alias.c (init_alias_analysis): Use VEC_safe_grow_cleared.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "output.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "ggc.h"
37 #include "langhooks.h"
38 #include "diagnostic.h"
39 #include "tree-flow.h"
40 #include "timevar.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "cfgloop.h"
46 #include "cfglayout.h"
47 #include "hashtab.h"
48 #include "tree-ssa-propagate.h"
49 #include "value-prof.h"
50
51 /* This file contains functions for building the Control Flow Graph (CFG)
52 for a function tree. */
53
54 /* Local declarations. */
55
56 /* Initial capacity for the basic block array. */
57 static const int initial_cfg_capacity = 20;
58
59 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
60 which use a particular edge. The CASE_LABEL_EXPRs are chained together
61 via their TREE_CHAIN field, which we clear after we're done with the
62 hash table to prevent problems with duplication of SWITCH_EXPRs.
63
64 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
65 update the case vector in response to edge redirections.
66
67 Right now this table is set up and torn down at key points in the
68 compilation process. It would be nice if we could make the table
69 more persistent. The key is getting notification of changes to
70 the CFG (particularly edge removal, creation and redirection). */
71
72 struct edge_to_cases_elt
73 {
74 /* The edge itself. Necessary for hashing and equality tests. */
75 edge e;
76
77 /* The case labels associated with this edge. We link these up via
78 their TREE_CHAIN field, then we wipe out the TREE_CHAIN fields
79 when we destroy the hash table. This prevents problems when copying
80 SWITCH_EXPRs. */
81 tree case_labels;
82 };
83
84 static htab_t edge_to_cases;
85
86 /* CFG statistics. */
87 struct cfg_stats_d
88 {
89 long num_merged_labels;
90 };
91
92 static struct cfg_stats_d cfg_stats;
93
94 /* Nonzero if we found a computed goto while building basic blocks. */
95 static bool found_computed_goto;
96
97 /* Basic blocks and flowgraphs. */
98 static basic_block create_bb (void *, void *, basic_block);
99 static void make_blocks (tree);
100 static void factor_computed_gotos (void);
101
102 /* Edges. */
103 static void make_edges (void);
104 static void make_cond_expr_edges (basic_block);
105 static void make_switch_expr_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static edge tree_redirect_edge_and_branch (edge, basic_block);
108 static edge tree_try_redirect_by_replacing_jump (edge, basic_block);
109 static unsigned int split_critical_edges (void);
110
111 /* Various helpers. */
112 static inline bool stmt_starts_bb_p (tree, tree);
113 static int tree_verify_flow_info (void);
114 static void tree_make_forwarder_block (edge);
115 static void tree_cfg2vcg (FILE *);
116 static inline void change_bb_for_stmt (tree t, basic_block bb);
117
118 /* Flowgraph optimization and cleanup. */
119 static void tree_merge_blocks (basic_block, basic_block);
120 static bool tree_can_merge_blocks_p (basic_block, basic_block);
121 static void remove_bb (basic_block);
122 static edge find_taken_edge_computed_goto (basic_block, tree);
123 static edge find_taken_edge_cond_expr (basic_block, tree);
124 static edge find_taken_edge_switch_expr (basic_block, tree);
125 static tree find_case_label_for_value (tree, tree);
126
127 void
128 init_empty_tree_cfg (void)
129 {
130 /* Initialize the basic block array. */
131 init_flow ();
132 profile_status = PROFILE_ABSENT;
133 n_basic_blocks = NUM_FIXED_BLOCKS;
134 last_basic_block = NUM_FIXED_BLOCKS;
135 basic_block_info = VEC_alloc (basic_block, gc, initial_cfg_capacity);
136 VEC_safe_grow_cleared (basic_block, gc, basic_block_info,
137 initial_cfg_capacity);
138
139 /* Build a mapping of labels to their associated blocks. */
140 label_to_block_map = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
142 initial_cfg_capacity);
143
144 SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
145 SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
146 ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
147 EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
148 }
149
150 /*---------------------------------------------------------------------------
151 Create basic blocks
152 ---------------------------------------------------------------------------*/
153
154 /* Entry point to the CFG builder for trees. TP points to the list of
155 statements to be added to the flowgraph. */
156
157 static void
158 build_tree_cfg (tree *tp)
159 {
160 /* Register specific tree functions. */
161 tree_register_cfg_hooks ();
162
163 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
164
165 init_empty_tree_cfg ();
166
167 found_computed_goto = 0;
168 make_blocks (*tp);
169
170 /* Computed gotos are hell to deal with, especially if there are
171 lots of them with a large number of destinations. So we factor
172 them to a common computed goto location before we build the
173 edge list. After we convert back to normal form, we will un-factor
174 the computed gotos since factoring introduces an unwanted jump. */
175 if (found_computed_goto)
176 factor_computed_gotos ();
177
178 /* Make sure there is always at least one block, even if it's empty. */
179 if (n_basic_blocks == NUM_FIXED_BLOCKS)
180 create_empty_bb (ENTRY_BLOCK_PTR);
181
182 /* Adjust the size of the array. */
183 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
184 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
185
186 /* To speed up statement iterator walks, we first purge dead labels. */
187 cleanup_dead_labels ();
188
189 /* Group case nodes to reduce the number of edges.
190 We do this after cleaning up dead labels because otherwise we miss
191 a lot of obvious case merging opportunities. */
192 group_case_labels ();
193
194 /* Create the edges of the flowgraph. */
195 make_edges ();
196
197 /* Debugging dumps. */
198
199 /* Write the flowgraph to a VCG file. */
200 {
201 int local_dump_flags;
202 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
203 if (vcg_file)
204 {
205 tree_cfg2vcg (vcg_file);
206 dump_end (TDI_vcg, vcg_file);
207 }
208 }
209
210 #ifdef ENABLE_CHECKING
211 verify_stmts ();
212 #endif
213
214 /* Dump a textual representation of the flowgraph. */
215 if (dump_file)
216 dump_tree_cfg (dump_file, dump_flags);
217 }
218
219 static unsigned int
220 execute_build_cfg (void)
221 {
222 build_tree_cfg (&DECL_SAVED_TREE (current_function_decl));
223 return 0;
224 }
225
226 struct tree_opt_pass pass_build_cfg =
227 {
228 "cfg", /* name */
229 NULL, /* gate */
230 execute_build_cfg, /* execute */
231 NULL, /* sub */
232 NULL, /* next */
233 0, /* static_pass_number */
234 TV_TREE_CFG, /* tv_id */
235 PROP_gimple_leh, /* properties_required */
236 PROP_cfg, /* properties_provided */
237 0, /* properties_destroyed */
238 0, /* todo_flags_start */
239 TODO_verify_stmts, /* todo_flags_finish */
240 0 /* letter */
241 };
242
243 /* Search the CFG for any computed gotos. If found, factor them to a
244 common computed goto site. Also record the location of that site so
245 that we can un-factor the gotos after we have converted back to
246 normal form. */
247
248 static void
249 factor_computed_gotos (void)
250 {
251 basic_block bb;
252 tree factored_label_decl = NULL;
253 tree var = NULL;
254 tree factored_computed_goto_label = NULL;
255 tree factored_computed_goto = NULL;
256
257 /* We know there are one or more computed gotos in this function.
258 Examine the last statement in each basic block to see if the block
259 ends with a computed goto. */
260
261 FOR_EACH_BB (bb)
262 {
263 block_stmt_iterator bsi = bsi_last (bb);
264 tree last;
265
266 if (bsi_end_p (bsi))
267 continue;
268 last = bsi_stmt (bsi);
269
270 /* Ignore the computed goto we create when we factor the original
271 computed gotos. */
272 if (last == factored_computed_goto)
273 continue;
274
275 /* If the last statement is a computed goto, factor it. */
276 if (computed_goto_p (last))
277 {
278 tree assignment;
279
280 /* The first time we find a computed goto we need to create
281 the factored goto block and the variable each original
282 computed goto will use for their goto destination. */
283 if (! factored_computed_goto)
284 {
285 basic_block new_bb = create_empty_bb (bb);
286 block_stmt_iterator new_bsi = bsi_start (new_bb);
287
288 /* Create the destination of the factored goto. Each original
289 computed goto will put its desired destination into this
290 variable and jump to the label we create immediately
291 below. */
292 var = create_tmp_var (ptr_type_node, "gotovar");
293
294 /* Build a label for the new block which will contain the
295 factored computed goto. */
296 factored_label_decl = create_artificial_label ();
297 factored_computed_goto_label
298 = build1 (LABEL_EXPR, void_type_node, factored_label_decl);
299 bsi_insert_after (&new_bsi, factored_computed_goto_label,
300 BSI_NEW_STMT);
301
302 /* Build our new computed goto. */
303 factored_computed_goto = build1 (GOTO_EXPR, void_type_node, var);
304 bsi_insert_after (&new_bsi, factored_computed_goto,
305 BSI_NEW_STMT);
306 }
307
308 /* Copy the original computed goto's destination into VAR. */
309 assignment = build2_gimple (GIMPLE_MODIFY_STMT,
310 var, GOTO_DESTINATION (last));
311 bsi_insert_before (&bsi, assignment, BSI_SAME_STMT);
312
313 /* And re-vector the computed goto to the new destination. */
314 GOTO_DESTINATION (last) = factored_label_decl;
315 }
316 }
317 }
318
319
320 /* Build a flowgraph for the statement_list STMT_LIST. */
321
322 static void
323 make_blocks (tree stmt_list)
324 {
325 tree_stmt_iterator i = tsi_start (stmt_list);
326 tree stmt = NULL;
327 bool start_new_block = true;
328 bool first_stmt_of_list = true;
329 basic_block bb = ENTRY_BLOCK_PTR;
330
331 while (!tsi_end_p (i))
332 {
333 tree prev_stmt;
334
335 prev_stmt = stmt;
336 stmt = tsi_stmt (i);
337
338 /* If the statement starts a new basic block or if we have determined
339 in a previous pass that we need to create a new block for STMT, do
340 so now. */
341 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
342 {
343 if (!first_stmt_of_list)
344 stmt_list = tsi_split_statement_list_before (&i);
345 bb = create_basic_block (stmt_list, NULL, bb);
346 start_new_block = false;
347 }
348
349 /* Now add STMT to BB and create the subgraphs for special statement
350 codes. */
351 set_bb_for_stmt (stmt, bb);
352
353 if (computed_goto_p (stmt))
354 found_computed_goto = true;
355
356 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
357 next iteration. */
358 if (stmt_ends_bb_p (stmt))
359 start_new_block = true;
360
361 tsi_next (&i);
362 first_stmt_of_list = false;
363 }
364 }
365
366
367 /* Create and return a new empty basic block after bb AFTER. */
368
