Delete VEC_INTERLEAVE_*_EXPR.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
121
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
131
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
134 {
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
145
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
152
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
162 }
163
164 void
165 init_empty_tree_cfg (void)
166 {
167 init_empty_tree_cfg_for_function (cfun);
168 }
169
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
173
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
176
177 static void
178 build_gimple_cfg (gimple_seq seq)
179 {
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
182
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184
185 init_empty_tree_cfg ();
186
187 found_computed_goto = 0;
188 make_blocks (seq);
189
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
197
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
201
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
208
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
213
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
220
221 /* Debugging dumps. */
222
223 /* Write the flowgraph to a VCG file. */
224 {
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
228 {
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
231 }
232 }
233 }
234
235 static unsigned int
236 execute_build_cfg (void)
237 {
238 gimple_seq body = gimple_body (current_function_decl);
239
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
243 {
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
246 }
247 return 0;
248 }
249
250 struct gimple_opt_pass pass_build_cfg =
251 {
252 {
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 case GIMPLE_TRANSACTION:
671 {
672 tree abort_label = gimple_transaction_label (last);
673 if (abort_label)
674 make_edge (bb, label_to_block (abort_label), 0);
675 fallthru = true;
676 }
677 break;
678
679 default:
680 gcc_assert (!stmt_ends_bb_p (last));
681 fallthru = true;
682 }
683 }
684 else
685 fallthru = true;
686
687 if (fallthru)
688 {
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
690 if (last)
691 assign_discriminator (gimple_location (last), bb->next_bb);
692 }
693 }
694
695 if (root_omp_region)
696 free_omp_regions ();
697
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
700 }
701
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
704
705 static unsigned int
706 locus_map_hash (const void *item)
707 {
708 return ((const struct locus_discrim_map *) item)->locus;
709 }
710
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
713
714 static int
715 locus_map_eq (const void *va, const void *vb)
716 {
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
720 }
721
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
725 profiling. */
726
727 static int
728 next_discriminator_for_locus (location_t locus)
729 {
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
732
733 item.locus = locus;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
738 gcc_assert (slot);
739 if (*slot == HTAB_EMPTY_ENTRY)
740 {
741 *slot = XNEW (struct locus_discrim_map);
742 gcc_assert (*slot);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
745 }
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
748 }
749
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
751
752 static bool
753 same_line_p (location_t locus1, location_t locus2)
754 {
755 expanded_location from, to;
756
757 if (locus1 == locus2)
758 return true;
759
760 from = expand_location (locus1);
761 to = expand_location (locus2);
762
763 if (from.line != to.line)
764 return false;
765 if (from.file == to.file)
766 return true;
767 return (from.file != NULL
768 && to.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
770 }
771
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
774
775 static void
776 assign_discriminator (location_t locus, basic_block bb)
777 {
778 gimple first_in_to_bb, last_in_to_bb;
779
780 if (locus == 0 || bb->discriminator != 0)
781 return;
782
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
788 }
789
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
791
792 static void
793 make_cond_expr_edges (basic_block bb)
794 {
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
799 edge e;
800 location_t entry_locus;
801
802 gcc_assert (entry);
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
804
805 entry_locus = gimple_location (entry);
806
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
814
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
818 if (e->goto_locus)
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
821 if (e)
822 {
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
825 if (e->goto_locus)
826 e->goto_block = gimple_block (else_stmt);
827 }
828
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
832 }
833
834
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
837
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
840 element. */
841
842 static bool
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
845 {
846 tree t, next;
847
848 for (t = (tree) *value; t; t = next)
849 {
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
852 }
853
854 *value = NULL;
855 return true;
856 }
857
858 /* Start recording information mapping edges to case labels. */
859
860 void
861 start_recording_case_labels (void)
862 {
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
866 }
867
868 /* Return nonzero if we are recording information for case labels. */
869
870 static bool
871 recording_case_labels_p (void)
872 {
873 return (edge_to_cases != NULL);
874 }
875
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
878 void
879 end_recording_case_labels (void)
880 {
881 bitmap_iterator bi;
882 unsigned i;
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
887 {
888 basic_block bb = BASIC_BLOCK (i);
889 if (bb)
890 {
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
894 }
895 }
896 BITMAP_FREE (touched_switch_bbs);
897 }
898
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
901
902 Otherwise return NULL. */
903
904 static tree
905 get_cases_for_edge (edge e, gimple t)
906 {
907 void **slot;
908 size_t i, n;
909
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
913 return NULL;
914
915 slot = pointer_map_contains (edge_to_cases, e);
916 if (slot)
917 return (tree) *slot;
918
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
922
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
925 {
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
930
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
932 a new chain. */
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
935 *slot = elt;
936 }
937
938 return (tree) *pointer_map_contains (edge_to_cases, e);
939 }
940
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
942
943 static void
944 make_gimple_switch_edges (basic_block bb)
945 {
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
948 size_t i, n;
949
950 entry_locus = gimple_location (entry);
951
952 n = gimple_switch_num_labels (entry);
953
954 for (i = 0; i < n; ++i)
955 {
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
960 }
961 }
962
963
964 /* Return the basic block holding label DEST. */
965
966 basic_block
967 label_to_block_fn (struct function *ifun, tree dest)
968 {
969 int uid = LABEL_DECL_UID (dest);
970
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
975 {
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
977 gimple stmt;
978
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
982 }
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
985 return NULL;
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
987 }
988
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
991
992 void
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
994 {
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
997
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1000 {
1001 gimple label_stmt = gsi_stmt (gsi);
1002 tree target;
1003
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1005 break;
1006
1007 target = gimple_label_label (label_stmt);
1008
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1013 {
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* Create edges for a goto statement at block BB. */
1021
1022 static void
1023 make_goto_expr_edges (basic_block bb)
1024 {
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1027
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1030 {
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1036 if (e->goto_locus)
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1039 return;
1040 }
1041
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1044 }
1045
1046 /* Create edges for an asm statement with labels at block BB. */
1047
1048 static void
1049 make_gimple_asm_edges (basic_block bb)
1050 {
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1054
1055 for (i = 0; i < n; ++i)
1056 {
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1061 }
1062 }
1063
1064 /*---------------------------------------------------------------------------
1065 Flowgraph analysis
1066 ---------------------------------------------------------------------------*/
1067
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1075
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1078 {
1079 /* The label. */
1080 tree label;
1081
1082 /* True if the label is referenced from somewhere. */
1083 bool used;
1084 } *label_for_bb;
1085
1086 /* Given LABEL return the first label in the same basic block. */
1087
1088 static tree
1089 main_block_label (tree label)
1090 {
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1093
1094 /* label_to_block possibly inserted undefined label into the chain. */
1095 if (!main_label)
1096 {
1097 label_for_bb[bb->index].label = label;
1098 main_label = label;
1099 }
1100
1101 label_for_bb[bb->index].used = true;
1102 return main_label;
1103 }
1104
1105 /* Clean up redundant labels within the exception tree. */
1106
1107 static void
1108 cleanup_dead_labels_eh (void)
1109 {
1110 eh_landing_pad lp;
1111 eh_region r;
1112 tree lab;
1113 int i;
1114
1115 if (cfun->eh == NULL)
1116 return;
1117
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1120 {
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1123 {
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1126 }
1127 }
1128
1129 FOR_ALL_EH_REGION (r)
1130 switch (r->type)
1131 {
1132 case ERT_CLEANUP:
1133 case ERT_MUST_NOT_THROW:
1134 break;
1135
1136 case ERT_TRY:
1137 {
1138 eh_catch c;
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1140 {
1141 lab = c->label;
1142 if (lab)
1143 c->label = main_block_label (lab);
1144 }
1145 }
1146 break;
1147
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1150 if (lab)
1151 r->u.allowed.label = main_block_label (lab);
1152 break;
1153 }
1154 }
1155
1156
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1161
1162 void
1163 cleanup_dead_labels (void)
1164 {
1165 basic_block bb;
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1167
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1170 FOR_EACH_BB (bb)
1171 {
1172 gimple_stmt_iterator i;
1173
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1175 {
1176 tree label;
1177 gimple stmt = gsi_stmt (i);
1178
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1180 break;
1181
1182 label = gimple_label_label (stmt);
1183
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1187 {
1188 label_for_bb[bb->index].label = label;
1189 continue;
1190 }
1191
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1197 {
1198 label_for_bb[bb->index].label = label;
1199 break;
1200 }
1201 }
1202 }
1203
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1206 FOR_EACH_BB (bb)
1207 {
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1210
1211 if (!stmt)
1212 continue;
1213
1214 switch (gimple_code (stmt))
1215 {
1216 case GIMPLE_COND:
1217 label = gimple_cond_true_label (stmt);
1218 if (label)
1219 {
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1223 }
1224
1225 label = gimple_cond_false_label (stmt);
1226 if (label)
1227 {
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1231 }
1232 break;
1233
1234 case GIMPLE_SWITCH:
1235 {
1236 size_t i, n = gimple_switch_num_labels (stmt);
1237
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1240 {
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1246 }
1247 break;
1248 }
1249
1250 case GIMPLE_ASM:
1251 {
1252 int i, n = gimple_asm_nlabels (stmt);
1253
1254 for (i = 0; i < n; ++i)
1255 {
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1259 }
1260 break;
1261 }
1262
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1265 case GIMPLE_GOTO:
1266 if (!computed_goto_p (stmt))
1267 {
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1272 }
1273 break;
1274
1275 case GIMPLE_TRANSACTION:
1276 {
1277 tree label = gimple_transaction_label (stmt);
1278 if (label)
1279 {
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1283 }
1284 }
1285 break;
1286
1287 default:
1288 break;
1289 }
1290 }
1291
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1294
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1298 FOR_EACH_BB (bb)
1299 {
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1302
1303 if (!label_for_this_bb)
1304 continue;
1305
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1309
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1311 {
1312 tree label;
1313 gimple stmt = gsi_stmt (i);
1314
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1316 break;
1317
1318 label = gimple_label_label (stmt);
1319
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1324 gsi_next (&i);
1325 else
1326 gsi_remove (&i, true);
1327 }
1328 }
1329
1330 free (label_for_bb);
1331 }
1332
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1336
1337 static void
1338 group_case_labels_stmt (gimple stmt)
1339 {
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1344 bool has_default;
1345
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1348 away */
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1351 {
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1354 has_default = true;
1355 }
1356 else
1357 has_default = false;
1358
1359 /* Look for possible opportunities to merge cases. */
1360 if (has_default)
1361 i = 1;
1362 else
1363 i = 0;
1364 while (i < old_size)
1365 {
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1368
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1371
1372 /* Discard cases that have the same destination as the
1373 default case. */
1374 if (base_label == default_label)
1375 {
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 i++;
1378 new_size--;
1379 continue;
1380 }
1381
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1385 i++;
1386
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1391 {
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1395 double_int_one);
1396
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1401 bhp1))
1402 {
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1407 new_size--;
1408 i++;
1409 }
1410 else
1411 break;
1412 }
1413 }
1414
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1418 {
1419 while (! gimple_switch_label (stmt, j))
1420 j++;
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1423 }
1424
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1427 }
1428
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1431 same label. */
1432
1433 void
1434 group_case_labels (void)
1435 {
1436 basic_block bb;
1437
1438 FOR_EACH_BB (bb)
1439 {
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1443 }
1444 }
1445
1446 /* Checks whether we can merge block B into block A. */
1447
1448 static bool
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1450 {
1451 gimple stmt;
1452 gimple_stmt_iterator gsi;
1453 gimple_seq phis;
1454
1455 if (!single_succ_p (a))
1456 return false;
1457
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1459 return false;
1460
1461 if (single_succ (a) != b)
1462 return false;
1463
1464 if (!single_pred_p (b))
1465 return false;
1466
1467 if (b == EXIT_BLOCK_PTR)
1468 return false;
1469
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1474 return false;
1475
1476 /* Do not allow a block with only a non-local label to be merged. */
1477 if (stmt
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1480 return false;
1481
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1484 {
1485 tree lab;
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1488 break;
1489 lab = gimple_label_label (stmt);
1490
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1493 return false;
1494 }
1495
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1498 return false;
1499
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1506 return false;
1507
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1509 if (!optimize
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1511 {
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1522 return false;
1523 }
1524
1525 return true;
1526 }
1527
1528 /* Return true if the var whose chain of uses starts at PTR has no
1529 nondebug uses. */
1530 bool
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1532 {
1533 const ssa_use_operand_t *ptr;
1534
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1537 return false;
1538
1539 return true;
1540 }
1541
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1545 bool
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1548 {
1549 ssa_use_operand_t *ptr, *single_use = 0;
1550
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1553 {
1554 if (single_use)
1555 {
1556 single_use = NULL;
1557 break;
1558 }
1559 single_use = ptr;
1560 }
1561
1562 if (use_p)
1563 *use_p = single_use;
1564
1565 if (stmt)
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1567
1568 return !!single_use;
1569 }
1570
1571 /* Replaces all uses of NAME by VAL. */
1572
1573 void
1574 replace_uses_by (tree name, tree val)
1575 {
1576 imm_use_iterator imm_iter;
1577 use_operand_p use;
1578 gimple stmt;
1579 edge e;
1580
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1582 {
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1584 {
1585 replace_exp (use, val);
1586
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1588 {
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1591 {
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1597 }
1598 }
1599 }
1600
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1602 {
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1604 gimple orig_stmt = stmt;
1605 size_t i;
1606
1607 fold_stmt (&gsi);
1608 stmt = gsi_stmt (gsi);
1609 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1610 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1611
1612 /* FIXME. This should go in update_stmt. */
1613 for (i = 0; i < gimple_num_ops (stmt); i++)
1614 {
1615 tree op = gimple_op (stmt, i);
1616 /* Operands may be empty here. For example, the labels
1617 of a GIMPLE_COND are nulled out following the creation
1618 of the corresponding CFG edges. */
1619 if (op && TREE_CODE (op) == ADDR_EXPR)
1620 recompute_tree_invariant_for_addr_expr (op);
1621 }
1622
1623 maybe_clean_or_replace_eh_stmt (orig_stmt, stmt);
1624 update_stmt (stmt);
1625 }
1626 }
1627
1628 gcc_assert (has_zero_uses (name));
1629
1630 /* Also update the trees stored in loop structures. */
1631 if (current_loops)
1632 {
1633 struct loop *loop;
1634 loop_iterator li;
1635
1636 FOR_EACH_LOOP (li, loop, 0)
1637 {
1638 substitute_in_loop_info (loop, name, val);
1639 }
1640 }
1641 }
1642
1643 /* Merge block B into block A. */
1644
1645 static void
1646 gimple_merge_blocks (basic_block a, basic_block b)
1647 {
1648 gimple_stmt_iterator last, gsi, psi;
1649 gimple_seq phis = phi_nodes (b);
1650
1651 if (dump_file)
1652 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1653
1654 /* Remove all single-valued PHI nodes from block B of the form
1655 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1656 gsi = gsi_last_bb (a);
1657 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1658 {
1659 gimple phi = gsi_stmt (psi);
1660 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1661 gimple copy;
1662 bool may_replace_uses = !is_gimple_reg (def)
1663 || may_propagate_copy (def, use);
1664
1665 /* In case we maintain loop closed ssa form, do not propagate arguments
1666 of loop exit phi nodes. */
1667 if (current_loops
1668 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1669 && is_gimple_reg (def)
1670 && TREE_CODE (use) == SSA_NAME
1671 && a->loop_father != b->loop_father)
1672 may_replace_uses = false;
1673
1674 if (!may_replace_uses)
1675 {
1676 gcc_assert (is_gimple_reg (def));
1677
1678 /* Note that just emitting the copies is fine -- there is no problem
1679 with ordering of phi nodes. This is because A is the single
1680 predecessor of B, therefore results of the phi nodes cannot
1681 appear as arguments of the phi nodes. */
1682 copy = gimple_build_assign (def, use);
1683 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1684 remove_phi_node (&psi, false);
1685 }
1686 else
1687 {
1688 /* If we deal with a PHI for virtual operands, we can simply
1689 propagate these without fussing with folding or updating
1690 the stmt. */
1691 if (!is_gimple_reg (def))
1692 {
1693 imm_use_iterator iter;
1694 use_operand_p use_p;
1695 gimple stmt;
1696
1697 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1698 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1699 SET_USE (use_p, use);
1700
1701 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1702 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1703 }
1704 else
1705 replace_uses_by (def, use);
1706
1707 remove_phi_node (&psi, true);
1708 }
1709 }
1710
1711 /* Ensure that B follows A. */
1712 move_block_after (b, a);
1713
1714 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1715 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1716
1717 /* Remove labels from B and set gimple_bb to A for other statements. */
1718 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1719 {
1720 gimple stmt = gsi_stmt (gsi);
1721 if (gimple_code (stmt) == GIMPLE_LABEL)
1722 {
1723 tree label = gimple_label_label (stmt);
1724 int lp_nr;
1725
1726 gsi_remove (&gsi, false);
1727
1728 /* Now that we can thread computed gotos, we might have
1729 a situation where we have a forced label in block B
1730 However, the label at the start of block B might still be
1731 used in other ways (think about the runtime checking for
1732 Fortran assigned gotos). So we can not just delete the
1733 label. Instead we move the label to the start of block A. */
1734 if (FORCED_LABEL (label))
1735 {
1736 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1737 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1738 }
1739 /* Other user labels keep around in a form of a debug stmt. */
1740 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1741 {
1742 gimple dbg = gimple_build_debug_bind (label,
1743 integer_zero_node,
1744 stmt);
1745 gimple_debug_bind_reset_value (dbg);
1746 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1747 }
1748
1749 lp_nr = EH_LANDING_PAD_NR (label);
1750 if (lp_nr)
1751 {
1752 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1753 lp->post_landing_pad = NULL;
1754 }
1755 }
1756 else
1757 {
1758 gimple_set_bb (stmt, a);
1759 gsi_next (&gsi);
1760 }
1761 }
1762
1763 /* Merge the sequences. */
1764 last = gsi_last_bb (a);
1765 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1766 set_bb_seq (b, NULL);
1767
1768 if (cfgcleanup_altered_bbs)
1769 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1770 }
1771
1772
1773 /* Return the one of two successors of BB that is not reachable by a
1774 complex edge, if there is one. Else, return BB. We use
1775 this in optimizations that use post-dominators for their heuristics,
1776 to catch the cases in C++ where function calls are involved. */
1777
1778 basic_block
1779 single_noncomplex_succ (basic_block bb)
1780 {
1781 edge e0, e1;
1782 if (EDGE_COUNT (bb->succs) != 2)
1783 return bb;
1784
1785 e0 = EDGE_SUCC (bb, 0);
1786 e1 = EDGE_SUCC (bb, 1);
1787 if (e0->flags & EDGE_COMPLEX)
1788 return e1->dest;
1789 if (e1->flags & EDGE_COMPLEX)
1790 return e0->dest;
1791
1792 return bb;
1793 }
1794
1795 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1796
1797 void
1798 notice_special_calls (gimple call)
1799 {
1800 int flags = gimple_call_flags (call);
1801
1802 if (flags & ECF_MAY_BE_ALLOCA)
1803 cfun->calls_alloca = true;
1804 if (flags & ECF_RETURNS_TWICE)
1805 cfun->calls_setjmp = true;
1806 }
1807
1808
1809 /* Clear flags set by notice_special_calls. Used by dead code removal
1810 to update the flags. */
1811
1812 void
1813 clear_special_calls (void)
1814 {
1815 cfun->calls_alloca = false;
1816 cfun->calls_setjmp = false;
1817 }
1818
1819 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1820
1821 static void
1822 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1823 {
1824 /* Since this block is no longer reachable, we can just delete all
1825 of its PHI nodes. */
1826 remove_phi_nodes (bb);
1827
1828 /* Remove edges to BB's successors. */
1829 while (EDGE_COUNT (bb->succs) > 0)
1830 remove_edge (EDGE_SUCC (bb, 0));
1831 }
1832
1833
1834 /* Remove statements of basic block BB. */
1835
1836 static void
1837 remove_bb (basic_block bb)
1838 {
1839 gimple_stmt_iterator i;
1840
1841 if (dump_file)
1842 {
1843 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1844 if (dump_flags & TDF_DETAILS)
1845 {
1846 dump_bb (bb, dump_file, 0);
1847 fprintf (dump_file, "\n");
1848 }
1849 }
1850
1851 if (current_loops)
1852 {
1853 struct loop *loop = bb->loop_father;
1854
1855 /* If a loop gets removed, clean up the information associated
1856 with it. */
1857 if (loop->latch == bb
1858 || loop->header == bb)
1859 free_numbers_of_iterations_estimates_loop (loop);
1860 }
1861
1862 /* Remove all the instructions in the block. */
1863 if (bb_seq (bb) != NULL)
1864 {
1865 /* Walk backwards so as to get a chance to substitute all
1866 released DEFs into debug stmts. See
1867 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1868 details. */
1869 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1870 {
1871 gimple stmt = gsi_stmt (i);
1872 if (gimple_code (stmt) == GIMPLE_LABEL
1873 && (FORCED_LABEL (gimple_label_label (stmt))
1874 || DECL_NONLOCAL (gimple_label_label (stmt))))
1875 {
1876 basic_block new_bb;
1877 gimple_stmt_iterator new_gsi;
1878
1879 /* A non-reachable non-local label may still be referenced.
1880 But it no longer needs to carry the extra semantics of
1881 non-locality. */
1882 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1883 {
1884 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1885 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1886 }
1887
1888 new_bb = bb->prev_bb;
1889 new_gsi = gsi_start_bb (new_bb);
1890 gsi_remove (&i, false);
1891 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1892 }
1893 else
1894 {
1895 /* Release SSA definitions if we are in SSA. Note that we
1896 may be called when not in SSA. For example,
1897 final_cleanup calls this function via
1898 cleanup_tree_cfg. */
1899 if (gimple_in_ssa_p (cfun))
1900 release_defs (stmt);
1901
1902 gsi_remove (&i, true);
1903 }
1904
1905 if (gsi_end_p (i))
1906 i = gsi_last_bb (bb);
1907 else
1908 gsi_prev (&i);
1909 }
1910 }
1911
1912 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1913 bb->il.gimple = NULL;
1914 }
1915
1916
1917 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1918 predicate VAL, return the edge that will be taken out of the block.
1919 If VAL does not match a unique edge, NULL is returned. */
1920
1921 edge
1922 find_taken_edge (basic_block bb, tree val)
1923 {
1924 gimple stmt;
1925
1926 stmt = last_stmt (bb);
1927
1928 gcc_assert (stmt);
1929 gcc_assert (is_ctrl_stmt (stmt));
1930
1931 if (val == NULL)
1932 return NULL;
1933
1934 if (!is_gimple_min_invariant (val))
1935 return NULL;
1936
1937 if (gimple_code (stmt) == GIMPLE_COND)
1938 return find_taken_edge_cond_expr (bb, val);
1939
1940 if (gimple_code (stmt) == GIMPLE_SWITCH)
1941 return find_taken_edge_switch_expr (bb, val);
1942
1943 if (computed_goto_p (stmt))
1944 {
1945 /* Only optimize if the argument is a label, if the argument is
1946 not a label then we can not construct a proper CFG.
