remove pointer-set.[ch]
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "hash-map.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "trans-mem.h"
29 #include "stor-layout.h"
30 #include "print-tree.h"
31 #include "tm_p.h"
32 #include "basic-block.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
71 #include "wide-int.h"
72 #include "wide-int-print.h"
73
74 /* This file contains functions for building the Control Flow Graph (CFG)
75 for a function tree. */
76
77 /* Local declarations. */
78
79 /* Initial capacity for the basic block array. */
80 static const int initial_cfg_capacity = 20;
81
82 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
83 which use a particular edge. The CASE_LABEL_EXPRs are chained together
84 via their CASE_CHAIN field, which we clear after we're done with the
85 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
86
87 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
88 update the case vector in response to edge redirections.
89
90 Right now this table is set up and torn down at key points in the
91 compilation process. It would be nice if we could make the table
92 more persistent. The key is getting notification of changes to
93 the CFG (particularly edge removal, creation and redirection). */
94
95 static hash_map<edge, tree> *edge_to_cases;
96
97 /* If we record edge_to_cases, this bitmap will hold indexes
98 of basic blocks that end in a GIMPLE_SWITCH which we touched
99 due to edge manipulations. */
100
101 static bitmap touched_switch_bbs;
102
103 /* CFG statistics. */
104 struct cfg_stats_d
105 {
106 long num_merged_labels;
107 };
108
109 static struct cfg_stats_d cfg_stats;
110
111 /* Hash table to store last discriminator assigned for each locus. */
112 struct locus_discrim_map
113 {
114 location_t locus;
115 int discriminator;
116 };
117
118 /* Hashtable helpers. */
119
120 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
121 {
122 typedef locus_discrim_map value_type;
123 typedef locus_discrim_map compare_type;
124 static inline hashval_t hash (const value_type *);
125 static inline bool equal (const value_type *, const compare_type *);
126 };
127
128 /* Trivial hash function for a location_t. ITEM is a pointer to
129 a hash table entry that maps a location_t to a discriminator. */
130
131 inline hashval_t
132 locus_discrim_hasher::hash (const value_type *item)
133 {
134 return LOCATION_LINE (item->locus);
135 }
136
137 /* Equality function for the locus-to-discriminator map. A and B
138 point to the two hash table entries to compare. */
139
140 inline bool
141 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
142 {
143 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
144 }
145
146 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147
148 /* Basic blocks and flowgraphs. */
149 static void make_blocks (gimple_seq);
150
151 /* Edges. */
152 static void make_edges (void);
153 static void assign_discriminators (void);
154 static void make_cond_expr_edges (basic_block);
155 static void make_gimple_switch_edges (basic_block);
156 static bool make_goto_expr_edges (basic_block);
157 static void make_gimple_asm_edges (basic_block);
158 static edge gimple_redirect_edge_and_branch (edge, basic_block);
159 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160
161 /* Various helpers. */
162 static inline bool stmt_starts_bb_p (gimple, gimple);
163 static int gimple_verify_flow_info (void);
164 static void gimple_make_forwarder_block (edge);
165 static gimple first_non_label_stmt (basic_block);
166 static bool verify_gimple_transaction (gimple);
167
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (basic_block, tree);
174 static edge find_taken_edge_switch_expr (basic_block, tree);
175 static tree find_case_label_for_value (gimple, tree);
176
177 void
178 init_empty_tree_cfg_for_function (struct function *fn)
179 {
180 /* Initialize the basic block array. */
181 init_flow (fn);
182 profile_status_for_fn (fn) = PROFILE_ABSENT;
183 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
184 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
185 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
186 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
187 initial_cfg_capacity);
188
189 /* Build a mapping of labels to their associated blocks. */
190 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
191 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
192 initial_cfg_capacity);
193
194 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
195 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
196
197 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
198 = EXIT_BLOCK_PTR_FOR_FN (fn);
199 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
200 = ENTRY_BLOCK_PTR_FOR_FN (fn);
201 }
202
203 void
204 init_empty_tree_cfg (void)
205 {
206 init_empty_tree_cfg_for_function (cfun);
207 }
208
209 /*---------------------------------------------------------------------------
210 Create basic blocks
211 ---------------------------------------------------------------------------*/
212
213 /* Entry point to the CFG builder for trees. SEQ is the sequence of
214 statements to be added to the flowgraph. */
215
216 static void
217 build_gimple_cfg (gimple_seq seq)
218 {
219 /* Register specific gimple functions. */
220 gimple_register_cfg_hooks ();
221
222 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
223
224 init_empty_tree_cfg ();
225
226 make_blocks (seq);
227
228 /* Make sure there is always at least one block, even if it's empty. */
229 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
230 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
231
232 /* Adjust the size of the array. */
233 if (basic_block_info_for_fn (cfun)->length ()
234 < (size_t) n_basic_blocks_for_fn (cfun))
235 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
236 n_basic_blocks_for_fn (cfun));
237
238 /* To speed up statement iterator walks, we first purge dead labels. */
239 cleanup_dead_labels ();
240
241 /* Group case nodes to reduce the number of edges.
242 We do this after cleaning up dead labels because otherwise we miss
243 a lot of obvious case merging opportunities. */
244 group_case_labels ();
245
246 /* Create the edges of the flowgraph. */
247 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
248 make_edges ();
249 assign_discriminators ();
250 cleanup_dead_labels ();
251 delete discriminator_per_locus;
252 discriminator_per_locus = NULL;
253 }
254
255
256 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
257 them and propagate the information to the loop. We assume that the
258 annotations come immediately before the condition of the loop. */
259
260 static void
261 replace_loop_annotate ()
262 {
263 struct loop *loop;
264 basic_block bb;
265 gimple_stmt_iterator gsi;
266 gimple stmt;
267
268 FOR_EACH_LOOP (loop, 0)
269 {
270 gsi = gsi_last_bb (loop->header);
271 stmt = gsi_stmt (gsi);
272 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
273 continue;
274 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
275 {
276 stmt = gsi_stmt (gsi);
277 if (gimple_code (stmt) != GIMPLE_CALL)
278 break;
279 if (!gimple_call_internal_p (stmt)
280 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
281 break;
282 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
283 {
284 case annot_expr_ivdep_kind:
285 loop->safelen = INT_MAX;
286 break;
287 case annot_expr_no_vector_kind:
288 loop->dont_vectorize = true;
289 break;
290 case annot_expr_vector_kind:
291 loop->force_vectorize = true;
292 cfun->has_force_vectorize_loops = true;
293 break;
294 default:
295 gcc_unreachable ();
296 }
297 stmt = gimple_build_assign (gimple_call_lhs (stmt),
298 gimple_call_arg (stmt, 0));
299 gsi_replace (&gsi, stmt, true);
300 }
301 }
302
303 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
304 FOR_EACH_BB_FN (bb, cfun)
305 {
306 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
307 {
308 stmt = gsi_stmt (gsi);
309 if (gimple_code (stmt) != GIMPLE_CALL)
310 break;
311 if (!gimple_call_internal_p (stmt)
312 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
313 break;
314 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
315 {
316 case annot_expr_ivdep_kind:
317 case annot_expr_no_vector_kind:
318 case annot_expr_vector_kind:
319 break;
320 default:
321 gcc_unreachable ();
322 }
323 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
324 stmt = gimple_build_assign (gimple_call_lhs (stmt),
325 gimple_call_arg (stmt, 0));
326 gsi_replace (&gsi, stmt, true);
327 }
328 }
329 }
330
331
332 static unsigned int
333 execute_build_cfg (void)
334 {
335 gimple_seq body = gimple_body (current_function_decl);
336
337 build_gimple_cfg (body);
338 gimple_set_body (current_function_decl, NULL);
339 if (dump_file && (dump_flags & TDF_DETAILS))
340 {
341 fprintf (dump_file, "Scope blocks:\n");
342 dump_scope_blocks (dump_file, dump_flags);
343 }
344 cleanup_tree_cfg ();
345 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
346 replace_loop_annotate ();
347 return 0;
348 }
349
350 namespace {
351
352 const pass_data pass_data_build_cfg =
353 {
354 GIMPLE_PASS, /* type */
355 "cfg", /* name */
356 OPTGROUP_NONE, /* optinfo_flags */
357 TV_TREE_CFG, /* tv_id */
358 PROP_gimple_leh, /* properties_required */
359 ( PROP_cfg | PROP_loops ), /* properties_provided */
360 0, /* properties_destroyed */
361 0, /* todo_flags_start */
362 0, /* todo_flags_finish */
363 };
364
365 class pass_build_cfg : public gimple_opt_pass
366 {
367 public:
368 pass_build_cfg (gcc::context *ctxt)
369 : gimple_opt_pass (pass_data_build_cfg, ctxt)
370 {}
371
372 /* opt_pass methods: */
373 virtual unsigned int execute (function *) { return execute_build_cfg (); }
374
375 }; // class pass_build_cfg
376
377 } // anon namespace
378
379 gimple_opt_pass *
380 make_pass_build_cfg (gcc::context *ctxt)
381 {
382 return new pass_build_cfg (ctxt);
383 }
384
385
386 /* Return true if T is a computed goto. */
387
388 bool
389 computed_goto_p (gimple t)
390 {
391 return (gimple_code (t) == GIMPLE_GOTO
392 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
393 }
394
395 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
396 the other edge points to a bb with just __builtin_unreachable ().
397 I.e. return true for C->M edge in:
398 <bb C>:
399 ...
400 if (something)
401 goto <bb N>;
402 else
403 goto <bb M>;
404 <bb N>:
405 __builtin_unreachable ();
406 <bb M>: */
407
408 bool
409 assert_unreachable_fallthru_edge_p (edge e)
410 {
411 basic_block pred_bb = e->src;
412 gimple last = last_stmt (pred_bb);
413 if (last && gimple_code (last) == GIMPLE_COND)
414 {
415 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
416 if (other_bb == e->dest)
417 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
418 if (EDGE_COUNT (other_bb->succs) == 0)
419 {
420 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
421 gimple stmt;
422
423 if (gsi_end_p (gsi))
424 return false;
425 stmt = gsi_stmt (gsi);
426 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
427 {
428 gsi_next (&gsi);
429 if (gsi_end_p (gsi))
430 return false;
431 stmt = gsi_stmt (gsi);
432 }
433 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
434 }
435 }
436 return false;
437 }
438
439
440 /* Build a flowgraph for the sequence of stmts SEQ. */
441
442 static void
443 make_blocks (gimple_seq seq)
444 {
445 gimple_stmt_iterator i = gsi_start (seq);
446 gimple stmt = NULL;
447 bool start_new_block = true;
448 bool first_stmt_of_seq = true;
449 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
450
451 while (!gsi_end_p (i))
452 {
453 gimple prev_stmt;
454
455 prev_stmt = stmt;
456 stmt = gsi_stmt (i);
457
458 /* If the statement starts a new basic block or if we have determined
459 in a previous pass that we need to create a new block for STMT, do
460 so now. */
461 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
462 {
463 if (!first_stmt_of_seq)
464 gsi_split_seq_before (&i, &seq);
465 bb = create_basic_block (seq, NULL, bb);
466 start_new_block = false;
467 }
468
469 /* Now add STMT to BB and create the subgraphs for special statement
470 codes. */
471 gimple_set_bb (stmt, bb);
472
473 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
474 next iteration. */
475 if (stmt_ends_bb_p (stmt))
476 {
477 /* If the stmt can make abnormal goto use a new temporary
478 for the assignment to the LHS. This makes sure the old value
479 of the LHS is available on the abnormal edge. Otherwise
480 we will end up with overlapping life-ranges for abnormal
481 SSA names. */
482 if (gimple_has_lhs (stmt)
483 && stmt_can_make_abnormal_goto (stmt)
484 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
485 {
486 tree lhs = gimple_get_lhs (stmt);
487 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
488 gimple s = gimple_build_assign (lhs, tmp);
489 gimple_set_location (s, gimple_location (stmt));
490 gimple_set_block (s, gimple_block (stmt));
491 gimple_set_lhs (stmt, tmp);
492 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
493 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
494 DECL_GIMPLE_REG_P (tmp) = 1;
495 gsi_insert_after (&i, s, GSI_SAME_STMT);
496 }
497 start_new_block = true;
498 }
499
500 gsi_next (&i);
501 first_stmt_of_seq = false;
502 }
503 }
504
505
506 /* Create and return a new empty basic block after bb AFTER. */
507
508 static basic_block
509 create_bb (void *h, void *e, basic_block after)
510 {
511 basic_block bb;
512
513 gcc_assert (!e);
514
515 /* Create and initialize a new basic block. Since alloc_block uses
516 GC allocation that clears memory to allocate a basic block, we do
517 not have to clear the newly allocated basic block here. */
518 bb = alloc_block ();
519
520 bb->index = last_basic_block_for_fn (cfun);
521 bb->flags = BB_NEW;
522 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
523
524 /* Add the new block to the linked list of blocks. */
525 link_block (bb, after);
526
527 /* Grow the basic block array if needed. */
528 if ((size_t) last_basic_block_for_fn (cfun)
529 == basic_block_info_for_fn (cfun)->length ())
530 {
531 size_t new_size =
532 (last_basic_block_for_fn (cfun)
533 + (last_basic_block_for_fn (cfun) + 3) / 4);
534 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
535 }
536
537 /* Add the newly created block to the array. */
538 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
539
540 n_basic_blocks_for_fn (cfun)++;
541 last_basic_block_for_fn (cfun)++;
542
543 return bb;
544 }
545
546
547 /*---------------------------------------------------------------------------
548 Edge creation
549 ---------------------------------------------------------------------------*/
550
551 /* Fold COND_EXPR_COND of each COND_EXPR. */
552
553 void
554 fold_cond_expr_cond (void)
555 {
556 basic_block bb;
557
558 FOR_EACH_BB_FN (bb, cfun)
559 {
560 gimple stmt = last_stmt (bb);
561
562 if (stmt && gimple_code (stmt) == GIMPLE_COND)
563 {
564 location_t loc = gimple_location (stmt);
565 tree cond;
566 bool zerop, onep;
567
568 fold_defer_overflow_warnings ();
569 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
570 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
571 if (cond)
572 {
573 zerop = integer_zerop (cond);
574 onep = integer_onep (cond);
575 }
576 else
577 zerop = onep = false;
578
579 fold_undefer_overflow_warnings (zerop || onep,
580 stmt,
581 WARN_STRICT_OVERFLOW_CONDITIONAL);
582 if (zerop)
583 gimple_cond_make_false (stmt);
584 else if (onep)
585 gimple_cond_make_true (stmt);
586 }
587 }
588 }
589
590 /* If basic block BB has an abnormal edge to a basic block
591 containing IFN_ABNORMAL_DISPATCHER internal call, return
592 that the dispatcher's basic block, otherwise return NULL. */
593
594 basic_block
595 get_abnormal_succ_dispatcher (basic_block bb)
596 {
597 edge e;
598 edge_iterator ei;
599
600 FOR_EACH_EDGE (e, ei, bb->succs)
601 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
602 {
603 gimple_stmt_iterator gsi
604 = gsi_start_nondebug_after_labels_bb (e->dest);
605 gimple g = gsi_stmt (gsi);
606 if (g
607 && is_gimple_call (g)
608 && gimple_call_internal_p (g)
609 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
610 return e->dest;
611 }
612 return NULL;
613 }
614
615 /* Helper function for make_edges. Create a basic block with
616 with ABNORMAL_DISPATCHER internal call in it if needed, and
617 create abnormal edges from BBS to it and from it to FOR_BB
618 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
619
620 static void
621 handle_abnormal_edges (basic_block *dispatcher_bbs,
622 basic_block for_bb, int *bb_to_omp_idx,
623 auto_vec<basic_block> *bbs, bool computed_goto)
624 {
625 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
626 unsigned int idx = 0;
627 basic_block bb;
628 bool inner = false;
629
630 if (bb_to_omp_idx)
631 {
632 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
633 if (bb_to_omp_idx[for_bb->index] != 0)
634 inner = true;
635 }
636
637 /* If the dispatcher has been created already, then there are basic
638 blocks with abnormal edges to it, so just make a new edge to
639 for_bb. */
640 if (*dispatcher == NULL)
641 {
642 /* Check if there are any basic blocks that need to have
643 abnormal edges to this dispatcher. If there are none, return
644 early. */
645 if (bb_to_omp_idx == NULL)
646 {
647 if (bbs->is_empty ())
648 return;
649 }
650 else
651 {
652 FOR_EACH_VEC_ELT (*bbs, idx, bb)
653 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
654 break;
655 if (bb == NULL)
656 return;
657 }
658
659 /* Create the dispatcher bb. */
660 *dispatcher = create_basic_block (NULL, NULL, for_bb);
661 if (computed_goto)
662 {
663 /* Factor computed gotos into a common computed goto site. Also
664 record the location of that site so that we can un-factor the
665 gotos after we have converted back to normal form. */
666 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
667
668 /* Create the destination of the factored goto. Each original
669 computed goto will put its desired destination into this
670 variable and jump to the label we create immediately below. */
671 tree var = create_tmp_var (ptr_type_node, "gotovar");
672
673 /* Build a label for the new block which will contain the
674 factored computed goto. */
675 tree factored_label_decl
676 = create_artificial_label (UNKNOWN_LOCATION);
677 gimple factored_computed_goto_label
678 = gimple_build_label (factored_label_decl);
679 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
680
681 /* Build our new computed goto. */
682 gimple factored_computed_goto = gimple_build_goto (var);
683 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
684
685 FOR_EACH_VEC_ELT (*bbs, idx, bb)
686 {
687 if (bb_to_omp_idx
688 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
689 continue;
690
691 gsi = gsi_last_bb (bb);
692 gimple last = gsi_stmt (gsi);
693
694 gcc_assert (computed_goto_p (last));
695
696 /* Copy the original computed goto's destination into VAR. */
697 gimple assignment
698 = gimple_build_assign (var, gimple_goto_dest (last));
699 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
700
701 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
702 e->goto_locus = gimple_location (last);
703 gsi_remove (&gsi, true);
704 }
705 }
706 else
707 {
708 tree arg = inner ? boolean_true_node : boolean_false_node;
709 gimple g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
710 1, arg);
711 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
712 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
713
714 /* Create predecessor edges of the dispatcher. */
715 FOR_EACH_VEC_ELT (*bbs, idx, bb)
716 {
717 if (bb_to_omp_idx
718 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
719 continue;
720 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
721 }
722 }
723 }
724
725 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
726 }
727
728 /* Join all the blocks in the flowgraph. */
729
730 static void
731 make_edges (void)
732 {
733 basic_block bb;
734 struct omp_region *cur_region = NULL;
735 auto_vec<basic_block> ab_edge_goto;
736 auto_vec<basic_block> ab_edge_call;
737 int *bb_to_omp_idx = NULL;
738 int cur_omp_region_idx = 0;
739
740 /* Create an edge from entry to the first block with executable
741 statements in it. */
742 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
743 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
744 EDGE_FALLTHRU);
745
746 /* Traverse the basic block array placing edges. */
747 FOR_EACH_BB_FN (bb, cfun)
748 {
749 gimple last = last_stmt (bb);
750 bool fallthru;
751
752 if (bb_to_omp_idx)
753 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
754
755 if (last)
756 {
757 enum gimple_code code = gimple_code (last);
758 switch (code)
759 {
760 case GIMPLE_GOTO:
761 if (make_goto_expr_edges (bb))
762 ab_edge_goto.safe_push (bb);
763 fallthru = false;
764 break;
765 case GIMPLE_RETURN:
766 {
767 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
768 e->goto_locus = gimple_location (last);
769 fallthru = false;
770 }
771 break;
772 case GIMPLE_COND:
773 make_cond_expr_edges (bb);
774 fallthru = false;
775 break;
776 case GIMPLE_SWITCH:
777 make_gimple_switch_edges (bb);
778 fallthru = false;
779 break;
780 case GIMPLE_RESX:
781 make_eh_edges (last);
782 fallthru = false;
783 break;
784 case GIMPLE_EH_DISPATCH:
785 fallthru = make_eh_dispatch_edges (last);
786 break;
787
788 case GIMPLE_CALL:
789 /* If this function receives a nonlocal goto, then we need to
790 make edges from this call site to all the nonlocal goto
791 handlers. */
792 if (stmt_can_make_abnormal_goto (last))
793 ab_edge_call.safe_push (bb);
794
795 /* If this statement has reachable exception handlers, then
796 create abnormal edges to them. */
797 make_eh_edges (last);
798
799 /* BUILTIN_RETURN is really a return statement. */
800 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
801 {
802 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
803 fallthru = false;
804 }
805 /* Some calls are known not to return. */
806 else
807 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
808 break;
809
810 case GIMPLE_ASSIGN:
811 /* A GIMPLE_ASSIGN may throw internally and thus be considered
812 control-altering. */
813 if (is_ctrl_altering_stmt (last))
814 make_eh_edges (last);
815 fallthru = true;
816 break;
817
818 case GIMPLE_ASM:
819 make_gimple_asm_edges (bb);
820 fallthru = true;
821 break;
822
823 CASE_GIMPLE_OMP:
824 fallthru = make_gimple_omp_edges (bb, &cur_region,
825 &cur_omp_region_idx);
826 if (cur_region && bb_to_omp_idx == NULL)
827 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
828 break;
829
830 case GIMPLE_TRANSACTION:
831 {
832 tree abort_label = gimple_transaction_label (last);
833 if (abort_label)
834 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
835 fallthru = true;
836 }
837 break;
838
839 default:
840 gcc_assert (!stmt_ends_bb_p (last));
841 fallthru = true;
842 }
843 }
844 else
845 fallthru = true;
846
847 if (fallthru)
848 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
849 }
850
851 /* Computed gotos are hell to deal with, especially if there are
852 lots of them with a large number of destinations. So we factor
853 them to a common computed goto location before we build the
854 edge list. After we convert back to normal form, we will un-factor
855 the computed gotos since factoring introduces an unwanted jump.
856 For non-local gotos and abnormal edges from calls to calls that return
857 twice or forced labels, factor the abnormal edges too, by having all
858 abnormal edges from the calls go to a common artificial basic block
859 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
860 basic block to all forced labels and calls returning twice.
861 We do this per-OpenMP structured block, because those regions
862 are guaranteed to be single entry single exit by the standard,
863 so it is not allowed to enter or exit such regions abnormally this way,
864 thus all computed gotos, non-local gotos and setjmp/longjmp calls
865 must not transfer control across SESE region boundaries. */
866 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
867 {
868 gimple_stmt_iterator gsi;
869 basic_block dispatcher_bb_array[2] = { NULL, NULL };
870 basic_block *dispatcher_bbs = dispatcher_bb_array;
871 int count = n_basic_blocks_for_fn (cfun);
872
873 if (bb_to_omp_idx)
874 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
875
876 FOR_EACH_BB_FN (bb, cfun)
877 {
878 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
879 {
880 gimple label_stmt = gsi_stmt (gsi);
881 tree target;
882
883 if (gimple_code (label_stmt) != GIMPLE_LABEL)
884 break;
885
886 target = gimple_label_label (label_stmt);
887
888 /* Make an edge to every label block that has been marked as a
889 potential target for a computed goto or a non-local goto. */
890 if (FORCED_LABEL (target))
891 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
892 &ab_edge_goto, true);
893 if (DECL_NONLOCAL (target))
894 {
895 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
896 &ab_edge_call, false);
897 break;
898 }
899 }
900
901 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
902 gsi_next_nondebug (&gsi);
903 if (!gsi_end_p (gsi))
904 {
905 /* Make an edge to every setjmp-like call. */
906 gimple call_stmt = gsi_stmt (gsi);
907 if (is_gimple_call (call_stmt)
908 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
909 || gimple_call_builtin_p (call_stmt,
910 BUILT_IN_SETJMP_RECEIVER)))
911 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
912 &ab_edge_call, false);
913 }
914 }
915
916 if (bb_to_omp_idx)
917 XDELETE (dispatcher_bbs);
918 }
919
920 XDELETE (bb_to_omp_idx);
921
922 free_omp_regions ();
923
924 /* Fold COND_EXPR_COND of each COND_EXPR. */
925 fold_cond_expr_cond ();
926 }
927
928 /* Find the next available discriminator value for LOCUS. The
929 discriminator distinguishes among several basic blocks that
930 share a common locus, allowing for more accurate sample-based
931 profiling. */
932
933 static int
934 next_discriminator_for_locus (location_t locus)
935 {
936 struct locus_discrim_map item;
937 struct locus_discrim_map **slot;
938
939 item.locus = locus;
940 item.discriminator = 0;
941 slot = discriminator_per_locus->find_slot_with_hash (
942 &item, LOCATION_LINE (locus), INSERT);
943 gcc_assert (slot);
944 if (*slot == HTAB_EMPTY_ENTRY)
945 {
946 *slot = XNEW (struct locus_discrim_map);
947 gcc_assert (*slot);
948 (*slot)->locus = locus;
949 (*slot)->discriminator = 0;
950 }
951 (*slot)->discriminator++;
952 return (*slot)->discriminator;
953 }
954
955 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
956
957 static bool
958 same_line_p (location_t locus1, location_t locus2)
959 {
960 expanded_location from, to;
961
962 if (locus1 == locus2)
963 return true;
964
965 from = expand_location (locus1);
966 to = expand_location (locus2);
967
968 if (from.line != to.line)
969 return false;
970 if (from.file == to.file)
971 return true;
972 return (from.file != NULL
973 && to.file != NULL
974 && filename_cmp (from.file, to.file) == 0);
975 }
976
977 /* Assign discriminators to each basic block. */
978
979 static void
980 assign_discriminators (void)
981 {
982 basic_block bb;
983
984 FOR_EACH_BB_FN (bb, cfun)
985 {
986 edge e;
987 edge_iterator ei;
988 gimple last = last_stmt (bb);
989 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
990
991 if (locus == UNKNOWN_LOCATION)
992 continue;
993
994 FOR_EACH_EDGE (e, ei, bb->succs)
995 {
996 gimple first = first_non_label_stmt (e->dest);
997 gimple last = last_stmt (e->dest);
998 if ((first && same_line_p (locus, gimple_location (first)))
999 || (last && same_line_p (locus, gimple_location (last))))
1000 {
1001 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1002 bb->discriminator = next_discriminator_for_locus (locus);
1003 else
1004 e->dest->discriminator = next_discriminator_for_locus (locus);
1005 }
1006 }
1007 }
1008 }
1009
1010 /* Create the edges for a GIMPLE_COND starting at block BB. */
1011
1012 static void
1013 make_cond_expr_edges (basic_block bb)
1014 {
1015 gimple entry = last_stmt (bb);
1016 gimple then_stmt, else_stmt;
1017 basic_block then_bb, else_bb;
1018 tree then_label, else_label;
1019 edge e;
1020
1021 gcc_assert (entry);
1022 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1023
1024 /* Entry basic blocks for each component. */
1025 then_label = gimple_cond_true_label (entry);
1026 else_label = gimple_cond_false_label (entry);
1027 then_bb = label_to_block (then_label);
1028 else_bb = label_to_block (else_label);
1029 then_stmt = first_stmt (then_bb);
1030 else_stmt = first_stmt (else_bb);
1031
1032 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1033 e->goto_locus = gimple_location (then_stmt);
1034 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1035 if (e)
1036 e->goto_locus = gimple_location (else_stmt);
1037
1038 /* We do not need the labels anymore. */
1039 gimple_cond_set_true_label (entry, NULL_TREE);
1040 gimple_cond_set_false_label (entry, NULL_TREE);
1041 }
1042
1043
1044 /* Called for each element in the hash table (P) as we delete the
1045 edge to cases hash table.
1046
1047 Clear all the TREE_CHAINs to prevent problems with copying of
1048 SWITCH_EXPRs and structure sharing rules, then free the hash table
1049 element. */
1050
1051 bool
1052 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1053 {
1054 tree t, next;
1055
1056 for (t = value; t; t = next)
1057 {
1058 next = CASE_CHAIN (t);
1059 CASE_CHAIN (t) = NULL;
1060 }
1061
1062 return true;
1063 }
1064
1065 /* Start recording information mapping edges to case labels. */
1066
1067 void
1068 start_recording_case_labels (void)
1069 {
1070 gcc_assert (edge_to_cases == NULL);
1071 edge_to_cases = new hash_map<edge, tree>;
1072 touched_switch_bbs = BITMAP_ALLOC (NULL);
1073 }
1074
1075 /* Return nonzero if we are recording information for case labels. */
1076
1077 static bool
1078 recording_case_labels_p (void)
1079 {
1080 return (edge_to_cases != NULL);
1081 }
1082
1083 /* Stop recording information mapping edges to case labels and
1084 remove any information we have recorded. */
1085 void
1086 end_recording_case_labels (void)
1087 {
1088 bitmap_iterator bi;
1089 unsigned i;
1090 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1091 delete edge_to_cases;
1092 edge_to_cases = NULL;
1093 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1094 {
1095 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1096 if (bb)
1097 {
1098 gimple stmt = last_stmt (bb);
1099 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1100 group_case_labels_stmt (stmt);
1101 }
1102 }
1103 BITMAP_FREE (touched_switch_bbs);
1104 }
1105
1106 /* If we are inside a {start,end}_recording_cases block, then return
1107 a chain of CASE_LABEL_EXPRs from T which reference E.
