tree-ssa-loop-ivopts.c (rewrite_use_nonlinear_expr): Use bsi_after_labels.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "ggc.h"
37 #include "langhooks.h"
38 #include "diagnostic.h"
39 #include "tree-flow.h"
40 #include "timevar.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "cfgloop.h"
46 #include "cfglayout.h"
47 #include "tree-ssa-propagate.h"
48 #include "value-prof.h"
49 #include "pointer-set.h"
50
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
53
54 /* Local declarations. */
55
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
58
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of SWITCH_EXPRs.
63
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
66
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
71
72 static struct pointer_map_t *edge_to_cases;
73
74 /* CFG statistics. */
75 struct cfg_stats_d
76 {
77 long num_merged_labels;
78 };
79
80 static struct cfg_stats_d cfg_stats;
81
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
84
85 /* Basic blocks and flowgraphs. */
86 static basic_block create_bb (void *, void *, basic_block);
87 static void make_blocks (tree);
88 static void factor_computed_gotos (void);
89
90 /* Edges. */
91 static void make_edges (void);
92 static void make_cond_expr_edges (basic_block);
93 static void make_switch_expr_edges (basic_block);
94 static void make_goto_expr_edges (basic_block);
95 static edge tree_redirect_edge_and_branch (edge, basic_block);
96 static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
97 static unsigned int split_critical_edges (void);
98
99 /* Various helpers. */
100 static inline bool stmt_starts_bb_p (tree, tree);
101 static int tree_verify_flow_info (void);
102 static void tree_make_forwarder_block (edge);
103 static void tree_cfg2vcg (FILE *);
104 static inline void change_bb_for_stmt (tree t, basic_block bb);
105
106 /* Flowgraph optimization and cleanup. */
107 static void tree_merge_blocks (basic_block, basic_block);
108 static bool tree_can_merge_blocks_p (basic_block, basic_block);
109 static void remove_bb (basic_block);
110 static edge find_taken_edge_computed_goto (basic_block, tree);
111 static edge find_taken_edge_cond_expr (basic_block, tree);
112 static edge find_taken_edge_switch_expr (basic_block, tree);
113 static tree find_case_label_for_value (tree, tree);
114
115 void
116 init_empty_tree_cfg (void)
117 {
118 /* Initialize the basic block array. */
119 init_flow ();
120 profile_status = PROFILE_ABSENT;
121 n_basic_blocks = NUM_FIXED_BLOCKS;
122 last_basic_block = NUM_FIXED_BLOCKS;
123 basic_block_info = VEC_alloc (basic_block, gc, initial_cfg_capacity);
124 VEC_safe_grow_cleared (basic_block, gc, basic_block_info,
125 initial_cfg_capacity);
126
127 /* Build a mapping of labels to their associated blocks. */
128 label_to_block_map = VEC_alloc (basic_block, gc, initial_cfg_capacity);
129 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
130 initial_cfg_capacity);
131
132 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
133 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
134 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
135 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
136 }
137
138 /*---------------------------------------------------------------------------
139 Create basic blocks
140 ---------------------------------------------------------------------------*/
141
142 /* Entry point to the CFG builder for trees. TP points to the list of
143 statements to be added to the flowgraph. */
144
145 static void
146 build_tree_cfg (tree *tp)
147 {
148 /* Register specific tree functions. */
149 tree_register_cfg_hooks ();
150
151 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
152
153 init_empty_tree_cfg ();
154
155 found_computed_goto = 0;
156 make_blocks (*tp);
157
158 /* Computed gotos are hell to deal with, especially if there are
159 lots of them with a large number of destinations. So we factor
160 them to a common computed goto location before we build the
161 edge list. After we convert back to normal form, we will un-factor
162 the computed gotos since factoring introduces an unwanted jump. */
163 if (found_computed_goto)
164 factor_computed_gotos ();
165
166 /* Make sure there is always at least one block, even if it's empty. */
167 if (n_basic_blocks == NUM_FIXED_BLOCKS)
168 create_empty_bb (ENTRY_BLOCK_PTR);
169
170 /* Adjust the size of the array. */
171 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
172 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
173
174 /* To speed up statement iterator walks, we first purge dead labels. */
175 cleanup_dead_labels ();
176
177 /* Group case nodes to reduce the number of edges.
178 We do this after cleaning up dead labels because otherwise we miss
179 a lot of obvious case merging opportunities. */
180 group_case_labels ();
181
182 /* Create the edges of the flowgraph. */
183 make_edges ();
184 cleanup_dead_labels ();
185
186 /* Debugging dumps. */
187
188 /* Write the flowgraph to a VCG file. */
189 {
190 int local_dump_flags;
191 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
192 if (vcg_file)
193 {
194 tree_cfg2vcg (vcg_file);
195 dump_end (TDI_vcg, vcg_file);
196 }
197 }
198
199 #ifdef ENABLE_CHECKING
200 verify_stmts ();
201 #endif
202
203 /* Dump a textual representation of the flowgraph. */
204 if (dump_file)
205 dump_tree_cfg (dump_file, dump_flags);
206 }
207
208 static unsigned int
209 execute_build_cfg (void)
210 {
211 build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
212 return 0;
213 }
214
215 struct tree_opt_pass pass_build_cfg =
216 {
217 "cfg", /* name */
218 NULL, /* gate */
219 execute_build_cfg, /* execute */
220 NULL, /* sub */
221 NULL, /* next */
222 0, /* static_pass_number */
223 TV_TREE_CFG, /* tv_id */
224 PROP_gimple_leh, /* properties_required */
225 PROP_cfg, /* properties_provided */
226 0, /* properties_destroyed */
227 0, /* todo_flags_start */
228 TODO_verify_stmts | TODO_cleanup_cfg, /* todo_flags_finish */
229 0 /* letter */
230 };
231
232 /* Search the CFG for any computed gotos. If found, factor them to a
233 common computed goto site. Also record the location of that site so
234 that we can un-factor the gotos after we have converted back to
235 normal form. */
236
237 static void
238 factor_computed_gotos (void)
239 {
240 basic_block bb;
241 tree factored_label_decl = NULL;
242 tree var = NULL;
243 tree factored_computed_goto_label = NULL;
244 tree factored_computed_goto = NULL;
245
246 /* We know there are one or more computed gotos in this function.
247 Examine the last statement in each basic block to see if the block
248 ends with a computed goto. */
249
250 FOR_EACH_BB (bb)
251 {
252 block_stmt_iterator bsi = bsi_last (bb);
253 tree last;
254
255 if (bsi_end_p (bsi))
256 continue;
257 last = bsi_stmt (bsi);
258
259 /* Ignore the computed goto we create when we factor the original
260 computed gotos. */
261 if (last == factored_computed_goto)
262 continue;
263
264 /* If the last statement is a computed goto, factor it. */
265 if (computed_goto_p (last))
266 {
267 tree assignment;
268
269 /* The first time we find a computed goto we need to create
270 the factored goto block and the variable each original
271 computed goto will use for their goto destination. */
272 if (! factored_computed_goto)
273 {
274 basic_block new_bb = create_empty_bb (bb);
275 block_stmt_iterator new_bsi = bsi_start (new_bb);
276
277 /* Create the destination of the factored goto. Each original
278 computed goto will put its desired destination into this
279 variable and jump to the label we create immediately
280 below. */
281 var = create_tmp_var (ptr_type_node, "gotovar");
282
283 /* Build a label for the new block which will contain the
284 factored computed goto. */
285 factored_label_decl = create_artificial_label ();
286 factored_computed_goto_label
287 = build1 (LABEL_EXPR, void_type_node, factored_label_decl);
288 bsi_insert_after (&new_bsi, factored_computed_goto_label,
289 BSI_NEW_STMT);
290
291 /* Build our new computed goto. */
292 factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
293 bsi_insert_after (&new_bsi, factored_computed_goto,
294 BSI_NEW_STMT);
295 }
296
297 /* Copy the original computed goto's destination into VAR. */
298 assignment = build_gimple_modify_stmt (var,
299 GOTO_DESTINATION (last));
300 bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);
301
302 /* And re-vector the computed goto to the new destination. */
303 GOTO_DESTINATION (last) = factored_label_decl;
304 }
305 }
306 }
307
308
309 /* Build a flowgraph for the statement_list STMT_LIST. */
310
311 static void
312 make_blocks (tree stmt_list)
313 {
314 tree_stmt_iterator i = tsi_start (stmt_list);
315 tree stmt = NULL;
316 bool start_new_block = true;
317 bool first_stmt_of_list = true;
318 basic_block bb = ENTRY_BLOCK_PTR;
319
320 while (!tsi_end_p (i))
321 {
322 tree prev_stmt;
323
324 prev_stmt = stmt;
325 stmt = tsi_stmt (i);
326
327 /* If the statement starts a new basic block or if we have determined
328 in a previous pass that we need to create a new block for STMT, do
329 so now. */
330 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
331 {
332 if (!first_stmt_of_list)
333 stmt_list = tsi_split_statement_list_before (&i);
334 bb = create_basic_block (stmt_list, NULL, bb);
335 start_new_block = false;
336 }
337
338 /* Now add STMT to BB and create the subgraphs for special statement
339 codes. */
340 set_bb_for_stmt (stmt, bb);
341
342 if (computed_goto_p (stmt))
343 found_computed_goto = true;
344
345 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
346 next iteration. */
347 if (stmt_ends_bb_p (stmt))
348 start_new_block = true;
349
350 tsi_next (&i);
351 first_stmt_of_list = false;
352 }
353 }
354
355
356 /* Create and return a new empty basic block after bb AFTER. */
357
358 static basic_block
359 create_bb (void *h, void *e, basic_block after)
360 {
361 basic_block bb;
362
363 gcc_assert (!e);
364
365 /* Create and initialize a new basic block. Since alloc_block uses
366 ggc_alloc_cleared to allocate a basic block, we do not have to
367 clear the newly allocated basic block here. */
368 bb = alloc_block ();
369
370 bb->index = last_basic_block;
371 bb->flags = BB_NEW;
372 bb->il.tree = GGC_CNEW (struct tree_bb_info);
373 set_bb_stmt_list (bb, h ? (tree) h : alloc_stmt_list ());
374
375 /* Add the new block to the linked list of blocks. */
376 link_block (bb, after);
377
378 /* Grow the basic block array if needed. */
379 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
380 {
381 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
382 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
383 }
384
385 /* Add the newly created block to the array. */
386 SET_BASIC_BLOCK (last_basic_block, bb);
387
388 n_basic_blocks++;
389 last_basic_block++;
390
391 return bb;
392 }
393
394
395 /*---------------------------------------------------------------------------
396 Edge creation
397 ---------------------------------------------------------------------------*/
398
399 /* Fold COND_EXPR_COND of each COND_EXPR. */
400
401 void
402 fold_cond_expr_cond (void)
403 {
404 basic_block bb;
405
406 FOR_EACH_BB (bb)
407 {
408 tree stmt = last_stmt (bb);
409
410 if (stmt
411 && TREE_CODE (stmt) == COND_EXPR)
412 {
413 tree cond;
414 bool zerop, onep;
415
416 fold_defer_overflow_warnings ();
417 cond = fold (COND_EXPR_COND (stmt));
418 zerop = integer_zerop (cond);
419 onep = integer_onep (cond);
420 fold_undefer_overflow_warnings (((zerop || onep)
421 && !TREE_NO_WARNING (stmt)),
422 stmt,
423 WARN_STRICT_OVERFLOW_CONDITIONAL);
424 if (zerop)
425 COND_EXPR_COND (stmt) = boolean_false_node;
426 else if (onep)
427 COND_EXPR_COND (stmt) = boolean_true_node;
428 }
429 }
430 }
431
432 /* Join all the blocks in the flowgraph. */
433
434 static void
435 make_edges (void)
436 {
437 basic_block bb;
438 struct omp_region *cur_region = NULL;
439
440 /* Create an edge from entry to the first block with executable
441 statements in it. */
442 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
443
444 /* Traverse the basic block array placing edges. */
445 FOR_EACH_BB (bb)
446 {
447 tree last = last_stmt (bb);
448 bool fallthru;
449
450 if (last)
451 {
452 enum tree_code code = TREE_CODE (last);
453 switch (code)
454 {
455 case GOTO_EXPR:
456 make_goto_expr_edges (bb);
457 fallthru = false;
458 break;
459 case RETURN_EXPR:
460 make_edge (bb, EXIT_BLOCK_PTR, 0);
461 fallthru = false;
462 break;
463 case COND_EXPR:
464 make_cond_expr_edges (bb);
465 fallthru = false;
466 break;
467 case SWITCH_EXPR:
468 make_switch_expr_edges (bb);
469 fallthru = false;
470 break;
471 case RESX_EXPR:
472 make_eh_edges (last);
473 fallthru = false;
474 break;
475
476 case CALL_EXPR:
477 /* If this function receives a nonlocal goto, then we need to
478 make edges from this call site to all the nonlocal goto
479 handlers. */
480 if (tree_can_make_abnormal_goto (last))
481 make_abnormal_goto_edges (bb, true);
482
483 /* If this statement has reachable exception handlers, then
484 create abnormal edges to them. */
485 make_eh_edges (last);
486
487 /* Some calls are known not to return. */
488 fallthru = !(call_expr_flags (last) & ECF_NORETURN);
489 break;
490
491 case MODIFY_EXPR:
492 gcc_unreachable ();
493
494 case GIMPLE_MODIFY_STMT:
495 if (is_ctrl_altering_stmt (last))
496 {
497 /* A GIMPLE_MODIFY_STMT may have a CALL_EXPR on its RHS and
498 the CALL_EXPR may have an abnormal edge. Search the RHS
499 for this case and create any required edges. */
500 if (tree_can_make_abnormal_goto (last))
501 make_abnormal_goto_edges (bb, true);
502
503 make_eh_edges (last);
504 }
505 fallthru = true;
506 break;
507
508 case OMP_PARALLEL:
509 case OMP_FOR:
510 case OMP_SINGLE:
511 case OMP_MASTER:
512 case OMP_ORDERED:
513 case OMP_CRITICAL:
514 case OMP_SECTION:
515 cur_region = new_omp_region (bb, code, cur_region);
516 fallthru = true;
517 break;
518
519 case OMP_SECTIONS:
520 cur_region = new_omp_region (bb, code, cur_region);
521 fallthru = false;
522 break;
523
524 case OMP_RETURN:
525 /* In the case of an OMP_SECTION, the edge will go somewhere
526 other than the next block. This will be created later. */
527 cur_region->exit = bb;
528 fallthru = cur_region->type != OMP_SECTION;
529 cur_region = cur_region->outer;
530 break;
531
532 case OMP_CONTINUE:
533 cur_region->cont = bb;
534 switch (cur_region->type)
535 {
536 case OMP_FOR:
537 /* ??? Technically there should be a some sort of loopback
538 edge here, but it goes to a block that doesn't exist yet,
539 and without it, updating the ssa form would be a real
540 bear. Fortunately, we don't yet do ssa before expanding
541 these nodes. */
542 break;
543
544 case OMP_SECTIONS:
545 /* Wire up the edges into and out of the nested sections. */
546 /* ??? Similarly wrt loopback. */
547 {
548 struct omp_region *i;
549 for (i = cur_region->inner; i ; i = i->next)
550 {
551 gcc_assert (i->type == OMP_SECTION);
552 make_edge (cur_region->entry, i->entry, 0);
553 make_edge (i->exit, bb, EDGE_FALLTHRU);
554 }
555 }
556 break;
557
558 default:
559 gcc_unreachable ();
560 }
561 fallthru = true;
562 break;
563
564 default:
565 gcc_assert (!stmt_ends_bb_p (last));
566 fallthru = true;
567 }
568 }
569 else
570 fallthru = true;
571
572 if (fallthru)
573 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
574 }
575
576 if (root_omp_region)
577 free_omp_regions ();
578
579 /* Fold COND_EXPR_COND of each COND_EXPR. */
580 fold_cond_expr_cond ();
581 }
582
583
584 /* Create the edges for a COND_EXPR starting at block BB.
585 At this point, both clauses must contain only simple gotos. */
586
587 static void
588 make_cond_expr_edges (basic_block bb)
589 {
590 tree entry = last_stmt (bb);
591 basic_block then_bb, else_bb;
592 tree then_label, else_label;
593 edge e;
594
595 gcc_assert (entry);
596 gcc_assert (TREE_CODE (entry) == COND_EXPR);
597
598 /* Entry basic blocks for each component. */
599 then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
600 else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
601 then_bb = label_to_block (then_label);
602 else_bb = label_to_block (else_label);
603
604 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
605 #ifdef USE_MAPPED_LOCATION
606 e->goto_locus = EXPR_LOCATION (COND_EXPR_THEN (entry));
607 #else
608 e->goto_locus = EXPR_LOCUS (COND_EXPR_THEN (entry));
609 #endif
610 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
611 if (e)
612 {
613 #ifdef USE_MAPPED_LOCATION
614 e->goto_locus = EXPR_LOCATION (COND_EXPR_ELSE (entry));
615 #else
616 e->goto_locus = EXPR_LOCUS (COND_EXPR_ELSE (entry));
617 #endif
618 }
619
620 /* We do not need the gotos anymore. */
621 COND_EXPR_THEN (entry) = NULL_TREE;
622 COND_EXPR_ELSE (entry) = NULL_TREE;
623 }
624
625
626 /* Called for each element in the hash table (P) as we delete the
627 edge to cases hash table.
628
629 Clear all the TREE_CHAINs to prevent problems with copying of
630 SWITCH_EXPRs and structure sharing rules, then free the hash table
631 element. */
632
633 static bool
634 edge_to_cases_cleanup (void *key ATTRIBUTE_UNUSED, void **value,
635 void *data ATTRIBUTE_UNUSED)
636 {
637 tree t, next;
638
639 for (t = (tree) *value; t; t = next)
640 {
641 next = TREE_CHAIN (t);
642 TREE_CHAIN (t) = NULL;
643 }
644
645 *value = NULL;
646 return false;
647 }
648
649 /* Start recording information mapping edges to case labels. */
650
651 void
652 start_recording_case_labels (void)
653 {
654 gcc_assert (edge_to_cases == NULL);
655 edge_to_cases = pointer_map_create ();
656 }
657
658 /* Return nonzero if we are recording information for case labels. */
659
660 static bool
661 recording_case_labels_p (void)
662 {
663 return (edge_to_cases != NULL);
664 }
665
666 /* Stop recording information mapping edges to case labels and
667 remove any information we have recorded. */
668 void
669 end_recording_case_labels (void)
670 {
671 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
672 pointer_map_destroy (edge_to_cases);
673 edge_to_cases = NULL;
674 }
675
676 /* If we are inside a {start,end}_recording_cases block, then return
677 a chain of CASE_LABEL_EXPRs from T which reference E.
678
679 Otherwise return NULL. */
680
681 static tree
682 get_cases_for_edge (edge e, tree t)
683 {
684 void **slot;
685 size_t i, n;
686 tree vec;
687
688 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
689 chains available. Return NULL so the caller can detect this case. */
690 if (!recording_case_labels_p ())
691 return NULL;
692
693 slot = pointer_map_contains (edge_to_cases, e);
694 if (slot)
695 return (tree) *slot;
696
697 /* If we did not find E in the hash table, then this must be the first
698 time we have been queried for information about E & T. Add all the
699 elements from T to the hash table then perform the query again. */
700
701 vec = SWITCH_LABELS (t);
702 n = TREE_VEC_LENGTH (vec);
703 for (i = 0; i < n; i++)
704 {
705 tree elt = TREE_VEC_ELT (vec, i);
706 tree lab = CASE_LABEL (elt);
707 basic_block label_bb = label_to_block (lab);
708 edge this_edge = find_edge (e->src, label_bb);
709
710 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
711 a new chain. */
712 slot = pointer_map_insert (edge_to_cases, this_edge);
713 TREE_CHAIN (elt) = (tree) *slot;
714 *slot = elt;
715 }
716
717 return (tree) *pointer_map_contains (edge_to_cases, e);
718 }
719
720 /* Create the edges for a SWITCH_EXPR starting at block BB.
721 At this point, the switch body has been lowered and the
722 SWITCH_LABELS filled in, so this is in effect a multi-way branch. */
723
724 static void
725 make_switch_expr_edges (basic_block bb)
726 {
727 tree entry = last_stmt (bb);
728 size_t i, n;
729 tree vec;
730
731 vec = SWITCH_LABELS (entry);
732 n = TREE_VEC_LENGTH (vec);
733
734 for (i = 0; i < n; ++i)
735 {
736 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
737 basic_block label_bb = label_to_block (lab);
738 make_edge (bb, label_bb, 0);
739 }
740 }
741
742
743 /* Return the basic block holding label DEST. */
744
745 basic_block
746 label_to_block_fn (struct function *ifun, tree dest)
747 {
748 int uid = LABEL_DECL_UID (dest);
749
750 /* We would die hard when faced by an undefined label. Emit a label to
751 the very first basic block. This will hopefully make even the dataflow
752 and undefined variable warnings quite right. */
753 if ((errorcount || sorrycount) && uid < 0)
754 {
755 block_stmt_iterator bsi =
756 bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
757 tree stmt;
758
759 stmt = build1 (LABEL_EXPR, void_type_node, dest);
760 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
761 uid = LABEL_DECL_UID (dest);
762 }
763 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
764 <= (unsigned int) uid)
765 return NULL;
766 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
767 }
768
769 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
770 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
771
772 void
773 make_abnormal_goto_edges (basic_block bb, bool for_call)
774 {
775 basic_block target_bb;
776 block_stmt_iterator bsi;
777
778 FOR_EACH_BB (target_bb)
779 for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
780 {
781 tree target = bsi_stmt (bsi);
782
783 if (TREE_CODE (target) != LABEL_EXPR)
784 break;
785
786 target = LABEL_EXPR_LABEL (target);
787
788 /* Make an edge to every label block that has been marked as a
789 potential target for a computed goto or a non-local goto. */
790 if ((FORCED_LABEL (target) && !for_call)
791 || (DECL_NONLOCAL (target) && for_call))
792 {
793 make_edge (bb, target_bb, EDGE_ABNORMAL);
794 break;
795 }
796 }
797 }
798
799 /* Create edges for a goto statement at block BB. */
800
801 static void
802 make_goto_expr_edges (basic_block bb)
803 {
804 block_stmt_iterator last = bsi_last (bb);
805 tree goto_t = bsi_stmt (last);
806
807 /* A simple GOTO creates normal edges. */
808 if (simple_goto_p (goto_t))
809 {
810 tree dest = GOTO_DESTINATION (goto_t);
811 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
812 #ifdef USE_MAPPED_LOCATION
813 e->goto_locus = EXPR_LOCATION (goto_t);
814 #else
815 e->goto_locus = EXPR_LOCUS (goto_t);
816 #endif
817 bsi_remove (&last, true);
818 return;
819 }
820
821 /* A computed GOTO creates abnormal edges. */
822 make_abnormal_goto_edges (bb, false);
823 }
824
825
826 /*---------------------------------------------------------------------------
827 Flowgraph analysis
828 ---------------------------------------------------------------------------*/
829
830 /* Cleanup useless labels in basic blocks. This is something we wish
831 to do early because it allows us to group case labels before creating
832 the edges for the CFG, and it speeds up block statement iterators in
833 all passes later on.