1947
1948 It may be the case that we only need to allow the LABEL_REF to
1949 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1950 appear inside a LABEL_EXPR just to be safe. */
1951 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1952 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1953 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1954 return NULL;
1955 }
1956
1957 gcc_unreachable ();
1958 }
1959
1960 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1961 statement, determine which of the outgoing edges will be taken out of the
1962 block. Return NULL if either edge may be taken. */
1963
1964 static edge
1965 find_taken_edge_computed_goto (basic_block bb, tree val)
1966 {
1967 basic_block dest;
1968 edge e = NULL;
1969
1970 dest = label_to_block (val);
1971 if (dest)
1972 {
1973 e = find_edge (bb, dest);
1974 gcc_assert (e != NULL);
1975 }
1976
1977 return e;
1978 }
1979
1980 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1981 statement, determine which of the two edges will be taken out of the
1982 block. Return NULL if either edge may be taken. */
1983
1984 static edge
1985 find_taken_edge_cond_expr (basic_block bb, tree val)
1986 {
1987 edge true_edge, false_edge;
1988
1989 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1990
1991 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1992 return (integer_zerop (val) ? false_edge : true_edge);
1993 }
1994
1995 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1996 statement, determine which edge will be taken out of the block. Return
1997 NULL if any edge may be taken. */
1998
1999 static edge
2000 find_taken_edge_switch_expr (basic_block bb, tree val)
2001 {
2002 basic_block dest_bb;
2003 edge e;
2004 gimple switch_stmt;
2005 tree taken_case;
2006
2007 switch_stmt = last_stmt (bb);
2008 taken_case = find_case_label_for_value (switch_stmt, val);
2009 dest_bb = label_to_block (CASE_LABEL (taken_case));
2010
2011 e = find_edge (bb, dest_bb);
2012 gcc_assert (e);
2013 return e;
2014 }
2015
2016
2017 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2018 We can make optimal use here of the fact that the case labels are
2019 sorted: We can do a binary search for a case matching VAL. */
2020
2021 static tree
2022 find_case_label_for_value (gimple switch_stmt, tree val)
2023 {
2024 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2025 tree default_case = gimple_switch_default_label (switch_stmt);
2026
2027 for (low = 0, high = n; high - low > 1; )
2028 {
2029 size_t i = (high + low) / 2;
2030 tree t = gimple_switch_label (switch_stmt, i);
2031 int cmp;
2032
2033 /* Cache the result of comparing CASE_LOW and val. */
2034 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2035
2036 if (cmp > 0)
2037 high = i;
2038 else
2039 low = i;
2040
2041 if (CASE_HIGH (t) == NULL)
2042 {
2043 /* A singe-valued case label. */
2044 if (cmp == 0)
2045 return t;
2046 }
2047 else
2048 {
2049 /* A case range. We can only handle integer ranges. */
2050 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2051 return t;
2052 }
2053 }
2054
2055 return default_case;
2056 }
2057
2058
2059 /* Dump a basic block on stderr. */
2060
2061 void
2062 gimple_debug_bb (basic_block bb)
2063 {
2064 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2065 }
2066
2067
2068 /* Dump basic block with index N on stderr. */
2069
2070 basic_block
2071 gimple_debug_bb_n (int n)
2072 {
2073 gimple_debug_bb (BASIC_BLOCK (n));
2074 return BASIC_BLOCK (n);
2075 }
2076
2077
2078 /* Dump the CFG on stderr.
2079
2080 FLAGS are the same used by the tree dumping functions
2081 (see TDF_* in tree-pass.h). */
2082
2083 void
2084 gimple_debug_cfg (int flags)
2085 {
2086 gimple_dump_cfg (stderr, flags);
2087 }
2088
2089
2090 /* Dump the program showing basic block boundaries on the given FILE.
2091
2092 FLAGS are the same used by the tree dumping functions (see TDF_* in
2093 tree.h). */
2094
2095 void
2096 gimple_dump_cfg (FILE *file, int flags)
2097 {
2098 if (flags & TDF_DETAILS)
2099 {
2100 dump_function_header (file, current_function_decl, flags);
2101 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2102 n_basic_blocks, n_edges, last_basic_block);
2103
2104 brief_dump_cfg (file);
2105 fprintf (file, "\n");
2106 }
2107
2108 if (flags & TDF_STATS)
2109 dump_cfg_stats (file);
2110
2111 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2112 }
2113
2114
2115 /* Dump CFG statistics on FILE. */
2116
2117 void
2118 dump_cfg_stats (FILE *file)
2119 {
2120 static long max_num_merged_labels = 0;
2121 unsigned long size, total = 0;
2122 long num_edges;
2123 basic_block bb;
2124 const char * const fmt_str = "%-30s%-13s%12s\n";
2125 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2126 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2127 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2128 const char *funcname
2129 = lang_hooks.decl_printable_name (current_function_decl, 2);
2130
2131
2132 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2133
2134 fprintf (file, "---------------------------------------------------------\n");
2135 fprintf (file, fmt_str, "", " Number of ", "Memory");
2136 fprintf (file, fmt_str, "", " instances ", "used ");
2137 fprintf (file, "---------------------------------------------------------\n");
2138
2139 size = n_basic_blocks * sizeof (struct basic_block_def);
2140 total += size;
2141 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2142 SCALE (size), LABEL (size));
2143
2144 num_edges = 0;
2145 FOR_EACH_BB (bb)
2146 num_edges += EDGE_COUNT (bb->succs);
2147 size = num_edges * sizeof (struct edge_def);
2148 total += size;
2149 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2150
2151 fprintf (file, "---------------------------------------------------------\n");
2152 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2153 LABEL (total));
2154 fprintf (file, "---------------------------------------------------------\n");
2155 fprintf (file, "\n");
2156
2157 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2158 max_num_merged_labels = cfg_stats.num_merged_labels;
2159
2160 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2161 cfg_stats.num_merged_labels, max_num_merged_labels);
2162
2163 fprintf (file, "\n");
2164 }
2165
2166
2167 /* Dump CFG statistics on stderr. Keep extern so that it's always
2168 linked in the final executable. */
2169
2170 DEBUG_FUNCTION void
2171 debug_cfg_stats (void)
2172 {
2173 dump_cfg_stats (stderr);
2174 }
2175
2176
2177 /* Dump the flowgraph to a .vcg FILE. */
2178
2179 static void
2180 gimple_cfg2vcg (FILE *file)
2181 {
2182 edge e;
2183 edge_iterator ei;
2184 basic_block bb;
2185 const char *funcname
2186 = lang_hooks.decl_printable_name (current_function_decl, 2);
2187
2188 /* Write the file header. */
2189 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2190 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2191 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2192
2193 /* Write blocks and edges. */
2194 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2195 {
2196 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2197 e->dest->index);
2198
2199 if (e->flags & EDGE_FAKE)
2200 fprintf (file, " linestyle: dotted priority: 10");
2201 else
2202 fprintf (file, " linestyle: solid priority: 100");
2203
2204 fprintf (file, " }\n");
2205 }
2206 fputc ('\n', file);
2207
2208 FOR_EACH_BB (bb)
2209 {
2210 enum gimple_code head_code, end_code;
2211 const char *head_name, *end_name;
2212 int head_line = 0;
2213 int end_line = 0;
2214 gimple first = first_stmt (bb);
2215 gimple last = last_stmt (bb);
2216
2217 if (first)
2218 {
2219 head_code = gimple_code (first);
2220 head_name = gimple_code_name[head_code];
2221 head_line = get_lineno (first);
2222 }
2223 else
2224 head_name = "no-statement";
2225
2226 if (last)
2227 {
2228 end_code = gimple_code (last);
2229 end_name = gimple_code_name[end_code];
2230 end_line = get_lineno (last);
2231 }
2232 else
2233 end_name = "no-statement";
2234
2235 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2236 bb->index, bb->index, head_name, head_line, end_name,
2237 end_line);
2238
2239 FOR_EACH_EDGE (e, ei, bb->succs)
2240 {
2241 if (e->dest == EXIT_BLOCK_PTR)
2242 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2243 else
2244 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2245
2246 if (e->flags & EDGE_FAKE)
2247 fprintf (file, " priority: 10 linestyle: dotted");
2248 else
2249 fprintf (file, " priority: 100 linestyle: solid");
2250
2251 fprintf (file, " }\n");
2252 }
2253
2254 if (bb->next_bb != EXIT_BLOCK_PTR)
2255 fputc ('\n', file);
2256 }
2257
2258 fputs ("}\n\n", file);
2259 }
2260
2261
2262
2263 /*---------------------------------------------------------------------------
2264 Miscellaneous helpers
2265 ---------------------------------------------------------------------------*/
2266
2267 /* Return true if T represents a stmt that always transfers control. */
2268
2269 bool
2270 is_ctrl_stmt (gimple t)
2271 {
2272 switch (gimple_code (t))
2273 {
2274 case GIMPLE_COND:
2275 case GIMPLE_SWITCH:
2276 case GIMPLE_GOTO:
2277 case GIMPLE_RETURN:
2278 case GIMPLE_RESX:
2279 return true;
2280 default:
2281 return false;
2282 }
2283 }
2284
2285
2286 /* Return true if T is a statement that may alter the flow of control
2287 (e.g., a call to a non-returning function). */
2288
2289 bool
2290 is_ctrl_altering_stmt (gimple t)
2291 {
2292 gcc_assert (t);
2293
2294 switch (gimple_code (t))
2295 {
2296 case GIMPLE_CALL:
2297 {
2298 int flags = gimple_call_flags (t);
2299
2300 /* A non-pure/const call alters flow control if the current
2301 function has nonlocal labels. */
2302 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2303 && cfun->has_nonlocal_label)
2304 return true;
2305
2306 /* A call also alters control flow if it does not return. */
2307 if (flags & ECF_NORETURN)
2308 return true;
2309
2310 /* TM ending statements have backedges out of the transaction.
2311 Return true so we split the basic block containing them.
2312 Note that the TM_BUILTIN test is merely an optimization. */
2313 if ((flags & ECF_TM_BUILTIN)
2314 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2315 return true;
2316
2317 /* BUILT_IN_RETURN call is same as return statement. */
2318 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2319 return true;
2320 }
2321 break;
2322
2323 case GIMPLE_EH_DISPATCH:
2324 /* EH_DISPATCH branches to the individual catch handlers at
2325 this level of a try or allowed-exceptions region. It can
2326 fallthru to the next statement as well. */
2327 return true;
2328
2329 case GIMPLE_ASM:
2330 if (gimple_asm_nlabels (t) > 0)
2331 return true;
2332 break;
2333
2334 CASE_GIMPLE_OMP:
2335 /* OpenMP directives alter control flow. */
2336 return true;
2337
2338 case GIMPLE_TRANSACTION:
2339 /* A transaction start alters control flow. */
2340 return true;
2341
2342 default:
2343 break;
2344 }
2345
2346 /* If a statement can throw, it alters control flow. */
2347 return stmt_can_throw_internal (t);
2348 }
2349
2350
2351 /* Return true if T is a simple local goto. */
2352
2353 bool
2354 simple_goto_p (gimple t)
2355 {
2356 return (gimple_code (t) == GIMPLE_GOTO
2357 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2358 }
2359
2360
2361 /* Return true if T can make an abnormal transfer of control flow.
2362 Transfers of control flow associated with EH are excluded. */
2363
2364 bool
2365 stmt_can_make_abnormal_goto (gimple t)
2366 {
2367 if (computed_goto_p (t))
2368 return true;
2369 if (is_gimple_call (t))
2370 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2371 && !(gimple_call_flags (t) & ECF_LEAF));
2372 return false;
2373 }
2374
2375
2376 /* Return true if STMT should start a new basic block. PREV_STMT is
2377 the statement preceding STMT. It is used when STMT is a label or a
2378 case label. Labels should only start a new basic block if their
2379 previous statement wasn't a label. Otherwise, sequence of labels
2380 would generate unnecessary basic blocks that only contain a single
2381 label. */
2382
2383 static inline bool
2384 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2385 {
2386 if (stmt == NULL)
2387 return false;
2388
2389 /* Labels start a new basic block only if the preceding statement
2390 wasn't a label of the same type. This prevents the creation of
2391 consecutive blocks that have nothing but a single label. */
2392 if (gimple_code (stmt) == GIMPLE_LABEL)
2393 {
2394 /* Nonlocal and computed GOTO targets always start a new block. */
2395 if (DECL_NONLOCAL (gimple_label_label (stmt))
2396 || FORCED_LABEL (gimple_label_label (stmt)))
2397 return true;
2398
2399 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2400 {
2401 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2402 return true;
2403
2404 cfg_stats.num_merged_labels++;
2405 return false;
2406 }
2407 else
2408 return true;
2409 }
2410
2411 return false;
2412 }
2413
2414
2415 /* Return true if T should end a basic block. */
2416
2417 bool
2418 stmt_ends_bb_p (gimple t)
2419 {
2420 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2421 }
2422
2423 /* Remove block annotations and other data structures. */
2424
2425 void
2426 delete_tree_cfg_annotations (void)
2427 {
2428 label_to_block_map = NULL;
2429 }
2430
2431
2432 /* Return the first statement in basic block BB. */
2433
2434 gimple
2435 first_stmt (basic_block bb)
2436 {
2437 gimple_stmt_iterator i = gsi_start_bb (bb);
2438 gimple stmt = NULL;
2439
2440 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2441 {
2442 gsi_next (&i);
2443 stmt = NULL;
2444 }
2445 return stmt;
2446 }
2447
2448 /* Return the first non-label statement in basic block BB. */
2449
2450 static gimple
2451 first_non_label_stmt (basic_block bb)
2452 {
2453 gimple_stmt_iterator i = gsi_start_bb (bb);
2454 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2455 gsi_next (&i);
2456 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2457 }
2458
2459 /* Return the last statement in basic block BB. */
2460
2461 gimple
2462 last_stmt (basic_block bb)
2463 {
2464 gimple_stmt_iterator i = gsi_last_bb (bb);
2465 gimple stmt = NULL;
2466
2467 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2468 {
2469 gsi_prev (&i);
2470 stmt = NULL;
2471 }
2472 return stmt;
2473 }
2474
2475 /* Return the last statement of an otherwise empty block. Return NULL
2476 if the block is totally empty, or if it contains more than one
2477 statement. */
2478
2479 gimple
2480 last_and_only_stmt (basic_block bb)
2481 {
2482 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2483 gimple last, prev;
2484
2485 if (gsi_end_p (i))
2486 return NULL;
2487
2488 last = gsi_stmt (i);
2489 gsi_prev_nondebug (&i);
2490 if (gsi_end_p (i))
2491 return last;
2492
2493 /* Empty statements should no longer appear in the instruction stream.
2494 Everything that might have appeared before should be deleted by
2495 remove_useless_stmts, and the optimizers should just gsi_remove
2496 instead of smashing with build_empty_stmt.
2497
2498 Thus the only thing that should appear here in a block containing
2499 one executable statement is a label. */
2500 prev = gsi_stmt (i);
2501 if (gimple_code (prev) == GIMPLE_LABEL)
2502 return last;
2503 else
2504 return NULL;
2505 }
2506
2507 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2508
2509 static void
2510 reinstall_phi_args (edge new_edge, edge old_edge)
2511 {
2512 edge_var_map_vector v;
2513 edge_var_map *vm;
2514 int i;
2515 gimple_stmt_iterator phis;
2516
2517 v = redirect_edge_var_map_vector (old_edge);
2518 if (!v)
2519 return;
2520
2521 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2522 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2523 i++, gsi_next (&phis))
2524 {
2525 gimple phi = gsi_stmt (phis);
2526 tree result = redirect_edge_var_map_result (vm);
2527 tree arg = redirect_edge_var_map_def (vm);
2528
2529 gcc_assert (result == gimple_phi_result (phi));
2530
2531 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2532 }
2533
2534 redirect_edge_var_map_clear (old_edge);
2535 }
2536
2537 /* Returns the basic block after which the new basic block created
2538 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2539 near its "logical" location. This is of most help to humans looking
2540 at debugging dumps. */
2541
2542 static basic_block
2543 split_edge_bb_loc (edge edge_in)
2544 {
2545 basic_block dest = edge_in->dest;
2546 basic_block dest_prev = dest->prev_bb;
2547
2548 if (dest_prev)
2549 {
2550 edge e = find_edge (dest_prev, dest);
2551 if (e && !(e->flags & EDGE_COMPLEX))
2552 return edge_in->src;
2553 }
2554 return dest_prev;
2555 }
2556
2557 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2558 Abort on abnormal edges. */
2559
2560 static basic_block
2561 gimple_split_edge (edge edge_in)
2562 {
2563 basic_block new_bb, after_bb, dest;
2564 edge new_edge, e;
2565
2566 /* Abnormal edges cannot be split. */
2567 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2568
2569 dest = edge_in->dest;
2570
2571 after_bb = split_edge_bb_loc (edge_in);
2572
2573 new_bb = create_empty_bb (after_bb);
2574 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2575 new_bb->count = edge_in->count;
2576 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2577 new_edge->probability = REG_BR_PROB_BASE;
2578 new_edge->count = edge_in->count;
2579
2580 e = redirect_edge_and_branch (edge_in, new_bb);
2581 gcc_assert (e == edge_in);
2582 reinstall_phi_args (new_edge, e);
2583
2584 return new_bb;
2585 }
2586
2587
2588 /* Verify properties of the address expression T with base object BASE. */
2589
2590 static tree
2591 verify_address (tree t, tree base)
2592 {
2593 bool old_constant;
2594 bool old_side_effects;
2595 bool new_constant;
2596 bool new_side_effects;
2597
2598 old_constant = TREE_CONSTANT (t);
2599 old_side_effects = TREE_SIDE_EFFECTS (t);
2600
2601 recompute_tree_invariant_for_addr_expr (t);
2602 new_side_effects = TREE_SIDE_EFFECTS (t);
2603 new_constant = TREE_CONSTANT (t);
2604
2605 if (old_constant != new_constant)
2606 {
2607 error ("constant not recomputed when ADDR_EXPR changed");
2608 return t;
2609 }
2610 if (old_side_effects != new_side_effects)
2611 {
2612 error ("side effects not recomputed when ADDR_EXPR changed");
2613 return t;
2614 }
2615
2616 if (!(TREE_CODE (base) == VAR_DECL
2617 || TREE_CODE (base) == PARM_DECL
2618 || TREE_CODE (base) == RESULT_DECL))
2619 return NULL_TREE;
2620
2621 if (DECL_GIMPLE_REG_P (base))
2622 {
2623 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2624 return base;
2625 }
2626
2627 return NULL_TREE;
2628 }
2629
2630 /* Callback for walk_tree, check that all elements with address taken are
2631 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2632 inside a PHI node. */
2633
2634 static tree
2635 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2636 {
2637 tree t = *tp, x;
2638
2639 if (TYPE_P (t))
2640 *walk_subtrees = 0;
2641
2642 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2643 #define CHECK_OP(N, MSG) \
2644 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2645 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2646
2647 switch (TREE_CODE (t))
2648 {
2649 case SSA_NAME:
2650 if (SSA_NAME_IN_FREE_LIST (t))
2651 {
2652 error ("SSA name in freelist but still referenced");
2653 return *tp;
2654 }
2655 break;
2656
2657 case INDIRECT_REF:
2658 error ("INDIRECT_REF in gimple IL");
2659 return t;
2660
2661 case MEM_REF:
2662 x = TREE_OPERAND (t, 0);
2663 if (!POINTER_TYPE_P (TREE_TYPE (x))
2664 || !is_gimple_mem_ref_addr (x))
2665 {
2666 error ("invalid first operand of MEM_REF");
2667 return x;
2668 }
2669 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2670 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2671 {
2672 error ("invalid offset operand of MEM_REF");
2673 return TREE_OPERAND (t, 1);
2674 }
2675 if (TREE_CODE (x) == ADDR_EXPR
2676 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2677 return x;
2678 *walk_subtrees = 0;
2679 break;
2680
2681 case ASSERT_EXPR:
2682 x = fold (ASSERT_EXPR_COND (t));
2683 if (x == boolean_false_node)
2684 {
2685 error ("ASSERT_EXPR with an always-false condition");
2686 return *tp;
2687 }
2688 break;
2689
2690 case MODIFY_EXPR:
2691 error ("MODIFY_EXPR not expected while having tuples");
2692 return *tp;
2693
2694 case ADDR_EXPR:
2695 {
2696 tree tem;
2697
2698 gcc_assert (is_gimple_address (t));
2699
2700 /* Skip any references (they will be checked when we recurse down the
2701 tree) and ensure that any variable used as a prefix is marked
2702 addressable. */
2703 for (x = TREE_OPERAND (t, 0);
2704 handled_component_p (x);
2705 x = TREE_OPERAND (x, 0))
2706 ;
2707
2708 if ((tem = verify_address (t, x)))
2709 return tem;
2710
2711 if (!(TREE_CODE (x) == VAR_DECL
2712 || TREE_CODE (x) == PARM_DECL
2713 || TREE_CODE (x) == RESULT_DECL))
2714 return NULL;
2715
2716 if (!TREE_ADDRESSABLE (x))
2717 {
2718 error ("address taken, but ADDRESSABLE bit not set");
2719 return x;
2720 }
2721
2722 break;
2723 }
2724
2725 case COND_EXPR:
2726 x = COND_EXPR_COND (t);
2727 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2728 {
2729 error ("non-integral used in condition");
2730 return x;
2731 }
2732 if (!is_gimple_condexpr (x))
2733 {
2734 error ("invalid conditional operand");
2735 return x;
2736 }
2737 break;
2738
2739 case NON_LVALUE_EXPR:
2740 case TRUTH_NOT_EXPR:
2741 gcc_unreachable ();
2742
2743 CASE_CONVERT:
2744 case FIX_TRUNC_EXPR:
2745 case FLOAT_EXPR:
2746 case NEGATE_EXPR:
2747 case ABS_EXPR:
2748 case BIT_NOT_EXPR:
2749 CHECK_OP (0, "invalid operand to unary operator");
2750 break;
2751
2752 case REALPART_EXPR:
2753 case IMAGPART_EXPR:
2754 case COMPONENT_REF:
2755 case ARRAY_REF:
2756 case ARRAY_RANGE_REF:
2757 case BIT_FIELD_REF:
2758 case VIEW_CONVERT_EXPR:
2759 /* We have a nest of references. Verify that each of the operands
2760 that determine where to reference is either a constant or a variable,
2761 verify that the base is valid, and then show we've already checked
2762 the subtrees. */
2763 while (handled_component_p (t))
2764 {
2765 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2766 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2767 else if (TREE_CODE (t) == ARRAY_REF
2768 || TREE_CODE (t) == ARRAY_RANGE_REF)
2769 {
2770 CHECK_OP (1, "invalid array index");
2771 if (TREE_OPERAND (t, 2))
2772 CHECK_OP (2, "invalid array lower bound");
2773 if (TREE_OPERAND (t, 3))
2774 CHECK_OP (3, "invalid array stride");
2775 }
2776 else if (TREE_CODE (t) == BIT_FIELD_REF)
2777 {
2778 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2779 || !host_integerp (TREE_OPERAND (t, 2), 1))
2780 {
2781 error ("invalid position or size operand to BIT_FIELD_REF");
2782 return t;
2783 }
2784 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2785 && (TYPE_PRECISION (TREE_TYPE (t))
2786 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2787 {
2788 error ("integral result type precision does not match "
2789 "field size of BIT_FIELD_REF");
2790 return t;
2791 }
2792 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2793 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2794 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2795 {
2796 error ("mode precision of non-integral result does not "
2797 "match field size of BIT_FIELD_REF");
2798 return t;
2799 }
2800 }
2801
2802 t = TREE_OPERAND (t, 0);
2803 }
2804
2805 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2806 {
2807 error ("invalid reference prefix");
2808 return t;
2809 }
2810 *walk_subtrees = 0;
2811 break;
2812 case PLUS_EXPR:
2813 case MINUS_EXPR:
2814 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2815 POINTER_PLUS_EXPR. */
2816 if (POINTER_TYPE_P (TREE_TYPE (t)))
2817 {
2818 error ("invalid operand to plus/minus, type is a pointer");
2819 return t;
2820 }
2821 CHECK_OP (0, "invalid operand to binary operator");
2822 CHECK_OP (1, "invalid operand to binary operator");
2823 break;
2824
2825 case POINTER_PLUS_EXPR:
2826 /* Check to make sure the first operand is a pointer or reference type. */
2827 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2828 {
2829 error ("invalid operand to pointer plus, first operand is not a pointer");
2830 return t;
2831 }
2832 /* Check to make sure the second operand is a ptrofftype. */
2833 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2834 {
2835 error ("invalid operand to pointer plus, second operand is not an "
2836 "integer type of appropriate width");
2837 return t;
2838 }
2839 /* FALLTHROUGH */
2840 case LT_EXPR:
2841 case LE_EXPR:
2842 case GT_EXPR:
2843 case GE_EXPR:
2844 case EQ_EXPR:
2845 case NE_EXPR:
2846 case UNORDERED_EXPR:
2847 case ORDERED_EXPR:
2848 case UNLT_EXPR:
2849 case UNLE_EXPR:
2850 case UNGT_EXPR:
2851 case UNGE_EXPR:
2852 case UNEQ_EXPR:
2853 case LTGT_EXPR:
2854 case MULT_EXPR:
2855 case TRUNC_DIV_EXPR:
2856 case CEIL_DIV_EXPR:
2857 case FLOOR_DIV_EXPR:
2858 case ROUND_DIV_EXPR:
2859 case TRUNC_MOD_EXPR:
2860 case CEIL_MOD_EXPR:
2861 case FLOOR_MOD_EXPR:
2862 case ROUND_MOD_EXPR:
2863 case RDIV_EXPR:
2864 case EXACT_DIV_EXPR:
2865 case MIN_EXPR:
2866 case MAX_EXPR:
2867 case LSHIFT_EXPR:
2868 case RSHIFT_EXPR:
2869 case LROTATE_EXPR:
2870 case RROTATE_EXPR:
2871 case BIT_IOR_EXPR:
2872 case BIT_XOR_EXPR:
2873 case BIT_AND_EXPR:
2874 CHECK_OP (0, "invalid operand to binary operator");