1108
1109 Otherwise return NULL. */
1110
1111 static tree
1112 get_cases_for_edge (edge e, gimple t)
1113 {
1114 tree *slot;
1115 size_t i, n;
1116
1117 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1118 chains available. Return NULL so the caller can detect this case. */
1119 if (!recording_case_labels_p ())
1120 return NULL;
1121
1122 slot = edge_to_cases->get (e);
1123 if (slot)
1124 return *slot;
1125
1126 /* If we did not find E in the hash table, then this must be the first
1127 time we have been queried for information about E & T. Add all the
1128 elements from T to the hash table then perform the query again. */
1129
1130 n = gimple_switch_num_labels (t);
1131 for (i = 0; i < n; i++)
1132 {
1133 tree elt = gimple_switch_label (t, i);
1134 tree lab = CASE_LABEL (elt);
1135 basic_block label_bb = label_to_block (lab);
1136 edge this_edge = find_edge (e->src, label_bb);
1137
1138 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1139 a new chain. */
1140 tree &s = edge_to_cases->get_or_insert (this_edge);
1141 CASE_CHAIN (elt) = s;
1142 s = elt;
1143 }
1144
1145 return *edge_to_cases->get (e);
1146 }
1147
1148 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1149
1150 static void
1151 make_gimple_switch_edges (basic_block bb)
1152 {
1153 gimple entry = last_stmt (bb);
1154 size_t i, n;
1155
1156 n = gimple_switch_num_labels (entry);
1157
1158 for (i = 0; i < n; ++i)
1159 {
1160 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1161 basic_block label_bb = label_to_block (lab);
1162 make_edge (bb, label_bb, 0);
1163 }
1164 }
1165
1166
1167 /* Return the basic block holding label DEST. */
1168
1169 basic_block
1170 label_to_block_fn (struct function *ifun, tree dest)
1171 {
1172 int uid = LABEL_DECL_UID (dest);
1173
1174 /* We would die hard when faced by an undefined label. Emit a label to
1175 the very first basic block. This will hopefully make even the dataflow
1176 and undefined variable warnings quite right. */
1177 if (seen_error () && uid < 0)
1178 {
1179 gimple_stmt_iterator gsi =
1180 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1181 gimple stmt;
1182
1183 stmt = gimple_build_label (dest);
1184 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1185 uid = LABEL_DECL_UID (dest);
1186 }
1187 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1188 return NULL;
1189 return (*ifun->cfg->x_label_to_block_map)[uid];
1190 }
1191
1192 /* Create edges for a goto statement at block BB. Returns true
1193 if abnormal edges should be created. */
1194
1195 static bool
1196 make_goto_expr_edges (basic_block bb)
1197 {
1198 gimple_stmt_iterator last = gsi_last_bb (bb);
1199 gimple goto_t = gsi_stmt (last);
1200
1201 /* A simple GOTO creates normal edges. */
1202 if (simple_goto_p (goto_t))
1203 {
1204 tree dest = gimple_goto_dest (goto_t);
1205 basic_block label_bb = label_to_block (dest);
1206 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1207 e->goto_locus = gimple_location (goto_t);
1208 gsi_remove (&last, true);
1209 return false;
1210 }
1211
1212 /* A computed GOTO creates abnormal edges. */
1213 return true;
1214 }
1215
1216 /* Create edges for an asm statement with labels at block BB. */
1217
1218 static void
1219 make_gimple_asm_edges (basic_block bb)
1220 {
1221 gimple stmt = last_stmt (bb);
1222 int i, n = gimple_asm_nlabels (stmt);
1223
1224 for (i = 0; i < n; ++i)
1225 {
1226 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1227 basic_block label_bb = label_to_block (label);
1228 make_edge (bb, label_bb, 0);
1229 }
1230 }
1231
1232 /*---------------------------------------------------------------------------
1233 Flowgraph analysis
1234 ---------------------------------------------------------------------------*/
1235
1236 /* Cleanup useless labels in basic blocks. This is something we wish
1237 to do early because it allows us to group case labels before creating
1238 the edges for the CFG, and it speeds up block statement iterators in
1239 all passes later on.
1240 We rerun this pass after CFG is created, to get rid of the labels that
1241 are no longer referenced. After then we do not run it any more, since
1242 (almost) no new labels should be created. */
1243
1244 /* A map from basic block index to the leading label of that block. */
1245 static struct label_record
1246 {
1247 /* The label. */
1248 tree label;
1249
1250 /* True if the label is referenced from somewhere. */
1251 bool used;
1252 } *label_for_bb;
1253
1254 /* Given LABEL return the first label in the same basic block. */
1255
1256 static tree
1257 main_block_label (tree label)
1258 {
1259 basic_block bb = label_to_block (label);
1260 tree main_label = label_for_bb[bb->index].label;
1261
1262 /* label_to_block possibly inserted undefined label into the chain. */
1263 if (!main_label)
1264 {
1265 label_for_bb[bb->index].label = label;
1266 main_label = label;
1267 }
1268
1269 label_for_bb[bb->index].used = true;
1270 return main_label;
1271 }
1272
1273 /* Clean up redundant labels within the exception tree. */
1274
1275 static void
1276 cleanup_dead_labels_eh (void)
1277 {
1278 eh_landing_pad lp;
1279 eh_region r;
1280 tree lab;
1281 int i;
1282
1283 if (cfun->eh == NULL)
1284 return;
1285
1286 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1287 if (lp && lp->post_landing_pad)
1288 {
1289 lab = main_block_label (lp->post_landing_pad);
1290 if (lab != lp->post_landing_pad)
1291 {
1292 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1293 EH_LANDING_PAD_NR (lab) = lp->index;
1294 }
1295 }
1296
1297 FOR_ALL_EH_REGION (r)
1298 switch (r->type)
1299 {
1300 case ERT_CLEANUP:
1301 case ERT_MUST_NOT_THROW:
1302 break;
1303
1304 case ERT_TRY:
1305 {
1306 eh_catch c;
1307 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1308 {
1309 lab = c->label;
1310 if (lab)
1311 c->label = main_block_label (lab);
1312 }
1313 }
1314 break;
1315
1316 case ERT_ALLOWED_EXCEPTIONS:
1317 lab = r->u.allowed.label;
1318 if (lab)
1319 r->u.allowed.label = main_block_label (lab);
1320 break;
1321 }
1322 }
1323
1324
1325 /* Cleanup redundant labels. This is a three-step process:
1326 1) Find the leading label for each block.
1327 2) Redirect all references to labels to the leading labels.
1328 3) Cleanup all useless labels. */
1329
1330 void
1331 cleanup_dead_labels (void)
1332 {
1333 basic_block bb;
1334 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1335
1336 /* Find a suitable label for each block. We use the first user-defined
1337 label if there is one, or otherwise just the first label we see. */
1338 FOR_EACH_BB_FN (bb, cfun)
1339 {
1340 gimple_stmt_iterator i;
1341
1342 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1343 {
1344 tree label;
1345 gimple stmt = gsi_stmt (i);
1346
1347 if (gimple_code (stmt) != GIMPLE_LABEL)
1348 break;
1349
1350 label = gimple_label_label (stmt);
1351
1352 /* If we have not yet seen a label for the current block,
1353 remember this one and see if there are more labels. */
1354 if (!label_for_bb[bb->index].label)
1355 {
1356 label_for_bb[bb->index].label = label;
1357 continue;
1358 }
1359
1360 /* If we did see a label for the current block already, but it
1361 is an artificially created label, replace it if the current
1362 label is a user defined label. */
1363 if (!DECL_ARTIFICIAL (label)
1364 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1365 {
1366 label_for_bb[bb->index].label = label;
1367 break;
1368 }
1369 }
1370 }
1371
1372 /* Now redirect all jumps/branches to the selected label.
1373 First do so for each block ending in a control statement. */
1374 FOR_EACH_BB_FN (bb, cfun)
1375 {
1376 gimple stmt = last_stmt (bb);
1377 tree label, new_label;
1378
1379 if (!stmt)
1380 continue;
1381
1382 switch (gimple_code (stmt))
1383 {
1384 case GIMPLE_COND:
1385 label = gimple_cond_true_label (stmt);
1386 if (label)
1387 {
1388 new_label = main_block_label (label);
1389 if (new_label != label)
1390 gimple_cond_set_true_label (stmt, new_label);
1391 }
1392
1393 label = gimple_cond_false_label (stmt);
1394 if (label)
1395 {
1396 new_label = main_block_label (label);
1397 if (new_label != label)
1398 gimple_cond_set_false_label (stmt, new_label);
1399 }
1400 break;
1401
1402 case GIMPLE_SWITCH:
1403 {
1404 size_t i, n = gimple_switch_num_labels (stmt);
1405
1406 /* Replace all destination labels. */
1407 for (i = 0; i < n; ++i)
1408 {
1409 tree case_label = gimple_switch_label (stmt, i);
1410 label = CASE_LABEL (case_label);
1411 new_label = main_block_label (label);
1412 if (new_label != label)
1413 CASE_LABEL (case_label) = new_label;
1414 }
1415 break;
1416 }
1417
1418 case GIMPLE_ASM:
1419 {
1420 int i, n = gimple_asm_nlabels (stmt);
1421
1422 for (i = 0; i < n; ++i)
1423 {
1424 tree cons = gimple_asm_label_op (stmt, i);
1425 tree label = main_block_label (TREE_VALUE (cons));
1426 TREE_VALUE (cons) = label;
1427 }
1428 break;
1429 }
1430
1431 /* We have to handle gotos until they're removed, and we don't
1432 remove them until after we've created the CFG edges. */
1433 case GIMPLE_GOTO:
1434 if (!computed_goto_p (stmt))
1435 {
1436 label = gimple_goto_dest (stmt);
1437 new_label = main_block_label (label);
1438 if (new_label != label)
1439 gimple_goto_set_dest (stmt, new_label);
1440 }
1441 break;
1442
1443 case GIMPLE_TRANSACTION:
1444 {
1445 tree label = gimple_transaction_label (stmt);
1446 if (label)
1447 {
1448 tree new_label = main_block_label (label);
1449 if (new_label != label)
1450 gimple_transaction_set_label (stmt, new_label);
1451 }
1452 }
1453 break;
1454
1455 default:
1456 break;
1457 }
1458 }
1459
1460 /* Do the same for the exception region tree labels. */
1461 cleanup_dead_labels_eh ();
1462
1463 /* Finally, purge dead labels. All user-defined labels and labels that
1464 can be the target of non-local gotos and labels which have their
1465 address taken are preserved. */
1466 FOR_EACH_BB_FN (bb, cfun)
1467 {
1468 gimple_stmt_iterator i;
1469 tree label_for_this_bb = label_for_bb[bb->index].label;
1470
1471 if (!label_for_this_bb)
1472 continue;
1473
1474 /* If the main label of the block is unused, we may still remove it. */
1475 if (!label_for_bb[bb->index].used)
1476 label_for_this_bb = NULL;
1477
1478 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1479 {
1480 tree label;
1481 gimple stmt = gsi_stmt (i);
1482
1483 if (gimple_code (stmt) != GIMPLE_LABEL)
1484 break;
1485
1486 label = gimple_label_label (stmt);
1487
1488 if (label == label_for_this_bb
1489 || !DECL_ARTIFICIAL (label)
1490 || DECL_NONLOCAL (label)
1491 || FORCED_LABEL (label))
1492 gsi_next (&i);
1493 else
1494 gsi_remove (&i, true);
1495 }
1496 }
1497
1498 free (label_for_bb);
1499 }
1500
1501 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1502 the ones jumping to the same label.
1503 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1504
1505 void
1506 group_case_labels_stmt (gimple stmt)
1507 {
1508 int old_size = gimple_switch_num_labels (stmt);
1509 int i, j, new_size = old_size;
1510 basic_block default_bb = NULL;
1511
1512 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1513
1514 /* Look for possible opportunities to merge cases. */
1515 i = 1;
1516 while (i < old_size)
1517 {
1518 tree base_case, base_high;
1519 basic_block base_bb;
1520
1521 base_case = gimple_switch_label (stmt, i);
1522
1523 gcc_assert (base_case);
1524 base_bb = label_to_block (CASE_LABEL (base_case));
1525
1526 /* Discard cases that have the same destination as the
1527 default case. */
1528 if (base_bb == default_bb)
1529 {
1530 gimple_switch_set_label (stmt, i, NULL_TREE);
1531 i++;
1532 new_size--;
1533 continue;
1534 }
1535
1536 base_high = CASE_HIGH (base_case)
1537 ? CASE_HIGH (base_case)
1538 : CASE_LOW (base_case);
1539 i++;
1540
1541 /* Try to merge case labels. Break out when we reach the end
1542 of the label vector or when we cannot merge the next case
1543 label with the current one. */
1544 while (i < old_size)
1545 {
1546 tree merge_case = gimple_switch_label (stmt, i);
1547 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1548 wide_int bhp1 = wi::add (base_high, 1);
1549
1550 /* Merge the cases if they jump to the same place,
1551 and their ranges are consecutive. */
1552 if (merge_bb == base_bb
1553 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1554 {
1555 base_high = CASE_HIGH (merge_case) ?
1556 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1557 CASE_HIGH (base_case) = base_high;
1558 gimple_switch_set_label (stmt, i, NULL_TREE);
1559 new_size--;
1560 i++;
1561 }
1562 else
1563 break;
1564 }
1565 }
1566
1567 /* Compress the case labels in the label vector, and adjust the
1568 length of the vector. */
1569 for (i = 0, j = 0; i < new_size; i++)
1570 {
1571 while (! gimple_switch_label (stmt, j))
1572 j++;
1573 gimple_switch_set_label (stmt, i,
1574 gimple_switch_label (stmt, j++));
1575 }
1576
1577 gcc_assert (new_size <= old_size);
1578 gimple_switch_set_num_labels (stmt, new_size);
1579 }
1580
1581 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1582 and scan the sorted vector of cases. Combine the ones jumping to the
1583 same label. */
1584
1585 void
1586 group_case_labels (void)
1587 {
1588 basic_block bb;
1589
1590 FOR_EACH_BB_FN (bb, cfun)
1591 {
1592 gimple stmt = last_stmt (bb);
1593 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1594 group_case_labels_stmt (stmt);
1595 }
1596 }
1597
1598 /* Checks whether we can merge block B into block A. */
1599
1600 static bool
1601 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1602 {
1603 gimple stmt;
1604 gimple_stmt_iterator gsi;
1605
1606 if (!single_succ_p (a))
1607 return false;
1608
1609 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1610 return false;
1611
1612 if (single_succ (a) != b)
1613 return false;
1614
1615 if (!single_pred_p (b))
1616 return false;
1617
1618 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1619 return false;
1620
1621 /* If A ends by a statement causing exceptions or something similar, we
1622 cannot merge the blocks. */
1623 stmt = last_stmt (a);
1624 if (stmt && stmt_ends_bb_p (stmt))
1625 return false;
1626
1627 /* Do not allow a block with only a non-local label to be merged. */
1628 if (stmt
1629 && gimple_code (stmt) == GIMPLE_LABEL
1630 && DECL_NONLOCAL (gimple_label_label (stmt)))
1631 return false;
1632
1633 /* Examine the labels at the beginning of B. */
1634 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1635 {
1636 tree lab;
1637 stmt = gsi_stmt (gsi);
1638 if (gimple_code (stmt) != GIMPLE_LABEL)
1639 break;
1640 lab = gimple_label_label (stmt);
1641
1642 /* Do not remove user forced labels or for -O0 any user labels. */
1643 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1644 return false;
1645 }
1646
1647 /* Protect the loop latches. */
1648 if (current_loops && b->loop_father->latch == b)
1649 return false;
1650
1651 /* It must be possible to eliminate all phi nodes in B. If ssa form
1652 is not up-to-date and a name-mapping is registered, we cannot eliminate
1653 any phis. Symbols marked for renaming are never a problem though. */
1654 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1655 {
1656 gimple phi = gsi_stmt (gsi);
1657 /* Technically only new names matter. */
1658 if (name_registered_for_update_p (PHI_RESULT (phi)))
1659 return false;
1660 }
1661
1662 /* When not optimizing, don't merge if we'd lose goto_locus. */
1663 if (!optimize
1664 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1665 {
1666 location_t goto_locus = single_succ_edge (a)->goto_locus;
1667 gimple_stmt_iterator prev, next;
1668 prev = gsi_last_nondebug_bb (a);
1669 next = gsi_after_labels (b);
1670 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1671 gsi_next_nondebug (&next);
1672 if ((gsi_end_p (prev)
1673 || gimple_location (gsi_stmt (prev)) != goto_locus)
1674 && (gsi_end_p (next)
1675 || gimple_location (gsi_stmt (next)) != goto_locus))
1676 return false;
1677 }
1678
1679 return true;
1680 }
1681
1682 /* Replaces all uses of NAME by VAL. */
1683
1684 void
1685 replace_uses_by (tree name, tree val)
1686 {
1687 imm_use_iterator imm_iter;
1688 use_operand_p use;
1689 gimple stmt;
1690 edge e;
1691
1692 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1693 {
1694 /* Mark the block if we change the last stmt in it. */
1695 if (cfgcleanup_altered_bbs
1696 && stmt_ends_bb_p (stmt))
1697 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1698
1699 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1700 {
1701 replace_exp (use, val);
1702
1703 if (gimple_code (stmt) == GIMPLE_PHI)
1704 {
1705 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1706 if (e->flags & EDGE_ABNORMAL)
1707 {
1708 /* This can only occur for virtual operands, since
1709 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1710 would prevent replacement. */
1711 gcc_checking_assert (virtual_operand_p (name));
1712 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1713 }
1714 }
1715 }
1716
1717 if (gimple_code (stmt) != GIMPLE_PHI)
1718 {
1719 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1720 gimple orig_stmt = stmt;
1721 size_t i;
1722
1723 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1724 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1725 only change sth from non-invariant to invariant, and only
1726 when propagating constants. */
1727 if (is_gimple_min_invariant (val))
1728 for (i = 0; i < gimple_num_ops (stmt); i++)
1729 {
1730 tree op = gimple_op (stmt, i);
1731 /* Operands may be empty here. For example, the labels
1732 of a GIMPLE_COND are nulled out following the creation
1733 of the corresponding CFG edges. */
1734 if (op && TREE_CODE (op) == ADDR_EXPR)
1735 recompute_tree_invariant_for_addr_expr (op);
1736 }
1737
1738 if (fold_stmt (&gsi))
1739 stmt = gsi_stmt (gsi);
1740
1741 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1742 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1743
1744 update_stmt (stmt);
1745 }
1746 }
1747
1748 gcc_checking_assert (has_zero_uses (name));
1749
1750 /* Also update the trees stored in loop structures. */
1751 if (current_loops)
1752 {
1753 struct loop *loop;
1754
1755 FOR_EACH_LOOP (loop, 0)
1756 {
1757 substitute_in_loop_info (loop, name, val);
1758 }
1759 }
1760 }
1761
1762 /* Merge block B into block A. */
1763
1764 static void
1765 gimple_merge_blocks (basic_block a, basic_block b)
1766 {
1767 gimple_stmt_iterator last, gsi, psi;
1768
1769 if (dump_file)
1770 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1771
1772 /* Remove all single-valued PHI nodes from block B of the form
1773 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1774 gsi = gsi_last_bb (a);
1775 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1776 {
1777 gimple phi = gsi_stmt (psi);
1778 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1779 gimple copy;
1780 bool may_replace_uses = (virtual_operand_p (def)
1781 || may_propagate_copy (def, use));
1782
1783 /* In case we maintain loop closed ssa form, do not propagate arguments
1784 of loop exit phi nodes. */
1785 if (current_loops
1786 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1787 && !virtual_operand_p (def)
1788 && TREE_CODE (use) == SSA_NAME
1789 && a->loop_father != b->loop_father)
1790 may_replace_uses = false;
1791
1792 if (!may_replace_uses)
1793 {
1794 gcc_assert (!virtual_operand_p (def));
1795
1796 /* Note that just emitting the copies is fine -- there is no problem
1797 with ordering of phi nodes. This is because A is the single
1798 predecessor of B, therefore results of the phi nodes cannot
1799 appear as arguments of the phi nodes. */
1800 copy = gimple_build_assign (def, use);
1801 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1802 remove_phi_node (&psi, false);
1803 }
1804 else
1805 {
1806 /* If we deal with a PHI for virtual operands, we can simply
1807 propagate these without fussing with folding or updating
1808 the stmt. */
1809 if (virtual_operand_p (def))
1810 {
1811 imm_use_iterator iter;
1812 use_operand_p use_p;
1813 gimple stmt;
1814
1815 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1816 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1817 SET_USE (use_p, use);
1818
1819 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1820 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1821 }
1822 else
1823 replace_uses_by (def, use);
1824
1825 remove_phi_node (&psi, true);
1826 }
1827 }
1828
1829 /* Ensure that B follows A. */
1830 move_block_after (b, a);
1831
1832 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1833 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1834
1835 /* Remove labels from B and set gimple_bb to A for other statements. */
1836 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1837 {
1838 gimple stmt = gsi_stmt (gsi);
1839 if (gimple_code (stmt) == GIMPLE_LABEL)
1840 {
1841 tree label = gimple_label_label (stmt);
1842 int lp_nr;
1843
1844 gsi_remove (&gsi, false);
1845
1846 /* Now that we can thread computed gotos, we might have
1847 a situation where we have a forced label in block B
1848 However, the label at the start of block B might still be
1849 used in other ways (think about the runtime checking for
1850 Fortran assigned gotos). So we can not just delete the
1851 label. Instead we move the label to the start of block A. */
1852 if (FORCED_LABEL (label))
1853 {
1854 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1855 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1856 }
1857 /* Other user labels keep around in a form of a debug stmt. */
1858 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1859 {
1860 gimple dbg = gimple_build_debug_bind (label,
1861 integer_zero_node,
1862 stmt);
1863 gimple_debug_bind_reset_value (dbg);
1864 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1865 }
1866
1867 lp_nr = EH_LANDING_PAD_NR (label);
1868 if (lp_nr)
1869 {
1870 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1871 lp->post_landing_pad = NULL;
1872 }
1873 }
1874 else
1875 {
1876 gimple_set_bb (stmt, a);
1877 gsi_next (&gsi);
1878 }
1879 }
1880
1881 /* When merging two BBs, if their counts are different, the larger count
1882 is selected as the new bb count. This is to handle inconsistent
1883 profiles. */
1884 if (a->loop_father == b->loop_father)
1885 {
1886 a->count = MAX (a->count, b->count);
1887 a->frequency = MAX (a->frequency, b->frequency);
1888 }
1889
1890 /* Merge the sequences. */
1891 last = gsi_last_bb (a);
1892 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1893 set_bb_seq (b, NULL);
1894
1895 if (cfgcleanup_altered_bbs)
1896 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1897 }
1898
1899
1900 /* Return the one of two successors of BB that is not reachable by a
1901 complex edge, if there is one. Else, return BB. We use
1902 this in optimizations that use post-dominators for their heuristics,
1903 to catch the cases in C++ where function calls are involved. */
1904
1905 basic_block
1906 single_noncomplex_succ (basic_block bb)
1907 {
1908 edge e0, e1;
1909 if (EDGE_COUNT (bb->succs) != 2)
1910 return bb;
1911
1912 e0 = EDGE_SUCC (bb, 0);
1913 e1 = EDGE_SUCC (bb, 1);
1914 if (e0->flags & EDGE_COMPLEX)
1915 return e1->dest;
1916 if (e1->flags & EDGE_COMPLEX)
1917 return e0->dest;
1918
1919 return bb;
1920 }
1921
1922 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1923
1924 void
1925 notice_special_calls (gimple call)
1926 {
1927 int flags = gimple_call_flags (call);
1928
1929 if (flags & ECF_MAY_BE_ALLOCA)
1930 cfun->calls_alloca = true;
1931 if (flags & ECF_RETURNS_TWICE)
1932 cfun->calls_setjmp = true;
1933 }
1934
1935
1936 /* Clear flags set by notice_special_calls. Used by dead code removal
1937 to update the flags. */
1938
1939 void
1940 clear_special_calls (void)
1941 {
1942 cfun->calls_alloca = false;
1943 cfun->calls_setjmp = false;
1944 }
1945
1946 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1947
1948 static void
1949 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1950 {
1951 /* Since this block is no longer reachable, we can just delete all
1952 of its PHI nodes. */
1953 remove_phi_nodes (bb);
1954
1955 /* Remove edges to BB's successors. */
1956 while (EDGE_COUNT (bb->succs) > 0)
1957 remove_edge (EDGE_SUCC (bb, 0));
1958 }
1959
1960
1961 /* Remove statements of basic block BB. */
1962
1963 static void
1964 remove_bb (basic_block bb)
1965 {
1966 gimple_stmt_iterator i;
1967
1968 if (dump_file)
1969 {
1970 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1971 if (dump_flags & TDF_DETAILS)
1972 {
1973 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
1974 fprintf (dump_file, "\n");
1975 }
1976 }
1977
1978 if (current_loops)
1979 {
1980 struct loop *loop = bb->loop_father;
1981
1982 /* If a loop gets removed, clean up the information associated
1983 with it. */
1984 if (loop->latch == bb
1985 || loop->header == bb)
1986 free_numbers_of_iterations_estimates_loop (loop);
1987 }
1988
1989 /* Remove all the instructions in the block. */
1990 if (bb_seq (bb) != NULL)
1991 {
1992 /* Walk backwards so as to get a chance to substitute all
1993 released DEFs into debug stmts. See
1994 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1995 details. */
1996 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1997 {
1998 gimple stmt = gsi_stmt (i);
1999 if (gimple_code (stmt) == GIMPLE_LABEL
2000 && (FORCED_LABEL (gimple_label_label (stmt))
2001 || DECL_NONLOCAL (gimple_label_label (stmt))))
2002 {
2003 basic_block new_bb;
2004 gimple_stmt_iterator new_gsi;
2005
2006 /* A non-reachable non-local label may still be referenced.
2007 But it no longer needs to carry the extra semantics of
2008 non-locality. */
2009 if (DECL_NONLOCAL (gimple_label_label (stmt)))
2010 {
2011 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
2012 FORCED_LABEL (gimple_label_label (stmt)) = 1;
2013 }
2014
2015 new_bb = bb->prev_bb;
2016 new_gsi = gsi_start_bb (new_bb);
2017 gsi_remove (&i, false);
2018 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2019 }
2020 else
2021 {
2022 /* Release SSA definitions if we are in SSA. Note that we
2023 may be called when not in SSA. For example,
2024 final_cleanup calls this function via
2025 cleanup_tree_cfg. */
2026 if (gimple_in_ssa_p (cfun))
2027 release_defs (stmt);
2028
2029 gsi_remove (&i, true);
2030 }
2031
2032 if (gsi_end_p (i))
2033 i = gsi_last_bb (bb);
2034 else
2035 gsi_prev (&i);
2036 }
2037 }
2038
2039 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2040 bb->il.gimple.seq = NULL;
2041 bb->il.gimple.phi_nodes = NULL;
2042 }
2043
2044
2045 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2046 predicate VAL, return the edge that will be taken out of the block.
2047 If VAL does not match a unique edge, NULL is returned. */
2048
2049 edge
2050 find_taken_edge (basic_block bb, tree val)
2051 {
2052 gimple stmt;
2053
2054 stmt = last_stmt (bb);
2055
2056 gcc_assert (stmt);
2057 gcc_assert (is_ctrl_stmt (stmt));
2058
2059 if (val == NULL)
2060 return NULL;
2061
2062 if (!is_gimple_min_invariant (val))
2063 return NULL;
2064
2065 if (gimple_code (stmt) == GIMPLE_COND)
2066 return find_taken_edge_cond_expr (bb, val);
2067
2068 if (gimple_code (stmt) == GIMPLE_SWITCH)
2069 return find_taken_edge_switch_expr (bb, val);
2070
2071 if (computed_goto_p (stmt))
2072 {
2073 /* Only optimize if the argument is a label, if the argument is
2074 not a label then we can not construct a proper CFG.
2075
2076 It may be the case that we only need to allow the LABEL_REF to
2077 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2078 appear inside a LABEL_EXPR just to be safe. */
2079 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2080 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2081 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2082 return NULL;
2083 }
2084
2085 gcc_unreachable ();
2086 }
2087
2088 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2089 statement, determine which of the outgoing edges will be taken out of the
2090 block. Return NULL if either edge may be taken. */
2091
2092 static edge
2093 find_taken_edge_computed_goto (basic_block bb, tree val)
2094 {
2095 basic_block dest;
2096 edge e = NULL;
2097
2098 dest = label_to_block (val);
2099 if (dest)
2100 {
2101 e = find_edge (bb, dest);
2102 gcc_assert (e != NULL);
2103 }
2104
2105 return e;
2106 }
2107
2108 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2109 statement, determine which of the two edges will be taken out of the
2110 block. Return NULL if either edge may be taken. */
2111
2112 static edge
2113 find_taken_edge_cond_expr (basic_block bb, tree val)
2114 {
2115 edge true_edge, false_edge;
2116
2117 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2118
2119 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2120 return (integer_zerop (val) ? false_edge : true_edge);
2121 }
2122
2123 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2124 statement, determine which edge will be taken out of the block. Return
2125 NULL if any edge may be taken. */
2126
2127 static edge
2128 find_taken_edge_switch_expr (basic_block bb, tree val)
2129 {
2130 basic_block dest_bb;
2131 edge e;
2132 gimple switch_stmt;
2133 tree taken_case;
2134
2135 switch_stmt = last_stmt (bb);
2136 taken_case = find_case_label_for_value (switch_stmt, val);
2137 dest_bb = label_to_block (CASE_LABEL (taken_case));
2138
2139 e = find_edge (bb, dest_bb);
2140 gcc_assert (e);
2141 return e;
2142 }
2143
2144
2145 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2146 We can make optimal use here of the fact that the case labels are
2147 sorted: We can do a binary search for a case matching VAL. */
2148
2149 static tree
2150 find_case_label_for_value (gimple switch_stmt, tree val)
2151 {
2152 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2153 tree default_case = gimple_switch_default_label (switch_stmt);
2154
2155 for (low = 0, high = n; high - low > 1; )
2156 {
2157 size_t i = (high + low) / 2;
2158 tree t = gimple_switch_label (switch_stmt, i);
2159 int cmp;
2160
2161 /* Cache the result of comparing CASE_LOW and val. */
2162 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2163
2164 if (cmp > 0)
2165 high = i;
2166 else
2167 low = i;
2168
2169 if (CASE_HIGH (t) == NULL)
2170 {
2171 /* A singe-valued case label. */
2172 if (cmp == 0)
2173 return t;
2174 }
2175 else
2176 {
2177 /* A case range. We can only handle integer ranges. */
2178 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2179 return t;
2180 }
2181 }
2182
2183 return default_case;
2184 }
2185
2186
2187 /* Dump a basic block on stderr. */
2188
2189 void
2190 gimple_debug_bb (basic_block bb)
2191 {
2192 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2193 }
2194
2195
2196 /* Dump basic block with index N on stderr. */
2197
2198 basic_block
2199 gimple_debug_bb_n (int n)
2200 {
2201 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2202 return BASIC_BLOCK_FOR_FN (cfun, n);
2203 }
2204
2205
2206 /* Dump the CFG on stderr.
2207
2208 FLAGS are the same used by the tree dumping functions
2209 (see TDF_* in dumpfile.h). */
2210
2211 void
2212 gimple_debug_cfg (int flags)
2213 {
2214 gimple_dump_cfg (stderr, flags);
2215 }
2216
2217
2218 /* Dump the program showing basic block boundaries on the given FILE.