369 static basic_block
370 create_bb (void *h, void *e, basic_block after)
371 {
372 basic_block bb;
373
374 gcc_assert (!e);
375
376 /* Create and initialize a new basic block. Since alloc_block uses
377 ggc_alloc_cleared to allocate a basic block, we do not have to
378 clear the newly allocated basic block here. */
379 bb = alloc_block ();
380
381 bb->index = last_basic_block;
382 bb->flags = BB_NEW;
383 bb->stmt_list = h ? (tree) h : alloc_stmt_list ();
384
385 /* Add the new block to the linked list of blocks. */
386 link_block (bb, after);
387
388 /* Grow the basic block array if needed. */
389 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
390 {
391 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
392 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
393 }
394
395 /* Add the newly created block to the array. */
396 SET_BASIC_BLOCK (last_basic_block, bb);
397
398 n_basic_blocks++;
399 last_basic_block++;
400
401 return bb;
402 }
403
404
405 /*---------------------------------------------------------------------------
406 Edge creation
407 ---------------------------------------------------------------------------*/
408
409 /* Fold COND_EXPR_COND of each COND_EXPR. */
410
411 void
412 fold_cond_expr_cond (void)
413 {
414 basic_block bb;
415
416 FOR_EACH_BB (bb)
417 {
418 tree stmt = last_stmt (bb);
419
420 if (stmt
421 && TREE_CODE (stmt) == COND_EXPR)
422 {
423 tree cond = fold (COND_EXPR_COND (stmt));
424 if (integer_zerop (cond))
425 COND_EXPR_COND (stmt) = boolean_false_node;
426 else if (integer_onep (cond))
427 COND_EXPR_COND (stmt) = boolean_true_node;
428 }
429 }
430 }
431
432 /* Join all the blocks in the flowgraph. */
433
434 static void
435 make_edges (void)
436 {
437 basic_block bb;
438 struct omp_region *cur_region = NULL;
439
440 /* Create an edge from entry to the first block with executable
441 statements in it. */
442 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
443
444 /* Traverse the basic block array placing edges. */
445 FOR_EACH_BB (bb)
446 {
447 tree last = last_stmt (bb);
448 bool fallthru;
449
450 if (last)
451 {
452 enum tree_code code = TREE_CODE (last);
453 switch (code)
454 {
455 case GOTO_EXPR:
456 make_goto_expr_edges (bb);
457 fallthru = false;
458 break;
459 case RETURN_EXPR:
460 make_edge (bb, EXIT_BLOCK_PTR, 0);
461 fallthru = false;
462 break;
463 case COND_EXPR:
464 make_cond_expr_edges (bb);
465 fallthru = false;
466 break;
467 case SWITCH_EXPR:
468 make_switch_expr_edges (bb);
469 fallthru = false;
470 break;
471 case RESX_EXPR:
472 make_eh_edges (last);
473 fallthru = false;
474 break;
475
476 case CALL_EXPR:
477 /* If this function receives a nonlocal goto, then we need to
478 make edges from this call site to all the nonlocal goto
479 handlers. */
480 if (tree_can_make_abnormal_goto (last))
481 make_abnormal_goto_edges (bb, true);
482
483 /* If this statement has reachable exception handlers, then
484 create abnormal edges to them. */
485 make_eh_edges (last);
486
487 /* Some calls are known not to return. */
488 fallthru = !(call_expr_flags (last) & ECF_NORETURN);
489 break;
490
491 case MODIFY_EXPR:
492 gcc_unreachable ();
493
494 case GIMPLE_MODIFY_STMT:
495 if (is_ctrl_altering_stmt (last))
496 {
497 /* A GIMPLE_MODIFY_STMT may have a CALL_EXPR on its RHS and
498 the CALL_EXPR may have an abnormal edge. Search the RHS
499 for this case and create any required edges. */
500 if (tree_can_make_abnormal_goto (last))
501 make_abnormal_goto_edges (bb, true);
502
503 make_eh_edges (last);
504 }
505 fallthru = true;
506 break;
507
508 case OMP_PARALLEL:
509 case OMP_FOR:
510 case OMP_SINGLE:
511 case OMP_MASTER:
512 case OMP_ORDERED:
513 case OMP_CRITICAL:
514 case OMP_SECTION:
515 cur_region = new_omp_region (bb, code, cur_region);
516 fallthru = true;
517 break;
518
519 case OMP_SECTIONS:
520 cur_region = new_omp_region (bb, code, cur_region);
521 fallthru = false;
522 break;
523
524 case OMP_RETURN:
525 /* In the case of an OMP_SECTION, the edge will go somewhere
526 other than the next block. This will be created later. */
527 cur_region->exit = bb;
528 fallthru = cur_region->type != OMP_SECTION;
529 cur_region = cur_region->outer;
530 break;
531
532 case OMP_CONTINUE:
533 cur_region->cont = bb;
534 switch (cur_region->type)
535 {
536 case OMP_FOR:
537 /* ??? Technically there should be a some sort of loopback
538 edge here, but it goes to a block that doesn't exist yet,
539 and without it, updating the ssa form would be a real
540 bear. Fortunately, we don't yet do ssa before expanding
541 these nodes. */
542 break;
543
544 case OMP_SECTIONS:
545 /* Wire up the edges into and out of the nested sections. */
546 /* ??? Similarly wrt loopback. */
547 {
548 struct omp_region *i;
549 for (i = cur_region->inner; i ; i = i->next)
550 {
551 gcc_assert (i->type == OMP_SECTION);
552 make_edge (cur_region->entry, i->entry, 0);
553 make_edge (i->exit, bb, EDGE_FALLTHRU);
554 }
555 }
556 break;
557
558 default:
559 gcc_unreachable ();
560 }
561 fallthru = true;
562 break;
563
564 default:
565 gcc_assert (!stmt_ends_bb_p (last));
566 fallthru = true;
567 }
568 }
569 else
570 fallthru = true;
571
572 if (fallthru)
573 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
574 }
575
576 if (root_omp_region)
577 free_omp_regions ();
578
579 /* Fold COND_EXPR_COND of each COND_EXPR. */
580 fold_cond_expr_cond ();
581
582 /* Clean up the graph and warn for unreachable code. */
583 cleanup_tree_cfg ();
584 }
585
586
587 /* Create the edges for a COND_EXPR starting at block BB.
588 At this point, both clauses must contain only simple gotos. */
589
590 static void
591 make_cond_expr_edges (basic_block bb)
592 {
593 tree entry = last_stmt (bb);
594 basic_block then_bb, else_bb;
595 tree then_label, else_label;
596 edge e;
597
598 gcc_assert (entry);
599 gcc_assert (TREE_CODE (entry) == COND_EXPR);
600
601 /* Entry basic blocks for each component. */
602 then_label = GOTO_DESTINATION (COND_EXPR_THEN (entry));
603 else_label = GOTO_DESTINATION (COND_EXPR_ELSE (entry));
604 then_bb = label_to_block (then_label);
605 else_bb = label_to_block (else_label);
606
607 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
608 #ifdef USE_MAPPED_LOCATION
609 e->goto_locus = EXPR_LOCATION (COND_EXPR_THEN (entry));
610 #else
611 e->goto_locus = EXPR_LOCUS (COND_EXPR_THEN (entry));
612 #endif
613 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
614 if (e)
615 {
616 #ifdef USE_MAPPED_LOCATION
617 e->goto_locus = EXPR_LOCATION (COND_EXPR_ELSE (entry));
618 #else
619 e->goto_locus = EXPR_LOCUS (COND_EXPR_ELSE (entry));
620 #endif
621 }
622 }
623
624 /* Hashing routine for EDGE_TO_CASES. */
625
626 static hashval_t
627 edge_to_cases_hash (const void *p)
628 {
629 edge e = ((struct edge_to_cases_elt *)p)->e;
630
631 /* Hash on the edge itself (which is a pointer). */
632 return htab_hash_pointer (e);
633 }
634
635 /* Equality routine for EDGE_TO_CASES, edges are unique, so testing
636 for equality is just a pointer comparison. */
637
638 static int
639 edge_to_cases_eq (const void *p1, const void *p2)
640 {
641 edge e1 = ((struct edge_to_cases_elt *)p1)->e;
642 edge e2 = ((struct edge_to_cases_elt *)p2)->e;
643
644 return e1 == e2;
645 }
646
647 /* Called for each element in the hash table (P) as we delete the
648 edge to cases hash table.
649
650 Clear all the TREE_CHAINs to prevent problems with copying of
651 SWITCH_EXPRs and structure sharing rules, then free the hash table
652 element. */
653
654 static void
655 edge_to_cases_cleanup (void *p)
656 {
657 struct edge_to_cases_elt *elt = (struct edge_to_cases_elt *) p;
658 tree t, next;
659
660 for (t = elt->case_labels; t; t = next)
661 {
662 next = TREE_CHAIN (t);
663 TREE_CHAIN (t) = NULL;
664 }
665 free (p);
666 }
667
668 /* Start recording information mapping edges to case labels. */
669
670 void
671 start_recording_case_labels (void)
672 {
673 gcc_assert (edge_to_cases == NULL);
674
675 edge_to_cases = htab_create (37,
676 edge_to_cases_hash,
677 edge_to_cases_eq,
678 edge_to_cases_cleanup);
679 }
680
681 /* Return nonzero if we are recording information for case labels. */
682
683 static bool
684 recording_case_labels_p (void)
685 {
686 return (edge_to_cases != NULL);
687 }
688
689 /* Stop recording information mapping edges to case labels and
690 remove any information we have recorded. */
691 void
692 end_recording_case_labels (void)
693 {
694 htab_delete (edge_to_cases);
695 edge_to_cases = NULL;
696 }
697
698 /* Record that CASE_LABEL (a CASE_LABEL_EXPR) references edge E. */
699
700 static void
701 record_switch_edge (edge e, tree case_label)
702 {
703 struct edge_to_cases_elt *elt;
704 void **slot;
705
706 /* Build a hash table element so we can see if E is already
707 in the table. */
708 elt = XNEW (struct edge_to_cases_elt);
709 elt->e = e;
710 elt->case_labels = case_label;
711
712 slot = htab_find_slot (edge_to_cases, elt, INSERT);
713
714 if (*slot == NULL)
715 {
716 /* E was not in the hash table. Install E into the hash table. */
717 *slot = (void *)elt;
718 }
719 else
720 {
721 /* E was already in the hash table. Free ELT as we do not need it
722 anymore. */
723 free (elt);
724
725 /* Get the entry stored in the hash table. */
726 elt = (struct edge_to_cases_elt *) *slot;
727
728 /* Add it to the chain of CASE_LABEL_EXPRs referencing E. */
729 TREE_CHAIN (case_label) = elt->case_labels;
730 elt->case_labels = case_label;
731 }
732 }
733
734 /* If we are inside a {start,end}_recording_cases block, then return
735 a chain of CASE_LABEL_EXPRs from T which reference E.
736
737 Otherwise return NULL. */
738
739 static tree
740 get_cases_for_edge (edge e, tree t)
741 {
742 struct edge_to_cases_elt elt, *elt_p;
743 void **slot;
744 size_t i, n;
745 tree vec;
746
747 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
748 chains available. Return NULL so the caller can detect this case. */
749 if (!recording_case_labels_p ())
750 return NULL;
751
752 restart:
753 elt.e = e;
754 elt.case_labels = NULL;
755 slot = htab_find_slot (edge_to_cases, &elt, NO_INSERT);
756
757 if (slot)
758 {
759 elt_p = (struct edge_to_cases_elt *)*slot;
760 return elt_p->case_labels;
761 }
762
763 /* If we did not find E in the hash table, then this must be the first
764 time we have been queried for information about E & T. Add all the
765 elements from T to the hash table then perform the query again. */
766
767 vec = SWITCH_LABELS (t);
768 n = TREE_VEC_LENGTH (vec);
769 for (i = 0; i < n; i++)
770 {
771 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
772 basic_block label_bb = label_to_block (lab);
773 record_switch_edge (find_edge (e->src, label_bb), TREE_VEC_ELT (vec, i));
774 }
775 goto restart;
776 }
777
778 /* Create the edges for a SWITCH_EXPR starting at block BB.