2875 CHECK_OP (1, "invalid operand to binary operator");
2876 break;
2877
2878 case CONSTRUCTOR:
2879 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2880 *walk_subtrees = 0;
2881 break;
2882
2883 case CASE_LABEL_EXPR:
2884 if (CASE_CHAIN (t))
2885 {
2886 error ("invalid CASE_CHAIN");
2887 return t;
2888 }
2889 break;
2890
2891 default:
2892 break;
2893 }
2894 return NULL;
2895
2896 #undef CHECK_OP
2897 }
2898
2899
2900 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2901 Returns true if there is an error, otherwise false. */
2902
2903 static bool
2904 verify_types_in_gimple_min_lval (tree expr)
2905 {
2906 tree op;
2907
2908 if (is_gimple_id (expr))
2909 return false;
2910
2911 if (TREE_CODE (expr) != TARGET_MEM_REF
2912 && TREE_CODE (expr) != MEM_REF)
2913 {
2914 error ("invalid expression for min lvalue");
2915 return true;
2916 }
2917
2918 /* TARGET_MEM_REFs are strange beasts. */
2919 if (TREE_CODE (expr) == TARGET_MEM_REF)
2920 return false;
2921
2922 op = TREE_OPERAND (expr, 0);
2923 if (!is_gimple_val (op))
2924 {
2925 error ("invalid operand in indirect reference");
2926 debug_generic_stmt (op);
2927 return true;
2928 }
2929 /* Memory references now generally can involve a value conversion. */
2930
2931 return false;
2932 }
2933
2934 /* Verify if EXPR is a valid GIMPLE reference expression. If
2935 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2936 if there is an error, otherwise false. */
2937
2938 static bool
2939 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2940 {
2941 while (handled_component_p (expr))
2942 {
2943 tree op = TREE_OPERAND (expr, 0);
2944
2945 if (TREE_CODE (expr) == ARRAY_REF
2946 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2947 {
2948 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2949 || (TREE_OPERAND (expr, 2)
2950 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2951 || (TREE_OPERAND (expr, 3)
2952 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2953 {
2954 error ("invalid operands to array reference");
2955 debug_generic_stmt (expr);
2956 return true;
2957 }
2958 }
2959
2960 /* Verify if the reference array element types are compatible. */
2961 if (TREE_CODE (expr) == ARRAY_REF
2962 && !useless_type_conversion_p (TREE_TYPE (expr),
2963 TREE_TYPE (TREE_TYPE (op))))
2964 {
2965 error ("type mismatch in array reference");
2966 debug_generic_stmt (TREE_TYPE (expr));
2967 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2968 return true;
2969 }
2970 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2971 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2972 TREE_TYPE (TREE_TYPE (op))))
2973 {
2974 error ("type mismatch in array range reference");
2975 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2976 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2977 return true;
2978 }
2979
2980 if ((TREE_CODE (expr) == REALPART_EXPR
2981 || TREE_CODE (expr) == IMAGPART_EXPR)
2982 && !useless_type_conversion_p (TREE_TYPE (expr),
2983 TREE_TYPE (TREE_TYPE (op))))
2984 {
2985 error ("type mismatch in real/imagpart reference");
2986 debug_generic_stmt (TREE_TYPE (expr));
2987 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2988 return true;
2989 }
2990
2991 if (TREE_CODE (expr) == COMPONENT_REF
2992 && !useless_type_conversion_p (TREE_TYPE (expr),
2993 TREE_TYPE (TREE_OPERAND (expr, 1))))
2994 {
2995 error ("type mismatch in component reference");
2996 debug_generic_stmt (TREE_TYPE (expr));
2997 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2998 return true;
2999 }
3000
3001 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3002 {
3003 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3004 that their operand is not an SSA name or an invariant when
3005 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3006 bug). Otherwise there is nothing to verify, gross mismatches at
3007 most invoke undefined behavior. */
3008 if (require_lvalue
3009 && (TREE_CODE (op) == SSA_NAME
3010 || is_gimple_min_invariant (op)))
3011 {
3012 error ("conversion of an SSA_NAME on the left hand side");
3013 debug_generic_stmt (expr);
3014 return true;
3015 }
3016 else if (TREE_CODE (op) == SSA_NAME
3017 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3018 {
3019 error ("conversion of register to a different size");
3020 debug_generic_stmt (expr);
3021 return true;
3022 }
3023 else if (!handled_component_p (op))
3024 return false;
3025 }
3026
3027 expr = op;
3028 }
3029
3030 if (TREE_CODE (expr) == MEM_REF)
3031 {
3032 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3033 {
3034 error ("invalid address operand in MEM_REF");
3035 debug_generic_stmt (expr);
3036 return true;
3037 }
3038 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3039 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3040 {
3041 error ("invalid offset operand in MEM_REF");
3042 debug_generic_stmt (expr);
3043 return true;
3044 }
3045 }
3046 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3047 {
3048 if (!TMR_BASE (expr)
3049 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3050 {
3051 error ("invalid address operand in TARGET_MEM_REF");
3052 return true;
3053 }
3054 if (!TMR_OFFSET (expr)
3055 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3056 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3057 {
3058 error ("invalid offset operand in TARGET_MEM_REF");
3059 debug_generic_stmt (expr);
3060 return true;
3061 }
3062 }
3063
3064 return ((require_lvalue || !is_gimple_min_invariant (expr))
3065 && verify_types_in_gimple_min_lval (expr));
3066 }
3067
3068 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3069 list of pointer-to types that is trivially convertible to DEST. */
3070
3071 static bool
3072 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3073 {
3074 tree src;
3075
3076 if (!TYPE_POINTER_TO (src_obj))
3077 return true;
3078
3079 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3080 if (useless_type_conversion_p (dest, src))
3081 return true;
3082
3083 return false;
3084 }
3085
3086 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3087 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3088
3089 static bool
3090 valid_fixed_convert_types_p (tree type1, tree type2)
3091 {
3092 return (FIXED_POINT_TYPE_P (type1)
3093 && (INTEGRAL_TYPE_P (type2)
3094 || SCALAR_FLOAT_TYPE_P (type2)
3095 || FIXED_POINT_TYPE_P (type2)));
3096 }
3097
3098 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3099 is a problem, otherwise false. */
3100
3101 static bool
3102 verify_gimple_call (gimple stmt)
3103 {
3104 tree fn = gimple_call_fn (stmt);
3105 tree fntype, fndecl;
3106 unsigned i;
3107
3108 if (gimple_call_internal_p (stmt))
3109 {
3110 if (fn)
3111 {
3112 error ("gimple call has two targets");
3113 debug_generic_stmt (fn);
3114 return true;
3115 }
3116 }
3117 else
3118 {
3119 if (!fn)
3120 {
3121 error ("gimple call has no target");
3122 return true;
3123 }
3124 }
3125
3126 if (fn && !is_gimple_call_addr (fn))
3127 {
3128 error ("invalid function in gimple call");
3129 debug_generic_stmt (fn);
3130 return true;
3131 }
3132
3133 if (fn
3134 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3135 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3136 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3137 {
3138 error ("non-function in gimple call");
3139 return true;
3140 }
3141
3142 fndecl = gimple_call_fndecl (stmt);
3143 if (fndecl
3144 && TREE_CODE (fndecl) == FUNCTION_DECL
3145 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3146 && !DECL_PURE_P (fndecl)
3147 && !TREE_READONLY (fndecl))
3148 {
3149 error ("invalid pure const state for function");
3150 return true;
3151 }
3152
3153 if (gimple_call_lhs (stmt)
3154 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3155 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3156 {
3157 error ("invalid LHS in gimple call");
3158 return true;
3159 }
3160
3161 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3162 {
3163 error ("LHS in noreturn call");
3164 return true;
3165 }
3166
3167 fntype = gimple_call_fntype (stmt);
3168 if (fntype
3169 && gimple_call_lhs (stmt)
3170 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3171 TREE_TYPE (fntype))
3172 /* ??? At least C++ misses conversions at assignments from
3173 void * call results.
3174 ??? Java is completely off. Especially with functions
3175 returning java.lang.Object.
3176 For now simply allow arbitrary pointer type conversions. */
3177 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3178 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3179 {
3180 error ("invalid conversion in gimple call");
3181 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3182 debug_generic_stmt (TREE_TYPE (fntype));
3183 return true;
3184 }
3185
3186 if (gimple_call_chain (stmt)
3187 && !is_gimple_val (gimple_call_chain (stmt)))
3188 {
3189 error ("invalid static chain in gimple call");
3190 debug_generic_stmt (gimple_call_chain (stmt));
3191 return true;
3192 }
3193
3194 /* If there is a static chain argument, this should not be an indirect
3195 call, and the decl should have DECL_STATIC_CHAIN set. */
3196 if (gimple_call_chain (stmt))
3197 {
3198 if (!gimple_call_fndecl (stmt))
3199 {
3200 error ("static chain in indirect gimple call");
3201 return true;
3202 }
3203 fn = TREE_OPERAND (fn, 0);
3204
3205 if (!DECL_STATIC_CHAIN (fn))
3206 {
3207 error ("static chain with function that doesn%'t use one");
3208 return true;
3209 }
3210 }
3211
3212 /* ??? The C frontend passes unpromoted arguments in case it
3213 didn't see a function declaration before the call. So for now
3214 leave the call arguments mostly unverified. Once we gimplify
3215 unit-at-a-time we have a chance to fix this. */
3216
3217 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3218 {
3219 tree arg = gimple_call_arg (stmt, i);
3220 if ((is_gimple_reg_type (TREE_TYPE (arg))
3221 && !is_gimple_val (arg))
3222 || (!is_gimple_reg_type (TREE_TYPE (arg))
3223 && !is_gimple_lvalue (arg)))
3224 {
3225 error ("invalid argument to gimple call");
3226 debug_generic_expr (arg);
3227 return true;
3228 }
3229 }
3230
3231 return false;
3232 }
3233
3234 /* Verifies the gimple comparison with the result type TYPE and
3235 the operands OP0 and OP1. */
3236
3237 static bool
3238 verify_gimple_comparison (tree type, tree op0, tree op1)
3239 {
3240 tree op0_type = TREE_TYPE (op0);
3241 tree op1_type = TREE_TYPE (op1);
3242
3243 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3244 {
3245 error ("invalid operands in gimple comparison");
3246 return true;
3247 }
3248
3249 /* For comparisons we do not have the operations type as the
3250 effective type the comparison is carried out in. Instead
3251 we require that either the first operand is trivially
3252 convertible into the second, or the other way around.
3253 Because we special-case pointers to void we allow
3254 comparisons of pointers with the same mode as well. */
3255 if (!useless_type_conversion_p (op0_type, op1_type)
3256 && !useless_type_conversion_p (op1_type, op0_type)
3257 && (!POINTER_TYPE_P (op0_type)
3258 || !POINTER_TYPE_P (op1_type)
3259 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3260 {
3261 error ("mismatching comparison operand types");
3262 debug_generic_expr (op0_type);
3263 debug_generic_expr (op1_type);
3264 return true;
3265 }
3266
3267 /* The resulting type of a comparison may be an effective boolean type. */
3268 if (INTEGRAL_TYPE_P (type)
3269 && (TREE_CODE (type) == BOOLEAN_TYPE
3270 || TYPE_PRECISION (type) == 1))
3271 ;
3272 /* Or an integer vector type with the same size and element count
3273 as the comparison operand types. */
3274 else if (TREE_CODE (type) == VECTOR_TYPE
3275 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3276 {
3277 if (TREE_CODE (op0_type) != VECTOR_TYPE
3278 || TREE_CODE (op1_type) != VECTOR_TYPE)
3279 {
3280 error ("non-vector operands in vector comparison");
3281 debug_generic_expr (op0_type);
3282 debug_generic_expr (op1_type);
3283 return true;
3284 }
3285
3286 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3287 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3288 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3289 {
3290 error ("invalid vector comparison resulting type");
3291 debug_generic_expr (type);
3292 return true;
3293 }
3294 }
3295 else
3296 {
3297 error ("bogus comparison result type");
3298 debug_generic_expr (type);
3299 return true;
3300 }
3301
3302 return false;
3303 }
3304
3305 /* Verify a gimple assignment statement STMT with an unary rhs.
3306 Returns true if anything is wrong. */
3307
3308 static bool
3309 verify_gimple_assign_unary (gimple stmt)
3310 {
3311 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3312 tree lhs = gimple_assign_lhs (stmt);
3313 tree lhs_type = TREE_TYPE (lhs);
3314 tree rhs1 = gimple_assign_rhs1 (stmt);
3315 tree rhs1_type = TREE_TYPE (rhs1);
3316
3317 if (!is_gimple_reg (lhs))
3318 {
3319 error ("non-register as LHS of unary operation");
3320 return true;
3321 }
3322
3323 if (!is_gimple_val (rhs1))
3324 {
3325 error ("invalid operand in unary operation");
3326 return true;
3327 }
3328
3329 /* First handle conversions. */
3330 switch (rhs_code)
3331 {
3332 CASE_CONVERT:
3333 {
3334 /* Allow conversions between integral types and pointers only if
3335 there is no sign or zero extension involved.
3336 For targets were the precision of ptrofftype doesn't match that
3337 of pointers we need to allow arbitrary conversions from and
3338 to ptrofftype. */
3339 if ((POINTER_TYPE_P (lhs_type)
3340 && INTEGRAL_TYPE_P (rhs1_type)
3341 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3342 || ptrofftype_p (rhs1_type)))
3343 || (POINTER_TYPE_P (rhs1_type)
3344 && INTEGRAL_TYPE_P (lhs_type)
3345 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3346 || ptrofftype_p (sizetype))))
3347 return false;
3348
3349 /* Allow conversion from integer to offset type and vice versa. */
3350 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3351 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3352 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3353 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3354 return false;
3355
3356 /* Otherwise assert we are converting between types of the
3357 same kind. */
3358 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3359 {
3360 error ("invalid types in nop conversion");
3361 debug_generic_expr (lhs_type);
3362 debug_generic_expr (rhs1_type);
3363 return true;
3364 }
3365
3366 return false;
3367 }
3368
3369 case ADDR_SPACE_CONVERT_EXPR:
3370 {
3371 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3372 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3373 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3374 {
3375 error ("invalid types in address space conversion");
3376 debug_generic_expr (lhs_type);
3377 debug_generic_expr (rhs1_type);
3378 return true;
3379 }
3380
3381 return false;
3382 }
3383
3384 case FIXED_CONVERT_EXPR:
3385 {
3386 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3387 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3388 {
3389 error ("invalid types in fixed-point conversion");
3390 debug_generic_expr (lhs_type);
3391 debug_generic_expr (rhs1_type);
3392 return true;
3393 }
3394
3395 return false;
3396 }
3397
3398 case FLOAT_EXPR:
3399 {
3400 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3401 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3402 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3403 {
3404 error ("invalid types in conversion to floating point");
3405 debug_generic_expr (lhs_type);
3406 debug_generic_expr (rhs1_type);
3407 return true;
3408 }
3409
3410 return false;
3411 }
3412
3413 case FIX_TRUNC_EXPR:
3414 {
3415 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3416 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3417 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3418 {
3419 error ("invalid types in conversion to integer");
3420 debug_generic_expr (lhs_type);
3421 debug_generic_expr (rhs1_type);
3422 return true;
3423 }
3424
3425 return false;
3426 }
3427
3428 case VEC_UNPACK_HI_EXPR:
3429 case VEC_UNPACK_LO_EXPR:
3430 case REDUC_MAX_EXPR:
3431 case REDUC_MIN_EXPR:
3432 case REDUC_PLUS_EXPR:
3433 case VEC_UNPACK_FLOAT_HI_EXPR:
3434 case VEC_UNPACK_FLOAT_LO_EXPR:
3435 /* FIXME. */
3436 return false;
3437
3438 case NEGATE_EXPR:
3439 case ABS_EXPR:
3440 case BIT_NOT_EXPR:
3441 case PAREN_EXPR:
3442 case NON_LVALUE_EXPR:
3443 case CONJ_EXPR:
3444 break;
3445
3446 default:
3447 gcc_unreachable ();
3448 }
3449
3450 /* For the remaining codes assert there is no conversion involved. */
3451 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3452 {
3453 error ("non-trivial conversion in unary operation");
3454 debug_generic_expr (lhs_type);
3455 debug_generic_expr (rhs1_type);
3456 return true;
3457 }
3458
3459 return false;
3460 }
3461
3462 /* Verify a gimple assignment statement STMT with a binary rhs.
3463 Returns true if anything is wrong. */
3464
3465 static bool
3466 verify_gimple_assign_binary (gimple stmt)
3467 {
3468 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3469 tree lhs = gimple_assign_lhs (stmt);
3470 tree lhs_type = TREE_TYPE (lhs);
3471 tree rhs1 = gimple_assign_rhs1 (stmt);
3472 tree rhs1_type = TREE_TYPE (rhs1);
3473 tree rhs2 = gimple_assign_rhs2 (stmt);
3474 tree rhs2_type = TREE_TYPE (rhs2);
3475
3476 if (!is_gimple_reg (lhs))
3477 {
3478 error ("non-register as LHS of binary operation");
3479 return true;
3480 }
3481
3482 if (!is_gimple_val (rhs1)
3483 || !is_gimple_val (rhs2))
3484 {
3485 error ("invalid operands in binary operation");
3486 return true;
3487 }
3488
3489 /* First handle operations that involve different types. */
3490 switch (rhs_code)
3491 {
3492 case COMPLEX_EXPR:
3493 {
3494 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3495 || !(INTEGRAL_TYPE_P (rhs1_type)
3496 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3497 || !(INTEGRAL_TYPE_P (rhs2_type)
3498 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3499 {
3500 error ("type mismatch in complex expression");
3501 debug_generic_expr (lhs_type);
3502 debug_generic_expr (rhs1_type);
3503 debug_generic_expr (rhs2_type);
3504 return true;
3505 }
3506
3507 return false;
3508 }
3509
3510 case LSHIFT_EXPR:
3511 case RSHIFT_EXPR:
3512 case LROTATE_EXPR:
3513 case RROTATE_EXPR:
3514 {
3515 /* Shifts and rotates are ok on integral types, fixed point
3516 types and integer vector types. */
3517 if ((!INTEGRAL_TYPE_P (rhs1_type)
3518 && !FIXED_POINT_TYPE_P (rhs1_type)
3519 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3520 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3521 || (!INTEGRAL_TYPE_P (rhs2_type)
3522 /* Vector shifts of vectors are also ok. */
3523 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3524 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3525 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3526 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3527 || !useless_type_conversion_p (lhs_type, rhs1_type))
3528 {
3529 error ("type mismatch in shift expression");
3530 debug_generic_expr (lhs_type);
3531 debug_generic_expr (rhs1_type);
3532 debug_generic_expr (rhs2_type);
3533 return true;
3534 }
3535
3536 return false;
3537 }
3538
3539 case VEC_LSHIFT_EXPR:
3540 case VEC_RSHIFT_EXPR:
3541 {
3542 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3543 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3544 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3545 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3546 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3547 || (!INTEGRAL_TYPE_P (rhs2_type)
3548 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3549 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3550 || !useless_type_conversion_p (lhs_type, rhs1_type))
3551 {
3552 error ("type mismatch in vector shift expression");
3553 debug_generic_expr (lhs_type);
3554 debug_generic_expr (rhs1_type);
3555 debug_generic_expr (rhs2_type);
3556 return true;
3557 }
3558 /* For shifting a vector of non-integral components we
3559 only allow shifting by a constant multiple of the element size. */
3560 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3561 && (TREE_CODE (rhs2) != INTEGER_CST
3562 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3563 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3564 {
3565 error ("non-element sized vector shift of floating point vector");
3566 return true;
3567 }
3568
3569 return false;
3570 }
3571
3572 case WIDEN_LSHIFT_EXPR:
3573 {
3574 if (!INTEGRAL_TYPE_P (lhs_type)
3575 || !INTEGRAL_TYPE_P (rhs1_type)
3576 || TREE_CODE (rhs2) != INTEGER_CST
3577 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3578 {
3579 error ("type mismatch in widening vector shift expression");
3580 debug_generic_expr (lhs_type);
3581 debug_generic_expr (rhs1_type);
3582 debug_generic_expr (rhs2_type);
3583 return true;
3584 }
3585
3586 return false;
3587 }
3588
3589 case VEC_WIDEN_LSHIFT_HI_EXPR:
3590 case VEC_WIDEN_LSHIFT_LO_EXPR:
3591 {
3592 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3593 || TREE_CODE (lhs_type) != VECTOR_TYPE
3594 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3595 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3596 || TREE_CODE (rhs2) != INTEGER_CST
3597 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3598 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3599 {
3600 error ("type mismatch in widening vector shift expression");
3601 debug_generic_expr (lhs_type);
3602 debug_generic_expr (rhs1_type);
3603 debug_generic_expr (rhs2_type);
3604 return true;
3605 }
3606
3607 return false;
3608 }
3609
3610 case PLUS_EXPR:
3611 case MINUS_EXPR:
3612 {
3613 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3614 ??? This just makes the checker happy and may not be what is
3615 intended. */
3616 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3617 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3618 {
3619 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3620 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3621 {
3622 error ("invalid non-vector operands to vector valued plus");
3623 return true;
3624 }
3625 lhs_type = TREE_TYPE (lhs_type);
3626 rhs1_type = TREE_TYPE (rhs1_type);
3627 rhs2_type = TREE_TYPE (rhs2_type);
3628 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3629 the pointer to 2nd place. */
3630 if (POINTER_TYPE_P (rhs2_type))
3631 {
3632 tree tem = rhs1_type;
3633 rhs1_type = rhs2_type;
3634 rhs2_type = tem;
3635 }
3636 goto do_pointer_plus_expr_check;
3637 }
3638 if (POINTER_TYPE_P (lhs_type)
3639 || POINTER_TYPE_P (rhs1_type)
3640 || POINTER_TYPE_P (rhs2_type))
3641 {
3642 error ("invalid (pointer) operands to plus/minus");
3643 return true;
3644 }
3645
3646 /* Continue with generic binary expression handling. */
3647 break;
3648 }
3649
3650 case POINTER_PLUS_EXPR:
3651 {
3652 do_pointer_plus_expr_check:
3653 if (!POINTER_TYPE_P (rhs1_type)
3654 || !useless_type_conversion_p (lhs_type, rhs1_type)
3655 || !ptrofftype_p (rhs2_type))
3656 {
3657 error ("type mismatch in pointer plus expression");
3658 debug_generic_stmt (lhs_type);
3659 debug_generic_stmt (rhs1_type);
3660 debug_generic_stmt (rhs2_type);
3661 return true;
3662 }
3663
3664 return false;
3665 }
3666
3667 case TRUTH_ANDIF_EXPR:
3668 case TRUTH_ORIF_EXPR:
3669 case TRUTH_AND_EXPR:
3670 case TRUTH_OR_EXPR:
3671 case TRUTH_XOR_EXPR:
3672
3673 gcc_unreachable ();
3674
3675 case LT_EXPR:
3676 case LE_EXPR:
3677 case GT_EXPR:
3678 case GE_EXPR:
3679 case EQ_EXPR:
3680 case NE_EXPR:
3681 case UNORDERED_EXPR:
3682 case ORDERED_EXPR:
3683 case UNLT_EXPR:
3684 case UNLE_EXPR:
3685 case UNGT_EXPR:
3686 case UNGE_EXPR:
3687 case UNEQ_EXPR:
3688 case LTGT_EXPR:
3689 /* Comparisons are also binary, but the result type is not
3690 connected to the operand types. */
3691 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3692
3693 case WIDEN_MULT_EXPR:
3694 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3695 return true;
3696 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3697 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3698
3699 case WIDEN_SUM_EXPR:
3700 case VEC_WIDEN_MULT_HI_EXPR:
3701 case VEC_WIDEN_MULT_LO_EXPR:
3702 case VEC_PACK_TRUNC_EXPR:
3703 case VEC_PACK_SAT_EXPR:
3704 case VEC_PACK_FIX_TRUNC_EXPR:
3705 case VEC_EXTRACT_EVEN_EXPR:
3706 case VEC_EXTRACT_ODD_EXPR:
3707 /* FIXME. */
3708 return false;
3709
3710 case MULT_EXPR:
3711 case TRUNC_DIV_EXPR:
3712 case CEIL_DIV_EXPR:
3713 case FLOOR_DIV_EXPR:
3714 case ROUND_DIV_EXPR:
3715 case TRUNC_MOD_EXPR:
3716 case CEIL_MOD_EXPR:
3717 case FLOOR_MOD_EXPR:
3718 case ROUND_MOD_EXPR:
3719 case RDIV_EXPR:
3720 case EXACT_DIV_EXPR:
3721 case MIN_EXPR:
3722 case MAX_EXPR:
3723 case BIT_IOR_EXPR:
3724 case BIT_XOR_EXPR:
3725 case BIT_AND_EXPR:
3726 /* Continue with generic binary expression handling. */
3727 break;
3728
3729 default:
3730 gcc_unreachable ();
3731 }
3732
3733 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3734 || !useless_type_conversion_p (lhs_type, rhs2_type))
3735 {
3736 error ("type mismatch in binary expression");
3737 debug_generic_stmt (lhs_type);
3738 debug_generic_stmt (rhs1_type);
3739 debug_generic_stmt (rhs2_type);
3740 return true;
3741 }
3742
3743 return false;
3744 }
3745
3746 /* Verify a gimple assignment statement STMT with a ternary rhs.