834 We rerun this pass after CFG is created, to get rid of the labels that
835 are no longer referenced. After then we do not run it any more, since
836 (almost) no new labels should be created. */
837
838 /* A map from basic block index to the leading label of that block. */
839 static struct label_record
840 {
841 /* The label. */
842 tree label;
843
844 /* True if the label is referenced from somewhere. */
845 bool used;
846 } *label_for_bb;
847
848 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
849 static void
850 update_eh_label (struct eh_region *region)
851 {
852 tree old_label = get_eh_region_tree_label (region);
853 if (old_label)
854 {
855 tree new_label;
856 basic_block bb = label_to_block (old_label);
857
858 /* ??? After optimizing, there may be EH regions with labels
859 that have already been removed from the function body, so
860 there is no basic block for them. */
861 if (! bb)
862 return;
863
864 new_label = label_for_bb[bb->index].label;
865 label_for_bb[bb->index].used = true;
866 set_eh_region_tree_label (region, new_label);
867 }
868 }
869
870 /* Given LABEL return the first label in the same basic block. */
871 static tree
872 main_block_label (tree label)
873 {
874 basic_block bb = label_to_block (label);
875 tree main_label = label_for_bb[bb->index].label;
876
877 /* label_to_block possibly inserted undefined label into the chain. */
878 if (!main_label)
879 {
880 label_for_bb[bb->index].label = label;
881 main_label = label;
882 }
883
884 label_for_bb[bb->index].used = true;
885 return main_label;
886 }
887
888 /* Cleanup redundant labels. This is a three-step process:
889 1) Find the leading label for each block.
890 2) Redirect all references to labels to the leading labels.
891 3) Cleanup all useless labels. */
892
893 void
894 cleanup_dead_labels (void)
895 {
896 basic_block bb;
897 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
898
899 /* Find a suitable label for each block. We use the first user-defined
900 label if there is one, or otherwise just the first label we see. */
901 FOR_EACH_BB (bb)
902 {
903 block_stmt_iterator i;
904
905 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
906 {
907 tree label, stmt = bsi_stmt (i);
908
909 if (TREE_CODE (stmt) != LABEL_EXPR)
910 break;
911
912 label = LABEL_EXPR_LABEL (stmt);
913
914 /* If we have not yet seen a label for the current block,
915 remember this one and see if there are more labels. */
916 if (!label_for_bb[bb->index].label)
917 {
918 label_for_bb[bb->index].label = label;
919 continue;
920 }
921
922 /* If we did see a label for the current block already, but it
923 is an artificially created label, replace it if the current
924 label is a user defined label. */
925 if (!DECL_ARTIFICIAL (label)
926 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
927 {
928 label_for_bb[bb->index].label = label;
929 break;
930 }
931 }
932 }
933
934 /* Now redirect all jumps/branches to the selected label.
935 First do so for each block ending in a control statement. */
936 FOR_EACH_BB (bb)
937 {
938 tree stmt = last_stmt (bb);
939 if (!stmt)
940 continue;
941
942 switch (TREE_CODE (stmt))
943 {
944 case COND_EXPR:
945 {
946 tree true_branch, false_branch;
947
948 true_branch = COND_EXPR_THEN (stmt);
949 false_branch = COND_EXPR_ELSE (stmt);
950
951 if (true_branch)
952 GOTO_DESTINATION (true_branch)
953 = main_block_label (GOTO_DESTINATION (true_branch));
954 if (false_branch)
955 GOTO_DESTINATION (false_branch)
956 = main_block_label (GOTO_DESTINATION (false_branch));
957
958 break;
959 }
960
961 case SWITCH_EXPR:
962 {
963 size_t i;
964 tree vec = SWITCH_LABELS (stmt);
965 size_t n = TREE_VEC_LENGTH (vec);
966
967 /* Replace all destination labels. */
968 for (i = 0; i < n; ++i)
969 {
970 tree elt = TREE_VEC_ELT (vec, i);
971 tree label = main_block_label (CASE_LABEL (elt));
972 CASE_LABEL (elt) = label;
973 }
974 break;
975 }
976
977 /* We have to handle GOTO_EXPRs until they're removed, and we don't
978 remove them until after we've created the CFG edges. */
979 case GOTO_EXPR:
980 if (! computed_goto_p (stmt))
981 {
982 GOTO_DESTINATION (stmt)
983 = main_block_label (GOTO_DESTINATION (stmt));
984 break;
985 }
986
987 default:
988 break;
989 }
990 }
991
992 for_each_eh_region (update_eh_label);
993
994 /* Finally, purge dead labels. All user-defined labels and labels that
995 can be the target of non-local gotos and labels which have their
996 address taken are preserved. */
997 FOR_EACH_BB (bb)
998 {
999 block_stmt_iterator i;
1000 tree label_for_this_bb = label_for_bb[bb->index].label;
1001
1002 if (!label_for_this_bb)
1003 continue;
1004
1005 /* If the main label of the block is unused, we may still remove it. */
1006 if (!label_for_bb[bb->index].used)
1007 label_for_this_bb = NULL;
1008
1009 for (i = bsi_start (bb); !bsi_end_p (i); )
1010 {
1011 tree label, stmt = bsi_stmt (i);
1012
1013 if (TREE_CODE (stmt) != LABEL_EXPR)
1014 break;
1015
1016 label = LABEL_EXPR_LABEL (stmt);
1017
1018 if (label == label_for_this_bb
1019 || ! DECL_ARTIFICIAL (label)
1020 || DECL_NONLOCAL (label)
1021 || FORCED_LABEL (label))
1022 bsi_next (&i);
1023 else
1024 bsi_remove (&i, true);
1025 }
1026 }
1027
1028 free (label_for_bb);
1029 }
1030
1031 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1032 and scan the sorted vector of cases. Combine the ones jumping to the
1033 same label.
1034 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1035
1036 void
1037 group_case_labels (void)
1038 {
1039 basic_block bb;
1040
1041 FOR_EACH_BB (bb)
1042 {
1043 tree stmt = last_stmt (bb);
1044 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
1045 {
1046 tree labels = SWITCH_LABELS (stmt);
1047 int old_size = TREE_VEC_LENGTH (labels);
1048 int i, j, new_size = old_size;
1049 tree default_case = TREE_VEC_ELT (labels, old_size - 1);
1050 tree default_label;
1051
1052 /* The default label is always the last case in a switch
1053 statement after gimplification. */
1054 default_label = CASE_LABEL (default_case);
1055
1056 /* Look for possible opportunities to merge cases.
1057 Ignore the last element of the label vector because it
1058 must be the default case. */
1059 i = 0;
1060 while (i < old_size - 1)
1061 {
1062 tree base_case, base_label, base_high;
1063 base_case = TREE_VEC_ELT (labels, i);
1064
1065 gcc_assert (base_case);
1066 base_label = CASE_LABEL (base_case);
1067
1068 /* Discard cases that have the same destination as the
1069 default case. */
1070 if (base_label == default_label)
1071 {
1072 TREE_VEC_ELT (labels, i) = NULL_TREE;
1073 i++;
1074 new_size--;
1075 continue;
1076 }
1077
1078 base_high = CASE_HIGH (base_case) ?
1079 CASE_HIGH (base_case) : CASE_LOW (base_case);
1080 i++;
1081 /* Try to merge case labels. Break out when we reach the end
1082 of the label vector or when we cannot merge the next case
1083 label with the current one. */
1084 while (i < old_size - 1)
1085 {
1086 tree merge_case = TREE_VEC_ELT (labels, i);
1087 tree merge_label = CASE_LABEL (merge_case);
1088 tree t = int_const_binop (PLUS_EXPR, base_high,
1089 integer_one_node, 1);
1090
1091 /* Merge the cases if they jump to the same place,
1092 and their ranges are consecutive. */
1093 if (merge_label == base_label
1094 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1095 {
1096 base_high = CASE_HIGH (merge_case) ?
1097 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1098 CASE_HIGH (base_case) = base_high;
1099 TREE_VEC_ELT (labels, i) = NULL_TREE;
1100 new_size--;
1101 i++;
1102 }
1103 else
1104 break;
1105 }
1106 }
1107
1108 /* Compress the case labels in the label vector, and adjust the
1109 length of the vector. */
1110 for (i = 0, j = 0; i < new_size; i++)
1111 {
1112 while (! TREE_VEC_ELT (labels, j))
1113 j++;
1114 TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
1115 }
1116 TREE_VEC_LENGTH (labels) = new_size;
1117 }
1118 }
1119 }
1120
1121 /* Checks whether we can merge block B into block A. */
1122
1123 static bool
1124 tree_can_merge_blocks_p (basic_block a, basic_block b)
1125 {
1126 tree stmt;
1127 block_stmt_iterator bsi;
1128 tree phi;
1129
1130 if (!single_succ_p (a))
1131 return false;
1132
1133 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1134 return false;
1135
1136 if (single_succ (a) != b)
1137 return false;
1138
1139 if (!single_pred_p (b))
1140 return false;
1141
1142 if (b == EXIT_BLOCK_PTR)
1143 return false;
1144
1145 /* If A ends by a statement causing exceptions or something similar, we
1146 cannot merge the blocks. */
1147 stmt = last_stmt (a);
1148 if (stmt && stmt_ends_bb_p (stmt))
1149 return false;
1150
1151 /* Do not allow a block with only a non-local label to be merged. */
1152 if (stmt && TREE_CODE (stmt) == LABEL_EXPR
1153 && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1154 return false;
1155
1156 /* It must be possible to eliminate all phi nodes in B. If ssa form
1157 is not up-to-date, we cannot eliminate any phis; however, if only
1158 some symbols as whole are marked for renaming, this is not a problem,
1159 as phi nodes for those symbols are irrelevant in updating anyway. */
1160 phi = phi_nodes (b);
1161 if (phi)
1162 {
1163 if (name_mappings_registered_p ())
1164 return false;
1165
1166 for (; phi; phi = PHI_CHAIN (phi))
1167 if (!is_gimple_reg (PHI_RESULT (phi))
1168 && !may_propagate_copy (PHI_RESULT (phi), PHI_ARG_DEF (phi, 0)))
1169 return false;
1170 }
1171
1172 /* Do not remove user labels. */
1173 for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
1174 {
1175 stmt = bsi_stmt (bsi);
1176 if (TREE_CODE (stmt) != LABEL_EXPR)
1177 break;
1178 if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
1179 return false;
1180 }
1181
1182 /* Protect the loop latches. */
1183 if (current_loops
1184 && b->loop_father->latch == b)
1185 return false;
1186
1187 return true;
1188 }
1189
1190 /* Replaces all uses of NAME by VAL. */
1191
1192 void
1193 replace_uses_by (tree name, tree val)
1194 {
1195 imm_use_iterator imm_iter;
1196 use_operand_p use;
1197 tree stmt;
1198 edge e;
1199
1200 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1201 {
1202 if (TREE_CODE (stmt) != PHI_NODE)
1203 push_stmt_changes (&stmt);
1204
1205 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1206 {
1207 replace_exp (use, val);
1208
1209 if (TREE_CODE (stmt) == PHI_NODE)
1210 {
1211 e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
1212 if (e->flags & EDGE_ABNORMAL)
1213 {
1214 /* This can only occur for virtual operands, since
1215 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1216 would prevent replacement. */
1217 gcc_assert (!is_gimple_reg (name));
1218 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1219 }
1220 }
1221 }
1222
1223 if (TREE_CODE (stmt) != PHI_NODE)
1224 {
1225 tree rhs;
1226
1227 fold_stmt_inplace (stmt);
1228 if (cfgcleanup_altered_bbs)
1229 bitmap_set_bit (cfgcleanup_altered_bbs, bb_for_stmt (stmt)->index);
1230
1231 /* FIXME. This should go in pop_stmt_changes. */
1232 rhs = get_rhs (stmt);
1233 if (TREE_CODE (rhs) == ADDR_EXPR)
1234 recompute_tree_invariant_for_addr_expr (rhs);
1235
1236 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1237
1238 pop_stmt_changes (&stmt);
1239 }
1240 }
1241
1242 gcc_assert (has_zero_uses (name));
1243
1244 /* Also update the trees stored in loop structures. */
1245 if (current_loops)
1246 {
1247 struct loop *loop;
1248 loop_iterator li;
1249
1250 FOR_EACH_LOOP (li, loop, 0)
1251 {
1252 substitute_in_loop_info (loop, name, val);
1253 }
1254 }
1255 }
1256
1257 /* Merge block B into block A. */
1258
1259 static void
1260 tree_merge_blocks (basic_block a, basic_block b)
1261 {
1262 block_stmt_iterator bsi;
1263 tree_stmt_iterator last;
1264 tree phi;
1265
1266 if (dump_file)
1267 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1268
1269 /* Remove all single-valued PHI nodes from block B of the form
1270 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1271 bsi = bsi_last (a);
1272 for (phi = phi_nodes (b); phi; phi = phi_nodes (b))
1273 {
1274 tree def = PHI_RESULT (phi), use = PHI_ARG_DEF (phi, 0);
1275 tree copy;
1276 bool may_replace_uses = may_propagate_copy (def, use);
1277
1278 /* In case we have loops to care about, do not propagate arguments of
1279 loop closed ssa phi nodes. */
1280 if (current_loops
1281 && is_gimple_reg (def)
1282 && TREE_CODE (use) == SSA_NAME
1283 && a->loop_father != b->loop_father)
1284 may_replace_uses = false;
1285
1286 if (!may_replace_uses)
1287 {
1288 gcc_assert (is_gimple_reg (def));
1289
1290 /* Note that just emitting the copies is fine -- there is no problem
1291 with ordering of phi nodes. This is because A is the single
1292 predecessor of B, therefore results of the phi nodes cannot
1293 appear as arguments of the phi nodes. */
1294 copy = build_gimple_modify_stmt (def, use);
1295 bsi_insert_after (&bsi, copy, BSI_NEW_STMT);
1296 SSA_NAME_DEF_STMT (def) = copy;
1297 remove_phi_node (phi, NULL, false);
1298 }
1299 else
1300 {
1301 replace_uses_by (def, use);
1302 remove_phi_node (phi, NULL, true);
1303 }
1304 }
1305
1306 /* Ensure that B follows A. */
1307 move_block_after (b, a);
1308
1309 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1310 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1311
1312 /* Remove labels from B and set bb_for_stmt to A for other statements. */
1313 for (bsi = bsi_start (b); !bsi_end_p (bsi);)
1314 {
1315 if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
1316 {
1317 tree label = bsi_stmt (bsi);
1318
1319 bsi_remove (&bsi, false);
1320 /* Now that we can thread computed gotos, we might have
1321 a situation where we have a forced label in block B
1322 However, the label at the start of block B might still be
1323 used in other ways (think about the runtime checking for
1324 Fortran assigned gotos). So we can not just delete the
1325 label. Instead we move the label to the start of block A. */
1326 if (FORCED_LABEL (LABEL_EXPR_LABEL (label)))
1327 {
1328 block_stmt_iterator dest_bsi = bsi_start (a);
1329 bsi_insert_before (&dest_bsi, label, BSI_NEW_STMT);
1330 }
1331 }
1332 else
1333 {
1334 change_bb_for_stmt (bsi_stmt (bsi), a);
1335 bsi_next (&bsi);
1336 }
1337 }
1338
1339 /* Merge the chains. */
1340 last = tsi_last (bb_stmt_list (a));
1341 tsi_link_after (&last, bb_stmt_list (b), TSI_NEW_STMT);
1342 set_bb_stmt_list (b, NULL_TREE);
1343
1344 if (cfgcleanup_altered_bbs)
1345 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1346 }
1347
1348
1349 /* Return the one of two successors of BB that is not reachable by a
1350 reached by a complex edge, if there is one. Else, return BB. We use
1351 this in optimizations that use post-dominators for their heuristics,
1352 to catch the cases in C++ where function calls are involved. */
1353
1354 basic_block
1355 single_noncomplex_succ (basic_block bb)
1356 {
1357 edge e0, e1;
1358 if (EDGE_COUNT (bb->succs) != 2)
1359 return bb;
1360
1361 e0 = EDGE_SUCC (bb, 0);
1362 e1 = EDGE_SUCC (bb, 1);
1363 if (e0->flags & EDGE_COMPLEX)
1364 return e1->dest;
1365 if (e1->flags & EDGE_COMPLEX)
1366 return e0->dest;
1367
1368 return bb;
1369 }
1370
1371
1372 /* Walk the function tree removing unnecessary statements.
1373
1374 * Empty statement nodes are removed
1375
1376 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1377
1378 * Unnecessary COND_EXPRs are removed
1379
1380 * Some unnecessary BIND_EXPRs are removed
1381
1382 Clearly more work could be done. The trick is doing the analysis
1383 and removal fast enough to be a net improvement in compile times.