2219
2220 FLAGS are the same used by the tree dumping functions (see TDF_* in
2221 tree.h). */
2222
2223 void
2224 gimple_dump_cfg (FILE *file, int flags)
2225 {
2226 if (flags & TDF_DETAILS)
2227 {
2228 dump_function_header (file, current_function_decl, flags);
2229 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2230 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2231 last_basic_block_for_fn (cfun));
2232
2233 brief_dump_cfg (file, flags | TDF_COMMENT);
2234 fprintf (file, "\n");
2235 }
2236
2237 if (flags & TDF_STATS)
2238 dump_cfg_stats (file);
2239
2240 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2241 }
2242
2243
2244 /* Dump CFG statistics on FILE. */
2245
2246 void
2247 dump_cfg_stats (FILE *file)
2248 {
2249 static long max_num_merged_labels = 0;
2250 unsigned long size, total = 0;
2251 long num_edges;
2252 basic_block bb;
2253 const char * const fmt_str = "%-30s%-13s%12s\n";
2254 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2255 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2256 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2257 const char *funcname = current_function_name ();
2258
2259 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2260
2261 fprintf (file, "---------------------------------------------------------\n");
2262 fprintf (file, fmt_str, "", " Number of ", "Memory");
2263 fprintf (file, fmt_str, "", " instances ", "used ");
2264 fprintf (file, "---------------------------------------------------------\n");
2265
2266 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2267 total += size;
2268 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2269 SCALE (size), LABEL (size));
2270
2271 num_edges = 0;
2272 FOR_EACH_BB_FN (bb, cfun)
2273 num_edges += EDGE_COUNT (bb->succs);
2274 size = num_edges * sizeof (struct edge_def);
2275 total += size;
2276 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2277
2278 fprintf (file, "---------------------------------------------------------\n");
2279 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2280 LABEL (total));
2281 fprintf (file, "---------------------------------------------------------\n");
2282 fprintf (file, "\n");
2283
2284 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2285 max_num_merged_labels = cfg_stats.num_merged_labels;
2286
2287 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2288 cfg_stats.num_merged_labels, max_num_merged_labels);
2289
2290 fprintf (file, "\n");
2291 }
2292
2293
2294 /* Dump CFG statistics on stderr. Keep extern so that it's always
2295 linked in the final executable. */
2296
2297 DEBUG_FUNCTION void
2298 debug_cfg_stats (void)
2299 {
2300 dump_cfg_stats (stderr);
2301 }
2302
2303 /*---------------------------------------------------------------------------
2304 Miscellaneous helpers
2305 ---------------------------------------------------------------------------*/
2306
2307 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2308 flow. Transfers of control flow associated with EH are excluded. */
2309
2310 static bool
2311 call_can_make_abnormal_goto (gimple t)
2312 {
2313 /* If the function has no non-local labels, then a call cannot make an
2314 abnormal transfer of control. */
2315 if (!cfun->has_nonlocal_label
2316 && !cfun->calls_setjmp)
2317 return false;
2318
2319 /* Likewise if the call has no side effects. */
2320 if (!gimple_has_side_effects (t))
2321 return false;
2322
2323 /* Likewise if the called function is leaf. */
2324 if (gimple_call_flags (t) & ECF_LEAF)
2325 return false;
2326
2327 return true;
2328 }
2329
2330
2331 /* Return true if T can make an abnormal transfer of control flow.
2332 Transfers of control flow associated with EH are excluded. */
2333
2334 bool
2335 stmt_can_make_abnormal_goto (gimple t)
2336 {
2337 if (computed_goto_p (t))
2338 return true;
2339 if (is_gimple_call (t))
2340 return call_can_make_abnormal_goto (t);
2341 return false;
2342 }
2343
2344
2345 /* Return true if T represents a stmt that always transfers control. */
2346
2347 bool
2348 is_ctrl_stmt (gimple t)
2349 {
2350 switch (gimple_code (t))
2351 {
2352 case GIMPLE_COND:
2353 case GIMPLE_SWITCH:
2354 case GIMPLE_GOTO:
2355 case GIMPLE_RETURN:
2356 case GIMPLE_RESX:
2357 return true;
2358 default:
2359 return false;
2360 }
2361 }
2362
2363
2364 /* Return true if T is a statement that may alter the flow of control
2365 (e.g., a call to a non-returning function). */
2366
2367 bool
2368 is_ctrl_altering_stmt (gimple t)
2369 {
2370 gcc_assert (t);
2371
2372 switch (gimple_code (t))
2373 {
2374 case GIMPLE_CALL:
2375 {
2376 int flags = gimple_call_flags (t);
2377
2378 /* A call alters control flow if it can make an abnormal goto. */
2379 if (call_can_make_abnormal_goto (t))
2380 return true;
2381
2382 /* A call also alters control flow if it does not return. */
2383 if (flags & ECF_NORETURN)
2384 return true;
2385
2386 /* TM ending statements have backedges out of the transaction.
2387 Return true so we split the basic block containing them.
2388 Note that the TM_BUILTIN test is merely an optimization. */
2389 if ((flags & ECF_TM_BUILTIN)
2390 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2391 return true;
2392
2393 /* BUILT_IN_RETURN call is same as return statement. */
2394 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2395 return true;
2396 }
2397 break;
2398
2399 case GIMPLE_EH_DISPATCH:
2400 /* EH_DISPATCH branches to the individual catch handlers at
2401 this level of a try or allowed-exceptions region. It can
2402 fallthru to the next statement as well. */
2403 return true;
2404
2405 case GIMPLE_ASM:
2406 if (gimple_asm_nlabels (t) > 0)
2407 return true;
2408 break;
2409
2410 CASE_GIMPLE_OMP:
2411 /* OpenMP directives alter control flow. */
2412 return true;
2413
2414 case GIMPLE_TRANSACTION:
2415 /* A transaction start alters control flow. */
2416 return true;
2417
2418 default:
2419 break;
2420 }
2421
2422 /* If a statement can throw, it alters control flow. */
2423 return stmt_can_throw_internal (t);
2424 }
2425
2426
2427 /* Return true if T is a simple local goto. */
2428
2429 bool
2430 simple_goto_p (gimple t)
2431 {
2432 return (gimple_code (t) == GIMPLE_GOTO
2433 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2434 }
2435
2436
2437 /* Return true if STMT should start a new basic block. PREV_STMT is
2438 the statement preceding STMT. It is used when STMT is a label or a
2439 case label. Labels should only start a new basic block if their
2440 previous statement wasn't a label. Otherwise, sequence of labels
2441 would generate unnecessary basic blocks that only contain a single
2442 label. */
2443
2444 static inline bool
2445 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2446 {
2447 if (stmt == NULL)
2448 return false;
2449
2450 /* Labels start a new basic block only if the preceding statement
2451 wasn't a label of the same type. This prevents the creation of
2452 consecutive blocks that have nothing but a single label. */
2453 if (gimple_code (stmt) == GIMPLE_LABEL)
2454 {
2455 /* Nonlocal and computed GOTO targets always start a new block. */
2456 if (DECL_NONLOCAL (gimple_label_label (stmt))
2457 || FORCED_LABEL (gimple_label_label (stmt)))
2458 return true;
2459
2460 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2461 {
2462 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2463 return true;
2464
2465 cfg_stats.num_merged_labels++;
2466 return false;
2467 }
2468 else
2469 return true;
2470 }
2471 else if (gimple_code (stmt) == GIMPLE_CALL
2472 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2473 /* setjmp acts similar to a nonlocal GOTO target and thus should
2474 start a new block. */
2475 return true;
2476
2477 return false;
2478 }
2479
2480
2481 /* Return true if T should end a basic block. */
2482
2483 bool
2484 stmt_ends_bb_p (gimple t)
2485 {
2486 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2487 }
2488
2489 /* Remove block annotations and other data structures. */
2490
2491 void
2492 delete_tree_cfg_annotations (void)
2493 {
2494 vec_free (label_to_block_map_for_fn (cfun));
2495 }
2496
2497
2498 /* Return the first statement in basic block BB. */
2499
2500 gimple
2501 first_stmt (basic_block bb)
2502 {
2503 gimple_stmt_iterator i = gsi_start_bb (bb);
2504 gimple stmt = NULL;
2505
2506 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2507 {
2508 gsi_next (&i);
2509 stmt = NULL;
2510 }
2511 return stmt;
2512 }
2513
2514 /* Return the first non-label statement in basic block BB. */
2515
2516 static gimple
2517 first_non_label_stmt (basic_block bb)
2518 {
2519 gimple_stmt_iterator i = gsi_start_bb (bb);
2520 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2521 gsi_next (&i);
2522 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2523 }
2524
2525 /* Return the last statement in basic block BB. */
2526
2527 gimple
2528 last_stmt (basic_block bb)
2529 {
2530 gimple_stmt_iterator i = gsi_last_bb (bb);
2531 gimple stmt = NULL;
2532
2533 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2534 {
2535 gsi_prev (&i);
2536 stmt = NULL;
2537 }
2538 return stmt;
2539 }
2540
2541 /* Return the last statement of an otherwise empty block. Return NULL
2542 if the block is totally empty, or if it contains more than one
2543 statement. */
2544
2545 gimple
2546 last_and_only_stmt (basic_block bb)
2547 {
2548 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2549 gimple last, prev;
2550
2551 if (gsi_end_p (i))
2552 return NULL;
2553
2554 last = gsi_stmt (i);
2555 gsi_prev_nondebug (&i);
2556 if (gsi_end_p (i))
2557 return last;
2558
2559 /* Empty statements should no longer appear in the instruction stream.
2560 Everything that might have appeared before should be deleted by
2561 remove_useless_stmts, and the optimizers should just gsi_remove
2562 instead of smashing with build_empty_stmt.
2563
2564 Thus the only thing that should appear here in a block containing
2565 one executable statement is a label. */
2566 prev = gsi_stmt (i);
2567 if (gimple_code (prev) == GIMPLE_LABEL)
2568 return last;
2569 else
2570 return NULL;
2571 }
2572
2573 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2574
2575 static void
2576 reinstall_phi_args (edge new_edge, edge old_edge)
2577 {
2578 edge_var_map *vm;
2579 int i;
2580 gimple_stmt_iterator phis;
2581
2582 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2583 if (!v)
2584 return;
2585
2586 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2587 v->iterate (i, &vm) && !gsi_end_p (phis);
2588 i++, gsi_next (&phis))
2589 {
2590 gimple phi = gsi_stmt (phis);
2591 tree result = redirect_edge_var_map_result (vm);
2592 tree arg = redirect_edge_var_map_def (vm);
2593
2594 gcc_assert (result == gimple_phi_result (phi));
2595
2596 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2597 }
2598
2599 redirect_edge_var_map_clear (old_edge);
2600 }
2601
2602 /* Returns the basic block after which the new basic block created
2603 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2604 near its "logical" location. This is of most help to humans looking
2605 at debugging dumps. */
2606
2607 static basic_block
2608 split_edge_bb_loc (edge edge_in)
2609 {
2610 basic_block dest = edge_in->dest;
2611 basic_block dest_prev = dest->prev_bb;
2612
2613 if (dest_prev)
2614 {
2615 edge e = find_edge (dest_prev, dest);
2616 if (e && !(e->flags & EDGE_COMPLEX))
2617 return edge_in->src;
2618 }
2619 return dest_prev;
2620 }
2621
2622 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2623 Abort on abnormal edges. */
2624
2625 static basic_block
2626 gimple_split_edge (edge edge_in)
2627 {
2628 basic_block new_bb, after_bb, dest;
2629 edge new_edge, e;
2630
2631 /* Abnormal edges cannot be split. */
2632 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2633
2634 dest = edge_in->dest;
2635
2636 after_bb = split_edge_bb_loc (edge_in);
2637
2638 new_bb = create_empty_bb (after_bb);
2639 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2640 new_bb->count = edge_in->count;
2641 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2642 new_edge->probability = REG_BR_PROB_BASE;
2643 new_edge->count = edge_in->count;
2644
2645 e = redirect_edge_and_branch (edge_in, new_bb);
2646 gcc_assert (e == edge_in);
2647 reinstall_phi_args (new_edge, e);
2648
2649 return new_bb;
2650 }
2651
2652
2653 /* Verify properties of the address expression T with base object BASE. */
2654
2655 static tree
2656 verify_address (tree t, tree base)
2657 {
2658 bool old_constant;
2659 bool old_side_effects;
2660 bool new_constant;
2661 bool new_side_effects;
2662
2663 old_constant = TREE_CONSTANT (t);
2664 old_side_effects = TREE_SIDE_EFFECTS (t);
2665
2666 recompute_tree_invariant_for_addr_expr (t);
2667 new_side_effects = TREE_SIDE_EFFECTS (t);
2668 new_constant = TREE_CONSTANT (t);
2669
2670 if (old_constant != new_constant)
2671 {
2672 error ("constant not recomputed when ADDR_EXPR changed");
2673 return t;
2674 }
2675 if (old_side_effects != new_side_effects)
2676 {
2677 error ("side effects not recomputed when ADDR_EXPR changed");
2678 return t;
2679 }
2680
2681 if (!(TREE_CODE (base) == VAR_DECL
2682 || TREE_CODE (base) == PARM_DECL
2683 || TREE_CODE (base) == RESULT_DECL))
2684 return NULL_TREE;
2685
2686 if (DECL_GIMPLE_REG_P (base))
2687 {
2688 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2689 return base;
2690 }
2691
2692 return NULL_TREE;
2693 }
2694
2695 /* Callback for walk_tree, check that all elements with address taken are
2696 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2697 inside a PHI node. */
2698
2699 static tree
2700 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2701 {
2702 tree t = *tp, x;
2703
2704 if (TYPE_P (t))
2705 *walk_subtrees = 0;
2706
2707 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2708 #define CHECK_OP(N, MSG) \
2709 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2710 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2711
2712 switch (TREE_CODE (t))
2713 {
2714 case SSA_NAME:
2715 if (SSA_NAME_IN_FREE_LIST (t))
2716 {
2717 error ("SSA name in freelist but still referenced");
2718 return *tp;
2719 }
2720 break;
2721
2722 case INDIRECT_REF:
2723 error ("INDIRECT_REF in gimple IL");
2724 return t;
2725
2726 case MEM_REF:
2727 x = TREE_OPERAND (t, 0);
2728 if (!POINTER_TYPE_P (TREE_TYPE (x))
2729 || !is_gimple_mem_ref_addr (x))
2730 {
2731 error ("invalid first operand of MEM_REF");
2732 return x;
2733 }
2734 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2735 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2736 {
2737 error ("invalid offset operand of MEM_REF");
2738 return TREE_OPERAND (t, 1);
2739 }
2740 if (TREE_CODE (x) == ADDR_EXPR
2741 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2742 return x;
2743 *walk_subtrees = 0;
2744 break;
2745
2746 case ASSERT_EXPR:
2747 x = fold (ASSERT_EXPR_COND (t));
2748 if (x == boolean_false_node)
2749 {
2750 error ("ASSERT_EXPR with an always-false condition");
2751 return *tp;
2752 }
2753 break;
2754
2755 case MODIFY_EXPR:
2756 error ("MODIFY_EXPR not expected while having tuples");
2757 return *tp;
2758
2759 case ADDR_EXPR:
2760 {
2761 tree tem;
2762
2763 gcc_assert (is_gimple_address (t));
2764
2765 /* Skip any references (they will be checked when we recurse down the
2766 tree) and ensure that any variable used as a prefix is marked
2767 addressable. */
2768 for (x = TREE_OPERAND (t, 0);
2769 handled_component_p (x);
2770 x = TREE_OPERAND (x, 0))
2771 ;
2772
2773 if ((tem = verify_address (t, x)))
2774 return tem;
2775
2776 if (!(TREE_CODE (x) == VAR_DECL
2777 || TREE_CODE (x) == PARM_DECL
2778 || TREE_CODE (x) == RESULT_DECL))
2779 return NULL;
2780
2781 if (!TREE_ADDRESSABLE (x))
2782 {
2783 error ("address taken, but ADDRESSABLE bit not set");
2784 return x;
2785 }
2786
2787 break;
2788 }
2789
2790 case COND_EXPR:
2791 x = COND_EXPR_COND (t);
2792 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2793 {
2794 error ("non-integral used in condition");
2795 return x;
2796 }
2797 if (!is_gimple_condexpr (x))
2798 {
2799 error ("invalid conditional operand");
2800 return x;
2801 }
2802 break;
2803
2804 case NON_LVALUE_EXPR:
2805 case TRUTH_NOT_EXPR:
2806 gcc_unreachable ();
2807
2808 CASE_CONVERT:
2809 case FIX_TRUNC_EXPR:
2810 case FLOAT_EXPR:
2811 case NEGATE_EXPR:
2812 case ABS_EXPR:
2813 case BIT_NOT_EXPR:
2814 CHECK_OP (0, "invalid operand to unary operator");
2815 break;
2816
2817 case REALPART_EXPR:
2818 case IMAGPART_EXPR:
2819 case BIT_FIELD_REF:
2820 if (!is_gimple_reg_type (TREE_TYPE (t)))
2821 {
2822 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2823 return t;
2824 }
2825
2826 if (TREE_CODE (t) == BIT_FIELD_REF)
2827 {
2828 tree t0 = TREE_OPERAND (t, 0);
2829 tree t1 = TREE_OPERAND (t, 1);
2830 tree t2 = TREE_OPERAND (t, 2);
2831 if (!tree_fits_uhwi_p (t1)
2832 || !tree_fits_uhwi_p (t2))
2833 {
2834 error ("invalid position or size operand to BIT_FIELD_REF");
2835 return t;
2836 }
2837 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2838 && (TYPE_PRECISION (TREE_TYPE (t))
2839 != tree_to_uhwi (t1)))
2840 {
2841 error ("integral result type precision does not match "
2842 "field size of BIT_FIELD_REF");
2843 return t;
2844 }
2845 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2846 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2847 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2848 != tree_to_uhwi (t1)))
2849 {
2850 error ("mode precision of non-integral result does not "
2851 "match field size of BIT_FIELD_REF");
2852 return t;
2853 }
2854 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2855 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2856 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2857 {
2858 error ("position plus size exceeds size of referenced object in "
2859 "BIT_FIELD_REF");
2860 return t;
2861 }
2862 }
2863 t = TREE_OPERAND (t, 0);
2864
2865 /* Fall-through. */
2866 case COMPONENT_REF:
2867 case ARRAY_REF:
2868 case ARRAY_RANGE_REF:
2869 case VIEW_CONVERT_EXPR:
2870 /* We have a nest of references. Verify that each of the operands
2871 that determine where to reference is either a constant or a variable,
2872 verify that the base is valid, and then show we've already checked
2873 the subtrees. */
2874 while (handled_component_p (t))
2875 {
2876 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2877 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2878 else if (TREE_CODE (t) == ARRAY_REF
2879 || TREE_CODE (t) == ARRAY_RANGE_REF)
2880 {
2881 CHECK_OP (1, "invalid array index");
2882 if (TREE_OPERAND (t, 2))
2883 CHECK_OP (2, "invalid array lower bound");
2884 if (TREE_OPERAND (t, 3))
2885 CHECK_OP (3, "invalid array stride");
2886 }
2887 else if (TREE_CODE (t) == BIT_FIELD_REF
2888 || TREE_CODE (t) == REALPART_EXPR
2889 || TREE_CODE (t) == IMAGPART_EXPR)
2890 {
2891 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2892 "REALPART_EXPR");
2893 return t;
2894 }
2895
2896 t = TREE_OPERAND (t, 0);
2897 }
2898
2899 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2900 {
2901 error ("invalid reference prefix");
2902 return t;
2903 }
2904 *walk_subtrees = 0;
2905 break;
2906 case PLUS_EXPR:
2907 case MINUS_EXPR:
2908 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2909 POINTER_PLUS_EXPR. */
2910 if (POINTER_TYPE_P (TREE_TYPE (t)))
2911 {
2912 error ("invalid operand to plus/minus, type is a pointer");
2913 return t;
2914 }
2915 CHECK_OP (0, "invalid operand to binary operator");
2916 CHECK_OP (1, "invalid operand to binary operator");
2917 break;
2918
2919 case POINTER_PLUS_EXPR:
2920 /* Check to make sure the first operand is a pointer or reference type. */
2921 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2922 {
2923 error ("invalid operand to pointer plus, first operand is not a pointer");
2924 return t;
2925 }
2926 /* Check to make sure the second operand is a ptrofftype. */
2927 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2928 {
2929 error ("invalid operand to pointer plus, second operand is not an "
2930 "integer type of appropriate width");
2931 return t;
2932 }
2933 /* FALLTHROUGH */
2934 case LT_EXPR:
2935 case LE_EXPR:
2936 case GT_EXPR:
2937 case GE_EXPR:
2938 case EQ_EXPR:
2939 case NE_EXPR:
2940 case UNORDERED_EXPR:
2941 case ORDERED_EXPR:
2942 case UNLT_EXPR:
2943 case UNLE_EXPR:
2944 case UNGT_EXPR:
2945 case UNGE_EXPR:
2946 case UNEQ_EXPR:
2947 case LTGT_EXPR:
2948 case MULT_EXPR:
2949 case TRUNC_DIV_EXPR:
2950 case CEIL_DIV_EXPR:
2951 case FLOOR_DIV_EXPR:
2952 case ROUND_DIV_EXPR:
2953 case TRUNC_MOD_EXPR:
2954 case CEIL_MOD_EXPR:
2955 case FLOOR_MOD_EXPR:
2956 case ROUND_MOD_EXPR:
2957 case RDIV_EXPR:
2958 case EXACT_DIV_EXPR:
2959 case MIN_EXPR:
2960 case MAX_EXPR:
2961 case LSHIFT_EXPR:
2962 case RSHIFT_EXPR:
2963 case LROTATE_EXPR:
2964 case RROTATE_EXPR:
2965 case BIT_IOR_EXPR:
2966 case BIT_XOR_EXPR:
2967 case BIT_AND_EXPR:
2968 CHECK_OP (0, "invalid operand to binary operator");
2969 CHECK_OP (1, "invalid operand to binary operator");
2970 break;
2971
2972 case CONSTRUCTOR:
2973 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2974 *walk_subtrees = 0;
2975 break;
2976
2977 case CASE_LABEL_EXPR:
2978 if (CASE_CHAIN (t))
2979 {
2980 error ("invalid CASE_CHAIN");
2981 return t;
2982 }
2983 break;
2984
2985 default:
2986 break;
2987 }
2988 return NULL;
2989
2990 #undef CHECK_OP
2991 }
2992
2993
2994 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2995 Returns true if there is an error, otherwise false. */
2996
2997 static bool
2998 verify_types_in_gimple_min_lval (tree expr)
2999 {
3000 tree op;
3001
3002 if (is_gimple_id (expr))
3003 return false;
3004
3005 if (TREE_CODE (expr) != TARGET_MEM_REF
3006 && TREE_CODE (expr) != MEM_REF)
3007 {
3008 error ("invalid expression for min lvalue");
3009 return true;
3010 }
3011
3012 /* TARGET_MEM_REFs are strange beasts. */
3013 if (TREE_CODE (expr) == TARGET_MEM_REF)
3014 return false;
3015
3016 op = TREE_OPERAND (expr, 0);
3017 if (!is_gimple_val (op))
3018 {
3019 error ("invalid operand in indirect reference");
3020 debug_generic_stmt (op);
3021 return true;
3022 }
3023 /* Memory references now generally can involve a value conversion. */
3024
3025 return false;
3026 }
3027
3028 /* Verify if EXPR is a valid GIMPLE reference expression. If
3029 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3030 if there is an error, otherwise false. */
3031
3032 static bool
3033 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3034 {
3035 while (handled_component_p (expr))
3036 {
3037 tree op = TREE_OPERAND (expr, 0);
3038
3039 if (TREE_CODE (expr) == ARRAY_REF
3040 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3041 {
3042 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3043 || (TREE_OPERAND (expr, 2)
3044 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3045 || (TREE_OPERAND (expr, 3)
3046 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3047 {
3048 error ("invalid operands to array reference");
3049 debug_generic_stmt (expr);
3050 return true;
3051 }
3052 }
3053
3054 /* Verify if the reference array element types are compatible. */
3055 if (TREE_CODE (expr) == ARRAY_REF
3056 && !useless_type_conversion_p (TREE_TYPE (expr),
3057 TREE_TYPE (TREE_TYPE (op))))
3058 {
3059 error ("type mismatch in array reference");
3060 debug_generic_stmt (TREE_TYPE (expr));
3061 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3062 return true;
3063 }
3064 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3065 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3066 TREE_TYPE (TREE_TYPE (op))))
3067 {
3068 error ("type mismatch in array range reference");
3069 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3070 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3071 return true;
3072 }
3073
3074 if ((TREE_CODE (expr) == REALPART_EXPR
3075 || TREE_CODE (expr) == IMAGPART_EXPR)
3076 && !useless_type_conversion_p (TREE_TYPE (expr),
3077 TREE_TYPE (TREE_TYPE (op))))
3078 {
3079 error ("type mismatch in real/imagpart reference");
3080 debug_generic_stmt (TREE_TYPE (expr));
3081 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3082 return true;
3083 }
3084
3085 if (TREE_CODE (expr) == COMPONENT_REF
3086 && !useless_type_conversion_p (TREE_TYPE (expr),
3087 TREE_TYPE (TREE_OPERAND (expr, 1))))
3088 {
3089 error ("type mismatch in component reference");
3090 debug_generic_stmt (TREE_TYPE (expr));
3091 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3092 return true;
3093 }
3094
3095 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3096 {
3097 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3098 that their operand is not an SSA name or an invariant when
3099 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3100 bug). Otherwise there is nothing to verify, gross mismatches at
3101 most invoke undefined behavior. */
3102 if (require_lvalue
3103 && (TREE_CODE (op) == SSA_NAME
3104 || is_gimple_min_invariant (op)))
3105 {
3106 error ("conversion of an SSA_NAME on the left hand side");
3107 debug_generic_stmt (expr);
3108 return true;
3109 }
3110 else if (TREE_CODE (op) == SSA_NAME
3111 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3112 {
3113 error ("conversion of register to a different size");
3114 debug_generic_stmt (expr);
3115 return true;
3116 }
3117 else if (!handled_component_p (op))
3118 return false;
3119 }
3120
3121 expr = op;
3122 }
3123
3124 if (TREE_CODE (expr) == MEM_REF)
3125 {
3126 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3127 {
3128 error ("invalid address operand in MEM_REF");
3129 debug_generic_stmt (expr);
3130 return true;
3131 }
3132 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3133 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3134 {
3135 error ("invalid offset operand in MEM_REF");
3136 debug_generic_stmt (expr);
3137 return true;
3138 }
3139 }
3140 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3141 {
3142 if (!TMR_BASE (expr)
3143 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3144 {
3145 error ("invalid address operand in TARGET_MEM_REF");
3146 return true;
3147 }
3148 if (!TMR_OFFSET (expr)
3149 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3150 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3151 {
3152 error ("invalid offset operand in TARGET_MEM_REF");
3153 debug_generic_stmt (expr);
3154 return true;
3155 }
3156 }
3157
3158 return ((require_lvalue || !is_gimple_min_invariant (expr))
3159 && verify_types_in_gimple_min_lval (expr));
3160 }
3161
3162 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3163 list of pointer-to types that is trivially convertible to DEST. */
3164
3165 static bool
3166 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3167 {
3168 tree src;
3169
3170 if (!TYPE_POINTER_TO (src_obj))
3171 return true;
3172
3173 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3174 if (useless_type_conversion_p (dest, src))
3175 return true;
3176
3177 return false;
3178 }
3179
3180 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3181 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3182
3183 static bool
3184 valid_fixed_convert_types_p (tree type1, tree type2)
3185 {
3186 return (FIXED_POINT_TYPE_P (type1)
3187 && (INTEGRAL_TYPE_P (type2)
3188 || SCALAR_FLOAT_TYPE_P (type2)
3189 || FIXED_POINT_TYPE_P (type2)));
3190 }
3191
3192 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3193 is a problem, otherwise false. */
3194
3195 static bool
3196 verify_gimple_call (gimple stmt)
3197 {
3198 tree fn = gimple_call_fn (stmt);
3199 tree fntype, fndecl;
3200 unsigned i;
3201
3202 if (gimple_call_internal_p (stmt))
3203 {
3204 if (fn)
3205 {
3206 error ("gimple call has two targets");
3207 debug_generic_stmt (fn);
3208 return true;
3209 }
3210 }
3211 else
3212 {
3213 if (!fn)
3214 {
3215 error ("gimple call has no target");
3216 return true;
3217 }
3218 }
3219
3220 if (fn && !is_gimple_call_addr (fn))
3221 {
3222 error ("invalid function in gimple call");
3223 debug_generic_stmt (fn);
3224 return true;
3225 }
3226
3227 if (fn
3228 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3229 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3230 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3231 {
3232 error ("non-function in gimple call");
3233 return true;
3234 }
3235
3236 fndecl = gimple_call_fndecl (stmt);
3237 if (fndecl
3238 && TREE_CODE (fndecl) == FUNCTION_DECL
3239 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3240 && !DECL_PURE_P (fndecl)
3241 && !TREE_READONLY (fndecl))
3242 {
3243 error ("invalid pure const state for function");
3244 return true;
3245 }
3246
3247 if (gimple_call_lhs (stmt)
3248 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3249 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3250 {
3251 error ("invalid LHS in gimple call");
3252 return true;
3253 }
3254
3255 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3256 {
3257 error ("LHS in noreturn call");
3258 return true;
3259 }
3260
3261 fntype = gimple_call_fntype (stmt);
3262 if (fntype
3263 && gimple_call_lhs (stmt)
3264 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3265 TREE_TYPE (fntype))
3266 /* ??? At least C++ misses conversions at assignments from
3267 void * call results.
3268 ??? Java is completely off. Especially with functions
3269 returning java.lang.Object.
3270 For now simply allow arbitrary pointer type conversions. */
3271 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3272 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3273 {
3274 error ("invalid conversion in gimple call");
3275 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3276 debug_generic_stmt (TREE_TYPE (fntype));
3277 return true;
3278 }
3279
3280 if (gimple_call_chain (stmt)
3281 && !is_gimple_val (gimple_call_chain (stmt)))
3282 {
3283 error ("invalid static chain in gimple call");
3284 debug_generic_stmt (gimple_call_chain (stmt));
3285 return true;
3286 }
3287
3288 /* If there is a static chain argument, this should not be an indirect
3289 call, and the decl should have DECL_STATIC_CHAIN set. */
3290 if (gimple_call_chain (stmt))
3291 {
3292 if (!gimple_call_fndecl (stmt))
3293 {
3294 error ("static chain in indirect gimple call");
3295 return true;
3296 }
3297 fn = TREE_OPERAND (fn, 0);
3298
3299 if (!DECL_STATIC_CHAIN (fn))
3300 {
3301 error ("static chain with function that doesn%'t use one");
3302 return true;
3303 }
3304 }
3305
3306 /* ??? The C frontend passes unpromoted arguments in case it
3307 didn't see a function declaration before the call. So for now
3308 leave the call arguments mostly unverified. Once we gimplify
3309 unit-at-a-time we have a chance to fix this. */
3310
3311 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3312 {
3313 tree arg = gimple_call_arg (stmt, i);
3314 if ((is_gimple_reg_type (TREE_TYPE (arg))
3315 && !is_gimple_val (arg))
3316 || (!is_gimple_reg_type (TREE_TYPE (arg))
3317 && !is_gimple_lvalue (arg)))
3318 {
3319 error ("invalid argument to gimple call");
3320 debug_generic_expr (arg);
3321 return true;
3322 }
3323 }
3324
3325 return false;
3326 }
3327
3328 /* Verifies the gimple comparison with the result type TYPE and
3329 the operands OP0 and OP1. */
3330
3331 static bool
3332 verify_gimple_comparison (tree type, tree op0, tree op1)
3333 {
3334 tree op0_type = TREE_TYPE (op0);
3335 tree op1_type = TREE_TYPE (op1);
3336
3337 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3338 {
3339 error ("invalid operands in gimple comparison");
3340 return true;
3341 }
3342
3343 /* For comparisons we do not have the operations type as the
3344 effective type the comparison is carried out in. Instead
3345 we require that either the first operand is trivially
3346 convertible into the second, or the other way around.
