ChangeLog gcc/
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
265 }
266 };
267
268
269 /* Return true if T is a computed goto. */
270
271 static bool
272 computed_goto_p (gimple t)
273 {
274 return (gimple_code (t) == GIMPLE_GOTO
275 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
276 }
277
278
279 /* Search the CFG for any computed gotos. If found, factor them to a
280 common computed goto site. Also record the location of that site so
281 that we can un-factor the gotos after we have converted back to
282 normal form. */
283
284 static void
285 factor_computed_gotos (void)
286 {
287 basic_block bb;
288 tree factored_label_decl = NULL;
289 tree var = NULL;
290 gimple factored_computed_goto_label = NULL;
291 gimple factored_computed_goto = NULL;
292
293 /* We know there are one or more computed gotos in this function.
294 Examine the last statement in each basic block to see if the block
295 ends with a computed goto. */
296
297 FOR_EACH_BB (bb)
298 {
299 gimple_stmt_iterator gsi = gsi_last_bb (bb);
300 gimple last;
301
302 if (gsi_end_p (gsi))
303 continue;
304
305 last = gsi_stmt (gsi);
306
307 /* Ignore the computed goto we create when we factor the original
308 computed gotos. */
309 if (last == factored_computed_goto)
310 continue;
311
312 /* If the last statement is a computed goto, factor it. */
313 if (computed_goto_p (last))
314 {
315 gimple assignment;
316
317 /* The first time we find a computed goto we need to create
318 the factored goto block and the variable each original
319 computed goto will use for their goto destination. */
320 if (!factored_computed_goto)
321 {
322 basic_block new_bb = create_empty_bb (bb);
323 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
324
325 /* Create the destination of the factored goto. Each original
326 computed goto will put its desired destination into this
327 variable and jump to the label we create immediately
328 below. */
329 var = create_tmp_var (ptr_type_node, "gotovar");
330
331 /* Build a label for the new block which will contain the
332 factored computed goto. */
333 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
334 factored_computed_goto_label
335 = gimple_build_label (factored_label_decl);
336 gsi_insert_after (&new_gsi, factored_computed_goto_label,
337 GSI_NEW_STMT);
338
339 /* Build our new computed goto. */
340 factored_computed_goto = gimple_build_goto (var);
341 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
342 }
343
344 /* Copy the original computed goto's destination into VAR. */
345 assignment = gimple_build_assign (var, gimple_goto_dest (last));
346 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
347
348 /* And re-vector the computed goto to the new destination. */
349 gimple_goto_set_dest (last, factored_label_decl);
350 }
351 }
352 }
353
354
355 /* Build a flowgraph for the sequence of stmts SEQ. */
356
357 static void
358 make_blocks (gimple_seq seq)
359 {
360 gimple_stmt_iterator i = gsi_start (seq);
361 gimple stmt = NULL;
362 bool start_new_block = true;
363 bool first_stmt_of_seq = true;
364 basic_block bb = ENTRY_BLOCK_PTR;
365
366 while (!gsi_end_p (i))
367 {
368 gimple prev_stmt;
369
370 prev_stmt = stmt;
371 stmt = gsi_stmt (i);
372
373 /* If the statement starts a new basic block or if we have determined
374 in a previous pass that we need to create a new block for STMT, do
375 so now. */
376 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
377 {
378 if (!first_stmt_of_seq)
379 seq = gsi_split_seq_before (&i);
380 bb = create_basic_block (seq, NULL, bb);
381 start_new_block = false;
382 }
383
384 /* Now add STMT to BB and create the subgraphs for special statement
385 codes. */
386 gimple_set_bb (stmt, bb);
387
388 if (computed_goto_p (stmt))
389 found_computed_goto = true;
390
391 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
392 next iteration. */
393 if (stmt_ends_bb_p (stmt))
394 {
395 /* If the stmt can make abnormal goto use a new temporary
396 for the assignment to the LHS. This makes sure the old value
397 of the LHS is available on the abnormal edge. Otherwise
398 we will end up with overlapping life-ranges for abnormal
399 SSA names. */
400 if (gimple_has_lhs (stmt)
401 && stmt_can_make_abnormal_goto (stmt)
402 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
403 {
404 tree lhs = gimple_get_lhs (stmt);
405 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
406 gimple s = gimple_build_assign (lhs, tmp);
407 gimple_set_location (s, gimple_location (stmt));
408 gimple_set_block (s, gimple_block (stmt));
409 gimple_set_lhs (stmt, tmp);
410 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
411 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
412 DECL_GIMPLE_REG_P (tmp) = 1;
413 gsi_insert_after (&i, s, GSI_SAME_STMT);
414 }
415 start_new_block = true;
416 }
417
418 gsi_next (&i);
419 first_stmt_of_seq = false;
420 }
421 }
422
423
424 /* Create and return a new empty basic block after bb AFTER. */
425
426 static basic_block
427 create_bb (void *h, void *e, basic_block after)
428 {
429 basic_block bb;
430
431 gcc_assert (!e);
432
433 /* Create and initialize a new basic block. Since alloc_block uses
434 GC allocation that clears memory to allocate a basic block, we do
435 not have to clear the newly allocated basic block here. */
436 bb = alloc_block ();
437
438 bb->index = last_basic_block;
439 bb->flags = BB_NEW;
440 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
441 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
442
443 /* Add the new block to the linked list of blocks. */
444 link_block (bb, after);
445
446 /* Grow the basic block array if needed. */
447 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
448 {
449 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
450 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
451 }
452
453 /* Add the newly created block to the array. */
454 SET_BASIC_BLOCK (last_basic_block, bb);
455
456 n_basic_blocks++;
457 last_basic_block++;
458
459 return bb;
460 }
461
462
463 /*---------------------------------------------------------------------------
464 Edge creation
465 ---------------------------------------------------------------------------*/
466
467 /* Fold COND_EXPR_COND of each COND_EXPR. */
468
469 void
470 fold_cond_expr_cond (void)
471 {
472 basic_block bb;
473
474 FOR_EACH_BB (bb)
475 {
476 gimple stmt = last_stmt (bb);
477
478 if (stmt && gimple_code (stmt) == GIMPLE_COND)
479 {
480 location_t loc = gimple_location (stmt);
481 tree cond;
482 bool zerop, onep;
483
484 fold_defer_overflow_warnings ();
485 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
486 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
487 if (cond)
488 {
489 zerop = integer_zerop (cond);
490 onep = integer_onep (cond);
491 }
492 else
493 zerop = onep = false;
494
495 fold_undefer_overflow_warnings (zerop || onep,
496 stmt,
497 WARN_STRICT_OVERFLOW_CONDITIONAL);
498 if (zerop)
499 gimple_cond_make_false (stmt);
500 else if (onep)
501 gimple_cond_make_true (stmt);
502 }
503 }
504 }
505
506 /* Join all the blocks in the flowgraph. */
507
508 static void
509 make_edges (void)
510 {
511 basic_block bb;
512 struct omp_region *cur_region = NULL;
513
514 /* Create an edge from entry to the first block with executable
515 statements in it. */
516 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
517
518 /* Traverse the basic block array placing edges. */
519 FOR_EACH_BB (bb)
520 {
521 gimple last = last_stmt (bb);
522 bool fallthru;
523
524 if (last)
525 {
526 enum gimple_code code = gimple_code (last);
527 switch (code)
528 {
529 case GIMPLE_GOTO:
530 make_goto_expr_edges (bb);
531 fallthru = false;
532 break;
533 case GIMPLE_RETURN:
534 make_edge (bb, EXIT_BLOCK_PTR, 0);
535 fallthru = false;
536 break;
537 case GIMPLE_COND:
538 make_cond_expr_edges (bb);
539 fallthru = false;
540 break;
541 case GIMPLE_SWITCH:
542 make_gimple_switch_edges (bb);
543 fallthru = false;
544 break;
545 case GIMPLE_RESX:
546 make_eh_edges (last);
547 fallthru = false;
548 break;
549 case GIMPLE_EH_DISPATCH:
550 fallthru = make_eh_dispatch_edges (last);
551 break;
552
553 case GIMPLE_CALL:
554 /* If this function receives a nonlocal goto, then we need to
555 make edges from this call site to all the nonlocal goto
556 handlers. */
557 if (stmt_can_make_abnormal_goto (last))
558 make_abnormal_goto_edges (bb, true);
559
560 /* If this statement has reachable exception handlers, then
561 create abnormal edges to them. */
562 make_eh_edges (last);
563
564 /* BUILTIN_RETURN is really a return statement. */
565 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
566 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
567 /* Some calls are known not to return. */
568 else
569 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
570 break;
571
572 case GIMPLE_ASSIGN:
573 /* A GIMPLE_ASSIGN may throw internally and thus be considered
574 control-altering. */
575 if (is_ctrl_altering_stmt (last))
576 make_eh_edges (last);
577 fallthru = true;
578 break;
579
580 case GIMPLE_ASM:
581 make_gimple_asm_edges (bb);
582 fallthru = true;
583 break;
584
585 case GIMPLE_OMP_PARALLEL:
586 case GIMPLE_OMP_TASK:
587 case GIMPLE_OMP_FOR:
588 case GIMPLE_OMP_SINGLE:
589 case GIMPLE_OMP_MASTER:
590 case GIMPLE_OMP_ORDERED:
591 case GIMPLE_OMP_CRITICAL:
592 case GIMPLE_OMP_SECTION:
593 cur_region = new_omp_region (bb, code, cur_region);
594 fallthru = true;
595 break;
596
597 case GIMPLE_OMP_SECTIONS:
598 cur_region = new_omp_region (bb, code, cur_region);
599 fallthru = true;
600 break;
601
602 case GIMPLE_OMP_SECTIONS_SWITCH:
603 fallthru = false;
604 break;
605
606 case GIMPLE_OMP_ATOMIC_LOAD:
607 case GIMPLE_OMP_ATOMIC_STORE:
608 fallthru = true;
609 break;
610
611 case GIMPLE_OMP_RETURN:
612 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
613 somewhere other than the next block. This will be
614 created later. */
615 cur_region->exit = bb;
616 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
617 cur_region = cur_region->outer;
618 break;
619
620 case GIMPLE_OMP_CONTINUE:
621 cur_region->cont = bb;
622 switch (cur_region->type)
623 {
624 case GIMPLE_OMP_FOR:
625 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
626 succs edges as abnormal to prevent splitting
627 them. */
628 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
629 /* Make the loopback edge. */
630 make_edge (bb, single_succ (cur_region->entry),
631 EDGE_ABNORMAL);
632
633 /* Create an edge from GIMPLE_OMP_FOR to exit, which
634 corresponds to the case that the body of the loop
635 is not executed at all. */
636 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
637 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
638 fallthru = false;
639 break;
640
641 case GIMPLE_OMP_SECTIONS:
642 /* Wire up the edges into and out of the nested sections. */
643 {
644 basic_block switch_bb = single_succ (cur_region->entry);
645
646 struct omp_region *i;
647 for (i = cur_region->inner; i ; i = i->next)
648 {
649 gcc_assert (i->type == GIMPLE_OMP_SECTION);
650 make_edge (switch_bb, i->entry, 0);
651 make_edge (i->exit, bb, EDGE_FALLTHRU);
652 }
653
654 /* Make the loopback edge to the block with
655 GIMPLE_OMP_SECTIONS_SWITCH. */
656 make_edge (bb, switch_bb, 0);
657
658 /* Make the edge from the switch to exit. */
659 make_edge (switch_bb, bb->next_bb, 0);
660 fallthru = false;
661 }
662 break;
663
664 default:
665 gcc_unreachable ();
666 }
667 break;
668
669 default:
670 gcc_assert (!stmt_ends_bb_p (last));
671 fallthru = true;
672 }
673 }
674 else
675 fallthru = true;
676
677 if (fallthru)
678 {
679 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
680 if (last)
681 assign_discriminator (gimple_location (last), bb->next_bb);
682 }
683 }
684
685 if (root_omp_region)
686 free_omp_regions ();
687
688 /* Fold COND_EXPR_COND of each COND_EXPR. */
689 fold_cond_expr_cond ();
690 }
691
692 /* Trivial hash function for a location_t. ITEM is a pointer to
693 a hash table entry that maps a location_t to a discriminator. */
694
695 static unsigned int
696 locus_map_hash (const void *item)
697 {
698 return ((const struct locus_discrim_map *) item)->locus;
699 }
700
701 /* Equality function for the locus-to-discriminator map. VA and VB
702 point to the two hash table entries to compare. */
703
704 static int
705 locus_map_eq (const void *va, const void *vb)
706 {
707 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
708 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
709 return a->locus == b->locus;
710 }
711
712 /* Find the next available discriminator value for LOCUS. The
713 discriminator distinguishes among several basic blocks that
714 share a common locus, allowing for more accurate sample-based
715 profiling. */
716
717 static int
718 next_discriminator_for_locus (location_t locus)
719 {
720 struct locus_discrim_map item;
721 struct locus_discrim_map **slot;
722
723 item.locus = locus;
724 item.discriminator = 0;
725 slot = (struct locus_discrim_map **)
726 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
727 (hashval_t) locus, INSERT);
728 gcc_assert (slot);
729 if (*slot == HTAB_EMPTY_ENTRY)
730 {
731 *slot = XNEW (struct locus_discrim_map);
732 gcc_assert (*slot);
733 (*slot)->locus = locus;
734 (*slot)->discriminator = 0;
735 }
736 (*slot)->discriminator++;
737 return (*slot)->discriminator;
738 }
739
740 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
741
742 static bool
743 same_line_p (location_t locus1, location_t locus2)
744 {
745 expanded_location from, to;
746
747 if (locus1 == locus2)
748 return true;
749
750 from = expand_location (locus1);
751 to = expand_location (locus2);
752
753 if (from.line != to.line)
754 return false;
755 if (from.file == to.file)
756 return true;
757 return (from.file != NULL
758 && to.file != NULL
759 && filename_cmp (from.file, to.file) == 0);
760 }
761
762 /* Assign a unique discriminator value to block BB if it begins at the same
763 LOCUS as its predecessor block. */
764
765 static void
766 assign_discriminator (location_t locus, basic_block bb)
767 {
768 gimple first_in_to_bb, last_in_to_bb;
769
770 if (locus == 0 || bb->discriminator != 0)
771 return;
772
773 first_in_to_bb = first_non_label_stmt (bb);
774 last_in_to_bb = last_stmt (bb);
775 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
776 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
777 bb->discriminator = next_discriminator_for_locus (locus);
778 }
779
780 /* Create the edges for a GIMPLE_COND starting at block BB. */
781
782 static void
783 make_cond_expr_edges (basic_block bb)
784 {
785 gimple entry = last_stmt (bb);
786 gimple then_stmt, else_stmt;
787 basic_block then_bb, else_bb;
788 tree then_label, else_label;
789 edge e;
790 location_t entry_locus;
791
792 gcc_assert (entry);
793 gcc_assert (gimple_code (entry) == GIMPLE_COND);
794
795 entry_locus = gimple_location (entry);
796
797 /* Entry basic blocks for each component. */
798 then_label = gimple_cond_true_label (entry);
799 else_label = gimple_cond_false_label (entry);
800 then_bb = label_to_block (then_label);
801 else_bb = label_to_block (else_label);
802 then_stmt = first_stmt (then_bb);
803 else_stmt = first_stmt (else_bb);
804
805 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
806 assign_discriminator (entry_locus, then_bb);
807 e->goto_locus = gimple_location (then_stmt);
808 if (e->goto_locus)
809 e->goto_block = gimple_block (then_stmt);
810 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
811 if (e)
812 {
813 assign_discriminator (entry_locus, else_bb);
814 e->goto_locus = gimple_location (else_stmt);
815 if (e->goto_locus)
816 e->goto_block = gimple_block (else_stmt);
817 }
818
819 /* We do not need the labels anymore. */
820 gimple_cond_set_true_label (entry, NULL_TREE);
821 gimple_cond_set_false_label (entry, NULL_TREE);
822 }
823
824
825 /* Called for each element in the hash table (P) as we delete the
826 edge to cases hash table.
827
828 Clear all the TREE_CHAINs to prevent problems with copying of
829 SWITCH_EXPRs and structure sharing rules, then free the hash table
830 element. */
831
832 static bool
833 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
834 void *data ATTRIBUTE_UNUSED)
835 {
836 tree t, next;
837
838 for (t = (tree) *value; t; t = next)
839 {
840 next = CASE_CHAIN (t);
841 CASE_CHAIN (t) = NULL;
842 }
843
844 *value = NULL;
845 return true;
846 }
847
848 /* Start recording information mapping edges to case labels. */
849
850 void
851 start_recording_case_labels (void)
852 {
853 gcc_assert (edge_to_cases == NULL);
854 edge_to_cases = pointer_map_create ();
855 touched_switch_bbs = BITMAP_ALLOC (NULL);
856 }
857
858 /* Return nonzero if we are recording information for case labels. */
859
860 static bool
861 recording_case_labels_p (void)
862 {
863 return (edge_to_cases != NULL);
864 }
865
866 /* Stop recording information mapping edges to case labels and
867 remove any information we have recorded. */
868 void
869 end_recording_case_labels (void)
870 {
871 bitmap_iterator bi;
872 unsigned i;
873 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
874 pointer_map_destroy (edge_to_cases);
875 edge_to_cases = NULL;
876 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
877 {
878 basic_block bb = BASIC_BLOCK (i);
879 if (bb)
880 {
881 gimple stmt = last_stmt (bb);
882 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
883 group_case_labels_stmt (stmt);
884 }
885 }
886 BITMAP_FREE (touched_switch_bbs);
887 }
888
889 /* If we are inside a {start,end}_recording_cases block, then return
890 a chain of CASE_LABEL_EXPRs from T which reference E.
891
892 Otherwise return NULL. */
893
894 static tree
895 get_cases_for_edge (edge e, gimple t)
896 {
897 void **slot;
898 size_t i, n;
899
900 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
901 chains available. Return NULL so the caller can detect this case. */
902 if (!recording_case_labels_p ())
903 return NULL;
904
905 slot = pointer_map_contains (edge_to_cases, e);
906 if (slot)
907 return (tree) *slot;
908
909 /* If we did not find E in the hash table, then this must be the first
910 time we have been queried for information about E & T. Add all the
911 elements from T to the hash table then perform the query again. */
912
913 n = gimple_switch_num_labels (t);
914 for (i = 0; i < n; i++)
915 {
916 tree elt = gimple_switch_label (t, i);
917 tree lab = CASE_LABEL (elt);
918 basic_block label_bb = label_to_block (lab);
919 edge this_edge = find_edge (e->src, label_bb);
920
921 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
922 a new chain. */
923 slot = pointer_map_insert (edge_to_cases, this_edge);
924 CASE_CHAIN (elt) = (tree) *slot;
925 *slot = elt;
926 }
927
928 return (tree) *pointer_map_contains (edge_to_cases, e);
929 }
930
931 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
932
933 static void
934 make_gimple_switch_edges (basic_block bb)
935 {
936 gimple entry = last_stmt (bb);
937 location_t entry_locus;
938 size_t i, n;
939
940 entry_locus = gimple_location (entry);
941
942 n = gimple_switch_num_labels (entry);
943
944 for (i = 0; i < n; ++i)
945 {
946 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
947 basic_block label_bb = label_to_block (lab);
948 make_edge (bb, label_bb, 0);
949 assign_discriminator (entry_locus, label_bb);
950 }
951 }
952
953
954 /* Return the basic block holding label DEST. */
955
956 basic_block
957 label_to_block_fn (struct function *ifun, tree dest)
958 {
959 int uid = LABEL_DECL_UID (dest);
960
961 /* We would die hard when faced by an undefined label. Emit a label to
962 the very first basic block. This will hopefully make even the dataflow
963 and undefined variable warnings quite right. */
964 if (seen_error () && uid < 0)
965 {
966 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
967 gimple stmt;
968
969 stmt = gimple_build_label (dest);
970 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
971 uid = LABEL_DECL_UID (dest);
972 }
973 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
974 <= (unsigned int) uid)
975 return NULL;
976 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
977 }
978
979 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
980 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
981
982 void
983 make_abnormal_goto_edges (basic_block bb, bool for_call)
984 {
985 basic_block target_bb;
986 gimple_stmt_iterator gsi;
987
988 FOR_EACH_BB (target_bb)
989 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
990 {
991 gimple label_stmt = gsi_stmt (gsi);
992 tree target;
993
994 if (gimple_code (label_stmt) != GIMPLE_LABEL)
995 break;
996
997 target = gimple_label_label (label_stmt);
998
999 /* Make an edge to every label block that has been marked as a
1000 potential target for a computed goto or a non-local goto. */
1001 if ((FORCED_LABEL (target) && !for_call)
1002 || (DECL_NONLOCAL (target) && for_call))
1003 {
1004 make_edge (bb, target_bb, EDGE_ABNORMAL);
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Create edges for a goto statement at block BB. */
1011
1012 static void
1013 make_goto_expr_edges (basic_block bb)
1014 {
1015 gimple_stmt_iterator last = gsi_last_bb (bb);
1016 gimple goto_t = gsi_stmt (last);
1017
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t))
1020 {
1021 tree dest = gimple_goto_dest (goto_t);
1022 basic_block label_bb = label_to_block (dest);
1023 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1024 e->goto_locus = gimple_location (goto_t);
1025 assign_discriminator (e->goto_locus, label_bb);
1026 if (e->goto_locus)
1027 e->goto_block = gimple_block (goto_t);
1028 gsi_remove (&last, true);
1029 return;
1030 }
1031
1032 /* A computed GOTO creates abnormal edges. */
1033 make_abnormal_goto_edges (bb, false);
1034 }
1035
1036 /* Create edges for an asm statement with labels at block BB. */
1037
1038 static void
1039 make_gimple_asm_edges (basic_block bb)
1040 {
1041 gimple stmt = last_stmt (bb);
1042 location_t stmt_loc = gimple_location (stmt);
1043 int i, n = gimple_asm_nlabels (stmt);
1044
1045 for (i = 0; i < n; ++i)
1046 {
1047 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1048 basic_block label_bb = label_to_block (label);
1049 make_edge (bb, label_bb, 0);
1050 assign_discriminator (stmt_loc, label_bb);
1051 }
1052 }
1053
1054 /*---------------------------------------------------------------------------
1055 Flowgraph analysis
1056 ---------------------------------------------------------------------------*/
1057
1058 /* Cleanup useless labels in basic blocks. This is something we wish
1059 to do early because it allows us to group case labels before creating
1060 the edges for the CFG, and it speeds up block statement iterators in
1061 all passes later on.
1062 We rerun this pass after CFG is created, to get rid of the labels that
1063 are no longer referenced. After then we do not run it any more, since
1064 (almost) no new labels should be created. */
1065
1066 /* A map from basic block index to the leading label of that block. */
1067 static struct label_record
1068 {
1069 /* The label. */
1070 tree label;
1071
1072 /* True if the label is referenced from somewhere. */
1073 bool used;
1074 } *label_for_bb;
1075
1076 /* Given LABEL return the first label in the same basic block. */
1077
1078 static tree
1079 main_block_label (tree label)
1080 {
1081 basic_block bb = label_to_block (label);
1082 tree main_label = label_for_bb[bb->index].label;
1083
1084 /* label_to_block possibly inserted undefined label into the chain. */
1085 if (!main_label)
1086 {
1087 label_for_bb[bb->index].label = label;
1088 main_label = label;
1089 }
1090
1091 label_for_bb[bb->index].used = true;
1092 return main_label;
1093 }
1094
1095 /* Clean up redundant labels within the exception tree. */
1096
1097 static void
1098 cleanup_dead_labels_eh (void)
1099 {
1100 eh_landing_pad lp;
1101 eh_region r;
1102 tree lab;
1103 int i;
1104
1105 if (cfun->eh == NULL)
1106 return;
1107
1108 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1109 if (lp && lp->post_landing_pad)
1110 {
1111 lab = main_block_label (lp->post_landing_pad);
1112 if (lab != lp->post_landing_pad)
1113 {
1114 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1115 EH_LANDING_PAD_NR (lab) = lp->index;
1116 }
1117 }
1118
1119 FOR_ALL_EH_REGION (r)
1120 switch (r->type)
1121 {
1122 case ERT_CLEANUP:
1123 case ERT_MUST_NOT_THROW:
1124 break;
1125
1126 case ERT_TRY:
1127 {
1128 eh_catch c;
1129 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1130 {
1131 lab = c->label;
1132 if (lab)
1133 c->label = main_block_label (lab);
1134 }
1135 }
1136 break;
1137
1138 case ERT_ALLOWED_EXCEPTIONS:
1139 lab = r->u.allowed.label;
1140 if (lab)
1141 r->u.allowed.label = main_block_label (lab);
1142 break;
1143 }
1144 }
1145
1146
1147 /* Cleanup redundant labels. This is a three-step process:
1148 1) Find the leading label for each block.
1149 2) Redirect all references to labels to the leading labels.
1150 3) Cleanup all useless labels. */
1151
1152 void
1153 cleanup_dead_labels (void)
1154 {
1155 basic_block bb;
1156 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1157
1158 /* Find a suitable label for each block. We use the first user-defined
1159 label if there is one, or otherwise just the first label we see. */
1160 FOR_EACH_BB (bb)
1161 {
1162 gimple_stmt_iterator i;
1163
1164 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1165 {
1166 tree label;
1167 gimple stmt = gsi_stmt (i);
1168
1169 if (gimple_code (stmt) != GIMPLE_LABEL)
1170 break;
1171
1172 label = gimple_label_label (stmt);
1173
1174 /* If we have not yet seen a label for the current block,
1175 remember this one and see if there are more labels. */
1176 if (!label_for_bb[bb->index].label)
1177 {
1178 label_for_bb[bb->index].label = label;
1179 continue;
1180 }
1181
1182 /* If we did see a label for the current block already, but it
1183 is an artificially created label, replace it if the current
1184 label is a user defined label. */
1185 if (!DECL_ARTIFICIAL (label)
1186 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1187 {
1188 label_for_bb[bb->index].label = label;
1189 break;
1190 }
1191 }
1192 }
1193
1194 /* Now redirect all jumps/branches to the selected label.