3747 Returns true if anything is wrong. */
3748
3749 static bool
3750 verify_gimple_assign_ternary (gimple stmt)
3751 {
3752 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3753 tree lhs = gimple_assign_lhs (stmt);
3754 tree lhs_type = TREE_TYPE (lhs);
3755 tree rhs1 = gimple_assign_rhs1 (stmt);
3756 tree rhs1_type = TREE_TYPE (rhs1);
3757 tree rhs2 = gimple_assign_rhs2 (stmt);
3758 tree rhs2_type = TREE_TYPE (rhs2);
3759 tree rhs3 = gimple_assign_rhs3 (stmt);
3760 tree rhs3_type = TREE_TYPE (rhs3);
3761
3762 if (!is_gimple_reg (lhs))
3763 {
3764 error ("non-register as LHS of ternary operation");
3765 return true;
3766 }
3767
3768 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3769 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3770 || !is_gimple_val (rhs2)
3771 || !is_gimple_val (rhs3))
3772 {
3773 error ("invalid operands in ternary operation");
3774 return true;
3775 }
3776
3777 /* First handle operations that involve different types. */
3778 switch (rhs_code)
3779 {
3780 case WIDEN_MULT_PLUS_EXPR:
3781 case WIDEN_MULT_MINUS_EXPR:
3782 if ((!INTEGRAL_TYPE_P (rhs1_type)
3783 && !FIXED_POINT_TYPE_P (rhs1_type))
3784 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3785 || !useless_type_conversion_p (lhs_type, rhs3_type)
3786 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3787 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3788 {
3789 error ("type mismatch in widening multiply-accumulate expression");
3790 debug_generic_expr (lhs_type);
3791 debug_generic_expr (rhs1_type);
3792 debug_generic_expr (rhs2_type);
3793 debug_generic_expr (rhs3_type);
3794 return true;
3795 }
3796 break;
3797
3798 case FMA_EXPR:
3799 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3800 || !useless_type_conversion_p (lhs_type, rhs2_type)
3801 || !useless_type_conversion_p (lhs_type, rhs3_type))
3802 {
3803 error ("type mismatch in fused multiply-add expression");
3804 debug_generic_expr (lhs_type);
3805 debug_generic_expr (rhs1_type);
3806 debug_generic_expr (rhs2_type);
3807 debug_generic_expr (rhs3_type);
3808 return true;
3809 }
3810 break;
3811
3812 case COND_EXPR:
3813 case VEC_COND_EXPR:
3814 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3815 || !useless_type_conversion_p (lhs_type, rhs3_type))
3816 {
3817 error ("type mismatch in conditional expression");
3818 debug_generic_expr (lhs_type);
3819 debug_generic_expr (rhs2_type);
3820 debug_generic_expr (rhs3_type);
3821 return true;
3822 }
3823 break;
3824
3825 case VEC_PERM_EXPR:
3826 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3827 || !useless_type_conversion_p (lhs_type, rhs2_type))
3828 {
3829 error ("type mismatch in vector permute expression");
3830 debug_generic_expr (lhs_type);
3831 debug_generic_expr (rhs1_type);
3832 debug_generic_expr (rhs2_type);
3833 debug_generic_expr (rhs3_type);
3834 return true;
3835 }
3836
3837 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3838 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3839 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3840 {
3841 error ("vector types expected in vector permute expression");
3842 debug_generic_expr (lhs_type);
3843 debug_generic_expr (rhs1_type);
3844 debug_generic_expr (rhs2_type);
3845 debug_generic_expr (rhs3_type);
3846 return true;
3847 }
3848
3849 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3850 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3851 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3852 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3853 != TYPE_VECTOR_SUBPARTS (lhs_type))
3854 {
3855 error ("vectors with different element number found "
3856 "in vector permute expression");
3857 debug_generic_expr (lhs_type);
3858 debug_generic_expr (rhs1_type);
3859 debug_generic_expr (rhs2_type);
3860 debug_generic_expr (rhs3_type);
3861 return true;
3862 }
3863
3864 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3865 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3866 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3867 {
3868 error ("invalid mask type in vector permute expression");
3869 debug_generic_expr (lhs_type);
3870 debug_generic_expr (rhs1_type);
3871 debug_generic_expr (rhs2_type);
3872 debug_generic_expr (rhs3_type);
3873 return true;
3874 }
3875
3876 return false;
3877
3878 case DOT_PROD_EXPR:
3879 case REALIGN_LOAD_EXPR:
3880 /* FIXME. */
3881 return false;
3882
3883 default:
3884 gcc_unreachable ();
3885 }
3886 return false;
3887 }
3888
3889 /* Verify a gimple assignment statement STMT with a single rhs.
3890 Returns true if anything is wrong. */
3891
3892 static bool
3893 verify_gimple_assign_single (gimple stmt)
3894 {
3895 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3896 tree lhs = gimple_assign_lhs (stmt);
3897 tree lhs_type = TREE_TYPE (lhs);
3898 tree rhs1 = gimple_assign_rhs1 (stmt);
3899 tree rhs1_type = TREE_TYPE (rhs1);
3900 bool res = false;
3901
3902 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3903 {
3904 error ("non-trivial conversion at assignment");
3905 debug_generic_expr (lhs_type);
3906 debug_generic_expr (rhs1_type);
3907 return true;
3908 }
3909
3910 if (handled_component_p (lhs))
3911 res |= verify_types_in_gimple_reference (lhs, true);
3912
3913 /* Special codes we cannot handle via their class. */
3914 switch (rhs_code)
3915 {
3916 case ADDR_EXPR:
3917 {
3918 tree op = TREE_OPERAND (rhs1, 0);
3919 if (!is_gimple_addressable (op))
3920 {
3921 error ("invalid operand in unary expression");
3922 return true;
3923 }
3924
3925 /* Technically there is no longer a need for matching types, but
3926 gimple hygiene asks for this check. In LTO we can end up
3927 combining incompatible units and thus end up with addresses
3928 of globals that change their type to a common one. */
3929 if (!in_lto_p
3930 && !types_compatible_p (TREE_TYPE (op),
3931 TREE_TYPE (TREE_TYPE (rhs1)))
3932 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3933 TREE_TYPE (op)))
3934 {
3935 error ("type mismatch in address expression");
3936 debug_generic_stmt (TREE_TYPE (rhs1));
3937 debug_generic_stmt (TREE_TYPE (op));
3938 return true;
3939 }
3940
3941 return verify_types_in_gimple_reference (op, true);
3942 }
3943
3944 /* tcc_reference */
3945 case INDIRECT_REF:
3946 error ("INDIRECT_REF in gimple IL");
3947 return true;
3948
3949 case COMPONENT_REF:
3950 case BIT_FIELD_REF:
3951 case ARRAY_REF:
3952 case ARRAY_RANGE_REF:
3953 case VIEW_CONVERT_EXPR:
3954 case REALPART_EXPR:
3955 case IMAGPART_EXPR:
3956 case TARGET_MEM_REF:
3957 case MEM_REF:
3958 if (!is_gimple_reg (lhs)
3959 && is_gimple_reg_type (TREE_TYPE (lhs)))
3960 {
3961 error ("invalid rhs for gimple memory store");
3962 debug_generic_stmt (lhs);
3963 debug_generic_stmt (rhs1);
3964 return true;
3965 }
3966 return res || verify_types_in_gimple_reference (rhs1, false);
3967
3968 /* tcc_constant */
3969 case SSA_NAME:
3970 case INTEGER_CST:
3971 case REAL_CST:
3972 case FIXED_CST:
3973 case COMPLEX_CST:
3974 case VECTOR_CST:
3975 case STRING_CST:
3976 return res;
3977
3978 /* tcc_declaration */
3979 case CONST_DECL:
3980 return res;
3981 case VAR_DECL:
3982 case PARM_DECL:
3983 if (!is_gimple_reg (lhs)
3984 && !is_gimple_reg (rhs1)
3985 && is_gimple_reg_type (TREE_TYPE (lhs)))
3986 {
3987 error ("invalid rhs for gimple memory store");
3988 debug_generic_stmt (lhs);
3989 debug_generic_stmt (rhs1);
3990 return true;
3991 }
3992 return res;
3993
3994 case CONSTRUCTOR:
3995 case OBJ_TYPE_REF:
3996 case ASSERT_EXPR:
3997 case WITH_SIZE_EXPR:
3998 /* FIXME. */
3999 return res;
4000
4001 default:;
4002 }
4003
4004 return res;
4005 }
4006
4007 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4008 is a problem, otherwise false. */
4009
4010 static bool
4011 verify_gimple_assign (gimple stmt)
4012 {
4013 switch (gimple_assign_rhs_class (stmt))
4014 {
4015 case GIMPLE_SINGLE_RHS:
4016 return verify_gimple_assign_single (stmt);
4017
4018 case GIMPLE_UNARY_RHS:
4019 return verify_gimple_assign_unary (stmt);
4020
4021 case GIMPLE_BINARY_RHS:
4022 return verify_gimple_assign_binary (stmt);
4023
4024 case GIMPLE_TERNARY_RHS:
4025 return verify_gimple_assign_ternary (stmt);
4026
4027 default:
4028 gcc_unreachable ();
4029 }
4030 }
4031
4032 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4033 is a problem, otherwise false. */
4034
4035 static bool
4036 verify_gimple_return (gimple stmt)
4037 {
4038 tree op = gimple_return_retval (stmt);
4039 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4040
4041 /* We cannot test for present return values as we do not fix up missing
4042 return values from the original source. */
4043 if (op == NULL)
4044 return false;
4045
4046 if (!is_gimple_val (op)
4047 && TREE_CODE (op) != RESULT_DECL)
4048 {
4049 error ("invalid operand in return statement");
4050 debug_generic_stmt (op);
4051 return true;
4052 }
4053
4054 if ((TREE_CODE (op) == RESULT_DECL
4055 && DECL_BY_REFERENCE (op))
4056 || (TREE_CODE (op) == SSA_NAME
4057 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4058 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4059 op = TREE_TYPE (op);
4060
4061 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4062 {
4063 error ("invalid conversion in return statement");
4064 debug_generic_stmt (restype);
4065 debug_generic_stmt (TREE_TYPE (op));
4066 return true;
4067 }
4068
4069 return false;
4070 }
4071
4072
4073 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4074 is a problem, otherwise false. */
4075
4076 static bool
4077 verify_gimple_goto (gimple stmt)
4078 {
4079 tree dest = gimple_goto_dest (stmt);
4080
4081 /* ??? We have two canonical forms of direct goto destinations, a
4082 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4083 if (TREE_CODE (dest) != LABEL_DECL
4084 && (!is_gimple_val (dest)
4085 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4086 {
4087 error ("goto destination is neither a label nor a pointer");
4088 return true;
4089 }
4090
4091 return false;
4092 }
4093
4094 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4095 is a problem, otherwise false. */
4096
4097 static bool
4098 verify_gimple_switch (gimple stmt)
4099 {
4100 if (!is_gimple_val (gimple_switch_index (stmt)))
4101 {
4102 error ("invalid operand to switch statement");
4103 debug_generic_stmt (gimple_switch_index (stmt));
4104 return true;
4105 }
4106
4107 return false;
4108 }
4109
4110 /* Verify a gimple debug statement STMT.
4111 Returns true if anything is wrong. */
4112
4113 static bool
4114 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4115 {
4116 /* There isn't much that could be wrong in a gimple debug stmt. A
4117 gimple debug bind stmt, for example, maps a tree, that's usually
4118 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4119 component or member of an aggregate type, to another tree, that
4120 can be an arbitrary expression. These stmts expand into debug
4121 insns, and are converted to debug notes by var-tracking.c. */
4122 return false;
4123 }
4124
4125 /* Verify a gimple label statement STMT.
4126 Returns true if anything is wrong. */
4127
4128 static bool
4129 verify_gimple_label (gimple stmt)
4130 {
4131 tree decl = gimple_label_label (stmt);
4132 int uid;
4133 bool err = false;
4134
4135 if (TREE_CODE (decl) != LABEL_DECL)
4136 return true;
4137
4138 uid = LABEL_DECL_UID (decl);
4139 if (cfun->cfg
4140 && (uid == -1
4141 || VEC_index (basic_block,
4142 label_to_block_map, uid) != gimple_bb (stmt)))
4143 {
4144 error ("incorrect entry in label_to_block_map");
4145 err |= true;
4146 }
4147
4148 uid = EH_LANDING_PAD_NR (decl);
4149 if (uid)
4150 {
4151 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4152 if (decl != lp->post_landing_pad)
4153 {
4154 error ("incorrect setting of landing pad number");
4155 err |= true;
4156 }
4157 }
4158
4159 return err;
4160 }
4161
4162 /* Verify the GIMPLE statement STMT. Returns true if there is an
4163 error, otherwise false. */
4164
4165 static bool
4166 verify_gimple_stmt (gimple stmt)
4167 {
4168 switch (gimple_code (stmt))
4169 {
4170 case GIMPLE_ASSIGN:
4171 return verify_gimple_assign (stmt);
4172
4173 case GIMPLE_LABEL:
4174 return verify_gimple_label (stmt);
4175
4176 case GIMPLE_CALL:
4177 return verify_gimple_call (stmt);
4178
4179 case GIMPLE_COND:
4180 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4181 {
4182 error ("invalid comparison code in gimple cond");
4183 return true;
4184 }
4185 if (!(!gimple_cond_true_label (stmt)
4186 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4187 || !(!gimple_cond_false_label (stmt)
4188 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4189 {
4190 error ("invalid labels in gimple cond");
4191 return true;
4192 }
4193
4194 return verify_gimple_comparison (boolean_type_node,
4195 gimple_cond_lhs (stmt),
4196 gimple_cond_rhs (stmt));
4197
4198 case GIMPLE_GOTO:
4199 return verify_gimple_goto (stmt);
4200
4201 case GIMPLE_SWITCH:
4202 return verify_gimple_switch (stmt);
4203
4204 case GIMPLE_RETURN:
4205 return verify_gimple_return (stmt);
4206
4207 case GIMPLE_ASM:
4208 return false;
4209
4210 case GIMPLE_TRANSACTION:
4211 return verify_gimple_transaction (stmt);
4212
4213 /* Tuples that do not have tree operands. */
4214 case GIMPLE_NOP:
4215 case GIMPLE_PREDICT:
4216 case GIMPLE_RESX:
4217 case GIMPLE_EH_DISPATCH:
4218 case GIMPLE_EH_MUST_NOT_THROW:
4219 return false;
4220
4221 CASE_GIMPLE_OMP:
4222 /* OpenMP directives are validated by the FE and never operated
4223 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4224 non-gimple expressions when the main index variable has had
4225 its address taken. This does not affect the loop itself
4226 because the header of an GIMPLE_OMP_FOR is merely used to determine
4227 how to setup the parallel iteration. */
4228 return false;
4229
4230 case GIMPLE_DEBUG:
4231 return verify_gimple_debug (stmt);
4232
4233 default:
4234 gcc_unreachable ();
4235 }
4236 }
4237
4238 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4239 and false otherwise. */
4240
4241 static bool
4242 verify_gimple_phi (gimple phi)
4243 {
4244 bool err = false;
4245 unsigned i;
4246 tree phi_result = gimple_phi_result (phi);
4247 bool virtual_p;
4248
4249 if (!phi_result)
4250 {
4251 error ("invalid PHI result");
4252 return true;
4253 }
4254
4255 virtual_p = !is_gimple_reg (phi_result);
4256 if (TREE_CODE (phi_result) != SSA_NAME
4257 || (virtual_p
4258 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4259 {
4260 error ("invalid PHI result");
4261 err = true;
4262 }
4263
4264 for (i = 0; i < gimple_phi_num_args (phi); i++)
4265 {
4266 tree t = gimple_phi_arg_def (phi, i);
4267
4268 if (!t)
4269 {
4270 error ("missing PHI def");
4271 err |= true;
4272 continue;
4273 }
4274 /* Addressable variables do have SSA_NAMEs but they
4275 are not considered gimple values. */
4276 else if ((TREE_CODE (t) == SSA_NAME
4277 && virtual_p != !is_gimple_reg (t))
4278 || (virtual_p
4279 && (TREE_CODE (t) != SSA_NAME
4280 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4281 || (!virtual_p
4282 && !is_gimple_val (t)))
4283 {
4284 error ("invalid PHI argument");
4285 debug_generic_expr (t);
4286 err |= true;
4287 }
4288 #ifdef ENABLE_TYPES_CHECKING
4289 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4290 {
4291 error ("incompatible types in PHI argument %u", i);
4292 debug_generic_stmt (TREE_TYPE (phi_result));
4293 debug_generic_stmt (TREE_TYPE (t));
4294 err |= true;
4295 }
4296 #endif
4297 }
4298
4299 return err;
4300 }
4301
4302 /* Verify the GIMPLE statements inside the sequence STMTS. */
4303
4304 static bool
4305 verify_gimple_in_seq_2 (gimple_seq stmts)
4306 {
4307 gimple_stmt_iterator ittr;
4308 bool err = false;
4309
4310 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4311 {
4312 gimple stmt = gsi_stmt (ittr);
4313
4314 switch (gimple_code (stmt))
4315 {
4316 case GIMPLE_BIND:
4317 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4318 break;
4319
4320 case GIMPLE_TRY:
4321 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4322 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4323 break;
4324
4325 case GIMPLE_EH_FILTER:
4326 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4327 break;
4328
4329 case GIMPLE_EH_ELSE:
4330 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4331 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4332 break;
4333
4334 case GIMPLE_CATCH:
4335 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4336 break;
4337
4338 case GIMPLE_TRANSACTION:
4339 err |= verify_gimple_transaction (stmt);
4340 break;
4341
4342 default:
4343 {
4344 bool err2 = verify_gimple_stmt (stmt);
4345 if (err2)
4346 debug_gimple_stmt (stmt);
4347 err |= err2;
4348 }
4349 }
4350 }
4351
4352 return err;
4353 }
4354
4355 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4356 is a problem, otherwise false. */
4357
4358 static bool
4359 verify_gimple_transaction (gimple stmt)
4360 {
4361 tree lab = gimple_transaction_label (stmt);
4362 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4363 return true;
4364 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4365 }
4366
4367
4368 /* Verify the GIMPLE statements inside the statement list STMTS. */
4369
4370 DEBUG_FUNCTION void
4371 verify_gimple_in_seq (gimple_seq stmts)
4372 {
4373 timevar_push (TV_TREE_STMT_VERIFY);
4374 if (verify_gimple_in_seq_2 (stmts))
4375 internal_error ("verify_gimple failed");
4376 timevar_pop (TV_TREE_STMT_VERIFY);
4377 }
4378
4379 /* Return true when the T can be shared. */
4380
4381 bool
4382 tree_node_can_be_shared (tree t)
4383 {
4384 if (IS_TYPE_OR_DECL_P (t)
4385 || is_gimple_min_invariant (t)
4386 || TREE_CODE (t) == SSA_NAME
4387 || t == error_mark_node
4388 || TREE_CODE (t) == IDENTIFIER_NODE)
4389 return true;
4390
4391 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4392 return true;
4393
4394 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4395 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4396 || TREE_CODE (t) == COMPONENT_REF
4397 || TREE_CODE (t) == REALPART_EXPR
4398 || TREE_CODE (t) == IMAGPART_EXPR)
4399 t = TREE_OPERAND (t, 0);
4400
4401 if (DECL_P (t))
4402 return true;
4403
4404 return false;
4405 }
4406
4407 /* Called via walk_gimple_stmt. Verify tree sharing. */
4408
4409 static tree
4410 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4411 {
4412 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4413 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4414
4415 if (tree_node_can_be_shared (*tp))
4416 {
4417 *walk_subtrees = false;
4418 return NULL;
4419 }
4420
4421 if (pointer_set_insert (visited, *tp))
4422 return *tp;
4423
4424 return NULL;
4425 }
4426
4427 static bool eh_error_found;
4428 static int
4429 verify_eh_throw_stmt_node (void **slot, void *data)
4430 {
4431 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4432 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4433
4434 if (!pointer_set_contains (visited, node->stmt))
4435 {
4436 error ("dead STMT in EH table");
4437 debug_gimple_stmt (node->stmt);
4438 eh_error_found = true;
4439 }
4440 return 1;
4441 }
4442
4443 /* Verify the GIMPLE statements in the CFG of FN. */
4444
4445 DEBUG_FUNCTION void
4446 verify_gimple_in_cfg (struct function *fn)
4447 {
4448 basic_block bb;
4449 bool err = false;
4450 struct pointer_set_t *visited, *visited_stmts;
4451
4452 timevar_push (TV_TREE_STMT_VERIFY);
4453 visited = pointer_set_create ();
