_copy->dest);
5777 else
5778 dest = e_copy->dest;
5779
5780 e = find_edge (bb, dest);
5781 if (!e)
5782 {
5783 /* During loop unrolling the target of the latch edge is copied.
5784 In this case we are not looking for edge to dest, but to
5785 duplicated block whose original was dest. */
5786 FOR_EACH_EDGE (e, ei, bb->succs)
5787 {
5788 if ((e->dest->flags & BB_DUPLICATED)
5789 && get_bb_original (e->dest) == dest)
5790 break;
5791 }
5792
5793 gcc_assert (e != NULL);
5794 }
5795
5796 for (psi = gsi_start_phis (e->dest),
5797 psi_copy = gsi_start_phis (e_copy->dest);
5798 !gsi_end_p (psi);
5799 gsi_next (&psi), gsi_next (&psi_copy))
5800 {
5801 phi = gsi_stmt (psi);
5802 phi_copy = gsi_stmt (psi_copy);
5803 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5804 add_phi_arg (phi_copy, def, e_copy,
5805 gimple_phi_arg_location_from_edge (phi, e));
5806 }
5807 }
5808
5809
5810 /* Basic block BB_COPY was created by code duplication. Add phi node
5811 arguments for edges going out of BB_COPY. The blocks that were
5812 duplicated have BB_DUPLICATED set. */
5813
5814 void
5815 add_phi_args_after_copy_bb (basic_block bb_copy)
5816 {
5817 edge e_copy;
5818 edge_iterator ei;
5819
5820 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5821 {
5822 add_phi_args_after_copy_edge (e_copy);
5823 }
5824 }
5825
5826 /* Blocks in REGION_COPY array of length N_REGION were created by
5827 duplication of basic blocks. Add phi node arguments for edges
5828 going from these blocks. If E_COPY is not NULL, also add
5829 phi node arguments for its destination.*/
5830
5831 void
5832 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5833 edge e_copy)
5834 {
5835 unsigned i;
5836
5837 for (i = 0; i < n_region; i++)
5838 region_copy[i]->flags |= BB_DUPLICATED;
5839
5840 for (i = 0; i < n_region; i++)
5841 add_phi_args_after_copy_bb (region_copy[i]);
5842 if (e_copy)
5843 add_phi_args_after_copy_edge (e_copy);
5844
5845 for (i = 0; i < n_region; i++)
5846 region_copy[i]->flags &= ~BB_DUPLICATED;
5847 }
5848
5849 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5850 important exit edge EXIT. By important we mean that no SSA name defined
5851 inside region is live over the other exit edges of the region. All entry
5852 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5853 to the duplicate of the region. Dominance and loop information is
5854 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5855 UPDATE_DOMINANCE is false then we assume that the caller will update the
5856 dominance information after calling this function. The new basic
5857 blocks are stored to REGION_COPY in the same order as they had in REGION,
5858 provided that REGION_COPY is not NULL.
5859 The function returns false if it is unable to copy the region,
5860 true otherwise. */
5861
5862 bool
5863 gimple_duplicate_sese_region (edge entry, edge exit,
5864 basic_block *region, unsigned n_region,
5865 basic_block *region_copy,
5866 bool update_dominance)
5867 {
5868 unsigned i;
5869 bool free_region_copy = false, copying_header = false;
5870 struct loop *loop = entry->dest->loop_father;
5871 edge exit_copy;
5872 vec<basic_block> doms;
5873 edge redirected;
5874 int total_freq = 0, entry_freq = 0;
5875 gcov_type total_count = 0, entry_count = 0;
5876
5877 if (!can_copy_bbs_p (region, n_region))
5878 return false;
5879
5880 /* Some sanity checking. Note that we do not check for all possible
5881 missuses of the functions. I.e. if you ask to copy something weird,
5882 it will work, but the state of structures probably will not be
5883 correct. */
5884 for (i = 0; i < n_region; i++)
5885 {
5886 /* We do not handle subloops, i.e. all the blocks must belong to the
5887 same loop. */
5888 if (region[i]->loop_father != loop)
5889 return false;
5890
5891 if (region[i] != entry->dest
5892 && region[i] == loop->header)
5893 return false;
5894 }
5895
5896 /* In case the function is used for loop header copying (which is the primary
5897 use), ensure that EXIT and its copy will be new latch and entry edges. */
5898 if (loop->header == entry->dest)
5899 {
5900 copying_header = true;
5901
5902 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5903 return false;
5904
5905 for (i = 0; i < n_region; i++)
5906 if (region[i] != exit->src
5907 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5908 return false;
5909 }
5910
5911 initialize_original_copy_tables ();
5912
5913 if (copying_header)
5914 set_loop_copy (loop, loop_outer (loop));
5915 else
5916 set_loop_copy (loop, loop);
5917
5918 if (!region_copy)
5919 {
5920 region_copy = XNEWVEC (basic_block, n_region);
5921 free_region_copy = true;
5922 }
5923
5924 /* Record blocks outside the region that are dominated by something
5925 inside. */
5926 if (update_dominance)
5927 {
5928 doms.create (0);
5929 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5930 }
5931
5932 if (entry->dest->count)
5933 {
5934 total_count = entry->dest->count;
5935 entry_count = entry->count;
5936 /* Fix up corner cases, to avoid division by zero or creation of negative
5937 frequencies. */
5938 if (entry_count > total_count)
5939 entry_count = total_count;
5940 }
5941 else
5942 {
5943 total_freq = entry->dest->frequency;
5944 entry_freq = EDGE_FREQUENCY (entry);
5945 /* Fix up corner cases, to avoid division by zero or creation of negative
5946 frequencies. */
5947 if (total_freq == 0)
5948 total_freq = 1;
5949 else if (entry_freq > total_freq)
5950 entry_freq = total_freq;
5951 }
5952
5953 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5954 split_edge_bb_loc (entry), update_dominance);
5955 if (total_count)
5956 {
5957 scale_bbs_frequencies_gcov_type (region, n_region,
5958 total_count - entry_count,
5959 total_count);
5960 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5961 total_count);
5962 }
5963 else
5964 {
5965 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5966 total_freq);
5967 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5968 }
5969
5970 if (copying_header)
5971 {
5972 loop->header = exit->dest;
5973 loop->latch = exit->src;
5974 }
5975
5976 /* Redirect the entry and add the phi node arguments. */
5977 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5978 gcc_assert (redirected != NULL);
5979 flush_pending_stmts (entry);
5980
5981 /* Concerning updating of dominators: We must recount dominators
5982 for entry block and its copy. Anything that is outside of the
5983 region, but was dominated by something inside needs recounting as
5984 well. */
5985 if (update_dominance)
5986 {
5987 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5988 doms.safe_push (get_bb_original (entry->dest));
5989 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5990 doms.release ();
5991 }
5992
5993 /* Add the other PHI node arguments. */
5994 add_phi_args_after_copy (region_copy, n_region, NULL);
5995
5996 if (free_region_copy)
5997 free (region_copy);
5998
5999 free_original_copy_tables ();
6000 return true;
6001 }
6002
6003 /* Checks if BB is part of the region defined by N_REGION BBS. */
6004 static bool
6005 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6006 {
6007 unsigned int n;
6008
6009 for (n = 0; n < n_region; n++)
6010 {
6011 if (bb == bbs[n])
6012 return true;
6013 }
6014 return false;
6015 }
6016
6017 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6018 are stored to REGION_COPY in the same order in that they appear
6019 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6020 the region, EXIT an exit from it. The condition guarding EXIT
6021 is moved to ENTRY. Returns true if duplication succeeds, false
6022 otherwise.