779 At this point, the switch body has been lowered and the
780 SWITCH_LABELS filled in, so this is in effect a multi-way branch. */
781
782 static void
783 make_switch_expr_edges (basic_block bb)
784 {
785 tree entry = last_stmt (bb);
786 size_t i, n;
787 tree vec;
788
789 vec = SWITCH_LABELS (entry);
790 n = TREE_VEC_LENGTH (vec);
791
792 for (i = 0; i < n; ++i)
793 {
794 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
795 basic_block label_bb = label_to_block (lab);
796 make_edge (bb, label_bb, 0);
797 }
798 }
799
800
801 /* Return the basic block holding label DEST. */
802
803 basic_block
804 label_to_block_fn (struct function *ifun, tree dest)
805 {
806 int uid = LABEL_DECL_UID (dest);
807
808 /* We would die hard when faced by an undefined label. Emit a label to
809 the very first basic block. This will hopefully make even the dataflow
810 and undefined variable warnings quite right. */
811 if ((errorcount || sorrycount) && uid < 0)
812 {
813 block_stmt_iterator bsi =
814 bsi_start (BASIC_BLOCK (NUM_FIXED_BLOCKS));
815 tree stmt;
816
817 stmt = build1 (LABEL_EXPR, void_type_node, dest);
818 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
819 uid = LABEL_DECL_UID (dest);
820 }
821 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
822 <= (unsigned int) uid)
823 return NULL;
824 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
825 }
826
827 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
828 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
829
830 void
831 make_abnormal_goto_edges (basic_block bb, bool for_call)
832 {
833 basic_block target_bb;
834 block_stmt_iterator bsi;
835
836 FOR_EACH_BB (target_bb)
837 for (bsi = bsi_start (target_bb); !bsi_end_p (bsi); bsi_next (&bsi))
838 {
839 tree target = bsi_stmt (bsi);
840
841 if (TREE_CODE (target) != LABEL_EXPR)
842 break;
843
844 target = LABEL_EXPR_LABEL (target);
845
846 /* Make an edge to every label block that has been marked as a
847 potential target for a computed goto or a non-local goto. */
848 if ((FORCED_LABEL (target) && !for_call)
849 || (DECL_NONLOCAL (target) && for_call))
850 {
851 make_edge (bb, target_bb, EDGE_ABNORMAL);
852 break;
853 }
854 }
855 }
856
857 /* Create edges for a goto statement at block BB. */
858
859 static void
860 make_goto_expr_edges (basic_block bb)
861 {
862 block_stmt_iterator last = bsi_last (bb);
863 tree goto_t = bsi_stmt (last);
864
865 /* A simple GOTO creates normal edges. */
866 if (simple_goto_p (goto_t))
867 {
868 tree dest = GOTO_DESTINATION (goto_t);
869 edge e = make_edge (bb, label_to_block (dest), EDGE_FALLTHRU);
870 #ifdef USE_MAPPED_LOCATION
871 e->goto_locus = EXPR_LOCATION (goto_t);
872 #else
873 e->goto_locus = EXPR_LOCUS (goto_t);
874 #endif
875 bsi_remove (&last, true);
876 return;
877 }
878
879 /* A computed GOTO creates abnormal edges. */
880 make_abnormal_goto_edges (bb, false);
881 }
882
883
884 /*---------------------------------------------------------------------------
885 Flowgraph analysis
886 ---------------------------------------------------------------------------*/
887
888 /* Cleanup useless labels in basic blocks. This is something we wish
889 to do early because it allows us to group case labels before creating
890 the edges for the CFG, and it speeds up block statement iterators in
891 all passes later on.
892 We only run this pass once, running it more than once is probably not
893 profitable. */
894
895 /* A map from basic block index to the leading label of that block. */
896 static tree *label_for_bb;
897
898 /* Callback for for_each_eh_region. Helper for cleanup_dead_labels. */
899 static void
900 update_eh_label (struct eh_region *region)
901 {
902 tree old_label = get_eh_region_tree_label (region);
903 if (old_label)
904 {
905 tree new_label;
906 basic_block bb = label_to_block (old_label);
907
908 /* ??? After optimizing, there may be EH regions with labels
909 that have already been removed from the function body, so
910 there is no basic block for them. */
911 if (! bb)
912 return;
913
914 new_label = label_for_bb[bb->index];
915 set_eh_region_tree_label (region, new_label);
916 }
917 }
918
919 /* Given LABEL return the first label in the same basic block. */
920 static tree
921 main_block_label (tree label)
922 {
923 basic_block bb = label_to_block (label);
924
925 /* label_to_block possibly inserted undefined label into the chain. */
926 if (!label_for_bb[bb->index])
927 label_for_bb[bb->index] = label;
928 return label_for_bb[bb->index];
929 }
930
931 /* Cleanup redundant labels. This is a three-step process:
932 1) Find the leading label for each block.
933 2) Redirect all references to labels to the leading labels.
934 3) Cleanup all useless labels. */
935
936 void
937 cleanup_dead_labels (void)
938 {
939 basic_block bb;
940 label_for_bb = XCNEWVEC (tree, last_basic_block);
941
942 /* Find a suitable label for each block. We use the first user-defined
943 label if there is one, or otherwise just the first label we see. */
944 FOR_EACH_BB (bb)
945 {
946 block_stmt_iterator i;
947
948 for (i = bsi_start (bb); !bsi_end_p (i); bsi_next (&i))
949 {
950 tree label, stmt = bsi_stmt (i);
951
952 if (TREE_CODE (stmt) != LABEL_EXPR)
953 break;
954
955 label = LABEL_EXPR_LABEL (stmt);
956
957 /* If we have not yet seen a label for the current block,
958 remember this one and see if there are more labels. */
959 if (! label_for_bb[bb->index])
960 {
961 label_for_bb[bb->index] = label;
962 continue;
963 }
964
965 /* If we did see a label for the current block already, but it
966 is an artificially created label, replace it if the current
967 label is a user defined label. */
968 if (! DECL_ARTIFICIAL (label)
969 && DECL_ARTIFICIAL (label_for_bb[bb->index]))
970 {
971 label_for_bb[bb->index] = label;
972 break;
973 }
974 }
975 }
976
977 /* Now redirect all jumps/branches to the selected label.
978 First do so for each block ending in a control statement. */
979 FOR_EACH_BB (bb)
980 {
981 tree stmt = last_stmt (bb);
982 if (!stmt)
983 continue;
984
985 switch (TREE_CODE (stmt))
986 {
987 case COND_EXPR:
988 {
989 tree true_branch, false_branch;
990
991 true_branch = COND_EXPR_THEN (stmt);
992 false_branch = COND_EXPR_ELSE (stmt);
993
994 GOTO_DESTINATION (true_branch)
995 = main_block_label (GOTO_DESTINATION (true_branch));
996 GOTO_DESTINATION (false_branch)
997 = main_block_label (GOTO_DESTINATION (false_branch));
998
999 break;
1000 }
1001
1002 case SWITCH_EXPR:
1003 {
1004 size_t i;
1005 tree vec = SWITCH_LABELS (stmt);
1006 size_t n = TREE_VEC_LENGTH (vec);
1007
1008 /* Replace all destination labels. */
1009 for (i = 0; i < n; ++i)
1010 {
1011 tree elt = TREE_VEC_ELT (vec, i);
1012 tree label = main_block_label (CASE_LABEL (elt));
1013 CASE_LABEL (elt) = label;
1014 }
1015 break;
1016 }
1017
1018 /* We have to handle GOTO_EXPRs until they're removed, and we don't
1019 remove them until after we've created the CFG edges. */
1020 case GOTO_EXPR:
1021 if (! computed_goto_p (stmt))
1022 {
1023 GOTO_DESTINATION (stmt)
1024 = main_block_label (GOTO_DESTINATION (stmt));
1025 break;
1026 }
1027
1028 default:
1029 break;
1030 }
1031 }
1032
1033 for_each_eh_region (update_eh_label);
1034
1035 /* Finally, purge dead labels. All user-defined labels and labels that
1036 can be the target of non-local gotos and labels which have their
1037 address taken are preserved. */
1038 FOR_EACH_BB (bb)
1039 {
1040 block_stmt_iterator i;
1041 tree label_for_this_bb = label_for_bb[bb->index];
1042
1043 if (! label_for_this_bb)
1044 continue;
1045
1046 for (i = bsi_start (bb); !bsi_end_p (i); )
1047 {
1048 tree label, stmt = bsi_stmt (i);
1049
1050 if (TREE_CODE (stmt) != LABEL_EXPR)
1051 break;
1052
1053 label = LABEL_EXPR_LABEL (stmt);
1054
1055 if (label == label_for_this_bb
1056 || ! DECL_ARTIFICIAL (label)
1057 || DECL_NONLOCAL (label)
1058 || FORCED_LABEL (label))
1059 bsi_next (&i);
1060 else
1061 bsi_remove (&i, true);
1062 }
1063 }
1064
1065 free (label_for_bb);
1066 }
1067
1068 /* Look for blocks ending in a multiway branch (a SWITCH_EXPR in GIMPLE),
1069 and scan the sorted vector of cases. Combine the ones jumping to the
1070 same label.
1071 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1072
1073 void
1074 group_case_labels (void)
1075 {
1076 basic_block bb;
1077
1078 FOR_EACH_BB (bb)
1079 {
1080 tree stmt = last_stmt (bb);
1081 if (stmt && TREE_CODE (stmt) == SWITCH_EXPR)
1082 {
1083 tree labels = SWITCH_LABELS (stmt);
1084 int old_size = TREE_VEC_LENGTH (labels);
1085 int i, j, new_size = old_size;
1086 tree default_case = TREE_VEC_ELT (labels, old_size - 1);
1087 tree default_label;
1088
1089 /* The default label is always the last case in a switch
1090 statement after gimplification. */
1091 default_label = CASE_LABEL (default_case);
1092
1093 /* Look for possible opportunities to merge cases.
1094 Ignore the last element of the label vector because it
1095 must be the default case. */
1096 i = 0;
1097 while (i < old_size - 1)
1098 {
1099 tree base_case, base_label, base_high;
1100 base_case = TREE_VEC_ELT (labels, i);
1101
1102 gcc_assert (base_case);
1103 base_label = CASE_LABEL (base_case);
1104
1105 /* Discard cases that have the same destination as the
1106 default case. */
1107 if (base_label == default_label)
1108 {
1109 TREE_VEC_ELT (labels, i) = NULL_TREE;
1110 i++;
1111 new_size--;
1112 continue;
1113 }
1114
1115 base_high = CASE_HIGH (base_case) ?
1116 CASE_HIGH (base_case) : CASE_LOW (base_case);
1117 i++;
1118 /* Try to merge case labels. Break out when we reach the end
1119 of the label vector or when we cannot merge the next case
1120 label with the current one. */
1121 while (i < old_size - 1)
1122 {
1123 tree merge_case = TREE_VEC_ELT (labels, i);
1124 tree merge_label = CASE_LABEL (merge_case);
1125 tree t = int_const_binop (PLUS_EXPR, base_high,
1126 integer_one_node, 1);
1127
1128 /* Merge the cases if they jump to the same place,
1129 and their ranges are consecutive. */
1130 if (merge_label == base_label
1131 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1132 {
1133 base_high = CASE_HIGH (merge_case) ?