4454 visited_stmts = pointer_set_create ();
4455
4456 FOR_EACH_BB_FN (bb, fn)
4457 {
4458 gimple_stmt_iterator gsi;
4459
4460 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4461 {
4462 gimple phi = gsi_stmt (gsi);
4463 bool err2 = false;
4464 unsigned i;
4465
4466 pointer_set_insert (visited_stmts, phi);
4467
4468 if (gimple_bb (phi) != bb)
4469 {
4470 error ("gimple_bb (phi) is set to a wrong basic block");
4471 err2 = true;
4472 }
4473
4474 err2 |= verify_gimple_phi (phi);
4475
4476 for (i = 0; i < gimple_phi_num_args (phi); i++)
4477 {
4478 tree arg = gimple_phi_arg_def (phi, i);
4479 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4480 if (addr)
4481 {
4482 error ("incorrect sharing of tree nodes");
4483 debug_generic_expr (addr);
4484 err2 |= true;
4485 }
4486 }
4487
4488 if (err2)
4489 debug_gimple_stmt (phi);
4490 err |= err2;
4491 }
4492
4493 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4494 {
4495 gimple stmt = gsi_stmt (gsi);
4496 bool err2 = false;
4497 struct walk_stmt_info wi;
4498 tree addr;
4499 int lp_nr;
4500
4501 pointer_set_insert (visited_stmts, stmt);
4502
4503 if (gimple_bb (stmt) != bb)
4504 {
4505 error ("gimple_bb (stmt) is set to a wrong basic block");
4506 err2 = true;
4507 }
4508
4509 err2 |= verify_gimple_stmt (stmt);
4510
4511 memset (&wi, 0, sizeof (wi));
4512 wi.info = (void *) visited;
4513 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4514 if (addr)
4515 {
4516 error ("incorrect sharing of tree nodes");
4517 debug_generic_expr (addr);
4518 err2 |= true;
4519 }
4520
4521 /* ??? Instead of not checking these stmts at all the walker
4522 should know its context via wi. */
4523 if (!is_gimple_debug (stmt)
4524 && !is_gimple_omp (stmt))
4525 {
4526 memset (&wi, 0, sizeof (wi));
4527 addr = walk_gimple_op (stmt, verify_expr, &wi);
4528 if (addr)
4529 {
4530 debug_generic_expr (addr);
4531 inform (gimple_location (stmt), "in statement");
4532 err2 |= true;
4533 }
4534 }
4535
4536 /* If the statement is marked as part of an EH region, then it is
4537 expected that the statement could throw. Verify that when we
4538 have optimizations that simplify statements such that we prove
4539 that they cannot throw, that we update other data structures
4540 to match. */
4541 lp_nr = lookup_stmt_eh_lp (stmt);
4542 if (lp_nr != 0)
4543 {
4544 if (!stmt_could_throw_p (stmt))
4545 {
4546 error ("statement marked for throw, but doesn%'t");
4547 err2 |= true;
4548 }
4549 else if (lp_nr > 0
4550 && !gsi_one_before_end_p (gsi)
4551 && stmt_can_throw_internal (stmt))
4552 {
4553 error ("statement marked for throw in middle of block");
4554 err2 |= true;
4555 }
4556 }
4557
4558 if (err2)
4559 debug_gimple_stmt (stmt);
4560 err |= err2;
4561 }
4562 }
4563
4564 eh_error_found = false;
4565 if (get_eh_throw_stmt_table (cfun))
4566 htab_traverse (get_eh_throw_stmt_table (cfun),
4567 verify_eh_throw_stmt_node,
4568 visited_stmts);
4569
4570 if (err || eh_error_found)
4571 internal_error ("verify_gimple failed");
4572
4573 pointer_set_destroy (visited);
4574 pointer_set_destroy (visited_stmts);
4575 verify_histograms ();
4576 timevar_pop (TV_TREE_STMT_VERIFY);
4577 }
4578
4579
4580 /* Verifies that the flow information is OK. */
4581
4582 static int
4583 gimple_verify_flow_info (void)
4584 {
4585 int err = 0;
4586 basic_block bb;
4587 gimple_stmt_iterator gsi;
4588 gimple stmt;
4589 edge e;
4590 edge_iterator ei;
4591
4592 if (ENTRY_BLOCK_PTR->il.gimple)
4593 {
4594 error ("ENTRY_BLOCK has IL associated with it");
4595 err = 1;
4596 }
4597
4598 if (EXIT_BLOCK_PTR->il.gimple)
4599 {
4600 error ("EXIT_BLOCK has IL associated with it");
4601 err = 1;
4602 }
4603
4604 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4605 if (e->flags & EDGE_FALLTHRU)
4606 {
4607 error ("fallthru to exit from bb %d", e->src->index);
4608 err = 1;
4609 }
4610
4611 FOR_EACH_BB (bb)
4612 {
4613 bool found_ctrl_stmt = false;
4614
4615 stmt = NULL;
4616
4617 /* Skip labels on the start of basic block. */
4618 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4619 {
4620 tree label;
4621 gimple prev_stmt = stmt;
4622
4623 stmt = gsi_stmt (gsi);
4624
4625 if (gimple_code (stmt) != GIMPLE_LABEL)
4626 break;
4627
4628 label = gimple_label_label (stmt);
4629 if (prev_stmt && DECL_NONLOCAL (label))
4630 {
4631 error ("nonlocal label ");
4632 print_generic_expr (stderr, label, 0);
4633 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4634 bb->index);
4635 err = 1;
4636 }
4637
4638 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4639 {
4640 error ("EH landing pad label ");
4641 print_generic_expr (stderr, label, 0);
4642 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4643 bb->index);
4644 err = 1;
4645 }
4646
4647 if (label_to_block (label) != bb)
4648 {
4649 error ("label ");
4650 print_generic_expr (stderr, label, 0);
4651 fprintf (stderr, " to block does not match in bb %d",
4652 bb->index);
4653 err = 1;
4654 }
4655
4656 if (decl_function_context (label) != current_function_decl)
4657 {
4658 error ("label ");
4659 print_generic_expr (stderr, label, 0);
4660 fprintf (stderr, " has incorrect context in bb %d",
4661 bb->index);
4662 err = 1;
4663 }
4664 }
4665
4666 /* Verify that body of basic block BB is free of control flow. */
4667 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4668 {
4669 gimple stmt = gsi_stmt (gsi);
4670
4671 if (found_ctrl_stmt)
4672 {
4673 error ("control flow in the middle of basic block %d",
4674 bb->index);
4675 err = 1;
4676 }
4677
4678 if (stmt_ends_bb_p (stmt))
4679 found_ctrl_stmt = true;
4680
4681 if (gimple_code (stmt) == GIMPLE_LABEL)
4682 {
4683 error ("label ");
4684 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4685 fprintf (stderr, " in the middle of basic block %d", bb->index);
4686 err = 1;
4687 }
4688 }
4689
4690 gsi = gsi_last_bb (bb);
4691 if (gsi_end_p (gsi))
4692 continue;
4693
4694 stmt = gsi_stmt (gsi);
4695
4696 if (gimple_code (stmt) == GIMPLE_LABEL)
4697 continue;
4698
4699 err |= verify_eh_edges (stmt);
4700
4701 if (is_ctrl_stmt (stmt))
4702 {
4703 FOR_EACH_EDGE (e, ei, bb->succs)
4704 if (e->flags & EDGE_FALLTHRU)
4705 {
4706 error ("fallthru edge after a control statement in bb %d",
4707 bb->index);
4708 err = 1;
4709 }
4710 }
4711
4712 if (gimple_code (stmt) != GIMPLE_COND)
4713 {
4714 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4715 after anything else but if statement. */
4716 FOR_EACH_EDGE (e, ei, bb->succs)
4717 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4718 {
4719 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4720 bb->index);
4721 err = 1;
4722 }
4723 }
4724
4725 switch (gimple_code (stmt))
4726 {
4727 case GIMPLE_COND:
4728 {
4729 edge true_edge;
4730 edge false_edge;
4731
4732 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4733
4734 if (!true_edge
4735 || !false_edge
4736 || !(true_edge->flags & EDGE_TRUE_VALUE)
4737 || !(false_edge->flags & EDGE_FALSE_VALUE)
4738 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4739 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4740 || EDGE_COUNT (bb->succs) >= 3)
4741 {
4742 error ("wrong outgoing edge flags at end of bb %d",
4743 bb->index);
4744 err = 1;
4745 }
4746 }
4747 break;
4748
4749 case GIMPLE_GOTO:
4750 if (simple_goto_p (stmt))
4751 {
4752 error ("explicit goto at end of bb %d", bb->index);
4753 err = 1;
4754 }
4755 else
4756 {
4757 /* FIXME. We should double check that the labels in the
4758 destination blocks have their address taken. */
4759 FOR_EACH_EDGE (e, ei, bb->succs)
4760 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4761 | EDGE_FALSE_VALUE))
4762 || !(e->flags & EDGE_ABNORMAL))
4763 {
4764 error ("wrong outgoing edge flags at end of bb %d",
4765 bb->index);
4766 err = 1;
4767 }
4768 }
4769 break;
4770
4771 case GIMPLE_CALL:
4772 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4773 break;
4774 /* ... fallthru ... */
4775 case GIMPLE_RETURN:
4776 if (!single_succ_p (bb)
4777 || (single_succ_edge (bb)->flags
4778 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4779 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4780 {
4781 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4782 err = 1;
4783 }
4784 if (single_succ (bb) != EXIT_BLOCK_PTR)
4785 {
4786 error ("return edge does not point to exit in bb %d",
4787 bb->index);
4788 err = 1;
4789 }
4790 break;
4791
4792 case GIMPLE_SWITCH:
4793 {
4794 tree prev;
4795 edge e;
4796 size_t i, n;
4797
4798 n = gimple_switch_num_labels (stmt);
4799
4800 /* Mark all the destination basic blocks. */
4801 for (i = 0; i < n; ++i)
4802 {
4803 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4804 basic_block label_bb = label_to_block (lab);
4805 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4806 label_bb->aux = (void *)1;
4807 }
4808
4809 /* Verify that the case labels are sorted. */
4810 prev = gimple_switch_label (stmt, 0);
4811 for (i = 1; i < n; ++i)
4812 {
4813 tree c = gimple_switch_label (stmt, i);
4814 if (!CASE_LOW (c))
4815 {
4816 error ("found default case not at the start of "
4817 "case vector");
4818 err = 1;
4819 continue;
4820 }
4821 if (CASE_LOW (prev)
4822 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4823 {
4824 error ("case labels not sorted: ");
4825 print_generic_expr (stderr, prev, 0);
4826 fprintf (stderr," is greater than ");
4827 print_generic_expr (stderr, c, 0);
4828 fprintf (stderr," but comes before it.\n");
4829 err = 1;
4830 }
4831 prev = c;
4832 }
4833 /* VRP will remove the default case if it can prove it will
4834 never be executed. So do not verify there always exists
4835 a default case here. */
4836
4837 FOR_EACH_EDGE (e, ei, bb->succs)
4838 {
4839 if (!e->dest->aux)
4840 {
4841 error ("extra outgoing edge %d->%d",
4842 bb->index, e->dest->index);
4843 err = 1;
4844 }
4845
4846 e->dest->aux = (void *)2;
4847 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4848 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4849 {
4850 error ("wrong outgoing edge flags at end of bb %d",
4851 bb->index);
4852 err = 1;
4853 }
4854 }
4855
4856 /* Check that we have all of them. */
4857 for (i = 0; i < n; ++i)
4858 {
4859 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4860 basic_block label_bb = label_to_block (lab);
4861
4862 if (label_bb->aux != (void *)2)
4863 {
4864 error ("missing edge %i->%i", bb->index, label_bb->index);
4865 err = 1;
4866 }
4867 }
4868
4869 FOR_EACH_EDGE (e, ei, bb->succs)
4870 e->dest->aux = (void *)0;
4871 }
4872 break;
4873
4874 case GIMPLE_EH_DISPATCH:
4875 err |= verify_eh_dispatch_edge (stmt);
4876 break;
4877
4878 default:
4879 break;
4880 }
4881 }
4882
4883 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4884 verify_dominators (CDI_DOMINATORS);
4885
4886 return err;
4887 }
4888
4889
4890 /* Updates phi nodes after creating a forwarder block joined
4891 by edge FALLTHRU. */
4892
4893 static void
4894 gimple_make_forwarder_block (edge fallthru)
4895 {
4896 edge e;
4897 edge_iterator ei;
4898 basic_block dummy, bb;
4899 tree var;
4900 gimple_stmt_iterator gsi;
4901
4902 dummy = fallthru->src;
4903 bb = fallthru->dest;
4904
4905 if (single_pred_p (bb))
4906 return;
4907
4908 /* If we redirected a branch we must create new PHI nodes at the
4909 start of BB. */
4910 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4911 {
4912 gimple phi, new_phi;
4913
4914 phi = gsi_stmt (gsi);
4915 var = gimple_phi_result (phi);
4916 new_phi = create_phi_node (var, bb);
4917 SSA_NAME_DEF_STMT (var) = new_phi;
4918 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4919 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4920 UNKNOWN_LOCATION);
4921 }
4922
4923 /* Add the arguments we have stored on edges. */
4924 FOR_EACH_EDGE (e, ei, bb->preds)
4925 {
4926 if (e == fallthru)
4927 continue;
4928
4929 flush_pending_stmts (e);
4930 }
4931 }
4932
4933
4934 /* Return a non-special label in the head of basic block BLOCK.
4935 Create one if it doesn't exist. */
4936
4937 tree
4938 gimple_block_label (basic_block bb)
4939 {
4940 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4941 bool first = true;
4942 tree label;
4943 gimple stmt;
4944
4945 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4946 {
4947 stmt = gsi_stmt (i);
4948 if (gimple_code (stmt) != GIMPLE_LABEL)
4949 break;
4950 label = gimple_label_label (stmt);
4951 if (!DECL_NONLOCAL (label))
4952 {
4953 if (!first)
4954 gsi_move_before (&i, &s);
4955 return label;
4956 }
4957 }
4958
4959 label = create_artificial_label (UNKNOWN_LOCATION);
4960 stmt = gimple_build_label (label);
4961 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4962 return label;
4963 }
4964
4965
4966 /* Attempt to perform edge redirection by replacing a possibly complex
4967 jump instruction by a goto or by removing the jump completely.
4968 This can apply only if all edges now point to the same block. The
4969 parameters and return values are equivalent to
4970 redirect_edge_and_branch. */
4971
4972 static edge
4973 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4974 {
4975 basic_block src = e->src;
4976 gimple_stmt_iterator i;
4977 gimple stmt;
4978
4979 /* We can replace or remove a complex jump only when we have exactly
4980 two edges. */
4981 if (EDGE_COUNT (src->succs) != 2
4982 /* Verify that all targets will be TARGET. Specifically, the
4983 edge that is not E must also go to TARGET. */
4984 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4985 return NULL;
4986
4987 i = gsi_last_bb (src);
4988 if (gsi_end_p (i))
4989 return NULL;
4990
4991 stmt = gsi_stmt (i);
4992
4993 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4994 {
4995 gsi_remove (&i, true);
4996 e = ssa_redirect_edge (e, target);
4997 e->flags = EDGE_FALLTHRU;
4998 return e;
4999 }
5000
5001 return NULL;
5002 }
5003
5004
5005 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5006 edge representing the redirected branch. */
5007
5008 static edge
5009 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5010 {
5011 basic_block bb = e->src;
5012 gimple_stmt_iterator gsi;
5013 edge ret;
5014 gimple stmt;
5015
5016 if (e->flags & EDGE_ABNORMAL)
5017 return NULL;
5018
5019 if (e->dest == dest)
5020 return NULL;
5021
5022 if (e->flags & EDGE_EH)
5023 return redirect_eh_edge (e, dest);
5024
5025 if (e->src != ENTRY_BLOCK_PTR)
5026 {
5027 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5028 if (ret)
5029 return ret;
5030 }
5031
5032 gsi = gsi_last_bb (bb);
5033 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5034
5035 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5036 {
5037 case GIMPLE_COND:
5038 /* For COND_EXPR, we only need to redirect the edge. */
5039 break;
5040
5041 case GIMPLE_GOTO:
5042 /* No non-abnormal edges should lead from a non-simple goto, and
5043 simple ones should be represented implicitly. */
5044 gcc_unreachable ();
5045
5046 case GIMPLE_SWITCH:
5047 {
5048 tree label = gimple_block_label (dest);
5049 tree cases = get_cases_for_edge (e, stmt);
5050
5051 /* If we have a list of cases associated with E, then use it
5052 as it's a lot faster than walking the entire case vector. */
5053 if (cases)
5054 {
5055 edge e2 = find_edge (e->src, dest);
5056 tree last, first;
5057
5058 first = cases;
5059 while (cases)
5060 {
5061 last = cases;
5062 CASE_LABEL (cases) = label;
5063 cases = CASE_CHAIN (cases);
5064 }
5065
5066 /* If there was already an edge in the CFG, then we need
5067 to move all the cases associated with E to E2. */
5068 if (e2)
5069 {
5070 tree cases2 = get_cases_for_edge (e2, stmt);
5071
5072 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5073 CASE_CHAIN (cases2) = first;
5074 }
5075 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5076 }
5077 else
5078 {
5079 size_t i, n = gimple_switch_num_labels (stmt);
5080
5081 for (i = 0; i < n; i++)
5082 {
5083 tree elt = gimple_switch_label (stmt, i);
5084 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5085 CASE_LABEL (elt) = label;
5086 }
5087 }
5088 }
5089 break;
5090
5091 case GIMPLE_ASM:
5092 {
5093 int i, n = gimple_asm_nlabels (stmt);
5094 tree label = NULL;
5095
5096 for (i = 0; i < n; ++i)
5097 {
5098 tree cons = gimple_asm_label_op (stmt, i);
5099 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5100 {
5101 if (!label)
5102 label = gimple_block_label (dest);
5103 TREE_VALUE (cons) = label;
5104 }
5105 }
5106
5107 /* If we didn't find any label matching the former edge in the
5108 asm labels, we must be redirecting the fallthrough
5109 edge. */
5110 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5111 }
5112 break;
5113
5114 case GIMPLE_RETURN:
5115 gsi_remove (&gsi, true);
5116 e->flags |= EDGE_FALLTHRU;
5117 break;
5118
5119 case GIMPLE_OMP_RETURN:
5120 case GIMPLE_OMP_CONTINUE:
5121 case GIMPLE_OMP_SECTIONS_SWITCH:
5122 case GIMPLE_OMP_FOR:
5123 /* The edges from OMP constructs can be simply redirected. */
5124 break;
5125
5126 case GIMPLE_EH_DISPATCH:
5127 if (!(e->flags & EDGE_FALLTHRU))
5128 redirect_eh_dispatch_edge (stmt, e, dest);
5129 break;
5130
5131 case GIMPLE_TRANSACTION:
5132 /* The ABORT edge has a stored label associated with it, otherwise
5133 the edges are simply redirectable. */
5134 if (e->flags == 0)
5135 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5136 break;
5137
5138 default:
5139 /* Otherwise it must be a fallthru edge, and we don't need to
5140 do anything besides redirecting it. */
5141 gcc_assert (e->flags & EDGE_FALLTHRU);
5142 break;
5143 }
5144
5145 /* Update/insert PHI nodes as necessary. */
5146
5147 /* Now update the edges in the CFG. */
5148 e = ssa_redirect_edge (e, dest);
5149
5150 return e;
5151 }
5152
5153 /* Returns true if it is possible to remove edge E by redirecting
5154 it to the destination of the other edge from E->src. */
5155
5156 static bool
5157 gimple_can_remove_branch_p (const_edge e)
5158 {
5159 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5160 return false;
5161
5162 return true;
5163 }
5164
5165 /* Simple wrapper, as we can always redirect fallthru edges. */
5166
5167 static basic_block
5168 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5169 {
5170 e = gimple_redirect_edge_and_branch (e, dest);
5171 gcc_assert (e);
5172
5173 return NULL;
5174 }
5175
5176
5177 /* Splits basic block BB after statement STMT (but at least after the
5178 labels). If STMT is NULL, BB is split just after the labels. */
5179
5180 static basic_block
5181 gimple_split_block (basic_block bb, void *stmt)
5182 {
5183 gimple_stmt_iterator gsi;
5184 gimple_stmt_iterator gsi_tgt;
5185 gimple act;
5186 gimple_seq list;
5187 basic_block new_bb;
5188 edge e;
5189 edge_iterator ei;
5190
5191 new_bb = create_empty_bb (bb);
5192
5193 /* Redirect the outgoing edges. */
5194 new_bb->succs = bb->succs;
5195 bb->succs = NULL;
5196 FOR_EACH_EDGE (e, ei, new_bb->succs)
5197 e->src = new_bb;
5198
5199 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5200 stmt = NULL;
5201
5202 /* Move everything from GSI to the new basic block. */
5203 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5204 {
5205 act = gsi_stmt (gsi);
5206 if (gimple_code (act) == GIMPLE_LABEL)
5207 continue;
5208
5209 if (!stmt)
5210 break;
5211
5212 if (stmt == act)
5213 {
5214 gsi_next (&gsi);
5215 break;
5216 }
5217 }
5218
5219 if (gsi_end_p (gsi))
5220 return new_bb;
5221
5222 /* Split the statement list - avoid re-creating new containers as this
5223 brings ugly quadratic memory consumption in the inliner.