6023
6024 For example,
6025
6026 some_code;
6027 if (cond)
6028 A;
6029 else
6030 B;
6031
6032 is transformed to
6033
6034 if (cond)
6035 {
6036 some_code;
6037 A;
6038 }
6039 else
6040 {
6041 some_code;
6042 B;
6043 }
6044 */
6045
6046 bool
6047 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6048 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6049 basic_block *region_copy ATTRIBUTE_UNUSED)
6050 {
6051 unsigned i;
6052 bool free_region_copy = false;
6053 struct loop *loop = exit->dest->loop_father;
6054 struct loop *orig_loop = entry->dest->loop_father;
6055 basic_block switch_bb, entry_bb, nentry_bb;
6056 vec<basic_block> doms;
6057 int total_freq = 0, exit_freq = 0;
6058 gcov_type total_count = 0, exit_count = 0;
6059 edge exits[2], nexits[2], e;
6060 gimple_stmt_iterator gsi;
6061 gimple cond_stmt;
6062 edge sorig, snew;
6063 basic_block exit_bb;
6064 gimple_stmt_iterator psi;
6065 gimple phi;
6066 tree def;
6067 struct loop *target, *aloop, *cloop;
6068
6069 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6070 exits[0] = exit;
6071 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6072
6073 if (!can_copy_bbs_p (region, n_region))
6074 return false;
6075
6076 initialize_original_copy_tables ();
6077 set_loop_copy (orig_loop, loop);
6078
6079 target= loop;
6080 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6081 {
6082 if (bb_part_of_region_p (aloop->header, region, n_region))
6083 {
6084 cloop = duplicate_loop (aloop, target);
6085 duplicate_subloops (aloop, cloop);
6086 }
6087 }
6088
6089 if (!region_copy)
6090 {
6091 region_copy = XNEWVEC (basic_block, n_region);
6092 free_region_copy = true;
6093 }
6094
6095 gcc_assert (!need_ssa_update_p (cfun));
6096
6097 /* Record blocks outside the region that are dominated by something
6098 inside. */
6099 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6100
6101 if (exit->src->count)
6102 {
6103 total_count = exit->src->count;
6104 exit_count = exit->count;
6105 /* Fix up corner cases, to avoid division by zero or creation of negative
6106 frequencies. */
6107 if (exit_count > total_count)
6108 exit_count = total_count;
6109 }
6110 else
6111 {
6112 total_freq = exit->src->frequency;
6113 exit_freq = EDGE_FREQUENCY (exit);
6114 /* Fix up corner cases, to avoid division by zero or creation of negative
6115 frequencies. */
6116 if (total_freq == 0)
6117 total_freq = 1;
6118 if (exit_freq > total_freq)
6119 exit_freq = total_freq;
6120 }
6121
6122 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6123 split_edge_bb_loc (exit), true);
6124 if (total_count)
6125 {
6126 scale_bbs_frequencies_gcov_type (region, n_region,
6127 total_count - exit_count,
6128 total_count);
6129 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6130 total_count);
6131 }
6132 else
6133 {
6134 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6135 total_freq);
6136 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6137 }
6138
6139 /* Create the switch block, and put the exit condition to it. */
6140 entry_bb = entry->dest;
6141 nentry_bb = get_bb_copy (entry_bb);
6142 if (!last_stmt (entry->src)
6143 || !stmt_ends_bb_p (last_stmt (entry->src)))
6144 switch_bb = entry->src;
6145 else
6146 switch_bb = split_edge (entry);
6147 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6148
6149 gsi = gsi_last_bb (switch_bb);
6150 cond_stmt = last_stmt (exit->src);
6151 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6152 cond_stmt = gimple_copy (cond_stmt);
6153
6154 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6155
6156 sorig = single_succ_edge (switch_bb);
6157 sorig->flags = exits[1]->flags;
6158 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6159
6160 /* Register the new edge from SWITCH_BB in loop exit lists. */
6161 rescan_loop_exit (snew, true, false);
6162
6163 /* Add the PHI node arguments. */
6164 add_phi_args_after_copy (region_copy, n_region, snew);
6165
6166 /* Get rid of now superfluous conditions and associated edges (and phi node
6167 arguments). */
6168 exit_bb = exit->dest;
6169
6170 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6171 PENDING_STMT (e) = NULL;
6172
6173 /* The latch of ORIG_LOOP was copied, and so was the backedge
6174 to the original header. We redirect this backedge to EXIT_BB. */
6175 for (i = 0; i < n_region; i++)
6176 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6177 {
6178 gcc_assert (single_succ_edge (region_copy[i]));
6179 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6180 PENDING_STMT (e) = NULL;
6181 for (psi = gsi_start_phis (exit_bb);
6182 !gsi_end_p (psi);
6183 gsi_next (&psi))
6184 {
6185 phi = gsi_stmt (psi);
6186 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6187 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6188 }
6189 }
6190 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6191 PENDING_STMT (e) = NULL;
6192
6193 /* Anything that is outside of the region, but was dominated by something
6194 inside needs to update dominance info. */
6195 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6196 doms.release ();
6197 /* Update the SSA web. */
6198 update_ssa (TODO_update_ssa);
6199
6200 if (free_region_copy)
6201 free (region_copy);
6202
6203 free_original_copy_tables ();
6204 return true;
6205 }
6206
6207 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6208 adding blocks when the dominator traversal reaches EXIT. This
6209 function silently assumes that ENTRY strictly dominates EXIT. */
6210
6211 void
6212 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6213 vec<basic_block> *bbs_p)
6214 {
6215 basic_block son;
6216
6217 for (son = first_dom_son (CDI_DOMINATORS, entry);
6218 son;
6219 son = next_dom_son (CDI_DOMINATORS, son))
6220 {
6221 bbs_p->safe_push (son);
6222 if (son != exit)
6223 gather_blocks_in_sese_region (son, exit, bbs_p);
6224 }
6225 }
6226
6227 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6228 The duplicates are recorded in VARS_MAP. */
6229
6230 static void
6231 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6232 tree to_context)
6233 {
6234 tree t = *tp, new_t;
6235 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6236 void **loc;
6237
6238 if (DECL_CONTEXT (t) == to_context)
6239 return;
6240
6241 loc = pointer_map_contains (vars_map, t);
6242
6243 if (!loc)
6244 {
6245 loc = pointer_map_insert (vars_map, t);
6246
6247 if (SSA_VAR_P (t))
6248 {
6249 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6250 add_local_decl (f, new_t);
6251 }
6252 else
6253 {
6254 gcc_assert (TREE_CODE (t) == CONST_DECL);
6255 new_t = copy_node (t);
6256 }
6257 DECL_CONTEXT (new_t) = to_context;
6258
6259 *loc = new_t;
6260 }
6261 else
6262 new_t = (tree) *loc;
6263
6264 *tp = new_t;
6265 }
6266
6267
6268 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6269 VARS_MAP maps old ssa names and var_decls to the new ones. */
6270
6271 static tree
6272 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6273 tree to_context)
6274 {
6275 void **loc;
6276 tree new_name;
6277
6278 gcc_assert (!virtual_operand_p (name));
6279
6280 loc = pointer_map_contains (vars_map, name);
6281
6282 if (!loc)
6283 {
6284 tree decl = SSA_NAME_VAR (name);
6285 if (decl)
6286 {
6287 replace_by_duplicate_decl (&decl, vars_map, to_context);
6288 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6289 decl, SSA_NAME_DEF_STMT (name));
6290 if (SSA_NAME_IS_DEFAULT_DEF (name))
6291 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6292 decl, new_name);
6293 }
6294 else
6295 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6296 name, SSA_NAME_DEF_STMT (name));
6297
6298 loc = pointer_map_insert (vars_map, name);
6299 *loc = new_name;
6300 }
6301 else
6302 new_name = (tree) *loc;
6303
6304 return new_name;
6305 }
6306
6307 struct move_stmt_d
6308 {
6309 tree orig_block;
6310 tree new_block;
6311 tree from_context;
6312 tree to_context;
6313 struct pointer_map_t *vars_map;
6314 htab_t new_label_map;
6315 struct pointer_map_t *eh_map;
6316 bool remap_decls_p;
6317 };
6318
6319 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6320 contained in *TP if it has been ORIG_BLOCK previously and change the
6321 DECL_CONTEXT of every local variable referenced in *TP. */
6322
6323 static tree
6324 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6325 {
6326 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6327 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6328 tree t = *tp;
6329
6330 if (EXPR_P (t))
6331 {
6332 tree block = TREE_BLOCK (t);
6333 if (block == p->orig_block
6334 || (p->orig_block == NULL_TREE
6335 && block != NULL_TREE))
6336 TREE_SET_BLOCK (t, p->new_block);
6337 #ifdef ENABLE_CHECKING
6338 else if (block != NULL_TREE)
6339 {
6340 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6341 block = BLOCK_SUPERCONTEXT (block);
6342 gcc_assert (block == p->orig_block);
6343 }
6344 #endif
6345 }
6346 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6347 {
6348 if (TREE_CODE (t) == SSA_NAME)
6349 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6350 else if (TREE_CODE (t) == LABEL_DECL)
6351 {
6352 if (p->new_label_map)
6353 {
6354 struct tree_map in, *out;
6355 in.base.from = t;
6356 out = (struct tree_map *)
6357 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6358 if (out)
6359 *tp = t = out->to;
6360 }
6361
6362 DECL_CONTEXT (t) = p->to_context;
6363 }
6364 else if (p->remap_decls_p)
6365 {
6366 /* Replace T with its duplicate. T should no longer appear in the
6367 parent function, so this looks wasteful; however, it may appear
6368 in referenced_vars, and more importantly, as virtual operands of
6369 statements, and in alias lists of other variables. It would be
6370 quite difficult to expunge it from all those places. ??? It might
6371 suffice to do this for addressable variables. */
6372 if ((TREE_CODE (t) == VAR_DECL
6373 && !is_global_var (t))
6374 || TREE_CODE (t) == CONST_DECL)
6375 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6376 }
6377 *walk_subtrees = 0;
6378 }
6379 else if (TYPE_P (t))
6380 *walk_subtrees = 0;
6381
6382 return NULL_TREE;
6383 }
6384
6385 /* Helper for move_stmt_r. Given an EH region number for the source
6386 function, map that to the duplicate EH regio number in the dest. */
6387
6388 static int
6389 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6390 {
6391 eh_region old_r, new_r;
6392 void **slot;
6393
6394 old_r = get_eh_region_from_number (old_nr);
6395 slot = pointer_map_contains (p->eh_map, old_r);
6396 new_r = (eh_region) *slot;
6397
6398 return new_r->index;
6399 }
6400
6401 /* Similar, but operate on INTEGER_CSTs. */
6402
6403 static tree
6404 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6405 {
6406 int old_nr, new_nr;
6407
6408 old_nr = tree_to_shwi (old_t_nr);
6409 new_nr = move_stmt_eh_region_nr (old_nr, p);
6410
6411 return build_int_cst (integer_type_node, new_nr);
6412 }
6413
6414 /* Like move_stmt_op, but for gimple statements.
6415
6416 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6417 contained in the current statement in *GSI_P and change the
6418 DECL_CONTEXT of every local variable referenced in the current
6419 statement. */
6420
6421 static tree
6422 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6423 struct walk_stmt_info *wi)
6424 {
6425 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6426 gimple stmt = gsi_stmt (*gsi_p);
6427 tree block = gimple_block (stmt);
6428
6429 if (block == p->orig_block
6430 || (p->orig_block == NULL_TREE
6431 && block != NULL_TREE))
6432 gimple_set_block (stmt, p->new_block);
6433
6434 switch (gimple_code (stmt))
6435 {
6436 case GIMPLE_CALL:
6437 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6438 {
6439 tree r, fndecl = gimple_call_fndecl (stmt);
6440 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6441 switch (DECL_FUNCTION_CODE (fndecl))
6442 {
6443 case BUILT_IN_EH_COPY_VALUES:
6444 r = gimple_call_arg (stmt, 1);
6445 r = move_stmt_eh_region_tree_nr (r, p);
6446 gimple_call_set_arg (stmt, 1, r);
6447 /* FALLTHRU */
6448
6449 case BUILT_IN_EH_POINTER:
6450 case BUILT_IN_EH_FILTER:
6451 r = gimple_call_arg (stmt, 0);
6452 r = move_stmt_eh_region_tree_nr (r, p);
6453 gimple_call_set_arg (stmt, 0, r);
6454 break;
6455
6456 default:
6457 break;
6458 }
6459 }
6460 break;
6461
6462 case GIMPLE_RESX:
6463 {
6464 int r = gimple_resx_region (stmt);
6465 r = move_stmt_eh_region_nr (r, p);
6466 gimple_resx_set_region (stmt, r);
6467 }
6468 break;
6469
6470 case GIMPLE_EH_DISPATCH:
6471 {
6472 int r = gimple_eh_dispatch_region (stmt);
6473 r = move_stmt_eh_region_nr (r, p);
6474 gimple_eh_dispatch_set_region (stmt, r);
6475 }
6476 break;
6477
6478 case GIMPLE_OMP_RETURN:
6479 case GIMPLE_OMP_CONTINUE:
6480 break;
6481 default:
6482 if (is_gimple_omp (stmt))
6483 {
6484 /* Do not remap variables inside OMP directives. Variables
6485 referenced in clauses and directive header belong to the
6486 parent function and should not be moved into the child
6487 function. */
6488 bool save_remap_decls_p = p->remap_decls_p;
6489 p->remap_decls_p = false;
6490 *handled_ops_p = true;
6491
6492 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6493 move_stmt_op, wi);
6494
6495 p->remap_decls_p = save_remap_decls_p;
6496 }
6497 break;
6498 }
6499
6500 return NULL_TREE;
6501 }
6502
6503 /* Move basic block BB from function CFUN to function DEST_FN. The
6504 block is moved out of the original linked list and placed after
6505 block AFTER in the new list. Also, the block is removed from the
6506 original array of blocks and placed in DEST_FN's array of blocks.
