Verify __builtin_unreachable and __builtin_trap are not called with arguments
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-low.h"
58 #include "tree-cfgcleanup.h"
59 #include "gimplify.h"
60 #include "attribs.h"
61
62 /* This file contains functions for building the Control Flow Graph (CFG)
63 for a function tree. */
64
65 /* Local declarations. */
66
67 /* Initial capacity for the basic block array. */
68 static const int initial_cfg_capacity = 20;
69
70 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
71 which use a particular edge. The CASE_LABEL_EXPRs are chained together
72 via their CASE_CHAIN field, which we clear after we're done with the
73 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
74
75 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
76 update the case vector in response to edge redirections.
77
78 Right now this table is set up and torn down at key points in the
79 compilation process. It would be nice if we could make the table
80 more persistent. The key is getting notification of changes to
81 the CFG (particularly edge removal, creation and redirection). */
82
83 static hash_map<edge, tree> *edge_to_cases;
84
85 /* If we record edge_to_cases, this bitmap will hold indexes
86 of basic blocks that end in a GIMPLE_SWITCH which we touched
87 due to edge manipulations. */
88
89 static bitmap touched_switch_bbs;
90
91 /* CFG statistics. */
92 struct cfg_stats_d
93 {
94 long num_merged_labels;
95 };
96
97 static struct cfg_stats_d cfg_stats;
98
99 /* Data to pass to replace_block_vars_by_duplicates_1. */
100 struct replace_decls_d
101 {
102 hash_map<tree, tree> *vars_map;
103 tree to_context;
104 };
105
106 /* Hash table to store last discriminator assigned for each locus. */
107 struct locus_discrim_map
108 {
109 location_t locus;
110 int discriminator;
111 };
112
113 /* Hashtable helpers. */
114
115 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
116 {
117 static inline hashval_t hash (const locus_discrim_map *);
118 static inline bool equal (const locus_discrim_map *,
119 const locus_discrim_map *);
120 };
121
122 /* Trivial hash function for a location_t. ITEM is a pointer to
123 a hash table entry that maps a location_t to a discriminator. */
124
125 inline hashval_t
126 locus_discrim_hasher::hash (const locus_discrim_map *item)
127 {
128 return LOCATION_LINE (item->locus);
129 }
130
131 /* Equality function for the locus-to-discriminator map. A and B
132 point to the two hash table entries to compare. */
133
134 inline bool
135 locus_discrim_hasher::equal (const locus_discrim_map *a,
136 const locus_discrim_map *b)
137 {
138 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
139 }
140
141 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
142
143 /* Basic blocks and flowgraphs. */
144 static void make_blocks (gimple_seq);
145
146 /* Edges. */
147 static void make_edges (void);
148 static void assign_discriminators (void);
149 static void make_cond_expr_edges (basic_block);
150 static void make_gimple_switch_edges (gswitch *, basic_block);
151 static bool make_goto_expr_edges (basic_block);
152 static void make_gimple_asm_edges (basic_block);
153 static edge gimple_redirect_edge_and_branch (edge, basic_block);
154 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
155
156 /* Various helpers. */
157 static inline bool stmt_starts_bb_p (gimple *, gimple *);
158 static int gimple_verify_flow_info (void);
159 static void gimple_make_forwarder_block (edge);
160 static gimple *first_non_label_stmt (basic_block);
161 static bool verify_gimple_transaction (gtransaction *);
162 static bool call_can_make_abnormal_goto (gimple *);
163
164 /* Flowgraph optimization and cleanup. */
165 static void gimple_merge_blocks (basic_block, basic_block);
166 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
167 static void remove_bb (basic_block);
168 static edge find_taken_edge_computed_goto (basic_block, tree);
169 static edge find_taken_edge_cond_expr (basic_block, tree);
170 static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree);
171 static tree find_case_label_for_value (gswitch *, tree);
172
173 void
174 init_empty_tree_cfg_for_function (struct function *fn)
175 {
176 /* Initialize the basic block array. */
177 init_flow (fn);
178 profile_status_for_fn (fn) = PROFILE_ABSENT;
179 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
180 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
181 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
182 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
183 initial_cfg_capacity);
184
185 /* Build a mapping of labels to their associated blocks. */
186 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
188 initial_cfg_capacity);
189
190 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
191 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
192
193 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
194 = EXIT_BLOCK_PTR_FOR_FN (fn);
195 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
196 = ENTRY_BLOCK_PTR_FOR_FN (fn);
197 }
198
199 void
200 init_empty_tree_cfg (void)
201 {
202 init_empty_tree_cfg_for_function (cfun);
203 }
204
205 /*---------------------------------------------------------------------------
206 Create basic blocks
207 ---------------------------------------------------------------------------*/
208
209 /* Entry point to the CFG builder for trees. SEQ is the sequence of
210 statements to be added to the flowgraph. */
211
212 static void
213 build_gimple_cfg (gimple_seq seq)
214 {
215 /* Register specific gimple functions. */
216 gimple_register_cfg_hooks ();
217
218 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
219
220 init_empty_tree_cfg ();
221
222 make_blocks (seq);
223
224 /* Make sure there is always at least one block, even if it's empty. */
225 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
226 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
227
228 /* Adjust the size of the array. */
229 if (basic_block_info_for_fn (cfun)->length ()
230 < (size_t) n_basic_blocks_for_fn (cfun))
231 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
232 n_basic_blocks_for_fn (cfun));
233
234 /* To speed up statement iterator walks, we first purge dead labels. */
235 cleanup_dead_labels ();
236
237 /* Group case nodes to reduce the number of edges.
238 We do this after cleaning up dead labels because otherwise we miss
239 a lot of obvious case merging opportunities. */
240 group_case_labels ();
241
242 /* Create the edges of the flowgraph. */
243 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
244 make_edges ();
245 assign_discriminators ();
246 cleanup_dead_labels ();
247 delete discriminator_per_locus;
248 discriminator_per_locus = NULL;
249 }
250
251 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
252 them and propagate the information to LOOP. We assume that the annotations
253 come immediately before the condition in BB, if any. */
254
255 static void
256 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
257 {
258 gimple_stmt_iterator gsi = gsi_last_bb (bb);
259 gimple *stmt = gsi_stmt (gsi);
260
261 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
262 return;
263
264 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
265 {
266 stmt = gsi_stmt (gsi);
267 if (gimple_code (stmt) != GIMPLE_CALL)
268 break;
269 if (!gimple_call_internal_p (stmt)
270 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
271 break;
272
273 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
274 {
275 case annot_expr_ivdep_kind:
276 loop->safelen = INT_MAX;
277 break;
278 case annot_expr_no_vector_kind:
279 loop->dont_vectorize = true;
280 break;
281 case annot_expr_vector_kind:
282 loop->force_vectorize = true;
283 cfun->has_force_vectorize_loops = true;
284 break;
285 default:
286 gcc_unreachable ();
287 }
288
289 stmt = gimple_build_assign (gimple_call_lhs (stmt),
290 gimple_call_arg (stmt, 0));
291 gsi_replace (&gsi, stmt, true);
292 }
293 }
294
295 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
296 them and propagate the information to the loop. We assume that the
297 annotations come immediately before the condition of the loop. */
298
299 static void
300 replace_loop_annotate (void)
301 {
302 struct loop *loop;
303 basic_block bb;
304 gimple_stmt_iterator gsi;
305 gimple *stmt;
306
307 FOR_EACH_LOOP (loop, 0)
308 {
309 /* First look into the header. */
310 replace_loop_annotate_in_block (loop->header, loop);
311
312 /* Then look into the latch, if any. */
313 if (loop->latch)
314 replace_loop_annotate_in_block (loop->latch, loop);
315 }
316
317 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
318 FOR_EACH_BB_FN (bb, cfun)
319 {
320 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
321 {
322 stmt = gsi_stmt (gsi);
323 if (gimple_code (stmt) != GIMPLE_CALL)
324 continue;
325 if (!gimple_call_internal_p (stmt)
326 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
327 continue;
328
329 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
330 {
331 case annot_expr_ivdep_kind:
332 case annot_expr_no_vector_kind:
333 case annot_expr_vector_kind:
334 break;
335 default:
336 gcc_unreachable ();
337 }
338
339 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
340 stmt = gimple_build_assign (gimple_call_lhs (stmt),
341 gimple_call_arg (stmt, 0));
342 gsi_replace (&gsi, stmt, true);
343 }
344 }
345 }
346
347
348 static unsigned int
349 execute_build_cfg (void)
350 {
351 gimple_seq body = gimple_body (current_function_decl);
352
353 build_gimple_cfg (body);
354 gimple_set_body (current_function_decl, NULL);
355 if (dump_file && (dump_flags & TDF_DETAILS))
356 {
357 fprintf (dump_file, "Scope blocks:\n");
358 dump_scope_blocks (dump_file, dump_flags);
359 }
360 cleanup_tree_cfg ();
361 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
362 replace_loop_annotate ();
363 return 0;
364 }
365
366 namespace {
367
368 const pass_data pass_data_build_cfg =
369 {
370 GIMPLE_PASS, /* type */
371 "cfg", /* name */
372 OPTGROUP_NONE, /* optinfo_flags */
373 TV_TREE_CFG, /* tv_id */
374 PROP_gimple_leh, /* properties_required */
375 ( PROP_cfg | PROP_loops ), /* properties_provided */
376 0, /* properties_destroyed */
377 0, /* todo_flags_start */
378 0, /* todo_flags_finish */
379 };
380
381 class pass_build_cfg : public gimple_opt_pass
382 {
383 public:
384 pass_build_cfg (gcc::context *ctxt)
385 : gimple_opt_pass (pass_data_build_cfg, ctxt)
386 {}
387
388 /* opt_pass methods: */
389 virtual unsigned int execute (function *) { return execute_build_cfg (); }
390
391 }; // class pass_build_cfg
392
393 } // anon namespace
394
395 gimple_opt_pass *
396 make_pass_build_cfg (gcc::context *ctxt)
397 {
398 return new pass_build_cfg (ctxt);
399 }
400
401
402 /* Return true if T is a computed goto. */
403
404 bool
405 computed_goto_p (gimple *t)
406 {
407 return (gimple_code (t) == GIMPLE_GOTO
408 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
409 }
410
411 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
412 the other edge points to a bb with just __builtin_unreachable ().
413 I.e. return true for C->M edge in:
414 <bb C>:
415 ...
416 if (something)
417 goto <bb N>;
418 else
419 goto <bb M>;
420 <bb N>:
421 __builtin_unreachable ();
422 <bb M>: */
423
424 bool
425 assert_unreachable_fallthru_edge_p (edge e)
426 {
427 basic_block pred_bb = e->src;
428 gimple *last = last_stmt (pred_bb);
429 if (last && gimple_code (last) == GIMPLE_COND)
430 {
431 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
432 if (other_bb == e->dest)
433 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
434 if (EDGE_COUNT (other_bb->succs) == 0)
435 {
436 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
437 gimple *stmt;
438
439 if (gsi_end_p (gsi))
440 return false;
441 stmt = gsi_stmt (gsi);
442 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
443 {
444 gsi_next (&gsi);
445 if (gsi_end_p (gsi))
446 return false;
447 stmt = gsi_stmt (gsi);
448 }
449 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
450 }
451 }
452 return false;
453 }
454
455
456 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
457 could alter control flow except via eh. We initialize the flag at
458 CFG build time and only ever clear it later. */
459
460 static void
461 gimple_call_initialize_ctrl_altering (gimple *stmt)
462 {
463 int flags = gimple_call_flags (stmt);
464
465 /* A call alters control flow if it can make an abnormal goto. */
466 if (call_can_make_abnormal_goto (stmt)
467 /* A call also alters control flow if it does not return. */
468 || flags & ECF_NORETURN
469 /* TM ending statements have backedges out of the transaction.
470 Return true so we split the basic block containing them.
471 Note that the TM_BUILTIN test is merely an optimization. */
472 || ((flags & ECF_TM_BUILTIN)
473 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
474 /* BUILT_IN_RETURN call is same as return statement. */
475 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
476 /* IFN_UNIQUE should be the last insn, to make checking for it
477 as cheap as possible. */
478 || (gimple_call_internal_p (stmt)
479 && gimple_call_internal_unique_p (stmt)))
480 gimple_call_set_ctrl_altering (stmt, true);
481 else
482 gimple_call_set_ctrl_altering (stmt, false);
483 }
484
485
486 /* Insert SEQ after BB and build a flowgraph. */
487
488 static basic_block
489 make_blocks_1 (gimple_seq seq, basic_block bb)
490 {
491 gimple_stmt_iterator i = gsi_start (seq);
492 gimple *stmt = NULL;
493 bool start_new_block = true;
494 bool first_stmt_of_seq = true;
495
496 while (!gsi_end_p (i))
497 {
498 gimple *prev_stmt;
499
500 prev_stmt = stmt;
501 stmt = gsi_stmt (i);
502
503 if (stmt && is_gimple_call (stmt))
504 gimple_call_initialize_ctrl_altering (stmt);
505
506 /* If the statement starts a new basic block or if we have determined
507 in a previous pass that we need to create a new block for STMT, do
508 so now. */
509 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
510 {
511 if (!first_stmt_of_seq)
512 gsi_split_seq_before (&i, &seq);
513 bb = create_basic_block (seq, bb);
514 start_new_block = false;
515 }
516
517 /* Now add STMT to BB and create the subgraphs for special statement
518 codes. */
519 gimple_set_bb (stmt, bb);
520
521 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
522 next iteration. */
523 if (stmt_ends_bb_p (stmt))
524 {
525 /* If the stmt can make abnormal goto use a new temporary
526 for the assignment to the LHS. This makes sure the old value
527 of the LHS is available on the abnormal edge. Otherwise
528 we will end up with overlapping life-ranges for abnormal
529 SSA names. */
530 if (gimple_has_lhs (stmt)
531 && stmt_can_make_abnormal_goto (stmt)
532 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
533 {
534 tree lhs = gimple_get_lhs (stmt);
535 tree tmp = create_tmp_var (TREE_TYPE (lhs));
536 gimple *s = gimple_build_assign (lhs, tmp);
537 gimple_set_location (s, gimple_location (stmt));
538 gimple_set_block (s, gimple_block (stmt));
539 gimple_set_lhs (stmt, tmp);
540 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
541 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
542 DECL_GIMPLE_REG_P (tmp) = 1;
543 gsi_insert_after (&i, s, GSI_SAME_STMT);
544 }
545 start_new_block = true;
546 }
547
548 gsi_next (&i);
549 first_stmt_of_seq = false;
550 }
551 return bb;
552 }
553
554 /* Build a flowgraph for the sequence of stmts SEQ. */
555
556 static void
557 make_blocks (gimple_seq seq)
558 {
559 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
560 }
561
562 /* Create and return a new empty basic block after bb AFTER. */
563
564 static basic_block
565 create_bb (void *h, void *e, basic_block after)
566 {
567 basic_block bb;
568
569 gcc_assert (!e);
570
571 /* Create and initialize a new basic block. Since alloc_block uses
572 GC allocation that clears memory to allocate a basic block, we do
573 not have to clear the newly allocated basic block here. */
574 bb = alloc_block ();
575
576 bb->index = last_basic_block_for_fn (cfun);
577 bb->flags = BB_NEW;
578 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
579
580 /* Add the new block to the linked list of blocks. */
581 link_block (bb, after);
582
583 /* Grow the basic block array if needed. */
584 if ((size_t) last_basic_block_for_fn (cfun)
585 == basic_block_info_for_fn (cfun)->length ())
586 {
587 size_t new_size =
588 (last_basic_block_for_fn (cfun)
589 + (last_basic_block_for_fn (cfun) + 3) / 4);
590 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
591 }
592
593 /* Add the newly created block to the array. */
594 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
595
596 n_basic_blocks_for_fn (cfun)++;
597 last_basic_block_for_fn (cfun)++;
598
599 return bb;
600 }
601
602
603 /*---------------------------------------------------------------------------
604 Edge creation
605 ---------------------------------------------------------------------------*/
606
607 /* If basic block BB has an abnormal edge to a basic block
608 containing IFN_ABNORMAL_DISPATCHER internal call, return
609 that the dispatcher's basic block, otherwise return NULL. */
610
611 basic_block
612 get_abnormal_succ_dispatcher (basic_block bb)
613 {
614 edge e;
615 edge_iterator ei;
616
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
619 {
620 gimple_stmt_iterator gsi
621 = gsi_start_nondebug_after_labels_bb (e->dest);
622 gimple *g = gsi_stmt (gsi);
623 if (g
624 && is_gimple_call (g)
625 && gimple_call_internal_p (g)
626 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
627 return e->dest;
628 }
629 return NULL;
630 }
631
632 /* Helper function for make_edges. Create a basic block with
633 with ABNORMAL_DISPATCHER internal call in it if needed, and
634 create abnormal edges from BBS to it and from it to FOR_BB
635 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
636
637 static void
638 handle_abnormal_edges (basic_block *dispatcher_bbs,
639 basic_block for_bb, int *bb_to_omp_idx,
640 auto_vec<basic_block> *bbs, bool computed_goto)
641 {
642 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
643 unsigned int idx = 0;
644 basic_block bb;
645 bool inner = false;
646
647 if (bb_to_omp_idx)
648 {
649 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
650 if (bb_to_omp_idx[for_bb->index] != 0)
651 inner = true;
652 }
653
654 /* If the dispatcher has been created already, then there are basic
655 blocks with abnormal edges to it, so just make a new edge to
656 for_bb. */
657 if (*dispatcher == NULL)
658 {
659 /* Check if there are any basic blocks that need to have
660 abnormal edges to this dispatcher. If there are none, return
661 early. */
662 if (bb_to_omp_idx == NULL)
663 {
664 if (bbs->is_empty ())
665 return;
666 }
667 else
668 {
669 FOR_EACH_VEC_ELT (*bbs, idx, bb)
670 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
671 break;
672 if (bb == NULL)
673 return;
674 }
675
676 /* Create the dispatcher bb. */
677 *dispatcher = create_basic_block (NULL, for_bb);
678 if (computed_goto)
679 {
680 /* Factor computed gotos into a common computed goto site. Also
681 record the location of that site so that we can un-factor the
682 gotos after we have converted back to normal form. */
683 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
684
685 /* Create the destination of the factored goto. Each original
686 computed goto will put its desired destination into this
687 variable and jump to the label we create immediately below. */
688 tree var = create_tmp_var (ptr_type_node, "gotovar");
689
690 /* Build a label for the new block which will contain the
691 factored computed goto. */
692 tree factored_label_decl
693 = create_artificial_label (UNKNOWN_LOCATION);
694 gimple *factored_computed_goto_label
695 = gimple_build_label (factored_label_decl);
696 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
697
698 /* Build our new computed goto. */
699 gimple *factored_computed_goto = gimple_build_goto (var);
700 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
701
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
703 {
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
707
708 gsi = gsi_last_bb (bb);
709 gimple *last = gsi_stmt (gsi);
710
711 gcc_assert (computed_goto_p (last));
712
713 /* Copy the original computed goto's destination into VAR. */
714 gimple *assignment
715 = gimple_build_assign (var, gimple_goto_dest (last));
716 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
717
718 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
719 e->goto_locus = gimple_location (last);
720 gsi_remove (&gsi, true);
721 }
722 }
723 else
724 {
725 tree arg = inner ? boolean_true_node : boolean_false_node;
726 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
727 1, arg);
728 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
729 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
730
731 /* Create predecessor edges of the dispatcher. */
732 FOR_EACH_VEC_ELT (*bbs, idx, bb)
733 {
734 if (bb_to_omp_idx
735 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
736 continue;
737 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
738 }
739 }
740 }
741
742 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
743 }
744
745 /* Creates outgoing edges for BB. Returns 1 when it ends with an
746 computed goto, returns 2 when it ends with a statement that
747 might return to this function via an nonlocal goto, otherwise
748 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
749
750 static int
751 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
752 {
753 gimple *last = last_stmt (bb);
754 bool fallthru = false;
755 int ret = 0;
756
757 if (!last)
758 return ret;
759
760 switch (gimple_code (last))
761 {
762 case GIMPLE_GOTO:
763 if (make_goto_expr_edges (bb))
764 ret = 1;
765 fallthru = false;
766 break;
767 case GIMPLE_RETURN:
768 {
769 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
770 e->goto_locus = gimple_location (last);
771 fallthru = false;
772 }
773 break;
774 case GIMPLE_COND:
775 make_cond_expr_edges (bb);
776 fallthru = false;
777 break;
778 case GIMPLE_SWITCH:
779 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
780 fallthru = false;
781 break;
782 case GIMPLE_RESX:
783 make_eh_edges (last);
784 fallthru = false;
785 break;
786 case GIMPLE_EH_DISPATCH:
787 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
788 break;
789
790 case GIMPLE_CALL:
791 /* If this function receives a nonlocal goto, then we need to
792 make edges from this call site to all the nonlocal goto
793 handlers. */
794 if (stmt_can_make_abnormal_goto (last))
795 ret = 2;
796
797 /* If this statement has reachable exception handlers, then
798 create abnormal edges to them. */
799 make_eh_edges (last);
800
801 /* BUILTIN_RETURN is really a return statement. */
802 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
803 {
804 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
805 fallthru = false;
806 }
807 /* Some calls are known not to return. */
808 else
809 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
810 break;
811
812 case GIMPLE_ASSIGN:
813 /* A GIMPLE_ASSIGN may throw internally and thus be considered
814 control-altering. */
815 if (is_ctrl_altering_stmt (last))
816 make_eh_edges (last);
817 fallthru = true;
818 break;
819
820 case GIMPLE_ASM:
821 make_gimple_asm_edges (bb);
822 fallthru = true;
823 break;
824
825 CASE_GIMPLE_OMP:
826 fallthru = make_gimple_omp_edges (bb, pcur_region, pomp_index);
827 break;
828
829 case GIMPLE_TRANSACTION:
830 {
831 gtransaction *txn = as_a <gtransaction *> (last);
832 tree label1 = gimple_transaction_label_norm (txn);
833 tree label2 = gimple_transaction_label_uninst (txn);
834
835 if (label1)
836 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
837 if (label2)
838 make_edge (bb, label_to_block (label2),
839 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
840
841 tree label3 = gimple_transaction_label_over (txn);
842 if (gimple_transaction_subcode (txn)
843 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
844 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
845
846 fallthru = false;
847 }
848 break;
849
850 default:
851 gcc_assert (!stmt_ends_bb_p (last));
852 fallthru = true;
853 break;
854 }
855
856 if (fallthru)
857 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
858
859 return ret;
860 }
861
862 /* Join all the blocks in the flowgraph. */
863
864 static void
865 make_edges (void)
866 {
867 basic_block bb;
868 struct omp_region *cur_region = NULL;
869 auto_vec<basic_block> ab_edge_goto;
870 auto_vec<basic_block> ab_edge_call;
871 int *bb_to_omp_idx = NULL;
872 int cur_omp_region_idx = 0;
873
874 /* Create an edge from entry to the first block with executable
875 statements in it. */
876 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
877 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
878 EDGE_FALLTHRU);
879
880 /* Traverse the basic block array placing edges. */
881 FOR_EACH_BB_FN (bb, cfun)
882 {
883 int mer;
884
885 if (bb_to_omp_idx)
886 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
887
888 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
889 if (mer == 1)
890 ab_edge_goto.safe_push (bb);
891 else if (mer == 2)
892 ab_edge_call.safe_push (bb);
893
894 if (cur_region && bb_to_omp_idx == NULL)
895 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
896 }
897
898 /* Computed gotos are hell to deal with, especially if there are
899 lots of them with a large number of destinations. So we factor
900 them to a common computed goto location before we build the
901 edge list. After we convert back to normal form, we will un-factor
902 the computed gotos since factoring introduces an unwanted jump.
903 For non-local gotos and abnormal edges from calls to calls that return
904 twice or forced labels, factor the abnormal edges too, by having all
905 abnormal edges from the calls go to a common artificial basic block
906 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
907 basic block to all forced labels and calls returning twice.
908 We do this per-OpenMP structured block, because those regions
909 are guaranteed to be single entry single exit by the standard,
910 so it is not allowed to enter or exit such regions abnormally this way,
911 thus all computed gotos, non-local gotos and setjmp/longjmp calls
912 must not transfer control across SESE region boundaries. */
913 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
914 {
915 gimple_stmt_iterator gsi;
916 basic_block dispatcher_bb_array[2] = { NULL, NULL };
917 basic_block *dispatcher_bbs = dispatcher_bb_array;
918 int count = n_basic_blocks_for_fn (cfun);
919
920 if (bb_to_omp_idx)
921 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
922
923 FOR_EACH_BB_FN (bb, cfun)
924 {
925 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
926 {
927 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
928 tree target;
929
930 if (!label_stmt)
931 break;
932
933 target = gimple_label_label (label_stmt);
934
935 /* Make an edge to every label block that has been marked as a
936 potential target for a computed goto or a non-local goto. */
937 if (FORCED_LABEL (target))
938 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
939 &ab_edge_goto, true);
940 if (DECL_NONLOCAL (target))
941 {
942 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
943 &ab_edge_call, false);
944 break;
945 }
946 }
947
948 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
949 gsi_next_nondebug (&gsi);
950 if (!gsi_end_p (gsi))
951 {
952 /* Make an edge to every setjmp-like call. */
953 gimple *call_stmt = gsi_stmt (gsi);
954 if (is_gimple_call (call_stmt)
955 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
956 || gimple_call_builtin_p (call_stmt,
957 BUILT_IN_SETJMP_RECEIVER)))
958 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
959 &ab_edge_call, false);
960 }
961 }
962
963 if (bb_to_omp_idx)
964 XDELETE (dispatcher_bbs);
965 }
966
967 XDELETE (bb_to_omp_idx);
968
969 free_omp_regions ();
970 }
971
972 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
973 needed. Returns true if new bbs were created.
974 Note: This is transitional code, and should not be used for new code. We
975 should be able to get rid of this by rewriting all target va-arg
976 gimplification hooks to use an interface gimple_build_cond_value as described
977 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
978
979 bool
980 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
981 {
982 gimple *stmt = gsi_stmt (*gsi);
983 basic_block bb = gimple_bb (stmt);
984 basic_block lastbb, afterbb;
985 int old_num_bbs = n_basic_blocks_for_fn (cfun);
986 edge e;
987 lastbb = make_blocks_1 (seq, bb);
988 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
989 return false;
990 e = split_block (bb, stmt);
991 /* Move e->dest to come after the new basic blocks. */
992 afterbb = e->dest;
993 unlink_block (afterbb);
994 link_block (afterbb, lastbb);
995 redirect_edge_succ (e, bb->next_bb);
996 bb = bb->next_bb;
997 while (bb != afterbb)
998 {
999 struct omp_region *cur_region = NULL;
1000 int cur_omp_region_idx = 0;
1001 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1002 gcc_assert (!mer && !cur_region);
1003 add_bb_to_loop (bb, afterbb->loop_father);
1004 bb = bb->next_bb;
1005 }
1006 return true;
1007 }
1008
1009 /* Find the next available discriminator value for LOCUS. The
1010 discriminator distinguishes among several basic blocks that
1011 share a common locus, allowing for more accurate sample-based
1012 profiling. */
1013
1014 static int
1015 next_discriminator_for_locus (location_t locus)
1016 {
1017 struct locus_discrim_map item;
1018 struct locus_discrim_map **slot;
1019
1020 item.locus = locus;
1021 item.discriminator = 0;
1022 slot = discriminator_per_locus->find_slot_with_hash (
1023 &item, LOCATION_LINE (locus), INSERT);
1024 gcc_assert (slot);
1025 if (*slot == HTAB_EMPTY_ENTRY)
1026 {
1027 *slot = XNEW (struct locus_discrim_map);
1028 gcc_assert (*slot);
1029 (*slot)->locus = locus;
1030 (*slot)->discriminator = 0;
1031 }
1032 (*slot)->discriminator++;
1033 return (*slot)->discriminator;
1034 }
1035
1036 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1037
1038 static bool
1039 same_line_p (location_t locus1, location_t locus2)
1040 {
1041 expanded_location from, to;
1042
1043 if (locus1 == locus2)
1044 return true;
1045
1046 from = expand_location (locus1);
1047 to = expand_location (locus2);
1048
1049 if (from.line != to.line)
1050 return false;
1051 if (from.file == to.file)
1052 return true;
1053 return (from.file != NULL
1054 && to.file != NULL
1055 && filename_cmp (from.file, to.file) == 0);
1056 }
1057
1058 /* Assign discriminators to each basic block. */
1059
1060 static void
1061 assign_discriminators (void)
1062 {
1063 basic_block bb;
1064
1065 FOR_EACH_BB_FN (bb, cfun)
1066 {
1067 edge e;
1068 edge_iterator ei;
1069 gimple *last = last_stmt (bb);
1070 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1071
1072 if (locus == UNKNOWN_LOCATION)
1073 continue;
1074
1075 FOR_EACH_EDGE (e, ei, bb->succs)
1076 {
1077 gimple *first = first_non_label_stmt (e->dest);
1078 gimple *last = last_stmt (e->dest);
1079 if ((first && same_line_p (locus, gimple_location (first)))
1080 || (last && same_line_p (locus, gimple_location (last))))
1081 {
1082 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1083 bb->discriminator = next_discriminator_for_locus (locus);
1084 else
1085 e->dest->discriminator = next_discriminator_for_locus (locus);
1086 }
1087 }
1088 }
1089 }
1090
1091 /* Create the edges for a GIMPLE_COND starting at block BB. */
1092
1093 static void
1094 make_cond_expr_edges (basic_block bb)
1095 {
1096 gcond *entry = as_a <gcond *> (last_stmt (bb));
1097 gimple *then_stmt, *else_stmt;
1098 basic_block then_bb, else_bb;
1099 tree then_label, else_label;
1100 edge e;
1101
1102 gcc_assert (entry);
1103 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1104
1105 /* Entry basic blocks for each component. */
1106 then_label = gimple_cond_true_label (entry);
1107 else_label = gimple_cond_false_label (entry);
1108 then_bb = label_to_block (then_label);
1109 else_bb = label_to_block (else_label);
1110 then_stmt = first_stmt (then_bb);
1111 else_stmt = first_stmt (else_bb);
1112
1113 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1114 e->goto_locus = gimple_location (then_stmt);
1115 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1116 if (e)
1117 e->goto_locus = gimple_location (else_stmt);
1118
1119 /* We do not need the labels anymore. */
1120 gimple_cond_set_true_label (entry, NULL_TREE);
1121 gimple_cond_set_false_label (entry, NULL_TREE);
1122 }
1123
1124
1125 /* Called for each element in the hash table (P) as we delete the
1126 edge to cases hash table.
1127
1128 Clear all the TREE_CHAINs to prevent problems with copying of
1129 SWITCH_EXPRs and structure sharing rules, then free the hash table
1130 element. */
1131
1132 bool
1133 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1134 {
1135 tree t, next;
1136
1137 for (t = value; t; t = next)
1138 {
1139 next = CASE_CHAIN (t);
1140 CASE_CHAIN (t) = NULL;
1141 }
1142
1143 return true;
1144 }
1145
1146 /* Start recording information mapping edges to case labels. */
1147
1148 void
1149 start_recording_case_labels (void)
1150 {
1151 gcc_assert (edge_to_cases == NULL);
1152 edge_to_cases = new hash_map<edge, tree>;
1153 touched_switch_bbs = BITMAP_ALLOC (NULL);
1154 }
1155
1156 /* Return nonzero if we are recording information for case labels. */
1157
1158 static bool
1159 recording_case_labels_p (void)
1160 {
1161 return (edge_to_cases != NULL);
1162 }
1163
1164 /* Stop recording information mapping edges to case labels and
1165 remove any information we have recorded. */
1166 void
1167 end_recording_case_labels (void)
1168 {
1169 bitmap_iterator bi;
1170 unsigned i;
1171 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1172 delete edge_to_cases;
1173 edge_to_cases = NULL;
1174 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1175 {
1176 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1177 if (bb)
1178 {
1179 gimple *stmt = last_stmt (bb);
1180 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1181 group_case_labels_stmt (as_a <gswitch *> (stmt));
1182 }
1183 }
1184 BITMAP_FREE (touched_switch_bbs);
1185 }
1186
1187 /* If we are inside a {start,end}_recording_cases block, then return
1188 a chain of CASE_LABEL_EXPRs from T which reference E.