1384
1385 Note that when we remove a control structure such as a COND_EXPR
1386 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1387 to ensure we eliminate all the useless code. */
1388
1389 struct rus_data
1390 {
1391 tree *last_goto;
1392 bool repeat;
1393 bool may_throw;
1394 bool may_branch;
1395 bool has_label;
1396 };
1397
1398 static void remove_useless_stmts_1 (tree *, struct rus_data *);
1399
1400 static bool
1401 remove_useless_stmts_warn_notreached (tree stmt)
1402 {
1403 if (EXPR_HAS_LOCATION (stmt))
1404 {
1405 location_t loc = EXPR_LOCATION (stmt);
1406 if (LOCATION_LINE (loc) > 0)
1407 {
1408 warning (0, "%Hwill never be executed", &loc);
1409 return true;
1410 }
1411 }
1412
1413 switch (TREE_CODE (stmt))
1414 {
1415 case STATEMENT_LIST:
1416 {
1417 tree_stmt_iterator i;
1418 for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
1419 if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
1420 return true;
1421 }
1422 break;
1423
1424 case COND_EXPR:
1425 if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
1426 return true;
1427 if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
1428 return true;
1429 if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
1430 return true;
1431 break;
1432
1433 case TRY_FINALLY_EXPR:
1434 case TRY_CATCH_EXPR:
1435 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
1436 return true;
1437 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
1438 return true;
1439 break;
1440
1441 case CATCH_EXPR:
1442 return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
1443 case EH_FILTER_EXPR:
1444 return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
1445 case BIND_EXPR:
1446 return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));
1447
1448 default:
1449 /* Not a live container. */
1450 break;
1451 }
1452
1453 return false;
1454 }
1455
1456 static void
1457 remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
1458 {
1459 tree then_clause, else_clause, cond;
1460 bool save_has_label, then_has_label, else_has_label;
1461
1462 save_has_label = data->has_label;
1463 data->has_label = false;
1464 data->last_goto = NULL;
1465
1466 remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);
1467
1468 then_has_label = data->has_label;
1469 data->has_label = false;
1470 data->last_goto = NULL;
1471
1472 remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);
1473
1474 else_has_label = data->has_label;
1475 data->has_label = save_has_label | then_has_label | else_has_label;
1476
1477 then_clause = COND_EXPR_THEN (*stmt_p);
1478 else_clause = COND_EXPR_ELSE (*stmt_p);
1479 cond = fold (COND_EXPR_COND (*stmt_p));
1480
1481 /* If neither arm does anything at all, we can remove the whole IF. */
1482 if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
1483 {
1484 *stmt_p = build_empty_stmt ();
1485 data->repeat = true;
1486 }
1487
1488 /* If there are no reachable statements in an arm, then we can
1489 zap the entire conditional. */
1490 else if (integer_nonzerop (cond) && !else_has_label)
1491 {
1492 if (warn_notreached)
1493 remove_useless_stmts_warn_notreached (else_clause);
1494 *stmt_p = then_clause;
1495 data->repeat = true;
1496 }
1497 else if (integer_zerop (cond) && !then_has_label)
1498 {
1499 if (warn_notreached)
1500 remove_useless_stmts_warn_notreached (then_clause);
1501 *stmt_p = else_clause;
1502 data->repeat = true;
1503 }
1504
1505 /* Check a couple of simple things on then/else with single stmts. */
1506 else
1507 {
1508 tree then_stmt = expr_only (then_clause);
1509 tree else_stmt = expr_only (else_clause);
1510
1511 /* Notice branches to a common destination. */
1512 if (then_stmt && else_stmt
1513 && TREE_CODE (then_stmt) == GOTO_EXPR
1514 && TREE_CODE (else_stmt) == GOTO_EXPR
1515 && (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
1516 {
1517 *stmt_p = then_stmt;
1518 data->repeat = true;
1519 }
1520
1521 /* If the THEN/ELSE clause merely assigns a value to a variable or
1522 parameter which is already known to contain that value, then
1523 remove the useless THEN/ELSE clause. */
1524 else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
1525 {
1526 if (else_stmt
1527 && TREE_CODE (else_stmt) == GIMPLE_MODIFY_STMT
1528 && GIMPLE_STMT_OPERAND (else_stmt, 0) == cond
1529 && integer_zerop (GIMPLE_STMT_OPERAND (else_stmt, 1)))
1530 COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
1531 }
1532 else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1533 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1534 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
1535 && TREE_CONSTANT (TREE_OPERAND (cond, 1)))
1536 {
1537 tree stmt = (TREE_CODE (cond) == EQ_EXPR
1538 ? then_stmt : else_stmt);
1539 tree *location = (TREE_CODE (cond) == EQ_EXPR
1540 ? &COND_EXPR_THEN (*stmt_p)
1541 : &COND_EXPR_ELSE (*stmt_p));
1542
1543 if (stmt
1544 && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1545 && GIMPLE_STMT_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
1546 && GIMPLE_STMT_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
1547 *location = alloc_stmt_list ();
1548 }
1549 }
1550
1551 /* Protect GOTOs in the arm of COND_EXPRs from being removed. They
1552 would be re-introduced during lowering. */
1553 data->last_goto = NULL;
1554 }
1555
1556
1557 static void
1558 remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
1559 {
1560 bool save_may_branch, save_may_throw;
1561 bool this_may_branch, this_may_throw;
1562
1563 /* Collect may_branch and may_throw information for the body only. */
1564 save_may_branch = data->may_branch;
1565 save_may_throw = data->may_throw;
1566 data->may_branch = false;
1567 data->may_throw = false;
1568 data->last_goto = NULL;
1569
1570 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1571
1572 this_may_branch = data->may_branch;
1573 this_may_throw = data->may_throw;
1574 data->may_branch |= save_may_branch;
1575 data->may_throw |= save_may_throw;
1576 data->last_goto = NULL;
1577
1578 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1579
1580 /* If the body is empty, then we can emit the FINALLY block without
1581 the enclosing TRY_FINALLY_EXPR. */
1582 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
1583 {
1584 *stmt_p = TREE_OPERAND (*stmt_p, 1);
1585 data->repeat = true;
1586 }
1587
1588 /* If the handler is empty, then we can emit the TRY block without
1589 the enclosing TRY_FINALLY_EXPR. */
1590 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1591 {
1592 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1593 data->repeat = true;
1594 }
1595
1596 /* If the body neither throws, nor branches, then we can safely
1597 string the TRY and FINALLY blocks together. */
1598 else if (!this_may_branch && !this_may_throw)
1599 {
1600 tree stmt = *stmt_p;
1601 *stmt_p = TREE_OPERAND (stmt, 0);
1602 append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
1603 data->repeat = true;
1604 }
1605 }
1606
1607
1608 static void
1609 remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
1610 {
1611 bool save_may_throw, this_may_throw;
1612 tree_stmt_iterator i;
1613 tree stmt;
1614
1615 /* Collect may_throw information for the body only. */
1616 save_may_throw = data->may_throw;
1617 data->may_throw = false;
1618 data->last_goto = NULL;
1619
1620 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1621
1622 this_may_throw = data->may_throw;
1623 data->may_throw = save_may_throw;
1624
1625 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1626 if (!this_may_throw)
1627 {
1628 if (warn_notreached)
1629 remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
1630 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1631 data->repeat = true;
1632 return;
1633 }
1634
1635 /* Process the catch clause specially. We may be able to tell that
1636 no exceptions propagate past this point. */
1637
1638 this_may_throw = true;
1639 i = tsi_start (TREE_OPERAND (*stmt_p, 1));
1640 stmt = tsi_stmt (i);
1641 data->last_goto = NULL;
1642
1643 switch (TREE_CODE (stmt))
1644 {
1645 case CATCH_EXPR:
1646 for (; !tsi_end_p (i); tsi_next (&i))
1647 {
1648 stmt = tsi_stmt (i);
1649 /* If we catch all exceptions, then the body does not
1650 propagate exceptions past this point. */
1651 if (CATCH_TYPES (stmt) == NULL)
1652 this_may_throw = false;
1653 data->last_goto = NULL;
1654 remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
1655 }
1656 break;
1657
1658 case EH_FILTER_EXPR:
1659 if (EH_FILTER_MUST_NOT_THROW (stmt))
1660 this_may_throw = false;
1661 else if (EH_FILTER_TYPES (stmt) == NULL)
1662 this_may_throw = false;
1663 remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
1664 break;
1665
1666 default:
1667 /* Otherwise this is a cleanup. */
1668 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1669
1670 /* If the cleanup is empty, then we can emit the TRY block without
1671 the enclosing TRY_CATCH_EXPR. */
1672 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1673 {
1674 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1675 data->repeat = true;
1676 }
1677 break;
1678 }
1679 data->may_throw |= this_may_throw;
1680 }
1681
1682
1683 static void
1684 remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
1685 {
1686 tree block;
1687
1688 /* First remove anything underneath the BIND_EXPR. */
1689 remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);
1690
1691 /* If the BIND_EXPR has no variables, then we can pull everything
1692 up one level and remove the BIND_EXPR, unless this is the toplevel
1693 BIND_EXPR for the current function or an inlined function.
1694
1695 When this situation occurs we will want to apply this
1696 optimization again. */
1697 block = BIND_EXPR_BLOCK (*stmt_p);
1698 if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
1699 && *stmt_p != DECL_SAVED_TREE (current_function_decl)
1700 && (! block
1701 || ! BLOCK_ABSTRACT_ORIGIN (block)
1702 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1703 != FUNCTION_DECL)))
1704 {
1705 *stmt_p = BIND_EXPR_BODY (*stmt_p);
1706 data->repeat = true;
1707 }
1708 }
1709
1710
1711 static void
1712 remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
1713 {
1714 tree dest = GOTO_DESTINATION (*stmt_p);
1715
1716 data->may_branch = true;
1717 data->last_goto = NULL;
1718
1719 /* Record the last goto expr, so that we can delete it if unnecessary. */
1720 if (TREE_CODE (dest) == LABEL_DECL)
1721 data->last_goto = stmt_p;
1722 }
1723
1724
1725 static void
1726 remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
1727 {
1728 tree label = LABEL_EXPR_LABEL (*stmt_p);
1729
1730 data->has_label = true;
1731
1732 /* We do want to jump across non-local label receiver code. */
1733 if (DECL_NONLOCAL (label))
1734 data->last_goto = NULL;
1735
1736 else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
1737 {
1738 *data->last_goto = build_empty_stmt ();
1739 data->repeat = true;
1740 }
1741
1742 /* ??? Add something here to delete unused labels. */
1743 }
1744
1745
1746 /* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
1747 decl. This allows us to eliminate redundant or useless
1748 calls to "const" functions.
1749
1750 Gimplifier already does the same operation, but we may notice functions
1751 being const and pure once their calls has been gimplified, so we need
1752 to update the flag. */
1753
1754 static void
1755 update_call_expr_flags (tree call)
1756 {
1757 tree decl = get_callee_fndecl (call);
1758 if (!decl)
1759 return;
1760 if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
1761 TREE_SIDE_EFFECTS (call) = 0;
1762 if (TREE_NOTHROW (decl))
1763 TREE_NOTHROW (call) = 1;
1764 }
1765
1766
1767 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1768
1769 void
1770 notice_special_calls (tree t)
1771 {
1772 int flags = call_expr_flags (t);
1773
1774 if (flags & ECF_MAY_BE_ALLOCA)
1775 current_function_calls_alloca = true;
1776 if (flags & ECF_RETURNS_TWICE)
1777 current_function_calls_setjmp = true;
1778 }
1779
1780
1781 /* Clear flags set by notice_special_calls. Used by dead code removal
1782 to update the flags. */
1783
1784 void
1785 clear_special_calls (void)
1786 {
1787 current_function_calls_alloca = false;
1788 current_function_calls_setjmp = false;
1789 }
1790
1791
1792 static void
1793 remove_useless_stmts_1 (tree *tp, struct rus_data *data)
1794 {
1795 tree t = *tp, op;
1796
1797 switch (TREE_CODE (t))
1798 {
1799 case COND_EXPR:
1800 remove_useless_stmts_cond (tp, data);
1801 break;
1802
1803 case TRY_FINALLY_EXPR:
1804 remove_useless_stmts_tf (tp, data);
1805 break;
1806
1807 case TRY_CATCH_EXPR:
1808 remove_useless_stmts_tc (tp, data);
1809 break;
1810
1811 case BIND_EXPR:
1812 remove_useless_stmts_bind (tp, data);
1813 break;
1814
1815 case GOTO_EXPR:
1816 remove_useless_stmts_goto (tp, data);
1817 break;
1818
1819 case LABEL_EXPR:
1820 remove_useless_stmts_label (tp, data);
1821 break;
1822
1823 case RETURN_EXPR:
1824 fold_stmt (tp);
1825 data->last_goto = NULL;
1826 data->may_branch = true;
1827 break;
1828
1829 case CALL_EXPR:
1830 fold_stmt (tp);
1831 data->last_goto = NULL;
1832 notice_special_calls (t);
1833 update_call_expr_flags (t);
1834 if (tree_could_throw_p (t))
1835 data->may_throw = true;
1836 break;
1837
1838 case MODIFY_EXPR:
1839 gcc_unreachable ();
1840
1841 case GIMPLE_MODIFY_STMT:
1842 data->last_goto = NULL;
1843 fold_stmt (tp);
1844 op = get_call_expr_in (t);
1845 if (op)
1846 {
1847 update_call_expr_flags (op);
1848 notice_special_calls (op);
1849 }
1850 if (tree_could_throw_p (t))
1851 data->may_throw = true;
1852 break;
1853
1854 case STATEMENT_LIST:
1855 {
1856 tree_stmt_iterator i = tsi_start (t);
1857 while (!tsi_end_p (i))
1858 {
1859 t = tsi_stmt (i);
1860 if (IS_EMPTY_STMT (t))
1861 {
1862 tsi_delink (&i);
1863 continue;
1864 }
1865
1866 remove_useless_stmts_1 (tsi_stmt_ptr (i), data);
1867
1868 t = tsi_stmt (i);
1869 if (TREE_CODE (t) == STATEMENT_LIST)
1870 {
1871 tsi_link_before (&i, t, TSI_SAME_STMT);
1872 tsi_delink (&i);
1873 }
1874 else
1875 tsi_next (&i);
1876 }
1877 }
1878 break;
1879 case ASM_EXPR:
1880 fold_stmt (tp);
1881 data->last_goto = NULL;
1882 break;
1883
1884 default:
1885 data->last_goto = NULL;
1886 break;
1887 }
1888 }
1889
1890 static unsigned int
1891 remove_useless_stmts (void)
1892 {
1893 struct rus_data data;
1894
1895 clear_special_calls ();
1896
1897 do
1898 {
1899 memset (&data, 0, sizeof (data));
1900 remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
1901 }
1902 while (data.repeat);
1903 return 0;
1904 }
1905
1906
1907 struct tree_opt_pass pass_remove_useless_stmts =
1908 {
1909 "useless", /* name */
1910 NULL, /* gate */
1911 remove_useless_stmts, /* execute */
1912 NULL, /* sub */
1913 NULL, /* next */
1914 0, /* static_pass_number */
1915 0, /* tv_id */
1916 PROP_gimple_any, /* properties_required */
1917 0, /* properties_provided */
1918 0, /* properties_destroyed */
1919 0, /* todo_flags_start */
1920 TODO_dump_func, /* todo_flags_finish */
1921 0 /* letter */
1922 };
1923
1924 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1925
1926 static void
1927 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1928 {
1929 tree phi;
1930
1931 /* Since this block is no longer reachable, we can just delete all
1932 of its PHI nodes. */
1933 phi = phi_nodes (bb);
1934 while (phi)
1935 {
1936 tree next = PHI_CHAIN (phi);
1937 remove_phi_node (phi, NULL_TREE, true);
1938 phi = next;
1939 }
1940
1941 /* Remove edges to BB's successors. */
1942 while (EDGE_COUNT (bb->succs) > 0)
1943 remove_edge (EDGE_SUCC (bb, 0));
1944 }
1945
1946
1947 /* Remove statements of basic block BB. */
1948
1949 static void
1950 remove_bb (basic_block bb)
1951 {
1952 block_stmt_iterator i;
1953 #ifdef USE_MAPPED_LOCATION
1954 source_location loc = UNKNOWN_LOCATION;
1955 #else
1956 source_locus loc = 0;
1957 #endif
1958
1959 if (dump_file)
1960 {
1961 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1962 if (dump_flags & TDF_DETAILS)
1963 {
1964 dump_bb (bb, dump_file, 0);
1965 fprintf (dump_file, "\n");
1966 }
1967 }
1968
1969 if (current_loops)
1970 {
1971 struct loop *loop = bb->loop_father;
1972
1973 /* If a loop gets removed, clean up the information associated
1974 with it. */
1975 if (loop->latch == bb
1976 || loop->header == bb)
1977 free_numbers_of_iterations_estimates_loop (loop);
1978 }
1979
1980 /* Remove all the instructions in the block. */
1981 if (bb_stmt_list (bb) != NULL_TREE)
1982 {
1983 for (i = bsi_start (bb); !bsi_end_p (i);)
1984 {
1985 tree stmt = bsi_stmt (i);
1986 if (TREE_CODE (stmt) == LABEL_EXPR
1987 && (FORCED_LABEL (LABEL_EXPR_LABEL (stmt))
1988 || DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt))))
1989 {
1990 basic_block new_bb;
1991 block_stmt_iterator new_bsi;
1992
1993 /* A non-reachable non-local label may still be referenced.
1994 But it no longer needs to carry the extra semantics of
1995 non-locality. */
1996 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1997 {
1998 DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)) = 0;
1999 FORCED_LABEL (LABEL_EXPR_LABEL (stmt)) = 1;
2000 }
2001
2002 new_bb = bb->prev_bb;
2003 new_bsi = bsi_start (new_bb);
2004 bsi_remove (&i, false);
2005 bsi_insert_before (&new_bsi, stmt, BSI_NEW_STMT);
2006 }
2007 else
2008 {
2009 /* Release SSA definitions if we are in SSA. Note that we
2010 may be called when not in SSA. For example,
2011 final_cleanup calls this function via
2012 cleanup_tree_cfg. */
2013 if (gimple_in_ssa_p (cfun))
2014 release_defs (stmt);
2015
2016 bsi_remove (&i, true);
2017 }
2018
2019 /* Don't warn for removed gotos. Gotos are often removed due to
2020 jump threading, thus resulting in bogus warnings. Not great,
2021 since this way we lose warnings for gotos in the original
2022 program that are indeed unreachable. */
2023 if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
2024 {
2025 #ifdef USE_MAPPED_LOCATION
2026 if (EXPR_HAS_LOCATION (stmt))
2027 loc = EXPR_LOCATION (stmt);
2028 #else
2029 source_locus t;
2030 t = EXPR_LOCUS (stmt);
2031 if (t && LOCATION_LINE (*t) > 0)
2032 loc = t;
2033 #endif
2034 }
2035 }
2036 }
2037
2038 /* If requested, give a warning that the first statement in the
2039 block is unreachable. We walk statements backwards in the
2040 loop above, so the last statement we process is the first statement
2041 in the block. */
2042 #ifdef USE_MAPPED_LOCATION
2043 if (loc > BUILTINS_LOCATION)
2044 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2045 #else
2046 if (loc)
2047 warning (OPT_Wunreachable_code, "%Hwill never be executed", loc);
2048 #endif
2049
2050 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2051 bb->il.tree = NULL;
2052 }
2053
2054
2055 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2056 predicate VAL, return the edge that will be taken out of the block.
2057 If VAL does not match a unique edge, NULL is returned. */
2058
2059 edge
2060 find_taken_edge (basic_block bb, tree val)
2061 {
2062 tree stmt;
2063
2064 stmt = last_stmt (bb);
2065
2066 gcc_assert (stmt);
2067 gcc_assert (is_ctrl_stmt (stmt));
2068 gcc_assert (val);
2069
2070 if (! is_gimple_min_invariant (val))
2071 return NULL;
2072
2073 if (TREE_CODE (stmt) == COND_EXPR)
2074 return find_taken_edge_cond_expr (bb, val);
2075
2076 if (TREE_CODE (stmt) == SWITCH_EXPR)
2077 return find_taken_edge_switch_expr (bb, val);
2078
2079 if (computed_goto_p (stmt))
2080 {
2081 /* Only optimize if the argument is a label, if the argument is
2082 not a label then we can not construct a proper CFG.
2083
2084 It may be the case that we only need to allow the LABEL_REF to
2085 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2086 appear inside a LABEL_EXPR just to be safe. */
2087 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2088 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2089 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2090 return NULL;
2091 }
2092
2093 gcc_unreachable ();
2094 }
2095
2096 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2097 statement, determine which of the outgoing edges will be taken out of the
2098 block. Return NULL if either edge may be taken. */
2099
2100 static edge
2101 find_taken_edge_computed_goto (basic_block bb, tree val)
2102 {
2103 basic_block dest;
2104 edge e = NULL;
2105
2106 dest = label_to_block (val);
2107 if (dest)
2108 {
2109 e = find_edge (bb, dest);
2110 gcc_assert (e != NULL);
2111 }
2112
2113 return e;
2114 }
2115
2116 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2117 statement, determine which of the two edges will be taken out of the
2118 block. Return NULL if either edge may be taken. */
2119
2120 static edge
2121 find_taken_edge_cond_expr (basic_block bb, tree val)
2122 {
2123 edge true_edge, false_edge;
2124
2125 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2126
2127 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2128 return (integer_zerop (val) ? false_edge : true_edge);
2129 }
2130
2131 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2132 statement, determine which edge will be taken out of the block. Return
2133 NULL if any edge may be taken. */
2134
2135 static edge
2136 find_taken_edge_switch_expr (basic_block bb, tree val)
2137 {
2138 tree switch_expr, taken_case;
2139 basic_block dest_bb;
2140 edge e;
2141
2142 switch_expr = last_stmt (bb);
2143 taken_case = find_case_label_for_value (switch_expr, val);
2144 dest_bb = label_to_block (CASE_LABEL (taken_case));
2145
2146 e = find_edge (bb, dest_bb);
2147 gcc_assert (e);
2148 return e;
2149 }
2150
2151
2152 /* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
2153 We can make optimal use here of the fact that the case labels are
2154 sorted: We can do a binary search for a case matching VAL. */
2155
2156 static tree
2157 find_case_label_for_value (tree switch_expr, tree val)
2158 {
2159 tree vec = SWITCH_LABELS (switch_expr);
2160 size_t low, high, n = TREE_VEC_LENGTH (vec);
2161 tree default_case = TREE_VEC_ELT (vec, n - 1);
2162
2163 for (low = -1, high = n - 1; high - low > 1; )
2164 {
2165 size_t i = (high + low) / 2;
2166 tree t = TREE_VEC_ELT (vec, i);
2167 int cmp;
2168
2169 /* Cache the result of comparing CASE_LOW and val. */
2170 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2171
2172 if (cmp > 0)
2173 high = i;
2174 else
2175 low = i;
2176
2177 if (CASE_HIGH (t) == NULL)
2178 {
2179 /* A singe-valued case label. */
2180 if (cmp == 0)
2181 return t;
2182 }
2183 else
2184 {
2185 /* A case range. We can only handle integer ranges. */
2186 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2187 return t;
2188 }
2189 }
2190
2191 return default_case;
2192 }
2193
2194
2195
2196
2197 /*---------------------------------------------------------------------------
2198 Debugging functions
2199 ---------------------------------------------------------------------------*/
2200
2201 /* Dump tree-specific information of block BB to file OUTF. */
2202
2203 void
2204 tree_dump_bb (basic_block bb, FILE *outf, int indent)
2205 {
2206 dump_generic_bb (outf, bb, indent, TDF_VOPS|TDF_MEMSYMS);
2207 }
2208
2209
2210 /* Dump a basic block on stderr. */
2211
2212 void
2213 debug_tree_bb (basic_block bb)
2214 {
2215 dump_bb (bb, stderr, 0);
2216 }
2217
2218
2219 /* Dump basic block with index N on stderr. */
2220
2221 basic_block
2222 debug_tree_bb_n (int n)
2223 {
2224 debug_tree_bb (BASIC_BLOCK (n));
2225 return BASIC_BLOCK (n);
2226 }
2227
2228
2229 /* Dump the CFG on stderr.
2230
2231 FLAGS are the same used by the tree dumping functions
2232 (see TDF_* in tree-pass.h). */
2233
2234 void
2235 debug_tree_cfg (int flags)
2236 {
2237 dump_tree_cfg (stderr, flags);
2238 }
2239
2240
2241 /* Dump the program showing basic block boundaries on the given FILE.