6507 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6508 updated to reflect the moved edges.
6509
6510 The local variables are remapped to new instances, VARS_MAP is used
6511 to record the mapping. */
6512
6513 static void
6514 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6515 basic_block after, bool update_edge_count_p,
6516 struct move_stmt_d *d)
6517 {
6518 struct control_flow_graph *cfg;
6519 edge_iterator ei;
6520 edge e;
6521 gimple_stmt_iterator si;
6522 unsigned old_len, new_len;
6523
6524 /* Remove BB from dominance structures. */
6525 delete_from_dominance_info (CDI_DOMINATORS, bb);
6526
6527 /* Move BB from its current loop to the copy in the new function. */
6528 if (current_loops)
6529 {
6530 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6531 if (new_loop)
6532 bb->loop_father = new_loop;
6533 }
6534
6535 /* Link BB to the new linked list. */
6536 move_block_after (bb, after);
6537
6538 /* Update the edge count in the corresponding flowgraphs. */
6539 if (update_edge_count_p)
6540 FOR_EACH_EDGE (e, ei, bb->succs)
6541 {
6542 cfun->cfg->x_n_edges--;
6543 dest_cfun->cfg->x_n_edges++;
6544 }
6545
6546 /* Remove BB from the original basic block array. */
6547 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6548 cfun->cfg->x_n_basic_blocks--;
6549
6550 /* Grow DEST_CFUN's basic block array if needed. */
6551 cfg = dest_cfun->cfg;
6552 cfg->x_n_basic_blocks++;
6553 if (bb->index >= cfg->x_last_basic_block)
6554 cfg->x_last_basic_block = bb->index + 1;
6555
6556 old_len = vec_safe_length (cfg->x_basic_block_info);
6557 if ((unsigned) cfg->x_last_basic_block >= old_len)
6558 {
6559 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6560 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6561 }
6562
6563 (*cfg->x_basic_block_info)[bb->index] = bb;
6564
6565 /* Remap the variables in phi nodes. */
6566 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6567 {
6568 gimple phi = gsi_stmt (si);
6569 use_operand_p use;
6570 tree op = PHI_RESULT (phi);
6571 ssa_op_iter oi;
6572 unsigned i;
6573
6574 if (virtual_operand_p (op))
6575 {
6576 /* Remove the phi nodes for virtual operands (alias analysis will be
6577 run for the new function, anyway). */
6578 remove_phi_node (&si, true);
6579 continue;
6580 }
6581
6582 SET_PHI_RESULT (phi,
6583 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6584 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6585 {
6586 op = USE_FROM_PTR (use);
6587 if (TREE_CODE (op) == SSA_NAME)
6588 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6589 }
6590
6591 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6592 {
6593 location_t locus = gimple_phi_arg_location (phi, i);
6594 tree block = LOCATION_BLOCK (locus);
6595
6596 if (locus == UNKNOWN_LOCATION)
6597 continue;
6598 if (d->orig_block == NULL_TREE || block == d->orig_block)
6599 {
6600 if (d->new_block == NULL_TREE)
6601 locus = LOCATION_LOCUS (locus);
6602 else
6603 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6604 gimple_phi_arg_set_location (phi, i, locus);
6605 }
6606 }
6607
6608 gsi_next (&si);
6609 }
6610
6611 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6612 {
6613 gimple stmt = gsi_stmt (si);
6614 struct walk_stmt_info wi;
6615
6616 memset (&wi, 0, sizeof (wi));
6617 wi.info = d;
6618 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6619
6620 if (gimple_code (stmt) == GIMPLE_LABEL)
6621 {
6622 tree label = gimple_label_label (stmt);
6623 int uid = LABEL_DECL_UID (label);
6624
6625 gcc_assert (uid > -1);
6626
6627 old_len = vec_safe_length (cfg->x_label_to_block_map);
6628 if (old_len <= (unsigned) uid)
6629 {
6630 new_len = 3 * uid / 2 + 1;
6631 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6632 }
6633
6634 (*cfg->x_label_to_block_map)[uid] = bb;
6635 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6636
6637 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6638
6639 if (uid >= dest_cfun->cfg->last_label_uid)
6640 dest_cfun->cfg->last_label_uid = uid + 1;
6641 }
6642
6643 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6644 remove_stmt_from_eh_lp_fn (cfun, stmt);
6645
6646 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6647 gimple_remove_stmt_histograms (cfun, stmt);
6648
6649 /* We cannot leave any operands allocated from the operand caches of
6650 the current function. */
6651 free_stmt_operands (cfun, stmt);
6652 push_cfun (dest_cfun);
6653 update_stmt (stmt);
6654 pop_cfun ();
6655 }
6656
6657 FOR_EACH_EDGE (e, ei, bb->succs)
6658 if (e->goto_locus != UNKNOWN_LOCATION)
6659 {
6660 tree block = LOCATION_BLOCK (e->goto_locus);
6661 if (d->orig_block == NULL_TREE
6662 || block == d->orig_block)
6663 e->goto_locus = d->new_block ?
6664 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6665 LOCATION_LOCUS (e->goto_locus);
6666 }
6667 }
6668
6669 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6670 the outermost EH region. Use REGION as the incoming base EH region. */
6671
6672 static eh_region
6673 find_outermost_region_in_block (struct function *src_cfun,
6674 basic_block bb, eh_region region)
6675 {
6676 gimple_stmt_iterator si;
6677
6678 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6679 {
6680 gimple stmt = gsi_stmt (si);
6681 eh_region stmt_region;
6682 int lp_nr;
6683
6684 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6685 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6686 if (stmt_region)
6687 {
6688 if (region == NULL)
6689 region = stmt_region;
6690 else if (stmt_region != region)
6691 {
6692 region = eh_region_outermost (src_cfun, stmt_region, region);
6693 gcc_assert (region != NULL);
6694 }
6695 }
6696 }
6697
6698 return region;
6699 }
6700
6701 static tree
6702 new_label_mapper (tree decl, void *data)
6703 {
6704 htab_t hash = (htab_t) data;
6705 struct tree_map *m;
6706 void **slot;
6707
6708 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6709
6710 m = XNEW (struct tree_map);
6711 m->hash = DECL_UID (decl);
6712 m->base.from = decl;
6713 m->to = create_artificial_label (UNKNOWN_LOCATION);
6714 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6715 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6716 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6717
6718 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6719 gcc_assert (*slot == NULL);
6720
6721 *slot = m;
6722
6723 return m->to;
6724 }
6725
6726 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6727 subblocks. */
6728
6729 static void
6730 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6731 tree to_context)
6732 {
6733 tree *tp, t;
6734
6735 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6736 {
6737 t = *tp;
6738 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6739 continue;
6740 replace_by_duplicate_decl (&t, vars_map, to_context);
6741 if (t != *tp)
6742 {
6743 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6744 {
6745 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6746 DECL_HAS_VALUE_EXPR_P (t) = 1;
6747 }
6748 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6749 *tp = t;
6750 }
6751 }
6752
6753 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6754 replace_block_vars_by_duplicates (block, vars_map, to_context);
6755 }
6756
6757 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6758 from FN1 to FN2. */
6759
6760 static void
6761 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6762 struct loop *loop)
6763 {
6764 /* Discard it from the old loop array. */
6765 (*get_loops (fn1))[loop->num] = NULL;
6766
6767 /* Place it in the new loop array, assigning it a new number. */
6768 loop->num = number_of_loops (fn2);
6769 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6770
6771 /* Recurse to children. */
6772 for (loop = loop->inner; loop; loop = loop->next)
6773 fixup_loop_arrays_after_move (fn1, fn2, loop);
6774 }
6775
6776 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6777 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6778 single basic block in the original CFG and the new basic block is
6779 returned. DEST_CFUN must not have a CFG yet.
6780
6781 Note that the region need not be a pure SESE region. Blocks inside
6782 the region may contain calls to abort/exit. The only restriction
6783 is that ENTRY_BB should be the only entry point and it must
6784 dominate EXIT_BB.
6785
6786 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6787 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6788 to the new function.