3347 Because we special-case pointers to void we allow
3348 comparisons of pointers with the same mode as well. */
3349 if (!useless_type_conversion_p (op0_type, op1_type)
3350 && !useless_type_conversion_p (op1_type, op0_type)
3351 && (!POINTER_TYPE_P (op0_type)
3352 || !POINTER_TYPE_P (op1_type)
3353 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3354 {
3355 error ("mismatching comparison operand types");
3356 debug_generic_expr (op0_type);
3357 debug_generic_expr (op1_type);
3358 return true;
3359 }
3360
3361 /* The resulting type of a comparison may be an effective boolean type. */
3362 if (INTEGRAL_TYPE_P (type)
3363 && (TREE_CODE (type) == BOOLEAN_TYPE
3364 || TYPE_PRECISION (type) == 1))
3365 {
3366 if (TREE_CODE (op0_type) == VECTOR_TYPE
3367 || TREE_CODE (op1_type) == VECTOR_TYPE)
3368 {
3369 error ("vector comparison returning a boolean");
3370 debug_generic_expr (op0_type);
3371 debug_generic_expr (op1_type);
3372 return true;
3373 }
3374 }
3375 /* Or an integer vector type with the same size and element count
3376 as the comparison operand types. */
3377 else if (TREE_CODE (type) == VECTOR_TYPE
3378 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3379 {
3380 if (TREE_CODE (op0_type) != VECTOR_TYPE
3381 || TREE_CODE (op1_type) != VECTOR_TYPE)
3382 {
3383 error ("non-vector operands in vector comparison");
3384 debug_generic_expr (op0_type);
3385 debug_generic_expr (op1_type);
3386 return true;
3387 }
3388
3389 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3390 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3391 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3392 /* The result of a vector comparison is of signed
3393 integral type. */
3394 || TYPE_UNSIGNED (TREE_TYPE (type)))
3395 {
3396 error ("invalid vector comparison resulting type");
3397 debug_generic_expr (type);
3398 return true;
3399 }
3400 }
3401 else
3402 {
3403 error ("bogus comparison result type");
3404 debug_generic_expr (type);
3405 return true;
3406 }
3407
3408 return false;
3409 }
3410
3411 /* Verify a gimple assignment statement STMT with an unary rhs.
3412 Returns true if anything is wrong. */
3413
3414 static bool
3415 verify_gimple_assign_unary (gimple stmt)
3416 {
3417 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3418 tree lhs = gimple_assign_lhs (stmt);
3419 tree lhs_type = TREE_TYPE (lhs);
3420 tree rhs1 = gimple_assign_rhs1 (stmt);
3421 tree rhs1_type = TREE_TYPE (rhs1);
3422
3423 if (!is_gimple_reg (lhs))
3424 {
3425 error ("non-register as LHS of unary operation");
3426 return true;
3427 }
3428
3429 if (!is_gimple_val (rhs1))
3430 {
3431 error ("invalid operand in unary operation");
3432 return true;
3433 }
3434
3435 /* First handle conversions. */
3436 switch (rhs_code)
3437 {
3438 CASE_CONVERT:
3439 {
3440 /* Allow conversions from pointer type to integral type only if
3441 there is no sign or zero extension involved.
3442 For targets were the precision of ptrofftype doesn't match that
3443 of pointers we need to allow arbitrary conversions to ptrofftype. */
3444 if ((POINTER_TYPE_P (lhs_type)
3445 && INTEGRAL_TYPE_P (rhs1_type))
3446 || (POINTER_TYPE_P (rhs1_type)
3447 && INTEGRAL_TYPE_P (lhs_type)
3448 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3449 || ptrofftype_p (sizetype))))
3450 return false;
3451
3452 /* Allow conversion from integral to offset type and vice versa. */
3453 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3454 && INTEGRAL_TYPE_P (rhs1_type))
3455 || (INTEGRAL_TYPE_P (lhs_type)
3456 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3457 return false;
3458
3459 /* Otherwise assert we are converting between types of the
3460 same kind. */
3461 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3462 {
3463 error ("invalid types in nop conversion");
3464 debug_generic_expr (lhs_type);
3465 debug_generic_expr (rhs1_type);
3466 return true;
3467 }
3468
3469 return false;
3470 }
3471
3472 case ADDR_SPACE_CONVERT_EXPR:
3473 {
3474 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3475 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3476 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3477 {
3478 error ("invalid types in address space conversion");
3479 debug_generic_expr (lhs_type);
3480 debug_generic_expr (rhs1_type);
3481 return true;
3482 }
3483
3484 return false;
3485 }
3486
3487 case FIXED_CONVERT_EXPR:
3488 {
3489 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3490 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3491 {
3492 error ("invalid types in fixed-point conversion");
3493 debug_generic_expr (lhs_type);
3494 debug_generic_expr (rhs1_type);
3495 return true;
3496 }
3497
3498 return false;
3499 }
3500
3501 case FLOAT_EXPR:
3502 {
3503 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3504 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3505 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3506 {
3507 error ("invalid types in conversion to floating point");
3508 debug_generic_expr (lhs_type);
3509 debug_generic_expr (rhs1_type);
3510 return true;
3511 }
3512
3513 return false;
3514 }
3515
3516 case FIX_TRUNC_EXPR:
3517 {
3518 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3519 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3520 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3521 {
3522 error ("invalid types in conversion to integer");
3523 debug_generic_expr (lhs_type);
3524 debug_generic_expr (rhs1_type);
3525 return true;
3526 }
3527
3528 return false;
3529 }
3530
3531 case VEC_UNPACK_HI_EXPR:
3532 case VEC_UNPACK_LO_EXPR:
3533 case REDUC_MAX_EXPR:
3534 case REDUC_MIN_EXPR:
3535 case REDUC_PLUS_EXPR:
3536 case VEC_UNPACK_FLOAT_HI_EXPR:
3537 case VEC_UNPACK_FLOAT_LO_EXPR:
3538 /* FIXME. */
3539 return false;
3540
3541 case NEGATE_EXPR:
3542 case ABS_EXPR:
3543 case BIT_NOT_EXPR:
3544 case PAREN_EXPR:
3545 case NON_LVALUE_EXPR:
3546 case CONJ_EXPR:
3547 break;
3548
3549 default:
3550 gcc_unreachable ();
3551 }
3552
3553 /* For the remaining codes assert there is no conversion involved. */
3554 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3555 {
3556 error ("non-trivial conversion in unary operation");
3557 debug_generic_expr (lhs_type);
3558 debug_generic_expr (rhs1_type);
3559 return true;
3560 }
3561
3562 return false;
3563 }
3564
3565 /* Verify a gimple assignment statement STMT with a binary rhs.
3566 Returns true if anything is wrong. */
3567
3568 static bool
3569 verify_gimple_assign_binary (gimple stmt)
3570 {
3571 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3572 tree lhs = gimple_assign_lhs (stmt);
3573 tree lhs_type = TREE_TYPE (lhs);
3574 tree rhs1 = gimple_assign_rhs1 (stmt);
3575 tree rhs1_type = TREE_TYPE (rhs1);
3576 tree rhs2 = gimple_assign_rhs2 (stmt);
3577 tree rhs2_type = TREE_TYPE (rhs2);
3578
3579 if (!is_gimple_reg (lhs))
3580 {
3581 error ("non-register as LHS of binary operation");
3582 return true;
3583 }
3584
3585 if (!is_gimple_val (rhs1)
3586 || !is_gimple_val (rhs2))
3587 {
3588 error ("invalid operands in binary operation");
3589 return true;
3590 }
3591
3592 /* First handle operations that involve different types. */
3593 switch (rhs_code)
3594 {
3595 case COMPLEX_EXPR:
3596 {
3597 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3598 || !(INTEGRAL_TYPE_P (rhs1_type)
3599 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3600 || !(INTEGRAL_TYPE_P (rhs2_type)
3601 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3602 {
3603 error ("type mismatch in complex expression");
3604 debug_generic_expr (lhs_type);
3605 debug_generic_expr (rhs1_type);
3606 debug_generic_expr (rhs2_type);
3607 return true;
3608 }
3609
3610 return false;
3611 }
3612
3613 case LSHIFT_EXPR:
3614 case RSHIFT_EXPR:
3615 case LROTATE_EXPR:
3616 case RROTATE_EXPR:
3617 {
3618 /* Shifts and rotates are ok on integral types, fixed point
3619 types and integer vector types. */
3620 if ((!INTEGRAL_TYPE_P (rhs1_type)
3621 && !FIXED_POINT_TYPE_P (rhs1_type)
3622 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3623 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3624 || (!INTEGRAL_TYPE_P (rhs2_type)
3625 /* Vector shifts of vectors are also ok. */
3626 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3627 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3628 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3629 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3630 || !useless_type_conversion_p (lhs_type, rhs1_type))
3631 {
3632 error ("type mismatch in shift expression");
3633 debug_generic_expr (lhs_type);
3634 debug_generic_expr (rhs1_type);
3635 debug_generic_expr (rhs2_type);
3636 return true;
3637 }
3638
3639 return false;
3640 }
3641
3642 case VEC_LSHIFT_EXPR:
3643 case VEC_RSHIFT_EXPR:
3644 {
3645 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3646 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3647 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3648 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3649 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3650 || (!INTEGRAL_TYPE_P (rhs2_type)
3651 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3652 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3653 || !useless_type_conversion_p (lhs_type, rhs1_type))
3654 {
3655 error ("type mismatch in vector shift expression");
3656 debug_generic_expr (lhs_type);
3657 debug_generic_expr (rhs1_type);
3658 debug_generic_expr (rhs2_type);
3659 return true;
3660 }
3661 /* For shifting a vector of non-integral components we
3662 only allow shifting by a constant multiple of the element size. */
3663 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3664 && (TREE_CODE (rhs2) != INTEGER_CST
3665 || !div_if_zero_remainder (rhs2,
3666 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3667 {
3668 error ("non-element sized vector shift of floating point vector");
3669 return true;
3670 }
3671
3672 return false;
3673 }
3674
3675 case WIDEN_LSHIFT_EXPR:
3676 {
3677 if (!INTEGRAL_TYPE_P (lhs_type)
3678 || !INTEGRAL_TYPE_P (rhs1_type)
3679 || TREE_CODE (rhs2) != INTEGER_CST
3680 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3681 {
3682 error ("type mismatch in widening vector shift expression");
3683 debug_generic_expr (lhs_type);
3684 debug_generic_expr (rhs1_type);
3685 debug_generic_expr (rhs2_type);
3686 return true;
3687 }
3688
3689 return false;
3690 }
3691
3692 case VEC_WIDEN_LSHIFT_HI_EXPR:
3693 case VEC_WIDEN_LSHIFT_LO_EXPR:
3694 {
3695 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3696 || TREE_CODE (lhs_type) != VECTOR_TYPE
3697 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3698 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3699 || TREE_CODE (rhs2) != INTEGER_CST
3700 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3701 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3702 {
3703 error ("type mismatch in widening vector shift expression");
3704 debug_generic_expr (lhs_type);
3705 debug_generic_expr (rhs1_type);
3706 debug_generic_expr (rhs2_type);
3707 return true;
3708 }
3709
3710 return false;
3711 }
3712
3713 case PLUS_EXPR:
3714 case MINUS_EXPR:
3715 {
3716 tree lhs_etype = lhs_type;
3717 tree rhs1_etype = rhs1_type;
3718 tree rhs2_etype = rhs2_type;
3719 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3720 {
3721 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3722 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3723 {
3724 error ("invalid non-vector operands to vector valued plus");
3725 return true;
3726 }
3727 lhs_etype = TREE_TYPE (lhs_type);
3728 rhs1_etype = TREE_TYPE (rhs1_type);
3729 rhs2_etype = TREE_TYPE (rhs2_type);
3730 }
3731 if (POINTER_TYPE_P (lhs_etype)
3732 || POINTER_TYPE_P (rhs1_etype)
3733 || POINTER_TYPE_P (rhs2_etype))
3734 {
3735 error ("invalid (pointer) operands to plus/minus");
3736 return true;
3737 }
3738
3739 /* Continue with generic binary expression handling. */
3740 break;
3741 }
3742
3743 case POINTER_PLUS_EXPR:
3744 {
3745 if (!POINTER_TYPE_P (rhs1_type)
3746 || !useless_type_conversion_p (lhs_type, rhs1_type)
3747 || !ptrofftype_p (rhs2_type))
3748 {
3749 error ("type mismatch in pointer plus expression");
3750 debug_generic_stmt (lhs_type);
3751 debug_generic_stmt (rhs1_type);
3752 debug_generic_stmt (rhs2_type);
3753 return true;
3754 }
3755
3756 return false;
3757 }
3758
3759 case TRUTH_ANDIF_EXPR:
3760 case TRUTH_ORIF_EXPR:
3761 case TRUTH_AND_EXPR:
3762 case TRUTH_OR_EXPR:
3763 case TRUTH_XOR_EXPR:
3764
3765 gcc_unreachable ();
3766
3767 case LT_EXPR:
3768 case LE_EXPR:
3769 case GT_EXPR:
3770 case GE_EXPR:
3771 case EQ_EXPR:
3772 case NE_EXPR:
3773 case UNORDERED_EXPR:
3774 case ORDERED_EXPR:
3775 case UNLT_EXPR:
3776 case UNLE_EXPR:
3777 case UNGT_EXPR:
3778 case UNGE_EXPR:
3779 case UNEQ_EXPR:
3780 case LTGT_EXPR:
3781 /* Comparisons are also binary, but the result type is not
3782 connected to the operand types. */
3783 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3784
3785 case WIDEN_MULT_EXPR:
3786 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3787 return true;
3788 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3789 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3790
3791 case WIDEN_SUM_EXPR:
3792 case VEC_WIDEN_MULT_HI_EXPR:
3793 case VEC_WIDEN_MULT_LO_EXPR:
3794 case VEC_WIDEN_MULT_EVEN_EXPR:
3795 case VEC_WIDEN_MULT_ODD_EXPR:
3796 case VEC_PACK_TRUNC_EXPR:
3797 case VEC_PACK_SAT_EXPR:
3798 case VEC_PACK_FIX_TRUNC_EXPR:
3799 /* FIXME. */
3800 return false;
3801
3802 case MULT_EXPR:
3803 case MULT_HIGHPART_EXPR:
3804 case TRUNC_DIV_EXPR:
3805 case CEIL_DIV_EXPR:
3806 case FLOOR_DIV_EXPR:
3807 case ROUND_DIV_EXPR:
3808 case TRUNC_MOD_EXPR:
3809 case CEIL_MOD_EXPR:
3810 case FLOOR_MOD_EXPR:
3811 case ROUND_MOD_EXPR:
3812 case RDIV_EXPR:
3813 case EXACT_DIV_EXPR:
3814 case MIN_EXPR:
3815 case MAX_EXPR:
3816 case BIT_IOR_EXPR:
3817 case BIT_XOR_EXPR:
3818 case BIT_AND_EXPR:
3819 /* Continue with generic binary expression handling. */
3820 break;
3821
3822 default:
3823 gcc_unreachable ();
3824 }
3825
3826 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3827 || !useless_type_conversion_p (lhs_type, rhs2_type))
3828 {
3829 error ("type mismatch in binary expression");
3830 debug_generic_stmt (lhs_type);
3831 debug_generic_stmt (rhs1_type);
3832 debug_generic_stmt (rhs2_type);
3833 return true;
3834 }
3835
3836 return false;
3837 }
3838
3839 /* Verify a gimple assignment statement STMT with a ternary rhs.
3840 Returns true if anything is wrong. */
3841
3842 static bool
3843 verify_gimple_assign_ternary (gimple stmt)
3844 {
3845 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3846 tree lhs = gimple_assign_lhs (stmt);
3847 tree lhs_type = TREE_TYPE (lhs);
3848 tree rhs1 = gimple_assign_rhs1 (stmt);
3849 tree rhs1_type = TREE_TYPE (rhs1);
3850 tree rhs2 = gimple_assign_rhs2 (stmt);
3851 tree rhs2_type = TREE_TYPE (rhs2);
3852 tree rhs3 = gimple_assign_rhs3 (stmt);
3853 tree rhs3_type = TREE_TYPE (rhs3);
3854
3855 if (!is_gimple_reg (lhs))
3856 {
3857 error ("non-register as LHS of ternary operation");
3858 return true;
3859 }
3860
3861 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3862 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3863 || !is_gimple_val (rhs2)
3864 || !is_gimple_val (rhs3))
3865 {
3866 error ("invalid operands in ternary operation");
3867 return true;
3868 }
3869
3870 /* First handle operations that involve different types. */
3871 switch (rhs_code)
3872 {
3873 case WIDEN_MULT_PLUS_EXPR:
3874 case WIDEN_MULT_MINUS_EXPR:
3875 if ((!INTEGRAL_TYPE_P (rhs1_type)
3876 && !FIXED_POINT_TYPE_P (rhs1_type))
3877 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3878 || !useless_type_conversion_p (lhs_type, rhs3_type)
3879 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3880 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3881 {
3882 error ("type mismatch in widening multiply-accumulate expression");
3883 debug_generic_expr (lhs_type);
3884 debug_generic_expr (rhs1_type);
3885 debug_generic_expr (rhs2_type);
3886 debug_generic_expr (rhs3_type);
3887 return true;
3888 }
3889 break;
3890
3891 case FMA_EXPR:
3892 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3893 || !useless_type_conversion_p (lhs_type, rhs2_type)
3894 || !useless_type_conversion_p (lhs_type, rhs3_type))
3895 {
3896 error ("type mismatch in fused multiply-add expression");
3897 debug_generic_expr (lhs_type);
3898 debug_generic_expr (rhs1_type);
3899 debug_generic_expr (rhs2_type);
3900 debug_generic_expr (rhs3_type);
3901 return true;
3902 }
3903 break;
3904
3905 case COND_EXPR:
3906 case VEC_COND_EXPR:
3907 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3908 || !useless_type_conversion_p (lhs_type, rhs3_type))
3909 {
3910 error ("type mismatch in conditional expression");
3911 debug_generic_expr (lhs_type);
3912 debug_generic_expr (rhs2_type);
3913 debug_generic_expr (rhs3_type);
3914 return true;
3915 }
3916 break;
3917
3918 case VEC_PERM_EXPR:
3919 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3920 || !useless_type_conversion_p (lhs_type, rhs2_type))
3921 {
3922 error ("type mismatch in vector permute expression");
3923 debug_generic_expr (lhs_type);
3924 debug_generic_expr (rhs1_type);
3925 debug_generic_expr (rhs2_type);
3926 debug_generic_expr (rhs3_type);
3927 return true;
3928 }
3929
3930 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3931 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3932 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3933 {
3934 error ("vector types expected in vector permute expression");
3935 debug_generic_expr (lhs_type);
3936 debug_generic_expr (rhs1_type);
3937 debug_generic_expr (rhs2_type);
3938 debug_generic_expr (rhs3_type);
3939 return true;
3940 }
3941
3942 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3943 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3944 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3945 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3946 != TYPE_VECTOR_SUBPARTS (lhs_type))
3947 {
3948 error ("vectors with different element number found "
3949 "in vector permute expression");
3950 debug_generic_expr (lhs_type);
3951 debug_generic_expr (rhs1_type);
3952 debug_generic_expr (rhs2_type);
3953 debug_generic_expr (rhs3_type);
3954 return true;
3955 }
3956
3957 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3958 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3959 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3960 {
3961 error ("invalid mask type in vector permute expression");
3962 debug_generic_expr (lhs_type);
3963 debug_generic_expr (rhs1_type);
3964 debug_generic_expr (rhs2_type);
3965 debug_generic_expr (rhs3_type);
3966 return true;
3967 }
3968
3969 return false;
3970
3971 case SAD_EXPR:
3972 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
3973 || !useless_type_conversion_p (lhs_type, rhs3_type)
3974 || 2 * GET_MODE_BITSIZE (GET_MODE_INNER
3975 (TYPE_MODE (TREE_TYPE (rhs1_type))))
3976 > GET_MODE_BITSIZE (GET_MODE_INNER
3977 (TYPE_MODE (TREE_TYPE (lhs_type)))))
3978 {
3979 error ("type mismatch in sad expression");
3980 debug_generic_expr (lhs_type);
3981 debug_generic_expr (rhs1_type);
3982 debug_generic_expr (rhs2_type);
3983 debug_generic_expr (rhs3_type);
3984 return true;
3985 }
3986
3987 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3988 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3989 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3990 {
3991 error ("vector types expected in sad expression");
3992 debug_generic_expr (lhs_type);
3993 debug_generic_expr (rhs1_type);
3994 debug_generic_expr (rhs2_type);
3995 debug_generic_expr (rhs3_type);
3996 return true;
3997 }
3998
3999 return false;
4000
4001 case DOT_PROD_EXPR:
4002 case REALIGN_LOAD_EXPR:
4003 /* FIXME. */
4004 return false;
4005
4006 default:
4007 gcc_unreachable ();
4008 }
4009 return false;
4010 }
4011
4012 /* Verify a gimple assignment statement STMT with a single rhs.
4013 Returns true if anything is wrong. */
4014
4015 static bool
4016 verify_gimple_assign_single (gimple stmt)
4017 {
4018 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4019 tree lhs = gimple_assign_lhs (stmt);
4020 tree lhs_type = TREE_TYPE (lhs);
4021 tree rhs1 = gimple_assign_rhs1 (stmt);
4022 tree rhs1_type = TREE_TYPE (rhs1);
4023 bool res = false;
4024
4025 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4026 {
4027 error ("non-trivial conversion at assignment");
4028 debug_generic_expr (lhs_type);
4029 debug_generic_expr (rhs1_type);
4030 return true;
4031 }
4032
4033 if (gimple_clobber_p (stmt)
4034 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4035 {
4036 error ("non-decl/MEM_REF LHS in clobber statement");
4037 debug_generic_expr (lhs);
4038 return true;
4039 }
4040
4041 if (handled_component_p (lhs)
4042 || TREE_CODE (lhs) == MEM_REF
4043 || TREE_CODE (lhs) == TARGET_MEM_REF)
4044 res |= verify_types_in_gimple_reference (lhs, true);
4045
4046 /* Special codes we cannot handle via their class. */
4047 switch (rhs_code)
4048 {
4049 case ADDR_EXPR:
4050 {
4051 tree op = TREE_OPERAND (rhs1, 0);
4052 if (!is_gimple_addressable (op))
4053 {
4054 error ("invalid operand in unary expression");
4055 return true;
4056 }
4057
4058 /* Technically there is no longer a need for matching types, but
4059 gimple hygiene asks for this check. In LTO we can end up
4060 combining incompatible units and thus end up with addresses
4061 of globals that change their type to a common one. */
4062 if (!in_lto_p
4063 && !types_compatible_p (TREE_TYPE (op),
4064 TREE_TYPE (TREE_TYPE (rhs1)))
4065 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4066 TREE_TYPE (op)))
4067 {
4068 error ("type mismatch in address expression");
4069 debug_generic_stmt (TREE_TYPE (rhs1));
4070 debug_generic_stmt (TREE_TYPE (op));
4071 return true;
4072 }
4073
4074 return verify_types_in_gimple_reference (op, true);
4075 }
4076
4077 /* tcc_reference */
4078 case INDIRECT_REF:
4079 error ("INDIRECT_REF in gimple IL");
4080 return true;
4081
4082 case COMPONENT_REF:
4083 case BIT_FIELD_REF:
4084 case ARRAY_REF:
4085 case ARRAY_RANGE_REF:
4086 case VIEW_CONVERT_EXPR:
4087 case REALPART_EXPR:
4088 case IMAGPART_EXPR:
4089 case TARGET_MEM_REF:
4090 case MEM_REF:
4091 if (!is_gimple_reg (lhs)
4092 && is_gimple_reg_type (TREE_TYPE (lhs)))
4093 {
4094 error ("invalid rhs for gimple memory store");
4095 debug_generic_stmt (lhs);
4096 debug_generic_stmt (rhs1);
4097 return true;
4098 }
4099 return res || verify_types_in_gimple_reference (rhs1, false);
4100
4101 /* tcc_constant */
4102 case SSA_NAME:
4103 case INTEGER_CST:
4104 case REAL_CST:
4105 case FIXED_CST:
4106 case COMPLEX_CST:
4107 case VECTOR_CST:
4108 case STRING_CST:
4109 return res;
4110
4111 /* tcc_declaration */
4112 case CONST_DECL:
4113 return res;
4114 case VAR_DECL:
4115 case PARM_DECL:
4116 if (!is_gimple_reg (lhs)
4117 && !is_gimple_reg (rhs1)
4118 && is_gimple_reg_type (TREE_TYPE (lhs)))
4119 {
4120 error ("invalid rhs for gimple memory store");
4121 debug_generic_stmt (lhs);
4122 debug_generic_stmt (rhs1);
4123 return true;
4124 }
4125 return res;
4126
4127 case CONSTRUCTOR:
4128 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4129 {
4130 unsigned int i;
4131 tree elt_i, elt_v, elt_t = NULL_TREE;
4132
4133 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4134 return res;
4135 /* For vector CONSTRUCTORs we require that either it is empty
4136 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4137 (then the element count must be correct to cover the whole
4138 outer vector and index must be NULL on all elements, or it is
4139 a CONSTRUCTOR of scalar elements, where we as an exception allow
4140 smaller number of elements (assuming zero filling) and
4141 consecutive indexes as compared to NULL indexes (such
4142 CONSTRUCTORs can appear in the IL from FEs). */
4143 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4144 {
4145 if (elt_t == NULL_TREE)
4146 {
4147 elt_t = TREE_TYPE (elt_v);
4148 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4149 {
4150 tree elt_t = TREE_TYPE (elt_v);
4151 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4152 TREE_TYPE (elt_t)))
4153 {
4154 error ("incorrect type of vector CONSTRUCTOR"
4155 " elements");
4156 debug_generic_stmt (rhs1);
4157 return true;
4158 }
4159 else if (CONSTRUCTOR_NELTS (rhs1)
4160 * TYPE_VECTOR_SUBPARTS (elt_t)
4161 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4162 {
4163 error ("incorrect number of vector CONSTRUCTOR"
4164 " elements");
4165 debug_generic_stmt (rhs1);
4166 return true;
4167 }
4168 }
4169 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4170 elt_t))
4171 {
4172 error ("incorrect type of vector CONSTRUCTOR elements");
4173 debug_generic_stmt (rhs1);
4174 return true;
4175 }
4176 else if (CONSTRUCTOR_NELTS (rhs1)
4177 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4178 {
4179 error ("incorrect number of vector CONSTRUCTOR elements");
4180 debug_generic_stmt (rhs1);
4181 return true;
4182 }
4183 }
4184 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4185 {
4186 error ("incorrect type of vector CONSTRUCTOR elements");
4187 debug_generic_stmt (rhs1);
4188 return true;
4189 }
4190 if (elt_i != NULL_TREE
4191 && (TREE_CODE (elt_t) == VECTOR_TYPE
4192 || TREE_CODE (elt_i) != INTEGER_CST
4193 || compare_tree_int (elt_i, i) != 0))
4194 {
4195 error ("vector CONSTRUCTOR with non-NULL element index");
4196 debug_generic_stmt (rhs1);
4197 return true;
4198 }
4199 }
4200 }
4201 return res;
4202 case OBJ_TYPE_REF:
4203 case ASSERT_EXPR:
4204 case WITH_SIZE_EXPR:
4205 /* FIXME. */
4206 return res;
4207
4208 default:;
4209 }
4210
4211 return res;
4212 }
4213
4214 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4215 is a problem, otherwise false. */
4216
4217 static bool
4218 verify_gimple_assign (gimple stmt)
4219 {
4220 switch (gimple_assign_rhs_class (stmt))
4221 {
4222 case GIMPLE_SINGLE_RHS:
4223 return verify_gimple_assign_single (stmt);
4224
4225 case GIMPLE_UNARY_RHS:
4226 return verify_gimple_assign_unary (stmt);
4227
4228 case GIMPLE_BINARY_RHS:
4229 return verify_gimple_assign_binary (stmt);
4230
4231 case GIMPLE_TERNARY_RHS:
4232 return verify_gimple_assign_ternary (stmt);
4233
4234 default:
4235 gcc_unreachable ();
4236 }
4237 }
4238
4239 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4240 is a problem, otherwise false. */
4241
4242 static bool
4243 verify_gimple_return (gimple stmt)
4244 {
4245 tree op = gimple_return_retval (stmt);
4246 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4247
4248 /* We cannot test for present return values as we do not fix up missing
4249 return values from the original source. */
4250 if (op == NULL)
4251 return false;
4252
4253 if (!is_gimple_val (op)
4254 && TREE_CODE (op) != RESULT_DECL)
4255 {
4256 error ("invalid operand in return statement");
4257 debug_generic_stmt (op);
4258 return true;
4259 }
4260
4261 if ((TREE_CODE (op) == RESULT_DECL
4262 && DECL_BY_REFERENCE (op))
4263 || (TREE_CODE (op) == SSA_NAME
4264 && SSA_NAME_VAR (op)
4265 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4266 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4267 op = TREE_TYPE (op);
4268
4269 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4270 {
4271 error ("invalid conversion in return statement");
4272 debug_generic_stmt (restype);
4273 debug_generic_stmt (TREE_TYPE (op));
4274 return true;
4275 }
4276
4277 return false;
4278 }
4279
4280
4281 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4282 is a problem, otherwise false. */
4283
4284 static bool
4285 verify_gimple_goto (gimple stmt)
4286 {
4287 tree dest = gimple_goto_dest (stmt);
4288
4289 /* ??? We have two canonical forms of direct goto destinations, a
4290 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4291 if (TREE_CODE (dest) != LABEL_DECL
4292 && (!is_gimple_val (dest)
4293 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4294 {
4295 error ("goto destination is neither a label nor a pointer");
4296 return true;
4297 }
4298
4299 return false;
4300 }
4301
4302 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4303 is a problem, otherwise false. */
4304
4305 static bool
4306 verify_gimple_switch (gimple stmt)
4307 {
4308 unsigned int i, n;
4309 tree elt, prev_upper_bound = NULL_TREE;
4310 tree index_type, elt_type = NULL_TREE;
4311
4312 if (!is_gimple_val (gimple_switch_index (stmt)))
4313 {
4314 error ("invalid operand to switch statement");
4315 debug_generic_stmt (gimple_switch_index (stmt));
4316 return true;
4317 }
4318
4319 index_type = TREE_TYPE (gimple_switch_index (stmt));
4320 if (! INTEGRAL_TYPE_P (index_type))
4321 {
4322 error ("non-integral type switch statement");
4323 debug_generic_expr (index_type);
4324 return true;
4325 }
4326
4327 elt = gimple_switch_label (stmt, 0);
4328 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4329 {
4330 error ("invalid default case label in switch statement");
4331 debug_generic_expr (elt);
4332 return true;
4333 }
4334
4335 n = gimple_switch_num_labels (stmt);
4336 for (i = 1; i < n; i++)
4337 {
4338 elt = gimple_switch_label (stmt, i);
4339
4340 if (! CASE_LOW (elt))
4341 {
4342 error ("invalid case label in switch statement");
4343 debug_generic_expr (elt);
4344 return true;
4345 }
4346 if (CASE_HIGH (elt)
4347 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4348 {
4349 error ("invalid case range in switch statement");
4350 debug_generic_expr (elt);
4351 return true;
4352 }
4353
4354 if (elt_type)
4355 {
4356 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4357 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4358 {
4359 error ("type mismatch for case label in switch statement");
4360 debug_generic_expr (elt);
4361 return true;
4362 }
4363 }
4364 else
4365 {
4366 elt_type = TREE_TYPE (CASE_LOW (elt));
4367 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4368 {
4369 error ("type precision mismatch in switch statement");
4370 return true;
4371 }
4372 }
4373
4374 if (prev_upper_bound)
4375 {
4376 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4377 {
4378 error ("case labels not sorted in switch statement");
4379 return true;
4380 }
4381 }
4382
4383 prev_upper_bound = CASE_HIGH (elt);
4384 if (! prev_upper_bound)
4385 prev_upper_bound = CASE_LOW (elt);
4386 }
4387
4388 return false;
4389 }
4390
4391 /* Verify a gimple debug statement STMT.