2242
2243 FLAGS are the same used by the tree dumping functions (see TDF_* in
2244 tree.h). */
2245
2246 void
2247 dump_tree_cfg (FILE *file, int flags)
2248 {
2249 if (flags & TDF_DETAILS)
2250 {
2251 const char *funcname
2252 = lang_hooks.decl_printable_name (current_function_decl, 2);
2253
2254 fputc ('\n', file);
2255 fprintf (file, ";; Function %s\n\n", funcname);
2256 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2257 n_basic_blocks, n_edges, last_basic_block);
2258
2259 brief_dump_cfg (file);
2260 fprintf (file, "\n");
2261 }
2262
2263 if (flags & TDF_STATS)
2264 dump_cfg_stats (file);
2265
2266 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2267 }
2268
2269
2270 /* Dump CFG statistics on FILE. */
2271
2272 void
2273 dump_cfg_stats (FILE *file)
2274 {
2275 static long max_num_merged_labels = 0;
2276 unsigned long size, total = 0;
2277 long num_edges;
2278 basic_block bb;
2279 const char * const fmt_str = "%-30s%-13s%12s\n";
2280 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2281 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2282 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2283 const char *funcname
2284 = lang_hooks.decl_printable_name (current_function_decl, 2);
2285
2286
2287 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2288
2289 fprintf (file, "---------------------------------------------------------\n");
2290 fprintf (file, fmt_str, "", " Number of ", "Memory");
2291 fprintf (file, fmt_str, "", " instances ", "used ");
2292 fprintf (file, "---------------------------------------------------------\n");
2293
2294 size = n_basic_blocks * sizeof (struct basic_block_def);
2295 total += size;
2296 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2297 SCALE (size), LABEL (size));
2298
2299 num_edges = 0;
2300 FOR_EACH_BB (bb)
2301 num_edges += EDGE_COUNT (bb->succs);
2302 size = num_edges * sizeof (struct edge_def);
2303 total += size;
2304 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2305
2306 fprintf (file, "---------------------------------------------------------\n");
2307 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2308 LABEL (total));
2309 fprintf (file, "---------------------------------------------------------\n");
2310 fprintf (file, "\n");
2311
2312 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2313 max_num_merged_labels = cfg_stats.num_merged_labels;
2314
2315 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2316 cfg_stats.num_merged_labels, max_num_merged_labels);
2317
2318 fprintf (file, "\n");
2319 }
2320
2321
2322 /* Dump CFG statistics on stderr. Keep extern so that it's always
2323 linked in the final executable. */
2324
2325 void
2326 debug_cfg_stats (void)
2327 {
2328 dump_cfg_stats (stderr);
2329 }
2330
2331
2332 /* Dump the flowgraph to a .vcg FILE. */
2333
2334 static void
2335 tree_cfg2vcg (FILE *file)
2336 {
2337 edge e;
2338 edge_iterator ei;
2339 basic_block bb;
2340 const char *funcname
2341 = lang_hooks.decl_printable_name (current_function_decl, 2);
2342
2343 /* Write the file header. */
2344 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2345 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2346 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2347
2348 /* Write blocks and edges. */
2349 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2350 {
2351 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2352 e->dest->index);
2353
2354 if (e->flags & EDGE_FAKE)
2355 fprintf (file, " linestyle: dotted priority: 10");
2356 else
2357 fprintf (file, " linestyle: solid priority: 100");
2358
2359 fprintf (file, " }\n");
2360 }
2361 fputc ('\n', file);
2362
2363 FOR_EACH_BB (bb)
2364 {
2365 enum tree_code head_code, end_code;
2366 const char *head_name, *end_name;
2367 int head_line = 0;
2368 int end_line = 0;
2369 tree first = first_stmt (bb);
2370 tree last = last_stmt (bb);
2371
2372 if (first)
2373 {
2374 head_code = TREE_CODE (first);
2375 head_name = tree_code_name[head_code];
2376 head_line = get_lineno (first);
2377 }
2378 else
2379 head_name = "no-statement";
2380
2381 if (last)
2382 {
2383 end_code = TREE_CODE (last);
2384 end_name = tree_code_name[end_code];
2385 end_line = get_lineno (last);
2386 }
2387 else
2388 end_name = "no-statement";
2389
2390 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2391 bb->index, bb->index, head_name, head_line, end_name,
2392 end_line);
2393
2394 FOR_EACH_EDGE (e, ei, bb->succs)
2395 {
2396 if (e->dest == EXIT_BLOCK_PTR)
2397 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2398 else
2399 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2400
2401 if (e->flags & EDGE_FAKE)
2402 fprintf (file, " priority: 10 linestyle: dotted");
2403 else
2404 fprintf (file, " priority: 100 linestyle: solid");
2405
2406 fprintf (file, " }\n");
2407 }
2408
2409 if (bb->next_bb != EXIT_BLOCK_PTR)
2410 fputc ('\n', file);
2411 }
2412
2413 fputs ("}\n\n", file);
2414 }
2415
2416
2417
2418 /*---------------------------------------------------------------------------
2419 Miscellaneous helpers
2420 ---------------------------------------------------------------------------*/
2421
2422 /* Return true if T represents a stmt that always transfers control. */
2423
2424 bool
2425 is_ctrl_stmt (tree t)
2426 {
2427 return (TREE_CODE (t) == COND_EXPR
2428 || TREE_CODE (t) == SWITCH_EXPR
2429 || TREE_CODE (t) == GOTO_EXPR
2430 || TREE_CODE (t) == RETURN_EXPR
2431 || TREE_CODE (t) == RESX_EXPR);
2432 }
2433
2434
2435 /* Return true if T is a statement that may alter the flow of control
2436 (e.g., a call to a non-returning function). */
2437
2438 bool
2439 is_ctrl_altering_stmt (tree t)
2440 {
2441 tree call;
2442
2443 gcc_assert (t);
2444 call = get_call_expr_in (t);
2445 if (call)
2446 {
2447 /* A non-pure/const CALL_EXPR alters flow control if the current
2448 function has nonlocal labels. */
2449 if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
2450 return true;
2451
2452 /* A CALL_EXPR also alters control flow if it does not return. */
2453 if (call_expr_flags (call) & ECF_NORETURN)
2454 return true;
2455 }
2456
2457 /* OpenMP directives alter control flow. */
2458 if (OMP_DIRECTIVE_P (t))
2459 return true;
2460
2461 /* If a statement can throw, it alters control flow. */
2462 return tree_can_throw_internal (t);
2463 }
2464
2465
2466 /* Return true if T is a computed goto. */
2467
2468 bool
2469 computed_goto_p (tree t)
2470 {
2471 return (TREE_CODE (t) == GOTO_EXPR
2472 && TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
2473 }
2474
2475
2476 /* Return true if T is a simple local goto. */
2477
2478 bool
2479 simple_goto_p (tree t)
2480 {
2481 return (TREE_CODE (t) == GOTO_EXPR
2482 && TREE_CODE (GOTO_DESTINATION (t)) == LABEL_DECL);
2483 }
2484
2485
2486 /* Return true if T can make an abnormal transfer of control flow.
2487 Transfers of control flow associated with EH are excluded. */
2488
2489 bool
2490 tree_can_make_abnormal_goto (tree t)
2491 {
2492 if (computed_goto_p (t))
2493 return true;
2494 if (TREE_CODE (t) == GIMPLE_MODIFY_STMT)
2495 t = GIMPLE_STMT_OPERAND (t, 1);
2496 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2497 t = TREE_OPERAND (t, 0);
2498 if (TREE_CODE (t) == CALL_EXPR)
2499 return TREE_SIDE_EFFECTS (t) && current_function_has_nonlocal_label;
2500 return false;
2501 }
2502
2503
2504 /* Return true if T should start a new basic block. PREV_T is the
2505 statement preceding T. It is used when T is a label or a case label.
2506 Labels should only start a new basic block if their previous statement
2507 wasn't a label. Otherwise, sequence of labels would generate
2508 unnecessary basic blocks that only contain a single label. */
2509
2510 static inline bool
2511 stmt_starts_bb_p (tree t, tree prev_t)
2512 {
2513 if (t == NULL_TREE)
2514 return false;
2515
2516 /* LABEL_EXPRs start a new basic block only if the preceding
2517 statement wasn't a label of the same type. This prevents the
2518 creation of consecutive blocks that have nothing but a single
2519 label. */
2520 if (TREE_CODE (t) == LABEL_EXPR)
2521 {
2522 /* Nonlocal and computed GOTO targets always start a new block. */
2523 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
2524 || FORCED_LABEL (LABEL_EXPR_LABEL (t)))
2525 return true;
2526
2527 if (prev_t && TREE_CODE (prev_t) == LABEL_EXPR)
2528 {
2529 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
2530 return true;
2531
2532 cfg_stats.num_merged_labels++;
2533 return false;
2534 }
2535 else
2536 return true;
2537 }
2538
2539 return false;
2540 }
2541
2542
2543 /* Return true if T should end a basic block. */
2544
2545 bool
2546 stmt_ends_bb_p (tree t)
2547 {
2548 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2549 }
2550
2551 /* Remove block annotations and other datastructures. */
2552
2553 void
2554 delete_tree_cfg_annotations (void)
2555 {
2556 basic_block bb;
2557 block_stmt_iterator bsi;
2558
2559 /* Remove annotations from every tree in the function. */
2560 FOR_EACH_BB (bb)
2561 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
2562 {
2563 tree stmt = bsi_stmt (bsi);
2564 ggc_free (stmt->base.ann);
2565 stmt->base.ann = NULL;
2566 }
2567 label_to_block_map = NULL;
2568 }
2569
2570
2571 /* Return the first statement in basic block BB. */
2572
2573 tree
2574 first_stmt (basic_block bb)
2575 {
2576 block_stmt_iterator i = bsi_start (bb);
2577 return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
2578 }
2579
2580
2581 /* Return the last statement in basic block BB. */
2582
2583 tree
2584 last_stmt (basic_block bb)
2585 {
2586 block_stmt_iterator b = bsi_last (bb);
2587 return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
2588 }
2589
2590
2591 /* Return the last statement of an otherwise empty block. Return NULL
2592 if the block is totally empty, or if it contains more than one
2593 statement. */
2594
2595 tree
2596 last_and_only_stmt (basic_block bb)
2597 {
2598 block_stmt_iterator i = bsi_last (bb);
2599 tree last, prev;
2600
2601 if (bsi_end_p (i))
2602 return NULL_TREE;
2603
2604 last = bsi_stmt (i);
2605 bsi_prev (&i);
2606 if (bsi_end_p (i))
2607 return last;
2608
2609 /* Empty statements should no longer appear in the instruction stream.
2610 Everything that might have appeared before should be deleted by
2611 remove_useless_stmts, and the optimizers should just bsi_remove
2612 instead of smashing with build_empty_stmt.
2613
2614 Thus the only thing that should appear here in a block containing
2615 one executable statement is a label. */
2616 prev = bsi_stmt (i);
2617 if (TREE_CODE (prev) == LABEL_EXPR)
2618 return last;
2619 else
2620 return NULL_TREE;
2621 }
2622
2623
2624 /* Mark BB as the basic block holding statement T. */
2625
2626 void
2627 set_bb_for_stmt (tree t, basic_block bb)
2628 {
2629 if (TREE_CODE (t) == PHI_NODE)
2630 PHI_BB (t) = bb;
2631 else if (TREE_CODE (t) == STATEMENT_LIST)
2632 {
2633 tree_stmt_iterator i;
2634 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2635 set_bb_for_stmt (tsi_stmt (i), bb);
2636 }
2637 else
2638 {
2639 stmt_ann_t ann = get_stmt_ann (t);
2640 ann->bb = bb;
2641
2642 /* If the statement is a label, add the label to block-to-labels map
2643 so that we can speed up edge creation for GOTO_EXPRs. */
2644 if (TREE_CODE (t) == LABEL_EXPR)
2645 {
2646 int uid;
2647
2648 t = LABEL_EXPR_LABEL (t);
2649 uid = LABEL_DECL_UID (t);
2650 if (uid == -1)
2651 {
2652 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2653 LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
2654 if (old_len <= (unsigned) uid)
2655 {
2656 unsigned new_len = 3 * uid / 2;
2657
2658 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2659 new_len);
2660 }
2661 }
2662 else
2663 /* We're moving an existing label. Make sure that we've
2664 removed it from the old block. */
2665 gcc_assert (!bb
2666 || !VEC_index (basic_block, label_to_block_map, uid));
2667 VEC_replace (basic_block, label_to_block_map, uid, bb);
2668 }
2669 }
2670 }
2671
2672 /* Faster version of set_bb_for_stmt that assume that statement is being moved
2673 from one basic block to another.
2674 For BB splitting we can run into quadratic case, so performance is quite
2675 important and knowing that the tables are big enough, change_bb_for_stmt
2676 can inline as leaf function. */
2677 static inline void
2678 change_bb_for_stmt (tree t, basic_block bb)
2679 {
2680 get_stmt_ann (t)->bb = bb;
2681 if (TREE_CODE (t) == LABEL_EXPR)
2682 VEC_replace (basic_block, label_to_block_map,
2683 LABEL_DECL_UID (LABEL_EXPR_LABEL (t)), bb);
2684 }
2685
2686 /* Finds iterator for STMT. */
2687
2688 extern block_stmt_iterator
2689 bsi_for_stmt (tree stmt)
2690 {
2691 block_stmt_iterator bsi;
2692
2693 for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
2694 if (bsi_stmt (bsi) == stmt)
2695 return bsi;
2696
2697 gcc_unreachable ();
2698 }
2699
2700 /* Mark statement T as modified, and update it. */
2701 static inline void
2702 update_modified_stmts (tree t)
2703 {
2704 if (!ssa_operands_active ())
2705 return;
2706 if (TREE_CODE (t) == STATEMENT_LIST)
2707 {
2708 tree_stmt_iterator i;
2709 tree stmt;
2710 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2711 {
2712 stmt = tsi_stmt (i);
2713 update_stmt_if_modified (stmt);
2714 }
2715 }
2716 else
2717 update_stmt_if_modified (t);
2718 }
2719
2720 /* Insert statement (or statement list) T before the statement
2721 pointed-to by iterator I. M specifies how to update iterator I
2722 after insertion (see enum bsi_iterator_update). */
2723
2724 void
2725 bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2726 {
2727 set_bb_for_stmt (t, i->bb);
2728 update_modified_stmts (t);
2729 tsi_link_before (&i->tsi, t, m);
2730 }
2731
2732
2733 /* Insert statement (or statement list) T after the statement
2734 pointed-to by iterator I. M specifies how to update iterator I
2735 after insertion (see enum bsi_iterator_update). */
2736
2737 void
2738 bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2739 {
2740 set_bb_for_stmt (t, i->bb);
2741 update_modified_stmts (t);
2742 tsi_link_after (&i->tsi, t, m);
2743 }
2744
2745
2746 /* Remove the statement pointed to by iterator I. The iterator is updated
2747 to the next statement.
2748
2749 When REMOVE_EH_INFO is true we remove the statement pointed to by
2750 iterator I from the EH tables. Otherwise we do not modify the EH
2751 tables.
2752
2753 Generally, REMOVE_EH_INFO should be true when the statement is going to
2754 be removed from the IL and not reinserted elsewhere. */
2755
2756 void
2757 bsi_remove (block_stmt_iterator *i, bool remove_eh_info)
2758 {
2759 tree t = bsi_stmt (*i);
2760 set_bb_for_stmt (t, NULL);
2761 delink_stmt_imm_use (t);
2762 tsi_delink (&i->tsi);
2763 mark_stmt_modified (t);
2764 if (remove_eh_info)
2765 {
2766 remove_stmt_from_eh_region (t);
2767 gimple_remove_stmt_histograms (cfun, t);
2768 }
2769 }
2770
2771
2772 /* Move the statement at FROM so it comes right after the statement at TO. */
2773
2774 void
2775 bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
2776 {
2777 tree stmt = bsi_stmt (*from);
2778 bsi_remove (from, false);
2779 bsi_insert_after (to, stmt, BSI_SAME_STMT);
2780 }
2781
2782
2783 /* Move the statement at FROM so it comes right before the statement at TO. */
2784
2785 void
2786 bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
2787 {
2788 tree stmt = bsi_stmt (*from);
2789 bsi_remove (from, false);
2790 bsi_insert_before (to, stmt, BSI_SAME_STMT);
2791 }
2792
2793
2794 /* Move the statement at FROM to the end of basic block BB. */
2795
2796 void
2797 bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
2798 {
2799 block_stmt_iterator last = bsi_last (bb);
2800
2801 /* Have to check bsi_end_p because it could be an empty block. */
2802 if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
2803 bsi_move_before (from, &last);
2804 else
2805 bsi_move_after (from, &last);
2806 }
2807
2808
2809 /* Replace the contents of the statement pointed to by iterator BSI
2810 with STMT. If UPDATE_EH_INFO is true, the exception handling
2811 information of the original statement is moved to the new statement. */
2812
2813 void
2814 bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool update_eh_info)
2815 {
2816 int eh_region;
2817 tree orig_stmt = bsi_stmt (*bsi);
2818
2819 if (stmt == orig_stmt)
2820 return;
2821 SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
2822 set_bb_for_stmt (stmt, bsi->bb);
2823
2824 /* Preserve EH region information from the original statement, if
2825 requested by the caller. */
2826 if (update_eh_info)
2827 {
2828 eh_region = lookup_stmt_eh_region (orig_stmt);
2829 if (eh_region >= 0)
2830 {
2831 remove_stmt_from_eh_region (orig_stmt);
2832 add_stmt_to_eh_region (stmt, eh_region);
2833 }
2834 }
2835
2836 gimple_duplicate_stmt_histograms (cfun, stmt, cfun, orig_stmt);
2837 gimple_remove_stmt_histograms (cfun, orig_stmt);
2838 delink_stmt_imm_use (orig_stmt);
2839 *bsi_stmt_ptr (*bsi) = stmt;
2840 mark_stmt_modified (stmt);
2841 update_modified_stmts (stmt);
2842 }
2843
2844
2845 /* Insert the statement pointed-to by BSI into edge E. Every attempt
2846 is made to place the statement in an existing basic block, but
2847 sometimes that isn't possible. When it isn't possible, the edge is
2848 split and the statement is added to the new block.
2849
2850 In all cases, the returned *BSI points to the correct location. The
2851 return value is true if insertion should be done after the location,
2852 or false if it should be done before the location. If new basic block
2853 has to be created, it is stored in *NEW_BB. */
2854
2855 static bool
2856 tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
2857 basic_block *new_bb)
2858 {
2859 basic_block dest, src;
2860 tree tmp;
2861
2862 dest = e->dest;
2863 restart:
2864
2865 /* If the destination has one predecessor which has no PHI nodes,
2866 insert there. Except for the exit block.
2867
2868 The requirement for no PHI nodes could be relaxed. Basically we
2869 would have to examine the PHIs to prove that none of them used
2870 the value set by the statement we want to insert on E. That
2871 hardly seems worth the effort. */
2872 if (single_pred_p (dest)
2873 && ! phi_nodes (dest)
2874 && dest != EXIT_BLOCK_PTR)
2875 {
2876 *bsi = bsi_start (dest);
2877 if (bsi_end_p (*bsi))
2878 return true;
2879
2880 /* Make sure we insert after any leading labels. */
2881 tmp = bsi_stmt (*bsi);
2882 while (TREE_CODE (tmp) == LABEL_EXPR)
2883 {
2884 bsi_next (bsi);
2885 if (bsi_end_p (*bsi))
2886 break;
2887 tmp = bsi_stmt (*bsi);
2888 }
2889
2890 if (bsi_end_p (*bsi))
2891 {
2892 *bsi = bsi_last (dest);
2893 return true;
2894 }
2895 else
2896 return false;
2897 }
2898
2899 /* If the source has one successor, the edge is not abnormal and
2900 the last statement does not end a basic block, insert there.
2901 Except for the entry block. */
2902 src = e->src;
2903 if ((e->flags & EDGE_ABNORMAL) == 0
2904 && single_succ_p (src)
2905 && src != ENTRY_BLOCK_PTR)
2906 {
2907 *bsi = bsi_last (src);
2908 if (bsi_end_p (*bsi))
2909 return true;
2910
2911 tmp = bsi_stmt (*bsi);
2912 if (!stmt_ends_bb_p (tmp))
2913 return true;
2914
2915 /* Insert code just before returning the value. We may need to decompose
2916 the return in the case it contains non-trivial operand. */
2917 if (TREE_CODE (tmp) == RETURN_EXPR)
2918 {
2919 tree op = TREE_OPERAND (tmp, 0);
2920 if (op && !is_gimple_val (op))
2921 {
2922 gcc_assert (TREE_CODE (op) == GIMPLE_MODIFY_STMT);
2923 bsi_insert_before (bsi, op, BSI_NEW_STMT);
2924 TREE_OPERAND (tmp, 0) = GIMPLE_STMT_OPERAND (op, 0);
2925 }
2926 bsi_prev (bsi);
2927 return true;
2928 }
2929 }
2930
2931 /* Otherwise, create a new basic block, and split this edge. */
2932 dest = split_edge (e);
2933 if (new_bb)
2934 *new_bb = dest;
2935 e = single_pred_edge (dest);
2936 goto restart;
2937 }
2938
2939
2940 /* This routine will commit all pending edge insertions, creating any new
2941 basic blocks which are necessary. */
2942
2943 void
2944 bsi_commit_edge_inserts (void)
2945 {
2946 basic_block bb;
2947 edge e;
2948 edge_iterator ei;
2949
2950 bsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);
2951
2952 FOR_EACH_BB (bb)
2953 FOR_EACH_EDGE (e, ei, bb->succs)
2954 bsi_commit_one_edge_insert (e, NULL);
2955 }
2956
2957
2958 /* Commit insertions pending at edge E. If a new block is created, set NEW_BB
2959 to this block, otherwise set it to NULL. */
2960
2961 void
2962 bsi_commit_one_edge_insert (edge e, basic_block *new_bb)
2963 {
2964 if (new_bb)
2965 *new_bb = NULL;
2966 if (PENDING_STMT (e))
2967 {
2968 block_stmt_iterator bsi;
2969 tree stmt = PENDING_STMT (e);
2970
2971 PENDING_STMT (e) = NULL_TREE;
2972
2973 if (tree_find_edge_insert_loc (e, &bsi, new_bb))
2974 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
2975 else
2976 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
2977 }
2978 }
2979
2980
2981 /* Add STMT to the pending list of edge E. No actual insertion is
2982 made until a call to bsi_commit_edge_inserts () is made. */
2983
2984 void
2985 bsi_insert_on_edge (edge e, tree stmt)
2986 {
2987 append_to_statement_list (stmt, &PENDING_STMT (e));
2988 }
2989
2990 /* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts. If a new
2991 block has to be created, it is returned. */
2992
2993 basic_block
2994 bsi_insert_on_edge_immediate (edge e, tree stmt)
2995 {
2996 block_stmt_iterator bsi;
2997 basic_block new_bb = NULL;
2998
2999 gcc_assert (!PENDING_STMT (e));
3000
3001 if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
3002 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3003 else
3004 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3005
3006 return new_bb;
3007 }
3008
3009 /*---------------------------------------------------------------------------
3010 Tree specific functions for CFG manipulation
3011 ---------------------------------------------------------------------------*/
3012
3013 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
3014
3015 static void
3016 reinstall_phi_args (edge new_edge, edge old_edge)
3017 {
3018 tree var, phi;
3019
3020 if (!PENDING_STMT (old_edge))
3021 return;
3022
3023 for (var = PENDING_STMT (old_edge), phi = phi_nodes (new_edge->dest);
3024 var && phi;
3025 var = TREE_CHAIN (var), phi = PHI_CHAIN (phi))
3026 {
3027 tree result = TREE_PURPOSE (var);
3028 tree arg = TREE_VALUE (var);
3029
3030 gcc_assert (result == PHI_RESULT (phi));
3031
3032 add_phi_arg (phi, arg, new_edge);
3033 }
3034
3035 PENDING_STMT (old_edge) = NULL;
3036 }
3037
3038 /* Returns the basic block after which the new basic block created
3039 by splitting edge EDGE_IN should be placed. Tries to keep the new block
3040 near its "logical" location. This is of most help to humans looking
3041 at debugging dumps. */
3042
3043 static basic_block
3044 split_edge_bb_loc (edge edge_in)
3045 {
3046 basic_block dest = edge_in->dest;
3047
3048 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
3049 return edge_in->src;
3050 else
3051 return dest->prev_bb;
3052 }
3053
3054 /* Split a (typically critical) edge EDGE_IN. Return the new block.