6789
6790 All local variables referenced in the region are assumed to be in
6791 the corresponding BLOCK_VARS and unexpanded variable lists
6792 associated with DEST_CFUN. */
6793
6794 basic_block
6795 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6796 basic_block exit_bb, tree orig_block)
6797 {
6798 vec<basic_block> bbs, dom_bbs;
6799 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6800 basic_block after, bb, *entry_pred, *exit_succ, abb;
6801 struct function *saved_cfun = cfun;
6802 int *entry_flag, *exit_flag;
6803 unsigned *entry_prob, *exit_prob;
6804 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6805 edge e;
6806 edge_iterator ei;
6807 htab_t new_label_map;
6808 struct pointer_map_t *vars_map, *eh_map;
6809 struct loop *loop = entry_bb->loop_father;
6810 struct loop *loop0 = get_loop (saved_cfun, 0);
6811 struct move_stmt_d d;
6812
6813 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6814 region. */
6815 gcc_assert (entry_bb != exit_bb
6816 && (!exit_bb
6817 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6818
6819 /* Collect all the blocks in the region. Manually add ENTRY_BB
6820 because it won't be added by dfs_enumerate_from. */
6821 bbs.create (0);
6822 bbs.safe_push (entry_bb);
6823 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6824
6825 /* The blocks that used to be dominated by something in BBS will now be
6826 dominated by the new block. */
6827 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6828 bbs.address (),
6829 bbs.length ());
6830
6831 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6832 the predecessor edges to ENTRY_BB and the successor edges to
6833 EXIT_BB so that we can re-attach them to the new basic block that
6834 will replace the region. */
6835 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6836 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6837 entry_flag = XNEWVEC (int, num_entry_edges);
6838 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6839 i = 0;
6840 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6841 {
6842 entry_prob[i] = e->probability;
6843 entry_flag[i] = e->flags;
6844 entry_pred[i++] = e->src;
6845 remove_edge (e);
6846 }
6847
6848 if (exit_bb)
6849 {
6850 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6851 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6852 exit_flag = XNEWVEC (int, num_exit_edges);
6853 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6854 i = 0;
6855 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6856 {
6857 exit_prob[i] = e->probability;
6858 exit_flag[i] = e->flags;
6859 exit_succ[i++] = e->dest;
6860 remove_edge (e);
6861 }
6862 }
6863 else
6864 {
6865 num_exit_edges = 0;
6866 exit_succ = NULL;
6867 exit_flag = NULL;
6868 exit_prob = NULL;
6869 }
6870
6871 /* Switch context to the child function to initialize DEST_FN's CFG. */
6872 gcc_assert (dest_cfun->cfg == NULL);
6873 push_cfun (dest_cfun);
6874
6875 init_empty_tree_cfg ();
6876
6877 /* Initialize EH information for the new function. */
6878 eh_map = NULL;
6879 new_label_map = NULL;
6880 if (saved_cfun->eh)
6881 {
6882 eh_region region = NULL;
6883
6884 FOR_EACH_VEC_ELT (bbs, i, bb)
6885 region = find_outermost_region_in_block (saved_cfun, bb, region);
6886
6887 init_eh_for_function ();
6888 if (region != NULL)
6889 {
6890 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6891 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6892 new_label_mapper, new_label_map);
6893 }
6894 }
6895
6896 /* Initialize an empty loop tree. */
6897 struct loops *loops = ggc_alloc_cleared_loops ();
6898 init_loops_structure (dest_cfun, loops, 1);
6899 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6900 set_loops_for_fn (dest_cfun, loops);
6901
6902 /* Move the outlined loop tree part. */
6903 num_nodes = bbs.length ();
6904 FOR_EACH_VEC_ELT (bbs, i, bb)
6905 {
6906 if (bb->loop_father->header == bb)
6907 {
6908 struct loop *this_loop = bb->loop_father;
6909 struct loop *outer = loop_outer (this_loop);
6910 if (outer == loop
6911 /* If the SESE region contains some bbs ending with
6912 a noreturn call, those are considered to belong
6913 to the outermost loop in saved_cfun, rather than
6914 the entry_bb's loop_father. */
6915 || outer == loop0)
6916 {
6917 if (outer != loop)
6918 num_nodes -= this_loop->num_nodes;
6919 flow_loop_tree_node_remove (bb->loop_father);
6920 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6921 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6922 }
6923 }
6924 else if (bb->loop_father == loop0 && loop0 != loop)
6925 num_nodes--;
6926
6927 /* Remove loop exits from the outlined region. */
6928 if (loops_for_fn (saved_cfun)->exits)
6929 FOR_EACH_EDGE (e, ei, bb->succs)
6930 {
6931 void **slot = htab_find_slot_with_hash
6932 (loops_for_fn (saved_cfun)->exits, e,
6933 htab_hash_pointer (e), NO_INSERT);
6934 if (slot)
6935 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6936 }
6937 }
6938
6939
6940 /* Adjust the number of blocks in the tree root of the outlined part. */
6941 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6942
6943 /* Setup a mapping to be used by move_block_to_fn. */
6944 loop->aux = current_loops->tree_root;
6945 loop0->aux = current_loops->tree_root;
6946
6947 pop_cfun ();
6948
6949 /* Move blocks from BBS into DEST_CFUN. */
6950 gcc_assert (bbs.length () >= 2);
6951 after = dest_cfun->cfg->x_entry_block_ptr;
6952 vars_map = pointer_map_create ();
6953
6954 memset (&d, 0, sizeof (d));
6955 d.orig_block = orig_block;
6956 d.new_block = DECL_INITIAL (dest_cfun->decl);
6957 d.from_context = cfun->decl;
6958 d.to_context = dest_cfun->decl;
6959 d.vars_map = vars_map;
6960 d.new_label_map = new_label_map;
6961 d.eh_map = eh_map;
6962 d.remap_decls_p = true;
6963
6964 FOR_EACH_VEC_ELT (bbs, i, bb)
6965 {
6966 /* No need to update edge counts on the last block. It has
6967 already been updated earlier when we detached the region from
6968 the original CFG. */
6969 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6970 after = bb;
6971 }
6972
6973 loop->aux = NULL;
6974 loop0->aux = NULL;
6975 /* Loop sizes are no longer correct, fix them up. */
6976 loop->num_nodes -= num_nodes;
6977 for (struct loop *outer = loop_outer (loop);
6978 outer; outer = loop_outer (outer))
6979 outer->num_nodes -= num_nodes;
6980 loop0->num_nodes -= bbs.length () - num_nodes;
6981
6982 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
6983 {
6984 struct loop *aloop;
6985 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6986 if (aloop != NULL)
6987 {
6988 if (aloop->simduid)
6989 {
6990 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6991 d.to_context);
6992 dest_cfun->has_simduid_loops = true;
6993 }
6994 if (aloop->force_vectorize)
6995 dest_cfun->has_force_vectorize_loops = true;
6996 }
6997 }
6998
6999 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7000 if (orig_block)
7001 {
7002 tree block;
7003 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7004 == NULL_TREE);
7005 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7006 = BLOCK_SUBBLOCKS (orig_block);
7007 for (block = BLOCK_SUBBLOCKS (orig_block);
7008 block; block = BLOCK_CHAIN (block))
7009 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7010 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7011 }
7012
7013 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7014 vars_map, dest_cfun->decl);
7015
7016 if (new_label_map)
7017 htab_delete (new_label_map);
7018 if (eh_map)
7019 pointer_map_destroy (eh_map);
7020 pointer_map_destroy (vars_map);
7021
7022 /* Rewire the entry and exit blocks. The successor to the entry
7023 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7024 the child function. Similarly, the predecessor of DEST_FN's
7025 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7026 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7027 various CFG manipulation function get to the right CFG.
7028
7029 FIXME, this is silly. The CFG ought to become a parameter to
7030 these helpers. */
7031 push_cfun (dest_cfun);
7032 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7033 if (exit_bb)
7034 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7035 pop_cfun ();
7036
7037 /* Back in the original function, the SESE region has disappeared,
7038 create a new basic block in its place. */
7039 bb = create_empty_bb (entry_pred[0]);
7040 if (current_loops)
7041 add_bb_to_loop (bb, loop);
7042 for (i = 0; i < num_entry_edges; i++)
7043 {
7044 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7045 e->probability = entry_prob[i];
7046 }
7047
7048 for (i = 0; i < num_exit_edges; i++)
7049 {
7050 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7051 e->probability = exit_prob[i];
7052 }
7053
7054 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7055 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7056 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7057 dom_bbs.release ();
7058
7059 if (exit_bb)
7060 {
7061 free (exit_prob);
7062 free (exit_flag);
7063 free (exit_succ);
7064 }
7065 free (entry_prob);
7066 free (entry_flag);
7067 free (entry_pred);
7068 bbs.release ();
7069
7070 return bb;
7071 }
7072
7073
7074 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7075 */
7076
7077 void
7078 dump_function_to_file (tree fndecl, FILE *file, int flags)
7079 {
7080 tree arg, var, old_current_fndecl = current_function_decl;
7081 struct function *dsf;
7082 bool ignore_topmost_bind = false, any_var = false;
7083 basic_block bb;
7084 tree chain;
7085 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7086 && decl_is_tm_clone (fndecl));
7087 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7088
7089 current_function_decl = fndecl;
7090 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7091
7092 arg = DECL_ARGUMENTS (fndecl);
7093 while (arg)
7094 {
7095 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7096 fprintf (file, " ");
7097 print_generic_expr (file, arg, dump_flags);
7098 if (flags & TDF_VERBOSE)
7099 print_node (file, "", arg, 4);
7100 if (DECL_CHAIN (arg))
7101 fprintf (file, ", ");
7102 arg = DECL_CHAIN (arg);
7103 }
7104 fprintf (file, ")\n");
7105
7106 if (flags & TDF_VERBOSE)
7107 print_node (file, "", fndecl, 2);
7108
7109 dsf = DECL_STRUCT_FUNCTION (fndecl);
7110 if (dsf && (flags & TDF_EH))
7111 dump_eh_tree (file, dsf);
7112
7113 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7114 {
7115 dump_node (fndecl, TDF_SLIM | flags, file);
7116 current_function_decl = old_current_fndecl;
7117 return;
7118 }
7119
7120 /* When GIMPLE is lowered, the variables are no longer available in
7121 BIND_EXPRs, so display them separately. */
7122 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7123 {