1189
1190 Otherwise return NULL. */
1191
1192 static tree
1193 get_cases_for_edge (edge e, gswitch *t)
1194 {
1195 tree *slot;
1196 size_t i, n;
1197
1198 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1199 chains available. Return NULL so the caller can detect this case. */
1200 if (!recording_case_labels_p ())
1201 return NULL;
1202
1203 slot = edge_to_cases->get (e);
1204 if (slot)
1205 return *slot;
1206
1207 /* If we did not find E in the hash table, then this must be the first
1208 time we have been queried for information about E & T. Add all the
1209 elements from T to the hash table then perform the query again. */
1210
1211 n = gimple_switch_num_labels (t);
1212 for (i = 0; i < n; i++)
1213 {
1214 tree elt = gimple_switch_label (t, i);
1215 tree lab = CASE_LABEL (elt);
1216 basic_block label_bb = label_to_block (lab);
1217 edge this_edge = find_edge (e->src, label_bb);
1218
1219 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1220 a new chain. */
1221 tree &s = edge_to_cases->get_or_insert (this_edge);
1222 CASE_CHAIN (elt) = s;
1223 s = elt;
1224 }
1225
1226 return *edge_to_cases->get (e);
1227 }
1228
1229 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1230
1231 static void
1232 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1233 {
1234 size_t i, n;
1235
1236 n = gimple_switch_num_labels (entry);
1237
1238 for (i = 0; i < n; ++i)
1239 {
1240 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1241 basic_block label_bb = label_to_block (lab);
1242 make_edge (bb, label_bb, 0);
1243 }
1244 }
1245
1246
1247 /* Return the basic block holding label DEST. */
1248
1249 basic_block
1250 label_to_block_fn (struct function *ifun, tree dest)
1251 {
1252 int uid = LABEL_DECL_UID (dest);
1253
1254 /* We would die hard when faced by an undefined label. Emit a label to
1255 the very first basic block. This will hopefully make even the dataflow
1256 and undefined variable warnings quite right. */
1257 if (seen_error () && uid < 0)
1258 {
1259 gimple_stmt_iterator gsi =
1260 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1261 gimple *stmt;
1262
1263 stmt = gimple_build_label (dest);
1264 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1265 uid = LABEL_DECL_UID (dest);
1266 }
1267 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1268 return NULL;
1269 return (*ifun->cfg->x_label_to_block_map)[uid];
1270 }
1271
1272 /* Create edges for a goto statement at block BB. Returns true
1273 if abnormal edges should be created. */
1274
1275 static bool
1276 make_goto_expr_edges (basic_block bb)
1277 {
1278 gimple_stmt_iterator last = gsi_last_bb (bb);
1279 gimple *goto_t = gsi_stmt (last);
1280
1281 /* A simple GOTO creates normal edges. */
1282 if (simple_goto_p (goto_t))
1283 {
1284 tree dest = gimple_goto_dest (goto_t);
1285 basic_block label_bb = label_to_block (dest);
1286 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1287 e->goto_locus = gimple_location (goto_t);
1288 gsi_remove (&last, true);
1289 return false;
1290 }
1291
1292 /* A computed GOTO creates abnormal edges. */
1293 return true;
1294 }
1295
1296 /* Create edges for an asm statement with labels at block BB. */
1297
1298 static void
1299 make_gimple_asm_edges (basic_block bb)
1300 {
1301 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1302 int i, n = gimple_asm_nlabels (stmt);
1303
1304 for (i = 0; i < n; ++i)
1305 {
1306 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1307 basic_block label_bb = label_to_block (label);
1308 make_edge (bb, label_bb, 0);
1309 }
1310 }
1311
1312 /*---------------------------------------------------------------------------
1313 Flowgraph analysis
1314 ---------------------------------------------------------------------------*/
1315
1316 /* Cleanup useless labels in basic blocks. This is something we wish
1317 to do early because it allows us to group case labels before creating
1318 the edges for the CFG, and it speeds up block statement iterators in
1319 all passes later on.
1320 We rerun this pass after CFG is created, to get rid of the labels that
1321 are no longer referenced. After then we do not run it any more, since
1322 (almost) no new labels should be created. */
1323
1324 /* A map from basic block index to the leading label of that block. */
1325 static struct label_record
1326 {
1327 /* The label. */
1328 tree label;
1329
1330 /* True if the label is referenced from somewhere. */
1331 bool used;
1332 } *label_for_bb;
1333
1334 /* Given LABEL return the first label in the same basic block. */
1335
1336 static tree
1337 main_block_label (tree label)
1338 {
1339 basic_block bb = label_to_block (label);
1340 tree main_label = label_for_bb[bb->index].label;
1341
1342 /* label_to_block possibly inserted undefined label into the chain. */
1343 if (!main_label)
1344 {
1345 label_for_bb[bb->index].label = label;
1346 main_label = label;
1347 }
1348
1349 label_for_bb[bb->index].used = true;
1350 return main_label;
1351 }
1352
1353 /* Clean up redundant labels within the exception tree. */
1354
1355 static void
1356 cleanup_dead_labels_eh (void)
1357 {
1358 eh_landing_pad lp;
1359 eh_region r;
1360 tree lab;
1361 int i;
1362
1363 if (cfun->eh == NULL)
1364 return;
1365
1366 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1367 if (lp && lp->post_landing_pad)
1368 {
1369 lab = main_block_label (lp->post_landing_pad);
1370 if (lab != lp->post_landing_pad)
1371 {
1372 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1373 EH_LANDING_PAD_NR (lab) = lp->index;
1374 }
1375 }
1376
1377 FOR_ALL_EH_REGION (r)
1378 switch (r->type)
1379 {
1380 case ERT_CLEANUP:
1381 case ERT_MUST_NOT_THROW:
1382 break;
1383
1384 case ERT_TRY:
1385 {
1386 eh_catch c;
1387 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1388 {
1389 lab = c->label;
1390 if (lab)
1391 c->label = main_block_label (lab);
1392 }
1393 }
1394 break;
1395
1396 case ERT_ALLOWED_EXCEPTIONS:
1397 lab = r->u.allowed.label;
1398 if (lab)
1399 r->u.allowed.label = main_block_label (lab);
1400 break;
1401 }
1402 }
1403
1404
1405 /* Cleanup redundant labels. This is a three-step process:
1406 1) Find the leading label for each block.
1407 2) Redirect all references to labels to the leading labels.
1408 3) Cleanup all useless labels. */
1409
1410 void
1411 cleanup_dead_labels (void)
1412 {
1413 basic_block bb;
1414 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1415
1416 /* Find a suitable label for each block. We use the first user-defined
1417 label if there is one, or otherwise just the first label we see. */
1418 FOR_EACH_BB_FN (bb, cfun)
1419 {
1420 gimple_stmt_iterator i;
1421
1422 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1423 {
1424 tree label;
1425 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1426
1427 if (!label_stmt)
1428 break;
1429
1430 label = gimple_label_label (label_stmt);
1431
1432 /* If we have not yet seen a label for the current block,
1433 remember this one and see if there are more labels. */
1434 if (!label_for_bb[bb->index].label)
1435 {
1436 label_for_bb[bb->index].label = label;
1437 continue;
1438 }
1439
1440 /* If we did see a label for the current block already, but it
1441 is an artificially created label, replace it if the current
1442 label is a user defined label. */
1443 if (!DECL_ARTIFICIAL (label)
1444 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1445 {
1446 label_for_bb[bb->index].label = label;
1447 break;
1448 }
1449 }
1450 }
1451
1452 /* Now redirect all jumps/branches to the selected label.
1453 First do so for each block ending in a control statement. */
1454 FOR_EACH_BB_FN (bb, cfun)
1455 {
1456 gimple *stmt = last_stmt (bb);
1457 tree label, new_label;
1458
1459 if (!stmt)
1460 continue;
1461
1462 switch (gimple_code (stmt))
1463 {
1464 case GIMPLE_COND:
1465 {
1466 gcond *cond_stmt = as_a <gcond *> (stmt);
1467 label = gimple_cond_true_label (cond_stmt);
1468 if (label)
1469 {
1470 new_label = main_block_label (label);
1471 if (new_label != label)
1472 gimple_cond_set_true_label (cond_stmt, new_label);
1473 }
1474
1475 label = gimple_cond_false_label (cond_stmt);
1476 if (label)
1477 {
1478 new_label = main_block_label (label);
1479 if (new_label != label)
1480 gimple_cond_set_false_label (cond_stmt, new_label);
1481 }
1482 }
1483 break;
1484
1485 case GIMPLE_SWITCH:
1486 {
1487 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1488 size_t i, n = gimple_switch_num_labels (switch_stmt);
1489
1490 /* Replace all destination labels. */
1491 for (i = 0; i < n; ++i)
1492 {
1493 tree case_label = gimple_switch_label (switch_stmt, i);
1494 label = CASE_LABEL (case_label);
1495 new_label = main_block_label (label);
1496 if (new_label != label)
1497 CASE_LABEL (case_label) = new_label;
1498 }
1499 break;
1500 }
1501
1502 case GIMPLE_ASM:
1503 {
1504 gasm *asm_stmt = as_a <gasm *> (stmt);
1505 int i, n = gimple_asm_nlabels (asm_stmt);
1506
1507 for (i = 0; i < n; ++i)
1508 {
1509 tree cons = gimple_asm_label_op (asm_stmt, i);
1510 tree label = main_block_label (TREE_VALUE (cons));
1511 TREE_VALUE (cons) = label;
1512 }
1513 break;
1514 }
1515
1516 /* We have to handle gotos until they're removed, and we don't
1517 remove them until after we've created the CFG edges. */
1518 case GIMPLE_GOTO:
1519 if (!computed_goto_p (stmt))
1520 {
1521 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1522 label = gimple_goto_dest (goto_stmt);
1523 new_label = main_block_label (label);
1524 if (new_label != label)
1525 gimple_goto_set_dest (goto_stmt, new_label);
1526 }
1527 break;
1528
1529 case GIMPLE_TRANSACTION:
1530 {
1531 gtransaction *txn = as_a <gtransaction *> (stmt);
1532
1533 label = gimple_transaction_label_norm (txn);
1534 if (label)
1535 {
1536 new_label = main_block_label (label);
1537 if (new_label != label)
1538 gimple_transaction_set_label_norm (txn, new_label);
1539 }
1540
1541 label = gimple_transaction_label_uninst (txn);
1542 if (label)
1543 {
1544 new_label = main_block_label (label);
1545 if (new_label != label)
1546 gimple_transaction_set_label_uninst (txn, new_label);
1547 }
1548
1549 label = gimple_transaction_label_over (txn);
1550 if (label)
1551 {
1552 new_label = main_block_label (label);
1553 if (new_label != label)
1554 gimple_transaction_set_label_over (txn, new_label);
1555 }
1556 }
1557 break;
1558
1559 default:
1560 break;
1561 }
1562 }
1563
1564 /* Do the same for the exception region tree labels. */
1565 cleanup_dead_labels_eh ();
1566
1567 /* Finally, purge dead labels. All user-defined labels and labels that
1568 can be the target of non-local gotos and labels which have their
1569 address taken are preserved. */
1570 FOR_EACH_BB_FN (bb, cfun)
1571 {
1572 gimple_stmt_iterator i;
1573 tree label_for_this_bb = label_for_bb[bb->index].label;
1574
1575 if (!label_for_this_bb)
1576 continue;
1577
1578 /* If the main label of the block is unused, we may still remove it. */
1579 if (!label_for_bb[bb->index].used)
1580 label_for_this_bb = NULL;
1581
1582 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1583 {
1584 tree label;
1585 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1586
1587 if (!label_stmt)
1588 break;
1589
1590 label = gimple_label_label (label_stmt);
1591
1592 if (label == label_for_this_bb
1593 || !DECL_ARTIFICIAL (label)
1594 || DECL_NONLOCAL (label)
1595 || FORCED_LABEL (label))
1596 gsi_next (&i);
1597 else
1598 gsi_remove (&i, true);
1599 }
1600 }
1601
1602 free (label_for_bb);
1603 }
1604
1605 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1606 the ones jumping to the same label.
1607 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1608
1609 void
1610 group_case_labels_stmt (gswitch *stmt)
1611 {
1612 int old_size = gimple_switch_num_labels (stmt);
1613 int i, j, new_size = old_size;
1614 basic_block default_bb = NULL;
1615
1616 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1617
1618 /* Look for possible opportunities to merge cases. */
1619 i = 1;
1620 while (i < old_size)
1621 {
1622 tree base_case, base_high;
1623 basic_block base_bb;
1624
1625 base_case = gimple_switch_label (stmt, i);
1626
1627 gcc_assert (base_case);
1628 base_bb = label_to_block (CASE_LABEL (base_case));
1629
1630 /* Discard cases that have the same destination as the
1631 default case. */
1632 if (base_bb == default_bb)
1633 {
1634 gimple_switch_set_label (stmt, i, NULL_TREE);
1635 i++;
1636 new_size--;
1637 continue;
1638 }
1639
1640 base_high = CASE_HIGH (base_case)
1641 ? CASE_HIGH (base_case)
1642 : CASE_LOW (base_case);
1643 i++;
1644
1645 /* Try to merge case labels. Break out when we reach the end
1646 of the label vector or when we cannot merge the next case
1647 label with the current one. */
1648 while (i < old_size)
1649 {
1650 tree merge_case = gimple_switch_label (stmt, i);
1651 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1652 wide_int bhp1 = wi::add (base_high, 1);
1653
1654 /* Merge the cases if they jump to the same place,
1655 and their ranges are consecutive. */
1656 if (merge_bb == base_bb
1657 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1658 {
1659 base_high = CASE_HIGH (merge_case) ?
1660 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1661 CASE_HIGH (base_case) = base_high;
1662 gimple_switch_set_label (stmt, i, NULL_TREE);
1663 new_size--;
1664 i++;
1665 }
1666 else
1667 break;
1668 }
1669 }
1670
1671 /* Compress the case labels in the label vector, and adjust the
1672 length of the vector. */
1673 for (i = 0, j = 0; i < new_size; i++)
1674 {
1675 while (! gimple_switch_label (stmt, j))
1676 j++;
1677 gimple_switch_set_label (stmt, i,
1678 gimple_switch_label (stmt, j++));
1679 }
1680
1681 gcc_assert (new_size <= old_size);
1682 gimple_switch_set_num_labels (stmt, new_size);
1683 }
1684
1685 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1686 and scan the sorted vector of cases. Combine the ones jumping to the
1687 same label. */
1688
1689 void
1690 group_case_labels (void)
1691 {
1692 basic_block bb;
1693
1694 FOR_EACH_BB_FN (bb, cfun)
1695 {
1696 gimple *stmt = last_stmt (bb);
1697 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1698 group_case_labels_stmt (as_a <gswitch *> (stmt));
1699 }
1700 }
1701
1702 /* Checks whether we can merge block B into block A. */
1703
1704 static bool
1705 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1706 {
1707 gimple *stmt;
1708
1709 if (!single_succ_p (a))
1710 return false;
1711
1712 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1713 return false;
1714
1715 if (single_succ (a) != b)
1716 return false;
1717
1718 if (!single_pred_p (b))
1719 return false;
1720
1721 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1722 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1723 return false;
1724
1725 /* If A ends by a statement causing exceptions or something similar, we
1726 cannot merge the blocks. */
1727 stmt = last_stmt (a);
1728 if (stmt && stmt_ends_bb_p (stmt))
1729 return false;
1730
1731 /* Do not allow a block with only a non-local label to be merged. */
1732 if (stmt)
1733 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1734 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1735 return false;
1736
1737 /* Examine the labels at the beginning of B. */
1738 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1739 gsi_next (&gsi))
1740 {
1741 tree lab;
1742 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1743 if (!label_stmt)
1744 break;
1745 lab = gimple_label_label (label_stmt);
1746
1747 /* Do not remove user forced labels or for -O0 any user labels. */
1748 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1749 return false;
1750 }
1751
1752 /* Protect simple loop latches. We only want to avoid merging
1753 the latch with the loop header or with a block in another
1754 loop in this case. */
1755 if (current_loops
1756 && b->loop_father->latch == b
1757 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1758 && (b->loop_father->header == a
1759 || b->loop_father != a->loop_father))
1760 return false;
1761
1762 /* It must be possible to eliminate all phi nodes in B. If ssa form
1763 is not up-to-date and a name-mapping is registered, we cannot eliminate
1764 any phis. Symbols marked for renaming are never a problem though. */
1765 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1766 gsi_next (&gsi))
1767 {
1768 gphi *phi = gsi.phi ();
1769 /* Technically only new names matter. */
1770 if (name_registered_for_update_p (PHI_RESULT (phi)))
1771 return false;
1772 }
1773
1774 /* When not optimizing, don't merge if we'd lose goto_locus. */
1775 if (!optimize
1776 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1777 {
1778 location_t goto_locus = single_succ_edge (a)->goto_locus;
1779 gimple_stmt_iterator prev, next;
1780 prev = gsi_last_nondebug_bb (a);
1781 next = gsi_after_labels (b);
1782 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1783 gsi_next_nondebug (&next);
1784 if ((gsi_end_p (prev)
1785 || gimple_location (gsi_stmt (prev)) != goto_locus)
1786 && (gsi_end_p (next)
1787 || gimple_location (gsi_stmt (next)) != goto_locus))
1788 return false;
1789 }
1790
1791 return true;
1792 }
1793
1794 /* Replaces all uses of NAME by VAL. */
1795
1796 void
1797 replace_uses_by (tree name, tree val)
1798 {
1799 imm_use_iterator imm_iter;
1800 use_operand_p use;
1801 gimple *stmt;
1802 edge e;
1803
1804 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1805 {
1806 /* Mark the block if we change the last stmt in it. */
1807 if (cfgcleanup_altered_bbs
1808 && stmt_ends_bb_p (stmt))
1809 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1810
1811 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1812 {
1813 replace_exp (use, val);
1814
1815 if (gimple_code (stmt) == GIMPLE_PHI)
1816 {
1817 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1818 PHI_ARG_INDEX_FROM_USE (use));
1819 if (e->flags & EDGE_ABNORMAL
1820 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1821 {
1822 /* This can only occur for virtual operands, since
1823 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1824 would prevent replacement. */
1825 gcc_checking_assert (virtual_operand_p (name));
1826 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1827 }
1828 }
1829 }
1830
1831 if (gimple_code (stmt) != GIMPLE_PHI)
1832 {
1833 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1834 gimple *orig_stmt = stmt;
1835 size_t i;
1836
1837 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1838 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1839 only change sth from non-invariant to invariant, and only
1840 when propagating constants. */
1841 if (is_gimple_min_invariant (val))
1842 for (i = 0; i < gimple_num_ops (stmt); i++)
1843 {
1844 tree op = gimple_op (stmt, i);
1845 /* Operands may be empty here. For example, the labels
1846 of a GIMPLE_COND are nulled out following the creation
1847 of the corresponding CFG edges. */
1848 if (op && TREE_CODE (op) == ADDR_EXPR)
1849 recompute_tree_invariant_for_addr_expr (op);
1850 }
1851
1852 if (fold_stmt (&gsi))
1853 stmt = gsi_stmt (gsi);
1854
1855 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1856 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1857
1858 update_stmt (stmt);
1859 }
1860 }
1861
1862 gcc_checking_assert (has_zero_uses (name));
1863
1864 /* Also update the trees stored in loop structures. */
1865 if (current_loops)
1866 {
1867 struct loop *loop;
1868
1869 FOR_EACH_LOOP (loop, 0)
1870 {
1871 substitute_in_loop_info (loop, name, val);
1872 }
1873 }
1874 }
1875
1876 /* Merge block B into block A. */
1877
1878 static void
1879 gimple_merge_blocks (basic_block a, basic_block b)
1880 {
1881 gimple_stmt_iterator last, gsi;
1882 gphi_iterator psi;
1883
1884 if (dump_file)
1885 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1886
1887 /* Remove all single-valued PHI nodes from block B of the form
1888 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1889 gsi = gsi_last_bb (a);
1890 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1891 {
1892 gimple *phi = gsi_stmt (psi);
1893 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1894 gimple *copy;
1895 bool may_replace_uses = (virtual_operand_p (def)
1896 || may_propagate_copy (def, use));
1897
1898 /* In case we maintain loop closed ssa form, do not propagate arguments
1899 of loop exit phi nodes. */
1900 if (current_loops
1901 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1902 && !virtual_operand_p (def)
1903 && TREE_CODE (use) == SSA_NAME
1904 && a->loop_father != b->loop_father)
1905 may_replace_uses = false;
1906
1907 if (!may_replace_uses)
1908 {
1909 gcc_assert (!virtual_operand_p (def));
1910
1911 /* Note that just emitting the copies is fine -- there is no problem
1912 with ordering of phi nodes. This is because A is the single
1913 predecessor of B, therefore results of the phi nodes cannot
1914 appear as arguments of the phi nodes. */
1915 copy = gimple_build_assign (def, use);
1916 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1917 remove_phi_node (&psi, false);
1918 }
1919 else
1920 {
1921 /* If we deal with a PHI for virtual operands, we can simply
1922 propagate these without fussing with folding or updating
1923 the stmt. */
1924 if (virtual_operand_p (def))
1925 {
1926 imm_use_iterator iter;
1927 use_operand_p use_p;
1928 gimple *stmt;
1929
1930 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1931 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1932 SET_USE (use_p, use);
1933
1934 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1935 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1936 }
1937 else
1938 replace_uses_by (def, use);
1939
1940 remove_phi_node (&psi, true);
1941 }
1942 }
1943
1944 /* Ensure that B follows A. */
1945 move_block_after (b, a);
1946
1947 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1948 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1949
1950 /* Remove labels from B and set gimple_bb to A for other statements. */
1951 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1952 {
1953 gimple *stmt = gsi_stmt (gsi);
1954 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1955 {
1956 tree label = gimple_label_label (label_stmt);
1957 int lp_nr;
1958
1959 gsi_remove (&gsi, false);
1960
1961 /* Now that we can thread computed gotos, we might have
1962 a situation where we have a forced label in block B
1963 However, the label at the start of block B might still be
1964 used in other ways (think about the runtime checking for
1965 Fortran assigned gotos). So we can not just delete the
1966 label. Instead we move the label to the start of block A. */
1967 if (FORCED_LABEL (label))
1968 {
1969 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1970 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1971 }
1972 /* Other user labels keep around in a form of a debug stmt. */
1973 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1974 {
1975 gimple *dbg = gimple_build_debug_bind (label,
1976 integer_zero_node,
1977 stmt);
1978 gimple_debug_bind_reset_value (dbg);
1979 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1980 }
1981
1982 lp_nr = EH_LANDING_PAD_NR (label);
1983 if (lp_nr)
1984 {
1985 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1986 lp->post_landing_pad = NULL;
1987 }
1988 }
1989 else
1990 {
1991 gimple_set_bb (stmt, a);
1992 gsi_next (&gsi);
1993 }
1994 }
1995
1996 /* When merging two BBs, if their counts are different, the larger count
1997 is selected as the new bb count. This is to handle inconsistent
1998 profiles. */
1999 if (a->loop_father == b->loop_father)
2000 {
2001 a->count = MAX (a->count, b->count);
2002 a->frequency = MAX (a->frequency, b->frequency);
2003 }
2004
2005 /* Merge the sequences. */
2006 last = gsi_last_bb (a);
2007 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2008 set_bb_seq (b, NULL);
2009
2010 if (cfgcleanup_altered_bbs)
2011 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2012 }
2013
2014
2015 /* Return the one of two successors of BB that is not reachable by a
2016 complex edge, if there is one. Else, return BB. We use
2017 this in optimizations that use post-dominators for their heuristics,
2018 to catch the cases in C++ where function calls are involved. */
2019
2020 basic_block
2021 single_noncomplex_succ (basic_block bb)
2022 {
2023 edge e0, e1;
2024 if (EDGE_COUNT (bb->succs) != 2)
2025 return bb;
2026
2027 e0 = EDGE_SUCC (bb, 0);
2028 e1 = EDGE_SUCC (bb, 1);
2029 if (e0->flags & EDGE_COMPLEX)
2030 return e1->dest;
2031 if (e1->flags & EDGE_COMPLEX)
2032 return e0->dest;
2033
2034 return bb;
2035 }
2036
2037 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2038
2039 void
2040 notice_special_calls (gcall *call)
2041 {
2042 int flags = gimple_call_flags (call);
2043
2044 if (flags & ECF_MAY_BE_ALLOCA)
2045 cfun->calls_alloca = true;
2046 if (flags & ECF_RETURNS_TWICE)
2047 cfun->calls_setjmp = true;
2048 }
2049
2050
2051 /* Clear flags set by notice_special_calls. Used by dead code removal
2052 to update the flags. */
2053
2054 void
2055 clear_special_calls (void)
2056 {
2057 cfun->calls_alloca = false;
2058 cfun->calls_setjmp = false;
2059 }
2060
2061 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2062
2063 static void
2064 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2065 {
2066 /* Since this block is no longer reachable, we can just delete all
2067 of its PHI nodes. */
2068 remove_phi_nodes (bb);
2069
2070 /* Remove edges to BB's successors. */
2071 while (EDGE_COUNT (bb->succs) > 0)
2072 remove_edge (EDGE_SUCC (bb, 0));
2073 }
2074
2075
2076 /* Remove statements of basic block BB. */
2077
2078 static void
2079 remove_bb (basic_block bb)
2080 {
2081 gimple_stmt_iterator i;
2082
2083 if (dump_file)
2084 {
2085 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2086 if (dump_flags & TDF_DETAILS)
2087 {
2088 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2089 fprintf (dump_file, "\n");
2090 }
2091 }
2092
2093 if (current_loops)
2094 {
2095 struct loop *loop = bb->loop_father;
2096
2097 /* If a loop gets removed, clean up the information associated
2098 with it. */
2099 if (loop->latch == bb
2100 || loop->header == bb)
2101 free_numbers_of_iterations_estimates_loop (loop);
2102 }
2103
2104 /* Remove all the instructions in the block. */
2105 if (bb_seq (bb) != NULL)
2106 {
2107 /* Walk backwards so as to get a chance to substitute all
2108 released DEFs into debug stmts. See
2109 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2110 details. */
2111 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2112 {
2113 gimple *stmt = gsi_stmt (i);
2114 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2115 if (label_stmt
2116 && (FORCED_LABEL (gimple_label_label (label_stmt))
2117 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2118 {
2119 basic_block new_bb;
2120 gimple_stmt_iterator new_gsi;
2121
2122 /* A non-reachable non-local label may still be referenced.
2123 But it no longer needs to carry the extra semantics of
2124 non-locality. */
2125 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2126 {
2127 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2128 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2129 }
2130
2131 new_bb = bb->prev_bb;
2132 new_gsi = gsi_start_bb (new_bb);
2133 gsi_remove (&i, false);
2134 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2135 }
2136 else
2137 {
2138 /* Release SSA definitions if we are in SSA. Note that we
2139 may be called when not in SSA. For example,
2140 final_cleanup calls this function via
2141 cleanup_tree_cfg. */
2142 if (gimple_in_ssa_p (cfun))
2143 release_defs (stmt);
2144
2145 gsi_remove (&i, true);
2146 }
2147
2148 if (gsi_end_p (i))
2149 i = gsi_last_bb (bb);
2150 else
2151 gsi_prev (&i);
2152 }
2153 }
2154
2155 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2156 bb->il.gimple.seq = NULL;
2157 bb->il.gimple.phi_nodes = NULL;
2158 }
2159
2160
2161 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2162 predicate VAL, return the edge that will be taken out of the block.
2163 If VAL does not match a unique edge, NULL is returned. */
2164
2165 edge
2166 find_taken_edge (basic_block bb, tree val)
2167 {
2168 gimple *stmt;
2169
2170 stmt = last_stmt (bb);
2171
2172 gcc_assert (stmt);
2173 gcc_assert (is_ctrl_stmt (stmt));
2174
2175 if (val == NULL)
2176 return NULL;
2177
2178 if (!is_gimple_min_invariant (val))
2179 return NULL;
2180
2181 if (gimple_code (stmt) == GIMPLE_COND)
2182 return find_taken_edge_cond_expr (bb, val);
2183
2184 if (gimple_code (stmt) == GIMPLE_SWITCH)
2185 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val);
2186
2187 if (computed_goto_p (stmt))
2188 {
2189 /* Only optimize if the argument is a label, if the argument is
2190 not a label then we can not construct a proper CFG.
2191
2192 It may be the case that we only need to allow the LABEL_REF to
2193 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2194 appear inside a LABEL_EXPR just to be safe. */
2195 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2196 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2197 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2198 return NULL;
2199 }
2200
2201 gcc_unreachable ();
2202 }
2203
2204 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2205 statement, determine which of the outgoing edges will be taken out of the
2206 block. Return NULL if either edge may be taken. */
2207
2208 static edge
2209 find_taken_edge_computed_goto (basic_block bb, tree val)
2210 {
2211 basic_block dest;
2212 edge e = NULL;
2213
2214 dest = label_to_block (val);
2215 if (dest)
2216 {
2217 e = find_edge (bb, dest);
2218 gcc_assert (e != NULL);
2219 }
2220
2221 return e;
2222 }
2223
2224 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2225 statement, determine which of the two edges will be taken out of the
2226 block. Return NULL if either edge may be taken. */
2227
2228 static edge
2229 find_taken_edge_cond_expr (basic_block bb, tree val)
2230 {
2231 edge true_edge, false_edge;
2232
2233 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2234
2235 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2236 return (integer_zerop (val) ? false_edge : true_edge);
2237 }
2238
2239 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2240 statement, determine which edge will be taken out of the block. Return
2241 NULL if any edge may be taken. */
2242
2243 static edge
2244 find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb,
2245 tree val)
2246 {
2247 basic_block dest_bb;
2248 edge e;
2249 tree taken_case;
2250
2251 taken_case = find_case_label_for_value (switch_stmt, val);
2252 dest_bb = label_to_block (CASE_LABEL (taken_case));
2253
2254 e = find_edge (bb, dest_bb);
2255 gcc_assert (e);
2256 return e;
2257 }
2258
2259
2260 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2261 We can make optimal use here of the fact that the case labels are
2262 sorted: We can do a binary search for a case matching VAL. */
2263
2264 static tree
2265 find_case_label_for_value (gswitch *switch_stmt, tree val)
2266 {
2267 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2268 tree default_case = gimple_switch_default_label (switch_stmt);
2269
2270 for (low = 0, high = n; high - low > 1; )
2271 {
2272 size_t i = (high + low) / 2;
2273 tree t = gimple_switch_label (switch_stmt, i);
2274 int cmp;
2275
2276 /* Cache the result of comparing CASE_LOW and val. */
2277 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2278
2279 if (cmp > 0)
2280 high = i;
2281 else
2282 low = i;
2283
2284 if (CASE_HIGH (t) == NULL)
2285 {
2286 /* A singe-valued case label. */
2287 if (cmp == 0)
2288 return t;
2289 }
2290 else
2291 {
2292 /* A case range. We can only handle integer ranges. */
2293 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2294 return t;
2295 }
2296 }
2297
2298 return default_case;
2299 }
2300
2301
2302 /* Dump a basic block on stderr. */
2303
2304 void
2305 gimple_debug_bb (basic_block bb)
2306 {
2307 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2308 }
2309
2310
2311 /* Dump basic block with index N on stderr. */
2312
2313 basic_block
2314 gimple_debug_bb_n (int n)
2315 {
2316 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2317 return BASIC_BLOCK_FOR_FN (cfun, n);
2318 }
2319
2320
2321 /* Dump the CFG on stderr.
2322
2323 FLAGS are the same used by the tree dumping functions
2324 (see TDF_* in dumpfile.h). */
2325
2326 void
2327 gimple_debug_cfg (int flags)
2328 {
2329 gimple_dump_cfg (stderr, flags);
2330 }
2331
2332
2333 /* Dump the program showing basic block boundaries on the given FILE.