4392 Returns true if anything is wrong. */
4393
4394 static bool
4395 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4396 {
4397 /* There isn't much that could be wrong in a gimple debug stmt. A
4398 gimple debug bind stmt, for example, maps a tree, that's usually
4399 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4400 component or member of an aggregate type, to another tree, that
4401 can be an arbitrary expression. These stmts expand into debug
4402 insns, and are converted to debug notes by var-tracking.c. */
4403 return false;
4404 }
4405
4406 /* Verify a gimple label statement STMT.
4407 Returns true if anything is wrong. */
4408
4409 static bool
4410 verify_gimple_label (gimple stmt)
4411 {
4412 tree decl = gimple_label_label (stmt);
4413 int uid;
4414 bool err = false;
4415
4416 if (TREE_CODE (decl) != LABEL_DECL)
4417 return true;
4418 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4419 && DECL_CONTEXT (decl) != current_function_decl)
4420 {
4421 error ("label's context is not the current function decl");
4422 err |= true;
4423 }
4424
4425 uid = LABEL_DECL_UID (decl);
4426 if (cfun->cfg
4427 && (uid == -1
4428 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4429 {
4430 error ("incorrect entry in label_to_block_map");
4431 err |= true;
4432 }
4433
4434 uid = EH_LANDING_PAD_NR (decl);
4435 if (uid)
4436 {
4437 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4438 if (decl != lp->post_landing_pad)
4439 {
4440 error ("incorrect setting of landing pad number");
4441 err |= true;
4442 }
4443 }
4444
4445 return err;
4446 }
4447
4448 /* Verify the GIMPLE statement STMT. Returns true if there is an
4449 error, otherwise false. */
4450
4451 static bool
4452 verify_gimple_stmt (gimple stmt)
4453 {
4454 switch (gimple_code (stmt))
4455 {
4456 case GIMPLE_ASSIGN:
4457 return verify_gimple_assign (stmt);
4458
4459 case GIMPLE_LABEL:
4460 return verify_gimple_label (stmt);
4461
4462 case GIMPLE_CALL:
4463 return verify_gimple_call (stmt);
4464
4465 case GIMPLE_COND:
4466 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4467 {
4468 error ("invalid comparison code in gimple cond");
4469 return true;
4470 }
4471 if (!(!gimple_cond_true_label (stmt)
4472 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4473 || !(!gimple_cond_false_label (stmt)
4474 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4475 {
4476 error ("invalid labels in gimple cond");
4477 return true;
4478 }
4479
4480 return verify_gimple_comparison (boolean_type_node,
4481 gimple_cond_lhs (stmt),
4482 gimple_cond_rhs (stmt));
4483
4484 case GIMPLE_GOTO:
4485 return verify_gimple_goto (stmt);
4486
4487 case GIMPLE_SWITCH:
4488 return verify_gimple_switch (stmt);
4489
4490 case GIMPLE_RETURN:
4491 return verify_gimple_return (stmt);
4492
4493 case GIMPLE_ASM:
4494 return false;
4495
4496 case GIMPLE_TRANSACTION:
4497 return verify_gimple_transaction (stmt);
4498
4499 /* Tuples that do not have tree operands. */
4500 case GIMPLE_NOP:
4501 case GIMPLE_PREDICT:
4502 case GIMPLE_RESX:
4503 case GIMPLE_EH_DISPATCH:
4504 case GIMPLE_EH_MUST_NOT_THROW:
4505 return false;
4506
4507 CASE_GIMPLE_OMP:
4508 /* OpenMP directives are validated by the FE and never operated
4509 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4510 non-gimple expressions when the main index variable has had
4511 its address taken. This does not affect the loop itself
4512 because the header of an GIMPLE_OMP_FOR is merely used to determine
4513 how to setup the parallel iteration. */
4514 return false;
4515
4516 case GIMPLE_DEBUG:
4517 return verify_gimple_debug (stmt);
4518
4519 default:
4520 gcc_unreachable ();
4521 }
4522 }
4523
4524 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4525 and false otherwise. */
4526
4527 static bool
4528 verify_gimple_phi (gimple phi)
4529 {
4530 bool err = false;
4531 unsigned i;
4532 tree phi_result = gimple_phi_result (phi);
4533 bool virtual_p;
4534
4535 if (!phi_result)
4536 {
4537 error ("invalid PHI result");
4538 return true;
4539 }
4540
4541 virtual_p = virtual_operand_p (phi_result);
4542 if (TREE_CODE (phi_result) != SSA_NAME
4543 || (virtual_p
4544 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4545 {
4546 error ("invalid PHI result");
4547 err = true;
4548 }
4549
4550 for (i = 0; i < gimple_phi_num_args (phi); i++)
4551 {
4552 tree t = gimple_phi_arg_def (phi, i);
4553
4554 if (!t)
4555 {
4556 error ("missing PHI def");
4557 err |= true;
4558 continue;
4559 }
4560 /* Addressable variables do have SSA_NAMEs but they
4561 are not considered gimple values. */
4562 else if ((TREE_CODE (t) == SSA_NAME
4563 && virtual_p != virtual_operand_p (t))
4564 || (virtual_p
4565 && (TREE_CODE (t) != SSA_NAME
4566 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4567 || (!virtual_p
4568 && !is_gimple_val (t)))
4569 {
4570 error ("invalid PHI argument");
4571 debug_generic_expr (t);
4572 err |= true;
4573 }
4574 #ifdef ENABLE_TYPES_CHECKING
4575 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4576 {
4577 error ("incompatible types in PHI argument %u", i);
4578 debug_generic_stmt (TREE_TYPE (phi_result));
4579 debug_generic_stmt (TREE_TYPE (t));
4580 err |= true;
4581 }
4582 #endif
4583 }
4584
4585 return err;
4586 }
4587
4588 /* Verify the GIMPLE statements inside the sequence STMTS. */
4589
4590 static bool
4591 verify_gimple_in_seq_2 (gimple_seq stmts)
4592 {
4593 gimple_stmt_iterator ittr;
4594 bool err = false;
4595
4596 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4597 {
4598 gimple stmt = gsi_stmt (ittr);
4599
4600 switch (gimple_code (stmt))
4601 {
4602 case GIMPLE_BIND:
4603 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4604 break;
4605
4606 case GIMPLE_TRY:
4607 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4608 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4609 break;
4610
4611 case GIMPLE_EH_FILTER:
4612 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4613 break;
4614
4615 case GIMPLE_EH_ELSE:
4616 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4617 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4618 break;
4619
4620 case GIMPLE_CATCH:
4621 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4622 break;
4623
4624 case GIMPLE_TRANSACTION:
4625 err |= verify_gimple_transaction (stmt);
4626 break;
4627
4628 default:
4629 {
4630 bool err2 = verify_gimple_stmt (stmt);
4631 if (err2)
4632 debug_gimple_stmt (stmt);
4633 err |= err2;
4634 }
4635 }
4636 }
4637
4638 return err;
4639 }
4640
4641 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4642 is a problem, otherwise false. */
4643
4644 static bool
4645 verify_gimple_transaction (gimple stmt)
4646 {
4647 tree lab = gimple_transaction_label (stmt);
4648 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4649 return true;
4650 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4651 }
4652
4653
4654 /* Verify the GIMPLE statements inside the statement list STMTS. */
4655
4656 DEBUG_FUNCTION void
4657 verify_gimple_in_seq (gimple_seq stmts)
4658 {
4659 timevar_push (TV_TREE_STMT_VERIFY);
4660 if (verify_gimple_in_seq_2 (stmts))
4661 internal_error ("verify_gimple failed");
4662 timevar_pop (TV_TREE_STMT_VERIFY);
4663 }
4664
4665 /* Return true when the T can be shared. */
4666
4667 static bool
4668 tree_node_can_be_shared (tree t)
4669 {
4670 if (IS_TYPE_OR_DECL_P (t)
4671 || is_gimple_min_invariant (t)
4672 || TREE_CODE (t) == SSA_NAME
4673 || t == error_mark_node
4674 || TREE_CODE (t) == IDENTIFIER_NODE)
4675 return true;
4676
4677 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4678 return true;
4679
4680 if (DECL_P (t))
4681 return true;
4682
4683 return false;
4684 }
4685
4686 /* Called via walk_tree. Verify tree sharing. */
4687
4688 static tree
4689 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4690 {
4691 hash_set<void *> *visited = (hash_set<void *> *) data;
4692
4693 if (tree_node_can_be_shared (*tp))
4694 {
4695 *walk_subtrees = false;
4696 return NULL;
4697 }
4698
4699 if (visited->add (*tp))
4700 return *tp;
4701
4702 return NULL;
4703 }
4704
4705 /* Called via walk_gimple_stmt. Verify tree sharing. */
4706
4707 static tree
4708 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4709 {
4710 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4711 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4712 }
4713
4714 static bool eh_error_found;
4715 static int
4716 verify_eh_throw_stmt_node (void **slot, void *data)
4717 {
4718 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4719 hash_set<void *> *visited = (hash_set<void *> *) data;
4720
4721 if (!visited->contains (node->stmt))
4722 {
4723 error ("dead STMT in EH table");
4724 debug_gimple_stmt (node->stmt);
4725 eh_error_found = true;
4726 }
4727 return 1;
4728 }
4729
4730 /* Verify if the location LOCs block is in BLOCKS. */
4731
4732 static bool
4733 verify_location (hash_set<tree> *blocks, location_t loc)
4734 {
4735 tree block = LOCATION_BLOCK (loc);
4736 if (block != NULL_TREE
4737 && !blocks->contains (block))
4738 {
4739 error ("location references block not in block tree");
4740 return true;
4741 }
4742 if (block != NULL_TREE)
4743 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4744 return false;
4745 }
4746
4747 /* Called via walk_tree. Verify that expressions have no blocks. */
4748
4749 static tree
4750 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4751 {
4752 if (!EXPR_P (*tp))
4753 {
4754 *walk_subtrees = false;
4755 return NULL;
4756 }
4757
4758 location_t loc = EXPR_LOCATION (*tp);
4759 if (LOCATION_BLOCK (loc) != NULL)
4760 return *tp;
4761
4762 return NULL;
4763 }
4764
4765 /* Called via walk_tree. Verify locations of expressions. */
4766
4767 static tree
4768 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4769 {
4770 hash_set<tree> *blocks = (hash_set<tree> *) data;
4771
4772 if (TREE_CODE (*tp) == VAR_DECL
4773 && DECL_HAS_DEBUG_EXPR_P (*tp))
4774 {
4775 tree t = DECL_DEBUG_EXPR (*tp);
4776 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4777 if (addr)
4778 return addr;
4779 }
4780 if ((TREE_CODE (*tp) == VAR_DECL
4781 || TREE_CODE (*tp) == PARM_DECL
4782 || TREE_CODE (*tp) == RESULT_DECL)
4783 && DECL_HAS_VALUE_EXPR_P (*tp))
4784 {
4785 tree t = DECL_VALUE_EXPR (*tp);
4786 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4787 if (addr)
4788 return addr;
4789 }
4790
4791 if (!EXPR_P (*tp))
4792 {
4793 *walk_subtrees = false;
4794 return NULL;
4795 }
4796
4797 location_t loc = EXPR_LOCATION (*tp);
4798 if (verify_location (blocks, loc))
4799 return *tp;
4800
4801 return NULL;
4802 }
4803
4804 /* Called via walk_gimple_op. Verify locations of expressions. */
4805
4806 static tree
4807 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4808 {
4809 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4810 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4811 }
4812
4813 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4814
4815 static void
4816 collect_subblocks (hash_set<tree> *blocks, tree block)
4817 {
4818 tree t;
4819 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4820 {
4821 blocks->add (t);
4822 collect_subblocks (blocks, t);
4823 }
4824 }
4825
4826 /* Verify the GIMPLE statements in the CFG of FN. */
4827
4828 DEBUG_FUNCTION void
4829 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
4830 {
4831 basic_block bb;
4832 bool err = false;
4833
4834 timevar_push (TV_TREE_STMT_VERIFY);
4835 hash_set<void *> visited;
4836 hash_set<gimple> visited_stmts;
4837
4838 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4839 hash_set<tree> blocks;
4840 if (DECL_INITIAL (fn->decl))
4841 {
4842 blocks.add (DECL_INITIAL (fn->decl));
4843 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
4844 }
4845
4846 FOR_EACH_BB_FN (bb, fn)
4847 {
4848 gimple_stmt_iterator gsi;
4849
4850 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4851 {
4852 gimple phi = gsi_stmt (gsi);
4853 bool err2 = false;
4854 unsigned i;
4855
4856 visited_stmts.add (phi);
4857
4858 if (gimple_bb (phi) != bb)
4859 {
4860 error ("gimple_bb (phi) is set to a wrong basic block");
4861 err2 = true;
4862 }
4863
4864 err2 |= verify_gimple_phi (phi);
4865
4866 /* Only PHI arguments have locations. */
4867 if (gimple_location (phi) != UNKNOWN_LOCATION)
4868 {
4869 error ("PHI node with location");
4870 err2 = true;
4871 }
4872
4873 for (i = 0; i < gimple_phi_num_args (phi); i++)
4874 {
4875 tree arg = gimple_phi_arg_def (phi, i);
4876 tree addr = walk_tree (&arg, verify_node_sharing_1,
4877 &visited, NULL);
4878 if (addr)
4879 {
4880 error ("incorrect sharing of tree nodes");
4881 debug_generic_expr (addr);
4882 err2 |= true;
4883 }
4884 location_t loc = gimple_phi_arg_location (phi, i);
4885 if (virtual_operand_p (gimple_phi_result (phi))
4886 && loc != UNKNOWN_LOCATION)
4887 {
4888 error ("virtual PHI with argument locations");
4889 err2 = true;
4890 }
4891 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
4892 if (addr)
4893 {
4894 debug_generic_expr (addr);
4895 err2 = true;
4896 }
4897 err2 |= verify_location (&blocks, loc);
4898 }
4899
4900 if (err2)
4901 debug_gimple_stmt (phi);
4902 err |= err2;
4903 }
4904
4905 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4906 {
4907 gimple stmt = gsi_stmt (gsi);
4908 bool err2 = false;
4909 struct walk_stmt_info wi;
4910 tree addr;
4911 int lp_nr;
4912
4913 visited_stmts.add (stmt);
4914
4915 if (gimple_bb (stmt) != bb)
4916 {
4917 error ("gimple_bb (stmt) is set to a wrong basic block");
4918 err2 = true;
4919 }
4920
4921 err2 |= verify_gimple_stmt (stmt);
4922 err2 |= verify_location (&blocks, gimple_location (stmt));
4923
4924 memset (&wi, 0, sizeof (wi));
4925 wi.info = (void *) &visited;
4926 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4927 if (addr)
4928 {
4929 error ("incorrect sharing of tree nodes");
4930 debug_generic_expr (addr);
4931 err2 |= true;
4932 }
4933
4934 memset (&wi, 0, sizeof (wi));
4935 wi.info = (void *) &blocks;
4936 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4937 if (addr)
4938 {
4939 debug_generic_expr (addr);
4940 err2 |= true;
4941 }
4942
4943 /* ??? Instead of not checking these stmts at all the walker
4944 should know its context via wi. */
4945 if (!is_gimple_debug (stmt)
4946 && !is_gimple_omp (stmt))
4947 {
4948 memset (&wi, 0, sizeof (wi));
4949 addr = walk_gimple_op (stmt, verify_expr, &wi);
4950 if (addr)
4951 {
4952 debug_generic_expr (addr);
4953 inform (gimple_location (stmt), "in statement");
4954 err2 |= true;
4955 }
4956 }
4957
4958 /* If the statement is marked as part of an EH region, then it is
4959 expected that the statement could throw. Verify that when we
4960 have optimizations that simplify statements such that we prove
4961 that they cannot throw, that we update other data structures
4962 to match. */
4963 lp_nr = lookup_stmt_eh_lp (stmt);
4964 if (lp_nr > 0)
4965 {
4966 if (!stmt_could_throw_p (stmt))
4967 {
4968 if (verify_nothrow)
4969 {
4970 error ("statement marked for throw, but doesn%'t");
4971 err2 |= true;
4972 }
4973 }
4974 else if (!gsi_one_before_end_p (gsi))
4975 {
4976 error ("statement marked for throw in middle of block");
4977 err2 |= true;
4978 }
4979 }
4980
4981 if (err2)
4982 debug_gimple_stmt (stmt);
4983 err |= err2;
4984 }
4985 }
4986
4987 eh_error_found = false;
4988 if (get_eh_throw_stmt_table (cfun))
4989 htab_traverse (get_eh_throw_stmt_table (cfun),
4990 verify_eh_throw_stmt_node,
4991 &visited_stmts);
4992
4993 if (err || eh_error_found)
4994 internal_error ("verify_gimple failed");
4995
4996 verify_histograms ();
4997 timevar_pop (TV_TREE_STMT_VERIFY);
4998 }
4999
5000
5001 /* Verifies that the flow information is OK. */
5002
5003 static int
5004 gimple_verify_flow_info (void)
5005 {
5006 int err = 0;
5007 basic_block bb;
5008 gimple_stmt_iterator gsi;
5009 gimple stmt;
5010 edge e;
5011 edge_iterator ei;
5012
5013 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5014 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5015 {
5016 error ("ENTRY_BLOCK has IL associated with it");
5017 err = 1;
5018 }
5019
5020 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5021 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5022 {
5023 error ("EXIT_BLOCK has IL associated with it");
5024 err = 1;
5025 }
5026
5027 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5028 if (e->flags & EDGE_FALLTHRU)
5029 {
5030 error ("fallthru to exit from bb %d", e->src->index);
5031 err = 1;
5032 }
5033
5034 FOR_EACH_BB_FN (bb, cfun)
5035 {
5036 bool found_ctrl_stmt = false;
5037
5038 stmt = NULL;
5039
5040 /* Skip labels on the start of basic block. */
5041 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5042 {
5043 tree label;
5044 gimple prev_stmt = stmt;
5045
5046 stmt = gsi_stmt (gsi);
5047
5048 if (gimple_code (stmt) != GIMPLE_LABEL)
5049 break;
5050
5051 label = gimple_label_label (stmt);
5052 if (prev_stmt && DECL_NONLOCAL (label))
5053 {
5054 error ("nonlocal label ");
5055 print_generic_expr (stderr, label, 0);
5056 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5057 bb->index);
5058 err = 1;
5059 }
5060
5061 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5062 {
5063 error ("EH landing pad label ");
5064 print_generic_expr (stderr, label, 0);
5065 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5066 bb->index);
5067 err = 1;
5068 }
5069
5070 if (label_to_block (label) != bb)
5071 {
5072 error ("label ");
5073 print_generic_expr (stderr, label, 0);
5074 fprintf (stderr, " to block does not match in bb %d",
5075 bb->index);
5076 err = 1;
5077 }
5078
5079 if (decl_function_context (label) != current_function_decl)
5080 {
5081 error ("label ");
5082 print_generic_expr (stderr, label, 0);
5083 fprintf (stderr, " has incorrect context in bb %d",
5084 bb->index);
5085 err = 1;
5086 }
5087 }
5088
5089 /* Verify that body of basic block BB is free of control flow. */
5090 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5091 {
5092 gimple stmt = gsi_stmt (gsi);
5093
5094 if (found_ctrl_stmt)
5095 {
5096 error ("control flow in the middle of basic block %d",
5097 bb->index);
5098 err = 1;
5099 }
5100
5101 if (stmt_ends_bb_p (stmt))
5102 found_ctrl_stmt = true;
5103
5104 if (gimple_code (stmt) == GIMPLE_LABEL)
5105 {
5106 error ("label ");
5107 print_generic_expr (stderr, gimple_label_label (stmt), 0);
5108 fprintf (stderr, " in the middle of basic block %d", bb->index);
5109 err = 1;
5110 }
5111 }
5112
5113 gsi = gsi_last_bb (bb);
5114 if (gsi_end_p (gsi))
5115 continue;
5116
5117 stmt = gsi_stmt (gsi);
5118
5119 if (gimple_code (stmt) == GIMPLE_LABEL)
5120 continue;
5121
5122 err |= verify_eh_edges (stmt);
5123
5124 if (is_ctrl_stmt (stmt))
5125 {
5126 FOR_EACH_EDGE (e, ei, bb->succs)
5127 if (e->flags & EDGE_FALLTHRU)
5128 {
5129 error ("fallthru edge after a control statement in bb %d",
5130 bb->index);
5131 err = 1;
5132 }
5133 }
5134
5135 if (gimple_code (stmt) != GIMPLE_COND)
5136 {
5137 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5138 after anything else but if statement. */
5139 FOR_EACH_EDGE (e, ei, bb->succs)
5140 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5141 {
5142 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5143 bb->index);
5144 err = 1;
5145 }
5146 }
5147
5148 switch (gimple_code (stmt))
5149 {
5150 case GIMPLE_COND:
5151 {
5152 edge true_edge;
5153 edge false_edge;
5154
5155 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5156
5157 if (!true_edge
5158 || !false_edge
5159 || !(true_edge->flags & EDGE_TRUE_VALUE)
5160 || !(false_edge->flags & EDGE_FALSE_VALUE)
5161 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5162 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5163 || EDGE_COUNT (bb->succs) >= 3)
5164 {
5165 error ("wrong outgoing edge flags at end of bb %d",
5166 bb->index);
5167 err = 1;
5168 }
5169 }
5170 break;
5171
5172 case GIMPLE_GOTO:
5173 if (simple_goto_p (stmt))
5174 {
5175 error ("explicit goto at end of bb %d", bb->index);
5176 err = 1;
5177 }
5178 else
5179 {
5180 /* FIXME. We should double check that the labels in the
5181 destination blocks have their address taken. */
5182 FOR_EACH_EDGE (e, ei, bb->succs)
5183 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5184 | EDGE_FALSE_VALUE))
5185 || !(e->flags & EDGE_ABNORMAL))
5186 {
5187 error ("wrong outgoing edge flags at end of bb %d",
5188 bb->index);
5189 err = 1;
5190 }
5191 }
5192 break;
5193
5194 case GIMPLE_CALL:
5195 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5196 break;
5197 /* ... fallthru ... */
5198 case GIMPLE_RETURN:
5199 if (!single_succ_p (bb)
5200 || (single_succ_edge (bb)->flags
5201 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5202 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5203 {
5204 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5205 err = 1;
5206 }
5207 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5208 {
5209 error ("return edge does not point to exit in bb %d",
5210 bb->index);
5211 err = 1;
5212 }
5213 break;
5214
5215 case GIMPLE_SWITCH:
5216 {
5217 tree prev;
5218 edge e;
5219 size_t i, n;
5220
5221 n = gimple_switch_num_labels (stmt);
5222
5223 /* Mark all the destination basic blocks. */
5224 for (i = 0; i < n; ++i)
5225 {
5226 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5227 basic_block label_bb = label_to_block (lab);
5228 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5229 label_bb->aux = (void *)1;
5230 }
5231
5232 /* Verify that the case labels are sorted. */
5233 prev = gimple_switch_label (stmt, 0);
5234 for (i = 1; i < n; ++i)
5235 {
5236 tree c = gimple_switch_label (stmt, i);
5237 if (!CASE_LOW (c))
5238 {
5239 error ("found default case not at the start of "
5240 "case vector");
5241 err = 1;
5242 continue;
5243 }
5244 if (CASE_LOW (prev)
5245 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5246 {
5247 error ("case labels not sorted: ");
5248 print_generic_expr (stderr, prev, 0);
5249 fprintf (stderr," is greater than ");
5250 print_generic_expr (stderr, c, 0);
5251 fprintf (stderr," but comes before it.\n");
5252 err = 1;
5253 }
5254 prev = c;
5255 }
5256 /* VRP will remove the default case if it can prove it will
5257 never be executed. So do not verify there always exists
5258 a default case here. */
5259
5260 FOR_EACH_EDGE (e, ei, bb->succs)
5261 {
5262 if (!e->dest->aux)
5263 {
5264 error ("extra outgoing edge %d->%d",
5265 bb->index, e->dest->index);
5266 err = 1;
5267 }
5268
5269 e->dest->aux = (void *)2;
5270 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5271 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5272 {
5273 error ("wrong outgoing edge flags at end of bb %d",
5274 bb->index);
5275 err = 1;
5276 }
5277 }
5278
5279 /* Check that we have all of them. */
5280 for (i = 0; i < n; ++i)
5281 {
5282 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5283 basic_block label_bb = label_to_block (lab);
5284
5285 if (label_bb->aux != (void *)2)
5286 {
5287 error ("missing edge %i->%i", bb->index, label_bb->index);
5288 err = 1;
5289 }
5290 }
5291
5292 FOR_EACH_EDGE (e, ei, bb->succs)
5293 e->dest->aux = (void *)0;
5294 }
5295 break;
5296
5297 case GIMPLE_EH_DISPATCH:
5298 err |= verify_eh_dispatch_edge (stmt);
5299 break;
5300
5301 default:
5302 break;
5303 }
5304 }
5305
5306 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5307 verify_dominators (CDI_DOMINATORS);
5308
5309 return err;
5310 }
5311
5312
5313 /* Updates phi nodes after creating a forwarder block joined
5314 by edge FALLTHRU. */
5315
5316 static void
5317 gimple_make_forwarder_block (edge fallthru)
5318 {
5319 edge e;
5320 edge_iterator ei;
5321 basic_block dummy, bb;
5322 tree var;
5323 gimple_stmt_iterator gsi;
5324
5325 dummy = fallthru->src;
5326 bb = fallthru->dest;
5327
5328 if (single_pred_p (bb))
5329 return;
5330
5331 /* If we redirected a branch we must create new PHI nodes at the
5332 start of BB. */
5333 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5334 {
5335 gimple phi, new_phi;
5336
5337 phi = gsi_stmt (gsi);
5338 var = gimple_phi_result (phi);
5339 new_phi = create_phi_node (var, bb);
5340 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5341 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5342 UNKNOWN_LOCATION);
5343 }
5344
5345 /* Add the arguments we have stored on edges. */
5346 FOR_EACH_EDGE (e, ei, bb->preds)
5347 {
5348 if (e == fallthru)
5349 continue;
5350
5351 flush_pending_stmts (e);
5352 }
5353 }
5354
5355
5356 /* Return a non-special label in the head of basic block BLOCK.
5357 Create one if it doesn't exist. */
5358
5359 tree
5360 gimple_block_label (basic_block bb)
5361 {
5362 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5363 bool first = true;
5364 tree label;
5365 gimple stmt;
5366
5367 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5368 {
5369 stmt = gsi_stmt (i);
5370 if (gimple_code (stmt) != GIMPLE_LABEL)
5371 break;
5372 label = gimple_label_label (stmt);
5373 if (!DECL_NONLOCAL (label))
5374 {
5375 if (!first)
5376 gsi_move_before (&i, &s);
5377 return label;
5378 }
5379 }
5380
5381 label = create_artificial_label (UNKNOWN_LOCATION);
5382 stmt = gimple_build_label (label);
5383 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5384 return label;
5385 }
5386
5387
5388 /* Attempt to perform edge redirection by replacing a possibly complex
5389 jump instruction by a goto or by removing the jump completely.