1134 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1135 CASE_HIGH (base_case) = base_high;
1136 TREE_VEC_ELT (labels, i) = NULL_TREE;
1137 new_size--;
1138 i++;
1139 }
1140 else
1141 break;
1142 }
1143 }
1144
1145 /* Compress the case labels in the label vector, and adjust the
1146 length of the vector. */
1147 for (i = 0, j = 0; i < new_size; i++)
1148 {
1149 while (! TREE_VEC_ELT (labels, j))
1150 j++;
1151 TREE_VEC_ELT (labels, i) = TREE_VEC_ELT (labels, j++);
1152 }
1153 TREE_VEC_LENGTH (labels) = new_size;
1154 }
1155 }
1156 }
1157
1158 /* Checks whether we can merge block B into block A. */
1159
1160 static bool
1161 tree_can_merge_blocks_p (basic_block a, basic_block b)
1162 {
1163 tree stmt;
1164 block_stmt_iterator bsi;
1165 tree phi;
1166
1167 if (!single_succ_p (a))
1168 return false;
1169
1170 if (single_succ_edge (a)->flags & EDGE_ABNORMAL)
1171 return false;
1172
1173 if (single_succ (a) != b)
1174 return false;
1175
1176 if (!single_pred_p (b))
1177 return false;
1178
1179 if (b == EXIT_BLOCK_PTR)
1180 return false;
1181
1182 /* If A ends by a statement causing exceptions or something similar, we
1183 cannot merge the blocks. */
1184 stmt = last_stmt (a);
1185 if (stmt && stmt_ends_bb_p (stmt))
1186 return false;
1187
1188 /* Do not allow a block with only a non-local label to be merged. */
1189 if (stmt && TREE_CODE (stmt) == LABEL_EXPR
1190 && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
1191 return false;
1192
1193 /* It must be possible to eliminate all phi nodes in B. If ssa form
1194 is not up-to-date, we cannot eliminate any phis; however, if only
1195 some symbols as whole are marked for renaming, this is not a problem,
1196 as phi nodes for those symbols are irrelevant in updating anyway. */
1197 phi = phi_nodes (b);
1198 if (phi)
1199 {
1200 if (name_mappings_registered_p ())
1201 return false;
1202
1203 for (; phi; phi = PHI_CHAIN (phi))
1204 if (!is_gimple_reg (PHI_RESULT (phi))
1205 && !may_propagate_copy (PHI_RESULT (phi), PHI_ARG_DEF (phi, 0)))
1206 return false;
1207 }
1208
1209 /* Do not remove user labels. */
1210 for (bsi = bsi_start (b); !bsi_end_p (bsi); bsi_next (&bsi))
1211 {
1212 stmt = bsi_stmt (bsi);
1213 if (TREE_CODE (stmt) != LABEL_EXPR)
1214 break;
1215 if (!DECL_ARTIFICIAL (LABEL_EXPR_LABEL (stmt)))
1216 return false;
1217 }
1218
1219 /* Protect the loop latches. */
1220 if (current_loops
1221 && b->loop_father->latch == b)
1222 return false;
1223
1224 return true;
1225 }
1226
1227 /* Replaces all uses of NAME by VAL. */
1228
1229 void
1230 replace_uses_by (tree name, tree val)
1231 {
1232 imm_use_iterator imm_iter;
1233 use_operand_p use;
1234 tree stmt;
1235 edge e;
1236
1237 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1238 {
1239 if (TREE_CODE (stmt) != PHI_NODE)
1240 push_stmt_changes (&stmt);
1241
1242 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1243 {
1244 replace_exp (use, val);
1245
1246 if (TREE_CODE (stmt) == PHI_NODE)
1247 {
1248 e = PHI_ARG_EDGE (stmt, PHI_ARG_INDEX_FROM_USE (use));
1249 if (e->flags & EDGE_ABNORMAL)
1250 {
1251 /* This can only occur for virtual operands, since
1252 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1253 would prevent replacement. */
1254 gcc_assert (!is_gimple_reg (name));
1255 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1256 }
1257 }
1258 }
1259
1260 if (TREE_CODE (stmt) != PHI_NODE)
1261 {
1262 tree rhs;
1263
1264 fold_stmt_inplace (stmt);
1265
1266 /* FIXME. This should go in pop_stmt_changes. */
1267 rhs = get_rhs (stmt);
1268 if (TREE_CODE (rhs) == ADDR_EXPR)
1269 recompute_tree_invariant_for_addr_expr (rhs);
1270
1271 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1272
1273 pop_stmt_changes (&stmt);
1274 }
1275 }
1276
1277 gcc_assert (zero_imm_uses_p (name));
1278
1279 /* Also update the trees stored in loop structures. */
1280 if (current_loops)
1281 {
1282 struct loop *loop;
1283 loop_iterator li;
1284
1285 FOR_EACH_LOOP (li, loop, 0)
1286 {
1287 substitute_in_loop_info (loop, name, val);
1288 }
1289 }
1290 }
1291
1292 /* Merge block B into block A. */
1293
1294 static void
1295 tree_merge_blocks (basic_block a, basic_block b)
1296 {
1297 block_stmt_iterator bsi;
1298 tree_stmt_iterator last;
1299 tree phi;
1300
1301 if (dump_file)
1302 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1303
1304 /* Remove all single-valued PHI nodes from block B of the form
1305 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1306 bsi = bsi_last (a);
1307 for (phi = phi_nodes (b); phi; phi = phi_nodes (b))
1308 {
1309 tree def = PHI_RESULT (phi), use = PHI_ARG_DEF (phi, 0);
1310 tree copy;
1311 bool may_replace_uses = may_propagate_copy (def, use);
1312
1313 /* In case we have loops to care about, do not propagate arguments of
1314 loop closed ssa phi nodes. */
1315 if (current_loops
1316 && is_gimple_reg (def)
1317 && TREE_CODE (use) == SSA_NAME
1318 && a->loop_father != b->loop_father)
1319 may_replace_uses = false;
1320
1321 if (!may_replace_uses)
1322 {
1323 gcc_assert (is_gimple_reg (def));
1324
1325 /* Note that just emitting the copies is fine -- there is no problem
1326 with ordering of phi nodes. This is because A is the single
1327 predecessor of B, therefore results of the phi nodes cannot
1328 appear as arguments of the phi nodes. */
1329 copy = build2_gimple (GIMPLE_MODIFY_STMT, def, use);
1330 bsi_insert_after (&bsi, copy, BSI_NEW_STMT);
1331 SSA_NAME_DEF_STMT (def) = copy;
1332 }
1333 else
1334 replace_uses_by (def, use);
1335
1336 remove_phi_node (phi, NULL, false);
1337 }
1338
1339 /* Ensure that B follows A. */
1340 move_block_after (b, a);
1341
1342 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1343 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1344
1345 /* Remove labels from B and set bb_for_stmt to A for other statements. */
1346 for (bsi = bsi_start (b); !bsi_end_p (bsi);)
1347 {
1348 if (TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
1349 {
1350 tree label = bsi_stmt (bsi);
1351
1352 bsi_remove (&bsi, false);
1353 /* Now that we can thread computed gotos, we might have
1354 a situation where we have a forced label in block B
1355 However, the label at the start of block B might still be
1356 used in other ways (think about the runtime checking for
1357 Fortran assigned gotos). So we can not just delete the
1358 label. Instead we move the label to the start of block A. */
1359 if (FORCED_LABEL (LABEL_EXPR_LABEL (label)))
1360 {
1361 block_stmt_iterator dest_bsi = bsi_start (a);
1362 bsi_insert_before (&dest_bsi, label, BSI_NEW_STMT);
1363 }
1364 }
1365 else
1366 {
1367 change_bb_for_stmt (bsi_stmt (bsi), a);
1368 bsi_next (&bsi);
1369 }
1370 }
1371
1372 /* Merge the chains. */
1373 last = tsi_last (a->stmt_list);
1374 tsi_link_after (&last, b->stmt_list, TSI_NEW_STMT);
1375 b->stmt_list = NULL;
1376 }
1377
1378
1379 /* Return the one of two successors of BB that is not reachable by a
1380 reached by a complex edge, if there is one. Else, return BB. We use
1381 this in optimizations that use post-dominators for their heuristics,
1382 to catch the cases in C++ where function calls are involved. */
1383
1384 basic_block
1385 single_noncomplex_succ (basic_block bb)
1386 {
1387 edge e0, e1;
1388 if (EDGE_COUNT (bb->succs) != 2)
1389 return bb;
1390
1391 e0 = EDGE_SUCC (bb, 0);
1392 e1 = EDGE_SUCC (bb, 1);
1393 if (e0->flags & EDGE_COMPLEX)
1394 return e1->dest;
1395 if (e1->flags & EDGE_COMPLEX)
1396 return e0->dest;
1397
1398 return bb;
1399 }
1400
1401
1402 /* Walk the function tree removing unnecessary statements.
1403
1404 * Empty statement nodes are removed
1405
1406 * Unnecessary TRY_FINALLY and TRY_CATCH blocks are removed
1407
1408 * Unnecessary COND_EXPRs are removed
1409
1410 * Some unnecessary BIND_EXPRs are removed
1411
1412 Clearly more work could be done. The trick is doing the analysis
1413 and removal fast enough to be a net improvement in compile times.
1414
1415 Note that when we remove a control structure such as a COND_EXPR
1416 BIND_EXPR, or TRY block, we will need to repeat this optimization pass
1417 to ensure we eliminate all the useless code. */
1418
1419 struct rus_data
1420 {
1421 tree *last_goto;
1422 bool repeat;
1423 bool may_throw;
1424 bool may_branch;
1425 bool has_label;
1426 };
1427
1428 static void remove_useless_stmts_1 (tree *, struct rus_data *);
1429
1430 static bool
1431 remove_useless_stmts_warn_notreached (tree stmt)
1432 {
1433 if (EXPR_HAS_LOCATION (stmt))
1434 {
1435 location_t loc = EXPR_LOCATION (stmt);
1436 if (LOCATION_LINE (loc) > 0)
1437 {
1438 warning (0, "%Hwill never be executed", &loc);
1439 return true;
1440 }
1441 }
1442
1443 switch (TREE_CODE (stmt))
1444 {
1445 case STATEMENT_LIST:
1446 {
1447 tree_stmt_iterator i;
1448 for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
1449 if (remove_useless_stmts_warn_notreached (tsi_stmt (i)))
1450 return true;
1451 }
1452 break;
1453
1454 case COND_EXPR:
1455 if (remove_useless_stmts_warn_notreached (COND_EXPR_COND (stmt)))
1456 return true;
1457 if (remove_useless_stmts_warn_notreached (COND_EXPR_THEN (stmt)))
1458 return true;
1459 if (remove_useless_stmts_warn_notreached (COND_EXPR_ELSE (stmt)))
1460 return true;
1461 break;
1462
1463 case TRY_FINALLY_EXPR:
1464 case TRY_CATCH_EXPR:
1465 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 0)))
1466 return true;
1467 if (remove_useless_stmts_warn_notreached (TREE_OPERAND (stmt, 1)))
1468 return true;
1469 break;
1470
1471 case CATCH_EXPR:
1472 return remove_useless_stmts_warn_notreached (CATCH_BODY (stmt));
1473 case EH_FILTER_EXPR:
1474 return remove_useless_stmts_warn_notreached (EH_FILTER_FAILURE (stmt));
1475 case BIND_EXPR:
1476 return remove_useless_stmts_warn_notreached (BIND_EXPR_BLOCK (stmt));
1477
1478 default:
1479 /* Not a live container. */
1480 break;
1481 }
1482
1483 return false;
1484 }
1485
1486 static void
1487 remove_useless_stmts_cond (tree *stmt_p, struct rus_data *data)
1488 {
1489 tree then_clause, else_clause, cond;
1490 bool save_has_label, then_has_label, else_has_label;
1491
1492 save_has_label = data->has_label;
1493 data->has_label = false;
1494 data->last_goto = NULL;
1495
1496 remove_useless_stmts_1 (&COND_EXPR_THEN (*stmt_p), data);
1497
1498 then_has_label = data->has_label;
1499 data->has_label = false;
1500 data->last_goto = NULL;
1501
1502 remove_useless_stmts_1 (&COND_EXPR_ELSE (*stmt_p), data);
1503
1504 else_has_label = data->has_label;
1505 data->has_label = save_has_label | then_has_label | else_has_label;
1506
1507 then_clause = COND_EXPR_THEN (*stmt_p);
1508 else_clause = COND_EXPR_ELSE (*stmt_p);
1509 cond = fold (COND_EXPR_COND (*stmt_p));
1510
1511 /* If neither arm does anything at all, we can remove the whole IF. */
1512 if (!TREE_SIDE_EFFECTS (then_clause) && !TREE_SIDE_EFFECTS (else_clause))
1513 {
1514 *stmt_p = build_empty_stmt ();
1515 data->repeat = true;
1516 }
1517
1518 /* If there are no reachable statements in an arm, then we can
1519 zap the entire conditional. */
1520 else if (integer_nonzerop (cond) && !else_has_label)
1521 {
1522 if (warn_notreached)
1523 remove_useless_stmts_warn_notreached (else_clause);
1524 *stmt_p = then_clause;
1525 data->repeat = true;
1526 }
1527 else if (integer_zerop (cond) && !then_has_label)
1528 {
1529 if (warn_notreached)
1530 remove_useless_stmts_warn_notreached (then_clause);
1531 *stmt_p = else_clause;
1532 data->repeat = true;
1533 }
1534
1535 /* Check a couple of simple things on then/else with single stmts. */
1536 else
1537 {
1538 tree then_stmt = expr_only (then_clause);
1539 tree else_stmt = expr_only (else_clause);
1540
1541 /* Notice branches to a common destination. */
1542 if (then_stmt && else_stmt
1543 && TREE_CODE (then_stmt) == GOTO_EXPR
1544 && TREE_CODE (else_stmt) == GOTO_EXPR
1545 && (GOTO_DESTINATION (then_stmt) == GOTO_DESTINATION (else_stmt)))
1546 {
1547 *stmt_p = then_stmt;
1548 data->repeat = true;
1549 }
1550
1551 /* If the THEN/ELSE clause merely assigns a value to a variable or
1552 parameter which is already known to contain that value, then
1553 remove the useless THEN/ELSE clause. */
1554 else if (TREE_CODE (cond) == VAR_DECL || TREE_CODE (cond) == PARM_DECL)
1555 {
1556 if (else_stmt
1557 && TREE_CODE (else_stmt) == GIMPLE_MODIFY_STMT
1558 && GIMPLE_STMT_OPERAND (else_stmt, 0) == cond
1559 && integer_zerop (GIMPLE_STMT_OPERAND (else_stmt, 1)))
1560 COND_EXPR_ELSE (*stmt_p) = alloc_stmt_list ();
1561 }
1562 else if ((TREE_CODE (cond) == EQ_EXPR || TREE_CODE (cond) == NE_EXPR)
1563 && (TREE_CODE (TREE_OPERAND (cond, 0)) == VAR_DECL
1564 || TREE_CODE (TREE_OPERAND (cond, 0)) == PARM_DECL)
1565 && TREE_CONSTANT (TREE_OPERAND (cond, 1)))
1566 {
1567 tree stmt = (TREE_CODE (cond) == EQ_EXPR
1568 ? then_stmt : else_stmt);
1569 tree *location = (TREE_CODE (cond) == EQ_EXPR
1570 ? &COND_EXPR_THEN (*stmt_p)
1571 : &COND_EXPR_ELSE (*stmt_p));
1572
1573 if (stmt
1574 && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
1575 && GIMPLE_STMT_OPERAND (stmt, 0) == TREE_OPERAND (cond, 0)
1576 && GIMPLE_STMT_OPERAND (stmt, 1) == TREE_OPERAND (cond, 1))
1577 *location = alloc_stmt_list ();
1578 }
1579 }
1580
1581 /* Protect GOTOs in the arm of COND_EXPRs from being removed. They
1582 would be re-introduced during lowering. */
1583 data->last_goto = NULL;
1584 }
1585
1586
1587 static void
1588 remove_useless_stmts_tf (tree *stmt_p, struct rus_data *data)
1589 {
1590 bool save_may_branch, save_may_throw;
1591 bool this_may_branch, this_may_throw;
1592
1593 /* Collect may_branch and may_throw information for the body only. */
1594 save_may_branch = data->may_branch;
1595 save_may_throw = data->may_throw;
1596 data->may_branch = false;
1597 data->may_throw = false;
1598 data->last_goto = NULL;
1599
1600 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1601
1602 this_may_branch = data->may_branch;
1603 this_may_throw = data->may_throw;
1604 data->may_branch |= save_may_branch;
1605 data->may_throw |= save_may_throw;
1606 data->last_goto = NULL;
1607
1608 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1609
1610 /* If the body is empty, then we can emit the FINALLY block without
1611 the enclosing TRY_FINALLY_EXPR. */
1612 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 0)))
1613 {
1614 *stmt_p = TREE_OPERAND (*stmt_p, 1);
1615 data->repeat = true;
1616 }
1617
1618 /* If the handler is empty, then we can emit the TRY block without
1619 the enclosing TRY_FINALLY_EXPR. */
1620 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1621 {
1622 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1623 data->repeat = true;
1624 }
1625
1626 /* If the body neither throws, nor branches, then we can safely
1627 string the TRY and FINALLY blocks together. */
1628 else if (!this_may_branch && !this_may_throw)
1629 {
1630 tree stmt = *stmt_p;
1631 *stmt_p = TREE_OPERAND (stmt, 0);
1632 append_to_statement_list (TREE_OPERAND (stmt, 1), stmt_p);
1633 data->repeat = true;
1634 }
1635 }
1636
1637
1638 static void
1639 remove_useless_stmts_tc (tree *stmt_p, struct rus_data *data)
1640 {
1641 bool save_may_throw, this_may_throw;
1642 tree_stmt_iterator i;
1643 tree stmt;
1644
1645 /* Collect may_throw information for the body only. */
1646 save_may_throw = data->may_throw;
1647 data->may_throw = false;
1648 data->last_goto = NULL;
1649
1650 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 0), data);
1651
1652 this_may_throw = data->may_throw;
1653 data->may_throw = save_may_throw;
1654
1655 /* If the body cannot throw, then we can drop the entire TRY_CATCH_EXPR. */
1656 if (!this_may_throw)
1657 {
1658 if (warn_notreached)
1659 remove_useless_stmts_warn_notreached (TREE_OPERAND (*stmt_p, 1));
1660 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1661 data->repeat = true;
1662 return;
1663 }
1664
1665 /* Process the catch clause specially. We may be able to tell that
1666 no exceptions propagate past this point. */
1667
1668 this_may_throw = true;
1669 i = tsi_start (TREE_OPERAND (*stmt_p, 1));
1670 stmt = tsi_stmt (i);
1671 data->last_goto = NULL;
1672
1673 switch (TREE_CODE (stmt))
1674 {
1675 case CATCH_EXPR:
1676 for (; !tsi_end_p (i); tsi_next (&i))
1677 {
1678 stmt = tsi_stmt (i);
1679 /* If we catch all exceptions, then the body does not
1680 propagate exceptions past this point. */
1681 if (CATCH_TYPES (stmt) == NULL)
1682 this_may_throw = false;
1683 data->last_goto = NULL;
1684 remove_useless_stmts_1 (&CATCH_BODY (stmt), data);
1685 }
1686 break;
1687
1688 case EH_FILTER_EXPR:
1689 if (EH_FILTER_MUST_NOT_THROW (stmt))
1690 this_may_throw = false;
1691 else if (EH_FILTER_TYPES (stmt) == NULL)
1692 this_may_throw = false;
1693 remove_useless_stmts_1 (&EH_FILTER_FAILURE (stmt), data);
1694 break;
1695
1696 default:
1697 /* Otherwise this is a cleanup. */
1698 remove_useless_stmts_1 (&TREE_OPERAND (*stmt_p, 1), data);
1699
1700 /* If the cleanup is empty, then we can emit the TRY block without
1701 the enclosing TRY_CATCH_EXPR. */
1702 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (*stmt_p, 1)))
1703 {
1704 *stmt_p = TREE_OPERAND (*stmt_p, 0);
1705 data->repeat = true;
1706 }
1707 break;
1708 }
1709 data->may_throw |= this_may_throw;
1710 }
1711
1712
1713 static void
1714 remove_useless_stmts_bind (tree *stmt_p, struct rus_data *data)
1715 {
1716 tree block;
1717
1718 /* First remove anything underneath the BIND_EXPR. */
1719 remove_useless_stmts_1 (&BIND_EXPR_BODY (*stmt_p), data);
1720
1721 /* If the BIND_EXPR has no variables, then we can pull everything
1722 up one level and remove the BIND_EXPR, unless this is the toplevel
1723 BIND_EXPR for the current function or an inlined function.
1724
1725 When this situation occurs we will want to apply this
1726 optimization again. */
1727 block = BIND_EXPR_BLOCK (*stmt_p);
1728 if (BIND_EXPR_VARS (*stmt_p) == NULL_TREE
1729 && *stmt_p != DECL_SAVED_TREE (current_function_decl)
1730 && (! block
1731 || ! BLOCK_ABSTRACT_ORIGIN (block)
1732 || (TREE_CODE (BLOCK_ABSTRACT_ORIGIN (block))
1733 != FUNCTION_DECL)))
1734 {
1735 *stmt_p = BIND_EXPR_BODY (*stmt_p);
1736 data->repeat = true;
1737 }
1738 }
1739
1740
1741 static void
1742 remove_useless_stmts_goto (tree *stmt_p, struct rus_data *data)
1743 {
1744 tree dest = GOTO_DESTINATION (*stmt_p);
1745
1746 data->may_branch = true;
1747 data->last_goto = NULL;
1748
1749 /* Record the last goto expr, so that we can delete it if unnecessary. */
1750 if (TREE_CODE (dest) == LABEL_DECL)
1751 data->last_goto = stmt_p;
1752 }
1753
1754
1755 static void
1756 remove_useless_stmts_label (tree *stmt_p, struct rus_data *data)
1757 {
1758 tree label = LABEL_EXPR_LABEL (*stmt_p);
1759
1760 data->has_label = true;
1761
1762 /* We do want to jump across non-local label receiver code. */
1763 if (DECL_NONLOCAL (label))
1764 data->last_goto = NULL;
1765
1766 else if (data->last_goto && GOTO_DESTINATION (*data->last_goto) == label)
1767 {
1768 *data->last_goto = build_empty_stmt ();
1769 data->repeat = true;
1770 }
1771
1772 /* ??? Add something here to delete unused labels. */
1773 }
1774
1775
1776 /* If the function is "const" or "pure", then clear TREE_SIDE_EFFECTS on its
1777 decl. This allows us to eliminate redundant or useless
1778 calls to "const" functions.