2334
2335 FLAGS are the same used by the tree dumping functions (see TDF_* in
2336 tree.h). */
2337
2338 void
2339 gimple_dump_cfg (FILE *file, int flags)
2340 {
2341 if (flags & TDF_DETAILS)
2342 {
2343 dump_function_header (file, current_function_decl, flags);
2344 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2345 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2346 last_basic_block_for_fn (cfun));
2347
2348 brief_dump_cfg (file, flags | TDF_COMMENT);
2349 fprintf (file, "\n");
2350 }
2351
2352 if (flags & TDF_STATS)
2353 dump_cfg_stats (file);
2354
2355 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2356 }
2357
2358
2359 /* Dump CFG statistics on FILE. */
2360
2361 void
2362 dump_cfg_stats (FILE *file)
2363 {
2364 static long max_num_merged_labels = 0;
2365 unsigned long size, total = 0;
2366 long num_edges;
2367 basic_block bb;
2368 const char * const fmt_str = "%-30s%-13s%12s\n";
2369 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2370 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2371 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2372 const char *funcname = current_function_name ();
2373
2374 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2375
2376 fprintf (file, "---------------------------------------------------------\n");
2377 fprintf (file, fmt_str, "", " Number of ", "Memory");
2378 fprintf (file, fmt_str, "", " instances ", "used ");
2379 fprintf (file, "---------------------------------------------------------\n");
2380
2381 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2382 total += size;
2383 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2384 SCALE (size), LABEL (size));
2385
2386 num_edges = 0;
2387 FOR_EACH_BB_FN (bb, cfun)
2388 num_edges += EDGE_COUNT (bb->succs);
2389 size = num_edges * sizeof (struct edge_def);
2390 total += size;
2391 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2392
2393 fprintf (file, "---------------------------------------------------------\n");
2394 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2395 LABEL (total));
2396 fprintf (file, "---------------------------------------------------------\n");
2397 fprintf (file, "\n");
2398
2399 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2400 max_num_merged_labels = cfg_stats.num_merged_labels;
2401
2402 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2403 cfg_stats.num_merged_labels, max_num_merged_labels);
2404
2405 fprintf (file, "\n");
2406 }
2407
2408
2409 /* Dump CFG statistics on stderr. Keep extern so that it's always
2410 linked in the final executable. */
2411
2412 DEBUG_FUNCTION void
2413 debug_cfg_stats (void)
2414 {
2415 dump_cfg_stats (stderr);
2416 }
2417
2418 /*---------------------------------------------------------------------------
2419 Miscellaneous helpers
2420 ---------------------------------------------------------------------------*/
2421
2422 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2423 flow. Transfers of control flow associated with EH are excluded. */
2424
2425 static bool
2426 call_can_make_abnormal_goto (gimple *t)
2427 {
2428 /* If the function has no non-local labels, then a call cannot make an
2429 abnormal transfer of control. */
2430 if (!cfun->has_nonlocal_label
2431 && !cfun->calls_setjmp)
2432 return false;
2433
2434 /* Likewise if the call has no side effects. */
2435 if (!gimple_has_side_effects (t))
2436 return false;
2437
2438 /* Likewise if the called function is leaf. */
2439 if (gimple_call_flags (t) & ECF_LEAF)
2440 return false;
2441
2442 return true;
2443 }
2444
2445
2446 /* Return true if T can make an abnormal transfer of control flow.
2447 Transfers of control flow associated with EH are excluded. */
2448
2449 bool
2450 stmt_can_make_abnormal_goto (gimple *t)
2451 {
2452 if (computed_goto_p (t))
2453 return true;
2454 if (is_gimple_call (t))
2455 return call_can_make_abnormal_goto (t);
2456 return false;
2457 }
2458
2459
2460 /* Return true if T represents a stmt that always transfers control. */
2461
2462 bool
2463 is_ctrl_stmt (gimple *t)
2464 {
2465 switch (gimple_code (t))
2466 {
2467 case GIMPLE_COND:
2468 case GIMPLE_SWITCH:
2469 case GIMPLE_GOTO:
2470 case GIMPLE_RETURN:
2471 case GIMPLE_RESX:
2472 return true;
2473 default:
2474 return false;
2475 }
2476 }
2477
2478
2479 /* Return true if T is a statement that may alter the flow of control
2480 (e.g., a call to a non-returning function). */
2481
2482 bool
2483 is_ctrl_altering_stmt (gimple *t)
2484 {
2485 gcc_assert (t);
2486
2487 switch (gimple_code (t))
2488 {
2489 case GIMPLE_CALL:
2490 /* Per stmt call flag indicates whether the call could alter
2491 controlflow. */
2492 if (gimple_call_ctrl_altering_p (t))
2493 return true;
2494 break;
2495
2496 case GIMPLE_EH_DISPATCH:
2497 /* EH_DISPATCH branches to the individual catch handlers at
2498 this level of a try or allowed-exceptions region. It can
2499 fallthru to the next statement as well. */
2500 return true;
2501
2502 case GIMPLE_ASM:
2503 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2504 return true;
2505 break;
2506
2507 CASE_GIMPLE_OMP:
2508 /* OpenMP directives alter control flow. */
2509 return true;
2510
2511 case GIMPLE_TRANSACTION:
2512 /* A transaction start alters control flow. */
2513 return true;
2514
2515 default:
2516 break;
2517 }
2518
2519 /* If a statement can throw, it alters control flow. */
2520 return stmt_can_throw_internal (t);
2521 }
2522
2523
2524 /* Return true if T is a simple local goto. */
2525
2526 bool
2527 simple_goto_p (gimple *t)
2528 {
2529 return (gimple_code (t) == GIMPLE_GOTO
2530 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2531 }
2532
2533
2534 /* Return true if STMT should start a new basic block. PREV_STMT is
2535 the statement preceding STMT. It is used when STMT is a label or a
2536 case label. Labels should only start a new basic block if their
2537 previous statement wasn't a label. Otherwise, sequence of labels
2538 would generate unnecessary basic blocks that only contain a single
2539 label. */
2540
2541 static inline bool
2542 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2543 {
2544 if (stmt == NULL)
2545 return false;
2546
2547 /* Labels start a new basic block only if the preceding statement
2548 wasn't a label of the same type. This prevents the creation of
2549 consecutive blocks that have nothing but a single label. */
2550 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2551 {
2552 /* Nonlocal and computed GOTO targets always start a new block. */
2553 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2554 || FORCED_LABEL (gimple_label_label (label_stmt)))
2555 return true;
2556
2557 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2558 {
2559 if (DECL_NONLOCAL (gimple_label_label (
2560 as_a <glabel *> (prev_stmt))))
2561 return true;
2562
2563 cfg_stats.num_merged_labels++;
2564 return false;
2565 }
2566 else
2567 return true;
2568 }
2569 else if (gimple_code (stmt) == GIMPLE_CALL
2570 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2571 /* setjmp acts similar to a nonlocal GOTO target and thus should
2572 start a new block. */
2573 return true;
2574
2575 return false;
2576 }
2577
2578
2579 /* Return true if T should end a basic block. */
2580
2581 bool
2582 stmt_ends_bb_p (gimple *t)
2583 {
2584 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2585 }
2586
2587 /* Remove block annotations and other data structures. */
2588
2589 void
2590 delete_tree_cfg_annotations (struct function *fn)
2591 {
2592 vec_free (label_to_block_map_for_fn (fn));
2593 }
2594
2595 /* Return the virtual phi in BB. */
2596
2597 gphi *
2598 get_virtual_phi (basic_block bb)
2599 {
2600 for (gphi_iterator gsi = gsi_start_phis (bb);
2601 !gsi_end_p (gsi);
2602 gsi_next (&gsi))
2603 {
2604 gphi *phi = gsi.phi ();
2605
2606 if (virtual_operand_p (PHI_RESULT (phi)))
2607 return phi;
2608 }
2609
2610 return NULL;
2611 }
2612
2613 /* Return the first statement in basic block BB. */
2614
2615 gimple *
2616 first_stmt (basic_block bb)
2617 {
2618 gimple_stmt_iterator i = gsi_start_bb (bb);
2619 gimple *stmt = NULL;
2620
2621 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2622 {
2623 gsi_next (&i);
2624 stmt = NULL;
2625 }
2626 return stmt;
2627 }
2628
2629 /* Return the first non-label statement in basic block BB. */
2630
2631 static gimple *
2632 first_non_label_stmt (basic_block bb)
2633 {
2634 gimple_stmt_iterator i = gsi_start_bb (bb);
2635 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2636 gsi_next (&i);
2637 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2638 }
2639
2640 /* Return the last statement in basic block BB. */
2641
2642 gimple *
2643 last_stmt (basic_block bb)
2644 {
2645 gimple_stmt_iterator i = gsi_last_bb (bb);
2646 gimple *stmt = NULL;
2647
2648 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2649 {
2650 gsi_prev (&i);
2651 stmt = NULL;
2652 }
2653 return stmt;
2654 }
2655
2656 /* Return the last statement of an otherwise empty block. Return NULL
2657 if the block is totally empty, or if it contains more than one
2658 statement. */
2659
2660 gimple *
2661 last_and_only_stmt (basic_block bb)
2662 {
2663 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2664 gimple *last, *prev;
2665
2666 if (gsi_end_p (i))
2667 return NULL;
2668
2669 last = gsi_stmt (i);
2670 gsi_prev_nondebug (&i);
2671 if (gsi_end_p (i))
2672 return last;
2673
2674 /* Empty statements should no longer appear in the instruction stream.
2675 Everything that might have appeared before should be deleted by
2676 remove_useless_stmts, and the optimizers should just gsi_remove
2677 instead of smashing with build_empty_stmt.
2678
2679 Thus the only thing that should appear here in a block containing
2680 one executable statement is a label. */
2681 prev = gsi_stmt (i);
2682 if (gimple_code (prev) == GIMPLE_LABEL)
2683 return last;
2684 else
2685 return NULL;
2686 }
2687
2688 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2689
2690 static void
2691 reinstall_phi_args (edge new_edge, edge old_edge)
2692 {
2693 edge_var_map *vm;
2694 int i;
2695 gphi_iterator phis;
2696
2697 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2698 if (!v)
2699 return;
2700
2701 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2702 v->iterate (i, &vm) && !gsi_end_p (phis);
2703 i++, gsi_next (&phis))
2704 {
2705 gphi *phi = phis.phi ();
2706 tree result = redirect_edge_var_map_result (vm);
2707 tree arg = redirect_edge_var_map_def (vm);
2708
2709 gcc_assert (result == gimple_phi_result (phi));
2710
2711 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2712 }
2713
2714 redirect_edge_var_map_clear (old_edge);
2715 }
2716
2717 /* Returns the basic block after which the new basic block created
2718 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2719 near its "logical" location. This is of most help to humans looking
2720 at debugging dumps. */
2721
2722 basic_block
2723 split_edge_bb_loc (edge edge_in)
2724 {
2725 basic_block dest = edge_in->dest;
2726 basic_block dest_prev = dest->prev_bb;
2727
2728 if (dest_prev)
2729 {
2730 edge e = find_edge (dest_prev, dest);
2731 if (e && !(e->flags & EDGE_COMPLEX))
2732 return edge_in->src;
2733 }
2734 return dest_prev;
2735 }
2736
2737 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2738 Abort on abnormal edges. */
2739
2740 static basic_block
2741 gimple_split_edge (edge edge_in)
2742 {
2743 basic_block new_bb, after_bb, dest;
2744 edge new_edge, e;
2745
2746 /* Abnormal edges cannot be split. */
2747 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2748
2749 dest = edge_in->dest;
2750
2751 after_bb = split_edge_bb_loc (edge_in);
2752
2753 new_bb = create_empty_bb (after_bb);
2754 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2755 new_bb->count = edge_in->count;
2756 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2757 new_edge->probability = REG_BR_PROB_BASE;
2758 new_edge->count = edge_in->count;
2759
2760 e = redirect_edge_and_branch (edge_in, new_bb);
2761 gcc_assert (e == edge_in);
2762 reinstall_phi_args (new_edge, e);
2763
2764 return new_bb;
2765 }
2766
2767
2768 /* Verify properties of the address expression T with base object BASE. */
2769
2770 static tree
2771 verify_address (tree t, tree base)
2772 {
2773 bool old_constant;
2774 bool old_side_effects;
2775 bool new_constant;
2776 bool new_side_effects;
2777
2778 old_constant = TREE_CONSTANT (t);
2779 old_side_effects = TREE_SIDE_EFFECTS (t);
2780
2781 recompute_tree_invariant_for_addr_expr (t);
2782 new_side_effects = TREE_SIDE_EFFECTS (t);
2783 new_constant = TREE_CONSTANT (t);
2784
2785 if (old_constant != new_constant)
2786 {
2787 error ("constant not recomputed when ADDR_EXPR changed");
2788 return t;
2789 }
2790 if (old_side_effects != new_side_effects)
2791 {
2792 error ("side effects not recomputed when ADDR_EXPR changed");
2793 return t;
2794 }
2795
2796 if (!(TREE_CODE (base) == VAR_DECL
2797 || TREE_CODE (base) == PARM_DECL
2798 || TREE_CODE (base) == RESULT_DECL))
2799 return NULL_TREE;
2800
2801 if (DECL_GIMPLE_REG_P (base))
2802 {
2803 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2804 return base;
2805 }
2806
2807 return NULL_TREE;
2808 }
2809
2810 /* Callback for walk_tree, check that all elements with address taken are
2811 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2812 inside a PHI node. */
2813
2814 static tree
2815 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2816 {
2817 tree t = *tp, x;
2818
2819 if (TYPE_P (t))
2820 *walk_subtrees = 0;
2821
2822 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2823 #define CHECK_OP(N, MSG) \
2824 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2825 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2826
2827 switch (TREE_CODE (t))
2828 {
2829 case SSA_NAME:
2830 if (SSA_NAME_IN_FREE_LIST (t))
2831 {
2832 error ("SSA name in freelist but still referenced");
2833 return *tp;
2834 }
2835 break;
2836
2837 case INDIRECT_REF:
2838 error ("INDIRECT_REF in gimple IL");
2839 return t;
2840
2841 case MEM_REF:
2842 x = TREE_OPERAND (t, 0);
2843 if (!POINTER_TYPE_P (TREE_TYPE (x))
2844 || !is_gimple_mem_ref_addr (x))
2845 {
2846 error ("invalid first operand of MEM_REF");
2847 return x;
2848 }
2849 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2850 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2851 {
2852 error ("invalid offset operand of MEM_REF");
2853 return TREE_OPERAND (t, 1);
2854 }
2855 if (TREE_CODE (x) == ADDR_EXPR
2856 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2857 return x;
2858 *walk_subtrees = 0;
2859 break;
2860
2861 case ASSERT_EXPR:
2862 x = fold (ASSERT_EXPR_COND (t));
2863 if (x == boolean_false_node)
2864 {
2865 error ("ASSERT_EXPR with an always-false condition");
2866 return *tp;
2867 }
2868 break;
2869
2870 case MODIFY_EXPR:
2871 error ("MODIFY_EXPR not expected while having tuples");
2872 return *tp;
2873
2874 case ADDR_EXPR:
2875 {
2876 tree tem;
2877
2878 gcc_assert (is_gimple_address (t));
2879
2880 /* Skip any references (they will be checked when we recurse down the
2881 tree) and ensure that any variable used as a prefix is marked
2882 addressable. */
2883 for (x = TREE_OPERAND (t, 0);
2884 handled_component_p (x);
2885 x = TREE_OPERAND (x, 0))
2886 ;
2887
2888 if ((tem = verify_address (t, x)))
2889 return tem;
2890
2891 if (!(TREE_CODE (x) == VAR_DECL
2892 || TREE_CODE (x) == PARM_DECL
2893 || TREE_CODE (x) == RESULT_DECL))
2894 return NULL;
2895
2896 if (!TREE_ADDRESSABLE (x))
2897 {
2898 error ("address taken, but ADDRESSABLE bit not set");
2899 return x;
2900 }
2901
2902 break;
2903 }
2904
2905 case COND_EXPR:
2906 x = COND_EXPR_COND (t);
2907 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2908 {
2909 error ("non-integral used in condition");
2910 return x;
2911 }
2912 if (!is_gimple_condexpr (x))
2913 {
2914 error ("invalid conditional operand");
2915 return x;
2916 }
2917 break;
2918
2919 case NON_LVALUE_EXPR:
2920 case TRUTH_NOT_EXPR:
2921 gcc_unreachable ();
2922
2923 CASE_CONVERT:
2924 case FIX_TRUNC_EXPR:
2925 case FLOAT_EXPR:
2926 case NEGATE_EXPR:
2927 case ABS_EXPR:
2928 case BIT_NOT_EXPR:
2929 CHECK_OP (0, "invalid operand to unary operator");
2930 break;
2931
2932 case REALPART_EXPR:
2933 case IMAGPART_EXPR:
2934 case BIT_FIELD_REF:
2935 if (!is_gimple_reg_type (TREE_TYPE (t)))
2936 {
2937 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2938 return t;
2939 }
2940
2941 if (TREE_CODE (t) == BIT_FIELD_REF)
2942 {
2943 tree t0 = TREE_OPERAND (t, 0);
2944 tree t1 = TREE_OPERAND (t, 1);
2945 tree t2 = TREE_OPERAND (t, 2);
2946 if (!tree_fits_uhwi_p (t1)
2947 || !tree_fits_uhwi_p (t2))
2948 {
2949 error ("invalid position or size operand to BIT_FIELD_REF");
2950 return t;
2951 }
2952 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2953 && (TYPE_PRECISION (TREE_TYPE (t))
2954 != tree_to_uhwi (t1)))
2955 {
2956 error ("integral result type precision does not match "
2957 "field size of BIT_FIELD_REF");
2958 return t;
2959 }
2960 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2961 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2962 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
2963 != tree_to_uhwi (t1)))
2964 {
2965 error ("mode size of non-integral result does not "
2966 "match field size of BIT_FIELD_REF");
2967 return t;
2968 }
2969 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2970 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2971 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2972 {
2973 error ("position plus size exceeds size of referenced object in "
2974 "BIT_FIELD_REF");
2975 return t;
2976 }
2977 }
2978 t = TREE_OPERAND (t, 0);
2979
2980 /* Fall-through. */
2981 case COMPONENT_REF:
2982 case ARRAY_REF:
2983 case ARRAY_RANGE_REF:
2984 case VIEW_CONVERT_EXPR:
2985 /* We have a nest of references. Verify that each of the operands
2986 that determine where to reference is either a constant or a variable,
2987 verify that the base is valid, and then show we've already checked
2988 the subtrees. */
2989 while (handled_component_p (t))
2990 {
2991 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2992 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2993 else if (TREE_CODE (t) == ARRAY_REF
2994 || TREE_CODE (t) == ARRAY_RANGE_REF)
2995 {
2996 CHECK_OP (1, "invalid array index");
2997 if (TREE_OPERAND (t, 2))
2998 CHECK_OP (2, "invalid array lower bound");
2999 if (TREE_OPERAND (t, 3))
3000 CHECK_OP (3, "invalid array stride");
3001 }
3002 else if (TREE_CODE (t) == BIT_FIELD_REF
3003 || TREE_CODE (t) == REALPART_EXPR
3004 || TREE_CODE (t) == IMAGPART_EXPR)
3005 {
3006 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3007 "REALPART_EXPR");
3008 return t;
3009 }
3010
3011 t = TREE_OPERAND (t, 0);
3012 }
3013
3014 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3015 {
3016 error ("invalid reference prefix");
3017 return t;
3018 }
3019 *walk_subtrees = 0;
3020 break;
3021 case PLUS_EXPR:
3022 case MINUS_EXPR:
3023 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3024 POINTER_PLUS_EXPR. */
3025 if (POINTER_TYPE_P (TREE_TYPE (t)))
3026 {
3027 error ("invalid operand to plus/minus, type is a pointer");
3028 return t;
3029 }
3030 CHECK_OP (0, "invalid operand to binary operator");
3031 CHECK_OP (1, "invalid operand to binary operator");
3032 break;
3033
3034 case POINTER_PLUS_EXPR:
3035 /* Check to make sure the first operand is a pointer or reference type. */
3036 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3037 {
3038 error ("invalid operand to pointer plus, first operand is not a pointer");
3039 return t;
3040 }
3041 /* Check to make sure the second operand is a ptrofftype. */
3042 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3043 {
3044 error ("invalid operand to pointer plus, second operand is not an "
3045 "integer type of appropriate width");
3046 return t;
3047 }
3048 /* FALLTHROUGH */
3049 case LT_EXPR:
3050 case LE_EXPR:
3051 case GT_EXPR:
3052 case GE_EXPR:
3053 case EQ_EXPR:
3054 case NE_EXPR:
3055 case UNORDERED_EXPR:
3056 case ORDERED_EXPR:
3057 case UNLT_EXPR:
3058 case UNLE_EXPR:
3059 case UNGT_EXPR:
3060 case UNGE_EXPR:
3061 case UNEQ_EXPR:
3062 case LTGT_EXPR:
3063 case MULT_EXPR:
3064 case TRUNC_DIV_EXPR:
3065 case CEIL_DIV_EXPR:
3066 case FLOOR_DIV_EXPR:
3067 case ROUND_DIV_EXPR:
3068 case TRUNC_MOD_EXPR:
3069 case CEIL_MOD_EXPR:
3070 case FLOOR_MOD_EXPR:
3071 case ROUND_MOD_EXPR:
3072 case RDIV_EXPR:
3073 case EXACT_DIV_EXPR:
3074 case MIN_EXPR:
3075 case MAX_EXPR:
3076 case LSHIFT_EXPR:
3077 case RSHIFT_EXPR:
3078 case LROTATE_EXPR:
3079 case RROTATE_EXPR:
3080 case BIT_IOR_EXPR:
3081 case BIT_XOR_EXPR:
3082 case BIT_AND_EXPR:
3083 CHECK_OP (0, "invalid operand to binary operator");
3084 CHECK_OP (1, "invalid operand to binary operator");
3085 break;
3086
3087 case CONSTRUCTOR:
3088 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3089 *walk_subtrees = 0;
3090 break;
3091
3092 case CASE_LABEL_EXPR:
3093 if (CASE_CHAIN (t))
3094 {
3095 error ("invalid CASE_CHAIN");
3096 return t;
3097 }
3098 break;
3099
3100 default:
3101 break;
3102 }
3103 return NULL;
3104
3105 #undef CHECK_OP
3106 }
3107
3108
3109 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3110 Returns true if there is an error, otherwise false. */
3111
3112 static bool
3113 verify_types_in_gimple_min_lval (tree expr)
3114 {
3115 tree op;
3116
3117 if (is_gimple_id (expr))
3118 return false;
3119
3120 if (TREE_CODE (expr) != TARGET_MEM_REF
3121 && TREE_CODE (expr) != MEM_REF)
3122 {
3123 error ("invalid expression for min lvalue");
3124 return true;
3125 }
3126
3127 /* TARGET_MEM_REFs are strange beasts. */
3128 if (TREE_CODE (expr) == TARGET_MEM_REF)
3129 return false;
3130
3131 op = TREE_OPERAND (expr, 0);
3132 if (!is_gimple_val (op))
3133 {
3134 error ("invalid operand in indirect reference");
3135 debug_generic_stmt (op);
3136 return true;
3137 }
3138 /* Memory references now generally can involve a value conversion. */
3139
3140 return false;
3141 }
3142
3143 /* Verify if EXPR is a valid GIMPLE reference expression. If
3144 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3145 if there is an error, otherwise false. */
3146
3147 static bool
3148 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3149 {
3150 while (handled_component_p (expr))
3151 {
3152 tree op = TREE_OPERAND (expr, 0);
3153
3154 if (TREE_CODE (expr) == ARRAY_REF
3155 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3156 {
3157 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3158 || (TREE_OPERAND (expr, 2)
3159 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3160 || (TREE_OPERAND (expr, 3)
3161 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3162 {
3163 error ("invalid operands to array reference");
3164 debug_generic_stmt (expr);
3165 return true;
3166 }
3167 }
3168
3169 /* Verify if the reference array element types are compatible. */
3170 if (TREE_CODE (expr) == ARRAY_REF
3171 && !useless_type_conversion_p (TREE_TYPE (expr),
3172 TREE_TYPE (TREE_TYPE (op))))
3173 {
3174 error ("type mismatch in array reference");
3175 debug_generic_stmt (TREE_TYPE (expr));
3176 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3177 return true;
3178 }
3179 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3180 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3181 TREE_TYPE (TREE_TYPE (op))))
3182 {
3183 error ("type mismatch in array range reference");
3184 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3185 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3186 return true;
3187 }
3188
3189 if ((TREE_CODE (expr) == REALPART_EXPR
3190 || TREE_CODE (expr) == IMAGPART_EXPR)
3191 && !useless_type_conversion_p (TREE_TYPE (expr),
3192 TREE_TYPE (TREE_TYPE (op))))
3193 {
3194 error ("type mismatch in real/imagpart reference");
3195 debug_generic_stmt (TREE_TYPE (expr));
3196 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3197 return true;
3198 }
3199
3200 if (TREE_CODE (expr) == COMPONENT_REF
3201 && !useless_type_conversion_p (TREE_TYPE (expr),
3202 TREE_TYPE (TREE_OPERAND (expr, 1))))
3203 {
3204 error ("type mismatch in component reference");
3205 debug_generic_stmt (TREE_TYPE (expr));
3206 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3207 return true;
3208 }
3209
3210 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3211 {
3212 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3213 that their operand is not an SSA name or an invariant when
3214 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3215 bug). Otherwise there is nothing to verify, gross mismatches at
3216 most invoke undefined behavior. */
3217 if (require_lvalue
3218 && (TREE_CODE (op) == SSA_NAME
3219 || is_gimple_min_invariant (op)))
3220 {
3221 error ("conversion of an SSA_NAME on the left hand side");
3222 debug_generic_stmt (expr);
3223 return true;
3224 }
3225 else if (TREE_CODE (op) == SSA_NAME
3226 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3227 {
3228 error ("conversion of register to a different size");
3229 debug_generic_stmt (expr);
3230 return true;
3231 }
3232 else if (!handled_component_p (op))
3233 return false;
3234 }
3235
3236 expr = op;
3237 }
3238
3239 if (TREE_CODE (expr) == MEM_REF)
3240 {
3241 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3242 {
3243 error ("invalid address operand in MEM_REF");
3244 debug_generic_stmt (expr);
3245 return true;
3246 }
3247 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3248 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3249 {
3250 error ("invalid offset operand in MEM_REF");
3251 debug_generic_stmt (expr);
3252 return true;
3253 }
3254 }
3255 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3256 {
3257 if (!TMR_BASE (expr)
3258 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3259 {
3260 error ("invalid address operand in TARGET_MEM_REF");
3261 return true;
3262 }
3263 if (!TMR_OFFSET (expr)
3264 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3265 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3266 {
3267 error ("invalid offset operand in TARGET_MEM_REF");
3268 debug_generic_stmt (expr);
3269 return true;
3270 }
3271 }
3272
3273 return ((require_lvalue || !is_gimple_min_invariant (expr))
3274 && verify_types_in_gimple_min_lval (expr));
3275 }
3276
3277 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3278 list of pointer-to types that is trivially convertible to DEST. */
3279
3280 static bool
3281 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3282 {
3283 tree src;
3284
3285 if (!TYPE_POINTER_TO (src_obj))
3286 return true;
3287
3288 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3289 if (useless_type_conversion_p (dest, src))
3290 return true;
3291
3292 return false;
3293 }
3294
3295 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3296 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3297
3298 static bool
3299 valid_fixed_convert_types_p (tree type1, tree type2)
3300 {
3301 return (FIXED_POINT_TYPE_P (type1)
3302 && (INTEGRAL_TYPE_P (type2)
3303 || SCALAR_FLOAT_TYPE_P (type2)
3304 || FIXED_POINT_TYPE_P (type2)));
3305 }
3306
3307 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3308 is a problem, otherwise false. */
3309
3310 static bool
3311 verify_gimple_call (gcall *stmt)
3312 {
3313 tree fn = gimple_call_fn (stmt);
3314 tree fntype, fndecl;
3315 unsigned i;
3316
3317 if (gimple_call_internal_p (stmt))
3318 {
3319 if (fn)
3320 {
3321 error ("gimple call has two targets");
3322 debug_generic_stmt (fn);
3323 return true;
3324 }
3325 }
3326 else
3327 {
3328 if (!fn)
3329 {
3330 error ("gimple call has no target");
3331 return true;
3332 }
3333 }
3334
3335 if (fn && !is_gimple_call_addr (fn))
3336 {
3337 error ("invalid function in gimple call");
3338 debug_generic_stmt (fn);
3339 return true;
3340 }
3341
3342 if (fn
3343 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3344 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3345 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3346 {
3347 error ("non-function in gimple call");
3348 return true;
3349 }
3350
3351 fndecl = gimple_call_fndecl (stmt);
3352 if (fndecl
3353 && TREE_CODE (fndecl) == FUNCTION_DECL
3354 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3355 && !DECL_PURE_P (fndecl)
3356 && !TREE_READONLY (fndecl))
3357 {
3358 error ("invalid pure const state for function");
3359 return true;
3360 }
3361
3362 tree lhs = gimple_call_lhs (stmt);
3363 if (lhs
3364 && (!is_gimple_lvalue (lhs)
3365 || verify_types_in_gimple_reference (lhs, true)))
3366 {
3367 error ("invalid LHS in gimple call");
3368 return true;
3369 }
3370
3371 if (lhs
3372 && gimple_call_ctrl_altering_p (stmt)
3373 && gimple_call_noreturn_p (stmt)
3374 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (lhs))) == INTEGER_CST
3375 && !TREE_ADDRESSABLE (TREE_TYPE (lhs)))
3376 {
3377 error ("LHS in noreturn call");
3378 return true;
3379 }
3380
3381 fntype = gimple_call_fntype (stmt);
3382 if (fntype
3383 && lhs
3384 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3385 /* ??? At least C++ misses conversions at assignments from
3386 void * call results.
3387 ??? Java is completely off. Especially with functions
3388 returning java.lang.Object.
3389 For now simply allow arbitrary pointer type conversions. */
3390 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3391 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3392 {
3393 error ("invalid conversion in gimple call");
3394 debug_generic_stmt (TREE_TYPE (lhs));
3395 debug_generic_stmt (TREE_TYPE (fntype));
3396 return true;
3397 }
3398
3399 if (gimple_call_chain (stmt)
3400 && !is_gimple_val (gimple_call_chain (stmt)))
3401 {
3402 error ("invalid static chain in gimple call");
3403 debug_generic_stmt (gimple_call_chain (stmt));
3404 return true;
3405 }
3406
3407 /* If there is a static chain argument, the call should either be
3408 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3409 if (gimple_call_chain (stmt)
3410 && fndecl
3411 && !DECL_STATIC_CHAIN (fndecl))
3412 {
3413 error ("static chain with function that doesn%'t use one");
3414 return true;
3415 }
3416
3417 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3418 {
3419 switch (DECL_FUNCTION_CODE (fndecl))
3420 {
3421 case BUILT_IN_UNREACHABLE:
3422 case BUILT_IN_TRAP:
3423 if (gimple_call_num_args (stmt) > 0)
3424 {
3425 /* Built-in unreachable with parameters might not be caught by
3426 undefined behavior sanitizer. Front-ends do check users do not
3427 call them that way but we also produce calls to
3428 __builtin_unreachable internally, for example when IPA figures
3429 out a call cannot happen in a legal program. In such cases,
3430 we must make sure arguments are stripped off. */
3431 error ("__builtin_unreachable or __builtin_trap call with "
3432 "arguments");
3433 return true;
3434 }
3435 break;
3436 default:
3437 break;
3438 }
3439 }
3440
3441 /* ??? The C frontend passes unpromoted arguments in case it
3442 didn't see a function declaration before the call. So for now
3443 leave the call arguments mostly unverified. Once we gimplify
3444 unit-at-a-time we have a chance to fix this. */
3445
3446 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3447 {
3448 tree arg = gimple_call_arg (stmt, i);
3449 if ((is_gimple_reg_type (TREE_TYPE (arg))
3450 && !is_gimple_val (arg))
3451 || (!is_gimple_reg_type (TREE_TYPE (arg))
3452 && !is_gimple_lvalue (arg)))
3453 {
3454 error ("invalid argument to gimple call");
3455 debug_generic_expr (arg);
3456 return true;
3457 }
3458 }
3459
3460 return false;
3461 }
3462
3463 /* Verifies the gimple comparison with the result type TYPE and
3464 the operands OP0 and OP1, comparison code is CODE. */
3465
3466 static bool
3467 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3468 {
3469 tree op0_type = TREE_TYPE (op0);
3470 tree op1_type = TREE_TYPE (op1);
3471
3472 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3473 {
3474 error ("invalid operands in gimple comparison");
3475 return true;
3476 }
3477
3478 /* For comparisons we do not have the operations type as the
3479 effective type the comparison is carried out in. Instead
3480 we require that either the first operand is trivially
3481 convertible into the second, or the other way around.