5224 (We are still quadratic since we need to update stmt BB pointers,
5225 sadly.) */
5226 list = gsi_split_seq_before (&gsi);
5227 set_bb_seq (new_bb, list);
5228 for (gsi_tgt = gsi_start (list);
5229 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5230 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5231
5232 return new_bb;
5233 }
5234
5235
5236 /* Moves basic block BB after block AFTER. */
5237
5238 static bool
5239 gimple_move_block_after (basic_block bb, basic_block after)
5240 {
5241 if (bb->prev_bb == after)
5242 return true;
5243
5244 unlink_block (bb);
5245 link_block (bb, after);
5246
5247 return true;
5248 }
5249
5250
5251 /* Return true if basic_block can be duplicated. */
5252
5253 static bool
5254 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5255 {
5256 return true;
5257 }
5258
5259 /* Create a duplicate of the basic block BB. NOTE: This does not
5260 preserve SSA form. */
5261
5262 static basic_block
5263 gimple_duplicate_bb (basic_block bb)
5264 {
5265 basic_block new_bb;
5266 gimple_stmt_iterator gsi, gsi_tgt;
5267 gimple_seq phis = phi_nodes (bb);
5268 gimple phi, stmt, copy;
5269
5270 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5271
5272 /* Copy the PHI nodes. We ignore PHI node arguments here because
5273 the incoming edges have not been setup yet. */
5274 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5275 {
5276 phi = gsi_stmt (gsi);
5277 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5278 create_new_def_for (gimple_phi_result (copy), copy,
5279 gimple_phi_result_ptr (copy));
5280 }
5281
5282 gsi_tgt = gsi_start_bb (new_bb);
5283 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5284 {
5285 def_operand_p def_p;
5286 ssa_op_iter op_iter;
5287 tree lhs;
5288
5289 stmt = gsi_stmt (gsi);
5290 if (gimple_code (stmt) == GIMPLE_LABEL)
5291 continue;
5292
5293 /* Don't duplicate label debug stmts. */
5294 if (gimple_debug_bind_p (stmt)
5295 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5296 == LABEL_DECL)
5297 continue;
5298
5299 /* Create a new copy of STMT and duplicate STMT's virtual
5300 operands. */
5301 copy = gimple_copy (stmt);
5302 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5303
5304 maybe_duplicate_eh_stmt (copy, stmt);
5305 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5306
5307 /* When copying around a stmt writing into a local non-user
5308 aggregate, make sure it won't share stack slot with other
5309 vars. */
5310 lhs = gimple_get_lhs (stmt);
5311 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5312 {
5313 tree base = get_base_address (lhs);
5314 if (base
5315 && (TREE_CODE (base) == VAR_DECL
5316 || TREE_CODE (base) == RESULT_DECL)
5317 && DECL_IGNORED_P (base)
5318 && !TREE_STATIC (base)
5319 && !DECL_EXTERNAL (base)
5320 && (TREE_CODE (base) != VAR_DECL
5321 || !DECL_HAS_VALUE_EXPR_P (base)))
5322 DECL_NONSHAREABLE (base) = 1;
5323 }
5324
5325 /* Create new names for all the definitions created by COPY and
5326 add replacement mappings for each new name. */
5327 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5328 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5329 }
5330
5331 return new_bb;
5332 }
5333
5334 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5335
5336 static void
5337 add_phi_args_after_copy_edge (edge e_copy)
5338 {
5339 basic_block bb, bb_copy = e_copy->src, dest;
5340 edge e;
5341 edge_iterator ei;
5342 gimple phi, phi_copy;
5343 tree def;
5344 gimple_stmt_iterator psi, psi_copy;
5345
5346 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5347 return;
5348
5349 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5350
5351 if (e_copy->dest->flags & BB_DUPLICATED)
5352 dest = get_bb_original (e_copy->dest);
5353 else
5354 dest = e_copy->dest;
5355
5356 e = find_edge (bb, dest);
5357 if (!e)
5358 {
5359 /* During loop unrolling the target of the latch edge is copied.
5360 In this case we are not looking for edge to dest, but to
5361 duplicated block whose original was dest. */
5362 FOR_EACH_EDGE (e, ei, bb->succs)
5363 {
5364 if ((e->dest->flags & BB_DUPLICATED)
5365 && get_bb_original (e->dest) == dest)
5366 break;
5367 }
5368
5369 gcc_assert (e != NULL);
5370 }
5371
5372 for (psi = gsi_start_phis (e->dest),
5373 psi_copy = gsi_start_phis (e_copy->dest);
5374 !gsi_end_p (psi);
5375 gsi_next (&psi), gsi_next (&psi_copy))
5376 {
5377 phi = gsi_stmt (psi);
5378 phi_copy = gsi_stmt (psi_copy);
5379 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5380 add_phi_arg (phi_copy, def, e_copy,
5381 gimple_phi_arg_location_from_edge (phi, e));
5382 }
5383 }
5384
5385
5386 /* Basic block BB_COPY was created by code duplication. Add phi node
5387 arguments for edges going out of BB_COPY. The blocks that were
5388 duplicated have BB_DUPLICATED set. */
5389
5390 void
5391 add_phi_args_after_copy_bb (basic_block bb_copy)
5392 {
5393 edge e_copy;
5394 edge_iterator ei;
5395
5396 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5397 {
5398 add_phi_args_after_copy_edge (e_copy);
5399 }
5400 }
5401
5402 /* Blocks in REGION_COPY array of length N_REGION were created by
5403 duplication of basic blocks. Add phi node arguments for edges
5404 going from these blocks. If E_COPY is not NULL, also add
5405 phi node arguments for its destination.*/
5406
5407 void
5408 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5409 edge e_copy)
5410 {
5411 unsigned i;
5412
5413 for (i = 0; i < n_region; i++)
5414 region_copy[i]->flags |= BB_DUPLICATED;
5415
5416 for (i = 0; i < n_region; i++)
5417 add_phi_args_after_copy_bb (region_copy[i]);
5418 if (e_copy)
5419 add_phi_args_after_copy_edge (e_copy);
5420
5421 for (i = 0; i < n_region; i++)
5422 region_copy[i]->flags &= ~BB_DUPLICATED;
5423 }
5424
5425 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5426 important exit edge EXIT. By important we mean that no SSA name defined
5427 inside region is live over the other exit edges of the region. All entry
5428 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5429 to the duplicate of the region. SSA form, dominance and loop information
5430 is updated. The new basic blocks are stored to REGION_COPY in the same
5431 order as they had in REGION, provided that REGION_COPY is not NULL.
5432 The function returns false if it is unable to copy the region,
5433 true otherwise. */
5434
5435 bool
5436 gimple_duplicate_sese_region (edge entry, edge exit,
5437 basic_block *region, unsigned n_region,
5438 basic_block *region_copy)
5439 {
5440 unsigned i;
5441 bool free_region_copy = false, copying_header = false;
5442 struct loop *loop = entry->dest->loop_father;
5443 edge exit_copy;
5444 VEC (basic_block, heap) *doms;
5445 edge redirected;
5446 int total_freq = 0, entry_freq = 0;
5447 gcov_type total_count = 0, entry_count = 0;
5448
5449 if (!can_copy_bbs_p (region, n_region))
5450 return false;
5451
5452 /* Some sanity checking. Note that we do not check for all possible
5453 missuses of the functions. I.e. if you ask to copy something weird,
5454 it will work, but the state of structures probably will not be
5455 correct. */
5456 for (i = 0; i < n_region; i++)
5457 {
5458 /* We do not handle subloops, i.e. all the blocks must belong to the
5459 same loop. */
5460 if (region[i]->loop_father != loop)
5461 return false;
5462
5463 if (region[i] != entry->dest
5464 && region[i] == loop->header)
5465 return false;
5466 }
5467
5468 set_loop_copy (loop, loop);
5469
5470 /* In case the function is used for loop header copying (which is the primary
5471 use), ensure that EXIT and its copy will be new latch and entry edges. */
5472 if (loop->header == entry->dest)
5473 {
5474 copying_header = true;
5475 set_loop_copy (loop, loop_outer (loop));
5476
5477 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5478 return false;
5479
5480 for (i = 0; i < n_region; i++)
5481 if (region[i] != exit->src
5482 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5483 return false;
5484 }
5485
5486 if (!region_copy)
5487 {
5488 region_copy = XNEWVEC (basic_block, n_region);
5489 free_region_copy = true;
5490 }
5491
5492 gcc_assert (!need_ssa_update_p (cfun));
5493
5494 /* Record blocks outside the region that are dominated by something
5495 inside. */
5496 doms = NULL;
5497 initialize_original_copy_tables ();
5498
5499 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5500
5501 if (entry->dest->count)
5502 {
5503 total_count = entry->dest->count;
5504 entry_count = entry->count;
5505 /* Fix up corner cases, to avoid division by zero or creation of negative
5506 frequencies. */
5507 if (entry_count > total_count)
5508 entry_count = total_count;
5509 }
5510 else
5511 {
5512 total_freq = entry->dest->frequency;
5513 entry_freq = EDGE_FREQUENCY (entry);
5514 /* Fix up corner cases, to avoid division by zero or creation of negative
5515 frequencies. */
5516 if (total_freq == 0)
5517 total_freq = 1;
5518 else if (entry_freq > total_freq)
5519 entry_freq = total_freq;
5520 }
5521
5522 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5523 split_edge_bb_loc (entry));
5524 if (total_count)
5525 {
5526 scale_bbs_frequencies_gcov_type (region, n_region,
5527 total_count - entry_count,
5528 total_count);
5529 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5530 total_count);
5531 }
5532 else
5533 {
5534 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5535 total_freq);
5536 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5537 }
5538
5539 if (copying_header)
5540 {
5541 loop->header = exit->dest;
5542 loop->latch = exit->src;
5543 }
5544
5545 /* Redirect the entry and add the phi node arguments. */
5546 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5547 gcc_assert (redirected != NULL);
5548 flush_pending_stmts (entry);
5549
5550 /* Concerning updating of dominators: We must recount dominators
5551 for entry block and its copy. Anything that is outside of the
5552 region, but was dominated by something inside needs recounting as
5553 well. */
5554 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5555 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5556 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5557 VEC_free (basic_block, heap, doms);
5558
5559 /* Add the other PHI node arguments. */
5560 add_phi_args_after_copy (region_copy, n_region, NULL);
5561
5562 /* Update the SSA web. */
5563 update_ssa (TODO_update_ssa);
5564
5565 if (free_region_copy)
5566 free (region_copy);
5567
5568 free_original_copy_tables ();
5569 return true;
5570 }
5571
5572 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5573 are stored to REGION_COPY in the same order in that they appear
5574 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5575 the region, EXIT an exit from it. The condition guarding EXIT
5576 is moved to ENTRY. Returns true if duplication succeeds, false
5577 otherwise.
5578
5579 For example,
5580
5581 some_code;
5582 if (cond)
5583 A;
5584 else
5585 B;
5586
5587 is transformed to
5588
5589 if (cond)
5590 {
5591 some_code;
5592 A;
5593 }
5594 else
5595 {
5596 some_code;
5597 B;
5598 }
5599 */
5600
5601 bool
5602 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5603 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5604 basic_block *region_copy ATTRIBUTE_UNUSED)
5605 {
5606 unsigned i;
5607 bool free_region_copy = false;
5608 struct loop *loop = exit->dest->loop_father;
5609 struct loop *orig_loop = entry->dest->loop_father;
5610 basic_block switch_bb, entry_bb, nentry_bb;
5611 VEC (basic_block, heap) *doms;
5612 int total_freq = 0, exit_freq = 0;
5613 gcov_type total_count = 0, exit_count = 0;
5614 edge exits[2], nexits[2], e;
5615 gimple_stmt_iterator gsi;
5616 gimple cond_stmt;
5617 edge sorig, snew;
5618 basic_block exit_bb;
5619 gimple_stmt_iterator psi;
5620 gimple phi;
5621 tree def;
5622
5623 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5624 exits[0] = exit;
5625 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5626
5627 if (!can_copy_bbs_p (region, n_region))
5628 return false;
5629
5630 initialize_original_copy_tables ();
5631 set_loop_copy (orig_loop, loop);
5632 duplicate_subloops (orig_loop, loop);
5633
5634 if (!region_copy)
5635 {
5636 region_copy = XNEWVEC (basic_block, n_region);
5637 free_region_copy = true;
5638 }
5639
5640 gcc_assert (!need_ssa_update_p (cfun));
5641
5642 /* Record blocks outside the region that are dominated by something
5643 inside. */
5644 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5645
5646 if (exit->src->count)
5647 {
5648 total_count = exit->src->count;
5649 exit_count = exit->count;
5650 /* Fix up corner cases, to avoid division by zero or creation of negative
5651 frequencies. */
5652 if (exit_count > total_count)
5653 exit_count = total_count;
5654 }
5655 else
5656 {
5657 total_freq = exit->src->frequency;
5658 exit_freq = EDGE_FREQUENCY (exit);
5659 /* Fix up corner cases, to avoid division by zero or creation of negative
5660 frequencies. */
5661 if (total_freq == 0)
5662 total_freq = 1;
5663 if (exit_freq > total_freq)
5664 exit_freq = total_freq;
5665 }
5666
5667 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5668 split_edge_bb_loc (exit));
5669 if (total_count)
5670 {
5671 scale_bbs_frequencies_gcov_type (region, n_region,
5672 total_count - exit_count,
5673 total_count);
5674 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5675 total_count);
5676 }
5677 else
5678 {
5679 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5680 total_freq);
5681 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5682 }
5683
5684 /* Create the switch block, and put the exit condition to it. */
5685 entry_bb = entry->dest;
5686 nentry_bb = get_bb_copy (entry_bb);
5687 if (!last_stmt (entry->src)
5688 || !stmt_ends_bb_p (last_stmt (entry->src)))
5689 switch_bb = entry->src;
5690 else
5691 switch_bb = split_edge (entry);
5692 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5693
5694 gsi = gsi_last_bb (switch_bb);
5695 cond_stmt = last_stmt (exit->src);
5696 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5697 cond_stmt = gimple_copy (cond_stmt);
5698
5699 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5700
5701 sorig = single_succ_edge (switch_bb);
5702 sorig->flags = exits[1]->flags;
5703 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5704
5705 /* Register the new edge from SWITCH_BB in loop exit lists. */
5706 rescan_loop_exit (snew, true, false);
5707
5708 /* Add the PHI node arguments. */
5709 add_phi_args_after_copy (region_copy, n_region, snew);
5710
5711 /* Get rid of now superfluous conditions and associated edges (and phi node
5712 arguments). */
5713 exit_bb = exit->dest;
5714
5715 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5716 PENDING_STMT (e) = NULL;
5717
5718 /* The latch of ORIG_LOOP was copied, and so was the backedge
5719 to the original header. We redirect this backedge to EXIT_BB. */
5720 for (i = 0; i < n_region; i++)
5721 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5722 {
5723 gcc_assert (single_succ_edge (region_copy[i]));
5724 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5725 PENDING_STMT (e) = NULL;
5726 for (psi = gsi_start_phis (exit_bb);
5727 !gsi_end_p (psi);
5728 gsi_next (&psi))
5729 {
5730 phi = gsi_stmt (psi);
5731 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5732 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5733 }
5734 }
5735 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5736 PENDING_STMT (e) = NULL;
5737
5738 /* Anything that is outside of the region, but was dominated by something
5739 inside needs to update dominance info. */
5740 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5741 VEC_free (basic_block, heap, doms);
5742 /* Update the SSA web. */
5743 update_ssa (TODO_update_ssa);
5744
5745 if (free_region_copy)
5746 free (region_copy);
5747
5748 free_original_copy_tables ();
5749 return true;
5750 }
5751
5752 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5753 adding blocks when the dominator traversal reaches EXIT. This
5754 function silently assumes that ENTRY strictly dominates EXIT. */
5755
5756 void
5757 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5758 VEC(basic_block,heap) **bbs_p)
5759 {
5760 basic_block son;
5761
5762 for (son = first_dom_son (CDI_DOMINATORS, entry);
5763 son;
5764 son = next_dom_son (CDI_DOMINATORS, son))
5765 {
5766 VEC_safe_push (basic_block, heap, *bbs_p, son);
5767 if (son != exit)
5768 gather_blocks_in_sese_region (son, exit, bbs_p);
5769 }
5770 }
5771
5772 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5773 The duplicates are recorded in VARS_MAP. */
5774
5775 static void
5776 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5777 tree to_context)
5778 {
5779 tree t = *tp, new_t;
5780 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5781 void **loc;
5782
5783 if (DECL_CONTEXT (t) == to_context)
5784 return;
5785
5786 loc = pointer_map_contains (vars_map, t);
5787
5788 if (!loc)
5789 {
5790 loc = pointer_map_insert (vars_map, t);
5791
5792 if (SSA_VAR_P (t))
5793 {
5794 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5795 add_local_decl (f, new_t);
5796 }
5797 else
5798 {
5799 gcc_assert (TREE_CODE (t) == CONST_DECL);
5800 new_t = copy_node (t);
5801 }
5802 DECL_CONTEXT (new_t) = to_context;
5803
5804 *loc = new_t;
5805 }
5806 else
5807 new_t = (tree) *loc;
5808
5809 *tp = new_t;
5810 }
5811
5812
5813 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5814 VARS_MAP maps old ssa names and var_decls to the new ones. */
5815
5816 static tree
5817 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5818 tree to_context)
5819 {
5820 void **loc;
5821 tree new_name, decl = SSA_NAME_VAR (name);
5822
5823 gcc_assert (is_gimple_reg (name));
5824
5825 loc = pointer_map_contains (vars_map, name);
5826
5827 if (!loc)
5828 {
5829 replace_by_duplicate_decl (&decl, vars_map, to_context);
5830
5831 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5832 if (gimple_in_ssa_p (cfun))
5833 add_referenced_var (decl);
5834
5835 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5836 if (SSA_NAME_IS_DEFAULT_DEF (name))
5837 set_default_def (decl, new_name);
5838 pop_cfun ();
5839
5840 loc = pointer_map_insert (vars_map, name);
5841 *loc = new_name;
5842 }
5843 else
5844 new_name = (tree) *loc;
5845
5846 return new_name;
5847 }
5848
5849 struct move_stmt_d
5850 {
5851 tree orig_block;
5852 tree new_block;
5853 tree from_context;
5854 tree to_context;
5855 struct pointer_map_t *vars_map;
5856 htab_t new_label_map;
5857 struct pointer_map_t *eh_map;
5858 bool remap_decls_p;
5859 };
5860
5861 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5862 contained in *TP if it has been ORIG_BLOCK previously and change the
5863 DECL_CONTEXT of every local variable referenced in *TP. */
5864
5865 static tree
5866 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5867 {
5868 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5869 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5870 tree t = *tp;
5871
5872 if (EXPR_P (t))
5873 /* We should never have TREE_BLOCK set on non-statements. */
5874 gcc_assert (!TREE_BLOCK (t));
5875
5876 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5877 {
5878 if (TREE_CODE (t) == SSA_NAME)
5879 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5880 else if (TREE_CODE (t) == LABEL_DECL)
5881 {
5882 if (p->new_label_map)
5883 {
5884 struct tree_map in, *out;
5885 in.base.from = t;
5886 out = (struct tree_map *)
5887 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5888 if (out)
5889 *tp = t = out->to;
5890 }
5891
5892 DECL_CONTEXT (t) = p->to_context;
5893 }
5894 else if (p->remap_decls_p)
5895 {
5896 /* Replace T with its duplicate. T should no longer appear in the
5897 parent function, so this looks wasteful; however, it may appear
5898 in referenced_vars, and more importantly, as virtual operands of
5899 statements, and in alias lists of other variables. It would be
5900 quite difficult to expunge it from all those places. ??? It might
5901 suffice to do this for addressable variables. */
5902 if ((TREE_CODE (t) == VAR_DECL
5903 && !is_global_var (t))
5904 || TREE_CODE (t) == CONST_DECL)
5905 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5906
5907 if (SSA_VAR_P (t)
5908 && gimple_in_ssa_p (cfun))
5909 {
5910 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5911 add_referenced_var (*tp);
5912 pop_cfun ();
5913 }
5914 }
5915 *walk_subtrees = 0;
5916 }
5917 else if (TYPE_P (t))
5918 *walk_subtrees = 0;
5919
5920 return NULL_TREE;
5921 }
5922
5923 /* Helper for move_stmt_r. Given an EH region number for the source
5924 function, map that to the duplicate EH regio number in the dest. */
5925
5926 static int
5927 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5928 {
5929 eh_region old_r, new_r;
5930 void **slot;
5931
5932 old_r = get_eh_region_from_number (old_nr);
5933 slot = pointer_map_contains (p->eh_map, old_r);
5934 new_r = (eh_region) *slot;
5935
5936 return new_r->index;
5937 }
5938
5939 /* Similar, but operate on INTEGER_CSTs. */
5940
5941 static tree
5942 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5943 {
5944 int old_nr, new_nr;
5945
5946 old_nr = tree_low_cst (old_t_nr, 0);
5947 new_nr = move_stmt_eh_region_nr (old_nr, p);
5948
5949 return build_int_cst (integer_type_node, new_nr);
5950 }
5951
5952 /* Like move_stmt_op, but for gimple statements.
5953
5954 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5955 contained in the current statement in *GSI_P and change the
5956 DECL_CONTEXT of every local variable referenced in the current
5957 statement. */
5958
5959 static tree
5960 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5961 struct walk_stmt_info *wi)
5962 {
5963 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5964 gimple stmt = gsi_stmt (*gsi_p);
5965 tree block = gimple_block (stmt);
5966
5967 if (p->orig_block == NULL_TREE
5968 || block == p->orig_block
5969 || block == NULL_TREE)
5970 gimple_set_block (stmt, p->new_block);
5971 #ifdef ENABLE_CHECKING
5972 else if (block != p->new_block)
5973 {
5974 while (block && block != p->orig_block)
5975 block = BLOCK_SUPERCONTEXT (block);
5976 gcc_assert (block);
5977 }
5978 #endif
5979
5980 switch (gimple_code (stmt))
5981 {
5982 case GIMPLE_CALL:
5983 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5984 {
5985 tree r, fndecl = gimple_call_fndecl (stmt);
5986 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5987 switch (DECL_FUNCTION_CODE (fndecl))
5988 {
5989 case BUILT_IN_EH_COPY_VALUES:
5990 r = gimple_call_arg (stmt, 1);
5991 r = move_stmt_eh_region_tree_nr (r, p);
5992 gimple_call_set_arg (stmt, 1, r);
5993 /* FALLTHRU */
5994
5995 case BUILT_IN_EH_POINTER:
5996 case BUILT_IN_EH_FILTER:
5997 r = gimple_call_arg (stmt, 0);
5998 r = move_stmt_eh_region_tree_nr (r, p);
5999 gimple_call_set_arg (stmt, 0, r);
6000 break;
6001
6002 default:
6003 break;
6004 }
6005 }
6006 break;
6007
6008 case GIMPLE_RESX:
6009 {
6010 int r = gimple_resx_region (stmt);
6011 r = move_stmt_eh_region_nr (r, p);
6012 gimple_resx_set_region (stmt, r);
6013 }
6014 break;
6015
6016 case GIMPLE_EH_DISPATCH:
6017 {
6018 int r = gimple_eh_dispatch_region (stmt);
6019 r = move_stmt_eh_region_nr (r, p);
6020 gimple_eh_dispatch_set_region (stmt, r);
6021 }
6022 break;
6023
6024 case GIMPLE_OMP_RETURN:
6025 case GIMPLE_OMP_CONTINUE:
6026 break;
6027 default:
6028 if (is_gimple_omp (stmt))
6029 {
6030 /* Do not remap variables inside OMP directives. Variables
6031 referenced in clauses and directive header belong to the
6032 parent function and should not be moved into the child
6033 function. */
6034 bool save_remap_decls_p = p->remap_decls_p;
6035 p->remap_decls_p = false;
6036 *handled_ops_p = true;
6037
6038 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
6039 move_stmt_op, wi);
6040
6041 p->remap_decls_p = save_remap_decls_p;
6042 }
6043 break;
6044 }
6045
6046 return NULL_TREE;
6047 }
6048
6049 /* Move basic block BB from function CFUN to function DEST_FN. The
6050 block is moved out of the original linked list and placed after
6051 block AFTER in the new list. Also, the block is removed from the
6052 original array of blocks and placed in DEST_FN's array of blocks.
6053 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6054 updated to reflect the moved edges.