1195 First do so for each block ending in a control statement. */
1196 FOR_EACH_BB (bb)
1197 {
1198 gimple stmt = last_stmt (bb);
1199 if (!stmt)
1200 continue;
1201
1202 switch (gimple_code (stmt))
1203 {
1204 case GIMPLE_COND:
1205 {
1206 tree true_label = gimple_cond_true_label (stmt);
1207 tree false_label = gimple_cond_false_label (stmt);
1208
1209 if (true_label)
1210 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1211 if (false_label)
1212 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1213 break;
1214 }
1215
1216 case GIMPLE_SWITCH:
1217 {
1218 size_t i, n = gimple_switch_num_labels (stmt);
1219
1220 /* Replace all destination labels. */
1221 for (i = 0; i < n; ++i)
1222 {
1223 tree case_label = gimple_switch_label (stmt, i);
1224 tree label = main_block_label (CASE_LABEL (case_label));
1225 CASE_LABEL (case_label) = label;
1226 }
1227 break;
1228 }
1229
1230 case GIMPLE_ASM:
1231 {
1232 int i, n = gimple_asm_nlabels (stmt);
1233
1234 for (i = 0; i < n; ++i)
1235 {
1236 tree cons = gimple_asm_label_op (stmt, i);
1237 tree label = main_block_label (TREE_VALUE (cons));
1238 TREE_VALUE (cons) = label;
1239 }
1240 break;
1241 }
1242
1243 /* We have to handle gotos until they're removed, and we don't
1244 remove them until after we've created the CFG edges. */
1245 case GIMPLE_GOTO:
1246 if (!computed_goto_p (stmt))
1247 {
1248 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1249 gimple_goto_set_dest (stmt, new_dest);
1250 }
1251 break;
1252
1253 default:
1254 break;
1255 }
1256 }
1257
1258 /* Do the same for the exception region tree labels. */
1259 cleanup_dead_labels_eh ();
1260
1261 /* Finally, purge dead labels. All user-defined labels and labels that
1262 can be the target of non-local gotos and labels which have their
1263 address taken are preserved. */
1264 FOR_EACH_BB (bb)
1265 {
1266 gimple_stmt_iterator i;
1267 tree label_for_this_bb = label_for_bb[bb->index].label;
1268
1269 if (!label_for_this_bb)
1270 continue;
1271
1272 /* If the main label of the block is unused, we may still remove it. */
1273 if (!label_for_bb[bb->index].used)
1274 label_for_this_bb = NULL;
1275
1276 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1277 {
1278 tree label;
1279 gimple stmt = gsi_stmt (i);
1280
1281 if (gimple_code (stmt) != GIMPLE_LABEL)
1282 break;
1283
1284 label = gimple_label_label (stmt);
1285
1286 if (label == label_for_this_bb
1287 || !DECL_ARTIFICIAL (label)
1288 || DECL_NONLOCAL (label)
1289 || FORCED_LABEL (label))
1290 gsi_next (&i);
1291 else
1292 gsi_remove (&i, true);
1293 }
1294 }
1295
1296 free (label_for_bb);
1297 }
1298
1299 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1300 the ones jumping to the same label.
1301 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1302
1303 static void
1304 group_case_labels_stmt (gimple stmt)
1305 {
1306 int old_size = gimple_switch_num_labels (stmt);
1307 int i, j, new_size = old_size;
1308 tree default_case = NULL_TREE;
1309 tree default_label = NULL_TREE;
1310 bool has_default;
1311
1312 /* The default label is always the first case in a switch
1313 statement after gimplification if it was not optimized
1314 away */
1315 if (!CASE_LOW (gimple_switch_default_label (stmt))
1316 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1317 {
1318 default_case = gimple_switch_default_label (stmt);
1319 default_label = CASE_LABEL (default_case);
1320 has_default = true;
1321 }
1322 else
1323 has_default = false;
1324
1325 /* Look for possible opportunities to merge cases. */
1326 if (has_default)
1327 i = 1;
1328 else
1329 i = 0;
1330 while (i < old_size)
1331 {
1332 tree base_case, base_label, base_high;
1333 base_case = gimple_switch_label (stmt, i);
1334
1335 gcc_assert (base_case);
1336 base_label = CASE_LABEL (base_case);
1337
1338 /* Discard cases that have the same destination as the
1339 default case. */
1340 if (base_label == default_label)
1341 {
1342 gimple_switch_set_label (stmt, i, NULL_TREE);
1343 i++;
1344 new_size--;
1345 continue;
1346 }
1347
1348 base_high = CASE_HIGH (base_case)
1349 ? CASE_HIGH (base_case)
1350 : CASE_LOW (base_case);
1351 i++;
1352
1353 /* Try to merge case labels. Break out when we reach the end
1354 of the label vector or when we cannot merge the next case
1355 label with the current one. */
1356 while (i < old_size)
1357 {
1358 tree merge_case = gimple_switch_label (stmt, i);
1359 tree merge_label = CASE_LABEL (merge_case);
1360 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1361 double_int_one);
1362
1363 /* Merge the cases if they jump to the same place,
1364 and their ranges are consecutive. */
1365 if (merge_label == base_label
1366 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1367 bhp1))
1368 {
1369 base_high = CASE_HIGH (merge_case) ?
1370 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1371 CASE_HIGH (base_case) = base_high;
1372 gimple_switch_set_label (stmt, i, NULL_TREE);
1373 new_size--;
1374 i++;
1375 }
1376 else
1377 break;
1378 }
1379 }
1380
1381 /* Compress the case labels in the label vector, and adjust the
1382 length of the vector. */
1383 for (i = 0, j = 0; i < new_size; i++)
1384 {
1385 while (! gimple_switch_label (stmt, j))
1386 j++;
1387 gimple_switch_set_label (stmt, i,
1388 gimple_switch_label (stmt, j++));
1389 }
1390
1391 gcc_assert (new_size <= old_size);
1392 gimple_switch_set_num_labels (stmt, new_size);
1393 }
1394
1395 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1396 and scan the sorted vector of cases. Combine the ones jumping to the
1397 same label. */
1398
1399 void
1400 group_case_labels (void)
1401 {
1402 basic_block bb;
1403
1404 FOR_EACH_BB (bb)
1405 {
1406 gimple stmt = last_stmt (bb);
1407 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1408 group_case_labels_stmt (stmt);
1409 }
1410 }
1411
1412 /* Checks whether we can merge block B into block A. */
1413
1414 static bool
1415 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1416 {
1417 gimple stmt;
1418 gimple_stmt_iterator gsi;
1419 gimple_seq phis;
1420
1421 if (!single_succ_p (a))
1422 return false;
1423
1424 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1425 return false;
1426
1427 if (single_succ (a) != b)
1428 return false;
1429
1430 if (!single_pred_p (b))
1431 return false;
1432
1433 if (b == EXIT_BLOCK_PTR)
1434 return false;
1435
1436 /* If A ends by a statement causing exceptions or something similar, we
1437 cannot merge the blocks. */
1438 stmt = last_stmt (a);
1439 if (stmt && stmt_ends_bb_p (stmt))
1440 return false;
1441
1442 /* Do not allow a block with only a non-local label to be merged. */
1443 if (stmt
1444 && gimple_code (stmt) == GIMPLE_LABEL
1445 && DECL_NONLOCAL (gimple_label_label (stmt)))
1446 return false;
1447
1448 /* Examine the labels at the beginning of B. */
1449 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1450 {
1451 tree lab;
1452 stmt = gsi_stmt (gsi);
1453 if (gimple_code (stmt) != GIMPLE_LABEL)
1454 break;
1455 lab = gimple_label_label (stmt);
1456
1457 /* Do not remove user labels. */
1458 if (!DECL_ARTIFICIAL (lab))
1459 return false;
1460 }
1461
1462 /* Protect the loop latches. */
1463 if (current_loops && b->loop_father->latch == b)
1464 return false;
1465
1466 /* It must be possible to eliminate all phi nodes in B. If ssa form
1467 is not up-to-date and a name-mapping is registered, we cannot eliminate
1468 any phis. Symbols marked for renaming are never a problem though. */
1469 phis = phi_nodes (b);
1470 if (!gimple_seq_empty_p (phis)
1471 && name_mappings_registered_p ())
1472 return false;
1473
1474 /* When not optimizing, don't merge if we'd lose goto_locus. */
1475 if (!optimize
1476 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1477 {
1478 location_t goto_locus = single_succ_edge (a)->goto_locus;
1479 gimple_stmt_iterator prev, next;
1480 prev = gsi_last_nondebug_bb (a);
1481 next = gsi_after_labels (b);
1482 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1483 gsi_next_nondebug (&next);
1484 if ((gsi_end_p (prev)
1485 || gimple_location (gsi_stmt (prev)) != goto_locus)
1486 && (gsi_end_p (next)
1487 || gimple_location (gsi_stmt (next)) != goto_locus))
1488 return false;
1489 }
1490
1491 return true;
1492 }
1493
1494 /* Return true if the var whose chain of uses starts at PTR has no
1495 nondebug uses. */
1496 bool
1497 has_zero_uses_1 (const ssa_use_operand_t *head)
1498 {
1499 const ssa_use_operand_t *ptr;
1500
1501 for (ptr = head->next; ptr != head; ptr = ptr->next)
1502 if (!is_gimple_debug (USE_STMT (ptr)))
1503 return false;
1504
1505 return true;
1506 }
1507
1508 /* Return true if the var whose chain of uses starts at PTR has a
1509 single nondebug use. Set USE_P and STMT to that single nondebug
1510 use, if so, or to NULL otherwise. */
1511 bool
1512 single_imm_use_1 (const ssa_use_operand_t *head,
1513 use_operand_p *use_p, gimple *stmt)
1514 {
1515 ssa_use_operand_t *ptr, *single_use = 0;
1516
1517 for (ptr = head->next; ptr != head; ptr = ptr->next)
1518 if (!is_gimple_debug (USE_STMT (ptr)))
1519 {
1520 if (single_use)
1521 {
1522 single_use = NULL;
1523 break;
1524 }
1525 single_use = ptr;
1526 }
1527
1528 if (use_p)
1529 *use_p = single_use;
1530
1531 if (stmt)
1532 *stmt = single_use ? single_use->loc.stmt : NULL;
1533
1534 return !!single_use;
1535 }
1536
1537 /* Replaces all uses of NAME by VAL. */
1538
1539 void
1540 replace_uses_by (tree name, tree val)
1541 {
1542 imm_use_iterator imm_iter;
1543 use_operand_p use;
1544 gimple stmt;
1545 edge e;
1546
1547 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1548 {
1549 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1550 {
1551 replace_exp (use, val);
1552
1553 if (gimple_code (stmt) == GIMPLE_PHI)
1554 {
1555 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1556 if (e->flags & EDGE_ABNORMAL)
1557 {
1558 /* This can only occur for virtual operands, since
1559 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1560 would prevent replacement. */
1561 gcc_assert (!is_gimple_reg (name));
1562 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1563 }
1564 }
1565 }
1566
1567 if (gimple_code (stmt) != GIMPLE_PHI)
1568 {
1569 size_t i;
1570
1571 fold_stmt_inplace (stmt);
1572 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1573 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1574
1575 /* FIXME. This should go in update_stmt. */
1576 for (i = 0; i < gimple_num_ops (stmt); i++)
1577 {
1578 tree op = gimple_op (stmt, i);
1579 /* Operands may be empty here. For example, the labels
1580 of a GIMPLE_COND are nulled out following the creation
1581 of the corresponding CFG edges. */
1582 if (op && TREE_CODE (op) == ADDR_EXPR)
1583 recompute_tree_invariant_for_addr_expr (op);
1584 }
1585
1586 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1587 update_stmt (stmt);
1588 }
1589 }
1590
1591 gcc_assert (has_zero_uses (name));
1592
1593 /* Also update the trees stored in loop structures. */
1594 if (current_loops)
1595 {
1596 struct loop *loop;
1597 loop_iterator li;
1598
1599 FOR_EACH_LOOP (li, loop, 0)
1600 {
1601 substitute_in_loop_info (loop, name, val);
1602 }
1603 }
1604 }
1605
1606 /* Merge block B into block A. */
1607
1608 static void
1609 gimple_merge_blocks (basic_block a, basic_block b)
1610 {
1611 gimple_stmt_iterator last, gsi, psi;
1612 gimple_seq phis = phi_nodes (b);
1613
1614 if (dump_file)
1615 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1616
1617 /* Remove all single-valued PHI nodes from block B of the form
1618 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1619 gsi = gsi_last_bb (a);
1620 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1621 {
1622 gimple phi = gsi_stmt (psi);
1623 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1624 gimple copy;
1625 bool may_replace_uses = !is_gimple_reg (def)
1626 || may_propagate_copy (def, use);
1627
1628 /* In case we maintain loop closed ssa form, do not propagate arguments
1629 of loop exit phi nodes. */
1630 if (current_loops
1631 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1632 && is_gimple_reg (def)
1633 && TREE_CODE (use) == SSA_NAME
1634 && a->loop_father != b->loop_father)
1635 may_replace_uses = false;
1636
1637 if (!may_replace_uses)
1638 {
1639 gcc_assert (is_gimple_reg (def));
1640
1641 /* Note that just emitting the copies is fine -- there is no problem
1642 with ordering of phi nodes. This is because A is the single
1643 predecessor of B, therefore results of the phi nodes cannot
1644 appear as arguments of the phi nodes. */
1645 copy = gimple_build_assign (def, use);
1646 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1647 remove_phi_node (&psi, false);
1648 }
1649 else
1650 {
1651 /* If we deal with a PHI for virtual operands, we can simply
1652 propagate these without fussing with folding or updating
1653 the stmt. */
1654 if (!is_gimple_reg (def))
1655 {
1656 imm_use_iterator iter;
1657 use_operand_p use_p;
1658 gimple stmt;
1659
1660 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1661 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1662 SET_USE (use_p, use);
1663
1664 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1665 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1666 }
1667 else
1668 replace_uses_by (def, use);
1669
1670 remove_phi_node (&psi, true);
1671 }
1672 }
1673
1674 /* Ensure that B follows A. */
1675 move_block_after (b, a);
1676
1677 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1678 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1679
1680 /* Remove labels from B and set gimple_bb to A for other statements. */
1681 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1682 {
1683 gimple stmt = gsi_stmt (gsi);
1684 if (gimple_code (stmt) == GIMPLE_LABEL)
1685 {
1686 tree label = gimple_label_label (stmt);
1687 int lp_nr;
1688
1689 gsi_remove (&gsi, false);
1690
1691 /* Now that we can thread computed gotos, we might have
1692 a situation where we have a forced label in block B
1693 However, the label at the start of block B might still be
1694 used in other ways (think about the runtime checking for
1695 Fortran assigned gotos). So we can not just delete the
1696 label. Instead we move the label to the start of block A. */
1697 if (FORCED_LABEL (label))
1698 {
1699 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1700 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1701 }
1702
1703 lp_nr = EH_LANDING_PAD_NR (label);
1704 if (lp_nr)
1705 {
1706 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1707 lp->post_landing_pad = NULL;
1708 }
1709 }
1710 else
1711 {
1712 gimple_set_bb (stmt, a);
1713 gsi_next (&gsi);
1714 }
1715 }
1716
1717 /* Merge the sequences. */
1718 last = gsi_last_bb (a);
1719 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1720 set_bb_seq (b, NULL);
1721
1722 if (cfgcleanup_altered_bbs)
1723 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1724 }
1725
1726
1727 /* Return the one of two successors of BB that is not reachable by a
1728 complex edge, if there is one. Else, return BB. We use
1729 this in optimizations that use post-dominators for their heuristics,
1730 to catch the cases in C++ where function calls are involved. */
1731
1732 basic_block
1733 single_noncomplex_succ (basic_block bb)
1734 {
1735 edge e0, e1;
1736 if (EDGE_COUNT (bb->succs) != 2)
1737 return bb;
1738
1739 e0 = EDGE_SUCC (bb, 0);
1740 e1 = EDGE_SUCC (bb, 1);
1741 if (e0->flags & EDGE_COMPLEX)
1742 return e1->dest;
1743 if (e1->flags & EDGE_COMPLEX)
1744 return e0->dest;
1745
1746 return bb;
1747 }
1748
1749 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1750
1751 void
1752 notice_special_calls (gimple call)
1753 {
1754 int flags = gimple_call_flags (call);
1755
1756 if (flags & ECF_MAY_BE_ALLOCA)
1757 cfun->calls_alloca = true;
1758 if (flags & ECF_RETURNS_TWICE)
1759 cfun->calls_setjmp = true;
1760 }
1761
1762
1763 /* Clear flags set by notice_special_calls. Used by dead code removal
1764 to update the flags. */
1765
1766 void
1767 clear_special_calls (void)
1768 {
1769 cfun->calls_alloca = false;
1770 cfun->calls_setjmp = false;
1771 }
1772
1773 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1774
1775 static void
1776 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1777 {
1778 /* Since this block is no longer reachable, we can just delete all
1779 of its PHI nodes. */
1780 remove_phi_nodes (bb);
1781
1782 /* Remove edges to BB's successors. */
1783 while (EDGE_COUNT (bb->succs) > 0)
1784 remove_edge (EDGE_SUCC (bb, 0));
1785 }
1786
1787
1788 /* Remove statements of basic block BB. */
1789
1790 static void
1791 remove_bb (basic_block bb)
1792 {
1793 gimple_stmt_iterator i;
1794
1795 if (dump_file)
1796 {
1797 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1798 if (dump_flags & TDF_DETAILS)
1799 {
1800 dump_bb (bb, dump_file, 0);
1801 fprintf (dump_file, "\n");
1802 }
1803 }
1804
1805 if (current_loops)
1806 {
1807 struct loop *loop = bb->loop_father;
1808
1809 /* If a loop gets removed, clean up the information associated
1810 with it. */
1811 if (loop->latch == bb
1812 || loop->header == bb)
1813 free_numbers_of_iterations_estimates_loop (loop);
1814 }
1815
1816 /* Remove all the instructions in the block. */
1817 if (bb_seq (bb) != NULL)
1818 {
1819 /* Walk backwards so as to get a chance to substitute all
1820 released DEFs into debug stmts. See
1821 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1822 details. */
1823 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1824 {
1825 gimple stmt = gsi_stmt (i);
1826 if (gimple_code (stmt) == GIMPLE_LABEL
1827 && (FORCED_LABEL (gimple_label_label (stmt))
1828 || DECL_NONLOCAL (gimple_label_label (stmt))))
1829 {
1830 basic_block new_bb;
1831 gimple_stmt_iterator new_gsi;
1832
1833 /* A non-reachable non-local label may still be referenced.
1834 But it no longer needs to carry the extra semantics of
1835 non-locality. */
1836 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1837 {
1838 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1839 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1840 }
1841
1842 new_bb = bb->prev_bb;
1843 new_gsi = gsi_start_bb (new_bb);
1844 gsi_remove (&i, false);
1845 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1846 }
1847 else
1848 {
1849 /* Release SSA definitions if we are in SSA. Note that we
1850 may be called when not in SSA. For example,
1851 final_cleanup calls this function via
1852 cleanup_tree_cfg. */
1853 if (gimple_in_ssa_p (cfun))
1854 release_defs (stmt);
1855
1856 gsi_remove (&i, true);
1857 }
1858
1859 if (gsi_end_p (i))
1860 i = gsi_last_bb (bb);
1861 else
1862 gsi_prev (&i);
1863 }
1864 }
1865
1866 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1867 bb->il.gimple = NULL;
1868 }
1869
1870
1871 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1872 predicate VAL, return the edge that will be taken out of the block.
1873 If VAL does not match a unique edge, NULL is returned. */
1874
1875 edge
1876 find_taken_edge (basic_block bb, tree val)
1877 {
1878 gimple stmt;
1879
1880 stmt = last_stmt (bb);
1881
1882 gcc_assert (stmt);
1883 gcc_assert (is_ctrl_stmt (stmt));
1884
1885 if (val == NULL)
1886 return NULL;
1887
1888 if (!is_gimple_min_invariant (val))
1889 return NULL;
1890
1891 if (gimple_code (stmt) == GIMPLE_COND)
1892 return find_taken_edge_cond_expr (bb, val);
1893
1894 if (gimple_code (stmt) == GIMPLE_SWITCH)
1895 return find_taken_edge_switch_expr (bb, val);
1896
1897 if (computed_goto_p (stmt))
1898 {
1899 /* Only optimize if the argument is a label, if the argument is
1900 not a label then we can not construct a proper CFG.
1901
1902 It may be the case that we only need to allow the LABEL_REF to
1903 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1904 appear inside a LABEL_EXPR just to be safe. */
1905 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1906 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1907 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1908 return NULL;
1909 }
1910
1911 gcc_unreachable ();
1912 }
1913
1914 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1915 statement, determine which of the outgoing edges will be taken out of the
1916 block. Return NULL if either edge may be taken. */
1917
1918 static edge
1919 find_taken_edge_computed_goto (basic_block bb, tree val)
1920 {
1921 basic_block dest;
1922 edge e = NULL;
1923
1924 dest = label_to_block (val);
1925 if (dest)
1926 {
1927 e = find_edge (bb, dest);
1928 gcc_assert (e != NULL);
1929 }
1930
1931 return e;
1932 }
1933
1934 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1935 statement, determine which of the two edges will be taken out of the
1936 block. Return NULL if either edge may be taken. */
1937
1938 static edge
1939 find_taken_edge_cond_expr (basic_block bb, tree val)
1940 {
1941 edge true_edge, false_edge;
1942
1943 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1944
1945 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1946 return (integer_zerop (val) ? false_edge : true_edge);
1947 }
1948
1949 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1950 statement, determine which edge will be taken out of the block. Return
1951 NULL if any edge may be taken. */
1952
1953 static edge
1954 find_taken_edge_switch_expr (basic_block bb, tree val)
1955 {
1956 basic_block dest_bb;
1957 edge e;
1958 gimple switch_stmt;
1959 tree taken_case;
1960
1961 switch_stmt = last_stmt (bb);
1962 taken_case = find_case_label_for_value (switch_stmt, val);
1963 dest_bb = label_to_block (CASE_LABEL (taken_case));
1964
1965 e = find_edge (bb, dest_bb);
1966 gcc_assert (e);
1967 return e;
1968 }
1969
1970
1971 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1972 We can make optimal use here of the fact that the case labels are
1973 sorted: We can do a binary search for a case matching VAL. */
1974
1975 static tree
1976 find_case_label_for_value (gimple switch_stmt, tree val)
1977 {
1978 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1979 tree default_case = gimple_switch_default_label (switch_stmt);
1980
1981 for (low = 0, high = n; high - low > 1; )
1982 {
1983 size_t i = (high + low) / 2;
1984 tree t = gimple_switch_label (switch_stmt, i);
1985 int cmp;
1986
1987 /* Cache the result of comparing CASE_LOW and val. */
1988 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1989
1990 if (cmp > 0)
1991 high = i;
1992 else
1993 low = i;
1994
1995 if (CASE_HIGH (t) == NULL)
1996 {
1997 /* A singe-valued case label. */
1998 if (cmp == 0)
1999 return t;
2000 }
2001 else
2002 {
2003 /* A case range. We can only handle integer ranges. */
2004 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2005 return t;
2006 }
2007 }
2008
2009 return default_case;
2010 }
2011
2012
2013 /* Dump a basic block on stderr. */
2014
2015 void
2016 gimple_debug_bb (basic_block bb)
2017 {
2018 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2019 }
2020
2021
2022 /* Dump basic block with index N on stderr. */
2023
2024 basic_block
2025 gimple_debug_bb_n (int n)
2026 {
2027 gimple_debug_bb (BASIC_BLOCK (n));
2028 return BASIC_BLOCK (n);
2029 }
2030
2031
2032 /* Dump the CFG on stderr.
2033
2034 FLAGS are the same used by the tree dumping functions
2035 (see TDF_* in tree-pass.h). */
2036
2037 void
2038 gimple_debug_cfg (int flags)
2039 {
2040 gimple_dump_cfg (stderr, flags);
2041 }
2042
2043
2044 /* Dump the program showing basic block boundaries on the given FILE.