3482 Because we special-case pointers to void we allow
3483 comparisons of pointers with the same mode as well. */
3484 if (!useless_type_conversion_p (op0_type, op1_type)
3485 && !useless_type_conversion_p (op1_type, op0_type)
3486 && (!POINTER_TYPE_P (op0_type)
3487 || !POINTER_TYPE_P (op1_type)
3488 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3489 {
3490 error ("mismatching comparison operand types");
3491 debug_generic_expr (op0_type);
3492 debug_generic_expr (op1_type);
3493 return true;
3494 }
3495
3496 /* The resulting type of a comparison may be an effective boolean type. */
3497 if (INTEGRAL_TYPE_P (type)
3498 && (TREE_CODE (type) == BOOLEAN_TYPE
3499 || TYPE_PRECISION (type) == 1))
3500 {
3501 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3502 || TREE_CODE (op1_type) == VECTOR_TYPE)
3503 && code != EQ_EXPR && code != NE_EXPR
3504 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3505 && !VECTOR_INTEGER_TYPE_P (op0_type))
3506 {
3507 error ("unsupported operation or type for vector comparison"
3508 " returning a boolean");
3509 debug_generic_expr (op0_type);
3510 debug_generic_expr (op1_type);
3511 return true;
3512 }
3513 }
3514 /* Or a boolean vector type with the same element count
3515 as the comparison operand types. */
3516 else if (TREE_CODE (type) == VECTOR_TYPE
3517 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3518 {
3519 if (TREE_CODE (op0_type) != VECTOR_TYPE
3520 || TREE_CODE (op1_type) != VECTOR_TYPE)
3521 {
3522 error ("non-vector operands in vector comparison");
3523 debug_generic_expr (op0_type);
3524 debug_generic_expr (op1_type);
3525 return true;
3526 }
3527
3528 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3529 {
3530 error ("invalid vector comparison resulting type");
3531 debug_generic_expr (type);
3532 return true;
3533 }
3534 }
3535 else
3536 {
3537 error ("bogus comparison result type");
3538 debug_generic_expr (type);
3539 return true;
3540 }
3541
3542 return false;
3543 }
3544
3545 /* Verify a gimple assignment statement STMT with an unary rhs.
3546 Returns true if anything is wrong. */
3547
3548 static bool
3549 verify_gimple_assign_unary (gassign *stmt)
3550 {
3551 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3552 tree lhs = gimple_assign_lhs (stmt);
3553 tree lhs_type = TREE_TYPE (lhs);
3554 tree rhs1 = gimple_assign_rhs1 (stmt);
3555 tree rhs1_type = TREE_TYPE (rhs1);
3556
3557 if (!is_gimple_reg (lhs))
3558 {
3559 error ("non-register as LHS of unary operation");
3560 return true;
3561 }
3562
3563 if (!is_gimple_val (rhs1))
3564 {
3565 error ("invalid operand in unary operation");
3566 return true;
3567 }
3568
3569 /* First handle conversions. */
3570 switch (rhs_code)
3571 {
3572 CASE_CONVERT:
3573 {
3574 /* Allow conversions from pointer type to integral type only if
3575 there is no sign or zero extension involved.
3576 For targets were the precision of ptrofftype doesn't match that
3577 of pointers we need to allow arbitrary conversions to ptrofftype. */
3578 if ((POINTER_TYPE_P (lhs_type)
3579 && INTEGRAL_TYPE_P (rhs1_type))
3580 || (POINTER_TYPE_P (rhs1_type)
3581 && INTEGRAL_TYPE_P (lhs_type)
3582 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3583 || ptrofftype_p (sizetype))))
3584 return false;
3585
3586 /* Allow conversion from integral to offset type and vice versa. */
3587 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3588 && INTEGRAL_TYPE_P (rhs1_type))
3589 || (INTEGRAL_TYPE_P (lhs_type)
3590 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3591 return false;
3592
3593 /* Otherwise assert we are converting between types of the
3594 same kind. */
3595 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3596 {
3597 error ("invalid types in nop conversion");
3598 debug_generic_expr (lhs_type);
3599 debug_generic_expr (rhs1_type);
3600 return true;
3601 }
3602
3603 return false;
3604 }
3605
3606 case ADDR_SPACE_CONVERT_EXPR:
3607 {
3608 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3609 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3610 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3611 {
3612 error ("invalid types in address space conversion");
3613 debug_generic_expr (lhs_type);
3614 debug_generic_expr (rhs1_type);
3615 return true;
3616 }
3617
3618 return false;
3619 }
3620
3621 case FIXED_CONVERT_EXPR:
3622 {
3623 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3624 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3625 {
3626 error ("invalid types in fixed-point conversion");
3627 debug_generic_expr (lhs_type);
3628 debug_generic_expr (rhs1_type);
3629 return true;
3630 }
3631
3632 return false;
3633 }
3634
3635 case FLOAT_EXPR:
3636 {
3637 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3638 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3639 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3640 {
3641 error ("invalid types in conversion to floating point");
3642 debug_generic_expr (lhs_type);
3643 debug_generic_expr (rhs1_type);
3644 return true;
3645 }
3646
3647 return false;
3648 }
3649
3650 case FIX_TRUNC_EXPR:
3651 {
3652 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3653 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3654 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3655 {
3656 error ("invalid types in conversion to integer");
3657 debug_generic_expr (lhs_type);
3658 debug_generic_expr (rhs1_type);
3659 return true;
3660 }
3661
3662 return false;
3663 }
3664 case REDUC_MAX_EXPR:
3665 case REDUC_MIN_EXPR:
3666 case REDUC_PLUS_EXPR:
3667 if (!VECTOR_TYPE_P (rhs1_type)
3668 || !useless_type_conversion_p (lhs_type, TREE_TYPE (rhs1_type)))
3669 {
3670 error ("reduction should convert from vector to element type");
3671 debug_generic_expr (lhs_type);
3672 debug_generic_expr (rhs1_type);
3673 return true;
3674 }
3675 return false;
3676
3677 case VEC_UNPACK_HI_EXPR:
3678 case VEC_UNPACK_LO_EXPR:
3679 case VEC_UNPACK_FLOAT_HI_EXPR:
3680 case VEC_UNPACK_FLOAT_LO_EXPR:
3681 /* FIXME. */
3682 return false;
3683
3684 case NEGATE_EXPR:
3685 case ABS_EXPR:
3686 case BIT_NOT_EXPR:
3687 case PAREN_EXPR:
3688 case CONJ_EXPR:
3689 break;
3690
3691 default:
3692 gcc_unreachable ();
3693 }
3694
3695 /* For the remaining codes assert there is no conversion involved. */
3696 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3697 {
3698 error ("non-trivial conversion in unary operation");
3699 debug_generic_expr (lhs_type);
3700 debug_generic_expr (rhs1_type);
3701 return true;
3702 }
3703
3704 return false;
3705 }
3706
3707 /* Verify a gimple assignment statement STMT with a binary rhs.
3708 Returns true if anything is wrong. */
3709
3710 static bool
3711 verify_gimple_assign_binary (gassign *stmt)
3712 {
3713 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3714 tree lhs = gimple_assign_lhs (stmt);
3715 tree lhs_type = TREE_TYPE (lhs);
3716 tree rhs1 = gimple_assign_rhs1 (stmt);
3717 tree rhs1_type = TREE_TYPE (rhs1);
3718 tree rhs2 = gimple_assign_rhs2 (stmt);
3719 tree rhs2_type = TREE_TYPE (rhs2);
3720
3721 if (!is_gimple_reg (lhs))
3722 {
3723 error ("non-register as LHS of binary operation");
3724 return true;
3725 }
3726
3727 if (!is_gimple_val (rhs1)
3728 || !is_gimple_val (rhs2))
3729 {
3730 error ("invalid operands in binary operation");
3731 return true;
3732 }
3733
3734 /* First handle operations that involve different types. */
3735 switch (rhs_code)
3736 {
3737 case COMPLEX_EXPR:
3738 {
3739 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3740 || !(INTEGRAL_TYPE_P (rhs1_type)
3741 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3742 || !(INTEGRAL_TYPE_P (rhs2_type)
3743 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3744 {
3745 error ("type mismatch in complex expression");
3746 debug_generic_expr (lhs_type);
3747 debug_generic_expr (rhs1_type);
3748 debug_generic_expr (rhs2_type);
3749 return true;
3750 }
3751
3752 return false;
3753 }
3754
3755 case LSHIFT_EXPR:
3756 case RSHIFT_EXPR:
3757 case LROTATE_EXPR:
3758 case RROTATE_EXPR:
3759 {
3760 /* Shifts and rotates are ok on integral types, fixed point
3761 types and integer vector types. */
3762 if ((!INTEGRAL_TYPE_P (rhs1_type)
3763 && !FIXED_POINT_TYPE_P (rhs1_type)
3764 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3765 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3766 || (!INTEGRAL_TYPE_P (rhs2_type)
3767 /* Vector shifts of vectors are also ok. */
3768 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3769 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3770 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3771 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3772 || !useless_type_conversion_p (lhs_type, rhs1_type))
3773 {
3774 error ("type mismatch in shift expression");
3775 debug_generic_expr (lhs_type);
3776 debug_generic_expr (rhs1_type);
3777 debug_generic_expr (rhs2_type);
3778 return true;
3779 }
3780
3781 return false;
3782 }
3783
3784 case WIDEN_LSHIFT_EXPR:
3785 {
3786 if (!INTEGRAL_TYPE_P (lhs_type)
3787 || !INTEGRAL_TYPE_P (rhs1_type)
3788 || TREE_CODE (rhs2) != INTEGER_CST
3789 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3790 {
3791 error ("type mismatch in widening vector shift expression");
3792 debug_generic_expr (lhs_type);
3793 debug_generic_expr (rhs1_type);
3794 debug_generic_expr (rhs2_type);
3795 return true;
3796 }
3797
3798 return false;
3799 }
3800
3801 case VEC_WIDEN_LSHIFT_HI_EXPR:
3802 case VEC_WIDEN_LSHIFT_LO_EXPR:
3803 {
3804 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3805 || TREE_CODE (lhs_type) != VECTOR_TYPE
3806 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3807 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3808 || TREE_CODE (rhs2) != INTEGER_CST
3809 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3810 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3811 {
3812 error ("type mismatch in widening vector shift expression");
3813 debug_generic_expr (lhs_type);
3814 debug_generic_expr (rhs1_type);
3815 debug_generic_expr (rhs2_type);
3816 return true;
3817 }
3818
3819 return false;
3820 }
3821
3822 case PLUS_EXPR:
3823 case MINUS_EXPR:
3824 {
3825 tree lhs_etype = lhs_type;
3826 tree rhs1_etype = rhs1_type;
3827 tree rhs2_etype = rhs2_type;
3828 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3829 {
3830 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3831 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3832 {
3833 error ("invalid non-vector operands to vector valued plus");
3834 return true;
3835 }
3836 lhs_etype = TREE_TYPE (lhs_type);
3837 rhs1_etype = TREE_TYPE (rhs1_type);
3838 rhs2_etype = TREE_TYPE (rhs2_type);
3839 }
3840 if (POINTER_TYPE_P (lhs_etype)
3841 || POINTER_TYPE_P (rhs1_etype)
3842 || POINTER_TYPE_P (rhs2_etype))
3843 {
3844 error ("invalid (pointer) operands to plus/minus");
3845 return true;
3846 }
3847
3848 /* Continue with generic binary expression handling. */
3849 break;
3850 }
3851
3852 case POINTER_PLUS_EXPR:
3853 {
3854 if (!POINTER_TYPE_P (rhs1_type)
3855 || !useless_type_conversion_p (lhs_type, rhs1_type)
3856 || !ptrofftype_p (rhs2_type))
3857 {
3858 error ("type mismatch in pointer plus expression");
3859 debug_generic_stmt (lhs_type);
3860 debug_generic_stmt (rhs1_type);
3861 debug_generic_stmt (rhs2_type);
3862 return true;
3863 }
3864
3865 return false;
3866 }
3867
3868 case TRUTH_ANDIF_EXPR:
3869 case TRUTH_ORIF_EXPR:
3870 case TRUTH_AND_EXPR:
3871 case TRUTH_OR_EXPR:
3872 case TRUTH_XOR_EXPR:
3873
3874 gcc_unreachable ();
3875
3876 case LT_EXPR:
3877 case LE_EXPR:
3878 case GT_EXPR:
3879 case GE_EXPR:
3880 case EQ_EXPR:
3881 case NE_EXPR:
3882 case UNORDERED_EXPR:
3883 case ORDERED_EXPR:
3884 case UNLT_EXPR:
3885 case UNLE_EXPR:
3886 case UNGT_EXPR:
3887 case UNGE_EXPR:
3888 case UNEQ_EXPR:
3889 case LTGT_EXPR:
3890 /* Comparisons are also binary, but the result type is not
3891 connected to the operand types. */
3892 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3893
3894 case WIDEN_MULT_EXPR:
3895 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3896 return true;
3897 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3898 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3899
3900 case WIDEN_SUM_EXPR:
3901 case VEC_WIDEN_MULT_HI_EXPR:
3902 case VEC_WIDEN_MULT_LO_EXPR:
3903 case VEC_WIDEN_MULT_EVEN_EXPR:
3904 case VEC_WIDEN_MULT_ODD_EXPR:
3905 case VEC_PACK_TRUNC_EXPR:
3906 case VEC_PACK_SAT_EXPR:
3907 case VEC_PACK_FIX_TRUNC_EXPR:
3908 /* FIXME. */
3909 return false;
3910
3911 case MULT_EXPR:
3912 case MULT_HIGHPART_EXPR:
3913 case TRUNC_DIV_EXPR:
3914 case CEIL_DIV_EXPR:
3915 case FLOOR_DIV_EXPR:
3916 case ROUND_DIV_EXPR:
3917 case TRUNC_MOD_EXPR:
3918 case CEIL_MOD_EXPR:
3919 case FLOOR_MOD_EXPR:
3920 case ROUND_MOD_EXPR:
3921 case RDIV_EXPR:
3922 case EXACT_DIV_EXPR:
3923 case MIN_EXPR:
3924 case MAX_EXPR:
3925 case BIT_IOR_EXPR:
3926 case BIT_XOR_EXPR:
3927 case BIT_AND_EXPR:
3928 /* Continue with generic binary expression handling. */
3929 break;
3930
3931 default:
3932 gcc_unreachable ();
3933 }
3934
3935 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3936 || !useless_type_conversion_p (lhs_type, rhs2_type))
3937 {
3938 error ("type mismatch in binary expression");
3939 debug_generic_stmt (lhs_type);
3940 debug_generic_stmt (rhs1_type);
3941 debug_generic_stmt (rhs2_type);
3942 return true;
3943 }
3944
3945 return false;
3946 }
3947
3948 /* Verify a gimple assignment statement STMT with a ternary rhs.
3949 Returns true if anything is wrong. */
3950
3951 static bool
3952 verify_gimple_assign_ternary (gassign *stmt)
3953 {
3954 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3955 tree lhs = gimple_assign_lhs (stmt);
3956 tree lhs_type = TREE_TYPE (lhs);
3957 tree rhs1 = gimple_assign_rhs1 (stmt);
3958 tree rhs1_type = TREE_TYPE (rhs1);
3959 tree rhs2 = gimple_assign_rhs2 (stmt);
3960 tree rhs2_type = TREE_TYPE (rhs2);
3961 tree rhs3 = gimple_assign_rhs3 (stmt);
3962 tree rhs3_type = TREE_TYPE (rhs3);
3963
3964 if (!is_gimple_reg (lhs))
3965 {
3966 error ("non-register as LHS of ternary operation");
3967 return true;
3968 }
3969
3970 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3971 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3972 || !is_gimple_val (rhs2)
3973 || !is_gimple_val (rhs3))
3974 {
3975 error ("invalid operands in ternary operation");
3976 return true;
3977 }
3978
3979 /* First handle operations that involve different types. */
3980 switch (rhs_code)
3981 {
3982 case WIDEN_MULT_PLUS_EXPR:
3983 case WIDEN_MULT_MINUS_EXPR:
3984 if ((!INTEGRAL_TYPE_P (rhs1_type)
3985 && !FIXED_POINT_TYPE_P (rhs1_type))
3986 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3987 || !useless_type_conversion_p (lhs_type, rhs3_type)
3988 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3989 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3990 {
3991 error ("type mismatch in widening multiply-accumulate expression");
3992 debug_generic_expr (lhs_type);
3993 debug_generic_expr (rhs1_type);
3994 debug_generic_expr (rhs2_type);
3995 debug_generic_expr (rhs3_type);
3996 return true;
3997 }
3998 break;
3999
4000 case FMA_EXPR:
4001 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4002 || !useless_type_conversion_p (lhs_type, rhs2_type)
4003 || !useless_type_conversion_p (lhs_type, rhs3_type))
4004 {
4005 error ("type mismatch in fused multiply-add expression");
4006 debug_generic_expr (lhs_type);
4007 debug_generic_expr (rhs1_type);
4008 debug_generic_expr (rhs2_type);
4009 debug_generic_expr (rhs3_type);
4010 return true;
4011 }
4012 break;
4013
4014 case VEC_COND_EXPR:
4015 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4016 || TYPE_VECTOR_SUBPARTS (rhs1_type)
4017 != TYPE_VECTOR_SUBPARTS (lhs_type))
4018 {
4019 error ("the first argument of a VEC_COND_EXPR must be of a "
4020 "boolean vector type of the same number of elements "
4021 "as the result");
4022 debug_generic_expr (lhs_type);
4023 debug_generic_expr (rhs1_type);
4024 return true;
4025 }
4026 /* Fallthrough. */
4027 case COND_EXPR:
4028 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4029 || !useless_type_conversion_p (lhs_type, rhs3_type))
4030 {
4031 error ("type mismatch in conditional expression");
4032 debug_generic_expr (lhs_type);
4033 debug_generic_expr (rhs2_type);
4034 debug_generic_expr (rhs3_type);
4035 return true;
4036 }
4037 break;
4038
4039 case VEC_PERM_EXPR:
4040 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4041 || !useless_type_conversion_p (lhs_type, rhs2_type))
4042 {
4043 error ("type mismatch in vector permute expression");
4044 debug_generic_expr (lhs_type);
4045 debug_generic_expr (rhs1_type);
4046 debug_generic_expr (rhs2_type);
4047 debug_generic_expr (rhs3_type);
4048 return true;
4049 }
4050
4051 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4052 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4053 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4054 {
4055 error ("vector types expected in vector permute expression");
4056 debug_generic_expr (lhs_type);
4057 debug_generic_expr (rhs1_type);
4058 debug_generic_expr (rhs2_type);
4059 debug_generic_expr (rhs3_type);
4060 return true;
4061 }
4062
4063 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4064 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4065 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4066 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4067 != TYPE_VECTOR_SUBPARTS (lhs_type))
4068 {
4069 error ("vectors with different element number found "
4070 "in vector permute expression");
4071 debug_generic_expr (lhs_type);
4072 debug_generic_expr (rhs1_type);
4073 debug_generic_expr (rhs2_type);
4074 debug_generic_expr (rhs3_type);
4075 return true;
4076 }
4077
4078 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4079 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
4080 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
4081 {
4082 error ("invalid mask type in vector permute expression");
4083 debug_generic_expr (lhs_type);
4084 debug_generic_expr (rhs1_type);
4085 debug_generic_expr (rhs2_type);
4086 debug_generic_expr (rhs3_type);
4087 return true;
4088 }
4089
4090 return false;
4091
4092 case SAD_EXPR:
4093 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4094 || !useless_type_conversion_p (lhs_type, rhs3_type)
4095 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4096 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4097 {
4098 error ("type mismatch in sad expression");
4099 debug_generic_expr (lhs_type);
4100 debug_generic_expr (rhs1_type);
4101 debug_generic_expr (rhs2_type);
4102 debug_generic_expr (rhs3_type);
4103 return true;
4104 }
4105
4106 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4107 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4108 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4109 {
4110 error ("vector types expected in sad expression");
4111 debug_generic_expr (lhs_type);
4112 debug_generic_expr (rhs1_type);
4113 debug_generic_expr (rhs2_type);
4114 debug_generic_expr (rhs3_type);
4115 return true;
4116 }
4117
4118 return false;
4119
4120 case DOT_PROD_EXPR:
4121 case REALIGN_LOAD_EXPR:
4122 /* FIXME. */
4123 return false;
4124
4125 default:
4126 gcc_unreachable ();
4127 }
4128 return false;
4129 }
4130
4131 /* Verify a gimple assignment statement STMT with a single rhs.
4132 Returns true if anything is wrong. */
4133
4134 static bool
4135 verify_gimple_assign_single (gassign *stmt)
4136 {
4137 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4138 tree lhs = gimple_assign_lhs (stmt);
4139 tree lhs_type = TREE_TYPE (lhs);
4140 tree rhs1 = gimple_assign_rhs1 (stmt);
4141 tree rhs1_type = TREE_TYPE (rhs1);
4142 bool res = false;
4143
4144 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4145 {
4146 error ("non-trivial conversion at assignment");
4147 debug_generic_expr (lhs_type);
4148 debug_generic_expr (rhs1_type);
4149 return true;
4150 }
4151
4152 if (gimple_clobber_p (stmt)
4153 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4154 {
4155 error ("non-decl/MEM_REF LHS in clobber statement");
4156 debug_generic_expr (lhs);
4157 return true;
4158 }
4159
4160 if (handled_component_p (lhs)
4161 || TREE_CODE (lhs) == MEM_REF
4162 || TREE_CODE (lhs) == TARGET_MEM_REF)
4163 res |= verify_types_in_gimple_reference (lhs, true);
4164
4165 /* Special codes we cannot handle via their class. */
4166 switch (rhs_code)
4167 {
4168 case ADDR_EXPR:
4169 {
4170 tree op = TREE_OPERAND (rhs1, 0);
4171 if (!is_gimple_addressable (op))
4172 {
4173 error ("invalid operand in unary expression");
4174 return true;
4175 }
4176
4177 /* Technically there is no longer a need for matching types, but
4178 gimple hygiene asks for this check. In LTO we can end up
4179 combining incompatible units and thus end up with addresses
4180 of globals that change their type to a common one. */
4181 if (!in_lto_p
4182 && !types_compatible_p (TREE_TYPE (op),
4183 TREE_TYPE (TREE_TYPE (rhs1)))
4184 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4185 TREE_TYPE (op)))
4186 {
4187 error ("type mismatch in address expression");
4188 debug_generic_stmt (TREE_TYPE (rhs1));
4189 debug_generic_stmt (TREE_TYPE (op));
4190 return true;
4191 }
4192
4193 return verify_types_in_gimple_reference (op, true);
4194 }
4195
4196 /* tcc_reference */
4197 case INDIRECT_REF:
4198 error ("INDIRECT_REF in gimple IL");
4199 return true;
4200
4201 case COMPONENT_REF:
4202 case BIT_FIELD_REF:
4203 case ARRAY_REF:
4204 case ARRAY_RANGE_REF:
4205 case VIEW_CONVERT_EXPR:
4206 case REALPART_EXPR:
4207 case IMAGPART_EXPR:
4208 case TARGET_MEM_REF:
4209 case MEM_REF:
4210 if (!is_gimple_reg (lhs)
4211 && is_gimple_reg_type (TREE_TYPE (lhs)))
4212 {
4213 error ("invalid rhs for gimple memory store");
4214 debug_generic_stmt (lhs);
4215 debug_generic_stmt (rhs1);
4216 return true;
4217 }
4218 return res || verify_types_in_gimple_reference (rhs1, false);
4219
4220 /* tcc_constant */
4221 case SSA_NAME:
4222 case INTEGER_CST:
4223 case REAL_CST:
4224 case FIXED_CST:
4225 case COMPLEX_CST:
4226 case VECTOR_CST:
4227 case STRING_CST:
4228 return res;
4229
4230 /* tcc_declaration */
4231 case CONST_DECL:
4232 return res;
4233 case VAR_DECL:
4234 case PARM_DECL:
4235 if (!is_gimple_reg (lhs)
4236 && !is_gimple_reg (rhs1)
4237 && is_gimple_reg_type (TREE_TYPE (lhs)))
4238 {
4239 error ("invalid rhs for gimple memory store");
4240 debug_generic_stmt (lhs);
4241 debug_generic_stmt (rhs1);
4242 return true;
4243 }
4244 return res;
4245
4246 case CONSTRUCTOR:
4247 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4248 {
4249 unsigned int i;
4250 tree elt_i, elt_v, elt_t = NULL_TREE;
4251
4252 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4253 return res;
4254 /* For vector CONSTRUCTORs we require that either it is empty
4255 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4256 (then the element count must be correct to cover the whole
4257 outer vector and index must be NULL on all elements, or it is
4258 a CONSTRUCTOR of scalar elements, where we as an exception allow
4259 smaller number of elements (assuming zero filling) and
4260 consecutive indexes as compared to NULL indexes (such
4261 CONSTRUCTORs can appear in the IL from FEs). */
4262 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4263 {
4264 if (elt_t == NULL_TREE)
4265 {
4266 elt_t = TREE_TYPE (elt_v);
4267 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4268 {
4269 tree elt_t = TREE_TYPE (elt_v);
4270 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4271 TREE_TYPE (elt_t)))
4272 {
4273 error ("incorrect type of vector CONSTRUCTOR"
4274 " elements");
4275 debug_generic_stmt (rhs1);
4276 return true;
4277 }
4278 else if (CONSTRUCTOR_NELTS (rhs1)
4279 * TYPE_VECTOR_SUBPARTS (elt_t)
4280 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4281 {
4282 error ("incorrect number of vector CONSTRUCTOR"
4283 " elements");
4284 debug_generic_stmt (rhs1);
4285 return true;
4286 }
4287 }
4288 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4289 elt_t))
4290 {
4291 error ("incorrect type of vector CONSTRUCTOR elements");
4292 debug_generic_stmt (rhs1);
4293 return true;
4294 }
4295 else if (CONSTRUCTOR_NELTS (rhs1)
4296 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4297 {
4298 error ("incorrect number of vector CONSTRUCTOR elements");
4299 debug_generic_stmt (rhs1);
4300 return true;
4301 }
4302 }
4303 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4304 {
4305 error ("incorrect type of vector CONSTRUCTOR elements");
4306 debug_generic_stmt (rhs1);
4307 return true;
4308 }
4309 if (elt_i != NULL_TREE
4310 && (TREE_CODE (elt_t) == VECTOR_TYPE
4311 || TREE_CODE (elt_i) != INTEGER_CST
4312 || compare_tree_int (elt_i, i) != 0))
4313 {
4314 error ("vector CONSTRUCTOR with non-NULL element index");
4315 debug_generic_stmt (rhs1);
4316 return true;
4317 }
4318 if (!is_gimple_val (elt_v))
4319 {
4320 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4321 debug_generic_stmt (rhs1);
4322 return true;
4323 }
4324 }
4325 }
4326 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4327 {
4328 error ("non-vector CONSTRUCTOR with elements");
4329 debug_generic_stmt (rhs1);
4330 return true;
4331 }
4332 return res;
4333 case OBJ_TYPE_REF:
4334 case ASSERT_EXPR:
4335 case WITH_SIZE_EXPR:
4336 /* FIXME. */
4337 return res;
4338
4339 default:;
4340 }
4341
4342 return res;
4343 }
4344
4345 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4346 is a problem, otherwise false. */
4347
4348 static bool
4349 verify_gimple_assign (gassign *stmt)
4350 {
4351 switch (gimple_assign_rhs_class (stmt))
4352 {
4353 case GIMPLE_SINGLE_RHS:
4354 return verify_gimple_assign_single (stmt);
4355
4356 case GIMPLE_UNARY_RHS:
4357 return verify_gimple_assign_unary (stmt);
4358
4359 case GIMPLE_BINARY_RHS:
4360 return verify_gimple_assign_binary (stmt);
4361
4362 case GIMPLE_TERNARY_RHS:
4363 return verify_gimple_assign_ternary (stmt);
4364
4365 default:
4366 gcc_unreachable ();
4367 }
4368 }
4369
4370 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4371 is a problem, otherwise false. */
4372
4373 static bool
4374 verify_gimple_return (greturn *stmt)
4375 {
4376 tree op = gimple_return_retval (stmt);
4377 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4378
4379 /* We cannot test for present return values as we do not fix up missing
4380 return values from the original source. */
4381 if (op == NULL)
4382 return false;
4383
4384 if (!is_gimple_val (op)
4385 && TREE_CODE (op) != RESULT_DECL)
4386 {
4387 error ("invalid operand in return statement");
4388 debug_generic_stmt (op);
4389 return true;
4390 }
4391
4392 if ((TREE_CODE (op) == RESULT_DECL
4393 && DECL_BY_REFERENCE (op))
4394 || (TREE_CODE (op) == SSA_NAME
4395 && SSA_NAME_VAR (op)
4396 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4397 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4398 op = TREE_TYPE (op);
4399
4400 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4401 {
4402 error ("invalid conversion in return statement");
4403 debug_generic_stmt (restype);
4404 debug_generic_stmt (TREE_TYPE (op));
4405 return true;
4406 }
4407
4408 return false;
4409 }
4410
4411
4412 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4413 is a problem, otherwise false. */
4414
4415 static bool
4416 verify_gimple_goto (ggoto *stmt)
4417 {
4418 tree dest = gimple_goto_dest (stmt);
4419
4420 /* ??? We have two canonical forms of direct goto destinations, a
4421 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4422 if (TREE_CODE (dest) != LABEL_DECL
4423 && (!is_gimple_val (dest)
4424 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4425 {
4426 error ("goto destination is neither a label nor a pointer");
4427 return true;
4428 }
4429
4430 return false;
4431 }
4432
4433 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4434 is a problem, otherwise false. */
4435
4436 static bool
4437 verify_gimple_switch (gswitch *stmt)
4438 {
4439 unsigned int i, n;
4440 tree elt, prev_upper_bound = NULL_TREE;
4441 tree index_type, elt_type = NULL_TREE;
4442
4443 if (!is_gimple_val (gimple_switch_index (stmt)))
4444 {
4445 error ("invalid operand to switch statement");
4446 debug_generic_stmt (gimple_switch_index (stmt));
4447 return true;
4448 }
4449
4450 index_type = TREE_TYPE (gimple_switch_index (stmt));
4451 if (! INTEGRAL_TYPE_P (index_type))
4452 {
4453 error ("non-integral type switch statement");
4454 debug_generic_expr (index_type);
4455 return true;
4456 }
4457
4458 elt = gimple_switch_label (stmt, 0);
4459 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4460 {
4461 error ("invalid default case label in switch statement");
4462 debug_generic_expr (elt);
4463 return true;
4464 }
4465
4466 n = gimple_switch_num_labels (stmt);
4467 for (i = 1; i < n; i++)
4468 {
4469 elt = gimple_switch_label (stmt, i);
4470
4471 if (! CASE_LOW (elt))
4472 {
4473 error ("invalid case label in switch statement");
4474 debug_generic_expr (elt);
4475 return true;
4476 }
4477 if (CASE_HIGH (elt)
4478 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4479 {
4480 error ("invalid case range in switch statement");
4481 debug_generic_expr (elt);
4482 return true;
4483 }
4484
4485 if (elt_type)
4486 {
4487 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4488 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4489 {
4490 error ("type mismatch for case label in switch statement");
4491 debug_generic_expr (elt);
4492 return true;
4493 }
4494 }
4495 else
4496 {
4497 elt_type = TREE_TYPE (CASE_LOW (elt));
4498 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4499 {
4500 error ("type precision mismatch in switch statement");
4501 return true;
4502 }
4503 }
4504
4505 if (prev_upper_bound)
4506 {
4507 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4508 {
4509 error ("case labels not sorted in switch statement");
4510 return true;
4511 }
4512 }
4513
4514 prev_upper_bound = CASE_HIGH (elt);
4515 if (! prev_upper_bound)
4516 prev_upper_bound = CASE_LOW (elt);
4517 }
4518
4519 return false;
4520 }
4521
4522 /* Verify a gimple debug statement STMT.
4523 Returns true if anything is wrong. */
4524
4525 static bool
4526 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4527 {
4528 /* There isn't much that could be wrong in a gimple debug stmt. A
4529 gimple debug bind stmt, for example, maps a tree, that's usually
4530 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4531 component or member of an aggregate type, to another tree, that
4532 can be an arbitrary expression. These stmts expand into debug
4533 insns, and are converted to debug notes by var-tracking.c. */
4534 return false;
4535 }
4536
4537 /* Verify a gimple label statement STMT.
4538 Returns true if anything is wrong. */
4539
4540 static bool
4541 verify_gimple_label (glabel *stmt)
4542 {
4543 tree decl = gimple_label_label (stmt);
4544 int uid;
4545 bool err = false;
4546
4547 if (TREE_CODE (decl) != LABEL_DECL)
4548 return true;
4549 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4550 && DECL_CONTEXT (decl) != current_function_decl)
4551 {
4552 error ("label's context is not the current function decl");
4553 err |= true;
4554 }
4555
4556 uid = LABEL_DECL_UID (decl);
4557 if (cfun->cfg
4558 && (uid == -1
4559 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4560 {
4561 error ("incorrect entry in label_to_block_map");
4562 err |= true;
4563 }
4564
4565 uid = EH_LANDING_PAD_NR (decl);
4566 if (uid)
4567 {
4568 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4569 if (decl != lp->post_landing_pad)
4570 {
4571 error ("incorrect setting of landing pad number");
4572 err |= true;
4573 }
4574 }
4575
4576 return err;
4577 }
4578
4579 /* Verify a gimple cond statement STMT.