1779
1780 Gimplifier already does the same operation, but we may notice functions
1781 being const and pure once their calls has been gimplified, so we need
1782 to update the flag. */
1783
1784 static void
1785 update_call_expr_flags (tree call)
1786 {
1787 tree decl = get_callee_fndecl (call);
1788 if (!decl)
1789 return;
1790 if (call_expr_flags (call) & (ECF_CONST | ECF_PURE))
1791 TREE_SIDE_EFFECTS (call) = 0;
1792 if (TREE_NOTHROW (decl))
1793 TREE_NOTHROW (call) = 1;
1794 }
1795
1796
1797 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1798
1799 void
1800 notice_special_calls (tree t)
1801 {
1802 int flags = call_expr_flags (t);
1803
1804 if (flags & ECF_MAY_BE_ALLOCA)
1805 current_function_calls_alloca = true;
1806 if (flags & ECF_RETURNS_TWICE)
1807 current_function_calls_setjmp = true;
1808 }
1809
1810
1811 /* Clear flags set by notice_special_calls. Used by dead code removal
1812 to update the flags. */
1813
1814 void
1815 clear_special_calls (void)
1816 {
1817 current_function_calls_alloca = false;
1818 current_function_calls_setjmp = false;
1819 }
1820
1821
1822 static void
1823 remove_useless_stmts_1 (tree *tp, struct rus_data *data)
1824 {
1825 tree t = *tp, op;
1826
1827 switch (TREE_CODE (t))
1828 {
1829 case COND_EXPR:
1830 remove_useless_stmts_cond (tp, data);
1831 break;
1832
1833 case TRY_FINALLY_EXPR:
1834 remove_useless_stmts_tf (tp, data);
1835 break;
1836
1837 case TRY_CATCH_EXPR:
1838 remove_useless_stmts_tc (tp, data);
1839 break;
1840
1841 case BIND_EXPR:
1842 remove_useless_stmts_bind (tp, data);
1843 break;
1844
1845 case GOTO_EXPR:
1846 remove_useless_stmts_goto (tp, data);
1847 break;
1848
1849 case LABEL_EXPR:
1850 remove_useless_stmts_label (tp, data);
1851 break;
1852
1853 case RETURN_EXPR:
1854 fold_stmt (tp);
1855 data->last_goto = NULL;
1856 data->may_branch = true;
1857 break;
1858
1859 case CALL_EXPR:
1860 fold_stmt (tp);
1861 data->last_goto = NULL;
1862 notice_special_calls (t);
1863 update_call_expr_flags (t);
1864 if (tree_could_throw_p (t))
1865 data->may_throw = true;
1866 break;
1867
1868 case MODIFY_EXPR:
1869 gcc_unreachable ();
1870
1871 case GIMPLE_MODIFY_STMT:
1872 data->last_goto = NULL;
1873 fold_stmt (tp);
1874 op = get_call_expr_in (t);
1875 if (op)
1876 {
1877 update_call_expr_flags (op);
1878 notice_special_calls (op);
1879 }
1880 if (tree_could_throw_p (t))
1881 data->may_throw = true;
1882 break;
1883
1884 case STATEMENT_LIST:
1885 {
1886 tree_stmt_iterator i = tsi_start (t);
1887 while (!tsi_end_p (i))
1888 {
1889 t = tsi_stmt (i);
1890 if (IS_EMPTY_STMT (t))
1891 {
1892 tsi_delink (&i);
1893 continue;
1894 }
1895
1896 remove_useless_stmts_1 (tsi_stmt_ptr (i), data);
1897
1898 t = tsi_stmt (i);
1899 if (TREE_CODE (t) == STATEMENT_LIST)
1900 {
1901 tsi_link_before (&i, t, TSI_SAME_STMT);
1902 tsi_delink (&i);
1903 }
1904 else
1905 tsi_next (&i);
1906 }
1907 }
1908 break;
1909 case ASM_EXPR:
1910 fold_stmt (tp);
1911 data->last_goto = NULL;
1912 break;
1913
1914 default:
1915 data->last_goto = NULL;
1916 break;
1917 }
1918 }
1919
1920 static unsigned int
1921 remove_useless_stmts (void)
1922 {
1923 struct rus_data data;
1924
1925 clear_special_calls ();
1926
1927 do
1928 {
1929 memset (&data, 0, sizeof (data));
1930 remove_useless_stmts_1 (&DECL_SAVED_TREE (current_function_decl), &data);
1931 }
1932 while (data.repeat);
1933 return 0;
1934 }
1935
1936
1937 struct tree_opt_pass pass_remove_useless_stmts =
1938 {
1939 "useless", /* name */
1940 NULL, /* gate */
1941 remove_useless_stmts, /* execute */
1942 NULL, /* sub */
1943 NULL, /* next */
1944 0, /* static_pass_number */
1945 0, /* tv_id */
1946 PROP_gimple_any, /* properties_required */
1947 0, /* properties_provided */
1948 0, /* properties_destroyed */
1949 0, /* todo_flags_start */
1950 TODO_dump_func, /* todo_flags_finish */
1951 0 /* letter */
1952 };
1953
1954 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1955
1956 static void
1957 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1958 {
1959 tree phi;
1960
1961 /* Since this block is no longer reachable, we can just delete all
1962 of its PHI nodes. */
1963 phi = phi_nodes (bb);
1964 while (phi)
1965 {
1966 tree next = PHI_CHAIN (phi);
1967 remove_phi_node (phi, NULL_TREE, true);
1968 phi = next;
1969 }
1970
1971 /* Remove edges to BB's successors. */
1972 while (EDGE_COUNT (bb->succs) > 0)
1973 remove_edge (EDGE_SUCC (bb, 0));
1974 }
1975
1976
1977 /* Remove statements of basic block BB. */
1978
1979 static void
1980 remove_bb (basic_block bb)
1981 {
1982 block_stmt_iterator i;
1983 #ifdef USE_MAPPED_LOCATION
1984 source_location loc = UNKNOWN_LOCATION;
1985 #else
1986 source_locus loc = 0;
1987 #endif
1988
1989 if (dump_file)
1990 {
1991 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1992 if (dump_flags & TDF_DETAILS)
1993 {
1994 dump_bb (bb, dump_file, 0);
1995 fprintf (dump_file, "\n");
1996 }
1997 }
1998
1999 if (current_loops)
2000 {
2001 struct loop *loop = bb->loop_father;
2002
2003 /* If a loop gets removed, clean up the information associated
2004 with it. */
2005 if (loop->latch == bb
2006 || loop->header == bb)
2007 free_numbers_of_iterations_estimates_loop (loop);
2008 }
2009
2010 /* Remove all the instructions in the block. */
2011 for (i = bsi_start (bb); !bsi_end_p (i);)
2012 {
2013 tree stmt = bsi_stmt (i);
2014 if (TREE_CODE (stmt) == LABEL_EXPR
2015 && (FORCED_LABEL (LABEL_EXPR_LABEL (stmt))
2016 || DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt))))
2017 {
2018 basic_block new_bb;
2019 block_stmt_iterator new_bsi;
2020
2021 /* A non-reachable non-local label may still be referenced.
2022 But it no longer needs to carry the extra semantics of
2023 non-locality. */
2024 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
2025 {
2026 DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)) = 0;
2027 FORCED_LABEL (LABEL_EXPR_LABEL (stmt)) = 1;
2028 }
2029
2030 new_bb = bb->prev_bb;
2031 new_bsi = bsi_start (new_bb);
2032 bsi_remove (&i, false);
2033 bsi_insert_before (&new_bsi, stmt, BSI_NEW_STMT);
2034 }
2035 else
2036 {
2037 /* Release SSA definitions if we are in SSA. Note that we
2038 may be called when not in SSA. For example,
2039 final_cleanup calls this function via
2040 cleanup_tree_cfg. */
2041 if (gimple_in_ssa_p (cfun))
2042 release_defs (stmt);
2043
2044 bsi_remove (&i, true);
2045 }
2046
2047 /* Don't warn for removed gotos. Gotos are often removed due to
2048 jump threading, thus resulting in bogus warnings. Not great,
2049 since this way we lose warnings for gotos in the original
2050 program that are indeed unreachable. */
2051 if (TREE_CODE (stmt) != GOTO_EXPR && EXPR_HAS_LOCATION (stmt) && !loc)
2052 {
2053 #ifdef USE_MAPPED_LOCATION
2054 if (EXPR_HAS_LOCATION (stmt))
2055 loc = EXPR_LOCATION (stmt);
2056 #else
2057 source_locus t;
2058 t = EXPR_LOCUS (stmt);
2059 if (t && LOCATION_LINE (*t) > 0)
2060 loc = t;
2061 #endif
2062 }
2063 }
2064
2065 /* If requested, give a warning that the first statement in the
2066 block is unreachable. We walk statements backwards in the
2067 loop above, so the last statement we process is the first statement
2068 in the block. */
2069 #ifdef USE_MAPPED_LOCATION
2070 if (loc > BUILTINS_LOCATION)
2071 warning (OPT_Wunreachable_code, "%Hwill never be executed", &loc);
2072 #else
2073 if (loc)
2074 warning (OPT_Wunreachable_code, "%Hwill never be executed", loc);
2075 #endif
2076
2077 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2078 }
2079
2080
2081 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2082 predicate VAL, return the edge that will be taken out of the block.
2083 If VAL does not match a unique edge, NULL is returned. */
2084
2085 edge
2086 find_taken_edge (basic_block bb, tree val)
2087 {
2088 tree stmt;
2089
2090 stmt = last_stmt (bb);
2091
2092 gcc_assert (stmt);
2093 gcc_assert (is_ctrl_stmt (stmt));
2094 gcc_assert (val);
2095
2096 if (! is_gimple_min_invariant (val))
2097 return NULL;
2098
2099 if (TREE_CODE (stmt) == COND_EXPR)
2100 return find_taken_edge_cond_expr (bb, val);
2101
2102 if (TREE_CODE (stmt) == SWITCH_EXPR)
2103 return find_taken_edge_switch_expr (bb, val);
2104
2105 if (computed_goto_p (stmt))
2106 return find_taken_edge_computed_goto (bb, TREE_OPERAND( val, 0));
2107
2108 gcc_unreachable ();
2109 }
2110
2111 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2112 statement, determine which of the outgoing edges will be taken out of the
2113 block. Return NULL if either edge may be taken. */
2114
2115 static edge
2116 find_taken_edge_computed_goto (basic_block bb, tree val)
2117 {
2118 basic_block dest;
2119 edge e = NULL;
2120
2121 dest = label_to_block (val);
2122 if (dest)
2123 {
2124 e = find_edge (bb, dest);
2125 gcc_assert (e != NULL);
2126 }
2127
2128 return e;
2129 }
2130
2131 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2132 statement, determine which of the two edges will be taken out of the
2133 block. Return NULL if either edge may be taken. */
2134
2135 static edge
2136 find_taken_edge_cond_expr (basic_block bb, tree val)
2137 {
2138 edge true_edge, false_edge;
2139
2140 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2141
2142 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2143 return (integer_zerop (val) ? false_edge : true_edge);
2144 }
2145
2146 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2147 statement, determine which edge will be taken out of the block. Return
2148 NULL if any edge may be taken. */
2149
2150 static edge
2151 find_taken_edge_switch_expr (basic_block bb, tree val)
2152 {
2153 tree switch_expr, taken_case;
2154 basic_block dest_bb;
2155 edge e;
2156
2157 switch_expr = last_stmt (bb);
2158 taken_case = find_case_label_for_value (switch_expr, val);
2159 dest_bb = label_to_block (CASE_LABEL (taken_case));
2160
2161 e = find_edge (bb, dest_bb);
2162 gcc_assert (e);
2163 return e;
2164 }
2165
2166
2167 /* Return the CASE_LABEL_EXPR that SWITCH_EXPR will take for VAL.
2168 We can make optimal use here of the fact that the case labels are
2169 sorted: We can do a binary search for a case matching VAL. */
2170
2171 static tree
2172 find_case_label_for_value (tree switch_expr, tree val)
2173 {
2174 tree vec = SWITCH_LABELS (switch_expr);
2175 size_t low, high, n = TREE_VEC_LENGTH (vec);
2176 tree default_case = TREE_VEC_ELT (vec, n - 1);
2177
2178 for (low = -1, high = n - 1; high - low > 1; )
2179 {
2180 size_t i = (high + low) / 2;
2181 tree t = TREE_VEC_ELT (vec, i);
2182 int cmp;
2183
2184 /* Cache the result of comparing CASE_LOW and val. */
2185 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2186
2187 if (cmp > 0)
2188 high = i;
2189 else
2190 low = i;
2191
2192 if (CASE_HIGH (t) == NULL)
2193 {
2194 /* A singe-valued case label. */
2195 if (cmp == 0)
2196 return t;
2197 }
2198 else
2199 {
2200 /* A case range. We can only handle integer ranges. */
2201 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2202 return t;
2203 }
2204 }
2205
2206 return default_case;
2207 }
2208
2209
2210
2211
2212 /*---------------------------------------------------------------------------
2213 Debugging functions
2214 ---------------------------------------------------------------------------*/
2215
2216 /* Dump tree-specific information of block BB to file OUTF. */
2217
2218 void
2219 tree_dump_bb (basic_block bb, FILE *outf, int indent)
2220 {
2221 dump_generic_bb (outf, bb, indent, TDF_VOPS|TDF_MEMSYMS);
2222 }
2223
2224
2225 /* Dump a basic block on stderr. */
2226
2227 void
2228 debug_tree_bb (basic_block bb)
2229 {
2230 dump_bb (bb, stderr, 0);
2231 }
2232
2233
2234 /* Dump basic block with index N on stderr. */
2235
2236 basic_block
2237 debug_tree_bb_n (int n)
2238 {
2239 debug_tree_bb (BASIC_BLOCK (n));
2240 return BASIC_BLOCK (n);
2241 }
2242
2243
2244 /* Dump the CFG on stderr.
2245
2246 FLAGS are the same used by the tree dumping functions
2247 (see TDF_* in tree-pass.h). */
2248
2249 void
2250 debug_tree_cfg (int flags)
2251 {
2252 dump_tree_cfg (stderr, flags);
2253 }
2254
2255
2256 /* Dump the program showing basic block boundaries on the given FILE.