2045
2046 FLAGS are the same used by the tree dumping functions (see TDF_* in
2047 tree.h). */
2048
2049 void
2050 gimple_dump_cfg (FILE *file, int flags)
2051 {
2052 if (flags & TDF_DETAILS)
2053 {
2054 dump_function_header (file, current_function_decl, flags);
2055 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2056 n_basic_blocks, n_edges, last_basic_block);
2057
2058 brief_dump_cfg (file);
2059 fprintf (file, "\n");
2060 }
2061
2062 if (flags & TDF_STATS)
2063 dump_cfg_stats (file);
2064
2065 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2066 }
2067
2068
2069 /* Dump CFG statistics on FILE. */
2070
2071 void
2072 dump_cfg_stats (FILE *file)
2073 {
2074 static long max_num_merged_labels = 0;
2075 unsigned long size, total = 0;
2076 long num_edges;
2077 basic_block bb;
2078 const char * const fmt_str = "%-30s%-13s%12s\n";
2079 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2080 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2081 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2082 const char *funcname
2083 = lang_hooks.decl_printable_name (current_function_decl, 2);
2084
2085
2086 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2087
2088 fprintf (file, "---------------------------------------------------------\n");
2089 fprintf (file, fmt_str, "", " Number of ", "Memory");
2090 fprintf (file, fmt_str, "", " instances ", "used ");
2091 fprintf (file, "---------------------------------------------------------\n");
2092
2093 size = n_basic_blocks * sizeof (struct basic_block_def);
2094 total += size;
2095 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2096 SCALE (size), LABEL (size));
2097
2098 num_edges = 0;
2099 FOR_EACH_BB (bb)
2100 num_edges += EDGE_COUNT (bb->succs);
2101 size = num_edges * sizeof (struct edge_def);
2102 total += size;
2103 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2104
2105 fprintf (file, "---------------------------------------------------------\n");
2106 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2107 LABEL (total));
2108 fprintf (file, "---------------------------------------------------------\n");
2109 fprintf (file, "\n");
2110
2111 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2112 max_num_merged_labels = cfg_stats.num_merged_labels;
2113
2114 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2115 cfg_stats.num_merged_labels, max_num_merged_labels);
2116
2117 fprintf (file, "\n");
2118 }
2119
2120
2121 /* Dump CFG statistics on stderr. Keep extern so that it's always
2122 linked in the final executable. */
2123
2124 DEBUG_FUNCTION void
2125 debug_cfg_stats (void)
2126 {
2127 dump_cfg_stats (stderr);
2128 }
2129
2130
2131 /* Dump the flowgraph to a .vcg FILE. */
2132
2133 static void
2134 gimple_cfg2vcg (FILE *file)
2135 {
2136 edge e;
2137 edge_iterator ei;
2138 basic_block bb;
2139 const char *funcname
2140 = lang_hooks.decl_printable_name (current_function_decl, 2);
2141
2142 /* Write the file header. */
2143 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2144 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2145 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2146
2147 /* Write blocks and edges. */
2148 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2149 {
2150 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2151 e->dest->index);
2152
2153 if (e->flags & EDGE_FAKE)
2154 fprintf (file, " linestyle: dotted priority: 10");
2155 else
2156 fprintf (file, " linestyle: solid priority: 100");
2157
2158 fprintf (file, " }\n");
2159 }
2160 fputc ('\n', file);
2161
2162 FOR_EACH_BB (bb)
2163 {
2164 enum gimple_code head_code, end_code;
2165 const char *head_name, *end_name;
2166 int head_line = 0;
2167 int end_line = 0;
2168 gimple first = first_stmt (bb);
2169 gimple last = last_stmt (bb);
2170
2171 if (first)
2172 {
2173 head_code = gimple_code (first);
2174 head_name = gimple_code_name[head_code];
2175 head_line = get_lineno (first);
2176 }
2177 else
2178 head_name = "no-statement";
2179
2180 if (last)
2181 {
2182 end_code = gimple_code (last);
2183 end_name = gimple_code_name[end_code];
2184 end_line = get_lineno (last);
2185 }
2186 else
2187 end_name = "no-statement";
2188
2189 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2190 bb->index, bb->index, head_name, head_line, end_name,
2191 end_line);
2192
2193 FOR_EACH_EDGE (e, ei, bb->succs)
2194 {
2195 if (e->dest == EXIT_BLOCK_PTR)
2196 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2197 else
2198 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2199
2200 if (e->flags & EDGE_FAKE)
2201 fprintf (file, " priority: 10 linestyle: dotted");
2202 else
2203 fprintf (file, " priority: 100 linestyle: solid");
2204
2205 fprintf (file, " }\n");
2206 }
2207
2208 if (bb->next_bb != EXIT_BLOCK_PTR)
2209 fputc ('\n', file);
2210 }
2211
2212 fputs ("}\n\n", file);
2213 }
2214
2215
2216
2217 /*---------------------------------------------------------------------------
2218 Miscellaneous helpers
2219 ---------------------------------------------------------------------------*/
2220
2221 /* Return true if T represents a stmt that always transfers control. */
2222
2223 bool
2224 is_ctrl_stmt (gimple t)
2225 {
2226 switch (gimple_code (t))
2227 {
2228 case GIMPLE_COND:
2229 case GIMPLE_SWITCH:
2230 case GIMPLE_GOTO:
2231 case GIMPLE_RETURN:
2232 case GIMPLE_RESX:
2233 return true;
2234 default:
2235 return false;
2236 }
2237 }
2238
2239
2240 /* Return true if T is a statement that may alter the flow of control
2241 (e.g., a call to a non-returning function). */
2242
2243 bool
2244 is_ctrl_altering_stmt (gimple t)
2245 {
2246 gcc_assert (t);
2247
2248 switch (gimple_code (t))
2249 {
2250 case GIMPLE_CALL:
2251 {
2252 int flags = gimple_call_flags (t);
2253
2254 /* A non-pure/const call alters flow control if the current
2255 function has nonlocal labels. */
2256 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2257 && cfun->has_nonlocal_label)
2258 return true;
2259
2260 /* A call also alters control flow if it does not return. */
2261 if (flags & ECF_NORETURN)
2262 return true;
2263
2264 /* BUILT_IN_RETURN call is same as return statement. */
2265 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2266 return true;
2267 }
2268 break;
2269
2270 case GIMPLE_EH_DISPATCH:
2271 /* EH_DISPATCH branches to the individual catch handlers at
2272 this level of a try or allowed-exceptions region. It can
2273 fallthru to the next statement as well. */
2274 return true;
2275
2276 case GIMPLE_ASM:
2277 if (gimple_asm_nlabels (t) > 0)
2278 return true;
2279 break;
2280
2281 CASE_GIMPLE_OMP:
2282 /* OpenMP directives alter control flow. */
2283 return true;
2284
2285 default:
2286 break;
2287 }
2288
2289 /* If a statement can throw, it alters control flow. */
2290 return stmt_can_throw_internal (t);
2291 }
2292
2293
2294 /* Return true if T is a simple local goto. */
2295
2296 bool
2297 simple_goto_p (gimple t)
2298 {
2299 return (gimple_code (t) == GIMPLE_GOTO
2300 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2301 }
2302
2303
2304 /* Return true if T can make an abnormal transfer of control flow.
2305 Transfers of control flow associated with EH are excluded. */
2306
2307 bool
2308 stmt_can_make_abnormal_goto (gimple t)
2309 {
2310 if (computed_goto_p (t))
2311 return true;
2312 if (is_gimple_call (t))
2313 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2314 && !(gimple_call_flags (t) & ECF_LEAF));
2315 return false;
2316 }
2317
2318
2319 /* Return true if STMT should start a new basic block. PREV_STMT is
2320 the statement preceding STMT. It is used when STMT is a label or a
2321 case label. Labels should only start a new basic block if their
2322 previous statement wasn't a label. Otherwise, sequence of labels
2323 would generate unnecessary basic blocks that only contain a single
2324 label. */
2325
2326 static inline bool
2327 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2328 {
2329 if (stmt == NULL)
2330 return false;
2331
2332 /* Labels start a new basic block only if the preceding statement
2333 wasn't a label of the same type. This prevents the creation of
2334 consecutive blocks that have nothing but a single label. */
2335 if (gimple_code (stmt) == GIMPLE_LABEL)
2336 {
2337 /* Nonlocal and computed GOTO targets always start a new block. */
2338 if (DECL_NONLOCAL (gimple_label_label (stmt))
2339 || FORCED_LABEL (gimple_label_label (stmt)))
2340 return true;
2341
2342 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2343 {
2344 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2345 return true;
2346
2347 cfg_stats.num_merged_labels++;
2348 return false;
2349 }
2350 else
2351 return true;
2352 }
2353
2354 return false;
2355 }
2356
2357
2358 /* Return true if T should end a basic block. */
2359
2360 bool
2361 stmt_ends_bb_p (gimple t)
2362 {
2363 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2364 }
2365
2366 /* Remove block annotations and other data structures. */
2367
2368 void
2369 delete_tree_cfg_annotations (void)
2370 {
2371 label_to_block_map = NULL;
2372 }
2373
2374
2375 /* Return the first statement in basic block BB. */
2376
2377 gimple
2378 first_stmt (basic_block bb)
2379 {
2380 gimple_stmt_iterator i = gsi_start_bb (bb);
2381 gimple stmt = NULL;
2382
2383 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2384 {
2385 gsi_next (&i);
2386 stmt = NULL;
2387 }
2388 return stmt;
2389 }
2390
2391 /* Return the first non-label statement in basic block BB. */
2392
2393 static gimple
2394 first_non_label_stmt (basic_block bb)
2395 {
2396 gimple_stmt_iterator i = gsi_start_bb (bb);
2397 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2398 gsi_next (&i);
2399 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2400 }
2401
2402 /* Return the last statement in basic block BB. */
2403
2404 gimple
2405 last_stmt (basic_block bb)
2406 {
2407 gimple_stmt_iterator i = gsi_last_bb (bb);
2408 gimple stmt = NULL;
2409
2410 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2411 {
2412 gsi_prev (&i);
2413 stmt = NULL;
2414 }
2415 return stmt;
2416 }
2417
2418 /* Return the last statement of an otherwise empty block. Return NULL
2419 if the block is totally empty, or if it contains more than one
2420 statement. */
2421
2422 gimple
2423 last_and_only_stmt (basic_block bb)
2424 {
2425 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2426 gimple last, prev;
2427
2428 if (gsi_end_p (i))
2429 return NULL;
2430
2431 last = gsi_stmt (i);
2432 gsi_prev_nondebug (&i);
2433 if (gsi_end_p (i))
2434 return last;
2435
2436 /* Empty statements should no longer appear in the instruction stream.
2437 Everything that might have appeared before should be deleted by
2438 remove_useless_stmts, and the optimizers should just gsi_remove
2439 instead of smashing with build_empty_stmt.
2440
2441 Thus the only thing that should appear here in a block containing
2442 one executable statement is a label. */
2443 prev = gsi_stmt (i);
2444 if (gimple_code (prev) == GIMPLE_LABEL)
2445 return last;
2446 else
2447 return NULL;
2448 }
2449
2450 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2451
2452 static void
2453 reinstall_phi_args (edge new_edge, edge old_edge)
2454 {
2455 edge_var_map_vector v;
2456 edge_var_map *vm;
2457 int i;
2458 gimple_stmt_iterator phis;
2459
2460 v = redirect_edge_var_map_vector (old_edge);
2461 if (!v)
2462 return;
2463
2464 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2465 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2466 i++, gsi_next (&phis))
2467 {
2468 gimple phi = gsi_stmt (phis);
2469 tree result = redirect_edge_var_map_result (vm);
2470 tree arg = redirect_edge_var_map_def (vm);
2471
2472 gcc_assert (result == gimple_phi_result (phi));
2473
2474 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2475 }
2476
2477 redirect_edge_var_map_clear (old_edge);
2478 }
2479
2480 /* Returns the basic block after which the new basic block created
2481 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2482 near its "logical" location. This is of most help to humans looking
2483 at debugging dumps. */
2484
2485 static basic_block
2486 split_edge_bb_loc (edge edge_in)
2487 {
2488 basic_block dest = edge_in->dest;
2489 basic_block dest_prev = dest->prev_bb;
2490
2491 if (dest_prev)
2492 {
2493 edge e = find_edge (dest_prev, dest);
2494 if (e && !(e->flags & EDGE_COMPLEX))
2495 return edge_in->src;
2496 }
2497 return dest_prev;
2498 }
2499
2500 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2501 Abort on abnormal edges. */
2502
2503 static basic_block
2504 gimple_split_edge (edge edge_in)
2505 {
2506 basic_block new_bb, after_bb, dest;
2507 edge new_edge, e;
2508
2509 /* Abnormal edges cannot be split. */
2510 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2511
2512 dest = edge_in->dest;
2513
2514 after_bb = split_edge_bb_loc (edge_in);
2515
2516 new_bb = create_empty_bb (after_bb);
2517 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2518 new_bb->count = edge_in->count;
2519 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2520 new_edge->probability = REG_BR_PROB_BASE;
2521 new_edge->count = edge_in->count;
2522
2523 e = redirect_edge_and_branch (edge_in, new_bb);
2524 gcc_assert (e == edge_in);
2525 reinstall_phi_args (new_edge, e);
2526
2527 return new_bb;
2528 }
2529
2530
2531 /* Verify properties of the address expression T with base object BASE. */
2532
2533 static tree
2534 verify_address (tree t, tree base)
2535 {
2536 bool old_constant;
2537 bool old_side_effects;
2538 bool new_constant;
2539 bool new_side_effects;
2540
2541 old_constant = TREE_CONSTANT (t);
2542 old_side_effects = TREE_SIDE_EFFECTS (t);
2543
2544 recompute_tree_invariant_for_addr_expr (t);
2545 new_side_effects = TREE_SIDE_EFFECTS (t);
2546 new_constant = TREE_CONSTANT (t);
2547
2548 if (old_constant != new_constant)
2549 {
2550 error ("constant not recomputed when ADDR_EXPR changed");
2551 return t;
2552 }
2553 if (old_side_effects != new_side_effects)
2554 {
2555 error ("side effects not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558
2559 if (!(TREE_CODE (base) == VAR_DECL
2560 || TREE_CODE (base) == PARM_DECL
2561 || TREE_CODE (base) == RESULT_DECL))
2562 return NULL_TREE;
2563
2564 if (DECL_GIMPLE_REG_P (base))
2565 {
2566 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2567 return base;
2568 }
2569
2570 return NULL_TREE;
2571 }
2572
2573 /* Callback for walk_tree, check that all elements with address taken are
2574 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2575 inside a PHI node. */
2576
2577 static tree
2578 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2579 {
2580 tree t = *tp, x;
2581
2582 if (TYPE_P (t))
2583 *walk_subtrees = 0;
2584
2585 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2586 #define CHECK_OP(N, MSG) \
2587 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2588 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2589
2590 switch (TREE_CODE (t))
2591 {
2592 case SSA_NAME:
2593 if (SSA_NAME_IN_FREE_LIST (t))
2594 {
2595 error ("SSA name in freelist but still referenced");
2596 return *tp;
2597 }
2598 break;
2599
2600 case INDIRECT_REF:
2601 error ("INDIRECT_REF in gimple IL");
2602 return t;
2603
2604 case MEM_REF:
2605 x = TREE_OPERAND (t, 0);
2606 if (!POINTER_TYPE_P (TREE_TYPE (x))
2607 || !is_gimple_mem_ref_addr (x))
2608 {
2609 error ("invalid first operand of MEM_REF");
2610 return x;
2611 }
2612 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2613 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2614 {
2615 error ("invalid offset operand of MEM_REF");
2616 return TREE_OPERAND (t, 1);
2617 }
2618 if (TREE_CODE (x) == ADDR_EXPR
2619 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2620 return x;
2621 *walk_subtrees = 0;
2622 break;
2623
2624 case ASSERT_EXPR:
2625 x = fold (ASSERT_EXPR_COND (t));
2626 if (x == boolean_false_node)
2627 {
2628 error ("ASSERT_EXPR with an always-false condition");
2629 return *tp;
2630 }
2631 break;
2632
2633 case MODIFY_EXPR:
2634 error ("MODIFY_EXPR not expected while having tuples");
2635 return *tp;
2636
2637 case ADDR_EXPR:
2638 {
2639 tree tem;
2640
2641 gcc_assert (is_gimple_address (t));
2642
2643 /* Skip any references (they will be checked when we recurse down the
2644 tree) and ensure that any variable used as a prefix is marked
2645 addressable. */
2646 for (x = TREE_OPERAND (t, 0);
2647 handled_component_p (x);
2648 x = TREE_OPERAND (x, 0))
2649 ;
2650
2651 if ((tem = verify_address (t, x)))
2652 return tem;
2653
2654 if (!(TREE_CODE (x) == VAR_DECL
2655 || TREE_CODE (x) == PARM_DECL
2656 || TREE_CODE (x) == RESULT_DECL))
2657 return NULL;
2658
2659 if (!TREE_ADDRESSABLE (x))
2660 {
2661 error ("address taken, but ADDRESSABLE bit not set");
2662 return x;
2663 }
2664
2665 break;
2666 }
2667
2668 case COND_EXPR:
2669 x = COND_EXPR_COND (t);
2670 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2671 {
2672 error ("non-integral used in condition");
2673 return x;
2674 }
2675 if (!is_gimple_condexpr (x))
2676 {
2677 error ("invalid conditional operand");
2678 return x;
2679 }
2680 break;
2681
2682 case NON_LVALUE_EXPR:
2683 case TRUTH_NOT_EXPR:
2684 gcc_unreachable ();
2685
2686 CASE_CONVERT:
2687 case FIX_TRUNC_EXPR:
2688 case FLOAT_EXPR:
2689 case NEGATE_EXPR:
2690 case ABS_EXPR:
2691 case BIT_NOT_EXPR:
2692 CHECK_OP (0, "invalid operand to unary operator");
2693 break;
2694
2695 case REALPART_EXPR:
2696 case IMAGPART_EXPR:
2697 case COMPONENT_REF:
2698 case ARRAY_REF:
2699 case ARRAY_RANGE_REF:
2700 case BIT_FIELD_REF:
2701 case VIEW_CONVERT_EXPR:
2702 /* We have a nest of references. Verify that each of the operands
2703 that determine where to reference is either a constant or a variable,
2704 verify that the base is valid, and then show we've already checked
2705 the subtrees. */
2706 while (handled_component_p (t))
2707 {
2708 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2709 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2710 else if (TREE_CODE (t) == ARRAY_REF
2711 || TREE_CODE (t) == ARRAY_RANGE_REF)
2712 {
2713 CHECK_OP (1, "invalid array index");
2714 if (TREE_OPERAND (t, 2))
2715 CHECK_OP (2, "invalid array lower bound");
2716 if (TREE_OPERAND (t, 3))
2717 CHECK_OP (3, "invalid array stride");
2718 }
2719 else if (TREE_CODE (t) == BIT_FIELD_REF)
2720 {
2721 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2722 || !host_integerp (TREE_OPERAND (t, 2), 1))
2723 {
2724 error ("invalid position or size operand to BIT_FIELD_REF");
2725 return t;
2726 }
2727 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2728 && (TYPE_PRECISION (TREE_TYPE (t))
2729 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2730 {
2731 error ("integral result type precision does not match "
2732 "field size of BIT_FIELD_REF");
2733 return t;
2734 }
2735 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2736 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2737 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2738 {
2739 error ("mode precision of non-integral result does not "
2740 "match field size of BIT_FIELD_REF");
2741 return t;
2742 }
2743 }
2744
2745 t = TREE_OPERAND (t, 0);
2746 }
2747
2748 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2749 {
2750 error ("invalid reference prefix");
2751 return t;
2752 }
2753 *walk_subtrees = 0;
2754 break;
2755 case PLUS_EXPR:
2756 case MINUS_EXPR:
2757 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2758 POINTER_PLUS_EXPR. */
2759 if (POINTER_TYPE_P (TREE_TYPE (t)))
2760 {
2761 error ("invalid operand to plus/minus, type is a pointer");
2762 return t;
2763 }
2764 CHECK_OP (0, "invalid operand to binary operator");
2765 CHECK_OP (1, "invalid operand to binary operator");
2766 break;
2767
2768 case POINTER_PLUS_EXPR:
2769 /* Check to make sure the first operand is a pointer or reference type. */
2770 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2771 {
2772 error ("invalid operand to pointer plus, first operand is not a pointer");
2773 return t;
2774 }
2775 /* Check to make sure the second operand is an integer with type of
2776 sizetype. */
2777 if (!useless_type_conversion_p (sizetype,
2778 TREE_TYPE (TREE_OPERAND (t, 1))))
2779 {
2780 error ("invalid operand to pointer plus, second operand is not an "
2781 "integer with type of sizetype");
2782 return t;
2783 }
2784 /* FALLTHROUGH */
2785 case LT_EXPR:
2786 case LE_EXPR:
2787 case GT_EXPR:
2788 case GE_EXPR:
2789 case EQ_EXPR:
2790 case NE_EXPR:
2791 case UNORDERED_EXPR:
2792 case ORDERED_EXPR:
2793 case UNLT_EXPR:
2794 case UNLE_EXPR:
2795 case UNGT_EXPR:
2796 case UNGE_EXPR:
2797 case UNEQ_EXPR:
2798 case LTGT_EXPR:
2799 case MULT_EXPR:
2800 case TRUNC_DIV_EXPR:
2801 case CEIL_DIV_EXPR:
2802 case FLOOR_DIV_EXPR:
2803 case ROUND_DIV_EXPR:
2804 case TRUNC_MOD_EXPR:
2805 case CEIL_MOD_EXPR:
2806 case FLOOR_MOD_EXPR:
2807 case ROUND_MOD_EXPR:
2808 case RDIV_EXPR:
2809 case EXACT_DIV_EXPR:
2810 case MIN_EXPR:
2811 case MAX_EXPR:
2812 case LSHIFT_EXPR:
2813 case RSHIFT_EXPR:
2814 case LROTATE_EXPR:
2815 case RROTATE_EXPR:
2816 case BIT_IOR_EXPR:
2817 case BIT_XOR_EXPR:
2818 case BIT_AND_EXPR:
2819 CHECK_OP (0, "invalid operand to binary operator");
2820 CHECK_OP (1, "invalid operand to binary operator");
2821 break;
2822
2823 case CONSTRUCTOR:
2824 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2825 *walk_subtrees = 0;
2826 break;
2827
2828 case CASE_LABEL_EXPR:
2829 if (CASE_CHAIN (t))
2830 {
2831 error ("invalid CASE_CHAIN");
2832 return t;
2833 }
2834 break;
2835
2836 default:
2837 break;
2838 }
2839 return NULL;
2840
2841 #undef CHECK_OP
2842 }
2843
2844
2845 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2846 Returns true if there is an error, otherwise false. */
2847
2848 static bool
2849 verify_types_in_gimple_min_lval (tree expr)
2850 {
2851 tree op;
2852
2853 if (is_gimple_id (expr))
2854 return false;
2855
2856 if (TREE_CODE (expr) != TARGET_MEM_REF
2857 && TREE_CODE (expr) != MEM_REF)
2858 {
2859 error ("invalid expression for min lvalue");
2860 return true;
2861 }
2862
2863 /* TARGET_MEM_REFs are strange beasts. */
2864 if (TREE_CODE (expr) == TARGET_MEM_REF)
2865 return false;
2866
2867 op = TREE_OPERAND (expr, 0);
2868 if (!is_gimple_val (op))
2869 {
2870 error ("invalid operand in indirect reference");
2871 debug_generic_stmt (op);
2872 return true;
2873 }
2874 /* Memory references now generally can involve a value conversion. */
2875
2876 return false;
2877 }
2878
2879 /* Verify if EXPR is a valid GIMPLE reference expression. If
2880 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2881 if there is an error, otherwise false. */
2882
2883 static bool
2884 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2885 {
2886 while (handled_component_p (expr))
2887 {
2888 tree op = TREE_OPERAND (expr, 0);
2889
2890 if (TREE_CODE (expr) == ARRAY_REF
2891 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2892 {
2893 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2894 || (TREE_OPERAND (expr, 2)
2895 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2896 || (TREE_OPERAND (expr, 3)
2897 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2898 {
2899 error ("invalid operands to array reference");
2900 debug_generic_stmt (expr);
2901 return true;
2902 }
2903 }
2904
2905 /* Verify if the reference array element types are compatible. */
2906 if (TREE_CODE (expr) == ARRAY_REF
2907 && !useless_type_conversion_p (TREE_TYPE (expr),
2908 TREE_TYPE (TREE_TYPE (op))))
2909 {
2910 error ("type mismatch in array reference");
2911 debug_generic_stmt (TREE_TYPE (expr));
2912 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2913 return true;
2914 }
2915 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2916 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2917 TREE_TYPE (TREE_TYPE (op))))
2918 {
2919 error ("type mismatch in array range reference");
2920 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2921 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2922 return true;
2923 }
2924
2925 if ((TREE_CODE (expr) == REALPART_EXPR
2926 || TREE_CODE (expr) == IMAGPART_EXPR)
2927 && !useless_type_conversion_p (TREE_TYPE (expr),
2928 TREE_TYPE (TREE_TYPE (op))))
2929 {
2930 error ("type mismatch in real/imagpart reference");
2931 debug_generic_stmt (TREE_TYPE (expr));
2932 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2933 return true;
2934 }
2935
2936 if (TREE_CODE (expr) == COMPONENT_REF
2937 && !useless_type_conversion_p (TREE_TYPE (expr),
2938 TREE_TYPE (TREE_OPERAND (expr, 1))))
2939 {
2940 error ("type mismatch in component reference");
2941 debug_generic_stmt (TREE_TYPE (expr));
2942 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2943 return true;
2944 }
2945
2946 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2947 {
2948 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2949 that their operand is not an SSA name or an invariant when
2950 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2951 bug). Otherwise there is nothing to verify, gross mismatches at
2952 most invoke undefined behavior. */
2953 if (require_lvalue
2954 && (TREE_CODE (op) == SSA_NAME
2955 || is_gimple_min_invariant (op)))
2956 {
2957 error ("conversion of an SSA_NAME on the left hand side");
2958 debug_generic_stmt (expr);
2959 return true;
2960 }
2961 else if (TREE_CODE (op) == SSA_NAME
2962 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2963 {
2964 error ("conversion of register to a different size");
2965 debug_generic_stmt (expr);
2966 return true;
2967 }
2968 else if (!handled_component_p (op))
2969 return false;
2970 }
2971
2972 expr = op;
2973 }
2974
2975 if (TREE_CODE (expr) == MEM_REF)
2976 {
2977 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2978 {
2979 error ("invalid address operand in MEM_REF");
2980 debug_generic_stmt (expr);
2981 return true;
2982 }
2983 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2984 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2985 {
2986 error ("invalid offset operand in MEM_REF");
2987 debug_generic_stmt (expr);
2988 return true;
2989 }
2990 }
2991 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2992 {
2993 if (!TMR_BASE (expr)
2994 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2995 {
2996 error ("invalid address operand in TARGET_MEM_REF");
2997 return true;
2998 }
2999 if (!TMR_OFFSET (expr)
3000 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3001 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3002 {
3003 error ("invalid offset operand in TARGET_MEM_REF");
3004 debug_generic_stmt (expr);
3005 return true;
3006 }
3007 }
3008
3009 return ((require_lvalue || !is_gimple_min_invariant (expr))
3010 && verify_types_in_gimple_min_lval (expr));
3011 }
3012
3013 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3014 list of pointer-to types that is trivially convertible to DEST. */
3015
3016 static bool
3017 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3018 {
3019 tree src;
3020
3021 if (!TYPE_POINTER_TO (src_obj))
3022 return true;
3023
3024 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3025 if (useless_type_conversion_p (dest, src))
3026 return true;
3027
3028 return false;
3029 }
3030
3031 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3032 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3033
3034 static bool
3035 valid_fixed_convert_types_p (tree type1, tree type2)
3036 {
3037 return (FIXED_POINT_TYPE_P (type1)
3038 && (INTEGRAL_TYPE_P (type2)
3039 || SCALAR_FLOAT_TYPE_P (type2)
3040 || FIXED_POINT_TYPE_P (type2)));
3041 }
3042
3043 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3044 is a problem, otherwise false. */
3045
3046 static bool
3047 verify_gimple_call (gimple stmt)
3048 {
3049 tree fn = gimple_call_fn (stmt);
3050 tree fntype, fndecl;
3051 unsigned i;
3052
3053 if (gimple_call_internal_p (stmt))
3054 {
3055 if (fn)
3056 {
3057 error ("gimple call has two targets");
3058 debug_generic_stmt (fn);
3059 return true;
3060 }
3061 }
3062 else
3063 {
3064 if (!fn)
3065 {
3066 error ("gimple call has no target");
3067 return true;
3068 }
3069 }
3070
3071 if (fn && !is_gimple_call_addr (fn))
3072 {
3073 error ("invalid function in gimple call");
3074 debug_generic_stmt (fn);
3075 return true;
3076 }
3077
3078 if (fn
3079 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3080 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3081 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3082 {
3083 error ("non-function in gimple call");
3084 return true;
3085 }
3086
3087 fndecl = gimple_call_fndecl (stmt);
3088 if (fndecl
3089 && TREE_CODE (fndecl) == FUNCTION_DECL
3090 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3091 && !DECL_PURE_P (fndecl)
3092 && !TREE_READONLY (fndecl))
3093 {
3094 error ("invalid pure const state for function");
3095 return true;
3096 }
3097
3098 if (gimple_call_lhs (stmt)
3099 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3100 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3101 {
3102 error ("invalid LHS in gimple call");
3103 return true;
3104 }
3105
3106 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3107 {
3108 error ("LHS in noreturn call");
3109 return true;
3110 }
3111
3112 fntype = gimple_call_fntype (stmt);
3113 if (fntype
3114 && gimple_call_lhs (stmt)
3115 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3116 TREE_TYPE (fntype))
3117 /* ??? At least C++ misses conversions at assignments from
3118 void * call results.