5390 This can apply only if all edges now point to the same block. The
5391 parameters and return values are equivalent to
5392 redirect_edge_and_branch. */
5393
5394 static edge
5395 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5396 {
5397 basic_block src = e->src;
5398 gimple_stmt_iterator i;
5399 gimple stmt;
5400
5401 /* We can replace or remove a complex jump only when we have exactly
5402 two edges. */
5403 if (EDGE_COUNT (src->succs) != 2
5404 /* Verify that all targets will be TARGET. Specifically, the
5405 edge that is not E must also go to TARGET. */
5406 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5407 return NULL;
5408
5409 i = gsi_last_bb (src);
5410 if (gsi_end_p (i))
5411 return NULL;
5412
5413 stmt = gsi_stmt (i);
5414
5415 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5416 {
5417 gsi_remove (&i, true);
5418 e = ssa_redirect_edge (e, target);
5419 e->flags = EDGE_FALLTHRU;
5420 return e;
5421 }
5422
5423 return NULL;
5424 }
5425
5426
5427 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5428 edge representing the redirected branch. */
5429
5430 static edge
5431 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5432 {
5433 basic_block bb = e->src;
5434 gimple_stmt_iterator gsi;
5435 edge ret;
5436 gimple stmt;
5437
5438 if (e->flags & EDGE_ABNORMAL)
5439 return NULL;
5440
5441 if (e->dest == dest)
5442 return NULL;
5443
5444 if (e->flags & EDGE_EH)
5445 return redirect_eh_edge (e, dest);
5446
5447 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5448 {
5449 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5450 if (ret)
5451 return ret;
5452 }
5453
5454 gsi = gsi_last_bb (bb);
5455 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5456
5457 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5458 {
5459 case GIMPLE_COND:
5460 /* For COND_EXPR, we only need to redirect the edge. */
5461 break;
5462
5463 case GIMPLE_GOTO:
5464 /* No non-abnormal edges should lead from a non-simple goto, and
5465 simple ones should be represented implicitly. */
5466 gcc_unreachable ();
5467
5468 case GIMPLE_SWITCH:
5469 {
5470 tree label = gimple_block_label (dest);
5471 tree cases = get_cases_for_edge (e, stmt);
5472
5473 /* If we have a list of cases associated with E, then use it
5474 as it's a lot faster than walking the entire case vector. */
5475 if (cases)
5476 {
5477 edge e2 = find_edge (e->src, dest);
5478 tree last, first;
5479
5480 first = cases;
5481 while (cases)
5482 {
5483 last = cases;
5484 CASE_LABEL (cases) = label;
5485 cases = CASE_CHAIN (cases);
5486 }
5487
5488 /* If there was already an edge in the CFG, then we need
5489 to move all the cases associated with E to E2. */
5490 if (e2)
5491 {
5492 tree cases2 = get_cases_for_edge (e2, stmt);
5493
5494 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5495 CASE_CHAIN (cases2) = first;
5496 }
5497 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5498 }
5499 else
5500 {
5501 size_t i, n = gimple_switch_num_labels (stmt);
5502
5503 for (i = 0; i < n; i++)
5504 {
5505 tree elt = gimple_switch_label (stmt, i);
5506 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5507 CASE_LABEL (elt) = label;
5508 }
5509 }
5510 }
5511 break;
5512
5513 case GIMPLE_ASM:
5514 {
5515 int i, n = gimple_asm_nlabels (stmt);
5516 tree label = NULL;
5517
5518 for (i = 0; i < n; ++i)
5519 {
5520 tree cons = gimple_asm_label_op (stmt, i);
5521 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5522 {
5523 if (!label)
5524 label = gimple_block_label (dest);
5525 TREE_VALUE (cons) = label;
5526 }
5527 }
5528
5529 /* If we didn't find any label matching the former edge in the
5530 asm labels, we must be redirecting the fallthrough
5531 edge. */
5532 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5533 }
5534 break;
5535
5536 case GIMPLE_RETURN:
5537 gsi_remove (&gsi, true);
5538 e->flags |= EDGE_FALLTHRU;
5539 break;
5540
5541 case GIMPLE_OMP_RETURN:
5542 case GIMPLE_OMP_CONTINUE:
5543 case GIMPLE_OMP_SECTIONS_SWITCH:
5544 case GIMPLE_OMP_FOR:
5545 /* The edges from OMP constructs can be simply redirected. */
5546 break;
5547
5548 case GIMPLE_EH_DISPATCH:
5549 if (!(e->flags & EDGE_FALLTHRU))
5550 redirect_eh_dispatch_edge (stmt, e, dest);
5551 break;
5552
5553 case GIMPLE_TRANSACTION:
5554 /* The ABORT edge has a stored label associated with it, otherwise
5555 the edges are simply redirectable. */
5556 if (e->flags == 0)
5557 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5558 break;
5559
5560 default:
5561 /* Otherwise it must be a fallthru edge, and we don't need to
5562 do anything besides redirecting it. */
5563 gcc_assert (e->flags & EDGE_FALLTHRU);
5564 break;
5565 }
5566
5567 /* Update/insert PHI nodes as necessary. */
5568
5569 /* Now update the edges in the CFG. */
5570 e = ssa_redirect_edge (e, dest);
5571
5572 return e;
5573 }
5574
5575 /* Returns true if it is possible to remove edge E by redirecting
5576 it to the destination of the other edge from E->src. */
5577
5578 static bool
5579 gimple_can_remove_branch_p (const_edge e)
5580 {
5581 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5582 return false;
5583
5584 return true;
5585 }
5586
5587 /* Simple wrapper, as we can always redirect fallthru edges. */
5588
5589 static basic_block
5590 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5591 {
5592 e = gimple_redirect_edge_and_branch (e, dest);
5593 gcc_assert (e);
5594
5595 return NULL;
5596 }
5597
5598
5599 /* Splits basic block BB after statement STMT (but at least after the
5600 labels). If STMT is NULL, BB is split just after the labels. */
5601
5602 static basic_block
5603 gimple_split_block (basic_block bb, void *stmt)
5604 {
5605 gimple_stmt_iterator gsi;
5606 gimple_stmt_iterator gsi_tgt;
5607 gimple act;
5608 gimple_seq list;
5609 basic_block new_bb;
5610 edge e;
5611 edge_iterator ei;
5612
5613 new_bb = create_empty_bb (bb);
5614
5615 /* Redirect the outgoing edges. */
5616 new_bb->succs = bb->succs;
5617 bb->succs = NULL;
5618 FOR_EACH_EDGE (e, ei, new_bb->succs)
5619 e->src = new_bb;
5620
5621 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5622 stmt = NULL;
5623
5624 /* Move everything from GSI to the new basic block. */
5625 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5626 {
5627 act = gsi_stmt (gsi);
5628 if (gimple_code (act) == GIMPLE_LABEL)
5629 continue;
5630
5631 if (!stmt)
5632 break;
5633
5634 if (stmt == act)
5635 {
5636 gsi_next (&gsi);
5637 break;
5638 }
5639 }
5640
5641 if (gsi_end_p (gsi))
5642 return new_bb;
5643
5644 /* Split the statement list - avoid re-creating new containers as this
5645 brings ugly quadratic memory consumption in the inliner.
5646 (We are still quadratic since we need to update stmt BB pointers,
5647 sadly.) */
5648 gsi_split_seq_before (&gsi, &list);
5649 set_bb_seq (new_bb, list);
5650 for (gsi_tgt = gsi_start (list);
5651 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5652 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5653
5654 return new_bb;
5655 }
5656
5657
5658 /* Moves basic block BB after block AFTER. */
5659
5660 static bool
5661 gimple_move_block_after (basic_block bb, basic_block after)
5662 {
5663 if (bb->prev_bb == after)
5664 return true;
5665
5666 unlink_block (bb);
5667 link_block (bb, after);
5668
5669 return true;
5670 }
5671
5672
5673 /* Return TRUE if block BB has no executable statements, otherwise return
5674 FALSE. */
5675
5676 static bool
5677 gimple_empty_block_p (basic_block bb)
5678 {
5679 /* BB must have no executable statements. */
5680 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5681 if (phi_nodes (bb))
5682 return false;
5683 if (gsi_end_p (gsi))
5684 return true;
5685 if (is_gimple_debug (gsi_stmt (gsi)))
5686 gsi_next_nondebug (&gsi);
5687 return gsi_end_p (gsi);
5688 }
5689
5690
5691 /* Split a basic block if it ends with a conditional branch and if the
5692 other part of the block is not empty. */
5693
5694 static basic_block
5695 gimple_split_block_before_cond_jump (basic_block bb)
5696 {
5697 gimple last, split_point;
5698 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5699 if (gsi_end_p (gsi))
5700 return NULL;
5701 last = gsi_stmt (gsi);
5702 if (gimple_code (last) != GIMPLE_COND
5703 && gimple_code (last) != GIMPLE_SWITCH)
5704 return NULL;
5705 gsi_prev_nondebug (&gsi);
5706 split_point = gsi_stmt (gsi);
5707 return split_block (bb, split_point)->dest;
5708 }
5709
5710
5711 /* Return true if basic_block can be duplicated. */
5712
5713 static bool
5714 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5715 {
5716 return true;
5717 }
5718
5719 /* Create a duplicate of the basic block BB. NOTE: This does not
5720 preserve SSA form. */
5721
5722 static basic_block
5723 gimple_duplicate_bb (basic_block bb)
5724 {
5725 basic_block new_bb;
5726 gimple_stmt_iterator gsi, gsi_tgt;
5727 gimple_seq phis = phi_nodes (bb);
5728 gimple phi, stmt, copy;
5729
5730 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5731
5732 /* Copy the PHI nodes. We ignore PHI node arguments here because
5733 the incoming edges have not been setup yet. */
5734 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5735 {
5736 phi = gsi_stmt (gsi);
5737 copy = create_phi_node (NULL_TREE, new_bb);
5738 create_new_def_for (gimple_phi_result (phi), copy,
5739 gimple_phi_result_ptr (copy));
5740 gimple_set_uid (copy, gimple_uid (phi));
5741 }
5742
5743 gsi_tgt = gsi_start_bb (new_bb);
5744 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5745 {
5746 def_operand_p def_p;
5747 ssa_op_iter op_iter;
5748 tree lhs;
5749
5750 stmt = gsi_stmt (gsi);
5751 if (gimple_code (stmt) == GIMPLE_LABEL)
5752 continue;
5753
5754 /* Don't duplicate label debug stmts. */
5755 if (gimple_debug_bind_p (stmt)
5756 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5757 == LABEL_DECL)
5758 continue;
5759
5760 /* Create a new copy of STMT and duplicate STMT's virtual
5761 operands. */
5762 copy = gimple_copy (stmt);
5763 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5764
5765 maybe_duplicate_eh_stmt (copy, stmt);
5766 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5767
5768 /* When copying around a stmt writing into a local non-user
5769 aggregate, make sure it won't share stack slot with other
5770 vars. */
5771 lhs = gimple_get_lhs (stmt);
5772 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5773 {
5774 tree base = get_base_address (lhs);
5775 if (base
5776 && (TREE_CODE (base) == VAR_DECL
5777 || TREE_CODE (base) == RESULT_DECL)
5778 && DECL_IGNORED_P (base)
5779 && !TREE_STATIC (base)
5780 && !DECL_EXTERNAL (base)
5781 && (TREE_CODE (base) != VAR_DECL
5782 || !DECL_HAS_VALUE_EXPR_P (base)))
5783 DECL_NONSHAREABLE (base) = 1;
5784 }
5785
5786 /* Create new names for all the definitions created by COPY and
5787 add replacement mappings for each new name. */
5788 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5789 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5790 }
5791
5792 return new_bb;
5793 }
5794
5795 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5796
5797 static void
5798 add_phi_args_after_copy_edge (edge e_copy)
5799 {
5800 basic_block bb, bb_copy = e_copy->src, dest;
5801 edge e;
5802 edge_iterator ei;
5803 gimple phi, phi_copy;
5804 tree def;
5805 gimple_stmt_iterator psi, psi_copy;
5806
5807 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5808 return;
5809
5810 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5811
5812 if (e_copy->dest->flags & BB_DUPLICATED)
5813 dest = get_bb_original (e_copy->dest);
5814 else
5815 dest = e_copy->dest;
5816
5817 e = find_edge (bb, dest);
5818 if (!e)
5819 {
5820 /* During loop unrolling the target of the latch edge is copied.
5821 In this case we are not looking for edge to dest, but to
5822 duplicated block whose original was dest. */
5823 FOR_EACH_EDGE (e, ei, bb->succs)
5824 {
5825 if ((e->dest->flags & BB_DUPLICATED)
5826 && get_bb_original (e->dest) == dest)
5827 break;
5828 }
5829
5830 gcc_assert (e != NULL);
5831 }
5832
5833 for (psi = gsi_start_phis (e->dest),
5834 psi_copy = gsi_start_phis (e_copy->dest);
5835 !gsi_end_p (psi);
5836 gsi_next (&psi), gsi_next (&psi_copy))
5837 {
5838 phi = gsi_stmt (psi);
5839 phi_copy = gsi_stmt (psi_copy);
5840 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5841 add_phi_arg (phi_copy, def, e_copy,
5842 gimple_phi_arg_location_from_edge (phi, e));
5843 }
5844 }
5845
5846
5847 /* Basic block BB_COPY was created by code duplication. Add phi node
5848 arguments for edges going out of BB_COPY. The blocks that were
5849 duplicated have BB_DUPLICATED set. */
5850
5851 void
5852 add_phi_args_after_copy_bb (basic_block bb_copy)
5853 {
5854 edge e_copy;
5855 edge_iterator ei;
5856
5857 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5858 {
5859 add_phi_args_after_copy_edge (e_copy);
5860 }
5861 }
5862
5863 /* Blocks in REGION_COPY array of length N_REGION were created by
5864 duplication of basic blocks. Add phi node arguments for edges
5865 going from these blocks. If E_COPY is not NULL, also add
5866 phi node arguments for its destination.*/
5867
5868 void
5869 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5870 edge e_copy)
5871 {
5872 unsigned i;
5873
5874 for (i = 0; i < n_region; i++)
5875 region_copy[i]->flags |= BB_DUPLICATED;
5876
5877 for (i = 0; i < n_region; i++)
5878 add_phi_args_after_copy_bb (region_copy[i]);
5879 if (e_copy)
5880 add_phi_args_after_copy_edge (e_copy);
5881
5882 for (i = 0; i < n_region; i++)
5883 region_copy[i]->flags &= ~BB_DUPLICATED;
5884 }
5885
5886 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5887 important exit edge EXIT. By important we mean that no SSA name defined
5888 inside region is live over the other exit edges of the region. All entry
5889 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5890 to the duplicate of the region. Dominance and loop information is
5891 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5892 UPDATE_DOMINANCE is false then we assume that the caller will update the
5893 dominance information after calling this function. The new basic
5894 blocks are stored to REGION_COPY in the same order as they had in REGION,
5895 provided that REGION_COPY is not NULL.
5896 The function returns false if it is unable to copy the region,
5897 true otherwise. */
5898
5899 bool
5900 gimple_duplicate_sese_region (edge entry, edge exit,
5901 basic_block *region, unsigned n_region,
5902 basic_block *region_copy,
5903 bool update_dominance)
5904 {
5905 unsigned i;
5906 bool free_region_copy = false, copying_header = false;
5907 struct loop *loop = entry->dest->loop_father;
5908 edge exit_copy;
5909 vec<basic_block> doms;
5910 edge redirected;
5911 int total_freq = 0, entry_freq = 0;
5912 gcov_type total_count = 0, entry_count = 0;
5913
5914 if (!can_copy_bbs_p (region, n_region))
5915 return false;
5916
5917 /* Some sanity checking. Note that we do not check for all possible
5918 missuses of the functions. I.e. if you ask to copy something weird,
5919 it will work, but the state of structures probably will not be
5920 correct. */
5921 for (i = 0; i < n_region; i++)
5922 {
5923 /* We do not handle subloops, i.e. all the blocks must belong to the
5924 same loop. */
5925 if (region[i]->loop_father != loop)
5926 return false;
5927
5928 if (region[i] != entry->dest
5929 && region[i] == loop->header)
5930 return false;
5931 }
5932
5933 /* In case the function is used for loop header copying (which is the primary
5934 use), ensure that EXIT and its copy will be new latch and entry edges. */
5935 if (loop->header == entry->dest)
5936 {
5937 copying_header = true;
5938
5939 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5940 return false;
5941
5942 for (i = 0; i < n_region; i++)
5943 if (region[i] != exit->src
5944 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5945 return false;
5946 }
5947
5948 initialize_original_copy_tables ();
5949
5950 if (copying_header)
5951 set_loop_copy (loop, loop_outer (loop));
5952 else
5953 set_loop_copy (loop, loop);
5954
5955 if (!region_copy)
5956 {
5957 region_copy = XNEWVEC (basic_block, n_region);
5958 free_region_copy = true;
5959 }
5960
5961 /* Record blocks outside the region that are dominated by something
5962 inside. */
5963 if (update_dominance)
5964 {
5965 doms.create (0);
5966 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5967 }
5968
5969 if (entry->dest->count)
5970 {
5971 total_count = entry->dest->count;
5972 entry_count = entry->count;
5973 /* Fix up corner cases, to avoid division by zero or creation of negative
5974 frequencies. */
5975 if (entry_count > total_count)
5976 entry_count = total_count;
5977 }
5978 else
5979 {
5980 total_freq = entry->dest->frequency;
5981 entry_freq = EDGE_FREQUENCY (entry);
5982 /* Fix up corner cases, to avoid division by zero or creation of negative
5983 frequencies. */
5984 if (total_freq == 0)
5985 total_freq = 1;
5986 else if (entry_freq > total_freq)
5987 entry_freq = total_freq;
5988 }
5989
5990 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5991 split_edge_bb_loc (entry), update_dominance);
5992 if (total_count)
5993 {
5994 scale_bbs_frequencies_gcov_type (region, n_region,
5995 total_count - entry_count,
5996 total_count);
5997 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5998 total_count);
5999 }
6000 else
6001 {
6002 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
6003 total_freq);
6004 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
6005 }
6006
6007 if (copying_header)
6008 {
6009 loop->header = exit->dest;
6010 loop->latch = exit->src;
6011 }
6012
6013 /* Redirect the entry and add the phi node arguments. */
6014 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6015 gcc_assert (redirected != NULL);
6016 flush_pending_stmts (entry);
6017
6018 /* Concerning updating of dominators: We must recount dominators
6019 for entry block and its copy. Anything that is outside of the
6020 region, but was dominated by something inside needs recounting as
6021 well. */
6022 if (update_dominance)
6023 {
6024 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6025 doms.safe_push (get_bb_original (entry->dest));
6026 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6027 doms.release ();
6028 }
6029
6030 /* Add the other PHI node arguments. */
6031 add_phi_args_after_copy (region_copy, n_region, NULL);
6032
6033 if (free_region_copy)
6034 free (region_copy);
6035
6036 free_original_copy_tables ();
6037 return true;
6038 }
6039
6040 /* Checks if BB is part of the region defined by N_REGION BBS. */
6041 static bool
6042 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6043 {
6044 unsigned int n;
6045
6046 for (n = 0; n < n_region; n++)
6047 {
6048 if (bb == bbs[n])
6049 return true;
6050 }
6051 return false;
6052 }
6053
6054 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6055 are stored to REGION_COPY in the same order in that they appear
6056 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6057 the region, EXIT an exit from it. The condition guarding EXIT
6058 is moved to ENTRY. Returns true if duplication succeeds, false
6059 otherwise.
6060
6061 For example,
6062
6063 some_code;
6064 if (cond)
6065 A;
6066 else
6067 B;
6068
6069 is transformed to
6070
6071 if (cond)
6072 {
6073 some_code;
6074 A;
6075 }
6076 else
6077 {
6078 some_code;
6079 B;
6080 }
6081 */
6082
6083 bool
6084 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6085 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6086 basic_block *region_copy ATTRIBUTE_UNUSED)
6087 {
6088 unsigned i;
6089 bool free_region_copy = false;
6090 struct loop *loop = exit->dest->loop_father;
6091 struct loop *orig_loop = entry->dest->loop_father;
6092 basic_block switch_bb, entry_bb, nentry_bb;
6093 vec<basic_block> doms;
6094 int total_freq = 0, exit_freq = 0;
6095 gcov_type total_count = 0, exit_count = 0;
6096 edge exits[2], nexits[2], e;
6097 gimple_stmt_iterator gsi;
6098 gimple cond_stmt;
6099 edge sorig, snew;
6100 basic_block exit_bb;
6101 gimple_stmt_iterator psi;
6102 gimple phi;
6103 tree def;
6104 struct loop *target, *aloop, *cloop;
6105
6106 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6107 exits[0] = exit;
6108 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6109
6110 if (!can_copy_bbs_p (region, n_region))
6111 return false;
6112
6113 initialize_original_copy_tables ();
6114 set_loop_copy (orig_loop, loop);
6115
6116 target= loop;
6117 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6118 {
6119 if (bb_part_of_region_p (aloop->header, region, n_region))
6120 {
6121 cloop = duplicate_loop (aloop, target);
6122 duplicate_subloops (aloop, cloop);
6123 }
6124 }
6125
6126 if (!region_copy)
6127 {
6128 region_copy = XNEWVEC (basic_block, n_region);
6129 free_region_copy = true;
6130 }
6131
6132 gcc_assert (!need_ssa_update_p (cfun));
6133
6134 /* Record blocks outside the region that are dominated by something
6135 inside. */
6136 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6137
6138 if (exit->src->count)
6139 {
6140 total_count = exit->src->count;
6141 exit_count = exit->count;
6142 /* Fix up corner cases, to avoid division by zero or creation of negative
6143 frequencies. */
6144 if (exit_count > total_count)
6145 exit_count = total_count;
6146 }
6147 else
6148 {
6149 total_freq = exit->src->frequency;
6150 exit_freq = EDGE_FREQUENCY (exit);
6151 /* Fix up corner cases, to avoid division by zero or creation of negative
6152 frequencies. */
6153 if (total_freq == 0)
6154 total_freq = 1;
6155 if (exit_freq > total_freq)
6156 exit_freq = total_freq;
6157 }
6158
6159 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6160 split_edge_bb_loc (exit), true);
6161 if (total_count)
6162 {
6163 scale_bbs_frequencies_gcov_type (region, n_region,
6164 total_count - exit_count,
6165 total_count);
6166 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6167 total_count);
6168 }
6169 else
6170 {
6171 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6172 total_freq);
6173 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6174 }
6175
6176 /* Create the switch block, and put the exit condition to it. */
6177 entry_bb = entry->dest;
6178 nentry_bb = get_bb_copy (entry_bb);
6179 if (!last_stmt (entry->src)
6180 || !stmt_ends_bb_p (last_stmt (entry->src)))
6181 switch_bb = entry->src;
6182 else
6183 switch_bb = split_edge (entry);
6184 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6185
6186 gsi = gsi_last_bb (switch_bb);
6187 cond_stmt = last_stmt (exit->src);
6188 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6189 cond_stmt = gimple_copy (cond_stmt);
6190
6191 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6192
6193 sorig = single_succ_edge (switch_bb);
6194 sorig->flags = exits[1]->flags;
6195 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6196
6197 /* Register the new edge from SWITCH_BB in loop exit lists. */
6198 rescan_loop_exit (snew, true, false);
6199
6200 /* Add the PHI node arguments. */
6201 add_phi_args_after_copy (region_copy, n_region, snew);
6202
6203 /* Get rid of now superfluous conditions and associated edges (and phi node
6204 arguments). */
6205 exit_bb = exit->dest;
6206
6207 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6208 PENDING_STMT (e) = NULL;
6209
6210 /* The latch of ORIG_LOOP was copied, and so was the backedge
6211 to the original header. We redirect this backedge to EXIT_BB. */
6212 for (i = 0; i < n_region; i++)
6213 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6214 {
6215 gcc_assert (single_succ_edge (region_copy[i]));
6216 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6217 PENDING_STMT (e) = NULL;
6218 for (psi = gsi_start_phis (exit_bb);
6219 !gsi_end_p (psi);
6220 gsi_next (&psi))
6221 {
6222 phi = gsi_stmt (psi);
6223 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6224 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6225 }
6226 }
6227 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6228 PENDING_STMT (e) = NULL;
6229
6230 /* Anything that is outside of the region, but was dominated by something
6231 inside needs to update dominance info. */
6232 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6233 doms.release ();
6234 /* Update the SSA web. */
6235 update_ssa (TODO_update_ssa);
6236
6237 if (free_region_copy)
6238 free (region_copy);
6239
6240 free_original_copy_tables ();
6241 return true;
6242 }
6243
6244 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6245 adding blocks when the dominator traversal reaches EXIT. This
6246 function silently assumes that ENTRY strictly dominates EXIT. */
6247
6248 void
6249 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6250 vec<basic_block> *bbs_p)
6251 {
6252 basic_block son;
6253
6254 for (son = first_dom_son (CDI_DOMINATORS, entry);
6255 son;
6256 son = next_dom_son (CDI_DOMINATORS, son))
6257 {
6258 bbs_p->safe_push (son);
6259 if (son != exit)
6260 gather_blocks_in_sese_region (son, exit, bbs_p);
6261 }
6262 }
6263
6264 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6265 The duplicates are recorded in VARS_MAP. */
6266
6267 static void
6268 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6269 tree to_context)
6270 {
6271 tree t = *tp, new_t;
6272 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6273
6274 if (DECL_CONTEXT (t) == to_context)
6275 return;
6276
6277 bool existed;
6278 tree &loc = vars_map->get_or_insert (t, &existed);
6279
6280 if (!existed)
6281 {
6282 if (SSA_VAR_P (t))
6283 {
6284 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6285 add_local_decl (f, new_t);
6286 }
6287 else
6288 {
6289 gcc_assert (TREE_CODE (t) == CONST_DECL);
6290 new_t = copy_node (t);
6291 }
6292 DECL_CONTEXT (new_t) = to_context;
6293
6294 loc = new_t;
6295 }
6296 else
6297 new_t = loc;
6298
6299 *tp = new_t;
6300 }
6301
6302
6303 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6304 VARS_MAP maps old ssa names and var_decls to the new ones. */
6305
6306 static tree
6307 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6308 tree to_context)
6309 {
6310 tree new_name;
6311
6312 gcc_assert (!virtual_operand_p (name));
6313
6314 tree *loc = vars_map->get (name);
6315
6316 if (!loc)
6317 {
6318 tree decl = SSA_NAME_VAR (name);
6319 if (decl)
6320 {
6321 replace_by_duplicate_decl (&decl, vars_map, to_context);
6322 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6323 decl, SSA_NAME_DEF_STMT (name));
6324 if (SSA_NAME_IS_DEFAULT_DEF (name))
6325 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6326 decl, new_name);
6327 }
6328 else
6329 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6330 name, SSA_NAME_DEF_STMT (name));
6331
6332 vars_map->put (name, new_name);
6333 }
6334 else
6335 new_name = *loc;
6336
6337 return new_name;
6338 }
6339
6340 struct move_stmt_d
6341 {
6342 tree orig_block;
6343 tree new_block;
6344 tree from_context;
6345 tree to_context;
6346 hash_map<tree, tree> *vars_map;
6347 htab_t new_label_map;
6348 hash_map<void *, void *> *eh_map;
6349 bool remap_decls_p;
6350 };
6351
6352 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6353 contained in *TP if it has been ORIG_BLOCK previously and change the
6354 DECL_CONTEXT of every local variable referenced in *TP. */
6355
6356 static tree
6357 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6358 {
6359 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6360 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6361 tree t = *tp;
6362
6363 if (EXPR_P (t))
6364 {
6365 tree block = TREE_BLOCK (t);
6366 if (block == p->orig_block
6367 || (p->orig_block == NULL_TREE
6368 && block != NULL_TREE))
6369 TREE_SET_BLOCK (t, p->new_block);
6370 #ifdef ENABLE_CHECKING
6371 else if (block != NULL_TREE)
6372 {
6373 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6374 block = BLOCK_SUPERCONTEXT (block);
6375 gcc_assert (block == p->orig_block);
6376 }
6377 #endif
6378 }
6379 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6380 {
6381 if (TREE_CODE (t) == SSA_NAME)
6382 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6383 else if (TREE_CODE (t) == LABEL_DECL)
6384 {
6385 if (p->new_label_map)
6386 {
6387 struct tree_map in, *out;
6388 in.base.from = t;
6389 out = (struct tree_map *)
6390 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6391 if (out)
6392 *tp = t = out->to;
6393 }
6394
6395 DECL_CONTEXT (t) = p->to_context;
6396 }
6397 else if (p->remap_decls_p)
6398 {
6399 /* Replace T with its duplicate. T should no longer appear in the
6400 parent function, so this looks wasteful; however, it may appear
6401 in referenced_vars, and more importantly, as virtual operands of
6402 statements, and in alias lists of other variables. It would be
6403 quite difficult to expunge it from all those places. ??? It might
6404 suffice to do this for addressable variables. */
6405 if ((TREE_CODE (t) == VAR_DECL
6406 && !is_global_var (t))
6407 || TREE_CODE (t) == CONST_DECL)
6408 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6409 }
6410 *walk_subtrees = 0;
6411 }
6412 else if (TYPE_P (t))
6413 *walk_subtrees = 0;
6414
6415 return NULL_TREE;
6416 }
6417
6418 /* Helper for move_stmt_r. Given an EH region number for the source
6419 function, map that to the duplicate EH regio number in the dest. */
6420
6421 static int
6422 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6423 {
6424 eh_region old_r, new_r;
6425
6426 old_r = get_eh_region_from_number (old_nr);
6427 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6428
6429 return new_r->index;
6430 }
6431
6432 /* Similar, but operate on INTEGER_CSTs. */
6433
6434 static tree
6435 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6436 {
6437 int old_nr, new_nr;
6438
6439 old_nr = tree_to_shwi (old_t_nr);
6440 new_nr = move_stmt_eh_region_nr (old_nr, p);
6441
6442 return build_int_cst (integer_type_node, new_nr);
6443 }
6444
6445 /* Like move_stmt_op, but for gimple statements.
6446
6447 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6448 contained in the current statement in *GSI_P and change the
6449 DECL_CONTEXT of every local variable referenced in the current
6450 statement. */
6451
6452 static tree
6453 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6454 struct walk_stmt_info *wi)
6455 {
6456 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6457 gimple stmt = gsi_stmt (*gsi_p);
6458 tree block = gimple_block (stmt);
6459
6460 if (block == p->orig_block
6461 || (p->orig_block == NULL_TREE
6462 && block != NULL_TREE))
6463 gimple_set_block (stmt, p->new_block);
6464
6465 switch (gimple_code (stmt))
6466 {
6467 case GIMPLE_CALL:
6468 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6469 {
6470 tree r, fndecl = gimple_call_fndecl (stmt);
6471 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6472 switch (DECL_FUNCTION_CODE (fndecl))
6473 {
6474 case BUILT_IN_EH_COPY_VALUES:
6475 r = gimple_call_arg (stmt, 1);
6476 r = move_stmt_eh_region_tree_nr (r, p);
6477 gimple_call_set_arg (stmt, 1, r);
6478 /* FALLTHRU */
6479
6480 case BUILT_IN_EH_POINTER:
6481 case BUILT_IN_EH_FILTER:
6482 r = gimple_call_arg (stmt, 0);
6483 r = move_stmt_eh_region_tree_nr (r, p);
6484 gimple_call_set_arg (stmt, 0, r);
6485 break;
6486
6487 default:
6488 break;
6489 }
6490 }
6491 break;
6492
6493 case GIMPLE_RESX:
6494 {
6495 int r = gimple_resx_region (stmt);
6496 r = move_stmt_eh_region_nr (r, p);
6497 gimple_resx_set_region (stmt, r);
6498 }
6499 break;
6500
6501 case GIMPLE_EH_DISPATCH:
6502 {
6503 int r = gimple_eh_dispatch_region (stmt);
6504 r = move_stmt_eh_region_nr (r, p);
6505 gimple_eh_dispatch_set_region (stmt, r);
6506 }
6507 break;
6508
6509 case GIMPLE_OMP_RETURN:
6510 case GIMPLE_OMP_CONTINUE:
6511 break;
6512 default:
6513 if (is_gimple_omp (stmt))
6514 {
6515 /* Do not remap variables inside OMP directives. Variables
6516 referenced in clauses and directive header belong to the
6517 parent function and should not be moved into the child
6518 function. */
6519 bool save_remap_decls_p = p->remap_decls_p;
6520 p->remap_decls_p = false;
6521 *handled_ops_p = true;
6522
6523 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6524 move_stmt_op, wi);
6525
6526 p->remap_decls_p = save_remap_decls_p;
6527 }
6528 break;
6529 }
6530
6531 return NULL_TREE;
6532 }
6533
6534 /* Move basic block BB from function CFUN to function DEST_FN. The
6535 block is moved out of the original linked list and placed after
6536 block AFTER in the new list. Also, the block is removed from the
6537 original array of blocks and placed in DEST_FN's array of blocks.