4580 Returns true if anything is wrong. */
4581
4582 static bool
4583 verify_gimple_cond (gcond *stmt)
4584 {
4585 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4586 {
4587 error ("invalid comparison code in gimple cond");
4588 return true;
4589 }
4590 if (!(!gimple_cond_true_label (stmt)
4591 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4592 || !(!gimple_cond_false_label (stmt)
4593 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4594 {
4595 error ("invalid labels in gimple cond");
4596 return true;
4597 }
4598
4599 return verify_gimple_comparison (boolean_type_node,
4600 gimple_cond_lhs (stmt),
4601 gimple_cond_rhs (stmt),
4602 gimple_cond_code (stmt));
4603 }
4604
4605 /* Verify the GIMPLE statement STMT. Returns true if there is an
4606 error, otherwise false. */
4607
4608 static bool
4609 verify_gimple_stmt (gimple *stmt)
4610 {
4611 switch (gimple_code (stmt))
4612 {
4613 case GIMPLE_ASSIGN:
4614 return verify_gimple_assign (as_a <gassign *> (stmt));
4615
4616 case GIMPLE_LABEL:
4617 return verify_gimple_label (as_a <glabel *> (stmt));
4618
4619 case GIMPLE_CALL:
4620 return verify_gimple_call (as_a <gcall *> (stmt));
4621
4622 case GIMPLE_COND:
4623 return verify_gimple_cond (as_a <gcond *> (stmt));
4624
4625 case GIMPLE_GOTO:
4626 return verify_gimple_goto (as_a <ggoto *> (stmt));
4627
4628 case GIMPLE_SWITCH:
4629 return verify_gimple_switch (as_a <gswitch *> (stmt));
4630
4631 case GIMPLE_RETURN:
4632 return verify_gimple_return (as_a <greturn *> (stmt));
4633
4634 case GIMPLE_ASM:
4635 return false;
4636
4637 case GIMPLE_TRANSACTION:
4638 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4639
4640 /* Tuples that do not have tree operands. */
4641 case GIMPLE_NOP:
4642 case GIMPLE_PREDICT:
4643 case GIMPLE_RESX:
4644 case GIMPLE_EH_DISPATCH:
4645 case GIMPLE_EH_MUST_NOT_THROW:
4646 return false;
4647
4648 CASE_GIMPLE_OMP:
4649 /* OpenMP directives are validated by the FE and never operated
4650 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4651 non-gimple expressions when the main index variable has had
4652 its address taken. This does not affect the loop itself
4653 because the header of an GIMPLE_OMP_FOR is merely used to determine
4654 how to setup the parallel iteration. */
4655 return false;
4656
4657 case GIMPLE_DEBUG:
4658 return verify_gimple_debug (stmt);
4659
4660 default:
4661 gcc_unreachable ();
4662 }
4663 }
4664
4665 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4666 and false otherwise. */
4667
4668 static bool
4669 verify_gimple_phi (gimple *phi)
4670 {
4671 bool err = false;
4672 unsigned i;
4673 tree phi_result = gimple_phi_result (phi);
4674 bool virtual_p;
4675
4676 if (!phi_result)
4677 {
4678 error ("invalid PHI result");
4679 return true;
4680 }
4681
4682 virtual_p = virtual_operand_p (phi_result);
4683 if (TREE_CODE (phi_result) != SSA_NAME
4684 || (virtual_p
4685 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4686 {
4687 error ("invalid PHI result");
4688 err = true;
4689 }
4690
4691 for (i = 0; i < gimple_phi_num_args (phi); i++)
4692 {
4693 tree t = gimple_phi_arg_def (phi, i);
4694
4695 if (!t)
4696 {
4697 error ("missing PHI def");
4698 err |= true;
4699 continue;
4700 }
4701 /* Addressable variables do have SSA_NAMEs but they
4702 are not considered gimple values. */
4703 else if ((TREE_CODE (t) == SSA_NAME
4704 && virtual_p != virtual_operand_p (t))
4705 || (virtual_p
4706 && (TREE_CODE (t) != SSA_NAME
4707 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4708 || (!virtual_p
4709 && !is_gimple_val (t)))
4710 {
4711 error ("invalid PHI argument");
4712 debug_generic_expr (t);
4713 err |= true;
4714 }
4715 #ifdef ENABLE_TYPES_CHECKING
4716 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4717 {
4718 error ("incompatible types in PHI argument %u", i);
4719 debug_generic_stmt (TREE_TYPE (phi_result));
4720 debug_generic_stmt (TREE_TYPE (t));
4721 err |= true;
4722 }
4723 #endif
4724 }
4725
4726 return err;
4727 }
4728
4729 /* Verify the GIMPLE statements inside the sequence STMTS. */
4730
4731 static bool
4732 verify_gimple_in_seq_2 (gimple_seq stmts)
4733 {
4734 gimple_stmt_iterator ittr;
4735 bool err = false;
4736
4737 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4738 {
4739 gimple *stmt = gsi_stmt (ittr);
4740
4741 switch (gimple_code (stmt))
4742 {
4743 case GIMPLE_BIND:
4744 err |= verify_gimple_in_seq_2 (
4745 gimple_bind_body (as_a <gbind *> (stmt)));
4746 break;
4747
4748 case GIMPLE_TRY:
4749 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4750 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4751 break;
4752
4753 case GIMPLE_EH_FILTER:
4754 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4755 break;
4756
4757 case GIMPLE_EH_ELSE:
4758 {
4759 geh_else *eh_else = as_a <geh_else *> (stmt);
4760 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
4761 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
4762 }
4763 break;
4764
4765 case GIMPLE_CATCH:
4766 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
4767 as_a <gcatch *> (stmt)));
4768 break;
4769
4770 case GIMPLE_TRANSACTION:
4771 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
4772 break;
4773
4774 default:
4775 {
4776 bool err2 = verify_gimple_stmt (stmt);
4777 if (err2)
4778 debug_gimple_stmt (stmt);
4779 err |= err2;
4780 }
4781 }
4782 }
4783
4784 return err;
4785 }
4786
4787 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4788 is a problem, otherwise false. */
4789
4790 static bool
4791 verify_gimple_transaction (gtransaction *stmt)
4792 {
4793 tree lab;
4794
4795 lab = gimple_transaction_label_norm (stmt);
4796 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4797 return true;
4798 lab = gimple_transaction_label_uninst (stmt);
4799 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4800 return true;
4801 lab = gimple_transaction_label_over (stmt);
4802 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4803 return true;
4804
4805 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4806 }
4807
4808
4809 /* Verify the GIMPLE statements inside the statement list STMTS. */
4810
4811 DEBUG_FUNCTION void
4812 verify_gimple_in_seq (gimple_seq stmts)
4813 {
4814 timevar_push (TV_TREE_STMT_VERIFY);
4815 if (verify_gimple_in_seq_2 (stmts))
4816 internal_error ("verify_gimple failed");
4817 timevar_pop (TV_TREE_STMT_VERIFY);
4818 }
4819
4820 /* Return true when the T can be shared. */
4821
4822 static bool
4823 tree_node_can_be_shared (tree t)
4824 {
4825 if (IS_TYPE_OR_DECL_P (t)
4826 || is_gimple_min_invariant (t)
4827 || TREE_CODE (t) == SSA_NAME
4828 || t == error_mark_node
4829 || TREE_CODE (t) == IDENTIFIER_NODE)
4830 return true;
4831
4832 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4833 return true;
4834
4835 if (DECL_P (t))
4836 return true;
4837
4838 return false;
4839 }
4840
4841 /* Called via walk_tree. Verify tree sharing. */
4842
4843 static tree
4844 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4845 {
4846 hash_set<void *> *visited = (hash_set<void *> *) data;
4847
4848 if (tree_node_can_be_shared (*tp))
4849 {
4850 *walk_subtrees = false;
4851 return NULL;
4852 }
4853
4854 if (visited->add (*tp))
4855 return *tp;
4856
4857 return NULL;
4858 }
4859
4860 /* Called via walk_gimple_stmt. Verify tree sharing. */
4861
4862 static tree
4863 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4864 {
4865 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4866 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4867 }
4868
4869 static bool eh_error_found;
4870 bool
4871 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
4872 hash_set<gimple *> *visited)
4873 {
4874 if (!visited->contains (stmt))
4875 {
4876 error ("dead STMT in EH table");
4877 debug_gimple_stmt (stmt);
4878 eh_error_found = true;
4879 }
4880 return true;
4881 }
4882
4883 /* Verify if the location LOCs block is in BLOCKS. */
4884
4885 static bool
4886 verify_location (hash_set<tree> *blocks, location_t loc)
4887 {
4888 tree block = LOCATION_BLOCK (loc);
4889 if (block != NULL_TREE
4890 && !blocks->contains (block))
4891 {
4892 error ("location references block not in block tree");
4893 return true;
4894 }
4895 if (block != NULL_TREE)
4896 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4897 return false;
4898 }
4899
4900 /* Called via walk_tree. Verify that expressions have no blocks. */
4901
4902 static tree
4903 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4904 {
4905 if (!EXPR_P (*tp))
4906 {
4907 *walk_subtrees = false;
4908 return NULL;
4909 }
4910
4911 location_t loc = EXPR_LOCATION (*tp);
4912 if (LOCATION_BLOCK (loc) != NULL)
4913 return *tp;
4914
4915 return NULL;
4916 }
4917
4918 /* Called via walk_tree. Verify locations of expressions. */
4919
4920 static tree
4921 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4922 {
4923 hash_set<tree> *blocks = (hash_set<tree> *) data;
4924
4925 if (TREE_CODE (*tp) == VAR_DECL
4926 && DECL_HAS_DEBUG_EXPR_P (*tp))
4927 {
4928 tree t = DECL_DEBUG_EXPR (*tp);
4929 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4930 if (addr)
4931 return addr;
4932 }
4933 if ((TREE_CODE (*tp) == VAR_DECL
4934 || TREE_CODE (*tp) == PARM_DECL
4935 || TREE_CODE (*tp) == RESULT_DECL)
4936 && DECL_HAS_VALUE_EXPR_P (*tp))
4937 {
4938 tree t = DECL_VALUE_EXPR (*tp);
4939 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4940 if (addr)
4941 return addr;
4942 }
4943
4944 if (!EXPR_P (*tp))
4945 {
4946 *walk_subtrees = false;
4947 return NULL;
4948 }
4949
4950 location_t loc = EXPR_LOCATION (*tp);
4951 if (verify_location (blocks, loc))
4952 return *tp;
4953
4954 return NULL;
4955 }
4956
4957 /* Called via walk_gimple_op. Verify locations of expressions. */
4958
4959 static tree
4960 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4961 {
4962 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4963 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4964 }
4965
4966 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4967
4968 static void
4969 collect_subblocks (hash_set<tree> *blocks, tree block)
4970 {
4971 tree t;
4972 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4973 {
4974 blocks->add (t);
4975 collect_subblocks (blocks, t);
4976 }
4977 }
4978
4979 /* Verify the GIMPLE statements in the CFG of FN. */
4980
4981 DEBUG_FUNCTION void
4982 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
4983 {
4984 basic_block bb;
4985 bool err = false;
4986
4987 timevar_push (TV_TREE_STMT_VERIFY);
4988 hash_set<void *> visited;
4989 hash_set<gimple *> visited_stmts;
4990
4991 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4992 hash_set<tree> blocks;
4993 if (DECL_INITIAL (fn->decl))
4994 {
4995 blocks.add (DECL_INITIAL (fn->decl));
4996 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
4997 }
4998
4999 FOR_EACH_BB_FN (bb, fn)
5000 {
5001 gimple_stmt_iterator gsi;
5002
5003 for (gphi_iterator gpi = gsi_start_phis (bb);
5004 !gsi_end_p (gpi);
5005 gsi_next (&gpi))
5006 {
5007 gphi *phi = gpi.phi ();
5008 bool err2 = false;
5009 unsigned i;
5010
5011 visited_stmts.add (phi);
5012
5013 if (gimple_bb (phi) != bb)
5014 {
5015 error ("gimple_bb (phi) is set to a wrong basic block");
5016 err2 = true;
5017 }
5018
5019 err2 |= verify_gimple_phi (phi);
5020
5021 /* Only PHI arguments have locations. */
5022 if (gimple_location (phi) != UNKNOWN_LOCATION)
5023 {
5024 error ("PHI node with location");
5025 err2 = true;
5026 }
5027
5028 for (i = 0; i < gimple_phi_num_args (phi); i++)
5029 {
5030 tree arg = gimple_phi_arg_def (phi, i);
5031 tree addr = walk_tree (&arg, verify_node_sharing_1,
5032 &visited, NULL);
5033 if (addr)
5034 {
5035 error ("incorrect sharing of tree nodes");
5036 debug_generic_expr (addr);
5037 err2 |= true;
5038 }
5039 location_t loc = gimple_phi_arg_location (phi, i);
5040 if (virtual_operand_p (gimple_phi_result (phi))
5041 && loc != UNKNOWN_LOCATION)
5042 {
5043 error ("virtual PHI with argument locations");
5044 err2 = true;
5045 }
5046 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5047 if (addr)
5048 {
5049 debug_generic_expr (addr);
5050 err2 = true;
5051 }
5052 err2 |= verify_location (&blocks, loc);
5053 }
5054
5055 if (err2)
5056 debug_gimple_stmt (phi);
5057 err |= err2;
5058 }
5059
5060 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5061 {
5062 gimple *stmt = gsi_stmt (gsi);
5063 bool err2 = false;
5064 struct walk_stmt_info wi;
5065 tree addr;
5066 int lp_nr;
5067
5068 visited_stmts.add (stmt);
5069
5070 if (gimple_bb (stmt) != bb)
5071 {
5072 error ("gimple_bb (stmt) is set to a wrong basic block");
5073 err2 = true;
5074 }
5075
5076 err2 |= verify_gimple_stmt (stmt);
5077 err2 |= verify_location (&blocks, gimple_location (stmt));
5078
5079 memset (&wi, 0, sizeof (wi));
5080 wi.info = (void *) &visited;
5081 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5082 if (addr)
5083 {
5084 error ("incorrect sharing of tree nodes");
5085 debug_generic_expr (addr);
5086 err2 |= true;
5087 }
5088
5089 memset (&wi, 0, sizeof (wi));
5090 wi.info = (void *) &blocks;
5091 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5092 if (addr)
5093 {
5094 debug_generic_expr (addr);
5095 err2 |= true;
5096 }
5097
5098 /* ??? Instead of not checking these stmts at all the walker
5099 should know its context via wi. */
5100 if (!is_gimple_debug (stmt)
5101 && !is_gimple_omp (stmt))
5102 {
5103 memset (&wi, 0, sizeof (wi));
5104 addr = walk_gimple_op (stmt, verify_expr, &wi);
5105 if (addr)
5106 {
5107 debug_generic_expr (addr);
5108 inform (gimple_location (stmt), "in statement");
5109 err2 |= true;
5110 }
5111 }
5112
5113 /* If the statement is marked as part of an EH region, then it is
5114 expected that the statement could throw. Verify that when we
5115 have optimizations that simplify statements such that we prove
5116 that they cannot throw, that we update other data structures
5117 to match. */
5118 lp_nr = lookup_stmt_eh_lp (stmt);
5119 if (lp_nr > 0)
5120 {
5121 if (!stmt_could_throw_p (stmt))
5122 {
5123 if (verify_nothrow)
5124 {
5125 error ("statement marked for throw, but doesn%'t");
5126 err2 |= true;
5127 }
5128 }
5129 else if (!gsi_one_before_end_p (gsi))
5130 {
5131 error ("statement marked for throw in middle of block");
5132 err2 |= true;
5133 }
5134 }
5135
5136 if (err2)
5137 debug_gimple_stmt (stmt);
5138 err |= err2;
5139 }
5140 }
5141
5142 eh_error_found = false;
5143 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5144 if (eh_table)
5145 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5146 (&visited_stmts);
5147
5148 if (err || eh_error_found)
5149 internal_error ("verify_gimple failed");
5150
5151 verify_histograms ();
5152 timevar_pop (TV_TREE_STMT_VERIFY);
5153 }
5154
5155
5156 /* Verifies that the flow information is OK. */
5157
5158 static int
5159 gimple_verify_flow_info (void)
5160 {
5161 int err = 0;
5162 basic_block bb;
5163 gimple_stmt_iterator gsi;
5164 gimple *stmt;
5165 edge e;
5166 edge_iterator ei;
5167
5168 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5169 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5170 {
5171 error ("ENTRY_BLOCK has IL associated with it");
5172 err = 1;
5173 }
5174
5175 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5176 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5177 {
5178 error ("EXIT_BLOCK has IL associated with it");
5179 err = 1;
5180 }
5181
5182 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5183 if (e->flags & EDGE_FALLTHRU)
5184 {
5185 error ("fallthru to exit from bb %d", e->src->index);
5186 err = 1;
5187 }
5188
5189 FOR_EACH_BB_FN (bb, cfun)
5190 {
5191 bool found_ctrl_stmt = false;
5192
5193 stmt = NULL;
5194
5195 /* Skip labels on the start of basic block. */
5196 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5197 {
5198 tree label;
5199 gimple *prev_stmt = stmt;
5200
5201 stmt = gsi_stmt (gsi);
5202
5203 if (gimple_code (stmt) != GIMPLE_LABEL)
5204 break;
5205
5206 label = gimple_label_label (as_a <glabel *> (stmt));
5207 if (prev_stmt && DECL_NONLOCAL (label))
5208 {
5209 error ("nonlocal label ");
5210 print_generic_expr (stderr, label, 0);
5211 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5212 bb->index);
5213 err = 1;
5214 }
5215
5216 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5217 {
5218 error ("EH landing pad label ");
5219 print_generic_expr (stderr, label, 0);
5220 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5221 bb->index);
5222 err = 1;
5223 }
5224
5225 if (label_to_block (label) != bb)
5226 {
5227 error ("label ");
5228 print_generic_expr (stderr, label, 0);
5229 fprintf (stderr, " to block does not match in bb %d",
5230 bb->index);
5231 err = 1;
5232 }
5233
5234 if (decl_function_context (label) != current_function_decl)
5235 {
5236 error ("label ");
5237 print_generic_expr (stderr, label, 0);
5238 fprintf (stderr, " has incorrect context in bb %d",
5239 bb->index);
5240 err = 1;
5241 }
5242 }
5243
5244 /* Verify that body of basic block BB is free of control flow. */
5245 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5246 {
5247 gimple *stmt = gsi_stmt (gsi);
5248
5249 if (found_ctrl_stmt)
5250 {
5251 error ("control flow in the middle of basic block %d",
5252 bb->index);
5253 err = 1;
5254 }
5255
5256 if (stmt_ends_bb_p (stmt))
5257 found_ctrl_stmt = true;
5258
5259 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5260 {
5261 error ("label ");
5262 print_generic_expr (stderr, gimple_label_label (label_stmt), 0);
5263 fprintf (stderr, " in the middle of basic block %d", bb->index);
5264 err = 1;
5265 }
5266 }
5267
5268 gsi = gsi_last_bb (bb);
5269 if (gsi_end_p (gsi))
5270 continue;
5271
5272 stmt = gsi_stmt (gsi);
5273
5274 if (gimple_code (stmt) == GIMPLE_LABEL)
5275 continue;
5276
5277 err |= verify_eh_edges (stmt);
5278
5279 if (is_ctrl_stmt (stmt))
5280 {
5281 FOR_EACH_EDGE (e, ei, bb->succs)
5282 if (e->flags & EDGE_FALLTHRU)
5283 {
5284 error ("fallthru edge after a control statement in bb %d",
5285 bb->index);
5286 err = 1;
5287 }
5288 }
5289
5290 if (gimple_code (stmt) != GIMPLE_COND)
5291 {
5292 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5293 after anything else but if statement. */
5294 FOR_EACH_EDGE (e, ei, bb->succs)
5295 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5296 {
5297 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5298 bb->index);
5299 err = 1;
5300 }
5301 }
5302
5303 switch (gimple_code (stmt))
5304 {
5305 case GIMPLE_COND:
5306 {
5307 edge true_edge;
5308 edge false_edge;
5309
5310 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5311
5312 if (!true_edge
5313 || !false_edge
5314 || !(true_edge->flags & EDGE_TRUE_VALUE)
5315 || !(false_edge->flags & EDGE_FALSE_VALUE)
5316 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5317 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5318 || EDGE_COUNT (bb->succs) >= 3)
5319 {
5320 error ("wrong outgoing edge flags at end of bb %d",
5321 bb->index);
5322 err = 1;
5323 }
5324 }
5325 break;
5326
5327 case GIMPLE_GOTO:
5328 if (simple_goto_p (stmt))
5329 {
5330 error ("explicit goto at end of bb %d", bb->index);
5331 err = 1;
5332 }
5333 else
5334 {
5335 /* FIXME. We should double check that the labels in the
5336 destination blocks have their address taken. */
5337 FOR_EACH_EDGE (e, ei, bb->succs)
5338 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5339 | EDGE_FALSE_VALUE))
5340 || !(e->flags & EDGE_ABNORMAL))
5341 {
5342 error ("wrong outgoing edge flags at end of bb %d",
5343 bb->index);
5344 err = 1;
5345 }
5346 }
5347 break;
5348
5349 case GIMPLE_CALL:
5350 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5351 break;
5352 /* ... fallthru ... */
5353 case GIMPLE_RETURN:
5354 if (!single_succ_p (bb)
5355 || (single_succ_edge (bb)->flags
5356 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5357 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5358 {
5359 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5360 err = 1;
5361 }
5362 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5363 {
5364 error ("return edge does not point to exit in bb %d",
5365 bb->index);
5366 err = 1;
5367 }
5368 break;
5369
5370 case GIMPLE_SWITCH:
5371 {
5372 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5373 tree prev;
5374 edge e;
5375 size_t i, n;
5376
5377 n = gimple_switch_num_labels (switch_stmt);
5378
5379 /* Mark all the destination basic blocks. */
5380 for (i = 0; i < n; ++i)
5381 {
5382 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5383 basic_block label_bb = label_to_block (lab);
5384 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5385 label_bb->aux = (void *)1;
5386 }
5387
5388 /* Verify that the case labels are sorted. */
5389 prev = gimple_switch_label (switch_stmt, 0);
5390 for (i = 1; i < n; ++i)
5391 {
5392 tree c = gimple_switch_label (switch_stmt, i);
5393 if (!CASE_LOW (c))
5394 {
5395 error ("found default case not at the start of "
5396 "case vector");
5397 err = 1;
5398 continue;
5399 }
5400 if (CASE_LOW (prev)
5401 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5402 {
5403 error ("case labels not sorted: ");
5404 print_generic_expr (stderr, prev, 0);
5405 fprintf (stderr," is greater than ");
5406 print_generic_expr (stderr, c, 0);
5407 fprintf (stderr," but comes before it.\n");
5408 err = 1;
5409 }
5410 prev = c;
5411 }
5412 /* VRP will remove the default case if it can prove it will
5413 never be executed. So do not verify there always exists
5414 a default case here. */
5415
5416 FOR_EACH_EDGE (e, ei, bb->succs)
5417 {
5418 if (!e->dest->aux)
5419 {
5420 error ("extra outgoing edge %d->%d",
5421 bb->index, e->dest->index);
5422 err = 1;
5423 }
5424
5425 e->dest->aux = (void *)2;
5426 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5427 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5428 {
5429 error ("wrong outgoing edge flags at end of bb %d",
5430 bb->index);
5431 err = 1;
5432 }
5433 }
5434
5435 /* Check that we have all of them. */
5436 for (i = 0; i < n; ++i)
5437 {
5438 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5439 basic_block label_bb = label_to_block (lab);
5440
5441 if (label_bb->aux != (void *)2)
5442 {
5443 error ("missing edge %i->%i", bb->index, label_bb->index);
5444 err = 1;
5445 }
5446 }
5447
5448 FOR_EACH_EDGE (e, ei, bb->succs)
5449 e->dest->aux = (void *)0;
5450 }
5451 break;
5452
5453 case GIMPLE_EH_DISPATCH:
5454 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5455 break;
5456
5457 default:
5458 break;
5459 }
5460 }
5461
5462 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5463 verify_dominators (CDI_DOMINATORS);
5464
5465 return err;
5466 }
5467
5468
5469 /* Updates phi nodes after creating a forwarder block joined
5470 by edge FALLTHRU. */
5471
5472 static void
5473 gimple_make_forwarder_block (edge fallthru)
5474 {
5475 edge e;
5476 edge_iterator ei;
5477 basic_block dummy, bb;
5478 tree var;
5479 gphi_iterator gsi;
5480
5481 dummy = fallthru->src;
5482 bb = fallthru->dest;
5483
5484 if (single_pred_p (bb))
5485 return;
5486
5487 /* If we redirected a branch we must create new PHI nodes at the
5488 start of BB. */
5489 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5490 {
5491 gphi *phi, *new_phi;
5492
5493 phi = gsi.phi ();
5494 var = gimple_phi_result (phi);
5495 new_phi = create_phi_node (var, bb);
5496 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5497 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5498 UNKNOWN_LOCATION);
5499 }
5500
5501 /* Add the arguments we have stored on edges. */
5502 FOR_EACH_EDGE (e, ei, bb->preds)
5503 {
5504 if (e == fallthru)
5505 continue;
5506
5507 flush_pending_stmts (e);
5508 }
5509 }
5510
5511
5512 /* Return a non-special label in the head of basic block BLOCK.
5513 Create one if it doesn't exist. */
5514
5515 tree
5516 gimple_block_label (basic_block bb)
5517 {
5518 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5519 bool first = true;
5520 tree label;
5521 glabel *stmt;
5522
5523 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5524 {
5525 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5526 if (!stmt)
5527 break;
5528 label = gimple_label_label (stmt);
5529 if (!DECL_NONLOCAL (label))
5530 {
5531 if (!first)
5532 gsi_move_before (&i, &s);
5533 return label;
5534 }
5535 }
5536
5537 label = create_artificial_label (UNKNOWN_LOCATION);
5538 stmt = gimple_build_label (label);
5539 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5540 return label;
5541 }
5542
5543
5544 /* Attempt to perform edge redirection by replacing a possibly complex
5545 jump instruction by a goto or by removing the jump completely.
5546 This can apply only if all edges now point to the same block. The
5547 parameters and return values are equivalent to
5548 redirect_edge_and_branch. */
5549
5550 static edge
5551 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5552 {
5553 basic_block src = e->src;
5554 gimple_stmt_iterator i;
5555 gimple *stmt;
5556
5557 /* We can replace or remove a complex jump only when we have exactly
5558 two edges. */
5559 if (EDGE_COUNT (src->succs) != 2
5560 /* Verify that all targets will be TARGET. Specifically, the
5561 edge that is not E must also go to TARGET. */
5562 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5563 return NULL;
5564
5565 i = gsi_last_bb (src);
5566 if (gsi_end_p (i))
5567 return NULL;
5568
5569 stmt = gsi_stmt (i);
5570
5571 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5572 {
5573 gsi_remove (&i, true);
5574 e = ssa_redirect_edge (e, target);
5575 e->flags = EDGE_FALLTHRU;
5576 return e;
5577 }
5578
5579 return NULL;
5580 }
5581
5582
5583 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5584 edge representing the redirected branch. */
5585
5586 static edge
5587 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5588 {
5589 basic_block bb = e->src;
5590 gimple_stmt_iterator gsi;
5591 edge ret;
5592 gimple *stmt;
5593
5594 if (e->flags & EDGE_ABNORMAL)
5595 return NULL;
5596
5597 if (e->dest == dest)
5598 return NULL;
5599
5600 if (e->flags & EDGE_EH)
5601 return redirect_eh_edge (e, dest);
5602
5603 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5604 {
5605 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5606 if (ret)
5607 return ret;
5608 }
5609
5610 gsi = gsi_last_bb (bb);
5611 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5612
5613 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5614 {
5615 case GIMPLE_COND:
5616 /* For COND_EXPR, we only need to redirect the edge. */
5617 break;
5618
5619 case GIMPLE_GOTO:
5620 /* No non-abnormal edges should lead from a non-simple goto, and
5621 simple ones should be represented implicitly. */
5622 gcc_unreachable ();
5623
5624 case GIMPLE_SWITCH:
5625 {
5626 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5627 tree label = gimple_block_label (dest);
5628 tree cases = get_cases_for_edge (e, switch_stmt);
5629
5630 /* If we have a list of cases associated with E, then use it
5631 as it's a lot faster than walking the entire case vector. */
5632 if (cases)
5633 {
5634 edge e2 = find_edge (e->src, dest);
5635 tree last, first;
5636
5637 first = cases;
5638 while (cases)
5639 {
5640 last = cases;
5641 CASE_LABEL (cases) = label;
5642 cases = CASE_CHAIN (cases);
5643 }
5644
5645 /* If there was already an edge in the CFG, then we need
5646 to move all the cases associated with E to E2. */
5647 if (e2)
5648 {
5649 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5650
5651 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5652 CASE_CHAIN (cases2) = first;
5653 }
5654 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5655 }
5656 else
5657 {
5658 size_t i, n = gimple_switch_num_labels (switch_stmt);
5659
5660 for (i = 0; i < n; i++)
5661 {
5662 tree elt = gimple_switch_label (switch_stmt, i);
5663 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5664 CASE_LABEL (elt) = label;
5665 }
5666 }
5667 }
5668 break;
5669
5670 case GIMPLE_ASM:
5671 {
5672 gasm *asm_stmt = as_a <gasm *> (stmt);
5673 int i, n = gimple_asm_nlabels (asm_stmt);
5674 tree label = NULL;
5675
5676 for (i = 0; i < n; ++i)
5677 {
5678 tree cons = gimple_asm_label_op (asm_stmt, i);
5679 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5680 {
5681 if (!label)
5682 label = gimple_block_label (dest);
5683 TREE_VALUE (cons) = label;
5684 }
5685 }
5686
5687 /* If we didn't find any label matching the former edge in the
5688 asm labels, we must be redirecting the fallthrough
5689 edge. */
5690 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5691 }
5692 break;
5693
5694 case GIMPLE_RETURN:
5695 gsi_remove (&gsi, true);
5696 e->flags |= EDGE_FALLTHRU;
5697 break;
5698
5699 case GIMPLE_OMP_RETURN:
5700 case GIMPLE_OMP_CONTINUE:
5701 case GIMPLE_OMP_SECTIONS_SWITCH:
5702 case GIMPLE_OMP_FOR:
5703 /* The edges from OMP constructs can be simply redirected. */
5704 break;
5705
5706 case GIMPLE_EH_DISPATCH:
5707 if (!(e->flags & EDGE_FALLTHRU))
5708 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5709 break;
5710
5711 case GIMPLE_TRANSACTION:
5712 if (e->flags & EDGE_TM_ABORT)
5713 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5714 gimple_block_label (dest));
5715 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5716 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5717 gimple_block_label (dest));
5718 else
5719 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5720 gimple_block_label (dest));
5721 break;
5722
5723 default:
5724 /* Otherwise it must be a fallthru edge, and we don't need to
5725 do anything besides redirecting it. */
5726 gcc_assert (e->flags & EDGE_FALLTHRU);
5727 break;
5728 }
5729
5730 /* Update/insert PHI nodes as necessary. */
5731
5732 /* Now update the edges in the CFG. */
5733 e = ssa_redirect_edge (e, dest);
5734
5735 return e;
5736 }
5737
5738 /* Returns true if it is possible to remove edge E by redirecting
5739 it to the destination of the other edge from E->src. */
5740
5741 static bool
5742 gimple_can_remove_branch_p (const_edge e)
5743 {
5744 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5745 return false;
5746
5747 return true;
5748 }
5749
5750 /* Simple wrapper, as we can always redirect fallthru edges. */
5751
5752 static basic_block
5753 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5754 {
5755 e = gimple_redirect_edge_and_branch (e, dest);
5756 gcc_assert (e);
5757
5758 return NULL;
5759 }
5760
5761
5762 /* Splits basic block BB after statement STMT (but at least after the
5763 labels). If STMT is NULL, BB is split just after the labels. */
5764
5765 static basic_block
5766 gimple_split_block (basic_block bb, void *stmt)
5767 {
5768 gimple_stmt_iterator gsi;
5769 gimple_stmt_iterator gsi_tgt;
5770 gimple_seq list;
5771 basic_block new_bb;
5772 edge e;
5773 edge_iterator ei;
5774
5775 new_bb = create_empty_bb (bb);
5776
5777 /* Redirect the outgoing edges. */
5778 new_bb->succs = bb->succs;
5779 bb->succs = NULL;
5780 FOR_EACH_EDGE (e, ei, new_bb->succs)
5781 e->src = new_bb;
5782
5783 /* Get a stmt iterator pointing to the first stmt to move. */
5784 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
5785 gsi = gsi_after_labels (bb);
5786 else
5787 {
5788 gsi = gsi_for_stmt ((gimple *) stmt);
5789 gsi_next (&gsi);
5790 }
5791
5792 /* Move everything from GSI to the new basic block. */
5793 if (gsi_end_p (gsi))
5794 return new_bb;
5795
5796 /* Split the statement list - avoid re-creating new containers as this
5797 brings ugly quadratic memory consumption in the inliner.