7124 unsigned ix;
7125 ignore_topmost_bind = true;
7126
7127 fprintf (file, "{\n");
7128 if (!vec_safe_is_empty (fun->local_decls))
7129 FOR_EACH_LOCAL_DECL (fun, ix, var)
7130 {
7131 print_generic_decl (file, var, flags);
7132 if (flags & TDF_VERBOSE)
7133 print_node (file, "", var, 4);
7134 fprintf (file, "\n");
7135
7136 any_var = true;
7137 }
7138 if (gimple_in_ssa_p (cfun))
7139 for (ix = 1; ix < num_ssa_names; ++ix)
7140 {
7141 tree name = ssa_name (ix);
7142 if (name && !SSA_NAME_VAR (name))
7143 {
7144 fprintf (file, " ");
7145 print_generic_expr (file, TREE_TYPE (name), flags);
7146 fprintf (file, " ");
7147 print_generic_expr (file, name, flags);
7148 fprintf (file, ";\n");
7149
7150 any_var = true;
7151 }
7152 }
7153 }
7154
7155 if (fun && fun->decl == fndecl
7156 && fun->cfg
7157 && basic_block_info_for_fn (fun))
7158 {
7159 /* If the CFG has been built, emit a CFG-based dump. */
7160 if (!ignore_topmost_bind)
7161 fprintf (file, "{\n");
7162
7163 if (any_var && n_basic_blocks_for_fn (fun))
7164 fprintf (file, "\n");
7165
7166 FOR_EACH_BB_FN (bb, fun)
7167 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7168
7169 fprintf (file, "}\n");
7170 }
7171 else if (DECL_SAVED_TREE (fndecl) == NULL)
7172 {
7173 /* The function is now in GIMPLE form but the CFG has not been
7174 built yet. Emit the single sequence of GIMPLE statements
7175 that make up its body. */
7176 gimple_seq body = gimple_body (fndecl);
7177
7178 if (gimple_seq_first_stmt (body)
7179 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7180 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7181 print_gimple_seq (file, body, 0, flags);
7182 else
7183 {
7184 if (!ignore_topmost_bind)
7185 fprintf (file, "{\n");
7186
7187 if (any_var)
7188 fprintf (file, "\n");
7189
7190 print_gimple_seq (file, body, 2, flags);
7191 fprintf (file, "}\n");
7192 }
7193 }
7194 else
7195 {
7196 int indent;
7197
7198 /* Make a tree based dump. */
7199 chain = DECL_SAVED_TREE (fndecl);
7200 if (chain && TREE_CODE (chain) == BIND_EXPR)
7201 {
7202 if (ignore_topmost_bind)
7203 {
7204 chain = BIND_EXPR_BODY (chain);
7205 indent = 2;
7206 }
7207 else
7208 indent = 0;
7209 }
7210 else
7211 {
7212 if (!ignore_topmost_bind)
7213 fprintf (file, "{\n");
7214 indent = 2;
7215 }
7216
7217 if (any_var)
7218 fprintf (file, "\n");
7219
7220 print_generic_stmt_indented (file, chain, flags, indent);
7221 if (ignore_topmost_bind)
7222 fprintf (file, "}\n");
7223 }
7224
7225 if (flags & TDF_ENUMERATE_LOCALS)
7226 dump_enumerated_decls (file, flags);
7227 fprintf (file, "\n\n");
7228
7229 current_function_decl = old_current_fndecl;
7230 }
7231
7232 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7233
7234 DEBUG_FUNCTION void
7235 debug_function (tree fn, int flags)
7236 {
7237 dump_function_to_file (fn, stderr, flags);
7238 }
7239
7240
7241 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7242
7243 static void
7244 print_pred_bbs (FILE *file, basic_block bb)
7245 {
7246 edge e;
7247 edge_iterator ei;
7248
7249 FOR_EACH_EDGE (e, ei, bb->preds)
7250 fprintf (file, "bb_%d ", e->src->index);
7251 }
7252
7253
7254 /* Print on FILE the indexes for the successors of basic_block BB. */
7255
7256 static void
7257 print_succ_bbs (FILE *file, basic_block bb)
7258 {
7259 edge e;
7260 edge_iterator ei;
7261
7262 FOR_EACH_EDGE (e, ei, bb->succs)
7263 fprintf (file, "bb_%d ", e->dest->index);
7264 }
7265
7266 /* Print to FILE the basic block BB following the VERBOSITY level. */
7267
7268 void
7269 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7270 {
7271 char *s_indent = (char *) alloca ((size_t) indent + 1);
7272 memset ((void *) s_indent, ' ', (size_t) indent);
7273 s_indent[indent] = '\0';
7274
7275 /* Print basic_block's header. */
7276 if (verbosity >= 2)
7277 {
7278 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7279 print_pred_bbs (file, bb);
7280 fprintf (file, "}, succs = {");
7281 print_succ_bbs (file, bb);
7282 fprintf (file, "})\n");
7283 }
7284
7285 /* Print basic_block's body. */
7286 if (verbosity >= 3)
7287 {
7288 fprintf (file, "%s {\n", s_indent);
7289 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7290 fprintf (file, "%s }\n", s_indent);
7291 }
7292 }
7293
7294 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7295
7296 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7297 VERBOSITY level this outputs the contents of the loop, or just its
7298 structure. */
7299
7300 static void
7301 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7302 {
7303 char *s_indent;
7304 basic_block bb;
7305
7306 if (loop == NULL)
7307 return;
7308
7309 s_indent = (char *) alloca ((size_t) indent + 1);
7310 memset ((void *) s_indent, ' ', (size_t) indent);
7311 s_indent[indent] = '\0';
7312
7313 /* Print loop's header. */
7314 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7315 if (loop->header)
7316 fprintf (file, "header = %d", loop->header->index);
7317 else
7318 {
7319 fprintf (file, "deleted)\n");
7320 return;
7321 }
7322 if (loop->latch)
7323 fprintf (file, ", latch = %d", loop->latch->index);
7324 else
7325 fprintf (file, ", multiple latches");
7326 fprintf (file, ", niter = ");
7327 print_generic_expr (file, loop->nb_iterations, 0);
7328
7329 if (loop->any_upper_bound)
7330 {
7331 fprintf (file, ", upper_bound = ");
7332 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7333 }
7334
7335 if (loop->any_estimate)
7336 {
7337 fprintf (file, ", estimate = ");
7338 dump_double_int (file, loop->nb_iterations_estimate, true);
7339 }
7340 fprintf (file, ")\n");
7341
7342 /* Print loop's body. */
7343 if (verbosity >= 1)
7344 {
7345 fprintf (file, "%s{\n", s_indent);
7346 FOR_EACH_BB_FN (bb, cfun)
7347 if (bb->loop_father == loop)
7348 print_loops_bb (file, bb, indent, verbosity);
7349
7350 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7351 fprintf (file, "%s}\n", s_indent);
7352 }
7353 }
7354
7355 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7356 spaces. Following VERBOSITY level this outputs the contents of the
7357 loop, or just its structure. */
7358
7359 static void
7360 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7361 int verbosity)
7362 {
7363 if (loop == NULL)
7364 return;
7365
7366 print_loop (file, loop, indent, verbosity);
7367 print_loop_and_siblings (file, loop->next, indent, verbosity);
7368 }
7369
7370 /* Follow a CFG edge from the entry point of the program, and on entry
7371 of a loop, pretty print the loop structure on FILE. */
7372
7373 void
7374 print_loops (FILE *file, int verbosity)
7375 {
7376 basic_block bb;
7377
7378 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7379 if (bb && bb->loop_father)
7380 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7381 }
7382
7383 /* Dump a loop. */
7384
7385 DEBUG_FUNCTION void
7386 debug (struct loop &ref)
7387 {
7388 print_loop (stderr, &ref, 0, /*verbosity*/0);
7389 }
7390
7391 DEBUG_FUNCTION void
7392 debug (struct loop *ptr)
7393 {
7394 if (ptr)
7395 debug (*ptr);
7396 else
7397 fprintf (stderr, "<nil>\n");
7398 }
7399
7400 /* Dump a loop verbosely. */
7401
7402 DEBUG_FUNCTION void
7403 debug_verbose (struct loop &ref)
7404 {
7405 print_loop (stderr, &ref, 0, /*verbosity*/3);
7406 }
7407
7408 DEBUG_FUNCTION void
7409 debug_verbose (struct loop *ptr)
7410 {
7411 if (ptr)
7412 debug (*ptr);
7413 else
7414 fprintf (stderr, "<nil>\n");
7415 }
7416
7417
7418 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7419
7420 DEBUG_FUNCTION void
7421 debug_loops (int verbosity)
7422 {
7423 print_loops (stderr, verbosity);
7424 }
7425
7426 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7427
7428 DEBUG_FUNCTION void
7429 debug_loop (struct loop *loop, int verbosity)
7430 {
7431 print_loop (stderr, loop, 0, verbosity);
7432 }
7433
7434 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7435 level. */
7436
7437 DEBUG_FUNCTION void
7438 debug_loop_num (unsigned num, int verbosity)
7439 {
7440 debug_loop (get_loop (cfun, num), verbosity);
7441 }
7442
7443 /* Return true if BB ends with a call, possibly followed by some
7444 instructions that must stay with the call. Return false,
7445 otherwise. */
7446
7447 static bool
7448 gimple_block_ends_with_call_p (basic_block bb)
7449 {
7450 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7451 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7452 }
7453
7454
7455 /* Return true if BB ends with a conditional branch. Return false,
7456 otherwise. */
7457
7458 static bool
7459 gimple_block_ends_with_condjump_p (const_basic_block bb)
7460 {
7461 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7462 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7463 }
7464
7465
7466 /* Return true if we need to add fake edge to exit at statement T.
7467 Helper function for gimple_flow_call_edges_add. */
7468
7469 static bool
7470 need_fake_edge_p (gimple t)
7471 {
7472 tree fndecl = NULL_TREE;
7473 int call_flags = 0;
7474
7475 /* NORETURN and LONGJMP calls already have an edge to exit.
7476 CONST and PURE calls do not need one.
7477 We don't currently check for CONST and PURE here, although
7478 it would be a good idea, because those attributes are
7479 figured out from the RTL in mark_constant_function, and
7480 the counter incrementation code from -fprofile-arcs
7481 leads to different results from -fbranch-probabilities. */
7482 if (is_gimple_call (t))
7483 {
7484 fndecl = gimple_call_fndecl (t);
7485 call_flags = gimple_call_flags (t);
7486 }
7487
7488 if (is_gimple_call (t)
7489 && fndecl
7490 && DECL_BUILT_IN (fndecl)
7491 && (call_flags & ECF_NOTHROW)
7492 && !(call_flags & ECF_RETURNS_TWICE)
7493 /* fork() doesn't really return twice, but the effect of
7494 wrapping it in __gcov_fork() which calls __gcov_flush()
7495 and clears the counters before forking has the same
7496 effect as returning twice. Force a fake edge. */
7497 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7498 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7499 return false;
7500
7501 if (is_gimple_call (t))
7502 {
7503 edge_iterator ei;
7504 edge e;
7505 basic_block bb;
7506
7507 if (!(call_flags & ECF_NORETURN))
7508 return true;
7509
7510 bb = gimple_bb (t);
7511 FOR_EACH_EDGE (e, ei, bb->succs)
7512 if ((e->flags & EDGE_FAKE) == 0)
7513 return true;
7514 }
7515
7516 if (gimple_code (t) == GIMPLE_ASM
7517 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7518 return true;
7519
7520 return false;
7521 }
7522
7523
7524 /* Add fake edges to the function exit for any non constant and non
7525 noreturn calls (or noreturn calls with EH/abnormal edges),
7526 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7527 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7528 that were split.