3119 ??? Java is completely off. Especially with functions
3120 returning java.lang.Object.
3121 For now simply allow arbitrary pointer type conversions. */
3122 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3123 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3124 {
3125 error ("invalid conversion in gimple call");
3126 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3127 debug_generic_stmt (TREE_TYPE (fntype));
3128 return true;
3129 }
3130
3131 if (gimple_call_chain (stmt)
3132 && !is_gimple_val (gimple_call_chain (stmt)))
3133 {
3134 error ("invalid static chain in gimple call");
3135 debug_generic_stmt (gimple_call_chain (stmt));
3136 return true;
3137 }
3138
3139 /* If there is a static chain argument, this should not be an indirect
3140 call, and the decl should have DECL_STATIC_CHAIN set. */
3141 if (gimple_call_chain (stmt))
3142 {
3143 if (!gimple_call_fndecl (stmt))
3144 {
3145 error ("static chain in indirect gimple call");
3146 return true;
3147 }
3148 fn = TREE_OPERAND (fn, 0);
3149
3150 if (!DECL_STATIC_CHAIN (fn))
3151 {
3152 error ("static chain with function that doesn%'t use one");
3153 return true;
3154 }
3155 }
3156
3157 /* ??? The C frontend passes unpromoted arguments in case it
3158 didn't see a function declaration before the call. So for now
3159 leave the call arguments mostly unverified. Once we gimplify
3160 unit-at-a-time we have a chance to fix this. */
3161
3162 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3163 {
3164 tree arg = gimple_call_arg (stmt, i);
3165 if ((is_gimple_reg_type (TREE_TYPE (arg))
3166 && !is_gimple_val (arg))
3167 || (!is_gimple_reg_type (TREE_TYPE (arg))
3168 && !is_gimple_lvalue (arg)))
3169 {
3170 error ("invalid argument to gimple call");
3171 debug_generic_expr (arg);
3172 return true;
3173 }
3174 }
3175
3176 return false;
3177 }
3178
3179 /* Verifies the gimple comparison with the result type TYPE and
3180 the operands OP0 and OP1. */
3181
3182 static bool
3183 verify_gimple_comparison (tree type, tree op0, tree op1)
3184 {
3185 tree op0_type = TREE_TYPE (op0);
3186 tree op1_type = TREE_TYPE (op1);
3187
3188 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3189 {
3190 error ("invalid operands in gimple comparison");
3191 return true;
3192 }
3193
3194 /* For comparisons we do not have the operations type as the
3195 effective type the comparison is carried out in. Instead
3196 we require that either the first operand is trivially
3197 convertible into the second, or the other way around.
3198 The resulting type of a comparison may be any integral type.
3199 Because we special-case pointers to void we allow
3200 comparisons of pointers with the same mode as well. */
3201 if ((!useless_type_conversion_p (op0_type, op1_type)
3202 && !useless_type_conversion_p (op1_type, op0_type)
3203 && (!POINTER_TYPE_P (op0_type)
3204 || !POINTER_TYPE_P (op1_type)
3205 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3206 || !INTEGRAL_TYPE_P (type)
3207 || (TREE_CODE (type) != BOOLEAN_TYPE
3208 && TYPE_PRECISION (type) != 1))
3209 {
3210 error ("type mismatch in comparison expression");
3211 debug_generic_expr (type);
3212 debug_generic_expr (op0_type);
3213 debug_generic_expr (op1_type);
3214 return true;
3215 }
3216
3217 return false;
3218 }
3219
3220 /* Verify a gimple assignment statement STMT with an unary rhs.
3221 Returns true if anything is wrong. */
3222
3223 static bool
3224 verify_gimple_assign_unary (gimple stmt)
3225 {
3226 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3227 tree lhs = gimple_assign_lhs (stmt);
3228 tree lhs_type = TREE_TYPE (lhs);
3229 tree rhs1 = gimple_assign_rhs1 (stmt);
3230 tree rhs1_type = TREE_TYPE (rhs1);
3231
3232 if (!is_gimple_reg (lhs))
3233 {
3234 error ("non-register as LHS of unary operation");
3235 return true;
3236 }
3237
3238 if (!is_gimple_val (rhs1))
3239 {
3240 error ("invalid operand in unary operation");
3241 return true;
3242 }
3243
3244 /* First handle conversions. */
3245 switch (rhs_code)
3246 {
3247 CASE_CONVERT:
3248 {
3249 /* Allow conversions between integral types and pointers only if
3250 there is no sign or zero extension involved.
3251 For targets were the precision of sizetype doesn't match that
3252 of pointers we need to allow arbitrary conversions from and
3253 to sizetype. */
3254 if ((POINTER_TYPE_P (lhs_type)
3255 && INTEGRAL_TYPE_P (rhs1_type)
3256 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3257 || rhs1_type == sizetype))
3258 || (POINTER_TYPE_P (rhs1_type)
3259 && INTEGRAL_TYPE_P (lhs_type)
3260 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3261 || lhs_type == sizetype)))
3262 return false;
3263
3264 /* Allow conversion from integer to offset type and vice versa. */
3265 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3266 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3267 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3268 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3269 return false;
3270
3271 /* Otherwise assert we are converting between types of the
3272 same kind. */
3273 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3274 {
3275 error ("invalid types in nop conversion");
3276 debug_generic_expr (lhs_type);
3277 debug_generic_expr (rhs1_type);
3278 return true;
3279 }
3280
3281 return false;
3282 }
3283
3284 case ADDR_SPACE_CONVERT_EXPR:
3285 {
3286 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3287 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3288 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3289 {
3290 error ("invalid types in address space conversion");
3291 debug_generic_expr (lhs_type);
3292 debug_generic_expr (rhs1_type);
3293 return true;
3294 }
3295
3296 return false;
3297 }
3298
3299 case FIXED_CONVERT_EXPR:
3300 {
3301 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3302 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3303 {
3304 error ("invalid types in fixed-point conversion");
3305 debug_generic_expr (lhs_type);
3306 debug_generic_expr (rhs1_type);
3307 return true;
3308 }
3309
3310 return false;
3311 }
3312
3313 case FLOAT_EXPR:
3314 {
3315 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3316 {
3317 error ("invalid types in conversion to floating point");
3318 debug_generic_expr (lhs_type);
3319 debug_generic_expr (rhs1_type);
3320 return true;
3321 }
3322
3323 return false;
3324 }
3325
3326 case FIX_TRUNC_EXPR:
3327 {
3328 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3329 {
3330 error ("invalid types in conversion to integer");
3331 debug_generic_expr (lhs_type);
3332 debug_generic_expr (rhs1_type);
3333 return true;
3334 }
3335
3336 return false;
3337 }
3338
3339 case VEC_UNPACK_HI_EXPR:
3340 case VEC_UNPACK_LO_EXPR:
3341 case REDUC_MAX_EXPR:
3342 case REDUC_MIN_EXPR:
3343 case REDUC_PLUS_EXPR:
3344 case VEC_UNPACK_FLOAT_HI_EXPR:
3345 case VEC_UNPACK_FLOAT_LO_EXPR:
3346 /* FIXME. */
3347 return false;
3348
3349 case NEGATE_EXPR:
3350 case ABS_EXPR:
3351 case BIT_NOT_EXPR:
3352 case PAREN_EXPR:
3353 case NON_LVALUE_EXPR:
3354 case CONJ_EXPR:
3355 break;
3356
3357 default:
3358 gcc_unreachable ();
3359 }
3360
3361 /* For the remaining codes assert there is no conversion involved. */
3362 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3363 {
3364 error ("non-trivial conversion in unary operation");
3365 debug_generic_expr (lhs_type);
3366 debug_generic_expr (rhs1_type);
3367 return true;
3368 }
3369
3370 return false;
3371 }
3372
3373 /* Verify a gimple assignment statement STMT with a binary rhs.
3374 Returns true if anything is wrong. */
3375
3376 static bool
3377 verify_gimple_assign_binary (gimple stmt)
3378 {
3379 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3380 tree lhs = gimple_assign_lhs (stmt);
3381 tree lhs_type = TREE_TYPE (lhs);
3382 tree rhs1 = gimple_assign_rhs1 (stmt);
3383 tree rhs1_type = TREE_TYPE (rhs1);
3384 tree rhs2 = gimple_assign_rhs2 (stmt);
3385 tree rhs2_type = TREE_TYPE (rhs2);
3386
3387 if (!is_gimple_reg (lhs))
3388 {
3389 error ("non-register as LHS of binary operation");
3390 return true;
3391 }
3392
3393 if (!is_gimple_val (rhs1)
3394 || !is_gimple_val (rhs2))
3395 {
3396 error ("invalid operands in binary operation");
3397 return true;
3398 }
3399
3400 /* First handle operations that involve different types. */
3401 switch (rhs_code)
3402 {
3403 case COMPLEX_EXPR:
3404 {
3405 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3406 || !(INTEGRAL_TYPE_P (rhs1_type)
3407 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3408 || !(INTEGRAL_TYPE_P (rhs2_type)
3409 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3410 {
3411 error ("type mismatch in complex expression");
3412 debug_generic_expr (lhs_type);
3413 debug_generic_expr (rhs1_type);
3414 debug_generic_expr (rhs2_type);
3415 return true;
3416 }
3417
3418 return false;
3419 }
3420
3421 case LSHIFT_EXPR:
3422 case RSHIFT_EXPR:
3423 case LROTATE_EXPR:
3424 case RROTATE_EXPR:
3425 {
3426 /* Shifts and rotates are ok on integral types, fixed point
3427 types and integer vector types. */
3428 if ((!INTEGRAL_TYPE_P (rhs1_type)
3429 && !FIXED_POINT_TYPE_P (rhs1_type)
3430 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3431 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3432 || (!INTEGRAL_TYPE_P (rhs2_type)
3433 /* Vector shifts of vectors are also ok. */
3434 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3435 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3436 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3437 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3438 || !useless_type_conversion_p (lhs_type, rhs1_type))
3439 {
3440 error ("type mismatch in shift expression");
3441 debug_generic_expr (lhs_type);
3442 debug_generic_expr (rhs1_type);
3443 debug_generic_expr (rhs2_type);
3444 return true;
3445 }
3446
3447 return false;
3448 }
3449
3450 case VEC_LSHIFT_EXPR:
3451 case VEC_RSHIFT_EXPR:
3452 {
3453 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3454 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3455 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3456 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3457 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3458 || (!INTEGRAL_TYPE_P (rhs2_type)
3459 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3460 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3461 || !useless_type_conversion_p (lhs_type, rhs1_type))
3462 {
3463 error ("type mismatch in vector shift expression");
3464 debug_generic_expr (lhs_type);
3465 debug_generic_expr (rhs1_type);
3466 debug_generic_expr (rhs2_type);
3467 return true;
3468 }
3469 /* For shifting a vector of non-integral components we
3470 only allow shifting by a constant multiple of the element size. */
3471 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3472 && (TREE_CODE (rhs2) != INTEGER_CST
3473 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3474 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3475 {
3476 error ("non-element sized vector shift of floating point vector");
3477 return true;
3478 }
3479
3480 return false;
3481 }
3482
3483 case PLUS_EXPR:
3484 case MINUS_EXPR:
3485 {
3486 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3487 ??? This just makes the checker happy and may not be what is
3488 intended. */
3489 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3490 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3491 {
3492 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3493 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3494 {
3495 error ("invalid non-vector operands to vector valued plus");
3496 return true;
3497 }
3498 lhs_type = TREE_TYPE (lhs_type);
3499 rhs1_type = TREE_TYPE (rhs1_type);
3500 rhs2_type = TREE_TYPE (rhs2_type);
3501 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3502 the pointer to 2nd place. */
3503 if (POINTER_TYPE_P (rhs2_type))
3504 {
3505 tree tem = rhs1_type;
3506 rhs1_type = rhs2_type;
3507 rhs2_type = tem;
3508 }
3509 goto do_pointer_plus_expr_check;
3510 }
3511 if (POINTER_TYPE_P (lhs_type)
3512 || POINTER_TYPE_P (rhs1_type)
3513 || POINTER_TYPE_P (rhs2_type))
3514 {
3515 error ("invalid (pointer) operands to plus/minus");
3516 return true;
3517 }
3518
3519 /* Continue with generic binary expression handling. */
3520 break;
3521 }
3522
3523 case POINTER_PLUS_EXPR:
3524 {
3525 do_pointer_plus_expr_check:
3526 if (!POINTER_TYPE_P (rhs1_type)
3527 || !useless_type_conversion_p (lhs_type, rhs1_type)
3528 || !useless_type_conversion_p (sizetype, rhs2_type))
3529 {
3530 error ("type mismatch in pointer plus expression");
3531 debug_generic_stmt (lhs_type);
3532 debug_generic_stmt (rhs1_type);
3533 debug_generic_stmt (rhs2_type);
3534 return true;
3535 }
3536
3537 return false;
3538 }
3539
3540 case TRUTH_ANDIF_EXPR:
3541 case TRUTH_ORIF_EXPR:
3542 case TRUTH_AND_EXPR:
3543 case TRUTH_OR_EXPR:
3544 case TRUTH_XOR_EXPR:
3545
3546 gcc_unreachable ();
3547
3548 case LT_EXPR:
3549 case LE_EXPR:
3550 case GT_EXPR:
3551 case GE_EXPR:
3552 case EQ_EXPR:
3553 case NE_EXPR:
3554 case UNORDERED_EXPR:
3555 case ORDERED_EXPR:
3556 case UNLT_EXPR:
3557 case UNLE_EXPR:
3558 case UNGT_EXPR:
3559 case UNGE_EXPR:
3560 case UNEQ_EXPR:
3561 case LTGT_EXPR:
3562 /* Comparisons are also binary, but the result type is not
3563 connected to the operand types. */
3564 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3565
3566 case WIDEN_MULT_EXPR:
3567 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3568 return true;
3569 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3570 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3571
3572 case WIDEN_SUM_EXPR:
3573 case VEC_WIDEN_MULT_HI_EXPR:
3574 case VEC_WIDEN_MULT_LO_EXPR:
3575 case VEC_PACK_TRUNC_EXPR:
3576 case VEC_PACK_SAT_EXPR:
3577 case VEC_PACK_FIX_TRUNC_EXPR:
3578 case VEC_EXTRACT_EVEN_EXPR:
3579 case VEC_EXTRACT_ODD_EXPR:
3580 case VEC_INTERLEAVE_HIGH_EXPR:
3581 case VEC_INTERLEAVE_LOW_EXPR:
3582 /* FIXME. */
3583 return false;
3584
3585 case MULT_EXPR:
3586 case TRUNC_DIV_EXPR:
3587 case CEIL_DIV_EXPR:
3588 case FLOOR_DIV_EXPR:
3589 case ROUND_DIV_EXPR:
3590 case TRUNC_MOD_EXPR:
3591 case CEIL_MOD_EXPR:
3592 case FLOOR_MOD_EXPR:
3593 case ROUND_MOD_EXPR:
3594 case RDIV_EXPR:
3595 case EXACT_DIV_EXPR:
3596 case MIN_EXPR:
3597 case MAX_EXPR:
3598 case BIT_IOR_EXPR:
3599 case BIT_XOR_EXPR:
3600 case BIT_AND_EXPR:
3601 /* Continue with generic binary expression handling. */
3602 break;
3603
3604 default:
3605 gcc_unreachable ();
3606 }
3607
3608 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3609 || !useless_type_conversion_p (lhs_type, rhs2_type))
3610 {
3611 error ("type mismatch in binary expression");
3612 debug_generic_stmt (lhs_type);
3613 debug_generic_stmt (rhs1_type);
3614 debug_generic_stmt (rhs2_type);
3615 return true;
3616 }
3617
3618 return false;
3619 }
3620
3621 /* Verify a gimple assignment statement STMT with a ternary rhs.
3622 Returns true if anything is wrong. */
3623
3624 static bool
3625 verify_gimple_assign_ternary (gimple stmt)
3626 {
3627 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3628 tree lhs = gimple_assign_lhs (stmt);
3629 tree lhs_type = TREE_TYPE (lhs);
3630 tree rhs1 = gimple_assign_rhs1 (stmt);
3631 tree rhs1_type = TREE_TYPE (rhs1);
3632 tree rhs2 = gimple_assign_rhs2 (stmt);
3633 tree rhs2_type = TREE_TYPE (rhs2);
3634 tree rhs3 = gimple_assign_rhs3 (stmt);
3635 tree rhs3_type = TREE_TYPE (rhs3);
3636
3637 if (!is_gimple_reg (lhs))
3638 {
3639 error ("non-register as LHS of ternary operation");
3640 return true;
3641 }
3642
3643 if (!is_gimple_val (rhs1)
3644 || !is_gimple_val (rhs2)
3645 || !is_gimple_val (rhs3))
3646 {
3647 error ("invalid operands in ternary operation");
3648 return true;
3649 }
3650
3651 /* First handle operations that involve different types. */
3652 switch (rhs_code)
3653 {
3654 case WIDEN_MULT_PLUS_EXPR:
3655 case WIDEN_MULT_MINUS_EXPR:
3656 if ((!INTEGRAL_TYPE_P (rhs1_type)
3657 && !FIXED_POINT_TYPE_P (rhs1_type))
3658 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3659 || !useless_type_conversion_p (lhs_type, rhs3_type)
3660 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3661 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3662 {
3663 error ("type mismatch in widening multiply-accumulate expression");
3664 debug_generic_expr (lhs_type);
3665 debug_generic_expr (rhs1_type);
3666 debug_generic_expr (rhs2_type);
3667 debug_generic_expr (rhs3_type);
3668 return true;
3669 }
3670 break;
3671
3672 case FMA_EXPR:
3673 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3674 || !useless_type_conversion_p (lhs_type, rhs2_type)
3675 || !useless_type_conversion_p (lhs_type, rhs3_type))
3676 {
3677 error ("type mismatch in fused multiply-add expression");
3678 debug_generic_expr (lhs_type);
3679 debug_generic_expr (rhs1_type);
3680 debug_generic_expr (rhs2_type);
3681 debug_generic_expr (rhs3_type);
3682 return true;
3683 }
3684 break;
3685
3686 case DOT_PROD_EXPR:
3687 case REALIGN_LOAD_EXPR:
3688 /* FIXME. */
3689 return false;
3690
3691 default:
3692 gcc_unreachable ();
3693 }
3694 return false;
3695 }
3696
3697 /* Verify a gimple assignment statement STMT with a single rhs.
3698 Returns true if anything is wrong. */
3699
3700 static bool
3701 verify_gimple_assign_single (gimple stmt)
3702 {
3703 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3704 tree lhs = gimple_assign_lhs (stmt);
3705 tree lhs_type = TREE_TYPE (lhs);
3706 tree rhs1 = gimple_assign_rhs1 (stmt);
3707 tree rhs1_type = TREE_TYPE (rhs1);
3708 bool res = false;
3709
3710 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3711 {
3712 error ("non-trivial conversion at assignment");
3713 debug_generic_expr (lhs_type);
3714 debug_generic_expr (rhs1_type);
3715 return true;
3716 }
3717
3718 if (handled_component_p (lhs))
3719 res |= verify_types_in_gimple_reference (lhs, true);
3720
3721 /* Special codes we cannot handle via their class. */
3722 switch (rhs_code)
3723 {
3724 case ADDR_EXPR:
3725 {
3726 tree op = TREE_OPERAND (rhs1, 0);
3727 if (!is_gimple_addressable (op))
3728 {
3729 error ("invalid operand in unary expression");
3730 return true;
3731 }
3732
3733 /* Technically there is no longer a need for matching types, but
3734 gimple hygiene asks for this check. In LTO we can end up
3735 combining incompatible units and thus end up with addresses
3736 of globals that change their type to a common one. */
3737 if (!in_lto_p
3738 && !types_compatible_p (TREE_TYPE (op),
3739 TREE_TYPE (TREE_TYPE (rhs1)))
3740 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3741 TREE_TYPE (op)))
3742 {
3743 error ("type mismatch in address expression");
3744 debug_generic_stmt (TREE_TYPE (rhs1));
3745 debug_generic_stmt (TREE_TYPE (op));
3746 return true;
3747 }
3748
3749 return verify_types_in_gimple_reference (op, true);
3750 }
3751
3752 /* tcc_reference */
3753 case INDIRECT_REF:
3754 error ("INDIRECT_REF in gimple IL");
3755 return true;
3756
3757 case COMPONENT_REF:
3758 case BIT_FIELD_REF:
3759 case ARRAY_REF:
3760 case ARRAY_RANGE_REF:
3761 case VIEW_CONVERT_EXPR:
3762 case REALPART_EXPR:
3763 case IMAGPART_EXPR:
3764 case TARGET_MEM_REF:
3765 case MEM_REF:
3766 if (!is_gimple_reg (lhs)
3767 && is_gimple_reg_type (TREE_TYPE (lhs)))
3768 {
3769 error ("invalid rhs for gimple memory store");
3770 debug_generic_stmt (lhs);
3771 debug_generic_stmt (rhs1);
3772 return true;
3773 }
3774 return res || verify_types_in_gimple_reference (rhs1, false);
3775
3776 /* tcc_constant */
3777 case SSA_NAME:
3778 case INTEGER_CST:
3779 case REAL_CST:
3780 case FIXED_CST:
3781 case COMPLEX_CST:
3782 case VECTOR_CST:
3783 case STRING_CST:
3784 return res;
3785
3786 /* tcc_declaration */
3787 case CONST_DECL:
3788 return res;
3789 case VAR_DECL:
3790 case PARM_DECL:
3791 if (!is_gimple_reg (lhs)
3792 && !is_gimple_reg (rhs1)
3793 && is_gimple_reg_type (TREE_TYPE (lhs)))
3794 {
3795 error ("invalid rhs for gimple memory store");
3796 debug_generic_stmt (lhs);
3797 debug_generic_stmt (rhs1);
3798 return true;
3799 }
3800 return res;
3801
3802 case COND_EXPR:
3803 if (!is_gimple_reg (lhs)
3804 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3805 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3806 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3807 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3808 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3809 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3810 {
3811 error ("invalid COND_EXPR in gimple assignment");
3812 debug_generic_stmt (rhs1);
3813 return true;
3814 }
3815 return res;
3816
3817 case CONSTRUCTOR:
3818 case OBJ_TYPE_REF:
3819 case ASSERT_EXPR:
3820 case WITH_SIZE_EXPR:
3821 case VEC_COND_EXPR:
3822 /* FIXME. */
3823 return res;
3824
3825 default:;
3826 }
3827
3828 return res;
3829 }
3830
3831 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3832 is a problem, otherwise false. */
3833
3834 static bool
3835 verify_gimple_assign (gimple stmt)
3836 {
3837 switch (gimple_assign_rhs_class (stmt))
3838 {
3839 case GIMPLE_SINGLE_RHS:
3840 return verify_gimple_assign_single (stmt);
3841
3842 case GIMPLE_UNARY_RHS:
3843 return verify_gimple_assign_unary (stmt);
3844
3845 case GIMPLE_BINARY_RHS:
3846 return verify_gimple_assign_binary (stmt);
3847
3848 case GIMPLE_TERNARY_RHS:
3849 return verify_gimple_assign_ternary (stmt);
3850
3851 default:
3852 gcc_unreachable ();
3853 }
3854 }
3855
3856 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3857 is a problem, otherwise false. */
3858
3859 static bool
3860 verify_gimple_return (gimple stmt)
3861 {
3862 tree op = gimple_return_retval (stmt);
3863 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3864
3865 /* We cannot test for present return values as we do not fix up missing
3866 return values from the original source. */
3867 if (op == NULL)
3868 return false;
3869
3870 if (!is_gimple_val (op)
3871 && TREE_CODE (op) != RESULT_DECL)
3872 {
3873 error ("invalid operand in return statement");
3874 debug_generic_stmt (op);
3875 return true;
3876 }
3877
3878 if ((TREE_CODE (op) == RESULT_DECL
3879 && DECL_BY_REFERENCE (op))
3880 || (TREE_CODE (op) == SSA_NAME
3881 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3882 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3883 op = TREE_TYPE (op);
3884
3885 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3886 {
3887 error ("invalid conversion in return statement");
3888 debug_generic_stmt (restype);
3889 debug_generic_stmt (TREE_TYPE (op));
3890 return true;
3891 }
3892
3893 return false;
3894 }
3895
3896
3897 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3898 is a problem, otherwise false. */
3899
3900 static bool
3901 verify_gimple_goto (gimple stmt)
3902 {
3903 tree dest = gimple_goto_dest (stmt);
3904
3905 /* ??? We have two canonical forms of direct goto destinations, a
3906 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3907 if (TREE_CODE (dest) != LABEL_DECL
3908 && (!is_gimple_val (dest)
3909 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3910 {
3911 error ("goto destination is neither a label nor a pointer");
3912 return true;
3913 }
3914
3915 return false;
3916 }
3917
3918 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3919 is a problem, otherwise false. */
3920
3921 static bool
3922 verify_gimple_switch (gimple stmt)
3923 {
3924 if (!is_gimple_val (gimple_switch_index (stmt)))
3925 {
3926 error ("invalid operand to switch statement");
3927 debug_generic_stmt (gimple_switch_index (stmt));
3928 return true;
3929 }
3930
3931 return false;
3932 }
3933
3934
3935 /* Verify a gimple debug statement STMT.