3055 Abort on abnormal edges. */
3056
3057 static basic_block
3058 tree_split_edge (edge edge_in)
3059 {
3060 basic_block new_bb, after_bb, dest;
3061 edge new_edge, e;
3062
3063 /* Abnormal edges cannot be split. */
3064 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
3065
3066 dest = edge_in->dest;
3067
3068 after_bb = split_edge_bb_loc (edge_in);
3069
3070 new_bb = create_empty_bb (after_bb);
3071 new_bb->frequency = EDGE_FREQUENCY (edge_in);
3072 new_bb->count = edge_in->count;
3073 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
3074 new_edge->probability = REG_BR_PROB_BASE;
3075 new_edge->count = edge_in->count;
3076
3077 e = redirect_edge_and_branch (edge_in, new_bb);
3078 gcc_assert (e == edge_in);
3079 reinstall_phi_args (new_edge, e);
3080
3081 return new_bb;
3082 }
3083
3084 /* Callback for walk_tree, check that all elements with address taken are
3085 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3086 inside a PHI node. */
3087
3088 static tree
3089 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3090 {
3091 tree t = *tp, x;
3092 bool in_phi = (data != NULL);
3093
3094 if (TYPE_P (t))
3095 *walk_subtrees = 0;
3096
3097 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3098 #define CHECK_OP(N, MSG) \
3099 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3100 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3101
3102 switch (TREE_CODE (t))
3103 {
3104 case SSA_NAME:
3105 if (SSA_NAME_IN_FREE_LIST (t))
3106 {
3107 error ("SSA name in freelist but still referenced");
3108 return *tp;
3109 }
3110 break;
3111
3112 case ASSERT_EXPR:
3113 x = fold (ASSERT_EXPR_COND (t));
3114 if (x == boolean_false_node)
3115 {
3116 error ("ASSERT_EXPR with an always-false condition");
3117 return *tp;
3118 }
3119 break;
3120
3121 case MODIFY_EXPR:
3122 gcc_unreachable ();
3123
3124 case GIMPLE_MODIFY_STMT:
3125 x = GIMPLE_STMT_OPERAND (t, 0);
3126 if (TREE_CODE (x) == BIT_FIELD_REF
3127 && is_gimple_reg (TREE_OPERAND (x, 0)))
3128 {
3129 error ("GIMPLE register modified with BIT_FIELD_REF");
3130 return t;
3131 }
3132 break;
3133
3134 case ADDR_EXPR:
3135 {
3136 bool old_invariant;
3137 bool old_constant;
3138 bool old_side_effects;
3139 bool new_invariant;
3140 bool new_constant;
3141 bool new_side_effects;
3142
3143 /* ??? tree-ssa-alias.c may have overlooked dead PHI nodes, missing
3144 dead PHIs that take the address of something. But if the PHI
3145 result is dead, the fact that it takes the address of anything
3146 is irrelevant. Because we can not tell from here if a PHI result
3147 is dead, we just skip this check for PHIs altogether. This means
3148 we may be missing "valid" checks, but what can you do?
3149 This was PR19217. */
3150 if (in_phi)
3151 break;
3152
3153 old_invariant = TREE_INVARIANT (t);
3154 old_constant = TREE_CONSTANT (t);
3155 old_side_effects = TREE_SIDE_EFFECTS (t);
3156
3157 recompute_tree_invariant_for_addr_expr (t);
3158 new_invariant = TREE_INVARIANT (t);
3159 new_side_effects = TREE_SIDE_EFFECTS (t);
3160 new_constant = TREE_CONSTANT (t);
3161
3162 if (old_invariant != new_invariant)
3163 {
3164 error ("invariant not recomputed when ADDR_EXPR changed");
3165 return t;
3166 }
3167
3168 if (old_constant != new_constant)
3169 {
3170 error ("constant not recomputed when ADDR_EXPR changed");
3171 return t;
3172 }
3173 if (old_side_effects != new_side_effects)
3174 {
3175 error ("side effects not recomputed when ADDR_EXPR changed");
3176 return t;
3177 }
3178
3179 /* Skip any references (they will be checked when we recurse down the
3180 tree) and ensure that any variable used as a prefix is marked
3181 addressable. */
3182 for (x = TREE_OPERAND (t, 0);
3183 handled_component_p (x);
3184 x = TREE_OPERAND (x, 0))
3185 ;
3186
3187 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
3188 return NULL;
3189 if (!TREE_ADDRESSABLE (x))
3190 {
3191 error ("address taken, but ADDRESSABLE bit not set");
3192 return x;
3193 }
3194 break;
3195 }
3196
3197 case COND_EXPR:
3198 x = COND_EXPR_COND (t);
3199 if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
3200 {
3201 error ("non-boolean used in condition");
3202 return x;
3203 }
3204 if (!is_gimple_condexpr (x))
3205 {
3206 error ("invalid conditional operand");
3207 return x;
3208 }
3209 break;
3210
3211 case NOP_EXPR:
3212 case CONVERT_EXPR:
3213 case FIX_TRUNC_EXPR:
3214 case FLOAT_EXPR:
3215 case NEGATE_EXPR:
3216 case ABS_EXPR:
3217 case BIT_NOT_EXPR:
3218 case NON_LVALUE_EXPR:
3219 case TRUTH_NOT_EXPR:
3220 CHECK_OP (0, "invalid operand to unary operator");
3221 break;
3222
3223 case REALPART_EXPR:
3224 case IMAGPART_EXPR:
3225 case COMPONENT_REF:
3226 case ARRAY_REF:
3227 case ARRAY_RANGE_REF:
3228 case BIT_FIELD_REF:
3229 case VIEW_CONVERT_EXPR:
3230 /* We have a nest of references. Verify that each of the operands
3231 that determine where to reference is either a constant or a variable,
3232 verify that the base is valid, and then show we've already checked
3233 the subtrees. */
3234 while (handled_component_p (t))
3235 {
3236 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3237 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3238 else if (TREE_CODE (t) == ARRAY_REF
3239 || TREE_CODE (t) == ARRAY_RANGE_REF)
3240 {
3241 CHECK_OP (1, "invalid array index");
3242 if (TREE_OPERAND (t, 2))
3243 CHECK_OP (2, "invalid array lower bound");
3244 if (TREE_OPERAND (t, 3))
3245 CHECK_OP (3, "invalid array stride");
3246 }
3247 else if (TREE_CODE (t) == BIT_FIELD_REF)
3248 {
3249 CHECK_OP (1, "invalid operand to BIT_FIELD_REF");
3250 CHECK_OP (2, "invalid operand to BIT_FIELD_REF");
3251 }
3252
3253 t = TREE_OPERAND (t, 0);
3254 }
3255
3256 if (!CONSTANT_CLASS_P (t) && !is_gimple_lvalue (t))
3257 {
3258 error ("invalid reference prefix");
3259 return t;
3260 }
3261 *walk_subtrees = 0;
3262 break;
3263
3264 case LT_EXPR:
3265 case LE_EXPR:
3266 case GT_EXPR:
3267 case GE_EXPR:
3268 case EQ_EXPR:
3269 case NE_EXPR:
3270 case UNORDERED_EXPR:
3271 case ORDERED_EXPR:
3272 case UNLT_EXPR:
3273 case UNLE_EXPR:
3274 case UNGT_EXPR:
3275 case UNGE_EXPR:
3276 case UNEQ_EXPR:
3277 case LTGT_EXPR:
3278 case PLUS_EXPR:
3279 case MINUS_EXPR:
3280 case MULT_EXPR:
3281 case TRUNC_DIV_EXPR:
3282 case CEIL_DIV_EXPR:
3283 case FLOOR_DIV_EXPR:
3284 case ROUND_DIV_EXPR:
3285 case TRUNC_MOD_EXPR:
3286 case CEIL_MOD_EXPR:
3287 case FLOOR_MOD_EXPR:
3288 case ROUND_MOD_EXPR:
3289 case RDIV_EXPR:
3290 case EXACT_DIV_EXPR:
3291 case MIN_EXPR:
3292 case MAX_EXPR:
3293 case LSHIFT_EXPR:
3294 case RSHIFT_EXPR:
3295 case LROTATE_EXPR:
3296 case RROTATE_EXPR:
3297 case BIT_IOR_EXPR:
3298 case BIT_XOR_EXPR:
3299 case BIT_AND_EXPR:
3300 CHECK_OP (0, "invalid operand to binary operator");
3301 CHECK_OP (1, "invalid operand to binary operator");
3302 break;
3303
3304 case CONSTRUCTOR:
3305 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3306 *walk_subtrees = 0;
3307 break;
3308
3309 default:
3310 break;
3311 }
3312 return NULL;
3313
3314 #undef CHECK_OP
3315 }
3316
3317
3318 /* Verify STMT, return true if STMT is not in GIMPLE form.
3319 TODO: Implement type checking. */
3320
3321 static bool
3322 verify_stmt (tree stmt, bool last_in_block)
3323 {
3324 tree addr;
3325
3326 if (OMP_DIRECTIVE_P (stmt))
3327 {
3328 /* OpenMP directives are validated by the FE and never operated
3329 on by the optimizers. Furthermore, OMP_FOR may contain
3330 non-gimple expressions when the main index variable has had
3331 its address taken. This does not affect the loop itself
3332 because the header of an OMP_FOR is merely used to determine
3333 how to setup the parallel iteration. */
3334 return false;
3335 }
3336
3337 if (!is_gimple_stmt (stmt))
3338 {
3339 error ("is not a valid GIMPLE statement");
3340 goto fail;
3341 }
3342
3343 addr = walk_tree (&stmt, verify_expr, NULL, NULL);
3344 if (addr)
3345 {
3346 debug_generic_stmt (addr);
3347 return true;
3348 }
3349
3350 /* If the statement is marked as part of an EH region, then it is
3351 expected that the statement could throw. Verify that when we
3352 have optimizations that simplify statements such that we prove
3353 that they cannot throw, that we update other data structures
3354 to match. */
3355 if (lookup_stmt_eh_region (stmt) >= 0)
3356 {
3357 if (!tree_could_throw_p (stmt))
3358 {
3359 error ("statement marked for throw, but doesn%'t");
3360 goto fail;
3361 }
3362 if (!last_in_block && tree_can_throw_internal (stmt))
3363 {
3364 error ("statement marked for throw in middle of block");
3365 goto fail;
3366 }
3367 }
3368
3369 return false;
3370
3371 fail:
3372 debug_generic_stmt (stmt);
3373 return true;
3374 }
3375
3376
3377 /* Return true when the T can be shared. */
3378
3379 static bool
3380 tree_node_can_be_shared (tree t)
3381 {
3382 if (IS_TYPE_OR_DECL_P (t)
3383 || is_gimple_min_invariant (t)
3384 || TREE_CODE (t) == SSA_NAME
3385 || t == error_mark_node
3386 || TREE_CODE (t) == IDENTIFIER_NODE)
3387 return true;
3388
3389 if (TREE_CODE (t) == CASE_LABEL_EXPR)
3390 return true;
3391
3392 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3393 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
3394 || TREE_CODE (t) == COMPONENT_REF
3395 || TREE_CODE (t) == REALPART_EXPR
3396 || TREE_CODE (t) == IMAGPART_EXPR)
3397 t = TREE_OPERAND (t, 0);
3398
3399 if (DECL_P (t))
3400 return true;
3401
3402 return false;
3403 }
3404
3405
3406 /* Called via walk_trees. Verify tree sharing. */
3407
3408 static tree
3409 verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
3410 {
3411 struct pointer_set_t *visited = (struct pointer_set_t *) data;
3412
3413 if (tree_node_can_be_shared (*tp))
3414 {
3415 *walk_subtrees = false;
3416 return NULL;
3417 }
3418
3419 if (pointer_set_insert (visited, *tp))
3420 return *tp;
3421
3422 return NULL;
3423 }
3424
3425
3426 /* Helper function for verify_gimple_tuples. */
3427
3428 static tree
3429 verify_gimple_tuples_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
3430 void *data ATTRIBUTE_UNUSED)
3431 {
3432 switch (TREE_CODE (*tp))
3433 {
3434 case MODIFY_EXPR:
3435 error ("unexpected non-tuple");
3436 debug_tree (*tp);
3437 gcc_unreachable ();
3438 return NULL_TREE;
3439
3440 default:
3441 return NULL_TREE;
3442 }
3443 }
3444
3445 /* Verify that there are no trees that should have been converted to
3446 gimple tuples. Return true if T contains a node that should have
3447 been converted to a gimple tuple, but hasn't. */
3448
3449 static bool
3450 verify_gimple_tuples (tree t)
3451 {
3452 return walk_tree (&t, verify_gimple_tuples_1, NULL, NULL) != NULL;
3453 }
3454
3455 static bool eh_error_found;
3456 static int
3457 verify_eh_throw_stmt_node (void **slot, void *data)
3458 {
3459 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
3460 struct pointer_set_t *visited = (struct pointer_set_t *) data;
3461
3462 if (!pointer_set_contains (visited, node->stmt))
3463 {
3464 error ("Dead STMT in EH table");
3465 debug_generic_stmt (node->stmt);
3466 eh_error_found = true;
3467 }
3468 return 0;
3469 }
3470
3471 /* Verify the GIMPLE statement chain. */
3472
3473 void
3474 verify_stmts (void)
3475 {
3476 basic_block bb;
3477 block_stmt_iterator bsi;
3478 bool err = false;
3479 struct pointer_set_t *visited, *visited_stmts;
3480 tree addr;
3481
3482 timevar_push (TV_TREE_STMT_VERIFY);
3483 visited = pointer_set_create ();
3484 visited_stmts = pointer_set_create ();
3485
3486 FOR_EACH_BB (bb)
3487 {
3488 tree phi;
3489 int i;
3490
3491 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3492 {
3493 int phi_num_args = PHI_NUM_ARGS (phi);
3494
3495 pointer_set_insert (visited_stmts, phi);
3496 if (bb_for_stmt (phi) != bb)
3497 {
3498 error ("bb_for_stmt (phi) is set to a wrong basic block");
3499 err |= true;
3500 }
3501
3502 for (i = 0; i < phi_num_args; i++)
3503 {
3504 tree t = PHI_ARG_DEF (phi, i);
3505 tree addr;
3506
3507 /* Addressable variables do have SSA_NAMEs but they
3508 are not considered gimple values. */
3509 if (TREE_CODE (t) != SSA_NAME
3510 && TREE_CODE (t) != FUNCTION_DECL
3511 && !is_gimple_val (t))
3512 {
3513 error ("PHI def is not a GIMPLE value");
3514 debug_generic_stmt (phi);
3515 debug_generic_stmt (t);
3516 err |= true;
3517 }
3518
3519 addr = walk_tree (&t, verify_expr, (void *) 1, NULL);
3520 if (addr)
3521 {
3522 debug_generic_stmt (addr);
3523 err |= true;
3524 }
3525
3526 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
3527 if (addr)
3528 {
3529 error ("incorrect sharing of tree nodes");
3530 debug_generic_stmt (phi);
3531 debug_generic_stmt (addr);
3532 err |= true;
3533 }
3534 }
3535 }
3536
3537 for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
3538 {
3539 tree stmt = bsi_stmt (bsi);
3540
3541 pointer_set_insert (visited_stmts, stmt);
3542 err |= verify_gimple_tuples (stmt);
3543
3544 if (bb_for_stmt (stmt) != bb)
3545 {
3546 error ("bb_for_stmt (stmt) is set to a wrong basic block");
3547 err |= true;
3548 }
3549
3550 bsi_next (&bsi);
3551 err |= verify_stmt (stmt, bsi_end_p (bsi));
3552 addr = walk_tree (&stmt, verify_node_sharing, visited, NULL);
3553 if (addr)
3554 {
3555 error ("incorrect sharing of tree nodes");
3556 debug_generic_stmt (stmt);
3557 debug_generic_stmt (addr);
3558 err |= true;
3559 }
3560 }
3561 }
3562 eh_error_found = false;
3563 if (get_eh_throw_stmt_table (cfun))
3564 htab_traverse (get_eh_throw_stmt_table (cfun),
3565 verify_eh_throw_stmt_node,
3566 visited_stmts);
3567
3568 if (err | eh_error_found)
3569 internal_error ("verify_stmts failed");
3570
3571 pointer_set_destroy (visited);
3572 pointer_set_destroy (visited_stmts);
3573 verify_histograms ();
3574 timevar_pop (TV_TREE_STMT_VERIFY);
3575 }
3576
3577
3578 /* Verifies that the flow information is OK. */
3579
3580 static int
3581 tree_verify_flow_info (void)
3582 {
3583 int err = 0;
3584 basic_block bb;
3585 block_stmt_iterator bsi;
3586 tree stmt;
3587 edge e;
3588 edge_iterator ei;
3589
3590 if (ENTRY_BLOCK_PTR->il.tree)
3591 {
3592 error ("ENTRY_BLOCK has IL associated with it");
3593 err = 1;
3594 }
3595
3596 if (EXIT_BLOCK_PTR->il.tree)
3597 {
3598 error ("EXIT_BLOCK has IL associated with it");
3599 err = 1;
3600 }
3601
3602 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
3603 if (e->flags & EDGE_FALLTHRU)
3604 {
3605 error ("fallthru to exit from bb %d", e->src->index);
3606 err = 1;
3607 }
3608
3609 FOR_EACH_BB (bb)
3610 {
3611 bool found_ctrl_stmt = false;
3612
3613 stmt = NULL_TREE;
3614
3615 /* Skip labels on the start of basic block. */
3616 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3617 {
3618 tree prev_stmt = stmt;
3619
3620 stmt = bsi_stmt (bsi);
3621
3622 if (TREE_CODE (stmt) != LABEL_EXPR)
3623 break;
3624
3625 if (prev_stmt && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
3626 {
3627 error ("nonlocal label ");
3628 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3629 fprintf (stderr, " is not first in a sequence of labels in bb %d",
3630 bb->index);
3631 err = 1;
3632 }
3633
3634 if (label_to_block (LABEL_EXPR_LABEL (stmt)) != bb)
3635 {
3636 error ("label ");
3637 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3638 fprintf (stderr, " to block does not match in bb %d",
3639 bb->index);
3640 err = 1;
3641 }
3642
3643 if (decl_function_context (LABEL_EXPR_LABEL (stmt))
3644 != current_function_decl)
3645 {
3646 error ("label ");
3647 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3648 fprintf (stderr, " has incorrect context in bb %d",
3649 bb->index);
3650 err = 1;
3651 }
3652 }
3653
3654 /* Verify that body of basic block BB is free of control flow. */
3655 for (; !bsi_end_p (bsi); bsi_next (&bsi))
3656 {
3657 tree stmt = bsi_stmt (bsi);
3658
3659 if (found_ctrl_stmt)
3660 {
3661 error ("control flow in the middle of basic block %d",
3662 bb->index);
3663 err = 1;
3664 }
3665
3666 if (stmt_ends_bb_p (stmt))
3667 found_ctrl_stmt = true;
3668
3669 if (TREE_CODE (stmt) == LABEL_EXPR)
3670 {
3671 error ("label ");
3672 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3673 fprintf (stderr, " in the middle of basic block %d", bb->index);
3674 err = 1;
3675 }
3676 }
3677
3678 bsi = bsi_last (bb);
3679 if (bsi_end_p (bsi))
3680 continue;
3681
3682 stmt = bsi_stmt (bsi);
3683
3684 err |= verify_eh_edges (stmt);
3685
3686 if (is_ctrl_stmt (stmt))
3687 {
3688 FOR_EACH_EDGE (e, ei, bb->succs)
3689 if (e->flags & EDGE_FALLTHRU)
3690 {
3691 error ("fallthru edge after a control statement in bb %d",
3692 bb->index);
3693 err = 1;
3694 }
3695 }
3696
3697 if (TREE_CODE (stmt) != COND_EXPR)
3698 {
3699 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
3700 after anything else but if statement. */
3701 FOR_EACH_EDGE (e, ei, bb->succs)
3702 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
3703 {
3704 error ("true/false edge after a non-COND_EXPR in bb %d",
3705 bb->index);
3706 err = 1;
3707 }
3708 }
3709
3710 switch (TREE_CODE (stmt))
3711 {
3712 case COND_EXPR:
3713 {
3714 edge true_edge;
3715 edge false_edge;
3716
3717 if (COND_EXPR_THEN (stmt) != NULL_TREE
3718 || COND_EXPR_ELSE (stmt) != NULL_TREE)
3719 {
3720 error ("COND_EXPR with code in branches at the end of bb %d",
3721 bb->index);
3722 err = 1;
3723 }
3724
3725 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
3726
3727 if (!true_edge || !false_edge
3728 || !(true_edge->flags & EDGE_TRUE_VALUE)
3729 || !(false_edge->flags & EDGE_FALSE_VALUE)
3730 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3731 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3732 || EDGE_COUNT (bb->succs) >= 3)
3733 {
3734 error ("wrong outgoing edge flags at end of bb %d",
3735 bb->index);
3736 err = 1;
3737 }
3738 }
3739 break;
3740
3741 case GOTO_EXPR:
3742 if (simple_goto_p (stmt))
3743 {
3744 error ("explicit goto at end of bb %d", bb->index);
3745 err = 1;
3746 }
3747 else
3748 {
3749 /* FIXME. We should double check that the labels in the
3750 destination blocks have their address taken. */
3751 FOR_EACH_EDGE (e, ei, bb->succs)
3752 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
3753 | EDGE_FALSE_VALUE))
3754 || !(e->flags & EDGE_ABNORMAL))
3755 {
3756 error ("wrong outgoing edge flags at end of bb %d",
3757 bb->index);
3758 err = 1;
3759 }
3760 }
3761 break;
3762
3763 case RETURN_EXPR:
3764 if (!single_succ_p (bb)
3765 || (single_succ_edge (bb)->flags
3766 & (EDGE_FALLTHRU | EDGE_ABNORMAL
3767 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3768 {
3769 error ("wrong outgoing edge flags at end of bb %d", bb->index);
3770 err = 1;
3771 }
3772 if (single_succ (bb) != EXIT_BLOCK_PTR)
3773 {
3774 error ("return edge does not point to exit in bb %d",
3775 bb->index);
3776 err = 1;
3777 }
3778 break;
3779
3780 case SWITCH_EXPR:
3781 {
3782 tree prev;
3783 edge e;
3784 size_t i, n;
3785 tree vec;
3786
3787 vec = SWITCH_LABELS (stmt);
3788 n = TREE_VEC_LENGTH (vec);
3789
3790 /* Mark all the destination basic blocks. */
3791 for (i = 0; i < n; ++i)
3792 {
3793 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3794 basic_block label_bb = label_to_block (lab);
3795
3796 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
3797 label_bb->aux = (void *)1;
3798 }
3799
3800 /* Verify that the case labels are sorted. */
3801 prev = TREE_VEC_ELT (vec, 0);
3802 for (i = 1; i < n - 1; ++i)
3803 {
3804 tree c = TREE_VEC_ELT (vec, i);
3805 if (! CASE_LOW (c))
3806 {
3807 error ("found default case not at end of case vector");
3808 err = 1;
3809 continue;
3810 }
3811 if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
3812 {
3813 error ("case labels not sorted: ");
3814 print_generic_expr (stderr, prev, 0);
3815 fprintf (stderr," is greater than ");
3816 print_generic_expr (stderr, c, 0);
3817 fprintf (stderr," but comes before it.\n");
3818 err = 1;
3819 }
3820 prev = c;
3821 }
3822 if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
3823 {
3824 error ("no default case found at end of case vector");
3825 err = 1;
3826 }
3827
3828 FOR_EACH_EDGE (e, ei, bb->succs)
3829 {
3830 if (!e->dest->aux)
3831 {
3832 error ("extra outgoing edge %d->%d",
3833 bb->index, e->dest->index);
3834 err = 1;
3835 }
3836 e->dest->aux = (void *)2;
3837 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
3838 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3839 {
3840 error ("wrong outgoing edge flags at end of bb %d",
3841 bb->index);
3842 err = 1;
3843 }
3844 }
3845
3846 /* Check that we have all of them. */
3847 for (i = 0; i < n; ++i)
3848 {
3849 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3850 basic_block label_bb = label_to_block (lab);
3851
3852 if (label_bb->aux != (void *)2)
3853 {
3854 error ("missing edge %i->%i",
3855 bb->index, label_bb->index);
3856 err = 1;
3857 }
3858 }
3859
3860 FOR_EACH_EDGE (e, ei, bb->succs)
3861 e->dest->aux = (void *)0;
3862 }
3863
3864 default: ;
3865 }
3866 }
3867
3868 if (dom_computed[CDI_DOMINATORS] >= DOM_NO_FAST_QUERY)
3869 verify_dominators (CDI_DOMINATORS);
3870
3871 return err;
3872 }
3873
3874
3875 /* Updates phi nodes after creating a forwarder block joined
3876 by edge FALLTHRU. */
3877
3878 static void
3879 tree_make_forwarder_block (edge fallthru)
3880 {
3881 edge e;
3882 edge_iterator ei;
3883 basic_block dummy, bb;
3884 tree phi, new_phi, var;
3885
3886 dummy = fallthru->src;
3887 bb = fallthru->dest;
3888
3889 if (single_pred_p (bb))
3890 return;
3891
3892 /* If we redirected a branch we must create new PHI nodes at the
3893 start of BB. */
3894 for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
3895 {
3896 var = PHI_RESULT (phi);
3897 new_phi = create_phi_node (var, bb);
3898 SSA_NAME_DEF_STMT (var) = new_phi;
3899 SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
3900 add_phi_arg (new_phi, PHI_RESULT (phi), fallthru);
3901 }
3902
3903 /* Ensure that the PHI node chain is in the same order. */
3904 set_phi_nodes (bb, phi_reverse (phi_nodes (bb)));
3905
3906 /* Add the arguments we have stored on edges. */
3907 FOR_EACH_EDGE (e, ei, bb->preds)
3908 {
3909 if (e == fallthru)
3910 continue;
3911
3912 flush_pending_stmts (e);
3913 }
3914 }
3915
3916
3917 /* Return a non-special label in the head of basic block BLOCK.