2257
2258 FLAGS are the same used by the tree dumping functions (see TDF_* in
2259 tree.h). */
2260
2261 void
2262 dump_tree_cfg (FILE *file, int flags)
2263 {
2264 if (flags & TDF_DETAILS)
2265 {
2266 const char *funcname
2267 = lang_hooks.decl_printable_name (current_function_decl, 2);
2268
2269 fputc ('\n', file);
2270 fprintf (file, ";; Function %s\n\n", funcname);
2271 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2272 n_basic_blocks, n_edges, last_basic_block);
2273
2274 brief_dump_cfg (file);
2275 fprintf (file, "\n");
2276 }
2277
2278 if (flags & TDF_STATS)
2279 dump_cfg_stats (file);
2280
2281 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2282 }
2283
2284
2285 /* Dump CFG statistics on FILE. */
2286
2287 void
2288 dump_cfg_stats (FILE *file)
2289 {
2290 static long max_num_merged_labels = 0;
2291 unsigned long size, total = 0;
2292 long num_edges;
2293 basic_block bb;
2294 const char * const fmt_str = "%-30s%-13s%12s\n";
2295 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2296 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2297 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2298 const char *funcname
2299 = lang_hooks.decl_printable_name (current_function_decl, 2);
2300
2301
2302 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2303
2304 fprintf (file, "---------------------------------------------------------\n");
2305 fprintf (file, fmt_str, "", " Number of ", "Memory");
2306 fprintf (file, fmt_str, "", " instances ", "used ");
2307 fprintf (file, "---------------------------------------------------------\n");
2308
2309 size = n_basic_blocks * sizeof (struct basic_block_def);
2310 total += size;
2311 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2312 SCALE (size), LABEL (size));
2313
2314 num_edges = 0;
2315 FOR_EACH_BB (bb)
2316 num_edges += EDGE_COUNT (bb->succs);
2317 size = num_edges * sizeof (struct edge_def);
2318 total += size;
2319 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2320
2321 fprintf (file, "---------------------------------------------------------\n");
2322 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2323 LABEL (total));
2324 fprintf (file, "---------------------------------------------------------\n");
2325 fprintf (file, "\n");
2326
2327 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2328 max_num_merged_labels = cfg_stats.num_merged_labels;
2329
2330 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2331 cfg_stats.num_merged_labels, max_num_merged_labels);
2332
2333 fprintf (file, "\n");
2334 }
2335
2336
2337 /* Dump CFG statistics on stderr. Keep extern so that it's always
2338 linked in the final executable. */
2339
2340 void
2341 debug_cfg_stats (void)
2342 {
2343 dump_cfg_stats (stderr);
2344 }
2345
2346
2347 /* Dump the flowgraph to a .vcg FILE. */
2348
2349 static void
2350 tree_cfg2vcg (FILE *file)
2351 {
2352 edge e;
2353 edge_iterator ei;
2354 basic_block bb;
2355 const char *funcname
2356 = lang_hooks.decl_printable_name (current_function_decl, 2);
2357
2358 /* Write the file header. */
2359 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2360 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2361 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2362
2363 /* Write blocks and edges. */
2364 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2365 {
2366 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2367 e->dest->index);
2368
2369 if (e->flags & EDGE_FAKE)
2370 fprintf (file, " linestyle: dotted priority: 10");
2371 else
2372 fprintf (file, " linestyle: solid priority: 100");
2373
2374 fprintf (file, " }\n");
2375 }
2376 fputc ('\n', file);
2377
2378 FOR_EACH_BB (bb)
2379 {
2380 enum tree_code head_code, end_code;
2381 const char *head_name, *end_name;
2382 int head_line = 0;
2383 int end_line = 0;
2384 tree first = first_stmt (bb);
2385 tree last = last_stmt (bb);
2386
2387 if (first)
2388 {
2389 head_code = TREE_CODE (first);
2390 head_name = tree_code_name[head_code];
2391 head_line = get_lineno (first);
2392 }
2393 else
2394 head_name = "no-statement";
2395
2396 if (last)
2397 {
2398 end_code = TREE_CODE (last);
2399 end_name = tree_code_name[end_code];
2400 end_line = get_lineno (last);
2401 }
2402 else
2403 end_name = "no-statement";
2404
2405 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2406 bb->index, bb->index, head_name, head_line, end_name,
2407 end_line);
2408
2409 FOR_EACH_EDGE (e, ei, bb->succs)
2410 {
2411 if (e->dest == EXIT_BLOCK_PTR)
2412 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2413 else
2414 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2415
2416 if (e->flags & EDGE_FAKE)
2417 fprintf (file, " priority: 10 linestyle: dotted");
2418 else
2419 fprintf (file, " priority: 100 linestyle: solid");
2420
2421 fprintf (file, " }\n");
2422 }
2423
2424 if (bb->next_bb != EXIT_BLOCK_PTR)
2425 fputc ('\n', file);
2426 }
2427
2428 fputs ("}\n\n", file);
2429 }
2430
2431
2432
2433 /*---------------------------------------------------------------------------
2434 Miscellaneous helpers
2435 ---------------------------------------------------------------------------*/
2436
2437 /* Return true if T represents a stmt that always transfers control. */
2438
2439 bool
2440 is_ctrl_stmt (tree t)
2441 {
2442 return (TREE_CODE (t) == COND_EXPR
2443 || TREE_CODE (t) == SWITCH_EXPR
2444 || TREE_CODE (t) == GOTO_EXPR
2445 || TREE_CODE (t) == RETURN_EXPR
2446 || TREE_CODE (t) == RESX_EXPR);
2447 }
2448
2449
2450 /* Return true if T is a statement that may alter the flow of control
2451 (e.g., a call to a non-returning function). */
2452
2453 bool
2454 is_ctrl_altering_stmt (tree t)
2455 {
2456 tree call;
2457
2458 gcc_assert (t);
2459 call = get_call_expr_in (t);
2460 if (call)
2461 {
2462 /* A non-pure/const CALL_EXPR alters flow control if the current
2463 function has nonlocal labels. */
2464 if (TREE_SIDE_EFFECTS (call) && current_function_has_nonlocal_label)
2465 return true;
2466
2467 /* A CALL_EXPR also alters control flow if it does not return. */
2468 if (call_expr_flags (call) & ECF_NORETURN)
2469 return true;
2470 }
2471
2472 /* OpenMP directives alter control flow. */
2473 if (OMP_DIRECTIVE_P (t))
2474 return true;
2475
2476 /* If a statement can throw, it alters control flow. */
2477 return tree_can_throw_internal (t);
2478 }
2479
2480
2481 /* Return true if T is a computed goto. */
2482
2483 bool
2484 computed_goto_p (tree t)
2485 {
2486 return (TREE_CODE (t) == GOTO_EXPR
2487 && TREE_CODE (GOTO_DESTINATION (t)) != LABEL_DECL);
2488 }
2489
2490
2491 /* Return true if T is a simple local goto. */
2492
2493 bool
2494 simple_goto_p (tree t)
2495 {
2496 return (TREE_CODE (t) == GOTO_EXPR
2497 && TREE_CODE (GOTO_DESTINATION (t)) == LABEL_DECL);
2498 }
2499
2500
2501 /* Return true if T can make an abnormal transfer of control flow.
2502 Transfers of control flow associated with EH are excluded. */
2503
2504 bool
2505 tree_can_make_abnormal_goto (tree t)
2506 {
2507 if (computed_goto_p (t))
2508 return true;
2509 if (TREE_CODE (t) == GIMPLE_MODIFY_STMT)
2510 t = GIMPLE_STMT_OPERAND (t, 1);
2511 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2512 t = TREE_OPERAND (t, 0);
2513 if (TREE_CODE (t) == CALL_EXPR)
2514 return TREE_SIDE_EFFECTS (t) && current_function_has_nonlocal_label;
2515 return false;
2516 }
2517
2518
2519 /* Return true if T should start a new basic block. PREV_T is the
2520 statement preceding T. It is used when T is a label or a case label.
2521 Labels should only start a new basic block if their previous statement
2522 wasn't a label. Otherwise, sequence of labels would generate
2523 unnecessary basic blocks that only contain a single label. */
2524
2525 static inline bool
2526 stmt_starts_bb_p (tree t, tree prev_t)
2527 {
2528 if (t == NULL_TREE)
2529 return false;
2530
2531 /* LABEL_EXPRs start a new basic block only if the preceding
2532 statement wasn't a label of the same type. This prevents the
2533 creation of consecutive blocks that have nothing but a single
2534 label. */
2535 if (TREE_CODE (t) == LABEL_EXPR)
2536 {
2537 /* Nonlocal and computed GOTO targets always start a new block. */
2538 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (t))
2539 || FORCED_LABEL (LABEL_EXPR_LABEL (t)))
2540 return true;
2541
2542 if (prev_t && TREE_CODE (prev_t) == LABEL_EXPR)
2543 {
2544 if (DECL_NONLOCAL (LABEL_EXPR_LABEL (prev_t)))
2545 return true;
2546
2547 cfg_stats.num_merged_labels++;
2548 return false;
2549 }
2550 else
2551 return true;
2552 }
2553
2554 return false;
2555 }
2556
2557
2558 /* Return true if T should end a basic block. */
2559
2560 bool
2561 stmt_ends_bb_p (tree t)
2562 {
2563 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2564 }
2565
2566
2567 /* Add gotos that used to be represented implicitly in the CFG. */
2568
2569 void
2570 disband_implicit_edges (void)
2571 {
2572 basic_block bb;
2573 block_stmt_iterator last;
2574 edge e;
2575 edge_iterator ei;
2576 tree stmt, label;
2577
2578 FOR_EACH_BB (bb)
2579 {
2580 last = bsi_last (bb);
2581 stmt = last_stmt (bb);
2582
2583 if (stmt && TREE_CODE (stmt) == COND_EXPR)
2584 {
2585 /* Remove superfluous gotos from COND_EXPR branches. Moved
2586 from cfg_remove_useless_stmts here since it violates the
2587 invariants for tree--cfg correspondence and thus fits better
2588 here where we do it anyway. */
2589 e = find_edge (bb, bb->next_bb);
2590 if (e)
2591 {
2592 if (e->flags & EDGE_TRUE_VALUE)
2593 COND_EXPR_THEN (stmt) = build_empty_stmt ();
2594 else if (e->flags & EDGE_FALSE_VALUE)
2595 COND_EXPR_ELSE (stmt) = build_empty_stmt ();
2596 else
2597 gcc_unreachable ();
2598 e->flags |= EDGE_FALLTHRU;
2599 }
2600
2601 continue;
2602 }
2603
2604 if (stmt && TREE_CODE (stmt) == RETURN_EXPR)
2605 {
2606 /* Remove the RETURN_EXPR if we may fall though to the exit
2607 instead. */
2608 gcc_assert (single_succ_p (bb));
2609 gcc_assert (single_succ (bb) == EXIT_BLOCK_PTR);
2610
2611 if (bb->next_bb == EXIT_BLOCK_PTR
2612 && !TREE_OPERAND (stmt, 0))
2613 {
2614 bsi_remove (&last, true);
2615 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2616 }
2617 continue;
2618 }
2619
2620 /* There can be no fallthru edge if the last statement is a control
2621 one. */
2622 if (stmt && is_ctrl_stmt (stmt))
2623 continue;
2624
2625 /* Find a fallthru edge and emit the goto if necessary. */
2626 FOR_EACH_EDGE (e, ei, bb->succs)
2627 if (e->flags & EDGE_FALLTHRU)
2628 break;
2629
2630 if (!e || e->dest == bb->next_bb)
2631 continue;
2632
2633 gcc_assert (e->dest != EXIT_BLOCK_PTR);
2634 label = tree_block_label (e->dest);
2635
2636 stmt = build1 (GOTO_EXPR, void_type_node, label);
2637 #ifdef USE_MAPPED_LOCATION
2638 SET_EXPR_LOCATION (stmt, e->goto_locus);
2639 #else
2640 SET_EXPR_LOCUS (stmt, e->goto_locus);
2641 #endif
2642 bsi_insert_after (&last, stmt, BSI_NEW_STMT);
2643 e->flags &= ~EDGE_FALLTHRU;
2644 }
2645 }
2646
2647 /* Remove block annotations and other datastructures. */
2648
2649 void
2650 delete_tree_cfg_annotations (void)
2651 {
2652 label_to_block_map = NULL;
2653 }
2654
2655
2656 /* Return the first statement in basic block BB. */
2657
2658 tree
2659 first_stmt (basic_block bb)
2660 {
2661 block_stmt_iterator i = bsi_start (bb);
2662 return !bsi_end_p (i) ? bsi_stmt (i) : NULL_TREE;
2663 }
2664
2665
2666 /* Return the last statement in basic block BB. */
2667
2668 tree
2669 last_stmt (basic_block bb)
2670 {
2671 block_stmt_iterator b = bsi_last (bb);
2672 return !bsi_end_p (b) ? bsi_stmt (b) : NULL_TREE;
2673 }
2674
2675
2676 /* Return the last statement of an otherwise empty block. Return NULL
2677 if the block is totally empty, or if it contains more than one
2678 statement. */
2679
2680 tree
2681 last_and_only_stmt (basic_block bb)
2682 {
2683 block_stmt_iterator i = bsi_last (bb);
2684 tree last, prev;
2685
2686 if (bsi_end_p (i))
2687 return NULL_TREE;
2688
2689 last = bsi_stmt (i);
2690 bsi_prev (&i);
2691 if (bsi_end_p (i))
2692 return last;
2693
2694 /* Empty statements should no longer appear in the instruction stream.