5798 (We are still quadratic since we need to update stmt BB pointers,
5799 sadly.) */
5800 gsi_split_seq_before (&gsi, &list);
5801 set_bb_seq (new_bb, list);
5802 for (gsi_tgt = gsi_start (list);
5803 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5804 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5805
5806 return new_bb;
5807 }
5808
5809
5810 /* Moves basic block BB after block AFTER. */
5811
5812 static bool
5813 gimple_move_block_after (basic_block bb, basic_block after)
5814 {
5815 if (bb->prev_bb == after)
5816 return true;
5817
5818 unlink_block (bb);
5819 link_block (bb, after);
5820
5821 return true;
5822 }
5823
5824
5825 /* Return TRUE if block BB has no executable statements, otherwise return
5826 FALSE. */
5827
5828 static bool
5829 gimple_empty_block_p (basic_block bb)
5830 {
5831 /* BB must have no executable statements. */
5832 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5833 if (phi_nodes (bb))
5834 return false;
5835 if (gsi_end_p (gsi))
5836 return true;
5837 if (is_gimple_debug (gsi_stmt (gsi)))
5838 gsi_next_nondebug (&gsi);
5839 return gsi_end_p (gsi);
5840 }
5841
5842
5843 /* Split a basic block if it ends with a conditional branch and if the
5844 other part of the block is not empty. */
5845
5846 static basic_block
5847 gimple_split_block_before_cond_jump (basic_block bb)
5848 {
5849 gimple *last, *split_point;
5850 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5851 if (gsi_end_p (gsi))
5852 return NULL;
5853 last = gsi_stmt (gsi);
5854 if (gimple_code (last) != GIMPLE_COND
5855 && gimple_code (last) != GIMPLE_SWITCH)
5856 return NULL;
5857 gsi_prev (&gsi);
5858 split_point = gsi_stmt (gsi);
5859 return split_block (bb, split_point)->dest;
5860 }
5861
5862
5863 /* Return true if basic_block can be duplicated. */
5864
5865 static bool
5866 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5867 {
5868 return true;
5869 }
5870
5871 /* Create a duplicate of the basic block BB. NOTE: This does not
5872 preserve SSA form. */
5873
5874 static basic_block
5875 gimple_duplicate_bb (basic_block bb)
5876 {
5877 basic_block new_bb;
5878 gimple_stmt_iterator gsi_tgt;
5879
5880 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5881
5882 /* Copy the PHI nodes. We ignore PHI node arguments here because
5883 the incoming edges have not been setup yet. */
5884 for (gphi_iterator gpi = gsi_start_phis (bb);
5885 !gsi_end_p (gpi);
5886 gsi_next (&gpi))
5887 {
5888 gphi *phi, *copy;
5889 phi = gpi.phi ();
5890 copy = create_phi_node (NULL_TREE, new_bb);
5891 create_new_def_for (gimple_phi_result (phi), copy,
5892 gimple_phi_result_ptr (copy));
5893 gimple_set_uid (copy, gimple_uid (phi));
5894 }
5895
5896 gsi_tgt = gsi_start_bb (new_bb);
5897 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
5898 !gsi_end_p (gsi);
5899 gsi_next (&gsi))
5900 {
5901 def_operand_p def_p;
5902 ssa_op_iter op_iter;
5903 tree lhs;
5904 gimple *stmt, *copy;
5905
5906 stmt = gsi_stmt (gsi);
5907 if (gimple_code (stmt) == GIMPLE_LABEL)
5908 continue;
5909
5910 /* Don't duplicate label debug stmts. */
5911 if (gimple_debug_bind_p (stmt)
5912 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5913 == LABEL_DECL)
5914 continue;
5915
5916 /* Create a new copy of STMT and duplicate STMT's virtual
5917 operands. */
5918 copy = gimple_copy (stmt);
5919 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5920
5921 maybe_duplicate_eh_stmt (copy, stmt);
5922 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5923
5924 /* When copying around a stmt writing into a local non-user
5925 aggregate, make sure it won't share stack slot with other
5926 vars. */
5927 lhs = gimple_get_lhs (stmt);
5928 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5929 {
5930 tree base = get_base_address (lhs);
5931 if (base
5932 && (TREE_CODE (base) == VAR_DECL
5933 || TREE_CODE (base) == RESULT_DECL)
5934 && DECL_IGNORED_P (base)
5935 && !TREE_STATIC (base)
5936 && !DECL_EXTERNAL (base)
5937 && (TREE_CODE (base) != VAR_DECL
5938 || !DECL_HAS_VALUE_EXPR_P (base)))
5939 DECL_NONSHAREABLE (base) = 1;
5940 }
5941
5942 /* Create new names for all the definitions created by COPY and
5943 add replacement mappings for each new name. */
5944 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5945 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5946 }
5947
5948 return new_bb;
5949 }
5950
5951 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5952
5953 static void
5954 add_phi_args_after_copy_edge (edge e_copy)
5955 {
5956 basic_block bb, bb_copy = e_copy->src, dest;
5957 edge e;
5958 edge_iterator ei;
5959 gphi *phi, *phi_copy;
5960 tree def;
5961 gphi_iterator psi, psi_copy;
5962
5963 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5964 return;
5965
5966 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5967
5968 if (e_copy->dest->flags & BB_DUPLICATED)
5969 dest = get_bb_original (e_copy->dest);
5970 else
5971 dest = e_copy->dest;
5972
5973 e = find_edge (bb, dest);
5974 if (!e)
5975 {
5976 /* During loop unrolling the target of the latch edge is copied.
5977 In this case we are not looking for edge to dest, but to
5978 duplicated block whose original was dest. */
5979 FOR_EACH_EDGE (e, ei, bb->succs)
5980 {
5981 if ((e->dest->flags & BB_DUPLICATED)
5982 && get_bb_original (e->dest) == dest)
5983 break;
5984 }
5985
5986 gcc_assert (e != NULL);
5987 }
5988
5989 for (psi = gsi_start_phis (e->dest),
5990 psi_copy = gsi_start_phis (e_copy->dest);
5991 !gsi_end_p (psi);
5992 gsi_next (&psi), gsi_next (&psi_copy))
5993 {
5994 phi = psi.phi ();
5995 phi_copy = psi_copy.phi ();
5996 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5997 add_phi_arg (phi_copy, def, e_copy,
5998 gimple_phi_arg_location_from_edge (phi, e));
5999 }
6000 }
6001
6002
6003 /* Basic block BB_COPY was created by code duplication. Add phi node
6004 arguments for edges going out of BB_COPY. The blocks that were
6005 duplicated have BB_DUPLICATED set. */
6006
6007 void
6008 add_phi_args_after_copy_bb (basic_block bb_copy)
6009 {
6010 edge e_copy;
6011 edge_iterator ei;
6012
6013 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6014 {
6015 add_phi_args_after_copy_edge (e_copy);
6016 }
6017 }
6018
6019 /* Blocks in REGION_COPY array of length N_REGION were created by
6020 duplication of basic blocks. Add phi node arguments for edges
6021 going from these blocks. If E_COPY is not NULL, also add
6022 phi node arguments for its destination.*/
6023
6024 void
6025 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6026 edge e_copy)
6027 {
6028 unsigned i;
6029
6030 for (i = 0; i < n_region; i++)
6031 region_copy[i]->flags |= BB_DUPLICATED;
6032
6033 for (i = 0; i < n_region; i++)
6034 add_phi_args_after_copy_bb (region_copy[i]);
6035 if (e_copy)
6036 add_phi_args_after_copy_edge (e_copy);
6037
6038 for (i = 0; i < n_region; i++)
6039 region_copy[i]->flags &= ~BB_DUPLICATED;
6040 }
6041
6042 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6043 important exit edge EXIT. By important we mean that no SSA name defined
6044 inside region is live over the other exit edges of the region. All entry
6045 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6046 to the duplicate of the region. Dominance and loop information is
6047 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6048 UPDATE_DOMINANCE is false then we assume that the caller will update the
6049 dominance information after calling this function. The new basic
6050 blocks are stored to REGION_COPY in the same order as they had in REGION,
6051 provided that REGION_COPY is not NULL.
6052 The function returns false if it is unable to copy the region,
6053 true otherwise. */
6054
6055 bool
6056 gimple_duplicate_sese_region (edge entry, edge exit,
6057 basic_block *region, unsigned n_region,
6058 basic_block *region_copy,
6059 bool update_dominance)
6060 {
6061 unsigned i;
6062 bool free_region_copy = false, copying_header = false;
6063 struct loop *loop = entry->dest->loop_father;
6064 edge exit_copy;
6065 vec<basic_block> doms;
6066 edge redirected;
6067 int total_freq = 0, entry_freq = 0;
6068 gcov_type total_count = 0, entry_count = 0;
6069
6070 if (!can_copy_bbs_p (region, n_region))
6071 return false;
6072
6073 /* Some sanity checking. Note that we do not check for all possible
6074 missuses of the functions. I.e. if you ask to copy something weird,
6075 it will work, but the state of structures probably will not be
6076 correct. */
6077 for (i = 0; i < n_region; i++)
6078 {
6079 /* We do not handle subloops, i.e. all the blocks must belong to the
6080 same loop. */
6081 if (region[i]->loop_father != loop)
6082 return false;
6083
6084 if (region[i] != entry->dest
6085 && region[i] == loop->header)
6086 return false;
6087 }
6088
6089 /* In case the function is used for loop header copying (which is the primary
6090 use), ensure that EXIT and its copy will be new latch and entry edges. */
6091 if (loop->header == entry->dest)
6092 {
6093 copying_header = true;
6094
6095 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6096 return false;
6097
6098 for (i = 0; i < n_region; i++)
6099 if (region[i] != exit->src
6100 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6101 return false;
6102 }
6103
6104 initialize_original_copy_tables ();
6105
6106 if (copying_header)
6107 set_loop_copy (loop, loop_outer (loop));
6108 else
6109 set_loop_copy (loop, loop);
6110
6111 if (!region_copy)
6112 {
6113 region_copy = XNEWVEC (basic_block, n_region);
6114 free_region_copy = true;
6115 }
6116
6117 /* Record blocks outside the region that are dominated by something
6118 inside. */
6119 if (update_dominance)
6120 {
6121 doms.create (0);
6122 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6123 }
6124
6125 if (entry->dest->count)
6126 {
6127 total_count = entry->dest->count;
6128 entry_count = entry->count;
6129 /* Fix up corner cases, to avoid division by zero or creation of negative
6130 frequencies. */
6131 if (entry_count > total_count)
6132 entry_count = total_count;
6133 }
6134 else
6135 {
6136 total_freq = entry->dest->frequency;
6137 entry_freq = EDGE_FREQUENCY (entry);
6138 /* Fix up corner cases, to avoid division by zero or creation of negative
6139 frequencies. */
6140 if (total_freq == 0)
6141 total_freq = 1;
6142 else if (entry_freq > total_freq)
6143 entry_freq = total_freq;
6144 }
6145
6146 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6147 split_edge_bb_loc (entry), update_dominance);
6148 if (total_count)
6149 {
6150 scale_bbs_frequencies_gcov_type (region, n_region,
6151 total_count - entry_count,
6152 total_count);
6153 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
6154 total_count);
6155 }
6156 else
6157 {
6158 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
6159 total_freq);
6160 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
6161 }
6162
6163 if (copying_header)
6164 {
6165 loop->header = exit->dest;
6166 loop->latch = exit->src;
6167 }
6168
6169 /* Redirect the entry and add the phi node arguments. */
6170 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6171 gcc_assert (redirected != NULL);
6172 flush_pending_stmts (entry);
6173
6174 /* Concerning updating of dominators: We must recount dominators
6175 for entry block and its copy. Anything that is outside of the
6176 region, but was dominated by something inside needs recounting as
6177 well. */
6178 if (update_dominance)
6179 {
6180 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6181 doms.safe_push (get_bb_original (entry->dest));
6182 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6183 doms.release ();
6184 }
6185
6186 /* Add the other PHI node arguments. */
6187 add_phi_args_after_copy (region_copy, n_region, NULL);
6188
6189 if (free_region_copy)
6190 free (region_copy);
6191
6192 free_original_copy_tables ();
6193 return true;
6194 }
6195
6196 /* Checks if BB is part of the region defined by N_REGION BBS. */
6197 static bool
6198 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6199 {
6200 unsigned int n;
6201
6202 for (n = 0; n < n_region; n++)
6203 {
6204 if (bb == bbs[n])
6205 return true;
6206 }
6207 return false;
6208 }
6209
6210 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6211 are stored to REGION_COPY in the same order in that they appear
6212 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6213 the region, EXIT an exit from it. The condition guarding EXIT
6214 is moved to ENTRY. Returns true if duplication succeeds, false
6215 otherwise.
6216
6217 For example,
6218
6219 some_code;
6220 if (cond)
6221 A;
6222 else
6223 B;
6224
6225 is transformed to
6226
6227 if (cond)
6228 {
6229 some_code;
6230 A;
6231 }
6232 else
6233 {
6234 some_code;
6235 B;
6236 }
6237 */
6238
6239 bool
6240 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6241 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6242 basic_block *region_copy ATTRIBUTE_UNUSED)
6243 {
6244 unsigned i;
6245 bool free_region_copy = false;
6246 struct loop *loop = exit->dest->loop_father;
6247 struct loop *orig_loop = entry->dest->loop_father;
6248 basic_block switch_bb, entry_bb, nentry_bb;
6249 vec<basic_block> doms;
6250 int total_freq = 0, exit_freq = 0;
6251 gcov_type total_count = 0, exit_count = 0;
6252 edge exits[2], nexits[2], e;
6253 gimple_stmt_iterator gsi;
6254 gimple *cond_stmt;
6255 edge sorig, snew;
6256 basic_block exit_bb;
6257 gphi_iterator psi;
6258 gphi *phi;
6259 tree def;
6260 struct loop *target, *aloop, *cloop;
6261
6262 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6263 exits[0] = exit;
6264 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6265
6266 if (!can_copy_bbs_p (region, n_region))
6267 return false;
6268
6269 initialize_original_copy_tables ();
6270 set_loop_copy (orig_loop, loop);
6271
6272 target= loop;
6273 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6274 {
6275 if (bb_part_of_region_p (aloop->header, region, n_region))
6276 {
6277 cloop = duplicate_loop (aloop, target);
6278 duplicate_subloops (aloop, cloop);
6279 }
6280 }
6281
6282 if (!region_copy)
6283 {
6284 region_copy = XNEWVEC (basic_block, n_region);
6285 free_region_copy = true;
6286 }
6287
6288 gcc_assert (!need_ssa_update_p (cfun));
6289
6290 /* Record blocks outside the region that are dominated by something
6291 inside. */
6292 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6293
6294 if (exit->src->count)
6295 {
6296 total_count = exit->src->count;
6297 exit_count = exit->count;
6298 /* Fix up corner cases, to avoid division by zero or creation of negative
6299 frequencies. */
6300 if (exit_count > total_count)
6301 exit_count = total_count;
6302 }
6303 else
6304 {
6305 total_freq = exit->src->frequency;
6306 exit_freq = EDGE_FREQUENCY (exit);
6307 /* Fix up corner cases, to avoid division by zero or creation of negative
6308 frequencies. */
6309 if (total_freq == 0)
6310 total_freq = 1;
6311 if (exit_freq > total_freq)
6312 exit_freq = total_freq;
6313 }
6314
6315 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6316 split_edge_bb_loc (exit), true);
6317 if (total_count)
6318 {
6319 scale_bbs_frequencies_gcov_type (region, n_region,
6320 total_count - exit_count,
6321 total_count);
6322 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6323 total_count);
6324 }
6325 else
6326 {
6327 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6328 total_freq);
6329 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6330 }
6331
6332 /* Create the switch block, and put the exit condition to it. */
6333 entry_bb = entry->dest;
6334 nentry_bb = get_bb_copy (entry_bb);
6335 if (!last_stmt (entry->src)
6336 || !stmt_ends_bb_p (last_stmt (entry->src)))
6337 switch_bb = entry->src;
6338 else
6339 switch_bb = split_edge (entry);
6340 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6341
6342 gsi = gsi_last_bb (switch_bb);
6343 cond_stmt = last_stmt (exit->src);
6344 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6345 cond_stmt = gimple_copy (cond_stmt);
6346
6347 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6348
6349 sorig = single_succ_edge (switch_bb);
6350 sorig->flags = exits[1]->flags;
6351 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6352
6353 /* Register the new edge from SWITCH_BB in loop exit lists. */
6354 rescan_loop_exit (snew, true, false);
6355
6356 /* Add the PHI node arguments. */
6357 add_phi_args_after_copy (region_copy, n_region, snew);
6358
6359 /* Get rid of now superfluous conditions and associated edges (and phi node
6360 arguments). */
6361 exit_bb = exit->dest;
6362
6363 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6364 PENDING_STMT (e) = NULL;
6365
6366 /* The latch of ORIG_LOOP was copied, and so was the backedge
6367 to the original header. We redirect this backedge to EXIT_BB. */
6368 for (i = 0; i < n_region; i++)
6369 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6370 {
6371 gcc_assert (single_succ_edge (region_copy[i]));
6372 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6373 PENDING_STMT (e) = NULL;
6374 for (psi = gsi_start_phis (exit_bb);
6375 !gsi_end_p (psi);
6376 gsi_next (&psi))
6377 {
6378 phi = psi.phi ();
6379 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6380 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6381 }
6382 }
6383 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6384 PENDING_STMT (e) = NULL;
6385
6386 /* Anything that is outside of the region, but was dominated by something
6387 inside needs to update dominance info. */
6388 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6389 doms.release ();
6390 /* Update the SSA web. */
6391 update_ssa (TODO_update_ssa);
6392
6393 if (free_region_copy)
6394 free (region_copy);
6395
6396 free_original_copy_tables ();
6397 return true;
6398 }
6399
6400 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6401 adding blocks when the dominator traversal reaches EXIT. This
6402 function silently assumes that ENTRY strictly dominates EXIT. */
6403
6404 void
6405 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6406 vec<basic_block> *bbs_p)
6407 {
6408 basic_block son;
6409
6410 for (son = first_dom_son (CDI_DOMINATORS, entry);
6411 son;
6412 son = next_dom_son (CDI_DOMINATORS, son))
6413 {
6414 bbs_p->safe_push (son);
6415 if (son != exit)
6416 gather_blocks_in_sese_region (son, exit, bbs_p);
6417 }
6418 }
6419
6420 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6421 The duplicates are recorded in VARS_MAP. */
6422
6423 static void
6424 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6425 tree to_context)
6426 {
6427 tree t = *tp, new_t;
6428 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6429
6430 if (DECL_CONTEXT (t) == to_context)
6431 return;
6432
6433 bool existed;
6434 tree &loc = vars_map->get_or_insert (t, &existed);
6435
6436 if (!existed)
6437 {
6438 if (SSA_VAR_P (t))
6439 {
6440 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6441 add_local_decl (f, new_t);
6442 }
6443 else
6444 {
6445 gcc_assert (TREE_CODE (t) == CONST_DECL);
6446 new_t = copy_node (t);
6447 }
6448 DECL_CONTEXT (new_t) = to_context;
6449
6450 loc = new_t;
6451 }
6452 else
6453 new_t = loc;
6454
6455 *tp = new_t;
6456 }
6457
6458
6459 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6460 VARS_MAP maps old ssa names and var_decls to the new ones. */
6461
6462 static tree
6463 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6464 tree to_context)
6465 {
6466 tree new_name;
6467
6468 gcc_assert (!virtual_operand_p (name));
6469
6470 tree *loc = vars_map->get (name);
6471
6472 if (!loc)
6473 {
6474 tree decl = SSA_NAME_VAR (name);
6475 if (decl)
6476 {
6477 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6478 replace_by_duplicate_decl (&decl, vars_map, to_context);
6479 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6480 decl, SSA_NAME_DEF_STMT (name));
6481 }
6482 else
6483 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6484 name, SSA_NAME_DEF_STMT (name));
6485
6486 /* Now that we've used the def stmt to define new_name, make sure it
6487 doesn't define name anymore. */
6488 SSA_NAME_DEF_STMT (name) = NULL;
6489
6490 vars_map->put (name, new_name);
6491 }
6492 else
6493 new_name = *loc;
6494
6495 return new_name;
6496 }
6497
6498 struct move_stmt_d
6499 {
6500 tree orig_block;
6501 tree new_block;
6502 tree from_context;
6503 tree to_context;
6504 hash_map<tree, tree> *vars_map;
6505 htab_t new_label_map;
6506 hash_map<void *, void *> *eh_map;
6507 bool remap_decls_p;
6508 };
6509
6510 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6511 contained in *TP if it has been ORIG_BLOCK previously and change the
6512 DECL_CONTEXT of every local variable referenced in *TP. */
6513
6514 static tree
6515 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6516 {
6517 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6518 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6519 tree t = *tp;
6520
6521 if (EXPR_P (t))
6522 {
6523 tree block = TREE_BLOCK (t);
6524 if (block == p->orig_block
6525 || (p->orig_block == NULL_TREE
6526 && block != NULL_TREE))
6527 TREE_SET_BLOCK (t, p->new_block);
6528 else if (flag_checking && block != NULL_TREE)
6529 {
6530 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6531 block = BLOCK_SUPERCONTEXT (block);
6532 gcc_assert (block == p->orig_block);
6533 }
6534 }
6535 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6536 {
6537 if (TREE_CODE (t) == SSA_NAME)
6538 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6539 else if (TREE_CODE (t) == PARM_DECL
6540 && gimple_in_ssa_p (cfun))
6541 *tp = *(p->vars_map->get (t));
6542 else if (TREE_CODE (t) == LABEL_DECL)
6543 {
6544 if (p->new_label_map)
6545 {
6546 struct tree_map in, *out;
6547 in.base.from = t;
6548 out = (struct tree_map *)
6549 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6550 if (out)
6551 *tp = t = out->to;
6552 }
6553
6554 DECL_CONTEXT (t) = p->to_context;
6555 }
6556 else if (p->remap_decls_p)
6557 {
6558 /* Replace T with its duplicate. T should no longer appear in the
6559 parent function, so this looks wasteful; however, it may appear
6560 in referenced_vars, and more importantly, as virtual operands of
6561 statements, and in alias lists of other variables. It would be
6562 quite difficult to expunge it from all those places. ??? It might
6563 suffice to do this for addressable variables. */
6564 if ((TREE_CODE (t) == VAR_DECL
6565 && !is_global_var (t))
6566 || TREE_CODE (t) == CONST_DECL)
6567 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6568 }
6569 *walk_subtrees = 0;
6570 }
6571 else if (TYPE_P (t))
6572 *walk_subtrees = 0;
6573
6574 return NULL_TREE;
6575 }
6576
6577 /* Helper for move_stmt_r. Given an EH region number for the source
6578 function, map that to the duplicate EH regio number in the dest. */
6579
6580 static int
6581 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6582 {
6583 eh_region old_r, new_r;
6584
6585 old_r = get_eh_region_from_number (old_nr);
6586 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6587
6588 return new_r->index;
6589 }
6590
6591 /* Similar, but operate on INTEGER_CSTs. */
6592
6593 static tree
6594 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6595 {
6596 int old_nr, new_nr;
6597
6598 old_nr = tree_to_shwi (old_t_nr);
6599 new_nr = move_stmt_eh_region_nr (old_nr, p);
6600
6601 return build_int_cst (integer_type_node, new_nr);
6602 }
6603
6604 /* Like move_stmt_op, but for gimple statements.
6605
6606 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6607 contained in the current statement in *GSI_P and change the
6608 DECL_CONTEXT of every local variable referenced in the current
6609 statement. */
6610
6611 static tree
6612 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6613 struct walk_stmt_info *wi)
6614 {
6615 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6616 gimple *stmt = gsi_stmt (*gsi_p);
6617 tree block = gimple_block (stmt);
6618
6619 if (block == p->orig_block
6620 || (p->orig_block == NULL_TREE
6621 && block != NULL_TREE))
6622 gimple_set_block (stmt, p->new_block);
6623
6624 switch (gimple_code (stmt))
6625 {
6626 case GIMPLE_CALL:
6627 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6628 {
6629 tree r, fndecl = gimple_call_fndecl (stmt);
6630 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6631 switch (DECL_FUNCTION_CODE (fndecl))
6632 {
6633 case BUILT_IN_EH_COPY_VALUES:
6634 r = gimple_call_arg (stmt, 1);
6635 r = move_stmt_eh_region_tree_nr (r, p);
6636 gimple_call_set_arg (stmt, 1, r);
6637 /* FALLTHRU */
6638
6639 case BUILT_IN_EH_POINTER:
6640 case BUILT_IN_EH_FILTER:
6641 r = gimple_call_arg (stmt, 0);
6642 r = move_stmt_eh_region_tree_nr (r, p);
6643 gimple_call_set_arg (stmt, 0, r);
6644 break;
6645
6646 default:
6647 break;
6648 }
6649 }
6650 break;
6651
6652 case GIMPLE_RESX:
6653 {
6654 gresx *resx_stmt = as_a <gresx *> (stmt);
6655 int r = gimple_resx_region (resx_stmt);
6656 r = move_stmt_eh_region_nr (r, p);
6657 gimple_resx_set_region (resx_stmt, r);
6658 }
6659 break;
6660
6661 case GIMPLE_EH_DISPATCH:
6662 {
6663 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6664 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6665 r = move_stmt_eh_region_nr (r, p);
6666 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6667 }
6668 break;
6669
6670 case GIMPLE_OMP_RETURN:
6671 case GIMPLE_OMP_CONTINUE:
6672 break;
6673 default:
6674 if (is_gimple_omp (stmt))
6675 {
6676 /* Do not remap variables inside OMP directives. Variables
6677 referenced in clauses and directive header belong to the
6678 parent function and should not be moved into the child
6679 function. */
6680 bool save_remap_decls_p = p->remap_decls_p;
6681 p->remap_decls_p = false;
6682 *handled_ops_p = true;
6683
6684 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6685 move_stmt_op, wi);
6686
6687 p->remap_decls_p = save_remap_decls_p;
6688 }
6689 break;
6690 }
6691
6692 return NULL_TREE;
6693 }
6694
6695 /* Move basic block BB from function CFUN to function DEST_FN. The
6696 block is moved out of the original linked list and placed after
6697 block AFTER in the new list. Also, the block is removed from the
6698 original array of blocks and placed in DEST_FN's array of blocks.
6699 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6700 updated to reflect the moved edges.
6701
6702 The local variables are remapped to new instances, VARS_MAP is used
6703 to record the mapping. */
6704
6705 static void
6706 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6707 basic_block after, bool update_edge_count_p,
6708 struct move_stmt_d *d)
6709 {
6710 struct control_flow_graph *cfg;
6711 edge_iterator ei;
6712 edge e;
6713 gimple_stmt_iterator si;
6714 unsigned old_len, new_len;
6715
6716 /* Remove BB from dominance structures. */
6717 delete_from_dominance_info (CDI_DOMINATORS, bb);
6718
6719 /* Move BB from its current loop to the copy in the new function. */
6720 if (current_loops)
6721 {
6722 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6723 if (new_loop)
6724 bb->loop_father = new_loop;
6725 }
6726
6727 /* Link BB to the new linked list. */
6728 move_block_after (bb, after);
6729
6730 /* Update the edge count in the corresponding flowgraphs. */
6731 if (update_edge_count_p)
6732 FOR_EACH_EDGE (e, ei, bb->succs)
6733 {
6734 cfun->cfg->x_n_edges--;
6735 dest_cfun->cfg->x_n_edges++;
6736 }
6737
6738 /* Remove BB from the original basic block array. */
6739 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6740 cfun->cfg->x_n_basic_blocks--;
6741
6742 /* Grow DEST_CFUN's basic block array if needed. */
6743 cfg = dest_cfun->cfg;
6744 cfg->x_n_basic_blocks++;
6745 if (bb->index >= cfg->x_last_basic_block)
6746 cfg->x_last_basic_block = bb->index + 1;
6747
6748 old_len = vec_safe_length (cfg->x_basic_block_info);
6749 if ((unsigned) cfg->x_last_basic_block >= old_len)
6750 {
6751 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6752 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6753 }
6754
6755 (*cfg->x_basic_block_info)[bb->index] = bb;
6756
6757 /* Remap the variables in phi nodes. */
6758 for (gphi_iterator psi = gsi_start_phis (bb);
6759 !gsi_end_p (psi); )
6760 {
6761 gphi *phi = psi.phi ();
6762 use_operand_p use;
6763 tree op = PHI_RESULT (phi);
6764 ssa_op_iter oi;
6765 unsigned i;
6766
6767 if (virtual_operand_p (op))
6768 {
6769 /* Remove the phi nodes for virtual operands (alias analysis will be
6770 run for the new function, anyway). */
6771 remove_phi_node (&psi, true);
6772 continue;
6773 }
6774
6775 SET_PHI_RESULT (phi,
6776 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6777 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6778 {
6779 op = USE_FROM_PTR (use);
6780 if (TREE_CODE (op) == SSA_NAME)
6781 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6782 }
6783
6784 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6785 {
6786 location_t locus = gimple_phi_arg_location (phi, i);
6787 tree block = LOCATION_BLOCK (locus);
6788
6789 if (locus == UNKNOWN_LOCATION)
6790 continue;
6791 if (d->orig_block == NULL_TREE || block == d->orig_block)
6792 {
6793 locus = set_block (locus, d->new_block);
6794 gimple_phi_arg_set_location (phi, i, locus);
6795 }
6796 }
6797
6798 gsi_next (&psi);
6799 }
6800
6801 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6802 {
6803 gimple *stmt = gsi_stmt (si);
6804 struct walk_stmt_info wi;
6805
6806 memset (&wi, 0, sizeof (wi));
6807 wi.info = d;
6808 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6809
6810 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
6811 {
6812 tree label = gimple_label_label (label_stmt);
6813 int uid = LABEL_DECL_UID (label);
6814
6815 gcc_assert (uid > -1);
6816
6817 old_len = vec_safe_length (cfg->x_label_to_block_map);
6818 if (old_len <= (unsigned) uid)
6819 {
6820 new_len = 3 * uid / 2 + 1;
6821 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6822 }
6823
6824 (*cfg->x_label_to_block_map)[uid] = bb;
6825 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6826
6827 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6828
6829 if (uid >= dest_cfun->cfg->last_label_uid)
6830 dest_cfun->cfg->last_label_uid = uid + 1;
6831 }
6832
6833 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6834 remove_stmt_from_eh_lp_fn (cfun, stmt);
6835
6836 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6837 gimple_remove_stmt_histograms (cfun, stmt);
6838
6839 /* We cannot leave any operands allocated from the operand caches of
6840 the current function. */
6841 free_stmt_operands (cfun, stmt);
6842 push_cfun (dest_cfun);
6843 update_stmt (stmt);
6844 pop_cfun ();
6845 }
6846
6847 FOR_EACH_EDGE (e, ei, bb->succs)
6848 if (e->goto_locus != UNKNOWN_LOCATION)
6849 {
6850 tree block = LOCATION_BLOCK (e->goto_locus);
6851 if (d->orig_block == NULL_TREE
6852 || block == d->orig_block)
6853 e->goto_locus = set_block (e->goto_locus, d->new_block);
6854 }
6855 }
6856
6857 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6858 the outermost EH region. Use REGION as the incoming base EH region. */
6859
6860 static eh_region
6861 find_outermost_region_in_block (struct function *src_cfun,
6862 basic_block bb, eh_region region)
6863 {
6864 gimple_stmt_iterator si;
6865
6866 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6867 {
6868 gimple *stmt = gsi_stmt (si);
6869 eh_region stmt_region;
6870 int lp_nr;
6871
6872 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6873 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6874 if (stmt_region)
6875 {
6876 if (region == NULL)
6877 region = stmt_region;
6878 else if (stmt_region != region)
6879 {
6880 region = eh_region_outermost (src_cfun, stmt_region, region);
6881 gcc_assert (region != NULL);
6882 }
6883 }
6884 }
6885
6886 return region;
6887 }
6888
6889 static tree
6890 new_label_mapper (tree decl, void *data)
6891 {
6892 htab_t hash = (htab_t) data;
6893 struct tree_map *m;
6894 void **slot;
6895
6896 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6897
6898 m = XNEW (struct tree_map);
6899 m->hash = DECL_UID (decl);
6900 m->base.from = decl;
6901 m->to = create_artificial_label (UNKNOWN_LOCATION);
6902 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6903 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6904 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6905
6906 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6907 gcc_assert (*slot == NULL);
6908
6909 *slot = m;
6910
6911 return m->to;
6912 }
6913
6914 /* Tree walker to replace the decls used inside value expressions by
6915 duplicates. */
6916
6917 static tree
6918 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
6919 {
6920 struct replace_decls_d *rd = (struct replace_decls_d *)data;
6921
6922 switch (TREE_CODE (*tp))
6923 {
6924 case VAR_DECL:
6925 case PARM_DECL:
6926 case RESULT_DECL:
6927 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
6928 break;
6929 default:
6930 break;
6931 }
6932
6933 if (IS_TYPE_OR_DECL_P (*tp))
6934 *walk_subtrees = false;
6935
6936 return NULL;
6937 }
6938
6939 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6940 subblocks. */
6941
6942 static void
6943 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
6944 tree to_context)
6945 {
6946 tree *tp, t;
6947
6948 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6949 {
6950 t = *tp;
6951 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6952 continue;
6953 replace_by_duplicate_decl (&t, vars_map, to_context);
6954 if (t != *tp)
6955 {
6956 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6957 {
6958 tree x = DECL_VALUE_EXPR (*tp);
6959 struct replace_decls_d rd = { vars_map, to_context };
6960 unshare_expr (x);
6961 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
6962 SET_DECL_VALUE_EXPR (t, x);
6963 DECL_HAS_VALUE_EXPR_P (t) = 1;
6964 }
6965 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6966 *tp = t;
6967 }
6968 }
6969
6970 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6971 replace_block_vars_by_duplicates (block, vars_map, to_context);
6972 }
6973
6974 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6975 from FN1 to FN2. */
6976
6977 static void
6978 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6979 struct loop *loop)
6980 {
6981 /* Discard it from the old loop array. */
6982 (*get_loops (fn1))[loop->num] = NULL;
6983
6984 /* Place it in the new loop array, assigning it a new number. */
6985 loop->num = number_of_loops (fn2);
6986 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6987
6988 /* Recurse to children. */
6989 for (loop = loop->inner; loop; loop = loop->next)
6990 fixup_loop_arrays_after_move (fn1, fn2, loop);
6991 }
6992
6993 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
6994 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
6995
6996 DEBUG_FUNCTION void
6997 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
6998 {
6999 basic_block bb;
7000 edge_iterator ei;
7001 edge e;
7002 bitmap bbs = BITMAP_ALLOC (NULL);
7003 int i;
7004
7005 gcc_assert (entry != NULL);
7006 gcc_assert (entry != exit);
7007 gcc_assert (bbs_p != NULL);
7008
7009 gcc_assert (bbs_p->length () > 0);
7010
7011 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7012 bitmap_set_bit (bbs, bb->index);
7013
7014 gcc_assert (bitmap_bit_p (bbs, entry->index));
7015 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7016
7017 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7018 {
7019 if (bb == entry)
7020 {
7021 gcc_assert (single_pred_p (entry));
7022 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7023 }
7024 else
7025 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7026 {
7027 e = ei_edge (ei);
7028 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7029 }
7030
7031 if (bb == exit)
7032 {
7033 gcc_assert (single_succ_p (exit));
7034 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7035 }
7036 else
7037 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7038 {
7039 e = ei_edge (ei);
7040 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7041 }
7042 }
7043
7044 BITMAP_FREE (bbs);
7045 }
7046
7047 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7048
7049 bool
7050 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7051 {
7052 bitmap release_names = (bitmap)data;
7053
7054 if (TREE_CODE (from) != SSA_NAME)
7055 return true;
7056
7057 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7058 return true;
7059 }
7060
7061 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7062 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7063 single basic block in the original CFG and the new basic block is
7064 returned. DEST_CFUN must not have a CFG yet.