3918 Create one if it doesn't exist. */
3919
3920 tree
3921 tree_block_label (basic_block bb)
3922 {
3923 block_stmt_iterator i, s = bsi_start (bb);
3924 bool first = true;
3925 tree label, stmt;
3926
3927 for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
3928 {
3929 stmt = bsi_stmt (i);
3930 if (TREE_CODE (stmt) != LABEL_EXPR)
3931 break;
3932 label = LABEL_EXPR_LABEL (stmt);
3933 if (!DECL_NONLOCAL (label))
3934 {
3935 if (!first)
3936 bsi_move_before (&i, &s);
3937 return label;
3938 }
3939 }
3940
3941 label = create_artificial_label ();
3942 stmt = build1 (LABEL_EXPR, void_type_node, label);
3943 bsi_insert_before (&s, stmt, BSI_NEW_STMT);
3944 return label;
3945 }
3946
3947
3948 /* Attempt to perform edge redirection by replacing a possibly complex
3949 jump instruction by a goto or by removing the jump completely.
3950 This can apply only if all edges now point to the same block. The
3951 parameters and return values are equivalent to
3952 redirect_edge_and_branch. */
3953
3954 static edge
3955 tree_try_redirect_by_replacing_jump (edge e, basic_block target)
3956 {
3957 basic_block src = e->src;
3958 block_stmt_iterator b;
3959 tree stmt;
3960
3961 /* We can replace or remove a complex jump only when we have exactly
3962 two edges. */
3963 if (EDGE_COUNT (src->succs) != 2
3964 /* Verify that all targets will be TARGET. Specifically, the
3965 edge that is not E must also go to TARGET. */
3966 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
3967 return NULL;
3968
3969 b = bsi_last (src);
3970 if (bsi_end_p (b))
3971 return NULL;
3972 stmt = bsi_stmt (b);
3973
3974 if (TREE_CODE (stmt) == COND_EXPR
3975 || TREE_CODE (stmt) == SWITCH_EXPR)
3976 {
3977 bsi_remove (&b, true);
3978 e = ssa_redirect_edge (e, target);
3979 e->flags = EDGE_FALLTHRU;
3980 return e;
3981 }
3982
3983 return NULL;
3984 }
3985
3986
3987 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
3988 edge representing the redirected branch. */
3989
3990 static edge
3991 tree_redirect_edge_and_branch (edge e, basic_block dest)
3992 {
3993 basic_block bb = e->src;
3994 block_stmt_iterator bsi;
3995 edge ret;
3996 tree label, stmt;
3997
3998 if (e->flags & EDGE_ABNORMAL)
3999 return NULL;
4000
4001 if (e->src != ENTRY_BLOCK_PTR
4002 && (ret = tree_try_redirect_by_replacing_jump (e, dest)))
4003 return ret;
4004
4005 if (e->dest == dest)
4006 return NULL;
4007
4008 label = tree_block_label (dest);
4009
4010 bsi = bsi_last (bb);
4011 stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);
4012
4013 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
4014 {
4015 case COND_EXPR:
4016 /* For COND_EXPR, we only need to redirect the edge. */
4017 break;
4018
4019 case GOTO_EXPR:
4020 /* No non-abnormal edges should lead from a non-simple goto, and
4021 simple ones should be represented implicitly. */
4022 gcc_unreachable ();
4023
4024 case SWITCH_EXPR:
4025 {
4026 tree cases = get_cases_for_edge (e, stmt);
4027
4028 /* If we have a list of cases associated with E, then use it
4029 as it's a lot faster than walking the entire case vector. */
4030 if (cases)
4031 {
4032 edge e2 = find_edge (e->src, dest);
4033 tree last, first;
4034
4035 first = cases;
4036 while (cases)
4037 {
4038 last = cases;
4039 CASE_LABEL (cases) = label;
4040 cases = TREE_CHAIN (cases);
4041 }
4042
4043 /* If there was already an edge in the CFG, then we need
4044 to move all the cases associated with E to E2. */
4045 if (e2)
4046 {
4047 tree cases2 = get_cases_for_edge (e2, stmt);
4048
4049 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4050 TREE_CHAIN (cases2) = first;
4051 }
4052 }
4053 else
4054 {
4055 tree vec = SWITCH_LABELS (stmt);
4056 size_t i, n = TREE_VEC_LENGTH (vec);
4057
4058 for (i = 0; i < n; i++)
4059 {
4060 tree elt = TREE_VEC_ELT (vec, i);
4061
4062 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4063 CASE_LABEL (elt) = label;
4064 }
4065 }
4066
4067 break;
4068 }
4069
4070 case RETURN_EXPR:
4071 bsi_remove (&bsi, true);
4072 e->flags |= EDGE_FALLTHRU;
4073 break;
4074
4075 default:
4076 /* Otherwise it must be a fallthru edge, and we don't need to
4077 do anything besides redirecting it. */
4078 gcc_assert (e->flags & EDGE_FALLTHRU);
4079 break;
4080 }
4081
4082 /* Update/insert PHI nodes as necessary. */
4083
4084 /* Now update the edges in the CFG. */
4085 e = ssa_redirect_edge (e, dest);
4086
4087 return e;
4088 }
4089
4090 /* Returns true if it is possible to remove edge E by redirecting
4091 it to the destination of the other edge from E->src. */
4092
4093 static bool
4094 tree_can_remove_branch_p (edge e)
4095 {
4096 if (e->flags & EDGE_ABNORMAL)
4097 return false;
4098
4099 return true;
4100 }
4101
4102 /* Simple wrapper, as we can always redirect fallthru edges. */
4103
4104 static basic_block
4105 tree_redirect_edge_and_branch_force (edge e, basic_block dest)
4106 {
4107 e = tree_redirect_edge_and_branch (e, dest);
4108 gcc_assert (e);
4109
4110 return NULL;
4111 }
4112
4113
4114 /* Splits basic block BB after statement STMT (but at least after the
4115 labels). If STMT is NULL, BB is split just after the labels. */
4116
4117 static basic_block
4118 tree_split_block (basic_block bb, void *stmt)
4119 {
4120 block_stmt_iterator bsi;
4121 tree_stmt_iterator tsi_tgt;
4122 tree act, list;
4123 basic_block new_bb;
4124 edge e;
4125 edge_iterator ei;
4126
4127 new_bb = create_empty_bb (bb);
4128
4129 /* Redirect the outgoing edges. */
4130 new_bb->succs = bb->succs;
4131 bb->succs = NULL;
4132 FOR_EACH_EDGE (e, ei, new_bb->succs)
4133 e->src = new_bb;
4134
4135 if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
4136 stmt = NULL;
4137
4138 /* Move everything from BSI to the new basic block. */
4139 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4140 {
4141 act = bsi_stmt (bsi);
4142 if (TREE_CODE (act) == LABEL_EXPR)
4143 continue;
4144
4145 if (!stmt)
4146 break;
4147
4148 if (stmt == act)
4149 {
4150 bsi_next (&bsi);
4151 break;
4152 }
4153 }
4154
4155 if (bsi_end_p (bsi))
4156 return new_bb;
4157
4158 /* Split the statement list - avoid re-creating new containers as this
4159 brings ugly quadratic memory consumption in the inliner.
4160 (We are still quadratic since we need to update stmt BB pointers,
4161 sadly.) */
4162 list = tsi_split_statement_list_before (&bsi.tsi);
4163 set_bb_stmt_list (new_bb, list);
4164 for (tsi_tgt = tsi_start (list);
4165 !tsi_end_p (tsi_tgt); tsi_next (&tsi_tgt))
4166 change_bb_for_stmt (tsi_stmt (tsi_tgt), new_bb);
4167
4168 return new_bb;
4169 }
4170
4171
4172 /* Moves basic block BB after block AFTER. */
4173
4174 static bool
4175 tree_move_block_after (basic_block bb, basic_block after)
4176 {
4177 if (bb->prev_bb == after)
4178 return true;
4179
4180 unlink_block (bb);
4181 link_block (bb, after);
4182
4183 return true;
4184 }
4185
4186
4187 /* Return true if basic_block can be duplicated. */
4188
4189 static bool
4190 tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
4191 {
4192 return true;
4193 }
4194
4195
4196 /* Create a duplicate of the basic block BB. NOTE: This does not
4197 preserve SSA form. */
4198
4199 static basic_block
4200 tree_duplicate_bb (basic_block bb)
4201 {
4202 basic_block new_bb;
4203 block_stmt_iterator bsi, bsi_tgt;
4204 tree phi;
4205
4206 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4207
4208 /* Copy the PHI nodes. We ignore PHI node arguments here because
4209 the incoming edges have not been setup yet. */
4210 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4211 {
4212 tree copy = create_phi_node (PHI_RESULT (phi), new_bb);
4213 create_new_def_for (PHI_RESULT (copy), copy, PHI_RESULT_PTR (copy));
4214 }
4215
4216 /* Keep the chain of PHI nodes in the same order so that they can be
4217 updated by ssa_redirect_edge. */
4218 set_phi_nodes (new_bb, phi_reverse (phi_nodes (new_bb)));
4219
4220 bsi_tgt = bsi_start (new_bb);
4221 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4222 {
4223 def_operand_p def_p;
4224 ssa_op_iter op_iter;
4225 tree stmt, copy;
4226 int region;
4227
4228 stmt = bsi_stmt (bsi);
4229 if (TREE_CODE (stmt) == LABEL_EXPR)
4230 continue;
4231
4232 /* Create a new copy of STMT and duplicate STMT's virtual
4233 operands. */
4234 copy = unshare_expr (stmt);
4235 bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
4236 copy_virtual_operands (copy, stmt);
4237 region = lookup_stmt_eh_region (stmt);
4238 if (region >= 0)
4239 add_stmt_to_eh_region (copy, region);
4240 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4241
4242 /* Create new names for all the definitions created by COPY and
4243 add replacement mappings for each new name. */
4244 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4245 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4246 }
4247
4248 return new_bb;
4249 }
4250
4251
4252 /* Basic block BB_COPY was created by code duplication. Add phi node
4253 arguments for edges going out of BB_COPY. The blocks that were
4254 duplicated have BB_DUPLICATED set. */
4255
4256 void
4257 add_phi_args_after_copy_bb (basic_block bb_copy)
4258 {
4259 basic_block bb, dest;
4260 edge e, e_copy;
4261 edge_iterator ei;
4262 tree phi, phi_copy, phi_next, def;
4263
4264 bb = get_bb_original (bb_copy);
4265
4266 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
4267 {
4268 if (!phi_nodes (e_copy->dest))
4269 continue;
4270
4271 if (e_copy->dest->flags & BB_DUPLICATED)
4272 dest = get_bb_original (e_copy->dest);
4273 else
4274 dest = e_copy->dest;
4275
4276 e = find_edge (bb, dest);
4277 if (!e)
4278 {
4279 /* During loop unrolling the target of the latch edge is copied.
4280 In this case we are not looking for edge to dest, but to
4281 duplicated block whose original was dest. */
4282 FOR_EACH_EDGE (e, ei, bb->succs)
4283 if ((e->dest->flags & BB_DUPLICATED)
4284 && get_bb_original (e->dest) == dest)
4285 break;
4286
4287 gcc_assert (e != NULL);
4288 }
4289
4290 for (phi = phi_nodes (e->dest), phi_copy = phi_nodes (e_copy->dest);
4291 phi;
4292 phi = phi_next, phi_copy = PHI_CHAIN (phi_copy))
4293 {
4294 phi_next = PHI_CHAIN (phi);
4295 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
4296 add_phi_arg (phi_copy, def, e_copy);
4297 }
4298 }
4299 }
4300
4301 /* Blocks in REGION_COPY array of length N_REGION were created by
4302 duplication of basic blocks. Add phi node arguments for edges
4303 going from these blocks. */
4304
4305 void
4306 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region)
4307 {
4308 unsigned i;
4309
4310 for (i = 0; i < n_region; i++)
4311 region_copy[i]->flags |= BB_DUPLICATED;
4312
4313 for (i = 0; i < n_region; i++)
4314 add_phi_args_after_copy_bb (region_copy[i]);
4315
4316 for (i = 0; i < n_region; i++)
4317 region_copy[i]->flags &= ~BB_DUPLICATED;
4318 }
4319
4320 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
4321 important exit edge EXIT. By important we mean that no SSA name defined
4322 inside region is live over the other exit edges of the region. All entry
4323 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
4324 to the duplicate of the region. SSA form, dominance and loop information
4325 is updated. The new basic blocks are stored to REGION_COPY in the same
4326 order as they had in REGION, provided that REGION_COPY is not NULL.
4327 The function returns false if it is unable to copy the region,
4328 true otherwise. */
4329
4330 bool
4331 tree_duplicate_sese_region (edge entry, edge exit,
4332 basic_block *region, unsigned n_region,
4333 basic_block *region_copy)
4334 {
4335 unsigned i, n_doms;
4336 bool free_region_copy = false, copying_header = false;
4337 struct loop *loop = entry->dest->loop_father;
4338 edge exit_copy;
4339 basic_block *doms;
4340 edge redirected;
4341 int total_freq = 0, entry_freq = 0;
4342 gcov_type total_count = 0, entry_count = 0;
4343
4344 if (!can_copy_bbs_p (region, n_region))
4345 return false;
4346
4347 /* Some sanity checking. Note that we do not check for all possible
4348 missuses of the functions. I.e. if you ask to copy something weird,
4349 it will work, but the state of structures probably will not be
4350 correct. */
4351 for (i = 0; i < n_region; i++)
4352 {
4353 /* We do not handle subloops, i.e. all the blocks must belong to the
4354 same loop. */
4355 if (region[i]->loop_father != loop)
4356 return false;
4357
4358 if (region[i] != entry->dest
4359 && region[i] == loop->header)
4360 return false;
4361 }
4362
4363 loop->copy = loop;
4364
4365 /* In case the function is used for loop header copying (which is the primary
4366 use), ensure that EXIT and its copy will be new latch and entry edges. */
4367 if (loop->header == entry->dest)
4368 {
4369 copying_header = true;
4370 loop->copy = loop->outer;
4371
4372 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
4373 return false;
4374
4375 for (i = 0; i < n_region; i++)
4376 if (region[i] != exit->src
4377 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
4378 return false;
4379 }
4380
4381 if (!region_copy)
4382 {
4383 region_copy = XNEWVEC (basic_block, n_region);
4384 free_region_copy = true;
4385 }
4386
4387 gcc_assert (!need_ssa_update_p ());
4388
4389 /* Record blocks outside the region that are dominated by something
4390 inside. */
4391 doms = XNEWVEC (basic_block, n_basic_blocks);
4392 initialize_original_copy_tables ();
4393
4394 n_doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region, doms);
4395
4396 if (entry->dest->count)
4397 {
4398 total_count = entry->dest->count;
4399 entry_count = entry->count;
4400 /* Fix up corner cases, to avoid division by zero or creation of negative
4401 frequencies. */
4402 if (entry_count > total_count)
4403 entry_count = total_count;
4404 }
4405 else
4406 {
4407 total_freq = entry->dest->frequency;
4408 entry_freq = EDGE_FREQUENCY (entry);
4409 /* Fix up corner cases, to avoid division by zero or creation of negative
4410 frequencies. */
4411 if (total_freq == 0)
4412 total_freq = 1;
4413 else if (entry_freq > total_freq)
4414 entry_freq = total_freq;
4415 }
4416
4417 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
4418 split_edge_bb_loc (entry));
4419 if (total_count)
4420 {
4421 scale_bbs_frequencies_gcov_type (region, n_region,
4422 total_count - entry_count,
4423 total_count);
4424 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
4425 total_count);
4426 }
4427 else
4428 {
4429 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
4430 total_freq);
4431 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
4432 }
4433
4434 if (copying_header)
4435 {
4436 loop->header = exit->dest;
4437 loop->latch = exit->src;
4438 }
4439
4440 /* Redirect the entry and add the phi node arguments. */
4441 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
4442 gcc_assert (redirected != NULL);
4443 flush_pending_stmts (entry);
4444
4445 /* Concerning updating of dominators: We must recount dominators
4446 for entry block and its copy. Anything that is outside of the
4447 region, but was dominated by something inside needs recounting as
4448 well. */
4449 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
4450 doms[n_doms++] = get_bb_original (entry->dest);
4451 iterate_fix_dominators (CDI_DOMINATORS, doms, n_doms);
4452 free (doms);
4453
4454 /* Add the other PHI node arguments. */
4455 add_phi_args_after_copy (region_copy, n_region);
4456
4457 /* Update the SSA web. */
4458 update_ssa (TODO_update_ssa);
4459
4460 if (free_region_copy)
4461 free (region_copy);
4462
4463 free_original_copy_tables ();
4464 return true;
4465 }
4466
4467 /*
4468 DEF_VEC_P(basic_block);
4469 DEF_VEC_ALLOC_P(basic_block,heap);
4470 */
4471
4472 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
4473 adding blocks when the dominator traversal reaches EXIT. This
4474 function silently assumes that ENTRY strictly dominates EXIT. */
4475
4476 static void
4477 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
4478 VEC(basic_block,heap) **bbs_p)
4479 {
4480 basic_block son;
4481
4482 for (son = first_dom_son (CDI_DOMINATORS, entry);
4483 son;
4484 son = next_dom_son (CDI_DOMINATORS, son))
4485 {
4486 VEC_safe_push (basic_block, heap, *bbs_p, son);
4487 if (son != exit)
4488 gather_blocks_in_sese_region (son, exit, bbs_p);
4489 }
4490 }
4491
4492
4493 struct move_stmt_d
4494 {
4495 tree block;
4496 tree from_context;
4497 tree to_context;
4498 bitmap vars_to_remove;
4499 htab_t new_label_map;
4500 bool remap_decls_p;
4501 };
4502
4503 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
4504 contained in *TP and change the DECL_CONTEXT of every local
4505 variable referenced in *TP. */
4506
4507 static tree
4508 move_stmt_r (tree *tp, int *walk_subtrees, void *data)
4509 {
4510 struct move_stmt_d *p = (struct move_stmt_d *) data;
4511 tree t = *tp;
4512
4513 if (p->block
4514 && (EXPR_P (t) || GIMPLE_STMT_P (t)))
4515 TREE_BLOCK (t) = p->block;
4516
4517 if (OMP_DIRECTIVE_P (t)
4518 && TREE_CODE (t) != OMP_RETURN
4519 && TREE_CODE (t) != OMP_CONTINUE)
4520 {
4521 /* Do not remap variables inside OMP directives. Variables
4522 referenced in clauses and directive header belong to the
4523 parent function and should not be moved into the child
4524 function. */
4525 bool save_remap_decls_p = p->remap_decls_p;
4526 p->remap_decls_p = false;
4527 *walk_subtrees = 0;
4528
4529 walk_tree (&OMP_BODY (t), move_stmt_r, p, NULL);
4530
4531 p->remap_decls_p = save_remap_decls_p;
4532 }
4533 else if (DECL_P (t) && DECL_CONTEXT (t) == p->from_context)
4534 {
4535 if (TREE_CODE (t) == LABEL_DECL)
4536 {
4537 if (p->new_label_map)
4538 {
4539 struct tree_map in, *out;
4540 in.base.from = t;
4541 out = htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
4542 if (out)
4543 *tp = t = out->to;
4544 }
4545
4546 DECL_CONTEXT (t) = p->to_context;
4547 }
4548 else if (p->remap_decls_p)
4549 {
4550 DECL_CONTEXT (t) = p->to_context;
4551
4552 if (TREE_CODE (t) == VAR_DECL)
4553 {
4554 struct function *f = DECL_STRUCT_FUNCTION (p->to_context);
4555 f->unexpanded_var_list
4556 = tree_cons (0, t, f->unexpanded_var_list);
4557
4558 /* Mark T to be removed from the original function,
4559 otherwise it will be given a DECL_RTL when the
4560 original function is expanded. */
4561 bitmap_set_bit (p->vars_to_remove, DECL_UID (t));
4562 }
4563 }
4564 }
4565 else if (TYPE_P (t))
4566 *walk_subtrees = 0;
4567
4568 return NULL_TREE;
4569 }
4570
4571
4572 /* Move basic block BB from function CFUN to function DEST_FN. The
4573 block is moved out of the original linked list and placed after
4574 block AFTER in the new list. Also, the block is removed from the
4575 original array of blocks and placed in DEST_FN's array of blocks.