3936 Returns true if anything is wrong. */
3937
3938 static bool
3939 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3940 {
3941 /* There isn't much that could be wrong in a gimple debug stmt. A
3942 gimple debug bind stmt, for example, maps a tree, that's usually
3943 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3944 component or member of an aggregate type, to another tree, that
3945 can be an arbitrary expression. These stmts expand into debug
3946 insns, and are converted to debug notes by var-tracking.c. */
3947 return false;
3948 }
3949
3950 /* Verify a gimple label statement STMT.
3951 Returns true if anything is wrong. */
3952
3953 static bool
3954 verify_gimple_label (gimple stmt)
3955 {
3956 tree decl = gimple_label_label (stmt);
3957 int uid;
3958 bool err = false;
3959
3960 if (TREE_CODE (decl) != LABEL_DECL)
3961 return true;
3962
3963 uid = LABEL_DECL_UID (decl);
3964 if (cfun->cfg
3965 && (uid == -1
3966 || VEC_index (basic_block,
3967 label_to_block_map, uid) != gimple_bb (stmt)))
3968 {
3969 error ("incorrect entry in label_to_block_map");
3970 err |= true;
3971 }
3972
3973 uid = EH_LANDING_PAD_NR (decl);
3974 if (uid)
3975 {
3976 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
3977 if (decl != lp->post_landing_pad)
3978 {
3979 error ("incorrect setting of landing pad number");
3980 err |= true;
3981 }
3982 }
3983
3984 return err;
3985 }
3986
3987 /* Verify the GIMPLE statement STMT. Returns true if there is an
3988 error, otherwise false. */
3989
3990 static bool
3991 verify_gimple_stmt (gimple stmt)
3992 {
3993 switch (gimple_code (stmt))
3994 {
3995 case GIMPLE_ASSIGN:
3996 return verify_gimple_assign (stmt);
3997
3998 case GIMPLE_LABEL:
3999 return verify_gimple_label (stmt);
4000
4001 case GIMPLE_CALL:
4002 return verify_gimple_call (stmt);
4003
4004 case GIMPLE_COND:
4005 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4006 {
4007 error ("invalid comparison code in gimple cond");
4008 return true;
4009 }
4010 if (!(!gimple_cond_true_label (stmt)
4011 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4012 || !(!gimple_cond_false_label (stmt)
4013 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4014 {
4015 error ("invalid labels in gimple cond");
4016 return true;
4017 }
4018
4019 return verify_gimple_comparison (boolean_type_node,
4020 gimple_cond_lhs (stmt),
4021 gimple_cond_rhs (stmt));
4022
4023 case GIMPLE_GOTO:
4024 return verify_gimple_goto (stmt);
4025
4026 case GIMPLE_SWITCH:
4027 return verify_gimple_switch (stmt);
4028
4029 case GIMPLE_RETURN:
4030 return verify_gimple_return (stmt);
4031
4032 case GIMPLE_ASM:
4033 return false;
4034
4035 /* Tuples that do not have tree operands. */
4036 case GIMPLE_NOP:
4037 case GIMPLE_PREDICT:
4038 case GIMPLE_RESX:
4039 case GIMPLE_EH_DISPATCH:
4040 case GIMPLE_EH_MUST_NOT_THROW:
4041 return false;
4042
4043 CASE_GIMPLE_OMP:
4044 /* OpenMP directives are validated by the FE and never operated
4045 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4046 non-gimple expressions when the main index variable has had
4047 its address taken. This does not affect the loop itself
4048 because the header of an GIMPLE_OMP_FOR is merely used to determine
4049 how to setup the parallel iteration. */
4050 return false;
4051
4052 case GIMPLE_DEBUG:
4053 return verify_gimple_debug (stmt);
4054
4055 default:
4056 gcc_unreachable ();
4057 }
4058 }
4059
4060 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4061 and false otherwise. */
4062
4063 static bool
4064 verify_gimple_phi (gimple phi)
4065 {
4066 bool err = false;
4067 unsigned i;
4068 tree phi_result = gimple_phi_result (phi);
4069 bool virtual_p;
4070
4071 if (!phi_result)
4072 {
4073 error ("invalid PHI result");
4074 return true;
4075 }
4076
4077 virtual_p = !is_gimple_reg (phi_result);
4078 if (TREE_CODE (phi_result) != SSA_NAME
4079 || (virtual_p
4080 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4081 {
4082 error ("invalid PHI result");
4083 err = true;
4084 }
4085
4086 for (i = 0; i < gimple_phi_num_args (phi); i++)
4087 {
4088 tree t = gimple_phi_arg_def (phi, i);
4089
4090 if (!t)
4091 {
4092 error ("missing PHI def");
4093 err |= true;
4094 continue;
4095 }
4096 /* Addressable variables do have SSA_NAMEs but they
4097 are not considered gimple values. */
4098 else if ((TREE_CODE (t) == SSA_NAME
4099 && virtual_p != !is_gimple_reg (t))
4100 || (virtual_p
4101 && (TREE_CODE (t) != SSA_NAME
4102 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4103 || (!virtual_p
4104 && !is_gimple_val (t)))
4105 {
4106 error ("invalid PHI argument");
4107 debug_generic_expr (t);
4108 err |= true;
4109 }
4110 #ifdef ENABLE_TYPES_CHECKING
4111 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4112 {
4113 error ("incompatible types in PHI argument %u", i);
4114 debug_generic_stmt (TREE_TYPE (phi_result));
4115 debug_generic_stmt (TREE_TYPE (t));
4116 err |= true;
4117 }
4118 #endif
4119 }
4120
4121 return err;
4122 }
4123
4124 /* Verify the GIMPLE statements inside the sequence STMTS. */
4125
4126 static bool
4127 verify_gimple_in_seq_2 (gimple_seq stmts)
4128 {
4129 gimple_stmt_iterator ittr;
4130 bool err = false;
4131
4132 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4133 {
4134 gimple stmt = gsi_stmt (ittr);
4135
4136 switch (gimple_code (stmt))
4137 {
4138 case GIMPLE_BIND:
4139 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4140 break;
4141
4142 case GIMPLE_TRY:
4143 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4144 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4145 break;
4146
4147 case GIMPLE_EH_FILTER:
4148 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4149 break;
4150
4151 case GIMPLE_CATCH:
4152 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4153 break;
4154
4155 default:
4156 {
4157 bool err2 = verify_gimple_stmt (stmt);
4158 if (err2)
4159 debug_gimple_stmt (stmt);
4160 err |= err2;
4161 }
4162 }
4163 }
4164
4165 return err;
4166 }
4167
4168
4169 /* Verify the GIMPLE statements inside the statement list STMTS. */
4170
4171 DEBUG_FUNCTION void
4172 verify_gimple_in_seq (gimple_seq stmts)
4173 {
4174 timevar_push (TV_TREE_STMT_VERIFY);
4175 if (verify_gimple_in_seq_2 (stmts))
4176 internal_error ("verify_gimple failed");
4177 timevar_pop (TV_TREE_STMT_VERIFY);
4178 }
4179
4180 /* Return true when the T can be shared. */
4181
4182 bool
4183 tree_node_can_be_shared (tree t)
4184 {
4185 if (IS_TYPE_OR_DECL_P (t)
4186 || is_gimple_min_invariant (t)
4187 || TREE_CODE (t) == SSA_NAME
4188 || t == error_mark_node
4189 || TREE_CODE (t) == IDENTIFIER_NODE)
4190 return true;
4191
4192 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4193 return true;
4194
4195 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4196 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4197 || TREE_CODE (t) == COMPONENT_REF
4198 || TREE_CODE (t) == REALPART_EXPR
4199 || TREE_CODE (t) == IMAGPART_EXPR)
4200 t = TREE_OPERAND (t, 0);
4201
4202 if (DECL_P (t))
4203 return true;
4204
4205 return false;
4206 }
4207
4208 /* Called via walk_gimple_stmt. Verify tree sharing. */
4209
4210 static tree
4211 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4212 {
4213 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4214 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4215
4216 if (tree_node_can_be_shared (*tp))
4217 {
4218 *walk_subtrees = false;
4219 return NULL;
4220 }
4221
4222 if (pointer_set_insert (visited, *tp))
4223 return *tp;
4224
4225 return NULL;
4226 }
4227
4228 static bool eh_error_found;
4229 static int
4230 verify_eh_throw_stmt_node (void **slot, void *data)
4231 {
4232 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4233 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4234
4235 if (!pointer_set_contains (visited, node->stmt))
4236 {
4237 error ("dead STMT in EH table");
4238 debug_gimple_stmt (node->stmt);
4239 eh_error_found = true;
4240 }
4241 return 1;
4242 }
4243
4244 /* Verify the GIMPLE statements in the CFG of FN. */
4245
4246 DEBUG_FUNCTION void
4247 verify_gimple_in_cfg (struct function *fn)
4248 {
4249 basic_block bb;
4250 bool err = false;
4251 struct pointer_set_t *visited, *visited_stmts;
4252
4253 timevar_push (TV_TREE_STMT_VERIFY);
4254 visited = pointer_set_create ();
4255 visited_stmts = pointer_set_create ();
4256
4257 FOR_EACH_BB_FN (bb, fn)
4258 {
4259 gimple_stmt_iterator gsi;
4260
4261 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4262 {
4263 gimple phi = gsi_stmt (gsi);
4264 bool err2 = false;
4265 unsigned i;
4266
4267 pointer_set_insert (visited_stmts, phi);
4268
4269 if (gimple_bb (phi) != bb)
4270 {
4271 error ("gimple_bb (phi) is set to a wrong basic block");
4272 err2 = true;
4273 }
4274
4275 err2 |= verify_gimple_phi (phi);
4276
4277 for (i = 0; i < gimple_phi_num_args (phi); i++)
4278 {
4279 tree arg = gimple_phi_arg_def (phi, i);
4280 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4281 if (addr)
4282 {
4283 error ("incorrect sharing of tree nodes");
4284 debug_generic_expr (addr);
4285 err2 |= true;
4286 }
4287 }
4288
4289 if (err2)
4290 debug_gimple_stmt (phi);
4291 err |= err2;
4292 }
4293
4294 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4295 {
4296 gimple stmt = gsi_stmt (gsi);
4297 bool err2 = false;
4298 struct walk_stmt_info wi;
4299 tree addr;
4300 int lp_nr;
4301
4302 pointer_set_insert (visited_stmts, stmt);
4303
4304 if (gimple_bb (stmt) != bb)
4305 {
4306 error ("gimple_bb (stmt) is set to a wrong basic block");
4307 err2 = true;
4308 }
4309
4310 err2 |= verify_gimple_stmt (stmt);
4311
4312 memset (&wi, 0, sizeof (wi));
4313 wi.info = (void *) visited;
4314 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4315 if (addr)
4316 {
4317 error ("incorrect sharing of tree nodes");
4318 debug_generic_expr (addr);
4319 err2 |= true;
4320 }
4321
4322 /* ??? Instead of not checking these stmts at all the walker
4323 should know its context via wi. */
4324 if (!is_gimple_debug (stmt)
4325 && !is_gimple_omp (stmt))
4326 {
4327 memset (&wi, 0, sizeof (wi));
4328 addr = walk_gimple_op (stmt, verify_expr, &wi);
4329 if (addr)
4330 {
4331 debug_generic_expr (addr);
4332 inform (gimple_location (stmt), "in statement");
4333 err2 |= true;
4334 }
4335 }
4336
4337 /* If the statement is marked as part of an EH region, then it is
4338 expected that the statement could throw. Verify that when we
4339 have optimizations that simplify statements such that we prove
4340 that they cannot throw, that we update other data structures
4341 to match. */
4342 lp_nr = lookup_stmt_eh_lp (stmt);
4343 if (lp_nr != 0)
4344 {
4345 if (!stmt_could_throw_p (stmt))
4346 {
4347 error ("statement marked for throw, but doesn%'t");
4348 err2 |= true;
4349 }
4350 else if (lp_nr > 0
4351 && !gsi_one_before_end_p (gsi)
4352 && stmt_can_throw_internal (stmt))
4353 {
4354 error ("statement marked for throw in middle of block");
4355 err2 |= true;
4356 }
4357 }
4358
4359 if (err2)
4360 debug_gimple_stmt (stmt);
4361 err |= err2;
4362 }
4363 }
4364
4365 eh_error_found = false;
4366 if (get_eh_throw_stmt_table (cfun))
4367 htab_traverse (get_eh_throw_stmt_table (cfun),
4368 verify_eh_throw_stmt_node,
4369 visited_stmts);
4370
4371 if (err || eh_error_found)
4372 internal_error ("verify_gimple failed");
4373
4374 pointer_set_destroy (visited);
4375 pointer_set_destroy (visited_stmts);
4376 verify_histograms ();
4377 timevar_pop (TV_TREE_STMT_VERIFY);
4378 }
4379
4380
4381 /* Verifies that the flow information is OK. */
4382
4383 static int
4384 gimple_verify_flow_info (void)
4385 {
4386 int err = 0;
4387 basic_block bb;
4388 gimple_stmt_iterator gsi;
4389 gimple stmt;
4390 edge e;
4391 edge_iterator ei;
4392
4393 if (ENTRY_BLOCK_PTR->il.gimple)
4394 {
4395 error ("ENTRY_BLOCK has IL associated with it");
4396 err = 1;
4397 }
4398
4399 if (EXIT_BLOCK_PTR->il.gimple)
4400 {
4401 error ("EXIT_BLOCK has IL associated with it");
4402 err = 1;
4403 }
4404
4405 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4406 if (e->flags & EDGE_FALLTHRU)
4407 {
4408 error ("fallthru to exit from bb %d", e->src->index);
4409 err = 1;
4410 }
4411
4412 FOR_EACH_BB (bb)
4413 {
4414 bool found_ctrl_stmt = false;
4415
4416 stmt = NULL;
4417
4418 /* Skip labels on the start of basic block. */
4419 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4420 {
4421 tree label;
4422 gimple prev_stmt = stmt;
4423
4424 stmt = gsi_stmt (gsi);
4425
4426 if (gimple_code (stmt) != GIMPLE_LABEL)
4427 break;
4428
4429 label = gimple_label_label (stmt);
4430 if (prev_stmt && DECL_NONLOCAL (label))
4431 {
4432 error ("nonlocal label ");
4433 print_generic_expr (stderr, label, 0);
4434 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4435 bb->index);
4436 err = 1;
4437 }
4438
4439 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4440 {
4441 error ("EH landing pad label ");
4442 print_generic_expr (stderr, label, 0);
4443 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4444 bb->index);
4445 err = 1;
4446 }
4447
4448 if (label_to_block (label) != bb)
4449 {
4450 error ("label ");
4451 print_generic_expr (stderr, label, 0);
4452 fprintf (stderr, " to block does not match in bb %d",
4453 bb->index);
4454 err = 1;
4455 }
4456
4457 if (decl_function_context (label) != current_function_decl)
4458 {
4459 error ("label ");
4460 print_generic_expr (stderr, label, 0);
4461 fprintf (stderr, " has incorrect context in bb %d",
4462 bb->index);
4463 err = 1;
4464 }
4465 }
4466
4467 /* Verify that body of basic block BB is free of control flow. */
4468 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4469 {
4470 gimple stmt = gsi_stmt (gsi);
4471
4472 if (found_ctrl_stmt)
4473 {
4474 error ("control flow in the middle of basic block %d",
4475 bb->index);
4476 err = 1;
4477 }
4478
4479 if (stmt_ends_bb_p (stmt))
4480 found_ctrl_stmt = true;
4481
4482 if (gimple_code (stmt) == GIMPLE_LABEL)
4483 {
4484 error ("label ");
4485 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4486 fprintf (stderr, " in the middle of basic block %d", bb->index);
4487 err = 1;
4488 }
4489 }
4490
4491 gsi = gsi_last_bb (bb);
4492 if (gsi_end_p (gsi))
4493 continue;
4494
4495 stmt = gsi_stmt (gsi);
4496
4497 if (gimple_code (stmt) == GIMPLE_LABEL)
4498 continue;
4499
4500 err |= verify_eh_edges (stmt);
4501
4502 if (is_ctrl_stmt (stmt))
4503 {
4504 FOR_EACH_EDGE (e, ei, bb->succs)
4505 if (e->flags & EDGE_FALLTHRU)
4506 {
4507 error ("fallthru edge after a control statement in bb %d",
4508 bb->index);
4509 err = 1;
4510 }
4511 }
4512
4513 if (gimple_code (stmt) != GIMPLE_COND)
4514 {
4515 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4516 after anything else but if statement. */
4517 FOR_EACH_EDGE (e, ei, bb->succs)
4518 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4519 {
4520 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4521 bb->index);
4522 err = 1;
4523 }
4524 }
4525
4526 switch (gimple_code (stmt))
4527 {
4528 case GIMPLE_COND:
4529 {
4530 edge true_edge;
4531 edge false_edge;
4532
4533 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4534
4535 if (!true_edge
4536 || !false_edge
4537 || !(true_edge->flags & EDGE_TRUE_VALUE)
4538 || !(false_edge->flags & EDGE_FALSE_VALUE)
4539 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4540 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4541 || EDGE_COUNT (bb->succs) >= 3)
4542 {
4543 error ("wrong outgoing edge flags at end of bb %d",
4544 bb->index);
4545 err = 1;
4546 }
4547 }
4548 break;
4549
4550 case GIMPLE_GOTO:
4551 if (simple_goto_p (stmt))
4552 {
4553 error ("explicit goto at end of bb %d", bb->index);
4554 err = 1;
4555 }
4556 else
4557 {
4558 /* FIXME. We should double check that the labels in the
4559 destination blocks have their address taken. */
4560 FOR_EACH_EDGE (e, ei, bb->succs)
4561 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4562 | EDGE_FALSE_VALUE))
4563 || !(e->flags & EDGE_ABNORMAL))
4564 {
4565 error ("wrong outgoing edge flags at end of bb %d",
4566 bb->index);
4567 err = 1;
4568 }
4569 }
4570 break;
4571
4572 case GIMPLE_CALL:
4573 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4574 break;
4575 /* ... fallthru ... */
4576 case GIMPLE_RETURN:
4577 if (!single_succ_p (bb)
4578 || (single_succ_edge (bb)->flags
4579 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4580 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4581 {
4582 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4583 err = 1;
4584 }
4585 if (single_succ (bb) != EXIT_BLOCK_PTR)
4586 {
4587 error ("return edge does not point to exit in bb %d",
4588 bb->index);
4589 err = 1;
4590 }
4591 break;
4592
4593 case GIMPLE_SWITCH:
4594 {
4595 tree prev;
4596 edge e;
4597 size_t i, n;
4598
4599 n = gimple_switch_num_labels (stmt);
4600
4601 /* Mark all the destination basic blocks. */
4602 for (i = 0; i < n; ++i)
4603 {
4604 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4605 basic_block label_bb = label_to_block (lab);
4606 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4607 label_bb->aux = (void *)1;
4608 }
4609
4610 /* Verify that the case labels are sorted. */
4611 prev = gimple_switch_label (stmt, 0);
4612 for (i = 1; i < n; ++i)
4613 {
4614 tree c = gimple_switch_label (stmt, i);
4615 if (!CASE_LOW (c))
4616 {
4617 error ("found default case not at the start of "
4618 "case vector");
4619 err = 1;
4620 continue;
4621 }
4622 if (CASE_LOW (prev)
4623 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4624 {
4625 error ("case labels not sorted: ");
4626 print_generic_expr (stderr, prev, 0);
4627 fprintf (stderr," is greater than ");
4628 print_generic_expr (stderr, c, 0);
4629 fprintf (stderr," but comes before it.\n");
4630 err = 1;
4631 }
4632 prev = c;
4633 }
4634 /* VRP will remove the default case if it can prove it will
4635 never be executed. So do not verify there always exists
4636 a default case here. */
4637
4638 FOR_EACH_EDGE (e, ei, bb->succs)
4639 {
4640 if (!e->dest->aux)
4641 {
4642 error ("extra outgoing edge %d->%d",
4643 bb->index, e->dest->index);
4644 err = 1;
4645 }
4646
4647 e->dest->aux = (void *)2;
4648 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4649 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4650 {
4651 error ("wrong outgoing edge flags at end of bb %d",
4652 bb->index);
4653 err = 1;
4654 }
4655 }
4656
4657 /* Check that we have all of them. */
4658 for (i = 0; i < n; ++i)
4659 {
4660 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4661 basic_block label_bb = label_to_block (lab);
4662
4663 if (label_bb->aux != (void *)2)
4664 {
4665 error ("missing edge %i->%i", bb->index, label_bb->index);
4666 err = 1;
4667 }
4668 }
4669
4670 FOR_EACH_EDGE (e, ei, bb->succs)
4671 e->dest->aux = (void *)0;
4672 }
4673 break;
4674
4675 case GIMPLE_EH_DISPATCH:
4676 err |= verify_eh_dispatch_edge (stmt);
4677 break;
4678
4679 default:
4680 break;
4681 }
4682 }
4683
4684 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4685 verify_dominators (CDI_DOMINATORS);
4686
4687 return err;
4688 }
4689
4690
4691 /* Updates phi nodes after creating a forwarder block joined
4692 by edge FALLTHRU. */
4693
4694 static void
4695 gimple_make_forwarder_block (edge fallthru)
4696 {
4697 edge e;
4698 edge_iterator ei;
4699 basic_block dummy, bb;
4700 tree var;
4701 gimple_stmt_iterator gsi;
4702
4703 dummy = fallthru->src;
4704 bb = fallthru->dest;
4705
4706 if (single_pred_p (bb))
4707 return;
4708
4709 /* If we redirected a branch we must create new PHI nodes at the
4710 start of BB. */
4711 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4712 {
4713 gimple phi, new_phi;
4714
4715 phi = gsi_stmt (gsi);
4716 var = gimple_phi_result (phi);
4717 new_phi = create_phi_node (var, bb);
4718 SSA_NAME_DEF_STMT (var) = new_phi;
4719 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4720 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4721 UNKNOWN_LOCATION);
4722 }
4723
4724 /* Add the arguments we have stored on edges. */
4725 FOR_EACH_EDGE (e, ei, bb->preds)
4726 {
4727 if (e == fallthru)
4728 continue;
4729
4730 flush_pending_stmts (e);
4731 }
4732 }
4733
4734
4735 /* Return a non-special label in the head of basic block BLOCK.
4736 Create one if it doesn't exist. */
4737
4738 tree
4739 gimple_block_label (basic_block bb)
4740 {
4741 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4742 bool first = true;
4743 tree label;
4744 gimple stmt;
4745
4746 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4747 {
4748 stmt = gsi_stmt (i);
4749 if (gimple_code (stmt) != GIMPLE_LABEL)
4750 break;
4751 label = gimple_label_label (stmt);
4752 if (!DECL_NONLOCAL (label))
4753 {
4754 if (!first)
4755 gsi_move_before (&i, &s);
4756 return label;
4757 }
4758 }
4759
4760 label = create_artificial_label (UNKNOWN_LOCATION);
4761 stmt = gimple_build_label (label);
4762 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4763 return label;
4764 }
4765
4766
4767 /* Attempt to perform edge redirection by replacing a possibly complex
4768 jump instruction by a goto or by removing the jump completely.