7065
7066 Note that the region need not be a pure SESE region. Blocks inside
7067 the region may contain calls to abort/exit. The only restriction
7068 is that ENTRY_BB should be the only entry point and it must
7069 dominate EXIT_BB.
7070
7071 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7072 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7073 to the new function.
7074
7075 All local variables referenced in the region are assumed to be in
7076 the corresponding BLOCK_VARS and unexpanded variable lists
7077 associated with DEST_CFUN.
7078
7079 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7080 reimplement move_sese_region_to_fn by duplicating the region rather than
7081 moving it. */
7082
7083 basic_block
7084 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7085 basic_block exit_bb, tree orig_block)
7086 {
7087 vec<basic_block> bbs, dom_bbs;
7088 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7089 basic_block after, bb, *entry_pred, *exit_succ, abb;
7090 struct function *saved_cfun = cfun;
7091 int *entry_flag, *exit_flag;
7092 unsigned *entry_prob, *exit_prob;
7093 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7094 edge e;
7095 edge_iterator ei;
7096 htab_t new_label_map;
7097 hash_map<void *, void *> *eh_map;
7098 struct loop *loop = entry_bb->loop_father;
7099 struct loop *loop0 = get_loop (saved_cfun, 0);
7100 struct move_stmt_d d;
7101
7102 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7103 region. */
7104 gcc_assert (entry_bb != exit_bb
7105 && (!exit_bb
7106 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7107
7108 /* Collect all the blocks in the region. Manually add ENTRY_BB
7109 because it won't be added by dfs_enumerate_from. */
7110 bbs.create (0);
7111 bbs.safe_push (entry_bb);
7112 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7113
7114 if (flag_checking)
7115 verify_sese (entry_bb, exit_bb, &bbs);
7116
7117 /* The blocks that used to be dominated by something in BBS will now be
7118 dominated by the new block. */
7119 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7120 bbs.address (),
7121 bbs.length ());
7122
7123 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7124 the predecessor edges to ENTRY_BB and the successor edges to
7125 EXIT_BB so that we can re-attach them to the new basic block that
7126 will replace the region. */
7127 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7128 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7129 entry_flag = XNEWVEC (int, num_entry_edges);
7130 entry_prob = XNEWVEC (unsigned, num_entry_edges);
7131 i = 0;
7132 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7133 {
7134 entry_prob[i] = e->probability;
7135 entry_flag[i] = e->flags;
7136 entry_pred[i++] = e->src;
7137 remove_edge (e);
7138 }
7139
7140 if (exit_bb)
7141 {
7142 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7143 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7144 exit_flag = XNEWVEC (int, num_exit_edges);
7145 exit_prob = XNEWVEC (unsigned, num_exit_edges);
7146 i = 0;
7147 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7148 {
7149 exit_prob[i] = e->probability;
7150 exit_flag[i] = e->flags;
7151 exit_succ[i++] = e->dest;
7152 remove_edge (e);
7153 }
7154 }
7155 else
7156 {
7157 num_exit_edges = 0;
7158 exit_succ = NULL;
7159 exit_flag = NULL;
7160 exit_prob = NULL;
7161 }
7162
7163 /* Switch context to the child function to initialize DEST_FN's CFG. */
7164 gcc_assert (dest_cfun->cfg == NULL);
7165 push_cfun (dest_cfun);
7166
7167 init_empty_tree_cfg ();
7168
7169 /* Initialize EH information for the new function. */
7170 eh_map = NULL;
7171 new_label_map = NULL;
7172 if (saved_cfun->eh)
7173 {
7174 eh_region region = NULL;
7175
7176 FOR_EACH_VEC_ELT (bbs, i, bb)
7177 region = find_outermost_region_in_block (saved_cfun, bb, region);
7178
7179 init_eh_for_function ();
7180 if (region != NULL)
7181 {
7182 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7183 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7184 new_label_mapper, new_label_map);
7185 }
7186 }
7187
7188 /* Initialize an empty loop tree. */
7189 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7190 init_loops_structure (dest_cfun, loops, 1);
7191 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7192 set_loops_for_fn (dest_cfun, loops);
7193
7194 /* Move the outlined loop tree part. */
7195 num_nodes = bbs.length ();
7196 FOR_EACH_VEC_ELT (bbs, i, bb)
7197 {
7198 if (bb->loop_father->header == bb)
7199 {
7200 struct loop *this_loop = bb->loop_father;
7201 struct loop *outer = loop_outer (this_loop);
7202 if (outer == loop
7203 /* If the SESE region contains some bbs ending with
7204 a noreturn call, those are considered to belong
7205 to the outermost loop in saved_cfun, rather than
7206 the entry_bb's loop_father. */
7207 || outer == loop0)
7208 {
7209 if (outer != loop)
7210 num_nodes -= this_loop->num_nodes;
7211 flow_loop_tree_node_remove (bb->loop_father);
7212 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7213 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7214 }
7215 }
7216 else if (bb->loop_father == loop0 && loop0 != loop)
7217 num_nodes--;
7218
7219 /* Remove loop exits from the outlined region. */
7220 if (loops_for_fn (saved_cfun)->exits)
7221 FOR_EACH_EDGE (e, ei, bb->succs)
7222 {
7223 struct loops *l = loops_for_fn (saved_cfun);
7224 loop_exit **slot
7225 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7226 NO_INSERT);
7227 if (slot)
7228 l->exits->clear_slot (slot);
7229 }
7230 }
7231
7232
7233 /* Adjust the number of blocks in the tree root of the outlined part. */
7234 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7235
7236 /* Setup a mapping to be used by move_block_to_fn. */
7237 loop->aux = current_loops->tree_root;
7238 loop0->aux = current_loops->tree_root;
7239
7240 pop_cfun ();
7241
7242 /* Move blocks from BBS into DEST_CFUN. */
7243 gcc_assert (bbs.length () >= 2);
7244 after = dest_cfun->cfg->x_entry_block_ptr;
7245 hash_map<tree, tree> vars_map;
7246
7247 memset (&d, 0, sizeof (d));
7248 d.orig_block = orig_block;
7249 d.new_block = DECL_INITIAL (dest_cfun->decl);
7250 d.from_context = cfun->decl;
7251 d.to_context = dest_cfun->decl;
7252 d.vars_map = &vars_map;
7253 d.new_label_map = new_label_map;
7254 d.eh_map = eh_map;
7255 d.remap_decls_p = true;
7256
7257 if (gimple_in_ssa_p (cfun))
7258 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7259 {
7260 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7261 set_ssa_default_def (dest_cfun, arg, narg);
7262 vars_map.put (arg, narg);
7263 }
7264
7265 FOR_EACH_VEC_ELT (bbs, i, bb)
7266 {
7267 /* No need to update edge counts on the last block. It has
7268 already been updated earlier when we detached the region from
7269 the original CFG. */
7270 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7271 after = bb;
7272 }
7273
7274 loop->aux = NULL;
7275 loop0->aux = NULL;
7276 /* Loop sizes are no longer correct, fix them up. */
7277 loop->num_nodes -= num_nodes;
7278 for (struct loop *outer = loop_outer (loop);
7279 outer; outer = loop_outer (outer))
7280 outer->num_nodes -= num_nodes;
7281 loop0->num_nodes -= bbs.length () - num_nodes;
7282
7283 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7284 {
7285 struct loop *aloop;
7286 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7287 if (aloop != NULL)
7288 {
7289 if (aloop->simduid)
7290 {
7291 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7292 d.to_context);
7293 dest_cfun->has_simduid_loops = true;
7294 }
7295 if (aloop->force_vectorize)
7296 dest_cfun->has_force_vectorize_loops = true;
7297 }
7298 }
7299
7300 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7301 if (orig_block)
7302 {
7303 tree block;
7304 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7305 == NULL_TREE);
7306 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7307 = BLOCK_SUBBLOCKS (orig_block);
7308 for (block = BLOCK_SUBBLOCKS (orig_block);
7309 block; block = BLOCK_CHAIN (block))
7310 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7311 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7312 }
7313
7314 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7315 &vars_map, dest_cfun->decl);
7316
7317 if (new_label_map)
7318 htab_delete (new_label_map);
7319 if (eh_map)
7320 delete eh_map;
7321
7322 if (gimple_in_ssa_p (cfun))
7323 {
7324 /* We need to release ssa-names in a defined order, so first find them,
7325 and then iterate in ascending version order. */
7326 bitmap release_names = BITMAP_ALLOC (NULL);
7327 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7328 bitmap_iterator bi;
7329 unsigned i;
7330 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7331 release_ssa_name (ssa_name (i));
7332 BITMAP_FREE (release_names);
7333 }
7334
7335 /* Rewire the entry and exit blocks. The successor to the entry
7336 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7337 the child function. Similarly, the predecessor of DEST_FN's
7338 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7339 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7340 various CFG manipulation function get to the right CFG.
7341
7342 FIXME, this is silly. The CFG ought to become a parameter to
7343 these helpers. */
7344 push_cfun (dest_cfun);
7345 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7346 if (exit_bb)
7347 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7348 pop_cfun ();
7349
7350 /* Back in the original function, the SESE region has disappeared,
7351 create a new basic block in its place. */
7352 bb = create_empty_bb (entry_pred[0]);
7353 if (current_loops)
7354 add_bb_to_loop (bb, loop);
7355 for (i = 0; i < num_entry_edges; i++)
7356 {
7357 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7358 e->probability = entry_prob[i];
7359 }
7360
7361 for (i = 0; i < num_exit_edges; i++)
7362 {
7363 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7364 e->probability = exit_prob[i];
7365 }
7366
7367 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7368 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7369 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7370 dom_bbs.release ();
7371
7372 if (exit_bb)
7373 {
7374 free (exit_prob);
7375 free (exit_flag);
7376 free (exit_succ);
7377 }
7378 free (entry_prob);
7379 free (entry_flag);
7380 free (entry_pred);
7381 bbs.release ();
7382
7383 return bb;
7384 }
7385
7386 /* Dump default def DEF to file FILE using FLAGS and indentation
7387 SPC. */
7388
7389 static void
7390 dump_default_def (FILE *file, tree def, int spc, int flags)
7391 {
7392 for (int i = 0; i < spc; ++i)
7393 fprintf (file, " ");
7394 dump_ssaname_info_to_file (file, def, spc);
7395
7396 print_generic_expr (file, TREE_TYPE (def), flags);
7397 fprintf (file, " ");
7398 print_generic_expr (file, def, flags);
7399 fprintf (file, " = ");
7400 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7401 fprintf (file, ";\n");
7402 }
7403
7404 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7405 */
7406
7407 void
7408 dump_function_to_file (tree fndecl, FILE *file, int flags)
7409 {
7410 tree arg, var, old_current_fndecl = current_function_decl;
7411 struct function *dsf;
7412 bool ignore_topmost_bind = false, any_var = false;
7413 basic_block bb;
7414 tree chain;
7415 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7416 && decl_is_tm_clone (fndecl));
7417 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7418
7419 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7420 {
7421 fprintf (file, "__attribute__((");
7422
7423 bool first = true;
7424 tree chain;
7425 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7426 first = false, chain = TREE_CHAIN (chain))
7427 {
7428 if (!first)
7429 fprintf (file, ", ");
7430
7431 print_generic_expr (file, get_attribute_name (chain), dump_flags);
7432 if (TREE_VALUE (chain) != NULL_TREE)
7433 {
7434 fprintf (file, " (");
7435 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7436 fprintf (file, ")");
7437 }
7438 }
7439
7440 fprintf (file, "))\n");
7441 }
7442
7443 current_function_decl = fndecl;
7444 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7445
7446 arg = DECL_ARGUMENTS (fndecl);
7447 while (arg)
7448 {
7449 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7450 fprintf (file, " ");
7451 print_generic_expr (file, arg, dump_flags);
7452 if (flags & TDF_VERBOSE)
7453 print_node (file, "", arg, 4);
7454 if (DECL_CHAIN (arg))
7455 fprintf (file, ", ");
7456 arg = DECL_CHAIN (arg);
7457 }
7458 fprintf (file, ")\n");
7459
7460 if (flags & TDF_VERBOSE)
7461 print_node (file, "", fndecl, 2);
7462
7463 dsf = DECL_STRUCT_FUNCTION (fndecl);
7464 if (dsf && (flags & TDF_EH))
7465 dump_eh_tree (file, dsf);
7466
7467 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7468 {
7469 dump_node (fndecl, TDF_SLIM | flags, file);
7470 current_function_decl = old_current_fndecl;
7471 return;
7472 }
7473
7474 /* When GIMPLE is lowered, the variables are no longer available in
7475 BIND_EXPRs, so display them separately. */
7476 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7477 {
7478 unsigned ix;
7479 ignore_topmost_bind = true;
7480
7481 fprintf (file, "{\n");
7482 if (gimple_in_ssa_p (fun)
7483 && (flags & TDF_ALIAS))
7484 {
7485 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7486 arg = DECL_CHAIN (arg))
7487 {
7488 tree def = ssa_default_def (fun, arg);
7489 if (def)
7490 dump_default_def (file, def, 2, flags);
7491 }
7492
7493 tree res = DECL_RESULT (fun->decl);
7494 if (res != NULL_TREE
7495 && DECL_BY_REFERENCE (res))
7496 {
7497 tree def = ssa_default_def (fun, res);
7498 if (def)
7499 dump_default_def (file, def, 2, flags);
7500 }
7501
7502 tree static_chain = fun->static_chain_decl;
7503 if (static_chain != NULL_TREE)
7504 {
7505 tree def = ssa_default_def (fun, static_chain);
7506 if (def)
7507 dump_default_def (file, def, 2, flags);
7508 }
7509 }
7510
7511 if (!vec_safe_is_empty (fun->local_decls))
7512 FOR_EACH_LOCAL_DECL (fun, ix, var)
7513 {
7514 print_generic_decl (file, var, flags);
7515 if (flags & TDF_VERBOSE)
7516 print_node (file, "", var, 4);
7517 fprintf (file, "\n");
7518
7519 any_var = true;
7520 }
7521 if (gimple_in_ssa_p (cfun))
7522 for (ix = 1; ix < num_ssa_names; ++ix)
7523 {
7524 tree name = ssa_name (ix);
7525 if (name && !SSA_NAME_VAR (name))
7526 {
7527 fprintf (file, " ");
7528 print_generic_expr (file, TREE_TYPE (name), flags);
7529 fprintf (file, " ");
7530 print_generic_expr (file, name, flags);
7531 fprintf (file, ";\n");
7532
7533 any_var = true;
7534 }
7535 }
7536 }
7537
7538 if (fun && fun->decl == fndecl
7539 && fun->cfg
7540 && basic_block_info_for_fn (fun))
7541 {
7542 /* If the CFG has been built, emit a CFG-based dump. */
7543 if (!ignore_topmost_bind)
7544 fprintf (file, "{\n");
7545
7546 if (any_var && n_basic_blocks_for_fn (fun))
7547 fprintf (file, "\n");
7548
7549 FOR_EACH_BB_FN (bb, fun)
7550 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7551
7552 fprintf (file, "}\n");
7553 }
7554 else if (DECL_SAVED_TREE (fndecl) == NULL)
7555 {
7556 /* The function is now in GIMPLE form but the CFG has not been
7557 built yet. Emit the single sequence of GIMPLE statements
7558 that make up its body. */
7559 gimple_seq body = gimple_body (fndecl);
7560
7561 if (gimple_seq_first_stmt (body)
7562 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7563 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7564 print_gimple_seq (file, body, 0, flags);
7565 else
7566 {
7567 if (!ignore_topmost_bind)
7568 fprintf (file, "{\n");
7569
7570 if (any_var)
7571 fprintf (file, "\n");
7572
7573 print_gimple_seq (file, body, 2, flags);
7574 fprintf (file, "}\n");
7575 }
7576 }
7577 else
7578 {
7579 int indent;
7580
7581 /* Make a tree based dump. */
7582 chain = DECL_SAVED_TREE (fndecl);
7583 if (chain && TREE_CODE (chain) == BIND_EXPR)
7584 {
7585 if (ignore_topmost_bind)
7586 {
7587 chain = BIND_EXPR_BODY (chain);
7588 indent = 2;
7589 }
7590 else
7591 indent = 0;
7592 }
7593 else
7594 {
7595 if (!ignore_topmost_bind)
7596 {
7597 fprintf (file, "{\n");
7598 /* No topmost bind, pretend it's ignored for later. */
7599 ignore_topmost_bind = true;
7600 }
7601 indent = 2;
7602 }
7603
7604 if (any_var)
7605 fprintf (file, "\n");
7606
7607 print_generic_stmt_indented (file, chain, flags, indent);
7608 if (ignore_topmost_bind)
7609 fprintf (file, "}\n");
7610 }
7611
7612 if (flags & TDF_ENUMERATE_LOCALS)
7613 dump_enumerated_decls (file, flags);
7614 fprintf (file, "\n\n");
7615
7616 current_function_decl = old_current_fndecl;
7617 }
7618
7619 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7620
7621 DEBUG_FUNCTION void
7622 debug_function (tree fn, int flags)
7623 {
7624 dump_function_to_file (fn, stderr, flags);
7625 }
7626
7627
7628 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7629
7630 static void
7631 print_pred_bbs (FILE *file, basic_block bb)
7632 {
7633 edge e;
7634 edge_iterator ei;
7635
7636 FOR_EACH_EDGE (e, ei, bb->preds)
7637 fprintf (file, "bb_%d ", e->src->index);
7638 }
7639
7640
7641 /* Print on FILE the indexes for the successors of basic_block BB. */
7642
7643 static void
7644 print_succ_bbs (FILE *file, basic_block bb)
7645 {
7646 edge e;
7647 edge_iterator ei;
7648
7649 FOR_EACH_EDGE (e, ei, bb->succs)
7650 fprintf (file, "bb_%d ", e->dest->index);
7651 }
7652
7653 /* Print to FILE the basic block BB following the VERBOSITY level. */
7654
7655 void
7656 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7657 {
7658 char *s_indent = (char *) alloca ((size_t) indent + 1);
7659 memset ((void *) s_indent, ' ', (size_t) indent);
7660 s_indent[indent] = '\0';
7661
7662 /* Print basic_block's header. */
7663 if (verbosity >= 2)
7664 {
7665 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7666 print_pred_bbs (file, bb);
7667 fprintf (file, "}, succs = {");
7668 print_succ_bbs (file, bb);
7669 fprintf (file, "})\n");
7670 }
7671
7672 /* Print basic_block's body. */
7673 if (verbosity >= 3)
7674 {
7675 fprintf (file, "%s {\n", s_indent);
7676 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7677 fprintf (file, "%s }\n", s_indent);
7678 }
7679 }
7680
7681 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7682
7683 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7684 VERBOSITY level this outputs the contents of the loop, or just its
7685 structure. */
7686
7687 static void
7688 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7689 {
7690 char *s_indent;
7691 basic_block bb;
7692
7693 if (loop == NULL)
7694 return;
7695
7696 s_indent = (char *) alloca ((size_t) indent + 1);
7697 memset ((void *) s_indent, ' ', (size_t) indent);
7698 s_indent[indent] = '\0';
7699
7700 /* Print loop's header. */
7701 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7702 if (loop->header)
7703 fprintf (file, "header = %d", loop->header->index);
7704 else
7705 {
7706 fprintf (file, "deleted)\n");
7707 return;
7708 }
7709 if (loop->latch)
7710 fprintf (file, ", latch = %d", loop->latch->index);
7711 else
7712 fprintf (file, ", multiple latches");
7713 fprintf (file, ", niter = ");
7714 print_generic_expr (file, loop->nb_iterations, 0);
7715
7716 if (loop->any_upper_bound)
7717 {
7718 fprintf (file, ", upper_bound = ");
7719 print_decu (loop->nb_iterations_upper_bound, file);
7720 }
7721
7722 if (loop->any_estimate)
7723 {
7724 fprintf (file, ", estimate = ");
7725 print_decu (loop->nb_iterations_estimate, file);
7726 }
7727 fprintf (file, ")\n");
7728
7729 /* Print loop's body. */
7730 if (verbosity >= 1)
7731 {
7732 fprintf (file, "%s{\n", s_indent);
7733 FOR_EACH_BB_FN (bb, cfun)
7734 if (bb->loop_father == loop)
7735 print_loops_bb (file, bb, indent, verbosity);
7736
7737 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7738 fprintf (file, "%s}\n", s_indent);
7739 }
7740 }
7741
7742 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7743 spaces. Following VERBOSITY level this outputs the contents of the
7744 loop, or just its structure. */
7745
7746 static void
7747 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7748 int verbosity)
7749 {
7750 if (loop == NULL)
7751 return;
7752
7753 print_loop (file, loop, indent, verbosity);
7754 print_loop_and_siblings (file, loop->next, indent, verbosity);
7755 }
7756
7757 /* Follow a CFG edge from the entry point of the program, and on entry
7758 of a loop, pretty print the loop structure on FILE. */
7759
7760 void
7761 print_loops (FILE *file, int verbosity)
7762 {
7763 basic_block bb;
7764
7765 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7766 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
7767 if (bb && bb->loop_father)
7768 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7769 }
7770
7771 /* Dump a loop. */
7772
7773 DEBUG_FUNCTION void
7774 debug (struct loop &ref)
7775 {
7776 print_loop (stderr, &ref, 0, /*verbosity*/0);
7777 }
7778
7779 DEBUG_FUNCTION void
7780 debug (struct loop *ptr)
7781 {
7782 if (ptr)
7783 debug (*ptr);
7784 else
7785 fprintf (stderr, "<nil>\n");
7786 }
7787
7788 /* Dump a loop verbosely. */
7789
7790 DEBUG_FUNCTION void
7791 debug_verbose (struct loop &ref)
7792 {
7793 print_loop (stderr, &ref, 0, /*verbosity*/3);
7794 }
7795
7796 DEBUG_FUNCTION void
7797 debug_verbose (struct loop *ptr)
7798 {
7799 if (ptr)
7800 debug (*ptr);
7801 else
7802 fprintf (stderr, "<nil>\n");
7803 }
7804
7805
7806 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7807
7808 DEBUG_FUNCTION void
7809 debug_loops (int verbosity)
7810 {
7811 print_loops (stderr, verbosity);
7812 }
7813
7814 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7815
7816 DEBUG_FUNCTION void
7817 debug_loop (struct loop *loop, int verbosity)
7818 {
7819 print_loop (stderr, loop, 0, verbosity);
7820 }
7821
7822 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7823 level. */
7824
7825 DEBUG_FUNCTION void
7826 debug_loop_num (unsigned num, int verbosity)
7827 {
7828 debug_loop (get_loop (cfun, num), verbosity);
7829 }
7830
7831 /* Return true if BB ends with a call, possibly followed by some
7832 instructions that must stay with the call. Return false,
7833 otherwise. */
7834
7835 static bool
7836 gimple_block_ends_with_call_p (basic_block bb)
7837 {
7838 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7839 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7840 }
7841
7842
7843 /* Return true if BB ends with a conditional branch. Return false,
7844 otherwise. */
7845
7846 static bool
7847 gimple_block_ends_with_condjump_p (const_basic_block bb)
7848 {
7849 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
7850 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7851 }
7852
7853
7854 /* Return true if we need to add fake edge to exit at statement T.
7855 Helper function for gimple_flow_call_edges_add. */
7856
7857 static bool
7858 need_fake_edge_p (gimple *t)
7859 {
7860 tree fndecl = NULL_TREE;
7861 int call_flags = 0;
7862
7863 /* NORETURN and LONGJMP calls already have an edge to exit.
7864 CONST and PURE calls do not need one.
7865 We don't currently check for CONST and PURE here, although
7866 it would be a good idea, because those attributes are
7867 figured out from the RTL in mark_constant_function, and
7868 the counter incrementation code from -fprofile-arcs
7869 leads to different results from -fbranch-probabilities. */
7870 if (is_gimple_call (t))
7871 {
7872 fndecl = gimple_call_fndecl (t);
7873 call_flags = gimple_call_flags (t);
7874 }
7875
7876 if (is_gimple_call (t)
7877 && fndecl
7878 && DECL_BUILT_IN (fndecl)
7879 && (call_flags & ECF_NOTHROW)
7880 && !(call_flags & ECF_RETURNS_TWICE)
7881 /* fork() doesn't really return twice, but the effect of
7882 wrapping it in __gcov_fork() which calls __gcov_flush()
7883 and clears the counters before forking has the same
7884 effect as returning twice. Force a fake edge. */
7885 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7886 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7887 return false;
7888
7889 if (is_gimple_call (t))
7890 {
7891 edge_iterator ei;
7892 edge e;
7893 basic_block bb;
7894
7895 if (!(call_flags & ECF_NORETURN))
7896 return true;
7897
7898 bb = gimple_bb (t);
7899 FOR_EACH_EDGE (e, ei, bb->succs)
7900 if ((e->flags & EDGE_FAKE) == 0)
7901 return true;
7902 }
7903
7904 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
7905 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
7906 return true;
7907
7908 return false;
7909 }
7910
7911
7912 /* Add fake edges to the function exit for any non constant and non
7913 noreturn calls (or noreturn calls with EH/abnormal edges),
7914 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7915 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7916 that were split.
7917
7918 The goal is to expose cases in which entering a basic block does
7919 not imply that all subsequent instructions must be executed. */
7920
7921 static int
7922 gimple_flow_call_edges_add (sbitmap blocks)
7923 {
7924 int i;
7925 int blocks_split = 0;
7926 int last_bb = last_basic_block_for_fn (cfun);
7927 bool check_last_block = false;
7928
7929 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7930 return 0;
7931
7932 if (! blocks)
7933 check_last_block = true;
7934 else
7935 check_last_block = bitmap_bit_p (blocks,
7936 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7937
7938 /* In the last basic block, before epilogue generation, there will be
7939 a fallthru edge to EXIT. Special care is required if the last insn
7940 of the last basic block is a call because make_edge folds duplicate
7941 edges, which would result in the fallthru edge also being marked
7942 fake, which would result in the fallthru edge being removed by
7943 remove_fake_edges, which would result in an invalid CFG.
7944
7945 Moreover, we can't elide the outgoing fake edge, since the block
7946 profiler needs to take this into account in order to solve the minimal
7947 spanning tree in the case that the call doesn't return.
7948
7949 Handle this by adding a dummy instruction in a new last basic block. */
7950 if (check_last_block)
7951 {
7952 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7953 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7954 gimple *t = NULL;
7955
7956 if (!gsi_end_p (gsi))
7957 t = gsi_stmt (gsi);
7958
7959 if (t && need_fake_edge_p (t))
7960 {
7961 edge e;
7962
7963 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7964 if (e)
7965 {
7966 gsi_insert_on_edge (e, gimple_build_nop ());
7967 gsi_commit_edge_inserts ();
7968 }
7969 }
7970 }
7971
7972 /* Now add fake edges to the function exit for any non constant
7973 calls since there is no way that we can determine if they will
7974 return or not... */
7975 for (i = 0; i < last_bb; i++)
7976 {
7977 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7978 gimple_stmt_iterator gsi;
7979 gimple *stmt, *last_stmt;
7980
7981 if (!bb)
7982 continue;
7983
7984 if (blocks && !bitmap_bit_p (blocks, i))
7985 continue;
7986
7987 gsi = gsi_last_nondebug_bb (bb);
7988 if (!gsi_end_p (gsi))
7989 {
7990 last_stmt = gsi_stmt (gsi);
7991 do
7992 {
7993 stmt = gsi_stmt (gsi);
7994 if (need_fake_edge_p (stmt))
7995 {
7996 edge e;
7997
7998 /* The handling above of the final block before the
7999 epilogue should be enough to verify that there is
8000 no edge to the exit block in CFG already.
8001 Calling make_edge in such case would cause us to
8002 mark that edge as fake and remove it later. */
8003 if (flag_checking && stmt == last_stmt)
8004 {
8005 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8006 gcc_assert (e == NULL);
8007 }
8008
8009 /* Note that the following may create a new basic block
8010 and renumber the existing basic blocks. */
8011 if (stmt != last_stmt)
8012 {
8013 e = split_block (bb, stmt);
8014 if (e)
8015 blocks_split++;
8016 }
8017 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8018 }
8019 gsi_prev (&gsi);
8020 }
8021 while (!gsi_end_p (gsi));
8022 }
8023 }
8024
8025 if (blocks_split)
8026 verify_flow_info ();
8027
8028 return blocks_split;
8029 }
8030
8031 /* Removes edge E and all the blocks dominated by it, and updates dominance
8032 information. The IL in E->src needs to be updated separately.