4576 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
4577 updated to reflect the moved edges.
4578
4579 On exit, local variables that need to be removed from
4580 CFUN->UNEXPANDED_VAR_LIST will have been added to VARS_TO_REMOVE. */
4581
4582 static void
4583 move_block_to_fn (struct function *dest_cfun, basic_block bb,
4584 basic_block after, bool update_edge_count_p,
4585 bitmap vars_to_remove, htab_t new_label_map, int eh_offset)
4586 {
4587 struct control_flow_graph *cfg;
4588 edge_iterator ei;
4589 edge e;
4590 block_stmt_iterator si;
4591 struct move_stmt_d d;
4592 unsigned old_len, new_len;
4593
4594 /* Remove BB from dominance structures. */
4595 delete_from_dominance_info (CDI_DOMINATORS, bb);
4596
4597 /* Link BB to the new linked list. */
4598 move_block_after (bb, after);
4599
4600 /* Update the edge count in the corresponding flowgraphs. */
4601 if (update_edge_count_p)
4602 FOR_EACH_EDGE (e, ei, bb->succs)
4603 {
4604 cfun->cfg->x_n_edges--;
4605 dest_cfun->cfg->x_n_edges++;
4606 }
4607
4608 /* Remove BB from the original basic block array. */
4609 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
4610 cfun->cfg->x_n_basic_blocks--;
4611
4612 /* Grow DEST_CFUN's basic block array if needed. */
4613 cfg = dest_cfun->cfg;
4614 cfg->x_n_basic_blocks++;
4615 if (bb->index >= cfg->x_last_basic_block)
4616 cfg->x_last_basic_block = bb->index + 1;
4617
4618 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
4619 if ((unsigned) cfg->x_last_basic_block >= old_len)
4620 {
4621 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
4622 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
4623 new_len);
4624 }
4625
4626 VEC_replace (basic_block, cfg->x_basic_block_info,
4627 cfg->x_last_basic_block, bb);
4628
4629 /* The statements in BB need to be associated with a new TREE_BLOCK.
4630 Labels need to be associated with a new label-to-block map. */
4631 memset (&d, 0, sizeof (d));
4632 d.vars_to_remove = vars_to_remove;
4633
4634 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4635 {
4636 tree stmt = bsi_stmt (si);
4637 int region;
4638
4639 d.from_context = cfun->decl;
4640 d.to_context = dest_cfun->decl;
4641 d.remap_decls_p = true;
4642 d.new_label_map = new_label_map;
4643 if (TREE_BLOCK (stmt))
4644 d.block = DECL_INITIAL (dest_cfun->decl);
4645
4646 walk_tree (&stmt, move_stmt_r, &d, NULL);
4647
4648 if (TREE_CODE (stmt) == LABEL_EXPR)
4649 {
4650 tree label = LABEL_EXPR_LABEL (stmt);
4651 int uid = LABEL_DECL_UID (label);
4652
4653 gcc_assert (uid > -1);
4654
4655 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
4656 if (old_len <= (unsigned) uid)
4657 {
4658 new_len = 3 * uid / 2;
4659 VEC_safe_grow_cleared (basic_block, gc,
4660 cfg->x_label_to_block_map, new_len);
4661 }
4662
4663 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
4664 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
4665
4666 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
4667
4668 if (uid >= dest_cfun->last_label_uid)
4669 dest_cfun->last_label_uid = uid + 1;
4670 }
4671 else if (TREE_CODE (stmt) == RESX_EXPR && eh_offset != 0)
4672 TREE_OPERAND (stmt, 0) =
4673 build_int_cst (NULL_TREE,
4674 TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0))
4675 + eh_offset);
4676
4677 region = lookup_stmt_eh_region (stmt);
4678 if (region >= 0)
4679 {
4680 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
4681 remove_stmt_from_eh_region (stmt);
4682 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
4683 gimple_remove_stmt_histograms (cfun, stmt);
4684 }
4685 }
4686 }
4687
4688 /* Examine the statements in BB (which is in SRC_CFUN); find and return
4689 the outermost EH region. Use REGION as the incoming base EH region. */
4690
4691 static int
4692 find_outermost_region_in_block (struct function *src_cfun,
4693 basic_block bb, int region)
4694 {
4695 block_stmt_iterator si;
4696
4697 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4698 {
4699 tree stmt = bsi_stmt (si);
4700 int stmt_region;
4701
4702 if (TREE_CODE (stmt) == RESX_EXPR)
4703 stmt_region = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0));
4704 else
4705 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
4706 if (stmt_region > 0)
4707 {
4708 if (region < 0)
4709 region = stmt_region;
4710 else if (stmt_region != region)
4711 {
4712 region = eh_region_outermost (src_cfun, stmt_region, region);
4713 gcc_assert (region != -1);
4714 }
4715 }
4716 }
4717
4718 return region;
4719 }
4720
4721 static tree
4722 new_label_mapper (tree decl, void *data)
4723 {
4724 htab_t hash = (htab_t) data;
4725 struct tree_map *m;
4726 void **slot;
4727
4728 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
4729
4730 m = xmalloc (sizeof (struct tree_map));
4731 m->hash = DECL_UID (decl);
4732 m->base.from = decl;
4733 m->to = create_artificial_label ();
4734 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
4735
4736 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
4737 gcc_assert (*slot == NULL);
4738
4739 *slot = m;
4740
4741 return m->to;
4742 }
4743
4744 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
4745 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
4746 single basic block in the original CFG and the new basic block is
4747 returned. DEST_CFUN must not have a CFG yet.
4748
4749 Note that the region need not be a pure SESE region. Blocks inside
4750 the region may contain calls to abort/exit. The only restriction
4751 is that ENTRY_BB should be the only entry point and it must
4752 dominate EXIT_BB.
4753
4754 All local variables referenced in the region are assumed to be in
4755 the corresponding BLOCK_VARS and unexpanded variable lists
4756 associated with DEST_CFUN. */
4757
4758 basic_block
4759 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
4760 basic_block exit_bb)
4761 {
4762 VEC(basic_block,heap) *bbs;
4763 basic_block after, bb, *entry_pred, *exit_succ;
4764 struct function *saved_cfun;
4765 int *entry_flag, *exit_flag, eh_offset;
4766 unsigned i, num_entry_edges, num_exit_edges;
4767 edge e;
4768 edge_iterator ei;
4769 bitmap vars_to_remove;
4770 htab_t new_label_map;
4771
4772 saved_cfun = cfun;
4773
4774 /* Collect all the blocks in the region. Manually add ENTRY_BB
4775 because it won't be added by dfs_enumerate_from. */
4776 calculate_dominance_info (CDI_DOMINATORS);
4777
4778 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
4779 region. */
4780 gcc_assert (entry_bb != exit_bb
4781 && (!exit_bb
4782 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
4783
4784 bbs = NULL;
4785 VEC_safe_push (basic_block, heap, bbs, entry_bb);
4786 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
4787
4788 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
4789 the predecessor edges to ENTRY_BB and the successor edges to
4790 EXIT_BB so that we can re-attach them to the new basic block that
4791 will replace the region. */
4792 num_entry_edges = EDGE_COUNT (entry_bb->preds);
4793 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
4794 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
4795 i = 0;
4796 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
4797 {
4798 entry_flag[i] = e->flags;
4799 entry_pred[i++] = e->src;
4800 remove_edge (e);
4801 }
4802
4803 if (exit_bb)
4804 {
4805 num_exit_edges = EDGE_COUNT (exit_bb->succs);
4806 exit_succ = (basic_block *) xcalloc (num_exit_edges,
4807 sizeof (basic_block));
4808 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
4809 i = 0;
4810 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
4811 {
4812 exit_flag[i] = e->flags;
4813 exit_succ[i++] = e->dest;
4814 remove_edge (e);
4815 }
4816 }
4817 else
4818 {
4819 num_exit_edges = 0;
4820 exit_succ = NULL;
4821 exit_flag = NULL;
4822 }
4823
4824 /* Switch context to the child function to initialize DEST_FN's CFG. */
4825 gcc_assert (dest_cfun->cfg == NULL);
4826 cfun = dest_cfun;
4827
4828 init_empty_tree_cfg ();
4829
4830 /* Initialize EH information for the new function. */
4831 eh_offset = 0;
4832 new_label_map = NULL;
4833 if (saved_cfun->eh)
4834 {
4835 int region = -1;
4836
4837 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4838 region = find_outermost_region_in_block (saved_cfun, bb, region);
4839
4840 init_eh_for_function ();
4841 if (region != -1)
4842 {
4843 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
4844 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
4845 new_label_map, region, 0);
4846 }
4847 }
4848
4849 cfun = saved_cfun;
4850
4851 /* Move blocks from BBS into DEST_CFUN. */
4852 gcc_assert (VEC_length (basic_block, bbs) >= 2);
4853 after = dest_cfun->cfg->x_entry_block_ptr;
4854 vars_to_remove = BITMAP_ALLOC (NULL);
4855 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4856 {
4857 /* No need to update edge counts on the last block. It has
4858 already been updated earlier when we detached the region from
4859 the original CFG. */
4860 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, vars_to_remove,
4861 new_label_map, eh_offset);
4862 after = bb;
4863 }
4864
4865 if (new_label_map)
4866 htab_delete (new_label_map);
4867
4868 /* Remove the variables marked in VARS_TO_REMOVE from
4869 CFUN->UNEXPANDED_VAR_LIST. Otherwise, they will be given a
4870 DECL_RTL in the context of CFUN. */
4871 if (!bitmap_empty_p (vars_to_remove))
4872 {
4873 tree *p;
4874
4875 for (p = &cfun->unexpanded_var_list; *p; )
4876 {
4877 tree var = TREE_VALUE (*p);
4878 if (bitmap_bit_p (vars_to_remove, DECL_UID (var)))
4879 {
4880 *p = TREE_CHAIN (*p);
4881 continue;
4882 }
4883
4884 p = &TREE_CHAIN (*p);
4885 }
4886 }
4887
4888 BITMAP_FREE (vars_to_remove);
4889
4890 /* Rewire the entry and exit blocks. The successor to the entry
4891 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
4892 the child function. Similarly, the predecessor of DEST_FN's
4893 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
4894 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
4895 various CFG manipulation function get to the right CFG.
4896
4897 FIXME, this is silly. The CFG ought to become a parameter to
4898 these helpers. */
4899 cfun = dest_cfun;
4900 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
4901 if (exit_bb)
4902 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
4903 cfun = saved_cfun;
4904
4905 /* Back in the original function, the SESE region has disappeared,
4906 create a new basic block in its place. */
4907 bb = create_empty_bb (entry_pred[0]);
4908 for (i = 0; i < num_entry_edges; i++)
4909 make_edge (entry_pred[i], bb, entry_flag[i]);
4910
4911 for (i = 0; i < num_exit_edges; i++)
4912 make_edge (bb, exit_succ[i], exit_flag[i]);
4913
4914 if (exit_bb)
4915 {
4916 free (exit_flag);
4917 free (exit_succ);
4918 }
4919 free (entry_flag);
4920 free (entry_pred);
4921 free_dominance_info (CDI_DOMINATORS);
4922 free_dominance_info (CDI_POST_DOMINATORS);
4923 VEC_free (basic_block, heap, bbs);
4924
4925 return bb;
4926 }
4927
4928
4929 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h) */
4930
4931 void
4932 dump_function_to_file (tree fn, FILE *file, int flags)
4933 {
4934 tree arg, vars, var;
4935 struct function *dsf;
4936 bool ignore_topmost_bind = false, any_var = false;
4937 basic_block bb;
4938 tree chain;
4939 struct function *saved_cfun;
4940
4941 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
4942
4943 arg = DECL_ARGUMENTS (fn);
4944 while (arg)
4945 {
4946 print_generic_expr (file, arg, dump_flags);
4947 if (TREE_CHAIN (arg))
4948 fprintf (file, ", ");
4949 arg = TREE_CHAIN (arg);
4950 }
4951 fprintf (file, ")\n");
4952
4953 dsf = DECL_STRUCT_FUNCTION (fn);
4954 if (dsf && (flags & TDF_DETAILS))
4955 dump_eh_tree (file, dsf);
4956
4957 if (flags & TDF_RAW)
4958 {
4959 dump_node (fn, TDF_SLIM | flags, file);
4960 return;
4961 }
4962
4963 /* Switch CFUN to point to FN. */
4964 saved_cfun = cfun;
4965 cfun = DECL_STRUCT_FUNCTION (fn);
4966
4967 /* When GIMPLE is lowered, the variables are no longer available in
4968 BIND_EXPRs, so display them separately. */
4969 if (cfun && cfun->decl == fn && cfun->unexpanded_var_list)
4970 {
4971 ignore_topmost_bind = true;
4972
4973 fprintf (file, "{\n");
4974 for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
4975 {
4976 var = TREE_VALUE (vars);
4977
4978 print_generic_decl (file, var, flags);
4979 fprintf (file, "\n");
4980
4981 any_var = true;
4982 }
4983 }
4984
4985 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
4986 {
4987 /* Make a CFG based dump. */
4988 check_bb_profile (ENTRY_BLOCK_PTR, file);
4989 if (!ignore_topmost_bind)
4990 fprintf (file, "{\n");
4991
4992 if (any_var && n_basic_blocks)
4993 fprintf (file, "\n");
4994
4995 FOR_EACH_BB (bb)
4996 dump_generic_bb (file, bb, 2, flags);
4997
4998 fprintf (file, "}\n");
4999 check_bb_profile (EXIT_BLOCK_PTR, file);
5000 }
5001 else
5002 {
5003 int indent;
5004
5005 /* Make a tree based dump. */
5006 chain = DECL_SAVED_TREE (fn);
5007
5008 if (chain && TREE_CODE (chain) == BIND_EXPR)
5009 {
5010 if (ignore_topmost_bind)
5011 {
5012 chain = BIND_EXPR_BODY (chain);
5013 indent = 2;
5014 }
5015 else
5016 indent = 0;
5017 }
5018 else
5019 {
5020 if (!ignore_topmost_bind)
5021 fprintf (file, "{\n");
5022 indent = 2;
5023 }
5024
5025 if (any_var)
5026 fprintf (file, "\n");
5027
5028 print_generic_stmt_indented (file, chain, flags, indent);
5029 if (ignore_topmost_bind)
5030 fprintf (file, "}\n");
5031 }
5032
5033 fprintf (file, "\n\n");
5034
5035 /* Restore CFUN. */
5036 cfun = saved_cfun;
5037 }
5038
5039
5040 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
5041
5042 void
5043 debug_function (tree fn, int flags)
5044 {
5045 dump_function_to_file (fn, stderr, flags);
5046 }
5047
5048
5049 /* Pretty print of the loops intermediate representation. */
5050 static void print_loop (FILE *, struct loop *, int);
5051 static void print_pred_bbs (FILE *, basic_block bb);
5052 static void print_succ_bbs (FILE *, basic_block bb);
5053
5054
5055 /* Print on FILE the indexes for the predecessors of basic_block BB. */
5056
5057 static void
5058 print_pred_bbs (FILE *file, basic_block bb)
5059 {
5060 edge e;
5061 edge_iterator ei;
5062
5063 FOR_EACH_EDGE (e, ei, bb->preds)
5064 fprintf (file, "bb_%d ", e->src->index);
5065 }
5066
5067
5068 /* Print on FILE the indexes for the successors of basic_block BB. */
5069
5070 static void
5071 print_succ_bbs (FILE *file, basic_block bb)
5072 {
5073 edge e;
5074 edge_iterator ei;
5075
5076 FOR_EACH_EDGE (e, ei, bb->succs)
5077 fprintf (file, "bb_%d ", e->dest->index);
5078 }
5079
5080
5081 /* Pretty print LOOP on FILE, indented INDENT spaces. */
5082
5083 static void
5084 print_loop (FILE *file, struct loop *loop, int indent)
5085 {
5086 char *s_indent;
5087 basic_block bb;
5088
5089 if (loop == NULL)
5090 return;
5091
5092 s_indent = (char *) alloca ((size_t) indent + 1);
5093 memset ((void *) s_indent, ' ', (size_t) indent);
5094 s_indent[indent] = '\0';
5095
5096 /* Print the loop's header. */
5097 fprintf (file, "%sloop_%d\n", s_indent, loop->num);
5098
5099 /* Print the loop's body. */
5100 fprintf (file, "%s{\n", s_indent);
5101 FOR_EACH_BB (bb)
5102 if (bb->loop_father == loop)
5103 {
5104 /* Print the basic_block's header. */
5105 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
5106 print_pred_bbs (file, bb);
5107 fprintf (file, "}, succs = {");
5108 print_succ_bbs (file, bb);
5109 fprintf (file, "})\n");
5110
5111 /* Print the basic_block's body. */
5112 fprintf (file, "%s {\n", s_indent);
5113 tree_dump_bb (bb, file, indent + 4);
5114 fprintf (file, "%s }\n", s_indent);
5115 }
5116
5117 print_loop (file, loop->inner, indent + 2);
5118 fprintf (file, "%s}\n", s_indent);
5119 print_loop (file, loop->next, indent);
5120 }
5121
5122
5123 /* Follow a CFG edge from the entry point of the program, and on entry
5124 of a loop, pretty print the loop structure on FILE. */
5125
5126 void
5127 print_loop_ir (FILE *file)
5128 {
5129 basic_block bb;
5130
5131 bb = BASIC_BLOCK (NUM_FIXED_BLOCKS);
5132 if (bb && bb->loop_father)
5133 print_loop (file, bb->loop_father, 0);
5134 }
5135
5136
5137 /* Debugging loops structure at tree level. */
5138
5139 void
5140 debug_loop_ir (void)
5141 {
5142 print_loop_ir (stderr);
5143 }
5144
5145
5146 /* Return true if BB ends with a call, possibly followed by some
5147 instructions that must stay with the call. Return false,
5148 otherwise. */
5149
5150 static bool
5151 tree_block_ends_with_call_p (basic_block bb)
5152 {
5153 block_stmt_iterator bsi = bsi_last (bb);
5154 return get_call_expr_in (bsi_stmt (bsi)) != NULL;
5155 }
5156
5157
5158 /* Return true if BB ends with a conditional branch. Return false,
5159 otherwise. */
5160
5161 static bool
5162 tree_block_ends_with_condjump_p (basic_block bb)
5163 {
5164 tree stmt = last_stmt (bb);
5165 return (stmt && TREE_CODE (stmt) == COND_EXPR);
5166 }
5167
5168
5169 /* Return true if we need to add fake edge to exit at statement T.
5170 Helper function for tree_flow_call_edges_add. */
5171
5172 static bool
5173 need_fake_edge_p (tree t)
5174 {
5175 tree call;
5176
5177 /* NORETURN and LONGJMP calls already have an edge to exit.
5178 CONST and PURE calls do not need one.
5179 We don't currently check for CONST and PURE here, although
5180 it would be a good idea, because those attributes are
5181 figured out from the RTL in mark_constant_function, and
5182 the counter incrementation code from -fprofile-arcs
5183 leads to different results from -fbranch-probabilities. */
5184 call = get_call_expr_in (t);
5185 if (call
5186 && !(call_expr_flags (call) & ECF_NORETURN))
5187 return true;
5188
5189 if (TREE_CODE (t) == ASM_EXPR
5190 && (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
5191 return true;
5192
5193 return false;
5194 }
5195
5196
5197 /* Add fake edges to the function exit for any non constant and non
5198 noreturn calls, volatile inline assembly in the bitmap of blocks
5199 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
5200 the number of blocks that were split.