4769 This can apply only if all edges now point to the same block. The
4770 parameters and return values are equivalent to
4771 redirect_edge_and_branch. */
4772
4773 static edge
4774 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4775 {
4776 basic_block src = e->src;
4777 gimple_stmt_iterator i;
4778 gimple stmt;
4779
4780 /* We can replace or remove a complex jump only when we have exactly
4781 two edges. */
4782 if (EDGE_COUNT (src->succs) != 2
4783 /* Verify that all targets will be TARGET. Specifically, the
4784 edge that is not E must also go to TARGET. */
4785 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4786 return NULL;
4787
4788 i = gsi_last_bb (src);
4789 if (gsi_end_p (i))
4790 return NULL;
4791
4792 stmt = gsi_stmt (i);
4793
4794 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4795 {
4796 gsi_remove (&i, true);
4797 e = ssa_redirect_edge (e, target);
4798 e->flags = EDGE_FALLTHRU;
4799 return e;
4800 }
4801
4802 return NULL;
4803 }
4804
4805
4806 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4807 edge representing the redirected branch. */
4808
4809 static edge
4810 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4811 {
4812 basic_block bb = e->src;
4813 gimple_stmt_iterator gsi;
4814 edge ret;
4815 gimple stmt;
4816
4817 if (e->flags & EDGE_ABNORMAL)
4818 return NULL;
4819
4820 if (e->dest == dest)
4821 return NULL;
4822
4823 if (e->flags & EDGE_EH)
4824 return redirect_eh_edge (e, dest);
4825
4826 if (e->src != ENTRY_BLOCK_PTR)
4827 {
4828 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4829 if (ret)
4830 return ret;
4831 }
4832
4833 gsi = gsi_last_bb (bb);
4834 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4835
4836 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4837 {
4838 case GIMPLE_COND:
4839 /* For COND_EXPR, we only need to redirect the edge. */
4840 break;
4841
4842 case GIMPLE_GOTO:
4843 /* No non-abnormal edges should lead from a non-simple goto, and
4844 simple ones should be represented implicitly. */
4845 gcc_unreachable ();
4846
4847 case GIMPLE_SWITCH:
4848 {
4849 tree label = gimple_block_label (dest);
4850 tree cases = get_cases_for_edge (e, stmt);
4851
4852 /* If we have a list of cases associated with E, then use it
4853 as it's a lot faster than walking the entire case vector. */
4854 if (cases)
4855 {
4856 edge e2 = find_edge (e->src, dest);
4857 tree last, first;
4858
4859 first = cases;
4860 while (cases)
4861 {
4862 last = cases;
4863 CASE_LABEL (cases) = label;
4864 cases = CASE_CHAIN (cases);
4865 }
4866
4867 /* If there was already an edge in the CFG, then we need
4868 to move all the cases associated with E to E2. */
4869 if (e2)
4870 {
4871 tree cases2 = get_cases_for_edge (e2, stmt);
4872
4873 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4874 CASE_CHAIN (cases2) = first;
4875 }
4876 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4877 }
4878 else
4879 {
4880 size_t i, n = gimple_switch_num_labels (stmt);
4881
4882 for (i = 0; i < n; i++)
4883 {
4884 tree elt = gimple_switch_label (stmt, i);
4885 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4886 CASE_LABEL (elt) = label;
4887 }
4888 }
4889 }
4890 break;
4891
4892 case GIMPLE_ASM:
4893 {
4894 int i, n = gimple_asm_nlabels (stmt);
4895 tree label = NULL;
4896
4897 for (i = 0; i < n; ++i)
4898 {
4899 tree cons = gimple_asm_label_op (stmt, i);
4900 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4901 {
4902 if (!label)
4903 label = gimple_block_label (dest);
4904 TREE_VALUE (cons) = label;
4905 }
4906 }
4907
4908 /* If we didn't find any label matching the former edge in the
4909 asm labels, we must be redirecting the fallthrough
4910 edge. */
4911 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4912 }
4913 break;
4914
4915 case GIMPLE_RETURN:
4916 gsi_remove (&gsi, true);
4917 e->flags |= EDGE_FALLTHRU;
4918 break;
4919
4920 case GIMPLE_OMP_RETURN:
4921 case GIMPLE_OMP_CONTINUE:
4922 case GIMPLE_OMP_SECTIONS_SWITCH:
4923 case GIMPLE_OMP_FOR:
4924 /* The edges from OMP constructs can be simply redirected. */
4925 break;
4926
4927 case GIMPLE_EH_DISPATCH:
4928 if (!(e->flags & EDGE_FALLTHRU))
4929 redirect_eh_dispatch_edge (stmt, e, dest);
4930 break;
4931
4932 default:
4933 /* Otherwise it must be a fallthru edge, and we don't need to
4934 do anything besides redirecting it. */
4935 gcc_assert (e->flags & EDGE_FALLTHRU);
4936 break;
4937 }
4938
4939 /* Update/insert PHI nodes as necessary. */
4940
4941 /* Now update the edges in the CFG. */
4942 e = ssa_redirect_edge (e, dest);
4943
4944 return e;
4945 }
4946
4947 /* Returns true if it is possible to remove edge E by redirecting
4948 it to the destination of the other edge from E->src. */
4949
4950 static bool
4951 gimple_can_remove_branch_p (const_edge e)
4952 {
4953 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4954 return false;
4955
4956 return true;
4957 }
4958
4959 /* Simple wrapper, as we can always redirect fallthru edges. */
4960
4961 static basic_block
4962 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4963 {
4964 e = gimple_redirect_edge_and_branch (e, dest);
4965 gcc_assert (e);
4966
4967 return NULL;
4968 }
4969
4970
4971 /* Splits basic block BB after statement STMT (but at least after the
4972 labels). If STMT is NULL, BB is split just after the labels. */
4973
4974 static basic_block
4975 gimple_split_block (basic_block bb, void *stmt)
4976 {
4977 gimple_stmt_iterator gsi;
4978 gimple_stmt_iterator gsi_tgt;
4979 gimple act;
4980 gimple_seq list;
4981 basic_block new_bb;
4982 edge e;
4983 edge_iterator ei;
4984
4985 new_bb = create_empty_bb (bb);
4986
4987 /* Redirect the outgoing edges. */
4988 new_bb->succs = bb->succs;
4989 bb->succs = NULL;
4990 FOR_EACH_EDGE (e, ei, new_bb->succs)
4991 e->src = new_bb;
4992
4993 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
4994 stmt = NULL;
4995
4996 /* Move everything from GSI to the new basic block. */
4997 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4998 {
4999 act = gsi_stmt (gsi);
5000 if (gimple_code (act) == GIMPLE_LABEL)
5001 continue;
5002
5003 if (!stmt)
5004 break;
5005
5006 if (stmt == act)
5007 {
5008 gsi_next (&gsi);
5009 break;
5010 }
5011 }
5012
5013 if (gsi_end_p (gsi))
5014 return new_bb;
5015
5016 /* Split the statement list - avoid re-creating new containers as this
5017 brings ugly quadratic memory consumption in the inliner.
5018 (We are still quadratic since we need to update stmt BB pointers,
5019 sadly.) */
5020 list = gsi_split_seq_before (&gsi);
5021 set_bb_seq (new_bb, list);
5022 for (gsi_tgt = gsi_start (list);
5023 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5024 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5025
5026 return new_bb;
5027 }
5028
5029
5030 /* Moves basic block BB after block AFTER. */
5031
5032 static bool
5033 gimple_move_block_after (basic_block bb, basic_block after)
5034 {
5035 if (bb->prev_bb == after)
5036 return true;
5037
5038 unlink_block (bb);
5039 link_block (bb, after);
5040
5041 return true;
5042 }
5043
5044
5045 /* Return true if basic_block can be duplicated. */
5046
5047 static bool
5048 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5049 {
5050 return true;
5051 }
5052
5053 /* Create a duplicate of the basic block BB. NOTE: This does not
5054 preserve SSA form. */
5055
5056 static basic_block
5057 gimple_duplicate_bb (basic_block bb)
5058 {
5059 basic_block new_bb;
5060 gimple_stmt_iterator gsi, gsi_tgt;
5061 gimple_seq phis = phi_nodes (bb);
5062 gimple phi, stmt, copy;
5063
5064 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5065
5066 /* Copy the PHI nodes. We ignore PHI node arguments here because
5067 the incoming edges have not been setup yet. */
5068 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5069 {
5070 phi = gsi_stmt (gsi);
5071 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5072 create_new_def_for (gimple_phi_result (copy), copy,
5073 gimple_phi_result_ptr (copy));
5074 }
5075
5076 gsi_tgt = gsi_start_bb (new_bb);
5077 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5078 {
5079 def_operand_p def_p;
5080 ssa_op_iter op_iter;
5081 tree lhs;
5082
5083 stmt = gsi_stmt (gsi);
5084 if (gimple_code (stmt) == GIMPLE_LABEL)
5085 continue;
5086
5087 /* Create a new copy of STMT and duplicate STMT's virtual
5088 operands. */
5089 copy = gimple_copy (stmt);
5090 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5091
5092 maybe_duplicate_eh_stmt (copy, stmt);
5093 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5094
5095 /* When copying around a stmt writing into a local non-user
5096 aggregate, make sure it won't share stack slot with other
5097 vars. */
5098 lhs = gimple_get_lhs (stmt);
5099 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5100 {
5101 tree base = get_base_address (lhs);
5102 if (base
5103 && (TREE_CODE (base) == VAR_DECL
5104 || TREE_CODE (base) == RESULT_DECL)
5105 && DECL_IGNORED_P (base)
5106 && !TREE_STATIC (base)
5107 && !DECL_EXTERNAL (base)
5108 && (TREE_CODE (base) != VAR_DECL
5109 || !DECL_HAS_VALUE_EXPR_P (base)))
5110 DECL_NONSHAREABLE (base) = 1;
5111 }
5112
5113 /* Create new names for all the definitions created by COPY and
5114 add replacement mappings for each new name. */
5115 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5116 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5117 }
5118
5119 return new_bb;
5120 }
5121
5122 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5123
5124 static void
5125 add_phi_args_after_copy_edge (edge e_copy)
5126 {
5127 basic_block bb, bb_copy = e_copy->src, dest;
5128 edge e;
5129 edge_iterator ei;
5130 gimple phi, phi_copy;
5131 tree def;
5132 gimple_stmt_iterator psi, psi_copy;
5133
5134 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5135 return;
5136
5137 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5138
5139 if (e_copy->dest->flags & BB_DUPLICATED)
5140 dest = get_bb_original (e_copy->dest);
5141 else
5142 dest = e_copy->dest;
5143
5144 e = find_edge (bb, dest);
5145 if (!e)
5146 {
5147 /* During loop unrolling the target of the latch edge is copied.
5148 In this case we are not looking for edge to dest, but to
5149 duplicated block whose original was dest. */
5150 FOR_EACH_EDGE (e, ei, bb->succs)
5151 {
5152 if ((e->dest->flags & BB_DUPLICATED)
5153 && get_bb_original (e->dest) == dest)
5154 break;
5155 }
5156
5157 gcc_assert (e != NULL);
5158 }
5159
5160 for (psi = gsi_start_phis (e->dest),
5161 psi_copy = gsi_start_phis (e_copy->dest);
5162 !gsi_end_p (psi);
5163 gsi_next (&psi), gsi_next (&psi_copy))
5164 {
5165 phi = gsi_stmt (psi);
5166 phi_copy = gsi_stmt (psi_copy);
5167 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5168 add_phi_arg (phi_copy, def, e_copy,
5169 gimple_phi_arg_location_from_edge (phi, e));
5170 }
5171 }
5172
5173
5174 /* Basic block BB_COPY was created by code duplication. Add phi node
5175 arguments for edges going out of BB_COPY. The blocks that were
5176 duplicated have BB_DUPLICATED set. */
5177
5178 void
5179 add_phi_args_after_copy_bb (basic_block bb_copy)
5180 {
5181 edge e_copy;
5182 edge_iterator ei;
5183
5184 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5185 {
5186 add_phi_args_after_copy_edge (e_copy);
5187 }
5188 }
5189
5190 /* Blocks in REGION_COPY array of length N_REGION were created by
5191 duplication of basic blocks. Add phi node arguments for edges
5192 going from these blocks. If E_COPY is not NULL, also add
5193 phi node arguments for its destination.*/
5194
5195 void
5196 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5197 edge e_copy)
5198 {
5199 unsigned i;
5200
5201 for (i = 0; i < n_region; i++)
5202 region_copy[i]->flags |= BB_DUPLICATED;
5203
5204 for (i = 0; i < n_region; i++)
5205 add_phi_args_after_copy_bb (region_copy[i]);
5206 if (e_copy)
5207 add_phi_args_after_copy_edge (e_copy);
5208
5209 for (i = 0; i < n_region; i++)
5210 region_copy[i]->flags &= ~BB_DUPLICATED;
5211 }
5212
5213 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5214 important exit edge EXIT. By important we mean that no SSA name defined
5215 inside region is live over the other exit edges of the region. All entry
5216 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5217 to the duplicate of the region. SSA form, dominance and loop information
5218 is updated. The new basic blocks are stored to REGION_COPY in the same
5219 order as they had in REGION, provided that REGION_COPY is not NULL.
5220 The function returns false if it is unable to copy the region,
5221 true otherwise. */
5222
5223 bool
5224 gimple_duplicate_sese_region (edge entry, edge exit,
5225 basic_block *region, unsigned n_region,
5226 basic_block *region_copy)
5227 {
5228 unsigned i;
5229 bool free_region_copy = false, copying_header = false;
5230 struct loop *loop = entry->dest->loop_father;
5231 edge exit_copy;
5232 VEC (basic_block, heap) *doms;
5233 edge redirected;
5234 int total_freq = 0, entry_freq = 0;
5235 gcov_type total_count = 0, entry_count = 0;
5236
5237 if (!can_copy_bbs_p (region, n_region))
5238 return false;
5239
5240 /* Some sanity checking. Note that we do not check for all possible
5241 missuses of the functions. I.e. if you ask to copy something weird,
5242 it will work, but the state of structures probably will not be
5243 correct. */
5244 for (i = 0; i < n_region; i++)
5245 {
5246 /* We do not handle subloops, i.e. all the blocks must belong to the
5247 same loop. */
5248 if (region[i]->loop_father != loop)
5249 return false;
5250
5251 if (region[i] != entry->dest
5252 && region[i] == loop->header)
5253 return false;
5254 }
5255
5256 set_loop_copy (loop, loop);
5257
5258 /* In case the function is used for loop header copying (which is the primary
5259 use), ensure that EXIT and its copy will be new latch and entry edges. */
5260 if (loop->header == entry->dest)
5261 {
5262 copying_header = true;
5263 set_loop_copy (loop, loop_outer (loop));
5264
5265 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5266 return false;
5267
5268 for (i = 0; i < n_region; i++)
5269 if (region[i] != exit->src
5270 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5271 return false;
5272 }
5273
5274 if (!region_copy)
5275 {
5276 region_copy = XNEWVEC (basic_block, n_region);
5277 free_region_copy = true;
5278 }
5279
5280 gcc_assert (!need_ssa_update_p (cfun));
5281
5282 /* Record blocks outside the region that are dominated by something
5283 inside. */
5284 doms = NULL;
5285 initialize_original_copy_tables ();
5286
5287 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5288
5289 if (entry->dest->count)
5290 {
5291 total_count = entry->dest->count;
5292 entry_count = entry->count;
5293 /* Fix up corner cases, to avoid division by zero or creation of negative
5294 frequencies. */
5295 if (entry_count > total_count)
5296 entry_count = total_count;
5297 }
5298 else
5299 {
5300 total_freq = entry->dest->frequency;
5301 entry_freq = EDGE_FREQUENCY (entry);
5302 /* Fix up corner cases, to avoid division by zero or creation of negative
5303 frequencies. */
5304 if (total_freq == 0)
5305 total_freq = 1;
5306 else if (entry_freq > total_freq)
5307 entry_freq = total_freq;
5308 }
5309
5310 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5311 split_edge_bb_loc (entry));
5312 if (total_count)
5313 {
5314 scale_bbs_frequencies_gcov_type (region, n_region,
5315 total_count - entry_count,
5316 total_count);
5317 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5318 total_count);
5319 }
5320 else
5321 {
5322 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5323 total_freq);
5324 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5325 }
5326
5327 if (copying_header)
5328 {
5329 loop->header = exit->dest;
5330 loop->latch = exit->src;
5331 }
5332
5333 /* Redirect the entry and add the phi node arguments. */
5334 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5335 gcc_assert (redirected != NULL);
5336 flush_pending_stmts (entry);
5337
5338 /* Concerning updating of dominators: We must recount dominators
5339 for entry block and its copy. Anything that is outside of the
5340 region, but was dominated by something inside needs recounting as
5341 well. */
5342 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5343 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5344 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5345 VEC_free (basic_block, heap, doms);
5346
5347 /* Add the other PHI node arguments. */
5348 add_phi_args_after_copy (region_copy, n_region, NULL);
5349
5350 /* Update the SSA web. */
5351 update_ssa (TODO_update_ssa);
5352
5353 if (free_region_copy)
5354 free (region_copy);
5355
5356 free_original_copy_tables ();
5357 return true;
5358 }
5359
5360 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5361 are stored to REGION_COPY in the same order in that they appear
5362 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5363 the region, EXIT an exit from it. The condition guarding EXIT
5364 is moved to ENTRY. Returns true if duplication succeeds, false
5365 otherwise.
5366
5367 For example,
5368
5369 some_code;
5370 if (cond)
5371 A;
5372 else
5373 B;
5374
5375 is transformed to
5376
5377 if (cond)
5378 {
5379 some_code;
5380 A;
5381 }
5382 else
5383 {
5384 some_code;
5385 B;
5386 }
5387 */
5388
5389 bool
5390 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5391 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5392 basic_block *region_copy ATTRIBUTE_UNUSED)
5393 {
5394 unsigned i;
5395 bool free_region_copy = false;
5396 struct loop *loop = exit->dest->loop_father;
5397 struct loop *orig_loop = entry->dest->loop_father;
5398 basic_block switch_bb, entry_bb, nentry_bb;
5399 VEC (basic_block, heap) *doms;
5400 int total_freq = 0, exit_freq = 0;
5401 gcov_type total_count = 0, exit_count = 0;
5402 edge exits[2], nexits[2], e;
5403 gimple_stmt_iterator gsi;
5404 gimple cond_stmt;
5405 edge sorig, snew;
5406 basic_block exit_bb;
5407 gimple_stmt_iterator psi;
5408 gimple phi;
5409 tree def;
5410
5411 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5412 exits[0] = exit;
5413 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5414
5415 if (!can_copy_bbs_p (region, n_region))
5416 return false;
5417
5418 initialize_original_copy_tables ();
5419 set_loop_copy (orig_loop, loop);
5420 duplicate_subloops (orig_loop, loop);
5421
5422 if (!region_copy)
5423 {
5424 region_copy = XNEWVEC (basic_block, n_region);
5425 free_region_copy = true;
5426 }
5427
5428 gcc_assert (!need_ssa_update_p (cfun));
5429
5430 /* Record blocks outside the region that are dominated by something
5431 inside. */
5432 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5433
5434 if (exit->src->count)
5435 {
5436 total_count = exit->src->count;
5437 exit_count = exit->count;
5438 /* Fix up corner cases, to avoid division by zero or creation of negative
5439 frequencies. */
5440 if (exit_count > total_count)
5441 exit_count = total_count;
5442 }
5443 else
5444 {
5445 total_freq = exit->src->frequency;
5446 exit_freq = EDGE_FREQUENCY (exit);
5447 /* Fix up corner cases, to avoid division by zero or creation of negative
5448 frequencies. */
5449 if (total_freq == 0)
5450 total_freq = 1;
5451 if (exit_freq > total_freq)
5452 exit_freq = total_freq;
5453 }
5454
5455 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5456 split_edge_bb_loc (exit));
5457 if (total_count)
5458 {
5459 scale_bbs_frequencies_gcov_type (region, n_region,
5460 total_count - exit_count,
5461 total_count);
5462 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5463 total_count);
5464 }
5465 else
5466 {
5467 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5468 total_freq);
5469 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5470 }
5471
5472 /* Create the switch block, and put the exit condition to it. */
5473 entry_bb = entry->dest;
5474 nentry_bb = get_bb_copy (entry_bb);
5475 if (!last_stmt (entry->src)
5476 || !stmt_ends_bb_p (last_stmt (entry->src)))
5477 switch_bb = entry->src;
5478 else
5479 switch_bb = split_edge (entry);
5480 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5481
5482 gsi = gsi_last_bb (switch_bb);
5483 cond_stmt = last_stmt (exit->src);
5484 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5485 cond_stmt = gimple_copy (cond_stmt);
5486
5487 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5488
5489 sorig = single_succ_edge (switch_bb);
5490 sorig->flags = exits[1]->flags;
5491 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5492
5493 /* Register the new edge from SWITCH_BB in loop exit lists. */
5494 rescan_loop_exit (snew, true, false);
5495
5496 /* Add the PHI node arguments. */
5497 add_phi_args_after_copy (region_copy, n_region, snew);
5498
5499 /* Get rid of now superfluous conditions and associated edges (and phi node
5500 arguments). */
5501 exit_bb = exit->dest;
5502
5503 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5504 PENDING_STMT (e) = NULL;
5505
5506 /* The latch of ORIG_LOOP was copied, and so was the backedge
5507 to the original header. We redirect this backedge to EXIT_BB. */
5508 for (i = 0; i < n_region; i++)
5509 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5510 {
5511 gcc_assert (single_succ_edge (region_copy[i]));
5512 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5513 PENDING_STMT (e) = NULL;
5514 for (psi = gsi_start_phis (exit_bb);
5515 !gsi_end_p (psi);
5516 gsi_next (&psi))
5517 {
5518 phi = gsi_stmt (psi);
5519 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5520 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5521 }
5522 }
5523 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5524 PENDING_STMT (e) = NULL;
5525
5526 /* Anything that is outside of the region, but was dominated by something
5527 inside needs to update dominance info. */
5528 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5529 VEC_free (basic_block, heap, doms);
5530 /* Update the SSA web. */
5531 update_ssa (TODO_update_ssa);
5532
5533 if (free_region_copy)
5534 free (region_copy);
5535
5536 free_original_copy_tables ();
5537 return true;
5538 }
5539
5540 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5541 adding blocks when the dominator traversal reaches EXIT. This
5542 function silently assumes that ENTRY strictly dominates EXIT. */
5543
5544 void
5545 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5546 VEC(basic_block,heap) **bbs_p)
5547 {
5548 basic_block son;
5549
5550 for (son = first_dom_son (CDI_DOMINATORS, entry);
5551 son;
5552 son = next_dom_son (CDI_DOMINATORS, son))
5553 {
5554 VEC_safe_push (basic_block, heap, *bbs_p, son);
5555 if (son != exit)
5556 gather_blocks_in_sese_region (son, exit, bbs_p);
5557 }
5558 }
5559
5560 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5561 The duplicates are recorded in VARS_MAP. */
5562
5563 static void
5564 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5565 tree to_context)
5566 {
5567 tree t = *tp, new_t;
5568 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5569 void **loc;
5570
5571 if (DECL_CONTEXT (t) == to_context)
5572 return;
5573
5574 loc = pointer_map_contains (vars_map, t);
5575
5576 if (!loc)
5577 {
5578 loc = pointer_map_insert (vars_map, t);
5579
5580 if (SSA_VAR_P (t))
5581 {
5582 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5583 add_local_decl (f, new_t);
5584 }
5585 else
5586 {
5587 gcc_assert (TREE_CODE (t) == CONST_DECL);
5588 new_t = copy_node (t);
5589 }
5590 DECL_CONTEXT (new_t) = to_context;
5591
5592 *loc = new_t;
5593 }
5594 else
5595 new_t = (tree) *loc;
5596
5597 *tp = new_t;
5598 }
5599
5600
5601 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5602 VARS_MAP maps old ssa names and var_decls to the new ones. */
5603
5604 static tree
5605 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5606 tree to_context)
5607 {
5608 void **loc;
5609 tree new_name, decl = SSA_NAME_VAR (name);
5610
5611 gcc_assert (is_gimple_reg (name));
5612
5613 loc = pointer_map_contains (vars_map, name);
5614
5615 if (!loc)
5616 {
5617 replace_by_duplicate_decl (&decl, vars_map, to_context);
5618
5619 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5620 if (gimple_in_ssa_p (cfun))
5621 add_referenced_var (decl);
5622
5623 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5624 if (SSA_NAME_IS_DEFAULT_DEF (name))
5625 set_default_def (decl, new_name);
5626 pop_cfun ();
5627
5628 loc = pointer_map_insert (vars_map, name);
5629 *loc = new_name;
5630 }
5631 else
5632 new_name = (tree) *loc;
5633
5634 return new_name;
5635 }
5636
5637 struct move_stmt_d
5638 {
5639 tree orig_block;
5640 tree new_block;
5641 tree from_context;
5642 tree to_context;
5643 struct pointer_map_t *vars_map;
5644 htab_t new_label_map;
5645 struct pointer_map_t *eh_map;
5646 bool remap_decls_p;
5647 };
5648
5649 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5650 contained in *TP if it has been ORIG_BLOCK previously and change the
5651 DECL_CONTEXT of every local variable referenced in *TP. */
5652
5653 static tree
5654 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5655 {
5656 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5657 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5658 tree t = *tp;
5659
5660 if (EXPR_P (t))
5661 /* We should never have TREE_BLOCK set on non-statements. */
5662 gcc_assert (!TREE_BLOCK (t));
5663
5664 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5665 {
5666 if (TREE_CODE (t) == SSA_NAME)
5667 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5668 else if (TREE_CODE (t) == LABEL_DECL)
5669 {
5670 if (p->new_label_map)
5671 {
5672 struct tree_map in, *out;
5673 in.base.from = t;
5674 out = (struct tree_map *)
5675 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5676 if (out)
5677 *tp = t = out->to;
5678 }
5679
5680 DECL_CONTEXT (t) = p->to_context;
5681 }
5682 else if (p->remap_decls_p)
5683 {
5684 /* Replace T with its duplicate. T should no longer appear in the
5685 parent function, so this looks wasteful; however, it may appear
5686 in referenced_vars, and more importantly, as virtual operands of
5687 statements, and in alias lists of other variables. It would be
5688 quite difficult to expunge it from all those places. ??? It might
5689 suffice to do this for addressable variables. */
5690 if ((TREE_CODE (t) == VAR_DECL
5691 && !is_global_var (t))
5692 || TREE_CODE (t) == CONST_DECL)
5693 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5694
5695 if (SSA_VAR_P (t)
5696 && gimple_in_ssa_p (cfun))
5697 {
5698 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5699 add_referenced_var (*tp);
5700 pop_cfun ();
5701 }
5702 }
5703 *walk_subtrees = 0;
5704 }
5705 else if (TYPE_P (t))
5706 *walk_subtrees = 0;
5707
5708 return NULL_TREE;
5709 }
5710
5711 /* Helper for move_stmt_r. Given an EH region number for the source
5712 function, map that to the duplicate EH regio number in the dest. */
5713
5714 static int
5715 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5716 {
5717 eh_region old_r, new_r;
5718 void **slot;
5719
5720 old_r = get_eh_region_from_number (old_nr);
5721 slot = pointer_map_contains (p->eh_map, old_r);
5722 new_r = (eh_region) *slot;
5723
5724 return new_r->index;
5725 }
5726
5727 /* Similar, but operate on INTEGER_CSTs. */
5728
5729 static tree
5730 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5731 {
5732 int old_nr, new_nr;
5733
5734 old_nr = tree_low_cst (old_t_nr, 0);
5735 new_nr = move_stmt_eh_region_nr (old_nr, p);
5736
5737 return build_int_cst (integer_type_node, new_nr);
5738 }
5739
5740 /* Like move_stmt_op, but for gimple statements.