6055
6056 The local variables are remapped to new instances, VARS_MAP is used
6057 to record the mapping. */
6058
6059 static void
6060 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6061 basic_block after, bool update_edge_count_p,
6062 struct move_stmt_d *d)
6063 {
6064 struct control_flow_graph *cfg;
6065 edge_iterator ei;
6066 edge e;
6067 gimple_stmt_iterator si;
6068 unsigned old_len, new_len;
6069
6070 /* Remove BB from dominance structures. */
6071 delete_from_dominance_info (CDI_DOMINATORS, bb);
6072 if (current_loops)
6073 remove_bb_from_loops (bb);
6074
6075 /* Link BB to the new linked list. */
6076 move_block_after (bb, after);
6077
6078 /* Update the edge count in the corresponding flowgraphs. */
6079 if (update_edge_count_p)
6080 FOR_EACH_EDGE (e, ei, bb->succs)
6081 {
6082 cfun->cfg->x_n_edges--;
6083 dest_cfun->cfg->x_n_edges++;
6084 }
6085
6086 /* Remove BB from the original basic block array. */
6087 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6088 cfun->cfg->x_n_basic_blocks--;
6089
6090 /* Grow DEST_CFUN's basic block array if needed. */
6091 cfg = dest_cfun->cfg;
6092 cfg->x_n_basic_blocks++;
6093 if (bb->index >= cfg->x_last_basic_block)
6094 cfg->x_last_basic_block = bb->index + 1;
6095
6096 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6097 if ((unsigned) cfg->x_last_basic_block >= old_len)
6098 {
6099 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6100 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6101 new_len);
6102 }
6103
6104 VEC_replace (basic_block, cfg->x_basic_block_info,
6105 bb->index, bb);
6106
6107 /* Remap the variables in phi nodes. */
6108 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6109 {
6110 gimple phi = gsi_stmt (si);
6111 use_operand_p use;
6112 tree op = PHI_RESULT (phi);
6113 ssa_op_iter oi;
6114
6115 if (!is_gimple_reg (op))
6116 {
6117 /* Remove the phi nodes for virtual operands (alias analysis will be
6118 run for the new function, anyway). */
6119 remove_phi_node (&si, true);
6120 continue;
6121 }
6122
6123 SET_PHI_RESULT (phi,
6124 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6125 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6126 {
6127 op = USE_FROM_PTR (use);
6128 if (TREE_CODE (op) == SSA_NAME)
6129 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6130 }
6131
6132 gsi_next (&si);
6133 }
6134
6135 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6136 {
6137 gimple stmt = gsi_stmt (si);
6138 struct walk_stmt_info wi;
6139
6140 memset (&wi, 0, sizeof (wi));
6141 wi.info = d;
6142 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6143
6144 if (gimple_code (stmt) == GIMPLE_LABEL)
6145 {
6146 tree label = gimple_label_label (stmt);
6147 int uid = LABEL_DECL_UID (label);
6148
6149 gcc_assert (uid > -1);
6150
6151 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6152 if (old_len <= (unsigned) uid)
6153 {
6154 new_len = 3 * uid / 2 + 1;
6155 VEC_safe_grow_cleared (basic_block, gc,
6156 cfg->x_label_to_block_map, new_len);
6157 }
6158
6159 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6160 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6161
6162 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6163
6164 if (uid >= dest_cfun->cfg->last_label_uid)
6165 dest_cfun->cfg->last_label_uid = uid + 1;
6166 }
6167
6168 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6169 remove_stmt_from_eh_lp_fn (cfun, stmt);
6170
6171 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6172 gimple_remove_stmt_histograms (cfun, stmt);
6173
6174 /* We cannot leave any operands allocated from the operand caches of
6175 the current function. */
6176 free_stmt_operands (stmt);
6177 push_cfun (dest_cfun);
6178 update_stmt (stmt);
6179 pop_cfun ();
6180 }
6181
6182 FOR_EACH_EDGE (e, ei, bb->succs)
6183 if (e->goto_locus)
6184 {
6185 tree block = e->goto_block;
6186 if (d->orig_block == NULL_TREE
6187 || block == d->orig_block)
6188 e->goto_block = d->new_block;
6189 #ifdef ENABLE_CHECKING
6190 else if (block != d->new_block)
6191 {
6192 while (block && block != d->orig_block)
6193 block = BLOCK_SUPERCONTEXT (block);
6194 gcc_assert (block);
6195 }
6196 #endif
6197 }
6198 }
6199
6200 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6201 the outermost EH region. Use REGION as the incoming base EH region. */
6202
6203 static eh_region
6204 find_outermost_region_in_block (struct function *src_cfun,
6205 basic_block bb, eh_region region)
6206 {
6207 gimple_stmt_iterator si;
6208
6209 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6210 {
6211 gimple stmt = gsi_stmt (si);
6212 eh_region stmt_region;
6213 int lp_nr;
6214
6215 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6216 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6217 if (stmt_region)
6218 {
6219 if (region == NULL)
6220 region = stmt_region;
6221 else if (stmt_region != region)
6222 {
6223 region = eh_region_outermost (src_cfun, stmt_region, region);
6224 gcc_assert (region != NULL);
6225 }
6226 }
6227 }
6228
6229 return region;
6230 }
6231
6232 static tree
6233 new_label_mapper (tree decl, void *data)
6234 {
6235 htab_t hash = (htab_t) data;
6236 struct tree_map *m;
6237 void **slot;
6238
6239 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6240
6241 m = XNEW (struct tree_map);
6242 m->hash = DECL_UID (decl);
6243 m->base.from = decl;
6244 m->to = create_artificial_label (UNKNOWN_LOCATION);
6245 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6246 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6247 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6248
6249 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6250 gcc_assert (*slot == NULL);
6251
6252 *slot = m;
6253
6254 return m->to;
6255 }
6256
6257 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6258 subblocks. */
6259
6260 static void
6261 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6262 tree to_context)
6263 {
6264 tree *tp, t;
6265
6266 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6267 {
6268 t = *tp;
6269 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6270 continue;
6271 replace_by_duplicate_decl (&t, vars_map, to_context);
6272 if (t != *tp)
6273 {
6274 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6275 {
6276 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6277 DECL_HAS_VALUE_EXPR_P (t) = 1;
6278 }
6279 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6280 *tp = t;
6281 }
6282 }
6283
6284 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6285 replace_block_vars_by_duplicates (block, vars_map, to_context);
6286 }
6287
6288 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6289 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6290 single basic block in the original CFG and the new basic block is
6291 returned. DEST_CFUN must not have a CFG yet.
6292
6293 Note that the region need not be a pure SESE region. Blocks inside
6294 the region may contain calls to abort/exit. The only restriction
6295 is that ENTRY_BB should be the only entry point and it must
6296 dominate EXIT_BB.
6297
6298 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6299 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6300 to the new function.
6301
6302 All local variables referenced in the region are assumed to be in
6303 the corresponding BLOCK_VARS and unexpanded variable lists
6304 associated with DEST_CFUN. */
6305
6306 basic_block
6307 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6308 basic_block exit_bb, tree orig_block)
6309 {
6310 VEC(basic_block,heap) *bbs, *dom_bbs;
6311 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6312 basic_block after, bb, *entry_pred, *exit_succ, abb;
6313 struct function *saved_cfun = cfun;
6314 int *entry_flag, *exit_flag;
6315 unsigned *entry_prob, *exit_prob;
6316 unsigned i, num_entry_edges, num_exit_edges;
6317 edge e;
6318 edge_iterator ei;
6319 htab_t new_label_map;
6320 struct pointer_map_t *vars_map, *eh_map;
6321 struct loop *loop = entry_bb->loop_father;
6322 struct move_stmt_d d;
6323
6324 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6325 region. */
6326 gcc_assert (entry_bb != exit_bb
6327 && (!exit_bb
6328 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6329
6330 /* Collect all the blocks in the region. Manually add ENTRY_BB
6331 because it won't be added by dfs_enumerate_from. */
6332 bbs = NULL;
6333 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6334 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6335
6336 /* The blocks that used to be dominated by something in BBS will now be
6337 dominated by the new block. */
6338 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6339 VEC_address (basic_block, bbs),
6340 VEC_length (basic_block, bbs));
6341
6342 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6343 the predecessor edges to ENTRY_BB and the successor edges to
6344 EXIT_BB so that we can re-attach them to the new basic block that
6345 will replace the region. */
6346 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6347 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6348 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6349 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6350 i = 0;
6351 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6352 {
6353 entry_prob[i] = e->probability;
6354 entry_flag[i] = e->flags;
6355 entry_pred[i++] = e->src;
6356 remove_edge (e);
6357 }
6358
6359 if (exit_bb)
6360 {
6361 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6362 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6363 sizeof (basic_block));
6364 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6365 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6366 i = 0;
6367 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6368 {
6369 exit_prob[i] = e->probability;
6370 exit_flag[i] = e->flags;
6371 exit_succ[i++] = e->dest;
6372 remove_edge (e);
6373 }
6374 }
6375 else
6376 {
6377 num_exit_edges = 0;
6378 exit_succ = NULL;
6379 exit_flag = NULL;
6380 exit_prob = NULL;
6381 }
6382
6383 /* Switch context to the child function to initialize DEST_FN's CFG. */
6384 gcc_assert (dest_cfun->cfg == NULL);
6385 push_cfun (dest_cfun);
6386
6387 init_empty_tree_cfg ();
6388
6389 /* Initialize EH information for the new function. */
6390 eh_map = NULL;
6391 new_label_map = NULL;
6392 if (saved_cfun->eh)
6393 {
6394 eh_region region = NULL;
6395
6396 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6397 region = find_outermost_region_in_block (saved_cfun, bb, region);
6398
6399 init_eh_for_function ();
6400 if (region != NULL)
6401 {
6402 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6403 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6404 new_label_mapper, new_label_map);
6405 }
6406 }
6407
6408 pop_cfun ();
6409
6410 /* Move blocks from BBS into DEST_CFUN. */
6411 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6412 after = dest_cfun->cfg->x_entry_block_ptr;
6413 vars_map = pointer_map_create ();
6414
6415 memset (&d, 0, sizeof (d));
6416 d.orig_block = orig_block;
6417 d.new_block = DECL_INITIAL (dest_cfun->decl);
6418 d.from_context = cfun->decl;
6419 d.to_context = dest_cfun->decl;
6420 d.vars_map = vars_map;
6421 d.new_label_map = new_label_map;
6422 d.eh_map = eh_map;
6423 d.remap_decls_p = true;
6424
6425 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6426 {
6427 /* No need to update edge counts on the last block. It has
6428 already been updated earlier when we detached the region from
6429 the original CFG. */
6430 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6431 after = bb;
6432 }
6433
6434 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6435 if (orig_block)
6436 {
6437 tree block;
6438 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6439 == NULL_TREE);
6440 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6441 = BLOCK_SUBBLOCKS (orig_block);
6442 for (block = BLOCK_SUBBLOCKS (orig_block);
6443 block; block = BLOCK_CHAIN (block))
6444 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6445 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6446 }
6447
6448 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6449 vars_map, dest_cfun->decl);
6450
6451 if (new_label_map)
6452 htab_delete (new_label_map);
6453 if (eh_map)
6454 pointer_map_destroy (eh_map);
6455 pointer_map_destroy (vars_map);
6456
6457 /* Rewire the entry and exit blocks. The successor to the entry
6458 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6459 the child function. Similarly, the predecessor of DEST_FN's
6460 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6461 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6462 various CFG manipulation function get to the right CFG.
6463
6464 FIXME, this is silly. The CFG ought to become a parameter to
6465 these helpers. */
6466 push_cfun (dest_cfun);
6467 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6468 if (exit_bb)
6469 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6470 pop_cfun ();
6471
6472 /* Back in the original function, the SESE region has disappeared,
6473 create a new basic block in its place. */
6474 bb = create_empty_bb (entry_pred[0]);
6475 if (current_loops)
6476 add_bb_to_loop (bb, loop);
6477 for (i = 0; i < num_entry_edges; i++)
6478 {
6479 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6480 e->probability = entry_prob[i];
6481 }
6482
6483 for (i = 0; i < num_exit_edges; i++)
6484 {
6485 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6486 e->probability = exit_prob[i];
6487 }
6488
6489 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6490 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6491 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6492 VEC_free (basic_block, heap, dom_bbs);
6493
6494 if (exit_bb)
6495 {
6496 free (exit_prob);
6497 free (exit_flag);
6498 free (exit_succ);
6499 }
6500 free (entry_prob);
6501 free (entry_flag);
6502 free (entry_pred);
6503 VEC_free (basic_block, heap, bbs);
6504
6505 return bb;
6506 }
6507
6508
6509 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6510 */
6511
6512 void
6513 dump_function_to_file (tree fn, FILE *file, int flags)
6514 {
6515 tree arg, var;
6516 struct function *dsf;
6517 bool ignore_topmost_bind = false, any_var = false;
6518 basic_block bb;
6519 tree chain;
6520 bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
6521
6522 fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
6523 tmclone ? "[tm-clone] " : "");
6524
6525 arg = DECL_ARGUMENTS (fn);
6526 while (arg)
6527 {
6528 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6529 fprintf (file, " ");
6530 print_generic_expr (file, arg, dump_flags);
6531 if (flags & TDF_VERBOSE)
6532 print_node (file, "", arg, 4);
6533 if (DECL_CHAIN (arg))
6534 fprintf (file, ", ");
6535 arg = DECL_CHAIN (arg);
6536 }
6537 fprintf (file, ")\n");
6538
6539 if (flags & TDF_VERBOSE)
6540 print_node (file, "", fn, 2);
6541
6542 dsf = DECL_STRUCT_FUNCTION (fn);
6543 if (dsf && (flags & TDF_EH))
6544 dump_eh_tree (file, dsf);
6545
6546 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6547 {
6548 dump_node (fn, TDF_SLIM | flags, file);
6549 return;
6550 }
6551
6552 /* Switch CFUN to point to FN. */
6553 push_cfun (DECL_STRUCT_FUNCTION (fn));
6554
6555 /* When GIMPLE is lowered, the variables are no longer available in
6556 BIND_EXPRs, so display them separately. */
6557 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6558 {
6559 unsigned ix;
6560 ignore_topmost_bind = true;
6561
6562 fprintf (file, "{\n");
6563 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6564 {
6565 print_generic_decl (file, var, flags);
6566 if (flags & TDF_VERBOSE)
6567 print_node (file, "", var, 4);
6568 fprintf (file, "\n");
6569
6570 any_var = true;
6571 }
6572 }
6573
6574 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6575 {
6576 /* If the CFG has been built, emit a CFG-based dump. */
6577 check_bb_profile (ENTRY_BLOCK_PTR, file);
6578 if (!ignore_topmost_bind)
6579 fprintf (file, "{\n");
6580
6581 if (any_var && n_basic_blocks)
6582 fprintf (file, "\n");
6583
6584 FOR_EACH_BB (bb)
6585 gimple_dump_bb (bb, file, 2, flags);
6586
6587 fprintf (file, "}\n");
6588 check_bb_profile (EXIT_BLOCK_PTR, file);
6589 }
6590 else if (DECL_SAVED_TREE (fn) == NULL)
6591 {
6592 /* The function is now in GIMPLE form but the CFG has not been
6593 built yet. Emit the single sequence of GIMPLE statements
6594 that make up its body. */
6595 gimple_seq body = gimple_body (fn);
6596
6597 if (gimple_seq_first_stmt (body)
6598 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6599 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6600 print_gimple_seq (file, body, 0, flags);
6601 else
6602 {
6603 if (!ignore_topmost_bind)
6604 fprintf (file, "{\n");
6605
6606 if (any_var)
6607 fprintf (file, "\n");
6608
6609 print_gimple_seq (file, body, 2, flags);
6610 fprintf (file, "}\n");
6611 }
6612 }
6613 else
6614 {
6615 int indent;
6616
6617 /* Make a tree based dump. */
6618 chain = DECL_SAVED_TREE (fn);
6619
6620 if (chain && TREE_CODE (chain) == BIND_EXPR)
6621 {
6622 if (ignore_topmost_bind)
6623 {
6624 chain = BIND_EXPR_BODY (chain);
6625 indent = 2;
6626 }
6627 else
6628 indent = 0;
6629 }
6630 else
6631 {
6632 if (!ignore_topmost_bind)
6633 fprintf (file, "{\n");
6634 indent = 2;
6635 }
6636
6637 if (any_var)
6638 fprintf (file, "\n");
6639
6640 print_generic_stmt_indented (file, chain, flags, indent);
6641 if (ignore_topmost_bind)
6642 fprintf (file, "}\n");
6643 }
6644
6645 if (flags & TDF_ENUMERATE_LOCALS)
6646 dump_enumerated_decls (file, flags);
6647 fprintf (file, "\n\n");
6648
6649 /* Restore CFUN. */
6650 pop_cfun ();
6651 }
6652
6653
6654 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6655
6656 DEBUG_FUNCTION void
6657 debug_function (tree fn, int flags)
6658 {
6659 dump_function_to_file (fn, stderr, flags);
6660 }
6661
6662
6663 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6664
6665 static void
6666 print_pred_bbs (FILE *file, basic_block bb)
6667 {
6668 edge e;
6669 edge_iterator ei;
6670
6671 FOR_EACH_EDGE (e, ei, bb->preds)
6672 fprintf (file, "bb_%d ", e->src->index);
6673 }
6674
6675
6676 /* Print on FILE the indexes for the successors of basic_block BB. */
6677
6678 static void
6679 print_succ_bbs (FILE *file, basic_block bb)
6680 {
6681 edge e;
6682 edge_iterator ei;
6683
6684 FOR_EACH_EDGE (e, ei, bb->succs)
6685 fprintf (file, "bb_%d ", e->dest->index);
6686 }
6687
6688 /* Print to FILE the basic block BB following the VERBOSITY level. */
6689
6690 void
6691 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6692 {
6693 char *s_indent = (char *) alloca ((size_t) indent + 1);
6694 memset ((void *) s_indent, ' ', (size_t) indent);
6695 s_indent[indent] = '\0';
6696
6697 /* Print basic_block's header. */
6698 if (verbosity >= 2)
6699 {
6700 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6701 print_pred_bbs (file, bb);
6702 fprintf (file, "}, succs = {");
6703 print_succ_bbs (file, bb);
6704 fprintf (file, "})\n");
6705 }
6706
6707 /* Print basic_block's body. */
6708 if (verbosity >= 3)
6709 {
6710 fprintf (file, "%s {\n", s_indent);
6711 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6712 fprintf (file, "%s }\n", s_indent);
6713 }
6714 }
6715
6716 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6717
6718 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6719 VERBOSITY level this outputs the contents of the loop, or just its
6720 structure. */
6721
6722 static void
6723 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6724 {
6725 char *s_indent;
6726 basic_block bb;
6727
6728 if (loop == NULL)
6729 return;
6730
6731 s_indent = (char *) alloca ((size_t) indent + 1);
6732 memset ((void *) s_indent, ' ', (size_t) indent);
6733 s_indent[indent] = '\0';
6734
6735 /* Print loop's header. */
6736 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6737 loop->num, loop->header->index, loop->latch->index);
6738 fprintf (file, ", niter = ");
6739 print_generic_expr (file, loop->nb_iterations, 0);
6740
6741 if (loop->any_upper_bound)
6742 {
6743 fprintf (file, ", upper_bound = ");
6744 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6745 }
6746
6747 if (loop->any_estimate)
6748 {
6749 fprintf (file, ", estimate = ");
6750 dump_double_int (file, loop->nb_iterations_estimate, true);
6751 }
6752 fprintf (file, ")\n");
6753
6754 /* Print loop's body. */
6755 if (verbosity >= 1)
6756 {
6757 fprintf (file, "%s{\n", s_indent);
6758 FOR_EACH_BB (bb)
6759 if (bb->loop_father == loop)
6760 print_loops_bb (file, bb, indent, verbosity);
6761
6762 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6763 fprintf (file, "%s}\n", s_indent);
6764 }
6765 }
6766
6767 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6768 spaces. Following VERBOSITY level this outputs the contents of the
6769 loop, or just its structure. */
6770
6771 static void
6772 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6773 {
6774 if (loop == NULL)
6775 return;
6776
6777 print_loop (file, loop, indent, verbosity);
6778 print_loop_and_siblings (file, loop->next, indent, verbosity);
6779 }
6780
6781 /* Follow a CFG edge from the entry point of the program, and on entry
6782 of a loop, pretty print the loop structure on FILE. */
6783
6784 void
6785 print_loops (FILE *file, int verbosity)
6786 {
6787 basic_block bb;
6788
6789 bb = ENTRY_BLOCK_PTR;
6790 if (bb && bb->loop_father)
6791 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6792 }
6793
6794
6795 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6796
6797 DEBUG_FUNCTION void
6798 debug_loops (int verbosity)
6799 {
6800 print_loops (stderr, verbosity);
6801 }
6802
6803 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6804
6805 DEBUG_FUNCTION void
6806 debug_loop (struct loop *loop, int verbosity)
6807 {
6808 print_loop (stderr, loop, 0, verbosity);
6809 }
6810
6811 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6812 level. */
6813
6814 DEBUG_FUNCTION void
6815 debug_loop_num (unsigned num, int verbosity)
6816 {
6817 debug_loop (get_loop (num), verbosity);
6818 }
6819
6820 /* Return true if BB ends with a call, possibly followed by some
6821 instructions that must stay with the call. Return false,
6822 otherwise. */
6823
6824 static bool
6825 gimple_block_ends_with_call_p (basic_block bb)
6826 {
6827 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6828 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6829 }
6830
6831
6832 /* Return true if BB ends with a conditional branch. Return false,
6833 otherwise. */
6834
6835 static bool
6836 gimple_block_ends_with_condjump_p (const_basic_block bb)
6837 {
6838 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6839 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6840 }
6841
6842
6843 /* Return true if we need to add fake edge to exit at statement T.
6844 Helper function for gimple_flow_call_edges_add. */
6845
6846 static bool
6847 need_fake_edge_p (gimple t)
6848 {
6849 tree fndecl = NULL_TREE;
6850 int call_flags = 0;
6851
6852 /* NORETURN and LONGJMP calls already have an edge to exit.
6853 CONST and PURE calls do not need one.
6854 We don't currently check for CONST and PURE here, although
6855 it would be a good idea, because those attributes are
6856 figured out from the RTL in mark_constant_function, and
6857 the counter incrementation code from -fprofile-arcs
6858 leads to different results from -fbranch-probabilities. */
6859 if (is_gimple_call (t))
6860 {
6861 fndecl = gimple_call_fndecl (t);
6862 call_flags = gimple_call_flags (t);
6863 }
6864
6865 if (is_gimple_call (t)
6866 && fndecl
6867 && DECL_BUILT_IN (fndecl)
6868 && (call_flags & ECF_NOTHROW)
6869 && !(call_flags & ECF_RETURNS_TWICE)
6870 /* fork() doesn't really return twice, but the effect of
6871 wrapping it in __gcov_fork() which calls __gcov_flush()
6872 and clears the counters before forking has the same
6873 effect as returning twice. Force a fake edge. */
6874 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6875 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6876 return false;
6877
6878 if (is_gimple_call (t)
6879 && !(call_flags & ECF_NORETURN))
6880 return true;
6881
6882 if (gimple_code (t) == GIMPLE_ASM
6883 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6884 return true;
6885
6886 return false;
6887 }
6888
6889
6890 /* Add fake edges to the function exit for any non constant and non
6891 noreturn calls, volatile inline assembly in the bitmap of blocks
6892 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6893 the number of blocks that were split.