5201
5202 The goal is to expose cases in which entering a basic block does
5203 not imply that all subsequent instructions must be executed. */
5204
5205 static int
5206 tree_flow_call_edges_add (sbitmap blocks)
5207 {
5208 int i;
5209 int blocks_split = 0;
5210 int last_bb = last_basic_block;
5211 bool check_last_block = false;
5212
5213 if (n_basic_blocks == NUM_FIXED_BLOCKS)
5214 return 0;
5215
5216 if (! blocks)
5217 check_last_block = true;
5218 else
5219 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
5220
5221 /* In the last basic block, before epilogue generation, there will be
5222 a fallthru edge to EXIT. Special care is required if the last insn
5223 of the last basic block is a call because make_edge folds duplicate
5224 edges, which would result in the fallthru edge also being marked
5225 fake, which would result in the fallthru edge being removed by
5226 remove_fake_edges, which would result in an invalid CFG.
5227
5228 Moreover, we can't elide the outgoing fake edge, since the block
5229 profiler needs to take this into account in order to solve the minimal
5230 spanning tree in the case that the call doesn't return.
5231
5232 Handle this by adding a dummy instruction in a new last basic block. */
5233 if (check_last_block)
5234 {
5235 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
5236 block_stmt_iterator bsi = bsi_last (bb);
5237 tree t = NULL_TREE;
5238 if (!bsi_end_p (bsi))
5239 t = bsi_stmt (bsi);
5240
5241 if (t && need_fake_edge_p (t))
5242 {
5243 edge e;
5244
5245 e = find_edge (bb, EXIT_BLOCK_PTR);
5246 if (e)
5247 {
5248 bsi_insert_on_edge (e, build_empty_stmt ());
5249 bsi_commit_edge_inserts ();
5250 }
5251 }
5252 }
5253
5254 /* Now add fake edges to the function exit for any non constant
5255 calls since there is no way that we can determine if they will
5256 return or not... */
5257 for (i = 0; i < last_bb; i++)
5258 {
5259 basic_block bb = BASIC_BLOCK (i);
5260 block_stmt_iterator bsi;
5261 tree stmt, last_stmt;
5262
5263 if (!bb)
5264 continue;
5265
5266 if (blocks && !TEST_BIT (blocks, i))
5267 continue;
5268
5269 bsi = bsi_last (bb);
5270 if (!bsi_end_p (bsi))
5271 {
5272 last_stmt = bsi_stmt (bsi);
5273 do
5274 {
5275 stmt = bsi_stmt (bsi);
5276 if (need_fake_edge_p (stmt))
5277 {
5278 edge e;
5279 /* The handling above of the final block before the
5280 epilogue should be enough to verify that there is
5281 no edge to the exit block in CFG already.
5282 Calling make_edge in such case would cause us to
5283 mark that edge as fake and remove it later. */
5284 #ifdef ENABLE_CHECKING
5285 if (stmt == last_stmt)
5286 {
5287 e = find_edge (bb, EXIT_BLOCK_PTR);
5288 gcc_assert (e == NULL);
5289 }
5290 #endif
5291
5292 /* Note that the following may create a new basic block
5293 and renumber the existing basic blocks. */
5294 if (stmt != last_stmt)
5295 {
5296 e = split_block (bb, stmt);
5297 if (e)
5298 blocks_split++;
5299 }
5300 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
5301 }
5302 bsi_prev (&bsi);
5303 }
5304 while (!bsi_end_p (bsi));
5305 }
5306 }
5307
5308 if (blocks_split)
5309 verify_flow_info ();
5310
5311 return blocks_split;
5312 }
5313
5314 /* Purge dead abnormal call edges from basic block BB. */
5315
5316 bool
5317 tree_purge_dead_abnormal_call_edges (basic_block bb)
5318 {
5319 bool changed = tree_purge_dead_eh_edges (bb);
5320
5321 if (current_function_has_nonlocal_label)
5322 {
5323 tree stmt = last_stmt (bb);
5324 edge_iterator ei;
5325 edge e;
5326
5327 if (!(stmt && tree_can_make_abnormal_goto (stmt)))
5328 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5329 {
5330 if (e->flags & EDGE_ABNORMAL)
5331 {
5332 remove_edge (e);
5333 changed = true;
5334 }
5335 else
5336 ei_next (&ei);
5337 }
5338
5339 /* See tree_purge_dead_eh_edges below. */
5340 if (changed)
5341 free_dominance_info (CDI_DOMINATORS);
5342 }
5343
5344 return changed;
5345 }
5346
5347 /* Stores all basic blocks dominated by BB to DOM_BBS. */
5348
5349 static void
5350 get_all_dominated_blocks (basic_block bb, VEC (basic_block, heap) **dom_bbs)
5351 {
5352 basic_block son;
5353
5354 VEC_safe_push (basic_block, heap, *dom_bbs, bb);
5355 for (son = first_dom_son (CDI_DOMINATORS, bb);
5356 son;
5357 son = next_dom_son (CDI_DOMINATORS, son))
5358 get_all_dominated_blocks (son, dom_bbs);
5359 }
5360
5361 /* Removes edge E and all the blocks dominated by it, and updates dominance
5362 information. The IL in E->src needs to be updated separately.
5363 If dominance info is not available, only the edge E is removed.*/
5364
5365 void
5366 remove_edge_and_dominated_blocks (edge e)
5367 {
5368 VEC (basic_block, heap) *bbs_to_remove = NULL;
5369 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
5370 bitmap df, df_idom;
5371 edge f;
5372 edge_iterator ei;
5373 bool none_removed = false;
5374 unsigned i;
5375 basic_block bb, dbb;
5376 bitmap_iterator bi;
5377
5378 if (!dom_computed[CDI_DOMINATORS])
5379 {
5380 remove_edge (e);
5381 return;
5382 }
5383
5384 /* No updating is needed for edges to exit. */
5385 if (e->dest == EXIT_BLOCK_PTR)
5386 {
5387 if (cfgcleanup_altered_bbs)
5388 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
5389 remove_edge (e);
5390 return;
5391 }
5392
5393 /* First, we find the basic blocks to remove. If E->dest has a predecessor
5394 that is not dominated by E->dest, then this set is empty. Otherwise,
5395 all the basic blocks dominated by E->dest are removed.
5396
5397 Also, to DF_IDOM we store the immediate dominators of the blocks in
5398 the dominance frontier of E (i.e., of the successors of the
5399 removed blocks, if there are any, and of E->dest otherwise). */
5400 FOR_EACH_EDGE (f, ei, e->dest->preds)
5401 {
5402 if (f == e)
5403 continue;
5404
5405 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
5406 {
5407 none_removed = true;
5408 break;
5409 }
5410 }
5411
5412 df = BITMAP_ALLOC (NULL);
5413 df_idom = BITMAP_ALLOC (NULL);
5414
5415 if (none_removed)
5416 bitmap_set_bit (df_idom,
5417 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
5418 else
5419 {
5420 get_all_dominated_blocks (e->dest, &bbs_to_remove);
5421 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
5422 {
5423 FOR_EACH_EDGE (f, ei, bb->succs)
5424 {
5425 if (f->dest != EXIT_BLOCK_PTR)
5426 bitmap_set_bit (df, f->dest->index);
5427 }
5428 }
5429 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
5430 bitmap_clear_bit (df, bb->index);
5431
5432 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
5433 {
5434 bb = BASIC_BLOCK (i);
5435 bitmap_set_bit (df_idom,
5436 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
5437 }
5438 }
5439
5440 if (cfgcleanup_altered_bbs)
5441 {
5442 /* Record the set of the altered basic blocks. */
5443 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
5444 bitmap_ior_into (cfgcleanup_altered_bbs, df);
5445 }
5446
5447 /* Remove E and the cancelled blocks. */
5448 if (none_removed)
5449 remove_edge (e);
5450 else
5451 {
5452 for (i = 0; VEC_iterate (basic_block, bbs_to_remove, i, bb); i++)
5453 delete_basic_block (bb);
5454 }
5455
5456 /* Update the dominance information. The immediate dominator may change only
5457 for blocks whose immediate dominator belongs to DF_IDOM:
5458
5459 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
5460 removal. Let Z the arbitrary block such that idom(Z) = Y and
5461 Z dominates X after the removal. Before removal, there exists a path P
5462 from Y to X that avoids Z. Let F be the last edge on P that is
5463 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
5464 dominates W, and because of P, Z does not dominate W), and W belongs to
5465 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
5466 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
5467 {
5468 bb = BASIC_BLOCK (i);
5469 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
5470 dbb;
5471 dbb = next_dom_son (CDI_DOMINATORS, dbb))
5472 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
5473 }
5474
5475 iterate_fix_dominators (CDI_DOMINATORS,
5476 VEC_address (basic_block, bbs_to_fix_dom),
5477 VEC_length (basic_block, bbs_to_fix_dom));
5478
5479 BITMAP_FREE (df);
5480 BITMAP_FREE (df_idom);
5481 VEC_free (basic_block, heap, bbs_to_remove);
5482 VEC_free (basic_block, heap, bbs_to_fix_dom);
5483 }
5484
5485 /* Purge dead EH edges from basic block BB. */
5486
5487 bool
5488 tree_purge_dead_eh_edges (basic_block bb)
5489 {
5490 bool changed = false;
5491 edge e;
5492 edge_iterator ei;
5493 tree stmt = last_stmt (bb);
5494
5495 if (stmt && tree_can_throw_internal (stmt))
5496 return false;
5497
5498 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5499 {
5500 if (e->flags & EDGE_EH)
5501 {
5502 remove_edge_and_dominated_blocks (e);
5503 changed = true;
5504 }
5505 else
5506 ei_next (&ei);
5507 }
5508
5509 return changed;
5510 }
5511
5512 bool
5513 tree_purge_all_dead_eh_edges (bitmap blocks)
5514 {
5515 bool changed = false;
5516 unsigned i;
5517 bitmap_iterator bi;
5518
5519 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
5520 {
5521 changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i));
5522 }
5523
5524 return changed;
5525 }
5526
5527 /* This function is called whenever a new edge is created or
5528 redirected. */
5529
5530 static void
5531 tree_execute_on_growing_pred (edge e)
5532 {
5533 basic_block bb = e->dest;
5534
5535 if (phi_nodes (bb))
5536 reserve_phi_args_for_new_edge (bb);
5537 }
5538
5539 /* This function is called immediately before edge E is removed from
5540 the edge vector E->dest->preds. */
5541
5542 static void
5543 tree_execute_on_shrinking_pred (edge e)
5544 {
5545 if (phi_nodes (e->dest))
5546 remove_phi_args (e);
5547 }
5548
5549 /*---------------------------------------------------------------------------
5550 Helper functions for Loop versioning
5551 ---------------------------------------------------------------------------*/
5552
5553 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
5554 of 'first'. Both of them are dominated by 'new_head' basic block. When
5555 'new_head' was created by 'second's incoming edge it received phi arguments
5556 on the edge by split_edge(). Later, additional edge 'e' was created to
5557 connect 'new_head' and 'first'. Now this routine adds phi args on this
5558 additional edge 'e' that new_head to second edge received as part of edge
5559 splitting.
5560 */
5561
5562 static void
5563 tree_lv_adjust_loop_header_phi (basic_block first, basic_block second,
5564 basic_block new_head, edge e)
5565 {
5566 tree phi1, phi2;
5567 edge e2 = find_edge (new_head, second);
5568
5569 /* Because NEW_HEAD has been created by splitting SECOND's incoming
5570 edge, we should always have an edge from NEW_HEAD to SECOND. */
5571 gcc_assert (e2 != NULL);
5572
5573 /* Browse all 'second' basic block phi nodes and add phi args to
5574 edge 'e' for 'first' head. PHI args are always in correct order. */
5575
5576 for (phi2 = phi_nodes (second), phi1 = phi_nodes (first);
5577 phi2 && phi1;
5578 phi2 = PHI_CHAIN (phi2), phi1 = PHI_CHAIN (phi1))
5579 {
5580 tree def = PHI_ARG_DEF (phi2, e2->dest_idx);
5581 add_phi_arg (phi1, def, e);
5582 }
5583 }
5584
5585 /* Adds a if else statement to COND_BB with condition COND_EXPR.
5586 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
5587 the destination of the ELSE part. */
5588 static void
5589 tree_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
5590 basic_block second_head ATTRIBUTE_UNUSED,
5591 basic_block cond_bb, void *cond_e)
5592 {
5593 block_stmt_iterator bsi;
5594 tree new_cond_expr = NULL_TREE;
5595 tree cond_expr = (tree) cond_e;
5596 edge e0;
5597
5598 /* Build new conditional expr */
5599 new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr,
5600 NULL_TREE, NULL_TREE);
5601
5602 /* Add new cond in cond_bb. */
5603 bsi = bsi_start (cond_bb);
5604 bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
5605 /* Adjust edges appropriately to connect new head with first head
5606 as well as second head. */
5607 e0 = single_succ_edge (cond_bb);
5608 e0->flags &= ~EDGE_FALLTHRU;
5609 e0->flags |= EDGE_FALSE_VALUE;
5610 }
5611
5612 struct cfg_hooks tree_cfg_hooks = {
5613 "tree",
5614 tree_verify_flow_info,
5615 tree_dump_bb, /* dump_bb */
5616 create_bb, /* create_basic_block */
5617 tree_redirect_edge_and_branch,/* redirect_edge_and_branch */
5618 tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force */
5619 tree_can_remove_branch_p, /* can_remove_branch_p */
5620 remove_bb, /* delete_basic_block */
5621 tree_split_block, /* split_block */
5622 tree_move_block_after, /* move_block_after */
5623 tree_can_merge_blocks_p, /* can_merge_blocks_p */
5624 tree_merge_blocks, /* merge_blocks */
5625 tree_predict_edge, /* predict_edge */
5626 tree_predicted_by_p, /* predicted_by_p */
5627 tree_can_duplicate_bb_p, /* can_duplicate_block_p */
5628 tree_duplicate_bb, /* duplicate_block */
5629 tree_split_edge, /* split_edge */
5630 tree_make_forwarder_block, /* make_forward_block */
5631 NULL, /* tidy_fallthru_edge */
5632 tree_block_ends_with_call_p, /* block_ends_with_call_p */
5633 tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
5634 tree_flow_call_edges_add, /* flow_call_edges_add */
5635 tree_execute_on_growing_pred, /* execute_on_growing_pred */
5636 tree_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
5637 tree_duplicate_loop_to_header_edge, /* duplicate loop for trees */
5638 tree_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5639 tree_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
5640 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
5641 flush_pending_stmts /* flush_pending_stmts */
5642 };
5643
5644
5645 /* Split all critical edges. */
5646
5647 static unsigned int
5648 split_critical_edges (void)
5649 {
5650 basic_block bb;
5651 edge e;
5652 edge_iterator ei;
5653
5654 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
5655 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
5656 mappings around the calls to split_edge. */
5657 start_recording_case_labels ();
5658 FOR_ALL_BB (bb)
5659 {
5660 FOR_EACH_EDGE (e, ei, bb->succs)
5661 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
5662 {
5663 split_edge (e);
5664 }
5665 }
5666 end_recording_case_labels ();
5667 return 0;
5668 }
5669
5670 struct tree_opt_pass pass_split_crit_edges =
5671 {
5672 "crited", /* name */
5673 NULL, /* gate */
5674 split_critical_edges, /* execute */
5675 NULL, /* sub */
5676 NULL, /* next */
5677 0, /* static_pass_number */
5678 TV_TREE_SPLIT_EDGES, /* tv_id */
5679 PROP_cfg, /* properties required */
5680 PROP_no_crit_edges, /* properties_provided */
5681 0, /* properties_destroyed */
5682 0, /* todo_flags_start */
5683 TODO_dump_func, /* todo_flags_finish */
5684 0 /* letter */
5685 };
5686
5687 \f
5688 /* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
5689 a temporary, make sure and register it to be renamed if necessary,
5690 and finally return the temporary. Put the statements to compute
5691 EXP before the current statement in BSI. */
5692
5693 tree
5694 gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
5695 {
5696 tree t, new_stmt, orig_stmt;
5697
5698 if (is_gimple_val (exp))
5699 return exp;
5700
5701 t = make_rename_temp (type, NULL);
5702 new_stmt = build_gimple_modify_stmt (t, exp);
5703
5704 orig_stmt = bsi_stmt (*bsi);
5705 SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
5706 TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);
5707
5708 bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
5709 if (gimple_in_ssa_p (cfun))
5710 mark_symbols_for_renaming (new_stmt);
5711
5712 return t;
5713 }
5714
5715 /* Build a ternary operation and gimplify it. Emit code before BSI.
5716 Return the gimple_val holding the result. */
5717
5718 tree
5719 gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
5720 tree type, tree a, tree b, tree c)
5721 {
5722 tree ret;
5723
5724 ret = fold_build3 (code, type, a, b, c);
5725 STRIP_NOPS (ret);
5726
5727 return gimplify_val (bsi, type, ret);
5728 }
5729
5730 /* Build a binary operation and gimplify it. Emit code before BSI.
5731 Return the gimple_val holding the result. */
5732
5733 tree
5734 gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
5735 tree type, tree a, tree b)
5736 {
5737 tree ret;
5738
5739 ret = fold_build2 (code, type, a, b);
5740 STRIP_NOPS (ret);
5741
5742 return gimplify_val (bsi, type, ret);
5743 }
5744
5745 /* Build a unary operation and gimplify it. Emit code before BSI.
5746 Return the gimple_val holding the result. */
5747
5748 tree
5749 gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
5750 tree a)
5751 {
5752 tree ret;
5753
5754 ret = fold_build1 (code, type, a);
5755 STRIP_NOPS (ret);
5756
5757 return gimplify_val (bsi, type, ret);
5758 }
5759
5760
5761 \f
5762 /* Emit return warnings. */
5763
5764 static unsigned int
5765 execute_warn_function_return (void)
5766 {
5767 #ifdef USE_MAPPED_LOCATION
5768 source_location location;
5769 #else
5770 location_t *locus;
5771 #endif
5772 tree last;
5773 edge e;
5774 edge_iterator ei;
5775
5776 /* If we have a path to EXIT, then we do return. */
5777 if (TREE_THIS_VOLATILE (cfun->decl)
5778 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
5779 {
5780 #ifdef USE_MAPPED_LOCATION
5781 location = UNKNOWN_LOCATION;
5782 #else
5783 locus = NULL;
5784 #endif
5785 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5786 {
5787 last = last_stmt (e->src);
5788 if (TREE_CODE (last) == RETURN_EXPR
5789 #ifdef USE_MAPPED_LOCATION
5790 && (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
5791 #else
5792 && (locus = EXPR_LOCUS (last)) != NULL)
5793 #endif
5794 break;
5795 }
5796 #ifdef USE_MAPPED_LOCATION
5797 if (location == UNKNOWN_LOCATION)
5798 location = cfun->function_end_locus;
5799 warning (0, "%H%<noreturn%> function does return", &location);
5800 #else
5801 if (!locus)
5802 locus = &cfun->function_end_locus;
5803 warning (0, "%H%<noreturn%> function does return", locus);
5804 #endif
5805 }
5806
5807 /* If we see "return;" in some basic block, then we do reach the end
5808 without returning a value. */
5809 else if (warn_return_type
5810 && !TREE_NO_WARNING (cfun->decl)
5811 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
5812 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
5813 {
5814 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5815 {
5816 tree last = last_stmt (e->src);
5817 if (TREE_CODE (last) == RETURN_EXPR
5818 && TREE_OPERAND (last, 0) == NULL
5819 && !TREE_NO_WARNING (last))
5820 {
5821 #ifdef USE_MAPPED_LOCATION
5822 location = EXPR_LOCATION (last);
5823 if (location == UNKNOWN_LOCATION)
5824 location = cfun->function_end_locus;
5825 warning (0, "%Hcontrol reaches end of non-void function", &location);
5826 #else
5827 locus = EXPR_LOCUS (last);
5828 if (!locus)
5829 locus = &cfun->function_end_locus;
5830 warning (0, "%Hcontrol reaches end of non-void function", locus);
5831 #endif
5832 TREE_NO_WARNING (cfun->decl) = 1;
5833 break;
5834 }
5835 }
5836 }
5837 return 0;
5838 }
5839
5840
5841 /* Given a basic block B which ends with a conditional and has
5842 precisely two successors, determine which of the edges is taken if
5843 the conditional is true and which is taken if the conditional is
5844 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
5845
5846 void
5847 extract_true_false_edges_from_block (basic_block b,
5848 edge *true_edge,
5849 edge *false_edge)
5850 {
5851 edge e = EDGE_SUCC (b, 0);
5852
5853 if (e->flags & EDGE_TRUE_VALUE)
5854 {
5855 *true_edge = e;
5856 *false_edge = EDGE_SUCC (b, 1);
5857 }
5858 else
5859 {
5860 *false_edge = e;
5861 *true_edge = EDGE_SUCC (b, 1);
5862 }
5863 }
5864
5865 struct tree_opt_pass pass_warn_function_return =
5866 {
5867 NULL, /* name */
5868 NULL, /* gate */
5869 execute_warn_function_return, /* execute */
5870 NULL, /* sub */
5871 NULL, /* next */
5872 0, /* static_pass_number */
5873 0, /* tv_id */
5874 PROP_cfg, /* properties_required */
5875 0, /* properties_provided */
5876 0, /* properties_destroyed */
5877 0, /* todo_flags_start */
5878 0, /* todo_flags_finish */
5879 0 /* letter */
5880 };
5881
5882 /* Emit noreturn warnings. */
5883
5884 static unsigned int
5885 execute_warn_function_noreturn (void)
5886 {
5887 if (warn_missing_noreturn
5888 && !TREE_THIS_VOLATILE (cfun->decl)
5889 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
5890 && !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
5891 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
5892 "for attribute %<noreturn%>",
5893 cfun->decl);
5894 return 0;
5895 }
5896
5897 struct tree_opt_pass pass_warn_function_noreturn =
5898 {
5899 NULL, /* name */
5900 NULL, /* gate */
5901 execute_warn_function_noreturn, /* execute */
5902 NULL, /* sub */
5903 NULL, /* next */
5904 0, /* static_pass_number */
5905 0, /* tv_id */
5906 PROP_cfg, /* properties_required */
5907 0, /* properties_provided */
5908 0, /* properties_destroyed */
5909 0, /* todo_flags_start */
5910 0, /* todo_flags_finish */
5911 0 /* letter */
5912 };