5741
5742 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5743 contained in the current statement in *GSI_P and change the
5744 DECL_CONTEXT of every local variable referenced in the current
5745 statement. */
5746
5747 static tree
5748 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5749 struct walk_stmt_info *wi)
5750 {
5751 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5752 gimple stmt = gsi_stmt (*gsi_p);
5753 tree block = gimple_block (stmt);
5754
5755 if (p->orig_block == NULL_TREE
5756 || block == p->orig_block
5757 || block == NULL_TREE)
5758 gimple_set_block (stmt, p->new_block);
5759 #ifdef ENABLE_CHECKING
5760 else if (block != p->new_block)
5761 {
5762 while (block && block != p->orig_block)
5763 block = BLOCK_SUPERCONTEXT (block);
5764 gcc_assert (block);
5765 }
5766 #endif
5767
5768 switch (gimple_code (stmt))
5769 {
5770 case GIMPLE_CALL:
5771 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5772 {
5773 tree r, fndecl = gimple_call_fndecl (stmt);
5774 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5775 switch (DECL_FUNCTION_CODE (fndecl))
5776 {
5777 case BUILT_IN_EH_COPY_VALUES:
5778 r = gimple_call_arg (stmt, 1);
5779 r = move_stmt_eh_region_tree_nr (r, p);
5780 gimple_call_set_arg (stmt, 1, r);
5781 /* FALLTHRU */
5782
5783 case BUILT_IN_EH_POINTER:
5784 case BUILT_IN_EH_FILTER:
5785 r = gimple_call_arg (stmt, 0);
5786 r = move_stmt_eh_region_tree_nr (r, p);
5787 gimple_call_set_arg (stmt, 0, r);
5788 break;
5789
5790 default:
5791 break;
5792 }
5793 }
5794 break;
5795
5796 case GIMPLE_RESX:
5797 {
5798 int r = gimple_resx_region (stmt);
5799 r = move_stmt_eh_region_nr (r, p);
5800 gimple_resx_set_region (stmt, r);
5801 }
5802 break;
5803
5804 case GIMPLE_EH_DISPATCH:
5805 {
5806 int r = gimple_eh_dispatch_region (stmt);
5807 r = move_stmt_eh_region_nr (r, p);
5808 gimple_eh_dispatch_set_region (stmt, r);
5809 }
5810 break;
5811
5812 case GIMPLE_OMP_RETURN:
5813 case GIMPLE_OMP_CONTINUE:
5814 break;
5815 default:
5816 if (is_gimple_omp (stmt))
5817 {
5818 /* Do not remap variables inside OMP directives. Variables
5819 referenced in clauses and directive header belong to the
5820 parent function and should not be moved into the child
5821 function. */
5822 bool save_remap_decls_p = p->remap_decls_p;
5823 p->remap_decls_p = false;
5824 *handled_ops_p = true;
5825
5826 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5827 move_stmt_op, wi);
5828
5829 p->remap_decls_p = save_remap_decls_p;
5830 }
5831 break;
5832 }
5833
5834 return NULL_TREE;
5835 }
5836
5837 /* Move basic block BB from function CFUN to function DEST_FN. The
5838 block is moved out of the original linked list and placed after
5839 block AFTER in the new list. Also, the block is removed from the
5840 original array of blocks and placed in DEST_FN's array of blocks.
5841 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5842 updated to reflect the moved edges.
5843
5844 The local variables are remapped to new instances, VARS_MAP is used
5845 to record the mapping. */
5846
5847 static void
5848 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5849 basic_block after, bool update_edge_count_p,
5850 struct move_stmt_d *d)
5851 {
5852 struct control_flow_graph *cfg;
5853 edge_iterator ei;
5854 edge e;
5855 gimple_stmt_iterator si;
5856 unsigned old_len, new_len;
5857
5858 /* Remove BB from dominance structures. */
5859 delete_from_dominance_info (CDI_DOMINATORS, bb);
5860 if (current_loops)
5861 remove_bb_from_loops (bb);
5862
5863 /* Link BB to the new linked list. */
5864 move_block_after (bb, after);
5865
5866 /* Update the edge count in the corresponding flowgraphs. */
5867 if (update_edge_count_p)
5868 FOR_EACH_EDGE (e, ei, bb->succs)
5869 {
5870 cfun->cfg->x_n_edges--;
5871 dest_cfun->cfg->x_n_edges++;
5872 }
5873
5874 /* Remove BB from the original basic block array. */
5875 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5876 cfun->cfg->x_n_basic_blocks--;
5877
5878 /* Grow DEST_CFUN's basic block array if needed. */
5879 cfg = dest_cfun->cfg;
5880 cfg->x_n_basic_blocks++;
5881 if (bb->index >= cfg->x_last_basic_block)
5882 cfg->x_last_basic_block = bb->index + 1;
5883
5884 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5885 if ((unsigned) cfg->x_last_basic_block >= old_len)
5886 {
5887 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5888 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5889 new_len);
5890 }
5891
5892 VEC_replace (basic_block, cfg->x_basic_block_info,
5893 bb->index, bb);
5894
5895 /* Remap the variables in phi nodes. */
5896 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5897 {
5898 gimple phi = gsi_stmt (si);
5899 use_operand_p use;
5900 tree op = PHI_RESULT (phi);
5901 ssa_op_iter oi;
5902
5903 if (!is_gimple_reg (op))
5904 {
5905 /* Remove the phi nodes for virtual operands (alias analysis will be
5906 run for the new function, anyway). */
5907 remove_phi_node (&si, true);
5908 continue;
5909 }
5910
5911 SET_PHI_RESULT (phi,
5912 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5913 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5914 {
5915 op = USE_FROM_PTR (use);
5916 if (TREE_CODE (op) == SSA_NAME)
5917 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5918 }
5919
5920 gsi_next (&si);
5921 }
5922
5923 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5924 {
5925 gimple stmt = gsi_stmt (si);
5926 struct walk_stmt_info wi;
5927
5928 memset (&wi, 0, sizeof (wi));
5929 wi.info = d;
5930 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5931
5932 if (gimple_code (stmt) == GIMPLE_LABEL)
5933 {
5934 tree label = gimple_label_label (stmt);
5935 int uid = LABEL_DECL_UID (label);
5936
5937 gcc_assert (uid > -1);
5938
5939 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5940 if (old_len <= (unsigned) uid)
5941 {
5942 new_len = 3 * uid / 2 + 1;
5943 VEC_safe_grow_cleared (basic_block, gc,
5944 cfg->x_label_to_block_map, new_len);
5945 }
5946
5947 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5948 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5949
5950 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5951
5952 if (uid >= dest_cfun->cfg->last_label_uid)
5953 dest_cfun->cfg->last_label_uid = uid + 1;
5954 }
5955
5956 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5957 remove_stmt_from_eh_lp_fn (cfun, stmt);
5958
5959 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5960 gimple_remove_stmt_histograms (cfun, stmt);
5961
5962 /* We cannot leave any operands allocated from the operand caches of
5963 the current function. */
5964 free_stmt_operands (stmt);
5965 push_cfun (dest_cfun);
5966 update_stmt (stmt);
5967 pop_cfun ();
5968 }
5969
5970 FOR_EACH_EDGE (e, ei, bb->succs)
5971 if (e->goto_locus)
5972 {
5973 tree block = e->goto_block;
5974 if (d->orig_block == NULL_TREE
5975 || block == d->orig_block)
5976 e->goto_block = d->new_block;
5977 #ifdef ENABLE_CHECKING
5978 else if (block != d->new_block)
5979 {
5980 while (block && block != d->orig_block)
5981 block = BLOCK_SUPERCONTEXT (block);
5982 gcc_assert (block);
5983 }
5984 #endif
5985 }
5986 }
5987
5988 /* Examine the statements in BB (which is in SRC_CFUN); find and return
5989 the outermost EH region. Use REGION as the incoming base EH region. */
5990
5991 static eh_region
5992 find_outermost_region_in_block (struct function *src_cfun,
5993 basic_block bb, eh_region region)
5994 {
5995 gimple_stmt_iterator si;
5996
5997 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5998 {
5999 gimple stmt = gsi_stmt (si);
6000 eh_region stmt_region;
6001 int lp_nr;
6002
6003 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6004 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6005 if (stmt_region)
6006 {
6007 if (region == NULL)
6008 region = stmt_region;
6009 else if (stmt_region != region)
6010 {
6011 region = eh_region_outermost (src_cfun, stmt_region, region);
6012 gcc_assert (region != NULL);
6013 }
6014 }
6015 }
6016
6017 return region;
6018 }
6019
6020 static tree
6021 new_label_mapper (tree decl, void *data)
6022 {
6023 htab_t hash = (htab_t) data;
6024 struct tree_map *m;
6025 void **slot;
6026
6027 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6028
6029 m = XNEW (struct tree_map);
6030 m->hash = DECL_UID (decl);
6031 m->base.from = decl;
6032 m->to = create_artificial_label (UNKNOWN_LOCATION);
6033 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6034 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6035 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6036
6037 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6038 gcc_assert (*slot == NULL);
6039
6040 *slot = m;
6041
6042 return m->to;
6043 }
6044
6045 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6046 subblocks. */
6047
6048 static void
6049 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6050 tree to_context)
6051 {
6052 tree *tp, t;
6053
6054 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6055 {
6056 t = *tp;
6057 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6058 continue;
6059 replace_by_duplicate_decl (&t, vars_map, to_context);
6060 if (t != *tp)
6061 {
6062 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6063 {
6064 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6065 DECL_HAS_VALUE_EXPR_P (t) = 1;
6066 }
6067 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6068 *tp = t;
6069 }
6070 }
6071
6072 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6073 replace_block_vars_by_duplicates (block, vars_map, to_context);
6074 }
6075
6076 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6077 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6078 single basic block in the original CFG and the new basic block is
6079 returned. DEST_CFUN must not have a CFG yet.
6080
6081 Note that the region need not be a pure SESE region. Blocks inside
6082 the region may contain calls to abort/exit. The only restriction
6083 is that ENTRY_BB should be the only entry point and it must
6084 dominate EXIT_BB.
6085
6086 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6087 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6088 to the new function.
6089
6090 All local variables referenced in the region are assumed to be in
6091 the corresponding BLOCK_VARS and unexpanded variable lists
6092 associated with DEST_CFUN. */
6093
6094 basic_block
6095 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6096 basic_block exit_bb, tree orig_block)
6097 {
6098 VEC(basic_block,heap) *bbs, *dom_bbs;
6099 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6100 basic_block after, bb, *entry_pred, *exit_succ, abb;
6101 struct function *saved_cfun = cfun;
6102 int *entry_flag, *exit_flag;
6103 unsigned *entry_prob, *exit_prob;
6104 unsigned i, num_entry_edges, num_exit_edges;
6105 edge e;
6106 edge_iterator ei;
6107 htab_t new_label_map;
6108 struct pointer_map_t *vars_map, *eh_map;
6109 struct loop *loop = entry_bb->loop_father;
6110 struct move_stmt_d d;
6111
6112 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6113 region. */
6114 gcc_assert (entry_bb != exit_bb
6115 && (!exit_bb
6116 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6117
6118 /* Collect all the blocks in the region. Manually add ENTRY_BB
6119 because it won't be added by dfs_enumerate_from. */
6120 bbs = NULL;
6121 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6122 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6123
6124 /* The blocks that used to be dominated by something in BBS will now be
6125 dominated by the new block. */
6126 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6127 VEC_address (basic_block, bbs),
6128 VEC_length (basic_block, bbs));
6129
6130 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6131 the predecessor edges to ENTRY_BB and the successor edges to
6132 EXIT_BB so that we can re-attach them to the new basic block that
6133 will replace the region. */
6134 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6135 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6136 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6137 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6138 i = 0;
6139 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6140 {
6141 entry_prob[i] = e->probability;
6142 entry_flag[i] = e->flags;
6143 entry_pred[i++] = e->src;
6144 remove_edge (e);
6145 }
6146
6147 if (exit_bb)
6148 {
6149 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6150 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6151 sizeof (basic_block));
6152 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6153 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6154 i = 0;
6155 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6156 {
6157 exit_prob[i] = e->probability;
6158 exit_flag[i] = e->flags;
6159 exit_succ[i++] = e->dest;
6160 remove_edge (e);
6161 }
6162 }
6163 else
6164 {
6165 num_exit_edges = 0;
6166 exit_succ = NULL;
6167 exit_flag = NULL;
6168 exit_prob = NULL;
6169 }
6170
6171 /* Switch context to the child function to initialize DEST_FN's CFG. */
6172 gcc_assert (dest_cfun->cfg == NULL);
6173 push_cfun (dest_cfun);
6174
6175 init_empty_tree_cfg ();
6176
6177 /* Initialize EH information for the new function. */
6178 eh_map = NULL;
6179 new_label_map = NULL;
6180 if (saved_cfun->eh)
6181 {
6182 eh_region region = NULL;
6183
6184 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6185 region = find_outermost_region_in_block (saved_cfun, bb, region);
6186
6187 init_eh_for_function ();
6188 if (region != NULL)
6189 {
6190 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6191 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6192 new_label_mapper, new_label_map);
6193 }
6194 }
6195
6196 pop_cfun ();
6197
6198 /* Move blocks from BBS into DEST_CFUN. */
6199 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6200 after = dest_cfun->cfg->x_entry_block_ptr;
6201 vars_map = pointer_map_create ();
6202
6203 memset (&d, 0, sizeof (d));
6204 d.orig_block = orig_block;
6205 d.new_block = DECL_INITIAL (dest_cfun->decl);
6206 d.from_context = cfun->decl;
6207 d.to_context = dest_cfun->decl;
6208 d.vars_map = vars_map;
6209 d.new_label_map = new_label_map;
6210 d.eh_map = eh_map;
6211 d.remap_decls_p = true;
6212
6213 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6214 {
6215 /* No need to update edge counts on the last block. It has
6216 already been updated earlier when we detached the region from
6217 the original CFG. */
6218 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6219 after = bb;
6220 }
6221
6222 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6223 if (orig_block)
6224 {
6225 tree block;
6226 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6227 == NULL_TREE);
6228 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6229 = BLOCK_SUBBLOCKS (orig_block);
6230 for (block = BLOCK_SUBBLOCKS (orig_block);
6231 block; block = BLOCK_CHAIN (block))
6232 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6233 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6234 }
6235
6236 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6237 vars_map, dest_cfun->decl);
6238
6239 if (new_label_map)
6240 htab_delete (new_label_map);
6241 if (eh_map)
6242 pointer_map_destroy (eh_map);
6243 pointer_map_destroy (vars_map);
6244
6245 /* Rewire the entry and exit blocks. The successor to the entry
6246 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6247 the child function. Similarly, the predecessor of DEST_FN's
6248 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6249 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6250 various CFG manipulation function get to the right CFG.
6251
6252 FIXME, this is silly. The CFG ought to become a parameter to
6253 these helpers. */
6254 push_cfun (dest_cfun);
6255 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6256 if (exit_bb)
6257 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6258 pop_cfun ();
6259
6260 /* Back in the original function, the SESE region has disappeared,
6261 create a new basic block in its place. */
6262 bb = create_empty_bb (entry_pred[0]);
6263 if (current_loops)
6264 add_bb_to_loop (bb, loop);
6265 for (i = 0; i < num_entry_edges; i++)
6266 {
6267 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6268 e->probability = entry_prob[i];
6269 }
6270
6271 for (i = 0; i < num_exit_edges; i++)
6272 {
6273 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6274 e->probability = exit_prob[i];
6275 }
6276
6277 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6278 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6279 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6280 VEC_free (basic_block, heap, dom_bbs);
6281
6282 if (exit_bb)
6283 {
6284 free (exit_prob);
6285 free (exit_flag);
6286 free (exit_succ);
6287 }
6288 free (entry_prob);
6289 free (entry_flag);
6290 free (entry_pred);
6291 VEC_free (basic_block, heap, bbs);
6292
6293 return bb;
6294 }
6295
6296
6297 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6298 */
6299
6300 void
6301 dump_function_to_file (tree fn, FILE *file, int flags)
6302 {
6303 tree arg, var;
6304 struct function *dsf;
6305 bool ignore_topmost_bind = false, any_var = false;
6306 basic_block bb;
6307 tree chain;
6308
6309 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6310
6311 arg = DECL_ARGUMENTS (fn);
6312 while (arg)
6313 {
6314 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6315 fprintf (file, " ");
6316 print_generic_expr (file, arg, dump_flags);
6317 if (flags & TDF_VERBOSE)
6318 print_node (file, "", arg, 4);
6319 if (DECL_CHAIN (arg))
6320 fprintf (file, ", ");
6321 arg = DECL_CHAIN (arg);
6322 }
6323 fprintf (file, ")\n");
6324
6325 if (flags & TDF_VERBOSE)
6326 print_node (file, "", fn, 2);
6327
6328 dsf = DECL_STRUCT_FUNCTION (fn);
6329 if (dsf && (flags & TDF_EH))
6330 dump_eh_tree (file, dsf);
6331
6332 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6333 {
6334 dump_node (fn, TDF_SLIM | flags, file);
6335 return;
6336 }
6337
6338 /* Switch CFUN to point to FN. */
6339 push_cfun (DECL_STRUCT_FUNCTION (fn));
6340
6341 /* When GIMPLE is lowered, the variables are no longer available in
6342 BIND_EXPRs, so display them separately. */
6343 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6344 {
6345 unsigned ix;
6346 ignore_topmost_bind = true;
6347
6348 fprintf (file, "{\n");
6349 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6350 {
6351 print_generic_decl (file, var, flags);
6352 if (flags & TDF_VERBOSE)
6353 print_node (file, "", var, 4);
6354 fprintf (file, "\n");
6355
6356 any_var = true;
6357 }
6358 }
6359
6360 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6361 {
6362 /* If the CFG has been built, emit a CFG-based dump. */
6363 check_bb_profile (ENTRY_BLOCK_PTR, file);
6364 if (!ignore_topmost_bind)
6365 fprintf (file, "{\n");
6366
6367 if (any_var && n_basic_blocks)
6368 fprintf (file, "\n");
6369
6370 FOR_EACH_BB (bb)
6371 gimple_dump_bb (bb, file, 2, flags);
6372
6373 fprintf (file, "}\n");
6374 check_bb_profile (EXIT_BLOCK_PTR, file);
6375 }
6376 else if (DECL_SAVED_TREE (fn) == NULL)
6377 {
6378 /* The function is now in GIMPLE form but the CFG has not been
6379 built yet. Emit the single sequence of GIMPLE statements
6380 that make up its body. */
6381 gimple_seq body = gimple_body (fn);
6382
6383 if (gimple_seq_first_stmt (body)
6384 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6385 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6386 print_gimple_seq (file, body, 0, flags);
6387 else
6388 {
6389 if (!ignore_topmost_bind)
6390 fprintf (file, "{\n");
6391
6392 if (any_var)
6393 fprintf (file, "\n");
6394
6395 print_gimple_seq (file, body, 2, flags);
6396 fprintf (file, "}\n");
6397 }
6398 }
6399 else
6400 {
6401 int indent;
6402
6403 /* Make a tree based dump. */
6404 chain = DECL_SAVED_TREE (fn);
6405
6406 if (chain && TREE_CODE (chain) == BIND_EXPR)
6407 {
6408 if (ignore_topmost_bind)
6409 {
6410 chain = BIND_EXPR_BODY (chain);
6411 indent = 2;
6412 }
6413 else
6414 indent = 0;
6415 }
6416 else
6417 {
6418 if (!ignore_topmost_bind)
6419 fprintf (file, "{\n");
6420 indent = 2;
6421 }
6422
6423 if (any_var)
6424 fprintf (file, "\n");
6425
6426 print_generic_stmt_indented (file, chain, flags, indent);
6427 if (ignore_topmost_bind)
6428 fprintf (file, "}\n");
6429 }
6430
6431 if (flags & TDF_ENUMERATE_LOCALS)
6432 dump_enumerated_decls (file, flags);
6433 fprintf (file, "\n\n");
6434
6435 /* Restore CFUN. */
6436 pop_cfun ();
6437 }
6438
6439
6440 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6441
6442 DEBUG_FUNCTION void
6443 debug_function (tree fn, int flags)
6444 {
6445 dump_function_to_file (fn, stderr, flags);
6446 }
6447
6448
6449 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6450
6451 static void
6452 print_pred_bbs (FILE *file, basic_block bb)
6453 {
6454 edge e;
6455 edge_iterator ei;
6456
6457 FOR_EACH_EDGE (e, ei, bb->preds)
6458 fprintf (file, "bb_%d ", e->src->index);
6459 }
6460
6461
6462 /* Print on FILE the indexes for the successors of basic_block BB. */
6463
6464 static void
6465 print_succ_bbs (FILE *file, basic_block bb)
6466 {
6467 edge e;
6468 edge_iterator ei;
6469
6470 FOR_EACH_EDGE (e, ei, bb->succs)
6471 fprintf (file, "bb_%d ", e->dest->index);
6472 }
6473
6474 /* Print to FILE the basic block BB following the VERBOSITY level. */
6475
6476 void
6477 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6478 {
6479 char *s_indent = (char *) alloca ((size_t) indent + 1);
6480 memset ((void *) s_indent, ' ', (size_t) indent);
6481 s_indent[indent] = '\0';
6482
6483 /* Print basic_block's header. */
6484 if (verbosity >= 2)
6485 {
6486 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6487 print_pred_bbs (file, bb);
6488 fprintf (file, "}, succs = {");
6489 print_succ_bbs (file, bb);
6490 fprintf (file, "})\n");
6491 }
6492
6493 /* Print basic_block's body. */
6494 if (verbosity >= 3)
6495 {
6496 fprintf (file, "%s {\n", s_indent);
6497 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6498 fprintf (file, "%s }\n", s_indent);
6499 }
6500 }
6501
6502 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6503
6504 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6505 VERBOSITY level this outputs the contents of the loop, or just its
6506 structure. */
6507
6508 static void
6509 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6510 {
6511 char *s_indent;
6512 basic_block bb;
6513
6514 if (loop == NULL)
6515 return;
6516
6517 s_indent = (char *) alloca ((size_t) indent + 1);
6518 memset ((void *) s_indent, ' ', (size_t) indent);
6519 s_indent[indent] = '\0';
6520
6521 /* Print loop's header. */
6522 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6523 loop->num, loop->header->index, loop->latch->index);
6524 fprintf (file, ", niter = ");
6525 print_generic_expr (file, loop->nb_iterations, 0);
6526
6527 if (loop->any_upper_bound)
6528 {
6529 fprintf (file, ", upper_bound = ");
6530 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6531 }
6532
6533 if (loop->any_estimate)
6534 {
6535 fprintf (file, ", estimate = ");
6536 dump_double_int (file, loop->nb_iterations_estimate, true);
6537 }
6538 fprintf (file, ")\n");
6539
6540 /* Print loop's body. */
6541 if (verbosity >= 1)
6542 {
6543 fprintf (file, "%s{\n", s_indent);
6544 FOR_EACH_BB (bb)
6545 if (bb->loop_father == loop)
6546 print_loops_bb (file, bb, indent, verbosity);
6547
6548 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6549 fprintf (file, "%s}\n", s_indent);
6550 }
6551 }
6552
6553 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6554 spaces. Following VERBOSITY level this outputs the contents of the
6555 loop, or just its structure. */
6556
6557 static void
6558 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6559 {
6560 if (loop == NULL)
6561 return;
6562
6563 print_loop (file, loop, indent, verbosity);
6564 print_loop_and_siblings (file, loop->next, indent, verbosity);
6565 }
6566
6567 /* Follow a CFG edge from the entry point of the program, and on entry
6568 of a loop, pretty print the loop structure on FILE. */
6569
6570 void
6571 print_loops (FILE *file, int verbosity)
6572 {
6573 basic_block bb;
6574
6575 bb = ENTRY_BLOCK_PTR;
6576 if (bb && bb->loop_father)
6577 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6578 }
6579
6580
6581 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6582
6583 DEBUG_FUNCTION void
6584 debug_loops (int verbosity)
6585 {
6586 print_loops (stderr, verbosity);
6587 }
6588
6589 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6590
6591 DEBUG_FUNCTION void
6592 debug_loop (struct loop *loop, int verbosity)
6593 {
6594 print_loop (stderr, loop, 0, verbosity);
6595 }
6596
6597 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6598 level. */
6599
6600 DEBUG_FUNCTION void
6601 debug_loop_num (unsigned num, int verbosity)
6602 {
6603 debug_loop (get_loop (num), verbosity);
6604 }
6605
6606 /* Return true if BB ends with a call, possibly followed by some
6607 instructions that must stay with the call. Return false,
6608 otherwise. */
6609
6610 static bool
6611 gimple_block_ends_with_call_p (basic_block bb)
6612 {
6613 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6614 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6615 }
6616
6617
6618 /* Return true if BB ends with a conditional branch. Return false,
6619 otherwise. */
6620
6621 static bool
6622 gimple_block_ends_with_condjump_p (const_basic_block bb)
6623 {
6624 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6625 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6626 }
6627
6628
6629 /* Return true if we need to add fake edge to exit at statement T.