7529
7530 The goal is to expose cases in which entering a basic block does
7531 not imply that all subsequent instructions must be executed. */
7532
7533 static int
7534 gimple_flow_call_edges_add (sbitmap blocks)
7535 {
7536 int i;
7537 int blocks_split = 0;
7538 int last_bb = last_basic_block_for_fn (cfun);
7539 bool check_last_block = false;
7540
7541 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7542 return 0;
7543
7544 if (! blocks)
7545 check_last_block = true;
7546 else
7547 check_last_block = bitmap_bit_p (blocks,
7548 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7549
7550 /* In the last basic block, before epilogue generation, there will be
7551 a fallthru edge to EXIT. Special care is required if the last insn
7552 of the last basic block is a call because make_edge folds duplicate
7553 edges, which would result in the fallthru edge also being marked
7554 fake, which would result in the fallthru edge being removed by
7555 remove_fake_edges, which would result in an invalid CFG.
7556
7557 Moreover, we can't elide the outgoing fake edge, since the block
7558 profiler needs to take this into account in order to solve the minimal
7559 spanning tree in the case that the call doesn't return.
7560
7561 Handle this by adding a dummy instruction in a new last basic block. */
7562 if (check_last_block)
7563 {
7564 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7565 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7566 gimple t = NULL;
7567
7568 if (!gsi_end_p (gsi))
7569 t = gsi_stmt (gsi);
7570
7571 if (t && need_fake_edge_p (t))
7572 {
7573 edge e;
7574
7575 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7576 if (e)
7577 {
7578 gsi_insert_on_edge (e, gimple_build_nop ());
7579 gsi_commit_edge_inserts ();
7580 }
7581 }
7582 }
7583
7584 /* Now add fake edges to the function exit for any non constant
7585 calls since there is no way that we can determine if they will
7586 return or not... */
7587 for (i = 0; i < last_bb; i++)
7588 {
7589 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7590 gimple_stmt_iterator gsi;
7591 gimple stmt, last_stmt;
7592
7593 if (!bb)
7594 continue;
7595
7596 if (blocks && !bitmap_bit_p (blocks, i))
7597 continue;
7598
7599 gsi = gsi_last_nondebug_bb (bb);
7600 if (!gsi_end_p (gsi))
7601 {
7602 last_stmt = gsi_stmt (gsi);
7603 do
7604 {
7605 stmt = gsi_stmt (gsi);
7606 if (need_fake_edge_p (stmt))
7607 {
7608 edge e;
7609
7610 /* The handling above of the final block before the
7611 epilogue should be enough to verify that there is
7612 no edge to the exit block in CFG already.
7613 Calling make_edge in such case would cause us to
7614 mark that edge as fake and remove it later. */
7615 #ifdef ENABLE_CHECKING
7616 if (stmt == last_stmt)
7617 {
7618 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7619 gcc_assert (e == NULL);
7620 }
7621 #endif
7622
7623 /* Note that the following may create a new basic block
7624 and renumber the existing basic blocks. */
7625 if (stmt != last_stmt)
7626 {
7627 e = split_block (bb, stmt);
7628 if (e)
7629 blocks_split++;
7630 }
7631 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7632 }
7633 gsi_prev (&gsi);
7634 }
7635 while (!gsi_end_p (gsi));
7636 }
7637 }
7638
7639 if (blocks_split)
7640 verify_flow_info ();
7641
7642 return blocks_split;
7643 }
7644
7645 /* Removes edge E and all the blocks dominated by it, and updates dominance
7646 information. The IL in E->src needs to be updated separately.
7647 If dominance info is not available, only the edge E is removed.*/
7648
7649 void
7650 remove_edge_and_dominated_blocks (edge e)
7651 {
7652 vec<basic_block> bbs_to_remove = vNULL;
7653 vec<basic_block> bbs_to_fix_dom = vNULL;
7654 bitmap df, df_idom;
7655 edge f;
7656 edge_iterator ei;
7657 bool none_removed = false;
7658 unsigned i;
7659 basic_block bb, dbb;
7660 bitmap_iterator bi;
7661
7662 if (!dom_info_available_p (CDI_DOMINATORS))
7663 {
7664 remove_edge (e);
7665 return;
7666 }
7667
7668 /* No updating is needed for edges to exit. */
7669 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7670 {
7671 if (cfgcleanup_altered_bbs)
7672 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7673 remove_edge (e);
7674 return;
7675 }
7676
7677 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7678 that is not dominated by E->dest, then this set is empty. Otherwise,
7679 all the basic blocks dominated by E->dest are removed.
7680
7681 Also, to DF_IDOM we store the immediate dominators of the blocks in
7682 the dominance frontier of E (i.e., of the successors of the
7683 removed blocks, if there are any, and of E->dest otherwise). */
7684 FOR_EACH_EDGE (f, ei, e->dest->preds)
7685 {
7686 if (f == e)
7687 continue;
7688
7689 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7690 {
7691 none_removed = true;
7692 break;
7693 }
7694 }
7695
7696 df = BITMAP_ALLOC (NULL);
7697 df_idom = BITMAP_ALLOC (NULL);
7698
7699 if (none_removed)
7700 bitmap_set_bit (df_idom,
7701 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7702 else
7703 {
7704 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7705 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7706 {
7707 FOR_EACH_EDGE (f, ei, bb->succs)
7708 {
7709 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7710 bitmap_set_bit (df, f->dest->index);
7711 }
7712 }
7713 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7714 bitmap_clear_bit (df, bb->index);
7715
7716 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7717 {
7718 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7719 bitmap_set_bit (df_idom,
7720 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7721 }
7722 }
7723
7724 if (cfgcleanup_altered_bbs)
7725 {
7726 /* Record the set of the altered basic blocks. */
7727 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7728 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7729 }
7730
7731 /* Remove E and the cancelled blocks. */
7732 if (none_removed)
7733 remove_edge (e);
7734 else
7735 {
7736 /* Walk backwards so as to get a chance to substitute all
7737 released DEFs into debug stmts. See
7738 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7739 details. */
7740 for (i = bbs_to_remove.length (); i-- > 0; )
7741 delete_basic_block (bbs_to_remove[i]);
7742 }
7743
7744 /* Update the dominance information. The immediate dominator may change only
7745 for blocks whose immediate dominator belongs to DF_IDOM:
7746
7747 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7748 removal. Let Z the arbitrary block such that idom(Z) = Y and
7749 Z dominates X after the removal. Before removal, there exists a path P
7750 from Y to X that avoids Z. Let F be the last edge on P that is
7751 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7752 dominates W, and because of P, Z does not dominate W), and W belongs to
7753 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7754 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7755 {
7756 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7757 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7758 dbb;
7759 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7760 bbs_to_fix_dom.safe_push (dbb);
7761 }
7762
7763 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7764
7765 BITMAP_FREE (df);
7766 BITMAP_FREE (df_idom);
7767 bbs_to_remove.release ();
7768 bbs_to_fix_dom.release ();
7769 }
7770
7771 /* Purge dead EH edges from basic block BB. */
7772
7773 bool
7774 gimple_purge_dead_eh_edges (basic_block bb)
7775 {
7776 bool changed = false;
7777 edge e;
7778 edge_iterator ei;
7779 gimple stmt = last_stmt (bb);
7780
7781 if (stmt && stmt_can_throw_internal (stmt))
7782 return false;
7783
7784 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7785 {
7786 if (e->flags & EDGE_EH)
7787 {
7788 remove_edge_and_dominated_blocks (e);
7789 changed = true;
7790 }
7791 else
7792 ei_next (&ei);
7793 }
7794
7795 return changed;
7796 }
7797
7798 /* Purge dead EH edges from basic block listed in BLOCKS. */
7799
7800 bool
7801 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7802 {
7803 bool changed = false;
7804 unsigned i;
7805 bitmap_iterator bi;
7806
7807 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7808 {
7809 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7810
7811 /* Earlier gimple_purge_dead_eh_edges could have removed
7812 this basic block already. */
7813 gcc_assert (bb || changed);
7814 if (bb != NULL)
7815 changed |= gimple_purge_dead_eh_edges (bb);
7816 }
7817
7818 return changed;
7819 }
7820
7821 /* Purge dead abnormal call edges from basic block BB. */
7822
7823 bool
7824 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7825 {
7826 bool changed = false;
7827 edge e;
7828 edge_iterator ei;
7829 gimple stmt = last_stmt (bb);
7830
7831 if (!cfun->has_nonlocal_label
7832 && !cfun->calls_setjmp)
7833 return false;
7834
7835 if (stmt && stmt_can_make_abnormal_goto (stmt))
7836 return false;
7837
7838 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7839 {
7840 if (e->flags & EDGE_ABNORMAL)
7841 {
7842 if (e->flags & EDGE_FALLTHRU)
7843 e->flags &= ~EDGE_ABNORMAL;
7844 else
7845 remove_edge_and_dominated_blocks (e);
7846 changed = true;
7847 }
7848 else
7849 ei_next (&ei);
7850 }
7851
7852 return changed;
7853 }
7854
7855 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7856
7857 bool
7858 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7859 {
7860 bool changed = false;
7861 unsigned i;
7862 bitmap_iterator bi;
7863
7864 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7865 {
7866 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7867
7868 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7869 this basic block already. */
7870 gcc_assert (bb || changed);
7871 if (bb != NULL)
7872 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7873 }
7874
7875 return changed;
7876 }
7877
7878 /* This function is called whenever a new edge is created or
7879 redirected. */
7880
7881 static void
7882 gimple_execute_on_growing_pred (edge e)
7883 {
7884 basic_block bb = e->dest;
7885
7886 if (!gimple_seq_empty_p (phi_nodes (bb)))
7887 reserve_phi_args_for_new_edge (bb);
7888 }
7889
7890 /* This function is called immediately before edge E is removed from
7891 the edge vector E->dest->preds. */
7892
7893 static void
7894 gimple_execute_on_shrinking_pred (edge e)
7895 {
7896 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7897 remove_phi_args (e);
7898 }
7899
7900 /*---------------------------------------------------------------------------
7901 Helper functions for Loop versioning
7902 ---------------------------------------------------------------------------*/
7903
7904 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7905 of 'first'. Both of them are dominated by 'new_head' basic block. When
7906 'new_head' was created by 'second's incoming edge it received phi arguments
7907 on the edge by split_edge(). Later, additional edge 'e' was created to
7908 connect 'new_head' and 'first'. Now this routine adds phi args on this
7909 additional edge 'e' that new_head to second edge received as part of edge
7910 splitting. */
7911
7912 static void
7913 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7914 basic_block new_head, edge e)
7915 {
7916 gimple phi1, phi2;
7917 gimple_stmt_iterator psi1, psi2;
7918 tree def;
7919 edge e2 = find_edge (new_head, second);
7920
7921 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7922 edge, we should always have an edge from NEW_HEAD to SECOND. */
7923 gcc_assert (e2 != NULL);
7924
7925 /* Browse all 'second' basic block phi nodes and add phi args to
7926 edge 'e' for 'first' head. PHI args are always in correct order. */
7927
7928 for (psi2 = gsi_start_phis (second),
7929 psi1 = gsi_start_phis (first);
7930 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7931 gsi_next (&psi2), gsi_next (&psi1))
7932 {
7933 phi1 = gsi_stmt (psi1);
7934 phi2 = gsi_stmt (psi2);
7935 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7936 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7937 }
7938 }
7939
7940
7941 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7942 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7943 the destination of the ELSE part. */
7944
7945 static void
7946 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7947 basic_block second_head ATTRIBUTE_UNUSED,
7948 basic_block cond_bb, void *cond_e)
7949 {
7950 gimple_stmt_iterator gsi;
7951 gimple new_cond_expr;
7952 tree cond_expr = (tree) cond_e;
7953 edge e0;
7954
7955 /* Build new conditional expr */
7956 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7957 NULL_TREE, NULL_TREE);
7958
7959 /* Add new cond in cond_bb. */
7960 gsi = gsi_last_bb (cond_bb);
7961 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7962
7963 /* Adjust edges appropriately to connect new head with first head
7964 as well as second head. */
7965 e0 = single_succ_edge (cond_bb);
7966 e0->flags &= ~EDGE_FALLTHRU;
7967 e0->flags |= EDGE_FALSE_VALUE;
7968 }
7969
7970
7971 /* Do book-keeping of basic block BB for the profile consistency checker.