8033 If dominance info is not available, only the edge E is removed.*/
8034
8035 void
8036 remove_edge_and_dominated_blocks (edge e)
8037 {
8038 vec<basic_block> bbs_to_remove = vNULL;
8039 vec<basic_block> bbs_to_fix_dom = vNULL;
8040 bitmap df, df_idom;
8041 edge f;
8042 edge_iterator ei;
8043 bool none_removed = false;
8044 unsigned i;
8045 basic_block bb, dbb;
8046 bitmap_iterator bi;
8047
8048 /* If we are removing a path inside a non-root loop that may change
8049 loop ownership of blocks or remove loops. Mark loops for fixup. */
8050 if (current_loops
8051 && loop_outer (e->src->loop_father) != NULL
8052 && e->src->loop_father == e->dest->loop_father)
8053 loops_state_set (LOOPS_NEED_FIXUP);
8054
8055 if (!dom_info_available_p (CDI_DOMINATORS))
8056 {
8057 remove_edge (e);
8058 return;
8059 }
8060
8061 /* No updating is needed for edges to exit. */
8062 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8063 {
8064 if (cfgcleanup_altered_bbs)
8065 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8066 remove_edge (e);
8067 return;
8068 }
8069
8070 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8071 that is not dominated by E->dest, then this set is empty. Otherwise,
8072 all the basic blocks dominated by E->dest are removed.
8073
8074 Also, to DF_IDOM we store the immediate dominators of the blocks in
8075 the dominance frontier of E (i.e., of the successors of the
8076 removed blocks, if there are any, and of E->dest otherwise). */
8077 FOR_EACH_EDGE (f, ei, e->dest->preds)
8078 {
8079 if (f == e)
8080 continue;
8081
8082 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8083 {
8084 none_removed = true;
8085 break;
8086 }
8087 }
8088
8089 df = BITMAP_ALLOC (NULL);
8090 df_idom = BITMAP_ALLOC (NULL);
8091
8092 if (none_removed)
8093 bitmap_set_bit (df_idom,
8094 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8095 else
8096 {
8097 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8098 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8099 {
8100 FOR_EACH_EDGE (f, ei, bb->succs)
8101 {
8102 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8103 bitmap_set_bit (df, f->dest->index);
8104 }
8105 }
8106 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8107 bitmap_clear_bit (df, bb->index);
8108
8109 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8110 {
8111 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8112 bitmap_set_bit (df_idom,
8113 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8114 }
8115 }
8116
8117 if (cfgcleanup_altered_bbs)
8118 {
8119 /* Record the set of the altered basic blocks. */
8120 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8121 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8122 }
8123
8124 /* Remove E and the cancelled blocks. */
8125 if (none_removed)
8126 remove_edge (e);
8127 else
8128 {
8129 /* Walk backwards so as to get a chance to substitute all
8130 released DEFs into debug stmts. See
8131 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8132 details. */
8133 for (i = bbs_to_remove.length (); i-- > 0; )
8134 delete_basic_block (bbs_to_remove[i]);
8135 }
8136
8137 /* Update the dominance information. The immediate dominator may change only
8138 for blocks whose immediate dominator belongs to DF_IDOM:
8139
8140 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8141 removal. Let Z the arbitrary block such that idom(Z) = Y and
8142 Z dominates X after the removal. Before removal, there exists a path P
8143 from Y to X that avoids Z. Let F be the last edge on P that is
8144 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8145 dominates W, and because of P, Z does not dominate W), and W belongs to
8146 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8147 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8148 {
8149 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8150 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8151 dbb;
8152 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8153 bbs_to_fix_dom.safe_push (dbb);
8154 }
8155
8156 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8157
8158 BITMAP_FREE (df);
8159 BITMAP_FREE (df_idom);
8160 bbs_to_remove.release ();
8161 bbs_to_fix_dom.release ();
8162 }
8163
8164 /* Purge dead EH edges from basic block BB. */
8165
8166 bool
8167 gimple_purge_dead_eh_edges (basic_block bb)
8168 {
8169 bool changed = false;
8170 edge e;
8171 edge_iterator ei;
8172 gimple *stmt = last_stmt (bb);
8173
8174 if (stmt && stmt_can_throw_internal (stmt))
8175 return false;
8176
8177 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8178 {
8179 if (e->flags & EDGE_EH)
8180 {
8181 remove_edge_and_dominated_blocks (e);
8182 changed = true;
8183 }
8184 else
8185 ei_next (&ei);
8186 }
8187
8188 return changed;
8189 }
8190
8191 /* Purge dead EH edges from basic block listed in BLOCKS. */
8192
8193 bool
8194 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8195 {
8196 bool changed = false;
8197 unsigned i;
8198 bitmap_iterator bi;
8199
8200 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8201 {
8202 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8203
8204 /* Earlier gimple_purge_dead_eh_edges could have removed
8205 this basic block already. */
8206 gcc_assert (bb || changed);
8207 if (bb != NULL)
8208 changed |= gimple_purge_dead_eh_edges (bb);
8209 }
8210
8211 return changed;
8212 }
8213
8214 /* Purge dead abnormal call edges from basic block BB. */
8215
8216 bool
8217 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8218 {
8219 bool changed = false;
8220 edge e;
8221 edge_iterator ei;
8222 gimple *stmt = last_stmt (bb);
8223
8224 if (!cfun->has_nonlocal_label
8225 && !cfun->calls_setjmp)
8226 return false;
8227
8228 if (stmt && stmt_can_make_abnormal_goto (stmt))
8229 return false;
8230
8231 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8232 {
8233 if (e->flags & EDGE_ABNORMAL)
8234 {
8235 if (e->flags & EDGE_FALLTHRU)
8236 e->flags &= ~EDGE_ABNORMAL;
8237 else
8238 remove_edge_and_dominated_blocks (e);
8239 changed = true;
8240 }
8241 else
8242 ei_next (&ei);
8243 }
8244
8245 return changed;
8246 }
8247
8248 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8249
8250 bool
8251 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8252 {
8253 bool changed = false;
8254 unsigned i;
8255 bitmap_iterator bi;
8256
8257 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8258 {
8259 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8260
8261 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8262 this basic block already. */
8263 gcc_assert (bb || changed);
8264 if (bb != NULL)
8265 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8266 }
8267
8268 return changed;
8269 }
8270
8271 /* This function is called whenever a new edge is created or
8272 redirected. */
8273
8274 static void
8275 gimple_execute_on_growing_pred (edge e)
8276 {
8277 basic_block bb = e->dest;
8278
8279 if (!gimple_seq_empty_p (phi_nodes (bb)))
8280 reserve_phi_args_for_new_edge (bb);
8281 }
8282
8283 /* This function is called immediately before edge E is removed from
8284 the edge vector E->dest->preds. */
8285
8286 static void
8287 gimple_execute_on_shrinking_pred (edge e)
8288 {
8289 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8290 remove_phi_args (e);
8291 }
8292
8293 /*---------------------------------------------------------------------------
8294 Helper functions for Loop versioning
8295 ---------------------------------------------------------------------------*/
8296
8297 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8298 of 'first'. Both of them are dominated by 'new_head' basic block. When
8299 'new_head' was created by 'second's incoming edge it received phi arguments
8300 on the edge by split_edge(). Later, additional edge 'e' was created to
8301 connect 'new_head' and 'first'. Now this routine adds phi args on this
8302 additional edge 'e' that new_head to second edge received as part of edge
8303 splitting. */
8304
8305 static void
8306 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8307 basic_block new_head, edge e)
8308 {
8309 gphi *phi1, *phi2;
8310 gphi_iterator psi1, psi2;
8311 tree def;
8312 edge e2 = find_edge (new_head, second);
8313
8314 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8315 edge, we should always have an edge from NEW_HEAD to SECOND. */
8316 gcc_assert (e2 != NULL);
8317
8318 /* Browse all 'second' basic block phi nodes and add phi args to
8319 edge 'e' for 'first' head. PHI args are always in correct order. */
8320
8321 for (psi2 = gsi_start_phis (second),
8322 psi1 = gsi_start_phis (first);
8323 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8324 gsi_next (&psi2), gsi_next (&psi1))
8325 {
8326 phi1 = psi1.phi ();
8327 phi2 = psi2.phi ();
8328 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8329 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8330 }
8331 }
8332
8333
8334 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8335 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8336 the destination of the ELSE part. */
8337
8338 static void
8339 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8340 basic_block second_head ATTRIBUTE_UNUSED,
8341 basic_block cond_bb, void *cond_e)
8342 {
8343 gimple_stmt_iterator gsi;
8344 gimple *new_cond_expr;
8345 tree cond_expr = (tree) cond_e;
8346 edge e0;
8347
8348 /* Build new conditional expr */
8349 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8350 NULL_TREE, NULL_TREE);
8351
8352 /* Add new cond in cond_bb. */
8353 gsi = gsi_last_bb (cond_bb);
8354 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8355
8356 /* Adjust edges appropriately to connect new head with first head
8357 as well as second head. */
8358 e0 = single_succ_edge (cond_bb);
8359 e0->flags &= ~EDGE_FALLTHRU;
8360 e0->flags |= EDGE_FALSE_VALUE;
8361 }
8362
8363
8364 /* Do book-keeping of basic block BB for the profile consistency checker.
8365 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8366 then do post-pass accounting. Store the counting in RECORD. */
8367 static void
8368 gimple_account_profile_record (basic_block bb, int after_pass,
8369 struct profile_record *record)
8370 {
8371 gimple_stmt_iterator i;
8372 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8373 {
8374 record->size[after_pass]
8375 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8376 if (profile_status_for_fn (cfun) == PROFILE_READ)
8377 record->time[after_pass]
8378 += estimate_num_insns (gsi_stmt (i),
8379 &eni_time_weights) * bb->count;
8380 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8381 record->time[after_pass]
8382 += estimate_num_insns (gsi_stmt (i),
8383 &eni_time_weights) * bb->frequency;
8384 }
8385 }
8386
8387 struct cfg_hooks gimple_cfg_hooks = {
8388 "gimple",
8389 gimple_verify_flow_info,
8390 gimple_dump_bb, /* dump_bb */
8391 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8392 create_bb, /* create_basic_block */
8393 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8394 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8395 gimple_can_remove_branch_p, /* can_remove_branch_p */
8396 remove_bb, /* delete_basic_block */
8397 gimple_split_block, /* split_block */
8398 gimple_move_block_after, /* move_block_after */
8399 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8400 gimple_merge_blocks, /* merge_blocks */
8401 gimple_predict_edge, /* predict_edge */
8402 gimple_predicted_by_p, /* predicted_by_p */
8403 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8404 gimple_duplicate_bb, /* duplicate_block */
8405 gimple_split_edge, /* split_edge */
8406 gimple_make_forwarder_block, /* make_forward_block */
8407 NULL, /* tidy_fallthru_edge */
8408 NULL, /* force_nonfallthru */
8409 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8410 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8411 gimple_flow_call_edges_add, /* flow_call_edges_add */
8412 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8413 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8414 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8415 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8416 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8417 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8418 flush_pending_stmts, /* flush_pending_stmts */
8419 gimple_empty_block_p, /* block_empty_p */
8420 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8421 gimple_account_profile_record,
8422 };
8423
8424
8425 /* Split all critical edges. */
8426
8427 unsigned int
8428 split_critical_edges (void)
8429 {
8430 basic_block bb;
8431 edge e;
8432 edge_iterator ei;
8433
8434 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8435 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8436 mappings around the calls to split_edge. */
8437 start_recording_case_labels ();
8438 FOR_ALL_BB_FN (bb, cfun)
8439 {
8440 FOR_EACH_EDGE (e, ei, bb->succs)
8441 {
8442 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8443 split_edge (e);
8444 /* PRE inserts statements to edges and expects that
8445 since split_critical_edges was done beforehand, committing edge
8446 insertions will not split more edges. In addition to critical
8447 edges we must split edges that have multiple successors and
8448 end by control flow statements, such as RESX.
8449 Go ahead and split them too. This matches the logic in
8450 gimple_find_edge_insert_loc. */
8451 else if ((!single_pred_p (e->dest)
8452 || !gimple_seq_empty_p (phi_nodes (e->dest))
8453 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8454 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8455 && !(e->flags & EDGE_ABNORMAL))
8456 {
8457 gimple_stmt_iterator gsi;
8458
8459 gsi = gsi_last_bb (e->src);
8460 if (!gsi_end_p (gsi)
8461 && stmt_ends_bb_p (gsi_stmt (gsi))
8462 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8463 && !gimple_call_builtin_p (gsi_stmt (gsi),
8464 BUILT_IN_RETURN)))
8465 split_edge (e);
8466 }
8467 }
8468 }
8469 end_recording_case_labels ();
8470 return 0;
8471 }
8472
8473 namespace {
8474
8475 const pass_data pass_data_split_crit_edges =
8476 {
8477 GIMPLE_PASS, /* type */
8478 "crited", /* name */
8479 OPTGROUP_NONE, /* optinfo_flags */
8480 TV_TREE_SPLIT_EDGES, /* tv_id */
8481 PROP_cfg, /* properties_required */
8482 PROP_no_crit_edges, /* properties_provided */
8483 0, /* properties_destroyed */
8484 0, /* todo_flags_start */
8485 0, /* todo_flags_finish */
8486 };
8487
8488 class pass_split_crit_edges : public gimple_opt_pass
8489 {
8490 public:
8491 pass_split_crit_edges (gcc::context *ctxt)
8492 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8493 {}
8494
8495 /* opt_pass methods: */
8496 virtual unsigned int execute (function *) { return split_critical_edges (); }
8497
8498 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8499 }; // class pass_split_crit_edges
8500
8501 } // anon namespace
8502
8503 gimple_opt_pass *
8504 make_pass_split_crit_edges (gcc::context *ctxt)
8505 {
8506 return new pass_split_crit_edges (ctxt);
8507 }
8508
8509
8510 /* Insert COND expression which is GIMPLE_COND after STMT
8511 in basic block BB with appropriate basic block split
8512 and creation of a new conditionally executed basic block.
8513 Return created basic block. */
8514 basic_block
8515 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond)
8516 {
8517 edge fall = split_block (bb, stmt);
8518 gimple_stmt_iterator iter = gsi_last_bb (bb);
8519 basic_block new_bb;
8520
8521 /* Insert cond statement. */
8522 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8523 if (gsi_end_p (iter))
8524 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8525 else
8526 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8527
8528 /* Create conditionally executed block. */
8529 new_bb = create_empty_bb (bb);
8530 make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8531 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8532
8533 /* Fix edge for split bb. */
8534 fall->flags = EDGE_FALSE_VALUE;
8535
8536 /* Update dominance info. */
8537 if (dom_info_available_p (CDI_DOMINATORS))
8538 {
8539 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8540 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8541 }
8542
8543 /* Update loop info. */
8544 if (current_loops)
8545 add_bb_to_loop (new_bb, bb->loop_father);
8546
8547 return new_bb;
8548 }
8549
8550 /* Build a ternary operation and gimplify it. Emit code before GSI.
8551 Return the gimple_val holding the result. */
8552
8553 tree
8554 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8555 tree type, tree a, tree b, tree c)
8556 {
8557 tree ret;
8558 location_t loc = gimple_location (gsi_stmt (*gsi));
8559
8560 ret = fold_build3_loc (loc, code, type, a, b, c);
8561 STRIP_NOPS (ret);
8562
8563 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8564 GSI_SAME_STMT);
8565 }
8566
8567 /* Build a binary operation and gimplify it. Emit code before GSI.
8568 Return the gimple_val holding the result. */
8569
8570 tree
8571 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8572 tree type, tree a, tree b)
8573 {
8574 tree ret;
8575
8576 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8577 STRIP_NOPS (ret);
8578
8579 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8580 GSI_SAME_STMT);
8581 }
8582
8583 /* Build a unary operation and gimplify it. Emit code before GSI.
8584 Return the gimple_val holding the result. */
8585
8586 tree
8587 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8588 tree a)
8589 {
8590 tree ret;
8591
8592 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8593 STRIP_NOPS (ret);
8594
8595 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8596 GSI_SAME_STMT);
8597 }
8598
8599
8600 \f
8601 /* Given a basic block B which ends with a conditional and has
8602 precisely two successors, determine which of the edges is taken if
8603 the conditional is true and which is taken if the conditional is
8604 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8605
8606 void
8607 extract_true_false_edges_from_block (basic_block b,
8608 edge *true_edge,
8609 edge *false_edge)
8610 {
8611 edge e = EDGE_SUCC (b, 0);
8612
8613 if (e->flags & EDGE_TRUE_VALUE)
8614 {
8615 *true_edge = e;
8616 *false_edge = EDGE_SUCC (b, 1);
8617 }
8618 else
8619 {
8620 *false_edge = e;
8621 *true_edge = EDGE_SUCC (b, 1);
8622 }
8623 }
8624
8625
8626 /* From a controlling predicate in the immediate dominator DOM of
8627 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8628 predicate evaluates to true and false and store them to
8629 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8630 they are non-NULL. Returns true if the edges can be determined,
8631 else return false. */
8632
8633 bool
8634 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
8635 edge *true_controlled_edge,
8636 edge *false_controlled_edge)
8637 {
8638 basic_block bb = phiblock;
8639 edge true_edge, false_edge, tem;
8640 edge e0 = NULL, e1 = NULL;
8641
8642 /* We have to verify that one edge into the PHI node is dominated
8643 by the true edge of the predicate block and the other edge
8644 dominated by the false edge. This ensures that the PHI argument
8645 we are going to take is completely determined by the path we
8646 take from the predicate block.
8647 We can only use BB dominance checks below if the destination of
8648 the true/false edges are dominated by their edge, thus only
8649 have a single predecessor. */
8650 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
8651 tem = EDGE_PRED (bb, 0);
8652 if (tem == true_edge
8653 || (single_pred_p (true_edge->dest)
8654 && (tem->src == true_edge->dest
8655 || dominated_by_p (CDI_DOMINATORS,
8656 tem->src, true_edge->dest))))
8657 e0 = tem;
8658 else if (tem == false_edge
8659 || (single_pred_p (false_edge->dest)
8660 && (tem->src == false_edge->dest
8661 || dominated_by_p (CDI_DOMINATORS,
8662 tem->src, false_edge->dest))))
8663 e1 = tem;
8664 else
8665 return false;
8666 tem = EDGE_PRED (bb, 1);
8667 if (tem == true_edge
8668 || (single_pred_p (true_edge->dest)
8669 && (tem->src == true_edge->dest
8670 || dominated_by_p (CDI_DOMINATORS,
8671 tem->src, true_edge->dest))))
8672 e0 = tem;
8673 else if (tem == false_edge
8674 || (single_pred_p (false_edge->dest)
8675 && (tem->src == false_edge->dest
8676 || dominated_by_p (CDI_DOMINATORS,
8677 tem->src, false_edge->dest))))
8678 e1 = tem;
8679 else
8680 return false;
8681 if (!e0 || !e1)
8682 return false;
8683
8684 if (true_controlled_edge)
8685 *true_controlled_edge = e0;
8686 if (false_controlled_edge)
8687 *false_controlled_edge = e1;
8688
8689 return true;
8690 }
8691
8692
8693
8694 /* Emit return warnings. */
8695
8696 namespace {
8697
8698 const pass_data pass_data_warn_function_return =
8699 {
8700 GIMPLE_PASS, /* type */
8701 "*warn_function_return", /* name */
8702 OPTGROUP_NONE, /* optinfo_flags */
8703 TV_NONE, /* tv_id */
8704 PROP_cfg, /* properties_required */
8705 0, /* properties_provided */
8706 0, /* properties_destroyed */
8707 0, /* todo_flags_start */
8708 0, /* todo_flags_finish */
8709 };
8710
8711 class pass_warn_function_return : public gimple_opt_pass
8712 {
8713 public:
8714 pass_warn_function_return (gcc::context *ctxt)
8715 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8716 {}
8717
8718 /* opt_pass methods: */
8719 virtual unsigned int execute (function *);
8720
8721 }; // class pass_warn_function_return
8722
8723 unsigned int
8724 pass_warn_function_return::execute (function *fun)
8725 {
8726 source_location location;
8727 gimple *last;
8728 edge e;
8729 edge_iterator ei;
8730
8731 if (!targetm.warn_func_return (fun->decl))
8732 return 0;
8733
8734 /* If we have a path to EXIT, then we do return. */
8735 if (TREE_THIS_VOLATILE (fun->decl)
8736 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8737 {
8738 location = UNKNOWN_LOCATION;
8739 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8740 {
8741 last = last_stmt (e->src);
8742 if ((gimple_code (last) == GIMPLE_RETURN
8743 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8744 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8745 break;
8746 }
8747 if (location == UNKNOWN_LOCATION)
8748 location = cfun->function_end_locus;
8749 warning_at (location, 0, "%<noreturn%> function does return");
8750 }
8751
8752 /* If we see "return;" in some basic block, then we do reach the end
8753 without returning a value. */
8754 else if (warn_return_type
8755 && !TREE_NO_WARNING (fun->decl)
8756 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8757 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8758 {
8759 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8760 {
8761 gimple *last = last_stmt (e->src);
8762 greturn *return_stmt = dyn_cast <greturn *> (last);
8763 if (return_stmt
8764 && gimple_return_retval (return_stmt) == NULL
8765 && !gimple_no_warning_p (last))
8766 {
8767 location = gimple_location (last);
8768 if (location == UNKNOWN_LOCATION)
8769 location = fun->function_end_locus;
8770 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8771 TREE_NO_WARNING (fun->decl) = 1;
8772 break;
8773 }
8774 }
8775 }
8776 return 0;
8777 }
8778
8779 } // anon namespace
8780
8781 gimple_opt_pass *
8782 make_pass_warn_function_return (gcc::context *ctxt)
8783 {
8784 return new pass_warn_function_return (ctxt);
8785 }
8786
8787 /* Walk a gimplified function and warn for functions whose return value is
8788 ignored and attribute((warn_unused_result)) is set. This is done before
8789 inlining, so we don't have to worry about that. */
8790
8791 static void
8792 do_warn_unused_result (gimple_seq seq)
8793 {
8794 tree fdecl, ftype;
8795 gimple_stmt_iterator i;
8796
8797 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8798 {
8799 gimple *g = gsi_stmt (i);
8800
8801 switch (gimple_code (g))
8802 {
8803 case GIMPLE_BIND:
8804 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
8805 break;
8806 case GIMPLE_TRY:
8807 do_warn_unused_result (gimple_try_eval (g));
8808 do_warn_unused_result (gimple_try_cleanup (g));
8809 break;
8810 case GIMPLE_CATCH:
8811 do_warn_unused_result (gimple_catch_handler (
8812 as_a <gcatch *> (g)));
8813 break;
8814 case GIMPLE_EH_FILTER:
8815 do_warn_unused_result (gimple_eh_filter_failure (g));
8816 break;
8817
8818 case GIMPLE_CALL:
8819 if (gimple_call_lhs (g))
8820 break;
8821 if (gimple_call_internal_p (g))
8822 break;
8823
8824 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8825 LHS. All calls whose value is ignored should be
8826 represented like this. Look for the attribute. */
8827 fdecl = gimple_call_fndecl (g);
8828 ftype = gimple_call_fntype (g);
8829
8830 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8831 {
8832 location_t loc = gimple_location (g);
8833
8834 if (fdecl)
8835 warning_at (loc, OPT_Wunused_result,
8836 "ignoring return value of %qD, "
8837 "declared with attribute warn_unused_result",
8838 fdecl);
8839 else
8840 warning_at (loc, OPT_Wunused_result,
8841 "ignoring return value of function "
8842 "declared with attribute warn_unused_result");
8843 }
8844 break;
8845
8846 default:
8847 /* Not a container, not a call, or a call whose value is used. */
8848 break;
8849 }
8850 }
8851 }
8852
8853 namespace {
8854
8855 const pass_data pass_data_warn_unused_result =
8856 {
8857 GIMPLE_PASS, /* type */
8858 "*warn_unused_result", /* name */
8859 OPTGROUP_NONE, /* optinfo_flags */
8860 TV_NONE, /* tv_id */
8861 PROP_gimple_any, /* properties_required */
8862 0, /* properties_provided */
8863 0, /* properties_destroyed */
8864 0, /* todo_flags_start */
8865 0, /* todo_flags_finish */
8866 };
8867
8868 class pass_warn_unused_result : public gimple_opt_pass
8869 {
8870 public:
8871 pass_warn_unused_result (gcc::context *ctxt)
8872 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8873 {}
8874
8875 /* opt_pass methods: */
8876 virtual bool gate (function *) { return flag_warn_unused_result; }
8877 virtual unsigned int execute (function *)
8878 {
8879 do_warn_unused_result (gimple_body (current_function_decl));
8880 return 0;
8881 }
8882
8883 }; // class pass_warn_unused_result
8884
8885 } // anon namespace
8886
8887 gimple_opt_pass *
8888 make_pass_warn_unused_result (gcc::context *ctxt)
8889 {
8890 return new pass_warn_unused_result (ctxt);
8891 }
8892
8893 /* IPA passes, compilation of earlier functions or inlining
8894 might have changed some properties, such as marked functions nothrow,
8895 pure, const or noreturn.
8896 Remove redundant edges and basic blocks, and create new ones if necessary.
8897
8898 This pass can't be executed as stand alone pass from pass manager, because
8899 in between inlining and this fixup the verify_flow_info would fail. */
8900
8901 unsigned int
8902 execute_fixup_cfg (void)
8903 {
8904 basic_block bb;
8905 gimple_stmt_iterator gsi;
8906 int todo = 0;
8907 gcov_type count_scale;
8908 edge e;
8909 edge_iterator ei;
8910
8911 count_scale
8912 = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl)->count,
8913 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8914
8915 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8916 cgraph_node::get (current_function_decl)->count;
8917 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8918 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8919 count_scale);
8920
8921 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8922 e->count = apply_scale (e->count, count_scale);
8923
8924 FOR_EACH_BB_FN (bb, cfun)
8925 {
8926 bb->count = apply_scale (bb->count, count_scale);
8927 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
8928 {
8929 gimple *stmt = gsi_stmt (gsi);
8930 tree decl = is_gimple_call (stmt)
8931 ? gimple_call_fndecl (stmt)
8932 : NULL;
8933 if (decl)
8934 {
8935 int flags = gimple_call_flags (stmt);
8936 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8937 {
8938 if (gimple_purge_dead_abnormal_call_edges (bb))
8939 todo |= TODO_cleanup_cfg;
8940
8941 if (gimple_in_ssa_p (cfun))
8942 {
8943 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8944 update_stmt (stmt);
8945 }
8946 }
8947
8948 if (flags & ECF_NORETURN
8949 && fixup_noreturn_call (stmt))
8950 todo |= TODO_cleanup_cfg;
8951 }
8952
8953 /* Remove stores to variables we marked write-only.
8954 Keep access when store has side effect, i.e. in case when source
8955 is volatile. */
8956 if (gimple_store_p (stmt)
8957 && !gimple_has_side_effects (stmt))
8958 {
8959 tree lhs = get_base_address (gimple_get_lhs (stmt));
8960
8961 if (TREE_CODE (lhs) == VAR_DECL
8962 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8963 && varpool_node::get (lhs)->writeonly)
8964 {
8965 unlink_stmt_vdef (stmt);
8966 gsi_remove (&gsi, true);
8967 release_defs (stmt);
8968 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8969 continue;
8970 }
8971 }
8972 /* For calls we can simply remove LHS when it is known
8973 to be write-only. */
8974 if (is_gimple_call (stmt)
8975 && gimple_get_lhs (stmt))
8976 {
8977 tree lhs = get_base_address (gimple_get_lhs (stmt));
8978
8979 if (TREE_CODE (lhs) == VAR_DECL
8980 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8981 && varpool_node::get (lhs)->writeonly)
8982 {
8983 gimple_call_set_lhs (stmt, NULL);
8984 update_stmt (stmt);
8985 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8986 }
8987 }
8988
8989 if (maybe_clean_eh_stmt (stmt)
8990 && gimple_purge_dead_eh_edges (bb))
8991 todo |= TODO_cleanup_cfg;
8992 gsi_next (&gsi);
8993 }
8994
8995 FOR_EACH_EDGE (e, ei, bb->succs)
8996 e->count = apply_scale (e->count, count_scale);
8997
8998 /* If we have a basic block with no successors that does not
8999 end with a control statement or a noreturn call end it with
9000 a call to __builtin_unreachable. This situation can occur
9001 when inlining a noreturn call that does in fact return. */
9002 if (EDGE_COUNT (bb->succs) == 0)
9003 {
9004 gimple *stmt = last_stmt (bb);
9005 if (!stmt
9006 || (!is_ctrl_stmt (stmt)
9007 && (!is_gimple_call (stmt)
9008 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
9009 {
9010 if (stmt && is_gimple_call (stmt))
9011 gimple_call_set_ctrl_altering (stmt, false);
9012 stmt = gimple_build_call
9013 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
9014 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9015 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9016 }
9017 }
9018 }
9019 if (count_scale != REG_BR_PROB_BASE)
9020 compute_function_frequency ();
9021
9022 if (current_loops
9023 && (todo & TODO_cleanup_cfg))
9024 loops_state_set (LOOPS_NEED_FIXUP);
9025
9026 return todo;
9027 }
9028
9029 namespace {
9030
9031 const pass_data pass_data_fixup_cfg =
9032 {
9033 GIMPLE_PASS, /* type */
9034 "fixup_cfg", /* name */
9035 OPTGROUP_NONE, /* optinfo_flags */
9036 TV_NONE, /* tv_id */
9037 PROP_cfg, /* properties_required */
9038 0, /* properties_provided */
9039 0, /* properties_destroyed */
9040 0, /* todo_flags_start */
9041 0, /* todo_flags_finish */
9042 };
9043
9044 class pass_fixup_cfg : public gimple_opt_pass
9045 {
9046 public:
9047 pass_fixup_cfg (gcc::context *ctxt)
9048 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9049 {}
9050
9051 /* opt_pass methods: */
9052 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9053 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9054
9055 }; // class pass_fixup_cfg
9056
9057 } // anon namespace
9058
9059 gimple_opt_pass *
9060 make_pass_fixup_cfg (gcc::context *ctxt)
9061 {
9062 return new pass_fixup_cfg (ctxt);
9063 }
9064
9065 /* Garbage collection support for edge_def. */
9066
9067 extern void gt_ggc_mx (tree&);
9068 extern void gt_ggc_mx (gimple *&);
9069 extern void gt_ggc_mx (rtx&);
9070 extern void gt_ggc_mx (basic_block&);
9071
9072 static void
9073 gt_ggc_mx (rtx_insn *& x)
9074 {
9075 if (x)
9076 gt_ggc_mx_rtx_def ((void *) x);
9077 }
9078
9079 void
9080 gt_ggc_mx (edge_def *e)
9081 {
9082 tree block = LOCATION_BLOCK (e->goto_locus);
9083 gt_ggc_mx (e->src);
9084 gt_ggc_mx (e->dest);
9085 if (current_ir_type () == IR_GIMPLE)
9086 gt_ggc_mx (e->insns.g);
9087 else
9088 gt_ggc_mx (e->insns.r);
9089 gt_ggc_mx (block);
9090 }
9091
9092 /* PCH support for edge_def. */
9093
9094 extern void gt_pch_nx (tree&);
9095 extern void gt_pch_nx (gimple *&);
9096 extern void gt_pch_nx (rtx&);
9097 extern void gt_pch_nx (basic_block&);
9098
9099 static void
9100 gt_pch_nx (rtx_insn *& x)
9101 {
9102 if (x)
9103 gt_pch_nx_rtx_def ((void *) x);
9104 }
9105
9106 void
9107 gt_pch_nx (edge_def *e)
9108 {
9109 tree block = LOCATION_BLOCK (e->goto_locus);
9110 gt_pch_nx (e->src);
9111 gt_pch_nx (e->dest);
9112 if (current_ir_type () == IR_GIMPLE)
9113 gt_pch_nx (e->insns.g);
9114 else
9115 gt_pch_nx (e->insns.r);
9116 gt_pch_nx (block);
9117 }
9118
9119 void
9120 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9121 {
9122 tree block = LOCATION_BLOCK (e->goto_locus);
9123 op (&(e->src), cookie);
9124 op (&(e->dest), cookie);
9125 if (current_ir_type () == IR_GIMPLE)
9126 op (&(e->insns.g), cookie);
9127 else
9128 op (&(e->insns.r), cookie);
9129 op (&(block), cookie);
9130 }