6538 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6539 updated to reflect the moved edges.
6540
6541 The local variables are remapped to new instances, VARS_MAP is used
6542 to record the mapping. */
6543
6544 static void
6545 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6546 basic_block after, bool update_edge_count_p,
6547 struct move_stmt_d *d)
6548 {
6549 struct control_flow_graph *cfg;
6550 edge_iterator ei;
6551 edge e;
6552 gimple_stmt_iterator si;
6553 unsigned old_len, new_len;
6554
6555 /* Remove BB from dominance structures. */
6556 delete_from_dominance_info (CDI_DOMINATORS, bb);
6557
6558 /* Move BB from its current loop to the copy in the new function. */
6559 if (current_loops)
6560 {
6561 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6562 if (new_loop)
6563 bb->loop_father = new_loop;
6564 }
6565
6566 /* Link BB to the new linked list. */
6567 move_block_after (bb, after);
6568
6569 /* Update the edge count in the corresponding flowgraphs. */
6570 if (update_edge_count_p)
6571 FOR_EACH_EDGE (e, ei, bb->succs)
6572 {
6573 cfun->cfg->x_n_edges--;
6574 dest_cfun->cfg->x_n_edges++;
6575 }
6576
6577 /* Remove BB from the original basic block array. */
6578 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6579 cfun->cfg->x_n_basic_blocks--;
6580
6581 /* Grow DEST_CFUN's basic block array if needed. */
6582 cfg = dest_cfun->cfg;
6583 cfg->x_n_basic_blocks++;
6584 if (bb->index >= cfg->x_last_basic_block)
6585 cfg->x_last_basic_block = bb->index + 1;
6586
6587 old_len = vec_safe_length (cfg->x_basic_block_info);
6588 if ((unsigned) cfg->x_last_basic_block >= old_len)
6589 {
6590 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6591 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6592 }
6593
6594 (*cfg->x_basic_block_info)[bb->index] = bb;
6595
6596 /* Remap the variables in phi nodes. */
6597 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6598 {
6599 gimple phi = gsi_stmt (si);
6600 use_operand_p use;
6601 tree op = PHI_RESULT (phi);
6602 ssa_op_iter oi;
6603 unsigned i;
6604
6605 if (virtual_operand_p (op))
6606 {
6607 /* Remove the phi nodes for virtual operands (alias analysis will be
6608 run for the new function, anyway). */
6609 remove_phi_node (&si, true);
6610 continue;
6611 }
6612
6613 SET_PHI_RESULT (phi,
6614 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6615 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6616 {
6617 op = USE_FROM_PTR (use);
6618 if (TREE_CODE (op) == SSA_NAME)
6619 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6620 }
6621
6622 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6623 {
6624 location_t locus = gimple_phi_arg_location (phi, i);
6625 tree block = LOCATION_BLOCK (locus);
6626
6627 if (locus == UNKNOWN_LOCATION)
6628 continue;
6629 if (d->orig_block == NULL_TREE || block == d->orig_block)
6630 {
6631 if (d->new_block == NULL_TREE)
6632 locus = LOCATION_LOCUS (locus);
6633 else
6634 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6635 gimple_phi_arg_set_location (phi, i, locus);
6636 }
6637 }
6638
6639 gsi_next (&si);
6640 }
6641
6642 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6643 {
6644 gimple stmt = gsi_stmt (si);
6645 struct walk_stmt_info wi;
6646
6647 memset (&wi, 0, sizeof (wi));
6648 wi.info = d;
6649 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6650
6651 if (gimple_code (stmt) == GIMPLE_LABEL)
6652 {
6653 tree label = gimple_label_label (stmt);
6654 int uid = LABEL_DECL_UID (label);
6655
6656 gcc_assert (uid > -1);
6657
6658 old_len = vec_safe_length (cfg->x_label_to_block_map);
6659 if (old_len <= (unsigned) uid)
6660 {
6661 new_len = 3 * uid / 2 + 1;
6662 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6663 }
6664
6665 (*cfg->x_label_to_block_map)[uid] = bb;
6666 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6667
6668 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6669
6670 if (uid >= dest_cfun->cfg->last_label_uid)
6671 dest_cfun->cfg->last_label_uid = uid + 1;
6672 }
6673
6674 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6675 remove_stmt_from_eh_lp_fn (cfun, stmt);
6676
6677 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6678 gimple_remove_stmt_histograms (cfun, stmt);
6679
6680 /* We cannot leave any operands allocated from the operand caches of
6681 the current function. */
6682 free_stmt_operands (cfun, stmt);
6683 push_cfun (dest_cfun);
6684 update_stmt (stmt);
6685 pop_cfun ();
6686 }
6687
6688 FOR_EACH_EDGE (e, ei, bb->succs)
6689 if (e->goto_locus != UNKNOWN_LOCATION)
6690 {
6691 tree block = LOCATION_BLOCK (e->goto_locus);
6692 if (d->orig_block == NULL_TREE
6693 || block == d->orig_block)
6694 e->goto_locus = d->new_block ?
6695 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6696 LOCATION_LOCUS (e->goto_locus);
6697 }
6698 }
6699
6700 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6701 the outermost EH region. Use REGION as the incoming base EH region. */
6702
6703 static eh_region
6704 find_outermost_region_in_block (struct function *src_cfun,
6705 basic_block bb, eh_region region)
6706 {
6707 gimple_stmt_iterator si;
6708
6709 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6710 {
6711 gimple stmt = gsi_stmt (si);
6712 eh_region stmt_region;
6713 int lp_nr;
6714
6715 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6716 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6717 if (stmt_region)
6718 {
6719 if (region == NULL)
6720 region = stmt_region;
6721 else if (stmt_region != region)
6722 {
6723 region = eh_region_outermost (src_cfun, stmt_region, region);
6724 gcc_assert (region != NULL);
6725 }
6726 }
6727 }
6728
6729 return region;
6730 }
6731
6732 static tree
6733 new_label_mapper (tree decl, void *data)
6734 {
6735 htab_t hash = (htab_t) data;
6736 struct tree_map *m;
6737 void **slot;
6738
6739 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6740
6741 m = XNEW (struct tree_map);
6742 m->hash = DECL_UID (decl);
6743 m->base.from = decl;
6744 m->to = create_artificial_label (UNKNOWN_LOCATION);
6745 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6746 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6747 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6748
6749 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6750 gcc_assert (*slot == NULL);
6751
6752 *slot = m;
6753
6754 return m->to;
6755 }
6756
6757 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6758 subblocks. */
6759
6760 static void
6761 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
6762 tree to_context)
6763 {
6764 tree *tp, t;
6765
6766 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6767 {
6768 t = *tp;
6769 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6770 continue;
6771 replace_by_duplicate_decl (&t, vars_map, to_context);
6772 if (t != *tp)
6773 {
6774 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6775 {
6776 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6777 DECL_HAS_VALUE_EXPR_P (t) = 1;
6778 }
6779 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6780 *tp = t;
6781 }
6782 }
6783
6784 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6785 replace_block_vars_by_duplicates (block, vars_map, to_context);
6786 }
6787
6788 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6789 from FN1 to FN2. */
6790
6791 static void
6792 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6793 struct loop *loop)
6794 {
6795 /* Discard it from the old loop array. */
6796 (*get_loops (fn1))[loop->num] = NULL;
6797
6798 /* Place it in the new loop array, assigning it a new number. */
6799 loop->num = number_of_loops (fn2);
6800 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6801
6802 /* Recurse to children. */
6803 for (loop = loop->inner; loop; loop = loop->next)
6804 fixup_loop_arrays_after_move (fn1, fn2, loop);
6805 }
6806
6807 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6808 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6809 single basic block in the original CFG and the new basic block is
6810 returned. DEST_CFUN must not have a CFG yet.
6811
6812 Note that the region need not be a pure SESE region. Blocks inside
6813 the region may contain calls to abort/exit. The only restriction
6814 is that ENTRY_BB should be the only entry point and it must
6815 dominate EXIT_BB.
6816
6817 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6818 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6819 to the new function.
6820
6821 All local variables referenced in the region are assumed to be in
6822 the corresponding BLOCK_VARS and unexpanded variable lists
6823 associated with DEST_CFUN. */
6824
6825 basic_block
6826 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6827 basic_block exit_bb, tree orig_block)
6828 {
6829 vec<basic_block> bbs, dom_bbs;
6830 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6831 basic_block after, bb, *entry_pred, *exit_succ, abb;
6832 struct function *saved_cfun = cfun;
6833 int *entry_flag, *exit_flag;
6834 unsigned *entry_prob, *exit_prob;
6835 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6836 edge e;
6837 edge_iterator ei;
6838 htab_t new_label_map;
6839 hash_map<void *, void *> *eh_map;
6840 struct loop *loop = entry_bb->loop_father;
6841 struct loop *loop0 = get_loop (saved_cfun, 0);
6842 struct move_stmt_d d;
6843
6844 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6845 region. */
6846 gcc_assert (entry_bb != exit_bb
6847 && (!exit_bb
6848 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6849
6850 /* Collect all the blocks in the region. Manually add ENTRY_BB
6851 because it won't be added by dfs_enumerate_from. */
6852 bbs.create (0);
6853 bbs.safe_push (entry_bb);
6854 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6855
6856 /* The blocks that used to be dominated by something in BBS will now be
6857 dominated by the new block. */
6858 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6859 bbs.address (),
6860 bbs.length ());
6861
6862 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6863 the predecessor edges to ENTRY_BB and the successor edges to
6864 EXIT_BB so that we can re-attach them to the new basic block that
6865 will replace the region. */
6866 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6867 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6868 entry_flag = XNEWVEC (int, num_entry_edges);
6869 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6870 i = 0;
6871 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6872 {
6873 entry_prob[i] = e->probability;
6874 entry_flag[i] = e->flags;
6875 entry_pred[i++] = e->src;
6876 remove_edge (e);
6877 }
6878
6879 if (exit_bb)
6880 {
6881 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6882 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6883 exit_flag = XNEWVEC (int, num_exit_edges);
6884 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6885 i = 0;
6886 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6887 {
6888 exit_prob[i] = e->probability;
6889 exit_flag[i] = e->flags;
6890 exit_succ[i++] = e->dest;
6891 remove_edge (e);
6892 }
6893 }
6894 else
6895 {
6896 num_exit_edges = 0;
6897 exit_succ = NULL;
6898 exit_flag = NULL;
6899 exit_prob = NULL;
6900 }
6901
6902 /* Switch context to the child function to initialize DEST_FN's CFG. */
6903 gcc_assert (dest_cfun->cfg == NULL);
6904 push_cfun (dest_cfun);
6905
6906 init_empty_tree_cfg ();
6907
6908 /* Initialize EH information for the new function. */
6909 eh_map = NULL;
6910 new_label_map = NULL;
6911 if (saved_cfun->eh)
6912 {
6913 eh_region region = NULL;
6914
6915 FOR_EACH_VEC_ELT (bbs, i, bb)
6916 region = find_outermost_region_in_block (saved_cfun, bb, region);
6917
6918 init_eh_for_function ();
6919 if (region != NULL)
6920 {
6921 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6922 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6923 new_label_mapper, new_label_map);
6924 }
6925 }
6926
6927 /* Initialize an empty loop tree. */
6928 struct loops *loops = ggc_cleared_alloc<struct loops> ();
6929 init_loops_structure (dest_cfun, loops, 1);
6930 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6931 set_loops_for_fn (dest_cfun, loops);
6932
6933 /* Move the outlined loop tree part. */
6934 num_nodes = bbs.length ();
6935 FOR_EACH_VEC_ELT (bbs, i, bb)
6936 {
6937 if (bb->loop_father->header == bb)
6938 {
6939 struct loop *this_loop = bb->loop_father;
6940 struct loop *outer = loop_outer (this_loop);
6941 if (outer == loop
6942 /* If the SESE region contains some bbs ending with
6943 a noreturn call, those are considered to belong
6944 to the outermost loop in saved_cfun, rather than
6945 the entry_bb's loop_father. */
6946 || outer == loop0)
6947 {
6948 if (outer != loop)
6949 num_nodes -= this_loop->num_nodes;
6950 flow_loop_tree_node_remove (bb->loop_father);
6951 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6952 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6953 }
6954 }
6955 else if (bb->loop_father == loop0 && loop0 != loop)
6956 num_nodes--;
6957
6958 /* Remove loop exits from the outlined region. */
6959 if (loops_for_fn (saved_cfun)->exits)
6960 FOR_EACH_EDGE (e, ei, bb->succs)
6961 {
6962 void **slot = htab_find_slot_with_hash
6963 (loops_for_fn (saved_cfun)->exits, e,
6964 htab_hash_pointer (e), NO_INSERT);
6965 if (slot)
6966 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6967 }
6968 }
6969
6970
6971 /* Adjust the number of blocks in the tree root of the outlined part. */
6972 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6973
6974 /* Setup a mapping to be used by move_block_to_fn. */
6975 loop->aux = current_loops->tree_root;
6976 loop0->aux = current_loops->tree_root;
6977
6978 pop_cfun ();
6979
6980 /* Move blocks from BBS into DEST_CFUN. */
6981 gcc_assert (bbs.length () >= 2);
6982 after = dest_cfun->cfg->x_entry_block_ptr;
6983 hash_map<tree, tree> vars_map;
6984
6985 memset (&d, 0, sizeof (d));
6986 d.orig_block = orig_block;
6987 d.new_block = DECL_INITIAL (dest_cfun->decl);
6988 d.from_context = cfun->decl;
6989 d.to_context = dest_cfun->decl;
6990 d.vars_map = &vars_map;
6991 d.new_label_map = new_label_map;
6992 d.eh_map = eh_map;
6993 d.remap_decls_p = true;
6994
6995 FOR_EACH_VEC_ELT (bbs, i, bb)
6996 {
6997 /* No need to update edge counts on the last block. It has
6998 already been updated earlier when we detached the region from
6999 the original CFG. */
7000 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7001 after = bb;
7002 }
7003
7004 loop->aux = NULL;
7005 loop0->aux = NULL;
7006 /* Loop sizes are no longer correct, fix them up. */
7007 loop->num_nodes -= num_nodes;
7008 for (struct loop *outer = loop_outer (loop);
7009 outer; outer = loop_outer (outer))
7010 outer->num_nodes -= num_nodes;
7011 loop0->num_nodes -= bbs.length () - num_nodes;
7012
7013 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7014 {
7015 struct loop *aloop;
7016 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7017 if (aloop != NULL)
7018 {
7019 if (aloop->simduid)
7020 {
7021 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7022 d.to_context);
7023 dest_cfun->has_simduid_loops = true;
7024 }
7025 if (aloop->force_vectorize)
7026 dest_cfun->has_force_vectorize_loops = true;
7027 }
7028 }
7029
7030 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7031 if (orig_block)
7032 {
7033 tree block;
7034 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7035 == NULL_TREE);
7036 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7037 = BLOCK_SUBBLOCKS (orig_block);
7038 for (block = BLOCK_SUBBLOCKS (orig_block);
7039 block; block = BLOCK_CHAIN (block))
7040 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7041 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7042 }
7043
7044 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7045 &vars_map, dest_cfun->decl);
7046
7047 if (new_label_map)
7048 htab_delete (new_label_map);
7049 if (eh_map)
7050 delete eh_map;
7051
7052 /* Rewire the entry and exit blocks. The successor to the entry
7053 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7054 the child function. Similarly, the predecessor of DEST_FN's
7055 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7056 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7057 various CFG manipulation function get to the right CFG.
7058
7059 FIXME, this is silly. The CFG ought to become a parameter to
7060 these helpers. */
7061 push_cfun (dest_cfun);
7062 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7063 if (exit_bb)
7064 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7065 pop_cfun ();
7066
7067 /* Back in the original function, the SESE region has disappeared,
7068 create a new basic block in its place. */
7069 bb = create_empty_bb (entry_pred[0]);
7070 if (current_loops)
7071 add_bb_to_loop (bb, loop);
7072 for (i = 0; i < num_entry_edges; i++)
7073 {
7074 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7075 e->probability = entry_prob[i];
7076 }
7077
7078 for (i = 0; i < num_exit_edges; i++)
7079 {
7080 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7081 e->probability = exit_prob[i];
7082 }
7083
7084 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7085 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7086 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7087 dom_bbs.release ();
7088
7089 if (exit_bb)
7090 {
7091 free (exit_prob);
7092 free (exit_flag);
7093 free (exit_succ);
7094 }
7095 free (entry_prob);
7096 free (entry_flag);
7097 free (entry_pred);
7098 bbs.release ();
7099
7100 return bb;
7101 }
7102
7103
7104 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7105 */
7106
7107 void
7108 dump_function_to_file (tree fndecl, FILE *file, int flags)
7109 {
7110 tree arg, var, old_current_fndecl = current_function_decl;
7111 struct function *dsf;
7112 bool ignore_topmost_bind = false, any_var = false;
7113 basic_block bb;
7114 tree chain;
7115 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7116 && decl_is_tm_clone (fndecl));
7117 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7118
7119 current_function_decl = fndecl;
7120 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7121
7122 arg = DECL_ARGUMENTS (fndecl);
7123 while (arg)
7124 {
7125 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7126 fprintf (file, " ");
7127 print_generic_expr (file, arg, dump_flags);
7128 if (flags & TDF_VERBOSE)
7129 print_node (file, "", arg, 4);
7130 if (DECL_CHAIN (arg))
7131 fprintf (file, ", ");
7132 arg = DECL_CHAIN (arg);
7133 }
7134 fprintf (file, ")\n");
7135
7136 if (flags & TDF_VERBOSE)
7137 print_node (file, "", fndecl, 2);
7138
7139 dsf = DECL_STRUCT_FUNCTION (fndecl);
7140 if (dsf && (flags & TDF_EH))
7141 dump_eh_tree (file, dsf);
7142
7143 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7144 {
7145 dump_node (fndecl, TDF_SLIM | flags, file);
7146 current_function_decl = old_current_fndecl;
7147 return;
7148 }
7149
7150 /* When GIMPLE is lowered, the variables are no longer available in
7151 BIND_EXPRs, so display them separately. */
7152 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7153 {
7154 unsigned ix;
7155 ignore_topmost_bind = true;
7156
7157 fprintf (file, "{\n");
7158 if (!vec_safe_is_empty (fun->local_decls))
7159 FOR_EACH_LOCAL_DECL (fun, ix, var)
7160 {
7161 print_generic_decl (file, var, flags);
7162 if (flags & TDF_VERBOSE)
7163 print_node (file, "", var, 4);
7164 fprintf (file, "\n");
7165
7166 any_var = true;
7167 }
7168 if (gimple_in_ssa_p (cfun))
7169 for (ix = 1; ix < num_ssa_names; ++ix)
7170 {
7171 tree name = ssa_name (ix);
7172 if (name && !SSA_NAME_VAR (name))
7173 {
7174 fprintf (file, " ");
7175 print_generic_expr (file, TREE_TYPE (name), flags);
7176 fprintf (file, " ");
7177 print_generic_expr (file, name, flags);
7178 fprintf (file, ";\n");
7179
7180 any_var = true;
7181 }
7182 }
7183 }
7184
7185 if (fun && fun->decl == fndecl
7186 && fun->cfg
7187 && basic_block_info_for_fn (fun))
7188 {
7189 /* If the CFG has been built, emit a CFG-based dump. */
7190 if (!ignore_topmost_bind)
7191 fprintf (file, "{\n");
7192
7193 if (any_var && n_basic_blocks_for_fn (fun))
7194 fprintf (file, "\n");
7195
7196 FOR_EACH_BB_FN (bb, fun)
7197 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7198
7199 fprintf (file, "}\n");
7200 }
7201 else if (DECL_SAVED_TREE (fndecl) == NULL)
7202 {
7203 /* The function is now in GIMPLE form but the CFG has not been
7204 built yet. Emit the single sequence of GIMPLE statements
7205 that make up its body. */
7206 gimple_seq body = gimple_body (fndecl);
7207
7208 if (gimple_seq_first_stmt (body)
7209 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7210 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7211 print_gimple_seq (file, body, 0, flags);
7212 else
7213 {
7214 if (!ignore_topmost_bind)
7215 fprintf (file, "{\n");
7216
7217 if (any_var)
7218 fprintf (file, "\n");
7219
7220 print_gimple_seq (file, body, 2, flags);
7221 fprintf (file, "}\n");
7222 }
7223 }
7224 else
7225 {
7226 int indent;
7227
7228 /* Make a tree based dump. */
7229 chain = DECL_SAVED_TREE (fndecl);
7230 if (chain && TREE_CODE (chain) == BIND_EXPR)
7231 {
7232 if (ignore_topmost_bind)
7233 {
7234 chain = BIND_EXPR_BODY (chain);
7235 indent = 2;
7236 }
7237 else
7238 indent = 0;
7239 }
7240 else
7241 {
7242 if (!ignore_topmost_bind)
7243 fprintf (file, "{\n");
7244 indent = 2;
7245 }
7246
7247 if (any_var)
7248 fprintf (file, "\n");
7249
7250 print_generic_stmt_indented (file, chain, flags, indent);
7251 if (ignore_topmost_bind)
7252 fprintf (file, "}\n");
7253 }
7254
7255 if (flags & TDF_ENUMERATE_LOCALS)
7256 dump_enumerated_decls (file, flags);
7257 fprintf (file, "\n\n");
7258
7259 current_function_decl = old_current_fndecl;
7260 }
7261
7262 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7263
7264 DEBUG_FUNCTION void
7265 debug_function (tree fn, int flags)
7266 {
7267 dump_function_to_file (fn, stderr, flags);
7268 }
7269
7270
7271 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7272
7273 static void
7274 print_pred_bbs (FILE *file, basic_block bb)
7275 {
7276 edge e;
7277 edge_iterator ei;
7278
7279 FOR_EACH_EDGE (e, ei, bb->preds)
7280 fprintf (file, "bb_%d ", e->src->index);
7281 }
7282
7283
7284 /* Print on FILE the indexes for the successors of basic_block BB. */
7285
7286 static void
7287 print_succ_bbs (FILE *file, basic_block bb)
7288 {
7289 edge e;
7290 edge_iterator ei;
7291
7292 FOR_EACH_EDGE (e, ei, bb->succs)
7293 fprintf (file, "bb_%d ", e->dest->index);
7294 }
7295
7296 /* Print to FILE the basic block BB following the VERBOSITY level. */
7297
7298 void
7299 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7300 {
7301 char *s_indent = (char *) alloca ((size_t) indent + 1);
7302 memset ((void *) s_indent, ' ', (size_t) indent);
7303 s_indent[indent] = '\0';
7304
7305 /* Print basic_block's header. */
7306 if (verbosity >= 2)
7307 {
7308 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7309 print_pred_bbs (file, bb);
7310 fprintf (file, "}, succs = {");
7311 print_succ_bbs (file, bb);
7312 fprintf (file, "})\n");
7313 }
7314
7315 /* Print basic_block's body. */
7316 if (verbosity >= 3)
7317 {
7318 fprintf (file, "%s {\n", s_indent);
7319 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7320 fprintf (file, "%s }\n", s_indent);
7321 }
7322 }
7323
7324 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7325
7326 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7327 VERBOSITY level this outputs the contents of the loop, or just its
7328 structure. */
7329
7330 static void
7331 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7332 {
7333 char *s_indent;
7334 basic_block bb;
7335
7336 if (loop == NULL)
7337 return;
7338
7339 s_indent = (char *) alloca ((size_t) indent + 1);
7340 memset ((void *) s_indent, ' ', (size_t) indent);
7341 s_indent[indent] = '\0';
7342
7343 /* Print loop's header. */
7344 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7345 if (loop->header)
7346 fprintf (file, "header = %d", loop->header->index);
7347 else
7348 {
7349 fprintf (file, "deleted)\n");
7350 return;
7351 }
7352 if (loop->latch)
7353 fprintf (file, ", latch = %d", loop->latch->index);
7354 else
7355 fprintf (file, ", multiple latches");
7356 fprintf (file, ", niter = ");
7357 print_generic_expr (file, loop->nb_iterations, 0);
7358
7359 if (loop->any_upper_bound)
7360 {
7361 fprintf (file, ", upper_bound = ");
7362 print_decu (loop->nb_iterations_upper_bound, file);
7363 }
7364
7365 if (loop->any_estimate)
7366 {
7367 fprintf (file, ", estimate = ");
7368 print_decu (loop->nb_iterations_estimate, file);
7369 }
7370 fprintf (file, ")\n");
7371
7372 /* Print loop's body. */
7373 if (verbosity >= 1)
7374 {
7375 fprintf (file, "%s{\n", s_indent);
7376 FOR_EACH_BB_FN (bb, cfun)
7377 if (bb->loop_father == loop)
7378 print_loops_bb (file, bb, indent, verbosity);
7379
7380 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7381 fprintf (file, "%s}\n", s_indent);
7382 }
7383 }
7384
7385 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7386 spaces. Following VERBOSITY level this outputs the contents of the
7387 loop, or just its structure. */
7388
7389 static void
7390 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7391 int verbosity)
7392 {
7393 if (loop == NULL)
7394 return;
7395
7396 print_loop (file, loop, indent, verbosity);
7397 print_loop_and_siblings (file, loop->next, indent, verbosity);
7398 }
7399
7400 /* Follow a CFG edge from the entry point of the program, and on entry
7401 of a loop, pretty print the loop structure on FILE. */
7402
7403 void
7404 print_loops (FILE *file, int verbosity)
7405 {
7406 basic_block bb;
7407
7408 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7409 if (bb && bb->loop_father)
7410 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7411 }
7412
7413 /* Dump a loop. */
7414
7415 DEBUG_FUNCTION void
7416 debug (struct loop &ref)
7417 {
7418 print_loop (stderr, &ref, 0, /*verbosity*/0);
7419 }
7420
7421 DEBUG_FUNCTION void
7422 debug (struct loop *ptr)
7423 {
7424 if (ptr)
7425 debug (*ptr);
7426 else
7427 fprintf (stderr, "<nil>\n");
7428 }
7429
7430 /* Dump a loop verbosely. */
7431
7432 DEBUG_FUNCTION void
7433 debug_verbose (struct loop &ref)
7434 {
7435 print_loop (stderr, &ref, 0, /*verbosity*/3);
7436 }
7437
7438 DEBUG_FUNCTION void
7439 debug_verbose (struct loop *ptr)
7440 {
7441 if (ptr)
7442 debug (*ptr);
7443 else
7444 fprintf (stderr, "<nil>\n");
7445 }
7446
7447
7448 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7449
7450 DEBUG_FUNCTION void
7451 debug_loops (int verbosity)
7452 {
7453 print_loops (stderr, verbosity);
7454 }
7455
7456 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7457
7458 DEBUG_FUNCTION void
7459 debug_loop (struct loop *loop, int verbosity)
7460 {
7461 print_loop (stderr, loop, 0, verbosity);
7462 }
7463
7464 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7465 level. */
7466
7467 DEBUG_FUNCTION void
7468 debug_loop_num (unsigned num, int verbosity)
7469 {
7470 debug_loop (get_loop (cfun, num), verbosity);
7471 }
7472
7473 /* Return true if BB ends with a call, possibly followed by some
7474 instructions that must stay with the call. Return false,
7475 otherwise. */
7476
7477 static bool
7478 gimple_block_ends_with_call_p (basic_block bb)
7479 {
7480 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7481 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7482 }
7483
7484
7485 /* Return true if BB ends with a conditional branch. Return false,
7486 otherwise. */
7487
7488 static bool
7489 gimple_block_ends_with_condjump_p (const_basic_block bb)
7490 {
7491 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7492 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7493 }
7494
7495
7496 /* Return true if we need to add fake edge to exit at statement T.
7497 Helper function for gimple_flow_call_edges_add. */
7498
7499 static bool
7500 need_fake_edge_p (gimple t)
7501 {
7502 tree fndecl = NULL_TREE;
7503 int call_flags = 0;
7504
7505 /* NORETURN and LONGJMP calls already have an edge to exit.
7506 CONST and PURE calls do not need one.
7507 We don't currently check for CONST and PURE here, although
7508 it would be a good idea, because those attributes are
7509 figured out from the RTL in mark_constant_function, and
7510 the counter incrementation code from -fprofile-arcs
7511 leads to different results from -fbranch-probabilities. */
7512 if (is_gimple_call (t))
7513 {
7514 fndecl = gimple_call_fndecl (t);
7515 call_flags = gimple_call_flags (t);
7516 }
7517
7518 if (is_gimple_call (t)
7519 && fndecl
7520 && DECL_BUILT_IN (fndecl)
7521 && (call_flags & ECF_NOTHROW)
7522 && !(call_flags & ECF_RETURNS_TWICE)
7523 /* fork() doesn't really return twice, but the effect of
7524 wrapping it in __gcov_fork() which calls __gcov_flush()
7525 and clears the counters before forking has the same
7526 effect as returning twice. Force a fake edge. */
7527 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7528 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7529 return false;
7530
7531 if (is_gimple_call (t))
7532 {
7533 edge_iterator ei;
7534 edge e;
7535 basic_block bb;
7536
7537 if (!(call_flags & ECF_NORETURN))
7538 return true;
7539
7540 bb = gimple_bb (t);
7541 FOR_EACH_EDGE (e, ei, bb->succs)
7542 if ((e->flags & EDGE_FAKE) == 0)
7543 return true;
7544 }
7545
7546 if (gimple_code (t) == GIMPLE_ASM
7547 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7548 return true;
7549
7550 return false;
7551 }
7552
7553
7554 /* Add fake edges to the function exit for any non constant and non
7555 noreturn calls (or noreturn calls with EH/abnormal edges),
7556 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7557 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7558 that were split.
7559
7560 The goal is to expose cases in which entering a basic block does
7561 not imply that all subsequent instructions must be executed. */
7562
7563 static int
7564 gimple_flow_call_edges_add (sbitmap blocks)
7565 {
7566 int i;
7567 int blocks_split = 0;
7568 int last_bb = last_basic_block_for_fn (cfun);
7569 bool check_last_block = false;
7570
7571 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7572 return 0;
7573
7574 if (! blocks)
7575 check_last_block = true;
7576 else
7577 check_last_block = bitmap_bit_p (blocks,
7578 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7579
7580 /* In the last basic block, before epilogue generation, there will be
7581 a fallthru edge to EXIT. Special care is required if the last insn
7582 of the last basic block is a call because make_edge folds duplicate
7583 edges, which would result in the fallthru edge also being marked
7584 fake, which would result in the fallthru edge being removed by
7585 remove_fake_edges, which would result in an invalid CFG.