6630 Helper function for gimple_flow_call_edges_add. */
6631
6632 static bool
6633 need_fake_edge_p (gimple t)
6634 {
6635 tree fndecl = NULL_TREE;
6636 int call_flags = 0;
6637
6638 /* NORETURN and LONGJMP calls already have an edge to exit.
6639 CONST and PURE calls do not need one.
6640 We don't currently check for CONST and PURE here, although
6641 it would be a good idea, because those attributes are
6642 figured out from the RTL in mark_constant_function, and
6643 the counter incrementation code from -fprofile-arcs
6644 leads to different results from -fbranch-probabilities. */
6645 if (is_gimple_call (t))
6646 {
6647 fndecl = gimple_call_fndecl (t);
6648 call_flags = gimple_call_flags (t);
6649 }
6650
6651 if (is_gimple_call (t)
6652 && fndecl
6653 && DECL_BUILT_IN (fndecl)
6654 && (call_flags & ECF_NOTHROW)
6655 && !(call_flags & ECF_RETURNS_TWICE)
6656 /* fork() doesn't really return twice, but the effect of
6657 wrapping it in __gcov_fork() which calls __gcov_flush()
6658 and clears the counters before forking has the same
6659 effect as returning twice. Force a fake edge. */
6660 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6661 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6662 return false;
6663
6664 if (is_gimple_call (t)
6665 && !(call_flags & ECF_NORETURN))
6666 return true;
6667
6668 if (gimple_code (t) == GIMPLE_ASM
6669 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6670 return true;
6671
6672 return false;
6673 }
6674
6675
6676 /* Add fake edges to the function exit for any non constant and non
6677 noreturn calls, volatile inline assembly in the bitmap of blocks
6678 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6679 the number of blocks that were split.
6680
6681 The goal is to expose cases in which entering a basic block does
6682 not imply that all subsequent instructions must be executed. */
6683
6684 static int
6685 gimple_flow_call_edges_add (sbitmap blocks)
6686 {
6687 int i;
6688 int blocks_split = 0;
6689 int last_bb = last_basic_block;
6690 bool check_last_block = false;
6691
6692 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6693 return 0;
6694
6695 if (! blocks)
6696 check_last_block = true;
6697 else
6698 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6699
6700 /* In the last basic block, before epilogue generation, there will be
6701 a fallthru edge to EXIT. Special care is required if the last insn
6702 of the last basic block is a call because make_edge folds duplicate
6703 edges, which would result in the fallthru edge also being marked
6704 fake, which would result in the fallthru edge being removed by
6705 remove_fake_edges, which would result in an invalid CFG.
6706
6707 Moreover, we can't elide the outgoing fake edge, since the block
6708 profiler needs to take this into account in order to solve the minimal
6709 spanning tree in the case that the call doesn't return.
6710
6711 Handle this by adding a dummy instruction in a new last basic block. */
6712 if (check_last_block)
6713 {
6714 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6715 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6716 gimple t = NULL;
6717
6718 if (!gsi_end_p (gsi))
6719 t = gsi_stmt (gsi);
6720
6721 if (t && need_fake_edge_p (t))
6722 {
6723 edge e;
6724
6725 e = find_edge (bb, EXIT_BLOCK_PTR);
6726 if (e)
6727 {
6728 gsi_insert_on_edge (e, gimple_build_nop ());
6729 gsi_commit_edge_inserts ();
6730 }
6731 }
6732 }
6733
6734 /* Now add fake edges to the function exit for any non constant
6735 calls since there is no way that we can determine if they will
6736 return or not... */
6737 for (i = 0; i < last_bb; i++)
6738 {
6739 basic_block bb = BASIC_BLOCK (i);
6740 gimple_stmt_iterator gsi;
6741 gimple stmt, last_stmt;
6742
6743 if (!bb)
6744 continue;
6745
6746 if (blocks && !TEST_BIT (blocks, i))
6747 continue;
6748
6749 gsi = gsi_last_nondebug_bb (bb);
6750 if (!gsi_end_p (gsi))
6751 {
6752 last_stmt = gsi_stmt (gsi);
6753 do
6754 {
6755 stmt = gsi_stmt (gsi);
6756 if (need_fake_edge_p (stmt))
6757 {
6758 edge e;
6759
6760 /* The handling above of the final block before the
6761 epilogue should be enough to verify that there is
6762 no edge to the exit block in CFG already.
6763 Calling make_edge in such case would cause us to
6764 mark that edge as fake and remove it later. */
6765 #ifdef ENABLE_CHECKING
6766 if (stmt == last_stmt)
6767 {
6768 e = find_edge (bb, EXIT_BLOCK_PTR);
6769 gcc_assert (e == NULL);
6770 }
6771 #endif
6772
6773 /* Note that the following may create a new basic block
6774 and renumber the existing basic blocks. */
6775 if (stmt != last_stmt)
6776 {
6777 e = split_block (bb, stmt);
6778 if (e)
6779 blocks_split++;
6780 }
6781 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6782 }
6783 gsi_prev (&gsi);
6784 }
6785 while (!gsi_end_p (gsi));
6786 }
6787 }
6788
6789 if (blocks_split)
6790 verify_flow_info ();
6791
6792 return blocks_split;
6793 }
6794
6795 /* Removes edge E and all the blocks dominated by it, and updates dominance
6796 information. The IL in E->src needs to be updated separately.
6797 If dominance info is not available, only the edge E is removed.*/
6798
6799 void
6800 remove_edge_and_dominated_blocks (edge e)
6801 {
6802 VEC (basic_block, heap) *bbs_to_remove = NULL;
6803 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6804 bitmap df, df_idom;
6805 edge f;
6806 edge_iterator ei;
6807 bool none_removed = false;
6808 unsigned i;
6809 basic_block bb, dbb;
6810 bitmap_iterator bi;
6811
6812 if (!dom_info_available_p (CDI_DOMINATORS))
6813 {
6814 remove_edge (e);
6815 return;
6816 }
6817
6818 /* No updating is needed for edges to exit. */
6819 if (e->dest == EXIT_BLOCK_PTR)
6820 {
6821 if (cfgcleanup_altered_bbs)
6822 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6823 remove_edge (e);
6824 return;
6825 }
6826
6827 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6828 that is not dominated by E->dest, then this set is empty. Otherwise,
6829 all the basic blocks dominated by E->dest are removed.
6830
6831 Also, to DF_IDOM we store the immediate dominators of the blocks in
6832 the dominance frontier of E (i.e., of the successors of the
6833 removed blocks, if there are any, and of E->dest otherwise). */
6834 FOR_EACH_EDGE (f, ei, e->dest->preds)
6835 {
6836 if (f == e)
6837 continue;
6838
6839 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6840 {
6841 none_removed = true;
6842 break;
6843 }
6844 }
6845
6846 df = BITMAP_ALLOC (NULL);
6847 df_idom = BITMAP_ALLOC (NULL);
6848
6849 if (none_removed)
6850 bitmap_set_bit (df_idom,
6851 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6852 else
6853 {
6854 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6855 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6856 {
6857 FOR_EACH_EDGE (f, ei, bb->succs)
6858 {
6859 if (f->dest != EXIT_BLOCK_PTR)
6860 bitmap_set_bit (df, f->dest->index);
6861 }
6862 }
6863 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6864 bitmap_clear_bit (df, bb->index);
6865
6866 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6867 {
6868 bb = BASIC_BLOCK (i);
6869 bitmap_set_bit (df_idom,
6870 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6871 }
6872 }
6873
6874 if (cfgcleanup_altered_bbs)
6875 {
6876 /* Record the set of the altered basic blocks. */
6877 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6878 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6879 }
6880
6881 /* Remove E and the cancelled blocks. */
6882 if (none_removed)
6883 remove_edge (e);
6884 else
6885 {
6886 /* Walk backwards so as to get a chance to substitute all
6887 released DEFs into debug stmts. See
6888 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6889 details. */
6890 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6891 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6892 }
6893
6894 /* Update the dominance information. The immediate dominator may change only
6895 for blocks whose immediate dominator belongs to DF_IDOM:
6896
6897 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6898 removal. Let Z the arbitrary block such that idom(Z) = Y and
6899 Z dominates X after the removal. Before removal, there exists a path P
6900 from Y to X that avoids Z. Let F be the last edge on P that is
6901 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6902 dominates W, and because of P, Z does not dominate W), and W belongs to
6903 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6904 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6905 {
6906 bb = BASIC_BLOCK (i);
6907 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6908 dbb;
6909 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6910 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6911 }
6912
6913 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6914
6915 BITMAP_FREE (df);
6916 BITMAP_FREE (df_idom);
6917 VEC_free (basic_block, heap, bbs_to_remove);
6918 VEC_free (basic_block, heap, bbs_to_fix_dom);
6919 }
6920
6921 /* Purge dead EH edges from basic block BB. */
6922
6923 bool
6924 gimple_purge_dead_eh_edges (basic_block bb)
6925 {
6926 bool changed = false;
6927 edge e;
6928 edge_iterator ei;
6929 gimple stmt = last_stmt (bb);
6930
6931 if (stmt && stmt_can_throw_internal (stmt))
6932 return false;
6933
6934 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6935 {
6936 if (e->flags & EDGE_EH)
6937 {
6938 remove_edge_and_dominated_blocks (e);
6939 changed = true;
6940 }
6941 else
6942 ei_next (&ei);
6943 }
6944
6945 return changed;
6946 }
6947
6948 /* Purge dead EH edges from basic block listed in BLOCKS. */
6949
6950 bool
6951 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6952 {
6953 bool changed = false;
6954 unsigned i;
6955 bitmap_iterator bi;
6956
6957 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6958 {
6959 basic_block bb = BASIC_BLOCK (i);
6960
6961 /* Earlier gimple_purge_dead_eh_edges could have removed
6962 this basic block already. */
6963 gcc_assert (bb || changed);
6964 if (bb != NULL)
6965 changed |= gimple_purge_dead_eh_edges (bb);
6966 }
6967
6968 return changed;
6969 }
6970
6971 /* Purge dead abnormal call edges from basic block BB. */
6972
6973 bool
6974 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6975 {
6976 bool changed = false;
6977 edge e;
6978 edge_iterator ei;
6979 gimple stmt = last_stmt (bb);
6980
6981 if (!cfun->has_nonlocal_label)
6982 return false;
6983
6984 if (stmt && stmt_can_make_abnormal_goto (stmt))
6985 return false;
6986
6987 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6988 {
6989 if (e->flags & EDGE_ABNORMAL)
6990 {
6991 remove_edge_and_dominated_blocks (e);
6992 changed = true;
6993 }
6994 else
6995 ei_next (&ei);
6996 }
6997
6998 return changed;
6999 }
7000
7001 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7002
7003 bool
7004 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7005 {
7006 bool changed = false;
7007 unsigned i;
7008 bitmap_iterator bi;
7009
7010 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7011 {
7012 basic_block bb = BASIC_BLOCK (i);
7013
7014 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7015 this basic block already. */
7016 gcc_assert (bb || changed);
7017 if (bb != NULL)
7018 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7019 }
7020
7021 return changed;
7022 }
7023
7024 /* This function is called whenever a new edge is created or
7025 redirected. */
7026
7027 static void
7028 gimple_execute_on_growing_pred (edge e)
7029 {
7030 basic_block bb = e->dest;
7031
7032 if (!gimple_seq_empty_p (phi_nodes (bb)))
7033 reserve_phi_args_for_new_edge (bb);
7034 }
7035
7036 /* This function is called immediately before edge E is removed from
7037 the edge vector E->dest->preds. */
7038
7039 static void
7040 gimple_execute_on_shrinking_pred (edge e)
7041 {
7042 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7043 remove_phi_args (e);
7044 }
7045
7046 /*---------------------------------------------------------------------------
7047 Helper functions for Loop versioning
7048 ---------------------------------------------------------------------------*/
7049
7050 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7051 of 'first'. Both of them are dominated by 'new_head' basic block. When
7052 'new_head' was created by 'second's incoming edge it received phi arguments
7053 on the edge by split_edge(). Later, additional edge 'e' was created to
7054 connect 'new_head' and 'first'. Now this routine adds phi args on this
7055 additional edge 'e' that new_head to second edge received as part of edge
7056 splitting. */
7057
7058 static void
7059 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7060 basic_block new_head, edge e)
7061 {
7062 gimple phi1, phi2;
7063 gimple_stmt_iterator psi1, psi2;
7064 tree def;
7065 edge e2 = find_edge (new_head, second);
7066
7067 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7068 edge, we should always have an edge from NEW_HEAD to SECOND. */
7069 gcc_assert (e2 != NULL);
7070
7071 /* Browse all 'second' basic block phi nodes and add phi args to
7072 edge 'e' for 'first' head. PHI args are always in correct order. */
7073
7074 for (psi2 = gsi_start_phis (second),
7075 psi1 = gsi_start_phis (first);
7076 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7077 gsi_next (&psi2), gsi_next (&psi1))
7078 {
7079 phi1 = gsi_stmt (psi1);
7080 phi2 = gsi_stmt (psi2);
7081 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7082 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7083 }
7084 }
7085
7086
7087 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7088 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7089 the destination of the ELSE part. */
7090
7091 static void
7092 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7093 basic_block second_head ATTRIBUTE_UNUSED,
7094 basic_block cond_bb, void *cond_e)
7095 {
7096 gimple_stmt_iterator gsi;
7097 gimple new_cond_expr;
7098 tree cond_expr = (tree) cond_e;
7099 edge e0;
7100
7101 /* Build new conditional expr */
7102 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7103 NULL_TREE, NULL_TREE);
7104
7105 /* Add new cond in cond_bb. */
7106 gsi = gsi_last_bb (cond_bb);
7107 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7108
7109 /* Adjust edges appropriately to connect new head with first head
7110 as well as second head. */
7111 e0 = single_succ_edge (cond_bb);
7112 e0->flags &= ~EDGE_FALLTHRU;
7113 e0->flags |= EDGE_FALSE_VALUE;
7114 }
7115
7116 struct cfg_hooks gimple_cfg_hooks = {
7117 "gimple",
7118 gimple_verify_flow_info,
7119 gimple_dump_bb, /* dump_bb */
7120 create_bb, /* create_basic_block */
7121 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7122 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7123 gimple_can_remove_branch_p, /* can_remove_branch_p */
7124 remove_bb, /* delete_basic_block */
7125 gimple_split_block, /* split_block */
7126 gimple_move_block_after, /* move_block_after */
7127 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7128 gimple_merge_blocks, /* merge_blocks */
7129 gimple_predict_edge, /* predict_edge */
7130 gimple_predicted_by_p, /* predicted_by_p */
7131 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7132 gimple_duplicate_bb, /* duplicate_block */
7133 gimple_split_edge, /* split_edge */
7134 gimple_make_forwarder_block, /* make_forward_block */
7135 NULL, /* tidy_fallthru_edge */
7136 NULL, /* force_nonfallthru */
7137 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7138 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7139 gimple_flow_call_edges_add, /* flow_call_edges_add */
7140 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7141 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7142 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7143 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7144 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7145 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7146 flush_pending_stmts /* flush_pending_stmts */
7147 };
7148
7149
7150 /* Split all critical edges. */
7151
7152 static unsigned int
7153 split_critical_edges (void)
7154 {
7155 basic_block bb;
7156 edge e;
7157 edge_iterator ei;
7158
7159 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7160 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7161 mappings around the calls to split_edge. */
7162 start_recording_case_labels ();
7163 FOR_ALL_BB (bb)
7164 {
7165 FOR_EACH_EDGE (e, ei, bb->succs)
7166 {
7167 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7168 split_edge (e);
7169 /* PRE inserts statements to edges and expects that
7170 since split_critical_edges was done beforehand, committing edge
7171 insertions will not split more edges. In addition to critical
7172 edges we must split edges that have multiple successors and
7173 end by control flow statements, such as RESX.
7174 Go ahead and split them too. This matches the logic in
7175 gimple_find_edge_insert_loc. */
7176 else if ((!single_pred_p (e->dest)
7177 || !gimple_seq_empty_p (phi_nodes (e->dest))
7178 || e->dest == EXIT_BLOCK_PTR)
7179 && e->src != ENTRY_BLOCK_PTR
7180 && !(e->flags & EDGE_ABNORMAL))
7181 {
7182 gimple_stmt_iterator gsi;
7183
7184 gsi = gsi_last_bb (e->src);
7185 if (!gsi_end_p (gsi)
7186 && stmt_ends_bb_p (gsi_stmt (gsi))
7187 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7188 && !gimple_call_builtin_p (gsi_stmt (gsi),
7189 BUILT_IN_RETURN)))
7190 split_edge (e);
7191 }
7192 }
7193 }
7194 end_recording_case_labels ();
7195 return 0;
7196 }
7197
7198 struct gimple_opt_pass pass_split_crit_edges =
7199 {
7200 {
7201 GIMPLE_PASS,
7202 "crited", /* name */
7203 NULL, /* gate */
7204 split_critical_edges, /* execute */
7205 NULL, /* sub */
7206 NULL, /* next */
7207 0, /* static_pass_number */
7208 TV_TREE_SPLIT_EDGES, /* tv_id */
7209 PROP_cfg, /* properties required */
7210 PROP_no_crit_edges, /* properties_provided */
7211 0, /* properties_destroyed */
7212 0, /* todo_flags_start */
7213 TODO_verify_flow /* todo_flags_finish */
7214 }
7215 };
7216
7217
7218 /* Build a ternary operation and gimplify it. Emit code before GSI.
7219 Return the gimple_val holding the result. */
7220
7221 tree
7222 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7223 tree type, tree a, tree b, tree c)
7224 {
7225 tree ret;
7226 location_t loc = gimple_location (gsi_stmt (*gsi));
7227
7228 ret = fold_build3_loc (loc, code, type, a, b, c);
7229 STRIP_NOPS (ret);
7230
7231 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7232 GSI_SAME_STMT);
7233 }
7234
7235 /* Build a binary operation and gimplify it. Emit code before GSI.
7236 Return the gimple_val holding the result. */
7237
7238 tree
7239 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7240 tree type, tree a, tree b)
7241 {
7242 tree ret;
7243
7244 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7245 STRIP_NOPS (ret);
7246
7247 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7248 GSI_SAME_STMT);
7249 }
7250
7251 /* Build a unary operation and gimplify it. Emit code before GSI.
7252 Return the gimple_val holding the result. */
7253
7254 tree
7255 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7256 tree a)
7257 {
7258 tree ret;
7259
7260 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7261 STRIP_NOPS (ret);
7262
7263 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7264 GSI_SAME_STMT);
7265 }
7266
7267
7268 \f
7269 /* Emit return warnings. */
7270
7271 static unsigned int
7272 execute_warn_function_return (void)
7273 {
7274 source_location location;
7275 gimple last;
7276 edge e;
7277 edge_iterator ei;
7278
7279 /* If we have a path to EXIT, then we do return. */
7280 if (TREE_THIS_VOLATILE (cfun->decl)
7281 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7282 {
7283 location = UNKNOWN_LOCATION;
7284 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7285 {
7286 last = last_stmt (e->src);
7287 if ((gimple_code (last) == GIMPLE_RETURN
7288 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7289 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7290 break;
7291 }
7292 if (location == UNKNOWN_LOCATION)
7293 location = cfun->function_end_locus;
7294 warning_at (location, 0, "%<noreturn%> function does return");
7295 }
7296
7297 /* If we see "return;" in some basic block, then we do reach the end
7298 without returning a value. */
7299 else if (warn_return_type
7300 && !TREE_NO_WARNING (cfun->decl)
7301 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7302 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7303 {
7304 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7305 {
7306 gimple last = last_stmt (e->src);
7307 if (gimple_code (last) == GIMPLE_RETURN
7308 && gimple_return_retval (last) == NULL
7309 && !gimple_no_warning_p (last))
7310 {
7311 location = gimple_location (last);
7312 if (location == UNKNOWN_LOCATION)
7313 location = cfun->function_end_locus;
7314 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7315 TREE_NO_WARNING (cfun->decl) = 1;
7316 break;
7317 }
7318 }
7319 }
7320 return 0;
7321 }
7322
7323
7324 /* Given a basic block B which ends with a conditional and has
7325 precisely two successors, determine which of the edges is taken if
7326 the conditional is true and which is taken if the conditional is
7327 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7328
7329 void
7330 extract_true_false_edges_from_block (basic_block b,
7331 edge *true_edge,
7332 edge *false_edge)
7333 {
7334 edge e = EDGE_SUCC (b, 0);
7335
7336 if (e->flags & EDGE_TRUE_VALUE)
7337 {
7338 *true_edge = e;
7339 *false_edge = EDGE_SUCC (b, 1);
7340 }
7341 else
7342 {
7343 *false_edge = e;
7344 *true_edge = EDGE_SUCC (b, 1);
7345 }
7346 }
7347
7348 struct gimple_opt_pass pass_warn_function_return =
7349 {
7350 {
7351 GIMPLE_PASS,
7352 "*warn_function_return", /* name */
7353 NULL, /* gate */
7354 execute_warn_function_return, /* execute */
7355 NULL, /* sub */
7356 NULL, /* next */
7357 0, /* static_pass_number */
7358 TV_NONE, /* tv_id */
7359 PROP_cfg, /* properties_required */
7360 0, /* properties_provided */
7361 0, /* properties_destroyed */
7362 0, /* todo_flags_start */
7363 0 /* todo_flags_finish */
7364 }
7365 };
7366
7367 /* Emit noreturn warnings. */
7368
7369 static unsigned int
7370 execute_warn_function_noreturn (void)
7371 {
7372 if (!TREE_THIS_VOLATILE (current_function_decl)
7373 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7374 warn_function_noreturn (current_function_decl);
7375 return 0;
7376 }
7377
7378 static bool
7379 gate_warn_function_noreturn (void)
7380 {
7381 return warn_suggest_attribute_noreturn;
7382 }
7383
7384 struct gimple_opt_pass pass_warn_function_noreturn =
7385 {
7386 {
7387 GIMPLE_PASS,
7388 "*warn_function_noreturn", /* name */
7389 gate_warn_function_noreturn, /* gate */
7390 execute_warn_function_noreturn, /* execute */
7391 NULL, /* sub */
7392 NULL, /* next */
7393 0, /* static_pass_number */
7394 TV_NONE, /* tv_id */
7395 PROP_cfg, /* properties_required */
7396 0, /* properties_provided */
7397 0, /* properties_destroyed */
7398 0, /* todo_flags_start */
7399 0 /* todo_flags_finish */
7400 }
7401 };
7402
7403
7404 /* Walk a gimplified function and warn for functions whose return value is
7405 ignored and attribute((warn_unused_result)) is set. This is done before
7406 inlining, so we don't have to worry about that. */
7407
7408 static void
7409 do_warn_unused_result (gimple_seq seq)
7410 {
7411 tree fdecl, ftype;
7412 gimple_stmt_iterator i;
7413
7414 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7415 {
7416 gimple g = gsi_stmt (i);
7417
7418 switch (gimple_code (g))
7419 {
7420 case GIMPLE_BIND:
7421 do_warn_unused_result (gimple_bind_body (g));
7422 break;
7423 case GIMPLE_TRY:
7424 do_warn_unused_result (gimple_try_eval (g));
7425 do_warn_unused_result (gimple_try_cleanup (g));
7426 break;
7427 case GIMPLE_CATCH:
7428 do_warn_unused_result (gimple_catch_handler (g));
7429 break;
7430 case GIMPLE_EH_FILTER:
7431 do_warn_unused_result (gimple_eh_filter_failure (g));
7432 break;
7433
7434 case GIMPLE_CALL:
7435 if (gimple_call_lhs (g))
7436 break;
7437 if (gimple_call_internal_p (g))
7438 break;
7439
7440 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7441 LHS. All calls whose value is ignored should be
7442 represented like this. Look for the attribute. */
7443 fdecl = gimple_call_fndecl (g);
7444 ftype = gimple_call_fntype (g);
7445
7446 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7447 {
7448 location_t loc = gimple_location (g);
7449
7450 if (fdecl)
7451 warning_at (loc, OPT_Wunused_result,
7452 "ignoring return value of %qD, "
7453 "declared with attribute warn_unused_result",
7454 fdecl);
7455 else
7456 warning_at (loc, OPT_Wunused_result,
7457 "ignoring return value of function "
7458 "declared with attribute warn_unused_result");
7459 }
7460 break;
7461
7462 default:
7463 /* Not a container, not a call, or a call whose value is used. */
7464 break;
7465 }
7466 }
7467 }
7468
7469 static unsigned int
7470 run_warn_unused_result (void)
7471 {
7472 do_warn_unused_result (gimple_body (current_function_decl));
7473 return 0;
7474 }
7475
7476 static bool
7477 gate_warn_unused_result (void)
7478 {
7479 return flag_warn_unused_result;
7480 }
7481
7482 struct gimple_opt_pass pass_warn_unused_result =
7483 {
7484 {
7485 GIMPLE_PASS,
7486 "*warn_unused_result", /* name */
7487 gate_warn_unused_result, /* gate */
7488 run_warn_unused_result, /* execute */
7489 NULL, /* sub */
7490 NULL, /* next */
7491 0, /* static_pass_number */
7492 TV_NONE, /* tv_id */
7493 PROP_gimple_any, /* properties_required */
7494 0, /* properties_provided */
7495 0, /* properties_destroyed */
7496 0, /* todo_flags_start */
7497 0, /* todo_flags_finish */
7498 }
7499 };