7972 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7973 then do post-pass accounting. Store the counting in RECORD. */
7974 static void
7975 gimple_account_profile_record (basic_block bb, int after_pass,
7976 struct profile_record *record)
7977 {
7978 gimple_stmt_iterator i;
7979 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7980 {
7981 record->size[after_pass]
7982 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7983 if (profile_status_for_fn (cfun) == PROFILE_READ)
7984 record->time[after_pass]
7985 += estimate_num_insns (gsi_stmt (i),
7986 &eni_time_weights) * bb->count;
7987 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
7988 record->time[after_pass]
7989 += estimate_num_insns (gsi_stmt (i),
7990 &eni_time_weights) * bb->frequency;
7991 }
7992 }
7993
7994 struct cfg_hooks gimple_cfg_hooks = {
7995 "gimple",
7996 gimple_verify_flow_info,
7997 gimple_dump_bb, /* dump_bb */
7998 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7999 create_bb, /* create_basic_block */
8000 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8001 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8002 gimple_can_remove_branch_p, /* can_remove_branch_p */
8003 remove_bb, /* delete_basic_block */
8004 gimple_split_block, /* split_block */
8005 gimple_move_block_after, /* move_block_after */
8006 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8007 gimple_merge_blocks, /* merge_blocks */
8008 gimple_predict_edge, /* predict_edge */
8009 gimple_predicted_by_p, /* predicted_by_p */
8010 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8011 gimple_duplicate_bb, /* duplicate_block */
8012 gimple_split_edge, /* split_edge */
8013 gimple_make_forwarder_block, /* make_forward_block */
8014 NULL, /* tidy_fallthru_edge */
8015 NULL, /* force_nonfallthru */
8016 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8017 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8018 gimple_flow_call_edges_add, /* flow_call_edges_add */
8019 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8020 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8021 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8022 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8023 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8024 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8025 flush_pending_stmts, /* flush_pending_stmts */
8026 gimple_empty_block_p, /* block_empty_p */
8027 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8028 gimple_account_profile_record,
8029 };
8030
8031
8032 /* Split all critical edges. */
8033
8034 unsigned int
8035 split_critical_edges (void)
8036 {
8037 basic_block bb;
8038 edge e;
8039 edge_iterator ei;
8040
8041 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8042 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8043 mappings around the calls to split_edge. */
8044 start_recording_case_labels ();
8045 FOR_ALL_BB_FN (bb, cfun)
8046 {
8047 FOR_EACH_EDGE (e, ei, bb->succs)
8048 {
8049 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8050 split_edge (e);
8051 /* PRE inserts statements to edges and expects that
8052 since split_critical_edges was done beforehand, committing edge
8053 insertions will not split more edges. In addition to critical
8054 edges we must split edges that have multiple successors and
8055 end by control flow statements, such as RESX.
8056 Go ahead and split them too. This matches the logic in
8057 gimple_find_edge_insert_loc. */
8058 else if ((!single_pred_p (e->dest)
8059 || !gimple_seq_empty_p (phi_nodes (e->dest))
8060 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8061 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8062 && !(e->flags & EDGE_ABNORMAL))
8063 {
8064 gimple_stmt_iterator gsi;
8065
8066 gsi = gsi_last_bb (e->src);
8067 if (!gsi_end_p (gsi)
8068 && stmt_ends_bb_p (gsi_stmt (gsi))
8069 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8070 && !gimple_call_builtin_p (gsi_stmt (gsi),
8071 BUILT_IN_RETURN)))
8072 split_edge (e);
8073 }
8074 }
8075 }
8076 end_recording_case_labels ();
8077 return 0;
8078 }
8079
8080 namespace {
8081
8082 const pass_data pass_data_split_crit_edges =
8083 {
8084 GIMPLE_PASS, /* type */
8085 "crited", /* name */
8086 OPTGROUP_NONE, /* optinfo_flags */
8087 false, /* has_gate */
8088 true, /* has_execute */
8089 TV_TREE_SPLIT_EDGES, /* tv_id */
8090 PROP_cfg, /* properties_required */
8091 PROP_no_crit_edges, /* properties_provided */
8092 0, /* properties_destroyed */
8093 0, /* todo_flags_start */
8094 TODO_verify_flow, /* todo_flags_finish */
8095 };
8096
8097 class pass_split_crit_edges : public gimple_opt_pass
8098 {
8099 public:
8100 pass_split_crit_edges (gcc::context *ctxt)
8101 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8102 {}
8103
8104 /* opt_pass methods: */
8105 unsigned int execute () { return split_critical_edges (); }
8106
8107 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8108 }; // class pass_split_crit_edges
8109
8110 } // anon namespace
8111
8112 gimple_opt_pass *
8113 make_pass_split_crit_edges (gcc::context *ctxt)
8114 {
8115 return new pass_split_crit_edges (ctxt);
8116 }
8117
8118
8119 /* Build a ternary operation and gimplify it. Emit code before GSI.
8120 Return the gimple_val holding the result. */
8121
8122 tree
8123 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8124 tree type, tree a, tree b, tree c)
8125 {
8126 tree ret;
8127 location_t loc = gimple_location (gsi_stmt (*gsi));
8128
8129 ret = fold_build3_loc (loc, code, type, a, b, c);
8130 STRIP_NOPS (ret);
8131
8132 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8133 GSI_SAME_STMT);
8134 }
8135
8136 /* Build a binary operation and gimplify it. Emit code before GSI.
8137 Return the gimple_val holding the result. */
8138
8139 tree
8140 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8141 tree type, tree a, tree b)
8142 {
8143 tree ret;
8144
8145 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8146 STRIP_NOPS (ret);
8147
8148 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8149 GSI_SAME_STMT);
8150 }
8151
8152 /* Build a unary operation and gimplify it. Emit code before GSI.
8153 Return the gimple_val holding the result. */
8154
8155 tree
8156 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8157 tree a)
8158 {
8159 tree ret;
8160
8161 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8162 STRIP_NOPS (ret);
8163
8164 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8165 GSI_SAME_STMT);
8166 }
8167
8168
8169 \f
8170 /* Emit return warnings. */
8171
8172 static unsigned int
8173 execute_warn_function_return (void)
8174 {
8175 source_location location;
8176 gimple last;
8177 edge e;
8178 edge_iterator ei;
8179
8180 if (!targetm.warn_func_return (cfun->decl))
8181 return 0;
8182
8183 /* If we have a path to EXIT, then we do return. */
8184 if (TREE_THIS_VOLATILE (cfun->decl)
8185 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
8186 {
8187 location = UNKNOWN_LOCATION;
8188 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8189 {
8190 last = last_stmt (e->src);
8191 if ((gimple_code (last) == GIMPLE_RETURN
8192 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8193 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8194 break;
8195 }
8196 if (location == UNKNOWN_LOCATION)
8197 location = cfun->function_end_locus;
8198 warning_at (location, 0, "%<noreturn%> function does return");
8199 }
8200
8201 /* If we see "return;" in some basic block, then we do reach the end
8202 without returning a value. */
8203 else if (warn_return_type
8204 && !TREE_NO_WARNING (cfun->decl)
8205 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
8206 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8207 {
8208 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8209 {
8210 gimple last = last_stmt (e->src);
8211 if (gimple_code (last) == GIMPLE_RETURN
8212 && gimple_return_retval (last) == NULL
8213 && !gimple_no_warning_p (last))
8214 {
8215 location = gimple_location (last);
8216 if (location == UNKNOWN_LOCATION)
8217 location = cfun->function_end_locus;
8218 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8219 TREE_NO_WARNING (cfun->decl) = 1;
8220 break;
8221 }
8222 }
8223 }
8224 return 0;
8225 }
8226
8227
8228 /* Given a basic block B which ends with a conditional and has
8229 precisely two successors, determine which of the edges is taken if
8230 the conditional is true and which is taken if the conditional is
8231 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8232
8233 void
8234 extract_true_false_edges_from_block (basic_block b,
8235 edge *true_edge,
8236 edge *false_edge)
8237 {
8238 edge e = EDGE_SUCC (b, 0);
8239
8240 if (e->flags & EDGE_TRUE_VALUE)
8241 {
8242 *true_edge = e;
8243 *false_edge = EDGE_SUCC (b, 1);
8244 }
8245 else
8246 {
8247 *false_edge = e;
8248 *true_edge = EDGE_SUCC (b, 1);
8249 }
8250 }
8251
8252 namespace {
8253
8254 const pass_data pass_data_warn_function_return =
8255 {
8256 GIMPLE_PASS, /* type */
8257 "*warn_function_return", /* name */
8258 OPTGROUP_NONE, /* optinfo_flags */
8259 false, /* has_gate */
8260 true, /* has_execute */
8261 TV_NONE, /* tv_id */
8262 PROP_cfg, /* properties_required */
8263 0, /* properties_provided */
8264 0, /* properties_destroyed */
8265 0, /* todo_flags_start */
8266 0, /* todo_flags_finish */