7586
7587 Moreover, we can't elide the outgoing fake edge, since the block
7588 profiler needs to take this into account in order to solve the minimal
7589 spanning tree in the case that the call doesn't return.
7590
7591 Handle this by adding a dummy instruction in a new last basic block. */
7592 if (check_last_block)
7593 {
7594 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7595 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7596 gimple t = NULL;
7597
7598 if (!gsi_end_p (gsi))
7599 t = gsi_stmt (gsi);
7600
7601 if (t && need_fake_edge_p (t))
7602 {
7603 edge e;
7604
7605 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7606 if (e)
7607 {
7608 gsi_insert_on_edge (e, gimple_build_nop ());
7609 gsi_commit_edge_inserts ();
7610 }
7611 }
7612 }
7613
7614 /* Now add fake edges to the function exit for any non constant
7615 calls since there is no way that we can determine if they will
7616 return or not... */
7617 for (i = 0; i < last_bb; i++)
7618 {
7619 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7620 gimple_stmt_iterator gsi;
7621 gimple stmt, last_stmt;
7622
7623 if (!bb)
7624 continue;
7625
7626 if (blocks && !bitmap_bit_p (blocks, i))
7627 continue;
7628
7629 gsi = gsi_last_nondebug_bb (bb);
7630 if (!gsi_end_p (gsi))
7631 {
7632 last_stmt = gsi_stmt (gsi);
7633 do
7634 {
7635 stmt = gsi_stmt (gsi);
7636 if (need_fake_edge_p (stmt))
7637 {
7638 edge e;
7639
7640 /* The handling above of the final block before the
7641 epilogue should be enough to verify that there is
7642 no edge to the exit block in CFG already.
7643 Calling make_edge in such case would cause us to
7644 mark that edge as fake and remove it later. */
7645 #ifdef ENABLE_CHECKING
7646 if (stmt == last_stmt)
7647 {
7648 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7649 gcc_assert (e == NULL);
7650 }
7651 #endif
7652
7653 /* Note that the following may create a new basic block
7654 and renumber the existing basic blocks. */
7655 if (stmt != last_stmt)
7656 {
7657 e = split_block (bb, stmt);
7658 if (e)
7659 blocks_split++;
7660 }
7661 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7662 }
7663 gsi_prev (&gsi);
7664 }
7665 while (!gsi_end_p (gsi));
7666 }
7667 }
7668
7669 if (blocks_split)
7670 verify_flow_info ();
7671
7672 return blocks_split;
7673 }
7674
7675 /* Removes edge E and all the blocks dominated by it, and updates dominance
7676 information. The IL in E->src needs to be updated separately.
7677 If dominance info is not available, only the edge E is removed.*/
7678
7679 void
7680 remove_edge_and_dominated_blocks (edge e)
7681 {
7682 vec<basic_block> bbs_to_remove = vNULL;
7683 vec<basic_block> bbs_to_fix_dom = vNULL;
7684 bitmap df, df_idom;
7685 edge f;
7686 edge_iterator ei;
7687 bool none_removed = false;
7688 unsigned i;
7689 basic_block bb, dbb;
7690 bitmap_iterator bi;
7691
7692 if (!dom_info_available_p (CDI_DOMINATORS))
7693 {
7694 remove_edge (e);
7695 return;
7696 }
7697
7698 /* No updating is needed for edges to exit. */
7699 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7700 {
7701 if (cfgcleanup_altered_bbs)
7702 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7703 remove_edge (e);
7704 return;
7705 }
7706
7707 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7708 that is not dominated by E->dest, then this set is empty. Otherwise,
7709 all the basic blocks dominated by E->dest are removed.
7710
7711 Also, to DF_IDOM we store the immediate dominators of the blocks in
7712 the dominance frontier of E (i.e., of the successors of the
7713 removed blocks, if there are any, and of E->dest otherwise). */
7714 FOR_EACH_EDGE (f, ei, e->dest->preds)
7715 {
7716 if (f == e)
7717 continue;
7718
7719 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7720 {
7721 none_removed = true;
7722 break;
7723 }
7724 }
7725
7726 df = BITMAP_ALLOC (NULL);
7727 df_idom = BITMAP_ALLOC (NULL);
7728
7729 if (none_removed)
7730 bitmap_set_bit (df_idom,
7731 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7732 else
7733 {
7734 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7735 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7736 {
7737 FOR_EACH_EDGE (f, ei, bb->succs)
7738 {
7739 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7740 bitmap_set_bit (df, f->dest->index);
7741 }
7742 }
7743 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7744 bitmap_clear_bit (df, bb->index);
7745
7746 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7747 {
7748 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7749 bitmap_set_bit (df_idom,
7750 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7751 }
7752 }
7753
7754 if (cfgcleanup_altered_bbs)
7755 {
7756 /* Record the set of the altered basic blocks. */
7757 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7758 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7759 }
7760
7761 /* Remove E and the cancelled blocks. */
7762 if (none_removed)
7763 remove_edge (e);
7764 else
7765 {
7766 /* Walk backwards so as to get a chance to substitute all
7767 released DEFs into debug stmts. See
7768 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7769 details. */
7770 for (i = bbs_to_remove.length (); i-- > 0; )
7771 delete_basic_block (bbs_to_remove[i]);
7772 }
7773
7774 /* Update the dominance information. The immediate dominator may change only
7775 for blocks whose immediate dominator belongs to DF_IDOM:
7776
7777 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7778 removal. Let Z the arbitrary block such that idom(Z) = Y and
7779 Z dominates X after the removal. Before removal, there exists a path P
7780 from Y to X that avoids Z. Let F be the last edge on P that is
7781 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7782 dominates W, and because of P, Z does not dominate W), and W belongs to
7783 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7784 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7785 {
7786 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7787 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7788 dbb;
7789 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7790 bbs_to_fix_dom.safe_push (dbb);
7791 }
7792
7793 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7794
7795 BITMAP_FREE (df);
7796 BITMAP_FREE (df_idom);
7797 bbs_to_remove.release ();
7798 bbs_to_fix_dom.release ();
7799 }
7800
7801 /* Purge dead EH edges from basic block BB. */
7802
7803 bool
7804 gimple_purge_dead_eh_edges (basic_block bb)
7805 {
7806 bool changed = false;
7807 edge e;
7808 edge_iterator ei;
7809 gimple stmt = last_stmt (bb);
7810
7811 if (stmt && stmt_can_throw_internal (stmt))
7812 return false;
7813
7814 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7815 {
7816 if (e->flags & EDGE_EH)
7817 {
7818 remove_edge_and_dominated_blocks (e);
7819 changed = true;
7820 }
7821 else
7822 ei_next (&ei);
7823 }
7824
7825 return changed;
7826 }
7827
7828 /* Purge dead EH edges from basic block listed in BLOCKS. */
7829
7830 bool
7831 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7832 {
7833 bool changed = false;
7834 unsigned i;
7835 bitmap_iterator bi;
7836
7837 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7838 {
7839 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7840
7841 /* Earlier gimple_purge_dead_eh_edges could have removed
7842 this basic block already. */
7843 gcc_assert (bb || changed);
7844 if (bb != NULL)
7845 changed |= gimple_purge_dead_eh_edges (bb);
7846 }
7847
7848 return changed;
7849 }
7850
7851 /* Purge dead abnormal call edges from basic block BB. */
7852
7853 bool
7854 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7855 {
7856 bool changed = false;
7857 edge e;
7858 edge_iterator ei;
7859 gimple stmt = last_stmt (bb);
7860
7861 if (!cfun->has_nonlocal_label
7862 && !cfun->calls_setjmp)
7863 return false;
7864
7865 if (stmt && stmt_can_make_abnormal_goto (stmt))
7866 return false;
7867
7868 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7869 {
7870 if (e->flags & EDGE_ABNORMAL)
7871 {
7872 if (e->flags & EDGE_FALLTHRU)
7873 e->flags &= ~EDGE_ABNORMAL;
7874 else
7875 remove_edge_and_dominated_blocks (e);
7876 changed = true;
7877 }
7878 else
7879 ei_next (&ei);
7880 }
7881
7882 return changed;
7883 }
7884
7885 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7886
7887 bool
7888 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7889 {
7890 bool changed = false;
7891 unsigned i;
7892 bitmap_iterator bi;
7893
7894 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7895 {
7896 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7897
7898 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7899 this basic block already. */
7900 gcc_assert (bb || changed);
7901 if (bb != NULL)
7902 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7903 }
7904
7905 return changed;
7906 }
7907
7908 /* This function is called whenever a new edge is created or
7909 redirected. */
7910
7911 static void
7912 gimple_execute_on_growing_pred (edge e)
7913 {
7914 basic_block bb = e->dest;
7915
7916 if (!gimple_seq_empty_p (phi_nodes (bb)))
7917 reserve_phi_args_for_new_edge (bb);
7918 }
7919
7920 /* This function is called immediately before edge E is removed from
7921 the edge vector E->dest->preds. */
7922
7923 static void
7924 gimple_execute_on_shrinking_pred (edge e)
7925 {
7926 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7927 remove_phi_args (e);
7928 }
7929
7930 /*---------------------------------------------------------------------------
7931 Helper functions for Loop versioning
7932 ---------------------------------------------------------------------------*/
7933
7934 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7935 of 'first'. Both of them are dominated by 'new_head' basic block. When
7936 'new_head' was created by 'second's incoming edge it received phi arguments
7937 on the edge by split_edge(). Later, additional edge 'e' was created to
7938 connect 'new_head' and 'first'. Now this routine adds phi args on this
7939 additional edge 'e' that new_head to second edge received as part of edge
7940 splitting. */
7941
7942 static void
7943 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7944 basic_block new_head, edge e)
7945 {
7946 gimple phi1, phi2;
7947 gimple_stmt_iterator psi1, psi2;
7948 tree def;
7949 edge e2 = find_edge (new_head, second);
7950
7951 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7952 edge, we should always have an edge from NEW_HEAD to SECOND. */
7953 gcc_assert (e2 != NULL);
7954
7955 /* Browse all 'second' basic block phi nodes and add phi args to
7956 edge 'e' for 'first' head. PHI args are always in correct order. */
7957
7958 for (psi2 = gsi_start_phis (second),
7959 psi1 = gsi_start_phis (first);
7960 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7961 gsi_next (&psi2), gsi_next (&psi1))
7962 {
7963 phi1 = gsi_stmt (psi1);
7964 phi2 = gsi_stmt (psi2);
7965 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7966 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7967 }
7968 }
7969
7970
7971 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7972 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7973 the destination of the ELSE part. */
7974
7975 static void
7976 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7977 basic_block second_head ATTRIBUTE_UNUSED,
7978 basic_block cond_bb, void *cond_e)
7979 {
7980 gimple_stmt_iterator gsi;
7981 gimple new_cond_expr;
7982 tree cond_expr = (tree) cond_e;
7983 edge e0;
7984
7985 /* Build new conditional expr */
7986 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7987 NULL_TREE, NULL_TREE);
7988
7989 /* Add new cond in cond_bb. */
7990 gsi = gsi_last_bb (cond_bb);
7991 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7992
7993 /* Adjust edges appropriately to connect new head with first head
7994 as well as second head. */
7995 e0 = single_succ_edge (cond_bb);
7996 e0->flags &= ~EDGE_FALLTHRU;
7997 e0->flags |= EDGE_FALSE_VALUE;
7998 }
7999
8000
8001 /* Do book-keeping of basic block BB for the profile consistency checker.
8002 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8003 then do post-pass accounting. Store the counting in RECORD. */
8004 static void
8005 gimple_account_profile_record (basic_block bb, int after_pass,
8006 struct profile_record *record)
8007 {
8008 gimple_stmt_iterator i;
8009 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8010 {
8011 record->size[after_pass]
8012 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8013 if (profile_status_for_fn (cfun) == PROFILE_READ)
8014 record->time[after_pass]
8015 += estimate_num_insns (gsi_stmt (i),
8016 &eni_time_weights) * bb->count;
8017 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8018 record->time[after_pass]
8019 += estimate_num_insns (gsi_stmt (i),
8020 &eni_time_weights) * bb->frequency;
8021 }
8022 }
8023
8024 struct cfg_hooks gimple_cfg_hooks = {
8025 "gimple",
8026 gimple_verify_flow_info,
8027 gimple_dump_bb, /* dump_bb */
8028 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8029 create_bb, /* create_basic_block */
8030 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8031 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8032 gimple_can_remove_branch_p, /* can_remove_branch_p */
8033 remove_bb, /* delete_basic_block */
8034 gimple_split_block, /* split_block */
8035 gimple_move_block_after, /* move_block_after */
8036 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8037 gimple_merge_blocks, /* merge_blocks */
8038 gimple_predict_edge, /* predict_edge */
8039 gimple_predicted_by_p, /* predicted_by_p */
8040 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8041 gimple_duplicate_bb, /* duplicate_block */
8042 gimple_split_edge, /* split_edge */
8043 gimple_make_forwarder_block, /* make_forward_block */
8044 NULL, /* tidy_fallthru_edge */
8045 NULL, /* force_nonfallthru */
8046 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8047 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8048 gimple_flow_call_edges_add, /* flow_call_edges_add */
8049 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8050 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8051 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8052 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8053 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8054 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8055 flush_pending_stmts, /* flush_pending_stmts */
8056 gimple_empty_block_p, /* block_empty_p */
8057 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8058 gimple_account_profile_record,
8059 };
8060
8061
8062 /* Split all critical edges. */
8063
8064 unsigned int
8065 split_critical_edges (void)
8066 {
8067 basic_block bb;
8068 edge e;
8069 edge_iterator ei;
8070
8071 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8072 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8073 mappings around the calls to split_edge. */
8074 start_recording_case_labels ();
8075 FOR_ALL_BB_FN (bb, cfun)
8076 {
8077 FOR_EACH_EDGE (e, ei, bb->succs)
8078 {
8079 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8080 split_edge (e);
8081 /* PRE inserts statements to edges and expects that
8082 since split_critical_edges was done beforehand, committing edge
8083 insertions will not split more edges. In addition to critical
8084 edges we must split edges that have multiple successors and
8085 end by control flow statements, such as RESX.
8086 Go ahead and split them too. This matches the logic in
8087 gimple_find_edge_insert_loc. */
8088 else if ((!single_pred_p (e->dest)
8089 || !gimple_seq_empty_p (phi_nodes (e->dest))
8090 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8091 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8092 && !(e->flags & EDGE_ABNORMAL))
8093 {
8094 gimple_stmt_iterator gsi;
8095
8096 gsi = gsi_last_bb (e->src);
8097 if (!gsi_end_p (gsi)
8098 && stmt_ends_bb_p (gsi_stmt (gsi))
8099 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8100 && !gimple_call_builtin_p (gsi_stmt (gsi),
8101 BUILT_IN_RETURN)))
8102 split_edge (e);
8103 }
8104 }
8105 }
8106 end_recording_case_labels ();
8107 return 0;
8108 }
8109
8110 namespace {
8111
8112 const pass_data pass_data_split_crit_edges =
8113 {
8114 GIMPLE_PASS, /* type */
8115 "crited", /* name */
8116 OPTGROUP_NONE, /* optinfo_flags */
8117 TV_TREE_SPLIT_EDGES, /* tv_id */
8118 PROP_cfg, /* properties_required */
8119 PROP_no_crit_edges, /* properties_provided */
8120 0, /* properties_destroyed */
8121 0, /* todo_flags_start */
8122 0, /* todo_flags_finish */
8123 };
8124
8125 class pass_split_crit_edges : public gimple_opt_pass
8126 {
8127 public:
8128 pass_split_crit_edges (gcc::context *ctxt)
8129 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8130 {}
8131
8132 /* opt_pass methods: */
8133 virtual unsigned int execute (function *) { return split_critical_edges (); }
8134
8135 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8136 }; // class pass_split_crit_edges
8137
8138 } // anon namespace
8139
8140 gimple_opt_pass *
8141 make_pass_split_crit_edges (gcc::context *ctxt)
8142 {
8143 return new pass_split_crit_edges (ctxt);
8144 }
8145
8146
8147 /* Build a ternary operation and gimplify it. Emit code before GSI.
8148 Return the gimple_val holding the result. */
8149
8150 tree
8151 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8152 tree type, tree a, tree b, tree c)
8153 {
8154 tree ret;
8155 location_t loc = gimple_location (gsi_stmt (*gsi));
8156
8157 ret = fold_build3_loc (loc, code, type, a, b, c);
8158 STRIP_NOPS (ret);
8159
8160 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8161 GSI_SAME_STMT);
8162 }
8163
8164 /* Build a binary operation and gimplify it. Emit code before GSI.
8165 Return the gimple_val holding the result. */
8166
8167 tree
8168 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8169 tree type, tree a, tree b)
8170 {
8171 tree ret;
8172
8173 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8174 STRIP_NOPS (ret);
8175
8176 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8177 GSI_SAME_STMT);
8178 }
8179
8180 /* Build a unary operation and gimplify it. Emit code before GSI.
8181 Return the gimple_val holding the result. */
8182
8183 tree
8184 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8185 tree a)
8186 {
8187 tree ret;
8188
8189 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8190 STRIP_NOPS (ret);
8191
8192 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8193 GSI_SAME_STMT);
8194 }
8195
8196
8197 \f
8198 /* Given a basic block B which ends with a conditional and has
8199 precisely two successors, determine which of the edges is taken if
8200 the conditional is true and which is taken if the conditional is
8201 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8202
8203 void
8204 extract_true_false_edges_from_block (basic_block b,
8205 edge *true_edge,
8206 edge *false_edge)
8207 {
8208 edge e = EDGE_SUCC (b, 0);
8209
8210 if (e->flags & EDGE_TRUE_VALUE)
8211 {
8212 *true_edge = e;
8213 *false_edge = EDGE_SUCC (b, 1);
8214 }
8215 else
8216 {
8217 *false_edge = e;
8218 *true_edge = EDGE_SUCC (b, 1);
8219 }
8220 }
8221
8222 /* Emit return warnings. */
8223
8224 namespace {
8225
8226 const pass_data pass_data_warn_function_return =
8227 {
8228 GIMPLE_PASS, /* type */
8229 "*warn_function_return", /* name */
8230 OPTGROUP_NONE, /* optinfo_flags */
8231 TV_NONE, /* tv_id */
8232 PROP_cfg, /* properties_required */
8233 0, /* properties_provided */
8234 0, /* properties_destroyed */
8235 0, /* todo_flags_start */
8236 0, /* todo_flags_finish */
8237 };
8238
8239 class pass_warn_function_return : public gimple_opt_pass
8240 {
8241 public:
8242 pass_warn_function_return (gcc::context *ctxt)
8243 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8244 {}
8245
8246 /* opt_pass methods: */
8247 virtual unsigned int execute (function *);
8248
8249 }; // class pass_warn_function_return
8250
8251 unsigned int
8252 pass_warn_function_return::execute (function *fun)
8253 {
8254 source_location location;
8255 gimple last;
8256 edge e;
8257 edge_iterator ei;
8258
8259 if (!targetm.warn_func_return (fun->decl))
8260 return 0;
8261
8262 /* If we have a path to EXIT, then we do return. */
8263 if (TREE_THIS_VOLATILE (fun->decl)
8264 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8265 {
8266 location = UNKNOWN_LOCATION;
8267 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8268 {
8269 last = last_stmt (e->src);
8270 if ((gimple_code (last) == GIMPLE_RETURN
8271 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8272 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8273 break;
8274 }
8275 if (location == UNKNOWN_LOCATION)
8276 location = cfun->function_end_locus;
8277 warning_at (location, 0, "%<noreturn%> function does return");
8278 }
8279
8280 /* If we see "return;" in some basic block, then we do reach the end
8281 without returning a value. */
8282 else if (warn_return_type
8283 && !TREE_NO_WARNING (fun->decl)
8284 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8285 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8286 {
8287 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8288 {
8289 gimple last = last_stmt (e->src);
8290 if (gimple_code (last) == GIMPLE_RETURN
8291 && gimple_return_retval (last) == NULL
8292 && !gimple_no_warning_p (last))
8293 {
8294 location = gimple_location (last);
8295 if (location == UNKNOWN_LOCATION)
8296 location = fun->function_end_locus;
8297 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8298 TREE_NO_WARNING (fun->decl) = 1;
8299 break;
8300 }
8301 }
8302 }
8303 return 0;
8304 }
8305
8306 } // anon namespace
8307
8308 gimple_opt_pass *
8309 make_pass_warn_function_return (gcc::context *ctxt)
8310 {
8311 return new pass_warn_function_return (ctxt);
8312 }
8313
8314 /* Walk a gimplified function and warn for functions whose return value is
8315 ignored and attribute((warn_unused_result)) is set. This is done before
8316 inlining, so we don't have to worry about that. */
8317
8318 static void
8319 do_warn_unused_result (gimple_seq seq)
8320 {
8321 tree fdecl, ftype;
8322 gimple_stmt_iterator i;
8323
8324 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8325 {
8326 gimple g = gsi_stmt (i);
8327
8328 switch (gimple_code (g))
8329 {
8330 case GIMPLE_BIND:
8331 do_warn_unused_result (gimple_bind_body (g));
8332 break;
8333 case GIMPLE_TRY:
8334 do_warn_unused_result (gimple_try_eval (g));
8335 do_warn_unused_result (gimple_try_cleanup (g));
8336 break;
8337 case GIMPLE_CATCH:
8338 do_warn_unused_result (gimple_catch_handler (g));
8339 break;
8340 case GIMPLE_EH_FILTER:
8341 do_warn_unused_result (gimple_eh_filter_failure (g));
8342 break;
8343
8344 case GIMPLE_CALL:
8345 if (gimple_call_lhs (g))
8346 break;
8347 if (gimple_call_internal_p (g))
8348 break;
8349
8350 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8351 LHS. All calls whose value is ignored should be
8352 represented like this. Look for the attribute. */
8353 fdecl = gimple_call_fndecl (g);
8354 ftype = gimple_call_fntype (g);
8355
8356 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8357 {
8358 location_t loc = gimple_location (g);
8359
8360 if (fdecl)
8361 warning_at (loc, OPT_Wunused_result,
8362 "ignoring return value of %qD, "
8363 "declared with attribute warn_unused_result",
8364 fdecl);
8365 else
8366 warning_at (loc, OPT_Wunused_result,
8367 "ignoring return value of function "
8368 "declared with attribute warn_unused_result");
8369 }
8370 break;
8371
8372 default:
8373 /* Not a container, not a call, or a call whose value is used. */
8374 break;
8375 }
8376 }
8377 }
8378
8379 namespace {
8380
8381 const pass_data pass_data_warn_unused_result =
8382 {
8383 GIMPLE_PASS, /* type */
8384 "*warn_unused_result", /* name */
8385 OPTGROUP_NONE, /* optinfo_flags */
8386 TV_NONE, /* tv_id */
8387 PROP_gimple_any, /* properties_required */
8388 0, /* properties_provided */
8389 0, /* properties_destroyed */
8390 0, /* todo_flags_start */
8391 0, /* todo_flags_finish */
8392 };
8393
8394 class pass_warn_unused_result : public gimple_opt_pass
8395 {
8396 public:
8397 pass_warn_unused_result (gcc::context *ctxt)
8398 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8399 {}
8400
8401 /* opt_pass methods: */
8402 virtual bool gate (function *) { return flag_warn_unused_result; }
8403 virtual unsigned int execute (function *)
8404 {
8405 do_warn_unused_result (gimple_body (current_function_decl));
8406 return 0;
8407 }
8408
8409 }; // class pass_warn_unused_result
8410
8411 } // anon namespace
8412
8413 gimple_opt_pass *
8414 make_pass_warn_unused_result (gcc::context *ctxt)
8415 {
8416 return new pass_warn_unused_result (ctxt);
8417 }
8418
8419 /* IPA passes, compilation of earlier functions or inlining
8420 might have changed some properties, such as marked functions nothrow,
8421 pure, const or noreturn.
8422 Remove redundant edges and basic blocks, and create new ones if necessary.
8423
8424 This pass can't be executed as stand alone pass from pass manager, because
8425 in between inlining and this fixup the verify_flow_info would fail. */
8426
8427 unsigned int
8428 execute_fixup_cfg (void)
8429 {
8430 basic_block bb;
8431 gimple_stmt_iterator gsi;
8432 int todo = 0;
8433 gcov_type count_scale;
8434 edge e;
8435 edge_iterator ei;
8436
8437 count_scale
8438 = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl)->count,
8439 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8440
8441 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8442 cgraph_node::get (current_function_decl)->count;
8443 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8444 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8445 count_scale);
8446
8447 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8448 e->count = apply_scale (e->count, count_scale);
8449
8450 FOR_EACH_BB_FN (bb, cfun)
8451 {
8452 bb->count = apply_scale (bb->count, count_scale);
8453 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
8454 {
8455 gimple stmt = gsi_stmt (gsi);
8456 tree decl = is_gimple_call (stmt)
8457 ? gimple_call_fndecl (stmt)
8458 : NULL;
8459 if (decl)
8460 {
8461 int flags = gimple_call_flags (stmt);
8462 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8463 {
8464 if (gimple_purge_dead_abnormal_call_edges (bb))
8465 todo |= TODO_cleanup_cfg;
8466
8467 if (gimple_in_ssa_p (cfun))
8468 {
8469 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8470 update_stmt (stmt);
8471 }
8472 }
8473
8474 if (flags & ECF_NORETURN
8475 && fixup_noreturn_call (stmt))
8476 todo |= TODO_cleanup_cfg;
8477 }
8478
8479 /* Remove stores to variables we marked write-only.
8480 Keep access when store has side effect, i.e. in case when source
8481 is volatile. */
8482 if (gimple_store_p (stmt)
8483 && !gimple_has_side_effects (stmt))
8484 {
8485 tree lhs = get_base_address (gimple_get_lhs (stmt));
8486
8487 if (TREE_CODE (lhs) == VAR_DECL
8488 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8489 && varpool_node::get (lhs)->writeonly)
8490 {
8491 unlink_stmt_vdef (stmt);
8492 gsi_remove (&gsi, true);
8493 release_defs (stmt);
8494 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8495 continue;
8496 }
8497 }
8498 /* For calls we can simply remove LHS when it is known
8499 to be write-only. */
8500 if (is_gimple_call (stmt)
8501 && gimple_get_lhs (stmt))
8502 {
8503 tree lhs = get_base_address (gimple_get_lhs (stmt));
8504
8505 if (TREE_CODE (lhs) == VAR_DECL
8506 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8507 && varpool_node::get (lhs)->writeonly)
8508 {
8509 gimple_call_set_lhs (stmt, NULL);
8510 update_stmt (stmt);
8511 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8512 }
8513 }
8514
8515 if (maybe_clean_eh_stmt (stmt)
8516 && gimple_purge_dead_eh_edges (bb))
8517 todo |= TODO_cleanup_cfg;
8518 gsi_next (&gsi);
8519 }
8520
8521 FOR_EACH_EDGE (e, ei, bb->succs)
8522 e->count = apply_scale (e->count, count_scale);
8523
8524 /* If we have a basic block with no successors that does not
8525 end with a control statement or a noreturn call end it with
8526 a call to __builtin_unreachable. This situation can occur
8527 when inlining a noreturn call that does in fact return. */
8528 if (EDGE_COUNT (bb->succs) == 0)
8529 {
8530 gimple stmt = last_stmt (bb);
8531 if (!stmt
8532 || (!is_ctrl_stmt (stmt)
8533 && (!is_gimple_call (stmt)
8534 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8535 {
8536 stmt = gimple_build_call
8537 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8538 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8539 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8540 }
8541 }
8542 }
8543 if (count_scale != REG_BR_PROB_BASE)
8544 compute_function_frequency ();
8545
8546 /* We just processed all calls. */
8547 if (cfun->gimple_df)
8548 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8549
8550 /* Dump a textual representation of the flowgraph. */
8551 if (dump_file)
8552 gimple_dump_cfg (dump_file, dump_flags);
8553
8554 if (current_loops
8555 && (todo & TODO_cleanup_cfg))
8556 loops_state_set (LOOPS_NEED_FIXUP);
8557
8558 return todo;
8559 }
8560
8561 namespace {
8562
8563 const pass_data pass_data_fixup_cfg =
8564 {
8565 GIMPLE_PASS, /* type */
8566 "*free_cfg_annotations", /* name */
8567 OPTGROUP_NONE, /* optinfo_flags */
8568 TV_NONE, /* tv_id */
8569 PROP_cfg, /* properties_required */
8570 0, /* properties_provided */
8571 0, /* properties_destroyed */
8572 0, /* todo_flags_start */
8573 0, /* todo_flags_finish */
8574 };
8575
8576 class pass_fixup_cfg : public gimple_opt_pass
8577 {
8578 public:
8579 pass_fixup_cfg (gcc::context *ctxt)
8580 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8581 {}
8582
8583 /* opt_pass methods: */
8584 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8585 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
8586
8587 }; // class pass_fixup_cfg
8588
8589 } // anon namespace
8590
8591 gimple_opt_pass *
8592 make_pass_fixup_cfg (gcc::context *ctxt)
8593 {
8594 return new pass_fixup_cfg (ctxt);
8595 }
8596
8597 /* Garbage collection support for edge_def. */
8598
8599 extern void gt_ggc_mx (tree&);
8600 extern void gt_ggc_mx (gimple&);
8601 extern void gt_ggc_mx (rtx&);
8602 extern void gt_ggc_mx (basic_block&);
8603
8604 void
8605 gt_ggc_mx (edge_def *e)
8606 {
8607 tree block = LOCATION_BLOCK (e->goto_locus);
8608 gt_ggc_mx (e->src);
8609 gt_ggc_mx (e->dest);
8610 if (current_ir_type () == IR_GIMPLE)
8611 gt_ggc_mx (e->insns.g);
8612 else
8613 gt_ggc_mx (e->insns.r);
8614 gt_ggc_mx (block);
8615 }
8616
8617 /* PCH support for edge_def. */
8618
8619 extern void gt_pch_nx (tree&);
8620 extern void gt_pch_nx (gimple&);
8621 extern void gt_pch_nx (rtx&);
8622 extern void gt_pch_nx (basic_block&);
8623
8624 void
8625 gt_pch_nx (edge_def *e)
8626 {
8627 tree block = LOCATION_BLOCK (e->goto_locus);
8628 gt_pch_nx (e->src);
8629 gt_pch_nx (e->dest);
8630 if (current_ir_type () == IR_GIMPLE)
8631 gt_pch_nx (e->insns.g);
8632 else
8633 gt_pch_nx (e->insns.r);
8634 gt_pch_nx (block);
8635 }
8636
8637 void
8638 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8639 {
8640 tree block = LOCATION_BLOCK (e->goto_locus);
8641 op (&(e->src), cookie);
8642 op (&(e->dest), cookie);
8643 if (current_ir_type () == IR_GIMPLE)
8644 op (&(e->insns.g), cookie);
8645 else
8646 op (&(e->insns.r), cookie);
8647 op (&(block), cookie);
8648 }