6894
6895 The goal is to expose cases in which entering a basic block does
6896 not imply that all subsequent instructions must be executed. */
6897
6898 static int
6899 gimple_flow_call_edges_add (sbitmap blocks)
6900 {
6901 int i;
6902 int blocks_split = 0;
6903 int last_bb = last_basic_block;
6904 bool check_last_block = false;
6905
6906 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6907 return 0;
6908
6909 if (! blocks)
6910 check_last_block = true;
6911 else
6912 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6913
6914 /* In the last basic block, before epilogue generation, there will be
6915 a fallthru edge to EXIT. Special care is required if the last insn
6916 of the last basic block is a call because make_edge folds duplicate
6917 edges, which would result in the fallthru edge also being marked
6918 fake, which would result in the fallthru edge being removed by
6919 remove_fake_edges, which would result in an invalid CFG.
6920
6921 Moreover, we can't elide the outgoing fake edge, since the block
6922 profiler needs to take this into account in order to solve the minimal
6923 spanning tree in the case that the call doesn't return.
6924
6925 Handle this by adding a dummy instruction in a new last basic block. */
6926 if (check_last_block)
6927 {
6928 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6929 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6930 gimple t = NULL;
6931
6932 if (!gsi_end_p (gsi))
6933 t = gsi_stmt (gsi);
6934
6935 if (t && need_fake_edge_p (t))
6936 {
6937 edge e;
6938
6939 e = find_edge (bb, EXIT_BLOCK_PTR);
6940 if (e)
6941 {
6942 gsi_insert_on_edge (e, gimple_build_nop ());
6943 gsi_commit_edge_inserts ();
6944 }
6945 }
6946 }
6947
6948 /* Now add fake edges to the function exit for any non constant
6949 calls since there is no way that we can determine if they will
6950 return or not... */
6951 for (i = 0; i < last_bb; i++)
6952 {
6953 basic_block bb = BASIC_BLOCK (i);
6954 gimple_stmt_iterator gsi;
6955 gimple stmt, last_stmt;
6956
6957 if (!bb)
6958 continue;
6959
6960 if (blocks && !TEST_BIT (blocks, i))
6961 continue;
6962
6963 gsi = gsi_last_nondebug_bb (bb);
6964 if (!gsi_end_p (gsi))
6965 {
6966 last_stmt = gsi_stmt (gsi);
6967 do
6968 {
6969 stmt = gsi_stmt (gsi);
6970 if (need_fake_edge_p (stmt))
6971 {
6972 edge e;
6973
6974 /* The handling above of the final block before the
6975 epilogue should be enough to verify that there is
6976 no edge to the exit block in CFG already.
6977 Calling make_edge in such case would cause us to
6978 mark that edge as fake and remove it later. */
6979 #ifdef ENABLE_CHECKING
6980 if (stmt == last_stmt)
6981 {
6982 e = find_edge (bb, EXIT_BLOCK_PTR);
6983 gcc_assert (e == NULL);
6984 }
6985 #endif
6986
6987 /* Note that the following may create a new basic block
6988 and renumber the existing basic blocks. */
6989 if (stmt != last_stmt)
6990 {
6991 e = split_block (bb, stmt);
6992 if (e)
6993 blocks_split++;
6994 }
6995 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6996 }
6997 gsi_prev (&gsi);
6998 }
6999 while (!gsi_end_p (gsi));
7000 }
7001 }
7002
7003 if (blocks_split)
7004 verify_flow_info ();
7005
7006 return blocks_split;
7007 }
7008
7009 /* Removes edge E and all the blocks dominated by it, and updates dominance
7010 information. The IL in E->src needs to be updated separately.
7011 If dominance info is not available, only the edge E is removed.*/
7012
7013 void
7014 remove_edge_and_dominated_blocks (edge e)
7015 {
7016 VEC (basic_block, heap) *bbs_to_remove = NULL;
7017 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7018 bitmap df, df_idom;
7019 edge f;
7020 edge_iterator ei;
7021 bool none_removed = false;
7022 unsigned i;
7023 basic_block bb, dbb;
7024 bitmap_iterator bi;
7025
7026 if (!dom_info_available_p (CDI_DOMINATORS))
7027 {
7028 remove_edge (e);
7029 return;
7030 }
7031
7032 /* No updating is needed for edges to exit. */
7033 if (e->dest == EXIT_BLOCK_PTR)
7034 {
7035 if (cfgcleanup_altered_bbs)
7036 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7037 remove_edge (e);
7038 return;
7039 }
7040
7041 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7042 that is not dominated by E->dest, then this set is empty. Otherwise,
7043 all the basic blocks dominated by E->dest are removed.
7044
7045 Also, to DF_IDOM we store the immediate dominators of the blocks in
7046 the dominance frontier of E (i.e., of the successors of the
7047 removed blocks, if there are any, and of E->dest otherwise). */
7048 FOR_EACH_EDGE (f, ei, e->dest->preds)
7049 {
7050 if (f == e)
7051 continue;
7052
7053 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7054 {
7055 none_removed = true;
7056 break;
7057 }
7058 }
7059
7060 df = BITMAP_ALLOC (NULL);
7061 df_idom = BITMAP_ALLOC (NULL);
7062
7063 if (none_removed)
7064 bitmap_set_bit (df_idom,
7065 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7066 else
7067 {
7068 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7069 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7070 {
7071 FOR_EACH_EDGE (f, ei, bb->succs)
7072 {
7073 if (f->dest != EXIT_BLOCK_PTR)
7074 bitmap_set_bit (df, f->dest->index);
7075 }
7076 }
7077 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7078 bitmap_clear_bit (df, bb->index);
7079
7080 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7081 {
7082 bb = BASIC_BLOCK (i);
7083 bitmap_set_bit (df_idom,
7084 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7085 }
7086 }
7087
7088 if (cfgcleanup_altered_bbs)
7089 {
7090 /* Record the set of the altered basic blocks. */
7091 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7092 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7093 }
7094
7095 /* Remove E and the cancelled blocks. */
7096 if (none_removed)
7097 remove_edge (e);
7098 else
7099 {
7100 /* Walk backwards so as to get a chance to substitute all
7101 released DEFs into debug stmts. See
7102 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7103 details. */
7104 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7105 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7106 }
7107
7108 /* Update the dominance information. The immediate dominator may change only
7109 for blocks whose immediate dominator belongs to DF_IDOM:
7110
7111 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7112 removal. Let Z the arbitrary block such that idom(Z) = Y and
7113 Z dominates X after the removal. Before removal, there exists a path P
7114 from Y to X that avoids Z. Let F be the last edge on P that is
7115 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7116 dominates W, and because of P, Z does not dominate W), and W belongs to
7117 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7118 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7119 {
7120 bb = BASIC_BLOCK (i);
7121 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7122 dbb;
7123 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7124 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7125 }
7126
7127 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7128
7129 BITMAP_FREE (df);
7130 BITMAP_FREE (df_idom);
7131 VEC_free (basic_block, heap, bbs_to_remove);
7132 VEC_free (basic_block, heap, bbs_to_fix_dom);
7133 }
7134
7135 /* Purge dead EH edges from basic block BB. */
7136
7137 bool
7138 gimple_purge_dead_eh_edges (basic_block bb)
7139 {
7140 bool changed = false;
7141 edge e;
7142 edge_iterator ei;
7143 gimple stmt = last_stmt (bb);
7144
7145 if (stmt && stmt_can_throw_internal (stmt))
7146 return false;
7147
7148 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7149 {
7150 if (e->flags & EDGE_EH)
7151 {
7152 remove_edge_and_dominated_blocks (e);
7153 changed = true;
7154 }
7155 else
7156 ei_next (&ei);
7157 }
7158
7159 return changed;
7160 }
7161
7162 /* Purge dead EH edges from basic block listed in BLOCKS. */
7163
7164 bool
7165 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7166 {
7167 bool changed = false;
7168 unsigned i;
7169 bitmap_iterator bi;
7170
7171 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7172 {
7173 basic_block bb = BASIC_BLOCK (i);
7174
7175 /* Earlier gimple_purge_dead_eh_edges could have removed
7176 this basic block already. */
7177 gcc_assert (bb || changed);
7178 if (bb != NULL)
7179 changed |= gimple_purge_dead_eh_edges (bb);
7180 }
7181
7182 return changed;
7183 }
7184
7185 /* Purge dead abnormal call edges from basic block BB. */
7186
7187 bool
7188 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7189 {
7190 bool changed = false;
7191 edge e;
7192 edge_iterator ei;
7193 gimple stmt = last_stmt (bb);
7194
7195 if (!cfun->has_nonlocal_label)
7196 return false;
7197
7198 if (stmt && stmt_can_make_abnormal_goto (stmt))
7199 return false;
7200
7201 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7202 {
7203 if (e->flags & EDGE_ABNORMAL)
7204 {
7205 remove_edge_and_dominated_blocks (e);
7206 changed = true;
7207 }
7208 else
7209 ei_next (&ei);
7210 }
7211
7212 return changed;
7213 }
7214
7215 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7216
7217 bool
7218 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7219 {
7220 bool changed = false;
7221 unsigned i;
7222 bitmap_iterator bi;
7223
7224 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7225 {
7226 basic_block bb = BASIC_BLOCK (i);
7227
7228 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7229 this basic block already. */
7230 gcc_assert (bb || changed);
7231 if (bb != NULL)
7232 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7233 }
7234
7235 return changed;
7236 }
7237
7238 /* This function is called whenever a new edge is created or
7239 redirected. */
7240
7241 static void
7242 gimple_execute_on_growing_pred (edge e)
7243 {
7244 basic_block bb = e->dest;
7245
7246 if (!gimple_seq_empty_p (phi_nodes (bb)))
7247 reserve_phi_args_for_new_edge (bb);
7248 }
7249
7250 /* This function is called immediately before edge E is removed from
7251 the edge vector E->dest->preds. */
7252
7253 static void
7254 gimple_execute_on_shrinking_pred (edge e)
7255 {
7256 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7257 remove_phi_args (e);
7258 }
7259
7260 /*---------------------------------------------------------------------------
7261 Helper functions for Loop versioning
7262 ---------------------------------------------------------------------------*/
7263
7264 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7265 of 'first'. Both of them are dominated by 'new_head' basic block. When
7266 'new_head' was created by 'second's incoming edge it received phi arguments
7267 on the edge by split_edge(). Later, additional edge 'e' was created to
7268 connect 'new_head' and 'first'. Now this routine adds phi args on this
7269 additional edge 'e' that new_head to second edge received as part of edge
7270 splitting. */
7271
7272 static void
7273 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7274 basic_block new_head, edge e)
7275 {
7276 gimple phi1, phi2;
7277 gimple_stmt_iterator psi1, psi2;
7278 tree def;
7279 edge e2 = find_edge (new_head, second);
7280
7281 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7282 edge, we should always have an edge from NEW_HEAD to SECOND. */
7283 gcc_assert (e2 != NULL);
7284
7285 /* Browse all 'second' basic block phi nodes and add phi args to
7286 edge 'e' for 'first' head. PHI args are always in correct order. */
7287
7288 for (psi2 = gsi_start_phis (second),
7289 psi1 = gsi_start_phis (first);
7290 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7291 gsi_next (&psi2), gsi_next (&psi1))
7292 {
7293 phi1 = gsi_stmt (psi1);
7294 phi2 = gsi_stmt (psi2);
7295 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7296 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7297 }
7298 }
7299
7300
7301 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7302 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7303 the destination of the ELSE part. */
7304
7305 static void
7306 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7307 basic_block second_head ATTRIBUTE_UNUSED,
7308 basic_block cond_bb, void *cond_e)
7309 {
7310 gimple_stmt_iterator gsi;
7311 gimple new_cond_expr;
7312 tree cond_expr = (tree) cond_e;
7313 edge e0;
7314
7315 /* Build new conditional expr */
7316 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7317 NULL_TREE, NULL_TREE);
7318
7319 /* Add new cond in cond_bb. */
7320 gsi = gsi_last_bb (cond_bb);
7321 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7322
7323 /* Adjust edges appropriately to connect new head with first head
7324 as well as second head. */
7325 e0 = single_succ_edge (cond_bb);
7326 e0->flags &= ~EDGE_FALLTHRU;
7327 e0->flags |= EDGE_FALSE_VALUE;
7328 }
7329
7330 struct cfg_hooks gimple_cfg_hooks = {
7331 "gimple",
7332 gimple_verify_flow_info,
7333 gimple_dump_bb, /* dump_bb */
7334 create_bb, /* create_basic_block */
7335 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7336 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7337 gimple_can_remove_branch_p, /* can_remove_branch_p */
7338 remove_bb, /* delete_basic_block */
7339 gimple_split_block, /* split_block */
7340 gimple_move_block_after, /* move_block_after */
7341 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7342 gimple_merge_blocks, /* merge_blocks */
7343 gimple_predict_edge, /* predict_edge */
7344 gimple_predicted_by_p, /* predicted_by_p */
7345 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7346 gimple_duplicate_bb, /* duplicate_block */
7347 gimple_split_edge, /* split_edge */
7348 gimple_make_forwarder_block, /* make_forward_block */
7349 NULL, /* tidy_fallthru_edge */
7350 NULL, /* force_nonfallthru */
7351 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7352 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7353 gimple_flow_call_edges_add, /* flow_call_edges_add */
7354 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7355 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7356 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7357 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7358 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7359 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7360 flush_pending_stmts /* flush_pending_stmts */
7361 };
7362
7363
7364 /* Split all critical edges. */
7365
7366 static unsigned int
7367 split_critical_edges (void)
7368 {
7369 basic_block bb;
7370 edge e;
7371 edge_iterator ei;
7372
7373 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7374 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7375 mappings around the calls to split_edge. */
7376 start_recording_case_labels ();
7377 FOR_ALL_BB (bb)
7378 {
7379 FOR_EACH_EDGE (e, ei, bb->succs)
7380 {
7381 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7382 split_edge (e);
7383 /* PRE inserts statements to edges and expects that
7384 since split_critical_edges was done beforehand, committing edge
7385 insertions will not split more edges. In addition to critical
7386 edges we must split edges that have multiple successors and
7387 end by control flow statements, such as RESX.
7388 Go ahead and split them too. This matches the logic in
7389 gimple_find_edge_insert_loc. */
7390 else if ((!single_pred_p (e->dest)
7391 || !gimple_seq_empty_p (phi_nodes (e->dest))
7392 || e->dest == EXIT_BLOCK_PTR)
7393 && e->src != ENTRY_BLOCK_PTR
7394 && !(e->flags & EDGE_ABNORMAL))
7395 {
7396 gimple_stmt_iterator gsi;
7397
7398 gsi = gsi_last_bb (e->src);
7399 if (!gsi_end_p (gsi)
7400 && stmt_ends_bb_p (gsi_stmt (gsi))
7401 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7402 && !gimple_call_builtin_p (gsi_stmt (gsi),
7403 BUILT_IN_RETURN)))
7404 split_edge (e);
7405 }
7406 }
7407 }
7408 end_recording_case_labels ();
7409 return 0;
7410 }
7411
7412 struct gimple_opt_pass pass_split_crit_edges =
7413 {
7414 {
7415 GIMPLE_PASS,
7416 "crited", /* name */
7417 NULL, /* gate */
7418 split_critical_edges, /* execute */
7419 NULL, /* sub */
7420 NULL, /* next */
7421 0, /* static_pass_number */
7422 TV_TREE_SPLIT_EDGES, /* tv_id */
7423 PROP_cfg, /* properties required */
7424 PROP_no_crit_edges, /* properties_provided */
7425 0, /* properties_destroyed */
7426 0, /* todo_flags_start */
7427 TODO_verify_flow /* todo_flags_finish */
7428 }
7429 };
7430
7431
7432 /* Build a ternary operation and gimplify it. Emit code before GSI.
7433 Return the gimple_val holding the result. */
7434
7435 tree
7436 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7437 tree type, tree a, tree b, tree c)
7438 {
7439 tree ret;
7440 location_t loc = gimple_location (gsi_stmt (*gsi));
7441
7442 ret = fold_build3_loc (loc, code, type, a, b, c);
7443 STRIP_NOPS (ret);
7444
7445 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7446 GSI_SAME_STMT);
7447 }
7448
7449 /* Build a binary operation and gimplify it. Emit code before GSI.
7450 Return the gimple_val holding the result. */
7451
7452 tree
7453 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7454 tree type, tree a, tree b)
7455 {
7456 tree ret;
7457
7458 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7459 STRIP_NOPS (ret);
7460
7461 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7462 GSI_SAME_STMT);
7463 }
7464
7465 /* Build a unary operation and gimplify it. Emit code before GSI.
7466 Return the gimple_val holding the result. */
7467
7468 tree
7469 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7470 tree a)
7471 {
7472 tree ret;
7473
7474 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7475 STRIP_NOPS (ret);
7476
7477 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7478 GSI_SAME_STMT);
7479 }
7480
7481
7482 \f
7483 /* Emit return warnings. */
7484
7485 static unsigned int
7486 execute_warn_function_return (void)
7487 {
7488 source_location location;
7489 gimple last;
7490 edge e;
7491 edge_iterator ei;
7492
7493 /* If we have a path to EXIT, then we do return. */
7494 if (TREE_THIS_VOLATILE (cfun->decl)
7495 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7496 {
7497 location = UNKNOWN_LOCATION;
7498 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7499 {
7500 last = last_stmt (e->src);
7501 if ((gimple_code (last) == GIMPLE_RETURN
7502 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7503 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7504 break;
7505 }
7506 if (location == UNKNOWN_LOCATION)
7507 location = cfun->function_end_locus;
7508 warning_at (location, 0, "%<noreturn%> function does return");
7509 }
7510
7511 /* If we see "return;" in some basic block, then we do reach the end
7512 without returning a value. */
7513 else if (warn_return_type
7514 && !TREE_NO_WARNING (cfun->decl)
7515 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7516 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7517 {
7518 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7519 {
7520 gimple last = last_stmt (e->src);
7521 if (gimple_code (last) == GIMPLE_RETURN
7522 && gimple_return_retval (last) == NULL
7523 && !gimple_no_warning_p (last))
7524 {
7525 location = gimple_location (last);
7526 if (location == UNKNOWN_LOCATION)
7527 location = cfun->function_end_locus;
7528 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7529 TREE_NO_WARNING (cfun->decl) = 1;
7530 break;
7531 }
7532 }
7533 }
7534 return 0;
7535 }
7536
7537
7538 /* Given a basic block B which ends with a conditional and has
7539 precisely two successors, determine which of the edges is taken if
7540 the conditional is true and which is taken if the conditional is
7541 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7542
7543 void
7544 extract_true_false_edges_from_block (basic_block b,
7545 edge *true_edge,
7546 edge *false_edge)
7547 {
7548 edge e = EDGE_SUCC (b, 0);
7549
7550 if (e->flags & EDGE_TRUE_VALUE)
7551 {
7552 *true_edge = e;
7553 *false_edge = EDGE_SUCC (b, 1);
7554 }
7555 else
7556 {
7557 *false_edge = e;
7558 *true_edge = EDGE_SUCC (b, 1);
7559 }
7560 }
7561
7562 struct gimple_opt_pass pass_warn_function_return =
7563 {
7564 {
7565 GIMPLE_PASS,
7566 "*warn_function_return", /* name */
7567 NULL, /* gate */
7568 execute_warn_function_return, /* execute */
7569 NULL, /* sub */
7570 NULL, /* next */
7571 0, /* static_pass_number */
7572 TV_NONE, /* tv_id */
7573 PROP_cfg, /* properties_required */
7574 0, /* properties_provided */
7575 0, /* properties_destroyed */
7576 0, /* todo_flags_start */
7577 0 /* todo_flags_finish */
7578 }
7579 };
7580
7581 /* Emit noreturn warnings. */
7582
7583 static unsigned int
7584 execute_warn_function_noreturn (void)
7585 {
7586 if (!TREE_THIS_VOLATILE (current_function_decl)
7587 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7588 warn_function_noreturn (current_function_decl);
7589 return 0;
7590 }
7591
7592 static bool
7593 gate_warn_function_noreturn (void)
7594 {
7595 return warn_suggest_attribute_noreturn;
7596 }
7597
7598 struct gimple_opt_pass pass_warn_function_noreturn =
7599 {
7600 {
7601 GIMPLE_PASS,
7602 "*warn_function_noreturn", /* name */
7603 gate_warn_function_noreturn, /* gate */
7604 execute_warn_function_noreturn, /* execute */
7605 NULL, /* sub */
7606 NULL, /* next */
7607 0, /* static_pass_number */
7608 TV_NONE, /* tv_id */
7609 PROP_cfg, /* properties_required */
7610 0, /* properties_provided */
7611 0, /* properties_destroyed */
7612 0, /* todo_flags_start */
7613 0 /* todo_flags_finish */
7614 }
7615 };
7616
7617
7618 /* Walk a gimplified function and warn for functions whose return value is
7619 ignored and attribute((warn_unused_result)) is set. This is done before
7620 inlining, so we don't have to worry about that. */
7621
7622 static void
7623 do_warn_unused_result (gimple_seq seq)
7624 {
7625 tree fdecl, ftype;
7626 gimple_stmt_iterator i;
7627
7628 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7629 {
7630 gimple g = gsi_stmt (i);
7631
7632 switch (gimple_code (g))
7633 {
7634 case GIMPLE_BIND:
7635 do_warn_unused_result (gimple_bind_body (g));
7636 break;
7637 case GIMPLE_TRY:
7638 do_warn_unused_result (gimple_try_eval (g));
7639 do_warn_unused_result (gimple_try_cleanup (g));
7640 break;
7641 case GIMPLE_CATCH:
7642 do_warn_unused_result (gimple_catch_handler (g));
7643 break;
7644 case GIMPLE_EH_FILTER:
7645 do_warn_unused_result (gimple_eh_filter_failure (g));
7646 break;
7647
7648 case GIMPLE_CALL:
7649 if (gimple_call_lhs (g))
7650 break;
7651 if (gimple_call_internal_p (g))
7652 break;
7653
7654 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7655 LHS. All calls whose value is ignored should be
7656 represented like this. Look for the attribute. */
7657 fdecl = gimple_call_fndecl (g);
7658 ftype = gimple_call_fntype (g);
7659
7660 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7661 {
7662 location_t loc = gimple_location (g);
7663
7664 if (fdecl)
7665 warning_at (loc, OPT_Wunused_result,
7666 "ignoring return value of %qD, "
7667 "declared with attribute warn_unused_result",
7668 fdecl);
7669 else
7670 warning_at (loc, OPT_Wunused_result,
7671 "ignoring return value of function "
7672 "declared with attribute warn_unused_result");
7673 }
7674 break;
7675
7676 default:
7677 /* Not a container, not a call, or a call whose value is used. */
7678 break;
7679 }
7680 }
7681 }
7682
7683 static unsigned int
7684 run_warn_unused_result (void)
7685 {
7686 do_warn_unused_result (gimple_body (current_function_decl));
7687 return 0;
7688 }
7689
7690 static bool
7691 gate_warn_unused_result (void)
7692 {
7693 return flag_warn_unused_result;
7694 }
7695
7696 struct gimple_opt_pass pass_warn_unused_result =
7697 {
7698 {
7699 GIMPLE_PASS,
7700 "*warn_unused_result", /* name */
7701 gate_warn_unused_result, /* gate */
7702 run_warn_unused_result, /* execute */
7703 NULL, /* sub */
7704 NULL, /* next */
7705 0, /* static_pass_number */
7706 TV_NONE, /* tv_id */
7707 PROP_gimple_any, /* properties_required */
7708 0, /* properties_provided */
7709 0, /* properties_destroyed */
7710 0, /* todo_flags_start */
7711 0, /* todo_flags_finish */
7712 }
7713 };