8267 };
8268
8269 class pass_warn_function_return : public gimple_opt_pass
8270 {
8271 public:
8272 pass_warn_function_return (gcc::context *ctxt)
8273 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8274 {}
8275
8276 /* opt_pass methods: */
8277 unsigned int execute () { return execute_warn_function_return (); }
8278
8279 }; // class pass_warn_function_return
8280
8281 } // anon namespace
8282
8283 gimple_opt_pass *
8284 make_pass_warn_function_return (gcc::context *ctxt)
8285 {
8286 return new pass_warn_function_return (ctxt);
8287 }
8288
8289 /* Walk a gimplified function and warn for functions whose return value is
8290 ignored and attribute((warn_unused_result)) is set. This is done before
8291 inlining, so we don't have to worry about that. */
8292
8293 static void
8294 do_warn_unused_result (gimple_seq seq)
8295 {
8296 tree fdecl, ftype;
8297 gimple_stmt_iterator i;
8298
8299 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8300 {
8301 gimple g = gsi_stmt (i);
8302
8303 switch (gimple_code (g))
8304 {
8305 case GIMPLE_BIND:
8306 do_warn_unused_result (gimple_bind_body (g));
8307 break;
8308 case GIMPLE_TRY:
8309 do_warn_unused_result (gimple_try_eval (g));
8310 do_warn_unused_result (gimple_try_cleanup (g));
8311 break;
8312 case GIMPLE_CATCH:
8313 do_warn_unused_result (gimple_catch_handler (g));
8314 break;
8315 case GIMPLE_EH_FILTER:
8316 do_warn_unused_result (gimple_eh_filter_failure (g));
8317 break;
8318
8319 case GIMPLE_CALL:
8320 if (gimple_call_lhs (g))
8321 break;
8322 if (gimple_call_internal_p (g))
8323 break;
8324
8325 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8326 LHS. All calls whose value is ignored should be
8327 represented like this. Look for the attribute. */
8328 fdecl = gimple_call_fndecl (g);
8329 ftype = gimple_call_fntype (g);
8330
8331 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8332 {
8333 location_t loc = gimple_location (g);
8334
8335 if (fdecl)
8336 warning_at (loc, OPT_Wunused_result,
8337 "ignoring return value of %qD, "
8338 "declared with attribute warn_unused_result",
8339 fdecl);
8340 else
8341 warning_at (loc, OPT_Wunused_result,
8342 "ignoring return value of function "
8343 "declared with attribute warn_unused_result");
8344 }
8345 break;
8346
8347 default:
8348 /* Not a container, not a call, or a call whose value is used. */
8349 break;
8350 }
8351 }
8352 }
8353
8354 static unsigned int
8355 run_warn_unused_result (void)
8356 {
8357 do_warn_unused_result (gimple_body (current_function_decl));
8358 return 0;
8359 }
8360
8361 static bool
8362 gate_warn_unused_result (void)
8363 {
8364 return flag_warn_unused_result;
8365 }
8366
8367 namespace {
8368
8369 const pass_data pass_data_warn_unused_result =
8370 {
8371 GIMPLE_PASS, /* type */
8372 "*warn_unused_result", /* name */
8373 OPTGROUP_NONE, /* optinfo_flags */
8374 true, /* has_gate */
8375 true, /* has_execute */
8376 TV_NONE, /* tv_id */
8377 PROP_gimple_any, /* properties_required */
8378 0, /* properties_provided */
8379 0, /* properties_destroyed */
8380 0, /* todo_flags_start */
8381 0, /* todo_flags_finish */
8382 };
8383
8384 class pass_warn_unused_result : public gimple_opt_pass
8385 {
8386 public:
8387 pass_warn_unused_result (gcc::context *ctxt)
8388 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8389 {}
8390
8391 /* opt_pass methods: */
8392 bool gate () { return gate_warn_unused_result (); }
8393 unsigned int execute () { return run_warn_unused_result (); }
8394
8395 }; // class pass_warn_unused_result
8396
8397 } // anon namespace
8398
8399 gimple_opt_pass *
8400 make_pass_warn_unused_result (gcc::context *ctxt)
8401 {
8402 return new pass_warn_unused_result (ctxt);
8403 }
8404
8405 /* IPA passes, compilation of earlier functions or inlining
8406 might have changed some properties, such as marked functions nothrow,
8407 pure, const or noreturn.
8408 Remove redundant edges and basic blocks, and create new ones if necessary.
8409
8410 This pass can't be executed as stand alone pass from pass manager, because
8411 in between inlining and this fixup the verify_flow_info would fail. */
8412
8413 unsigned int
8414 execute_fixup_cfg (void)
8415 {
8416 basic_block bb;
8417 gimple_stmt_iterator gsi;
8418 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8419 gcov_type count_scale;
8420 edge e;
8421 edge_iterator ei;
8422
8423 count_scale
8424 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8425 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8426
8427 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8428 cgraph_get_node (current_function_decl)->count;
8429 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8430 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8431 count_scale);
8432
8433 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8434 e->count = apply_scale (e->count, count_scale);
8435
8436 FOR_EACH_BB_FN (bb, cfun)
8437 {
8438 bb->count = apply_scale (bb->count, count_scale);
8439 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8440 {
8441 gimple stmt = gsi_stmt (gsi);
8442 tree decl = is_gimple_call (stmt)
8443 ? gimple_call_fndecl (stmt)
8444 : NULL;
8445 if (decl)
8446 {
8447 int flags = gimple_call_flags (stmt);
8448 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8449 {
8450 if (gimple_purge_dead_abnormal_call_edges (bb))
8451 todo |= TODO_cleanup_cfg;
8452
8453 if (gimple_in_ssa_p (cfun))
8454 {
8455 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8456 update_stmt (stmt);
8457 }
8458 }
8459
8460 if (flags & ECF_NORETURN
8461 && fixup_noreturn_call (stmt))
8462 todo |= TODO_cleanup_cfg;
8463 }
8464
8465 if (maybe_clean_eh_stmt (stmt)
8466 && gimple_purge_dead_eh_edges (bb))
8467 todo |= TODO_cleanup_cfg;
8468 }
8469
8470 FOR_EACH_EDGE (e, ei, bb->succs)
8471 e->count = apply_scale (e->count, count_scale);
8472
8473 /* If we have a basic block with no successors that does not
8474 end with a control statement or a noreturn call end it with
8475 a call to __builtin_unreachable. This situation can occur
8476 when inlining a noreturn call that does in fact return. */
8477 if (EDGE_COUNT (bb->succs) == 0)
8478 {
8479 gimple stmt = last_stmt (bb);
8480 if (!stmt
8481 || (!is_ctrl_stmt (stmt)
8482 && (!is_gimple_call (stmt)
8483 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8484 {
8485 stmt = gimple_build_call
8486 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8487 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8488 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8489 }
8490 }
8491 }
8492 if (count_scale != REG_BR_PROB_BASE)
8493 compute_function_frequency ();
8494
8495 /* We just processed all calls. */
8496 if (cfun->gimple_df)
8497 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8498
8499 /* Dump a textual representation of the flowgraph. */
8500 if (dump_file)
8501 gimple_dump_cfg (dump_file, dump_flags);
8502
8503 if (current_loops
8504 && (todo & TODO_cleanup_cfg))
8505 loops_state_set (LOOPS_NEED_FIXUP);
8506
8507 return todo;
8508 }
8509
8510 namespace {
8511
8512 const pass_data pass_data_fixup_cfg =
8513 {
8514 GIMPLE_PASS, /* type */
8515 "*free_cfg_annotations", /* name */
8516 OPTGROUP_NONE, /* optinfo_flags */
8517 false, /* has_gate */
8518 true, /* has_execute */
8519 TV_NONE, /* tv_id */
8520 PROP_cfg, /* properties_required */
8521 0, /* properties_provided */
8522 0, /* properties_destroyed */
8523 0, /* todo_flags_start */
8524 0, /* todo_flags_finish */
8525 };
8526
8527 class pass_fixup_cfg : public gimple_opt_pass
8528 {
8529 public:
8530 pass_fixup_cfg (gcc::context *ctxt)
8531 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8532 {}
8533
8534 /* opt_pass methods: */
8535 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8536 unsigned int execute () { return execute_fixup_cfg (); }
8537
8538 }; // class pass_fixup_cfg
8539
8540 } // anon namespace
8541
8542 gimple_opt_pass *
8543 make_pass_fixup_cfg (gcc::context *ctxt)
8544 {
8545 return new pass_fixup_cfg (ctxt);
8546 }
8547
8548 /* Garbage collection support for edge_def. */
8549
8550 extern void gt_ggc_mx (tree&);
8551 extern void gt_ggc_mx (gimple&);
8552 extern void gt_ggc_mx (rtx&);
8553 extern void gt_ggc_mx (basic_block&);
8554
8555 void
8556 gt_ggc_mx (edge_def *e)
8557 {
8558 tree block = LOCATION_BLOCK (e->goto_locus);
8559 gt_ggc_mx (e->src);
8560 gt_ggc_mx (e->dest);
8561 if (current_ir_type () == IR_GIMPLE)
8562 gt_ggc_mx (e->insns.g);
8563 else
8564 gt_ggc_mx (e->insns.r);
8565 gt_ggc_mx (block);
8566 }
8567
8568 /* PCH support for edge_def. */
8569
8570 extern void gt_pch_nx (tree&);
8571 extern void gt_pch_nx (gimple&);
8572 extern void gt_pch_nx (rtx&);
8573 extern void gt_pch_nx (basic_block&);
8574
8575 void
8576 gt_pch_nx (edge_def *e)
8577 {
8578 tree block = LOCATION_BLOCK (e->goto_locus);
8579 gt_pch_nx (e->src);
8580 gt_pch_nx (e->dest);
8581 if (current_ir_type () == IR_GIMPLE)
8582 gt_pch_nx (e->insns.g);
8583 else
8584 gt_pch_nx (e->insns.r);
8585 gt_pch_nx (block);
8586 }
8587
8588 void
8589 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8590 {
8591 tree block = LOCATION_BLOCK (e->goto_locus);
8592 op (&(e->src), cookie);
8593 op (&(e->dest), cookie);
8594 if (current_ir_type () == IR_GIMPLE)
8595 op (&(e->insns.g), cookie);
8596 else
8597 op (&(e->insns.r), cookie);
8598 op (&(block), cookie);
8599 }