2695 Everything that might have appeared before should be deleted by
2696 remove_useless_stmts, and the optimizers should just bsi_remove
2697 instead of smashing with build_empty_stmt.
2698
2699 Thus the only thing that should appear here in a block containing
2700 one executable statement is a label. */
2701 prev = bsi_stmt (i);
2702 if (TREE_CODE (prev) == LABEL_EXPR)
2703 return last;
2704 else
2705 return NULL_TREE;
2706 }
2707
2708
2709 /* Mark BB as the basic block holding statement T. */
2710
2711 void
2712 set_bb_for_stmt (tree t, basic_block bb)
2713 {
2714 if (TREE_CODE (t) == PHI_NODE)
2715 PHI_BB (t) = bb;
2716 else if (TREE_CODE (t) == STATEMENT_LIST)
2717 {
2718 tree_stmt_iterator i;
2719 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2720 set_bb_for_stmt (tsi_stmt (i), bb);
2721 }
2722 else
2723 {
2724 stmt_ann_t ann = get_stmt_ann (t);
2725 ann->bb = bb;
2726
2727 /* If the statement is a label, add the label to block-to-labels map
2728 so that we can speed up edge creation for GOTO_EXPRs. */
2729 if (TREE_CODE (t) == LABEL_EXPR)
2730 {
2731 int uid;
2732
2733 t = LABEL_EXPR_LABEL (t);
2734 uid = LABEL_DECL_UID (t);
2735 if (uid == -1)
2736 {
2737 unsigned old_len = VEC_length (basic_block, label_to_block_map);
2738 LABEL_DECL_UID (t) = uid = cfun->last_label_uid++;
2739 if (old_len <= (unsigned) uid)
2740 {
2741 unsigned new_len = 3 * uid / 2;
2742
2743 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
2744 new_len);
2745 }
2746 }
2747 else
2748 /* We're moving an existing label. Make sure that we've
2749 removed it from the old block. */
2750 gcc_assert (!bb
2751 || !VEC_index (basic_block, label_to_block_map, uid));
2752 VEC_replace (basic_block, label_to_block_map, uid, bb);
2753 }
2754 }
2755 }
2756
2757 /* Faster version of set_bb_for_stmt that assume that statement is being moved
2758 from one basic block to another.
2759 For BB splitting we can run into quadratic case, so performance is quite
2760 important and knowing that the tables are big enough, change_bb_for_stmt
2761 can inline as leaf function. */
2762 static inline void
2763 change_bb_for_stmt (tree t, basic_block bb)
2764 {
2765 get_stmt_ann (t)->bb = bb;
2766 if (TREE_CODE (t) == LABEL_EXPR)
2767 VEC_replace (basic_block, label_to_block_map,
2768 LABEL_DECL_UID (LABEL_EXPR_LABEL (t)), bb);
2769 }
2770
2771 /* Finds iterator for STMT. */
2772
2773 extern block_stmt_iterator
2774 bsi_for_stmt (tree stmt)
2775 {
2776 block_stmt_iterator bsi;
2777
2778 for (bsi = bsi_start (bb_for_stmt (stmt)); !bsi_end_p (bsi); bsi_next (&bsi))
2779 if (bsi_stmt (bsi) == stmt)
2780 return bsi;
2781
2782 gcc_unreachable ();
2783 }
2784
2785 /* Mark statement T as modified, and update it. */
2786 static inline void
2787 update_modified_stmts (tree t)
2788 {
2789 if (!ssa_operands_active ())
2790 return;
2791 if (TREE_CODE (t) == STATEMENT_LIST)
2792 {
2793 tree_stmt_iterator i;
2794 tree stmt;
2795 for (i = tsi_start (t); !tsi_end_p (i); tsi_next (&i))
2796 {
2797 stmt = tsi_stmt (i);
2798 update_stmt_if_modified (stmt);
2799 }
2800 }
2801 else
2802 update_stmt_if_modified (t);
2803 }
2804
2805 /* Insert statement (or statement list) T before the statement
2806 pointed-to by iterator I. M specifies how to update iterator I
2807 after insertion (see enum bsi_iterator_update). */
2808
2809 void
2810 bsi_insert_before (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2811 {
2812 set_bb_for_stmt (t, i->bb);
2813 update_modified_stmts (t);
2814 tsi_link_before (&i->tsi, t, m);
2815 }
2816
2817
2818 /* Insert statement (or statement list) T after the statement
2819 pointed-to by iterator I. M specifies how to update iterator I
2820 after insertion (see enum bsi_iterator_update). */
2821
2822 void
2823 bsi_insert_after (block_stmt_iterator *i, tree t, enum bsi_iterator_update m)
2824 {
2825 set_bb_for_stmt (t, i->bb);
2826 update_modified_stmts (t);
2827 tsi_link_after (&i->tsi, t, m);
2828 }
2829
2830
2831 /* Remove the statement pointed to by iterator I. The iterator is updated
2832 to the next statement.
2833
2834 When REMOVE_EH_INFO is true we remove the statement pointed to by
2835 iterator I from the EH tables. Otherwise we do not modify the EH
2836 tables.
2837
2838 Generally, REMOVE_EH_INFO should be true when the statement is going to
2839 be removed from the IL and not reinserted elsewhere. */
2840
2841 void
2842 bsi_remove (block_stmt_iterator *i, bool remove_eh_info)
2843 {
2844 tree t = bsi_stmt (*i);
2845 set_bb_for_stmt (t, NULL);
2846 delink_stmt_imm_use (t);
2847 tsi_delink (&i->tsi);
2848 mark_stmt_modified (t);
2849 if (remove_eh_info)
2850 {
2851 remove_stmt_from_eh_region (t);
2852 gimple_remove_stmt_histograms (cfun, t);
2853 }
2854 }
2855
2856
2857 /* Move the statement at FROM so it comes right after the statement at TO. */
2858
2859 void
2860 bsi_move_after (block_stmt_iterator *from, block_stmt_iterator *to)
2861 {
2862 tree stmt = bsi_stmt (*from);
2863 bsi_remove (from, false);
2864 bsi_insert_after (to, stmt, BSI_SAME_STMT);
2865 }
2866
2867
2868 /* Move the statement at FROM so it comes right before the statement at TO. */
2869
2870 void
2871 bsi_move_before (block_stmt_iterator *from, block_stmt_iterator *to)
2872 {
2873 tree stmt = bsi_stmt (*from);
2874 bsi_remove (from, false);
2875 bsi_insert_before (to, stmt, BSI_SAME_STMT);
2876 }
2877
2878
2879 /* Move the statement at FROM to the end of basic block BB. */
2880
2881 void
2882 bsi_move_to_bb_end (block_stmt_iterator *from, basic_block bb)
2883 {
2884 block_stmt_iterator last = bsi_last (bb);
2885
2886 /* Have to check bsi_end_p because it could be an empty block. */
2887 if (!bsi_end_p (last) && is_ctrl_stmt (bsi_stmt (last)))
2888 bsi_move_before (from, &last);
2889 else
2890 bsi_move_after (from, &last);
2891 }
2892
2893
2894 /* Replace the contents of the statement pointed to by iterator BSI
2895 with STMT. If UPDATE_EH_INFO is true, the exception handling
2896 information of the original statement is moved to the new statement. */
2897
2898 void
2899 bsi_replace (const block_stmt_iterator *bsi, tree stmt, bool update_eh_info)
2900 {
2901 int eh_region;
2902 tree orig_stmt = bsi_stmt (*bsi);
2903
2904 SET_EXPR_LOCUS (stmt, EXPR_LOCUS (orig_stmt));
2905 set_bb_for_stmt (stmt, bsi->bb);
2906
2907 /* Preserve EH region information from the original statement, if
2908 requested by the caller. */
2909 if (update_eh_info)
2910 {
2911 eh_region = lookup_stmt_eh_region (orig_stmt);
2912 if (eh_region >= 0)
2913 {
2914 remove_stmt_from_eh_region (orig_stmt);
2915 add_stmt_to_eh_region (stmt, eh_region);
2916 gimple_duplicate_stmt_histograms (cfun, stmt, cfun, orig_stmt);
2917 gimple_remove_stmt_histograms (cfun, orig_stmt);
2918 }
2919 }
2920
2921 delink_stmt_imm_use (orig_stmt);
2922 *bsi_stmt_ptr (*bsi) = stmt;
2923 mark_stmt_modified (stmt);
2924 update_modified_stmts (stmt);
2925 }
2926
2927
2928 /* Insert the statement pointed-to by BSI into edge E. Every attempt
2929 is made to place the statement in an existing basic block, but
2930 sometimes that isn't possible. When it isn't possible, the edge is
2931 split and the statement is added to the new block.
2932
2933 In all cases, the returned *BSI points to the correct location. The
2934 return value is true if insertion should be done after the location,
2935 or false if it should be done before the location. If new basic block
2936 has to be created, it is stored in *NEW_BB. */
2937
2938 static bool
2939 tree_find_edge_insert_loc (edge e, block_stmt_iterator *bsi,
2940 basic_block *new_bb)
2941 {
2942 basic_block dest, src;
2943 tree tmp;
2944
2945 dest = e->dest;
2946 restart:
2947
2948 /* If the destination has one predecessor which has no PHI nodes,
2949 insert there. Except for the exit block.
2950
2951 The requirement for no PHI nodes could be relaxed. Basically we
2952 would have to examine the PHIs to prove that none of them used
2953 the value set by the statement we want to insert on E. That
2954 hardly seems worth the effort. */
2955 if (single_pred_p (dest)
2956 && ! phi_nodes (dest)
2957 && dest != EXIT_BLOCK_PTR)
2958 {
2959 *bsi = bsi_start (dest);
2960 if (bsi_end_p (*bsi))
2961 return true;
2962
2963 /* Make sure we insert after any leading labels. */
2964 tmp = bsi_stmt (*bsi);
2965 while (TREE_CODE (tmp) == LABEL_EXPR)
2966 {
2967 bsi_next (bsi);
2968 if (bsi_end_p (*bsi))
2969 break;
2970 tmp = bsi_stmt (*bsi);
2971 }
2972
2973 if (bsi_end_p (*bsi))
2974 {
2975 *bsi = bsi_last (dest);
2976 return true;
2977 }
2978 else
2979 return false;
2980 }
2981
2982 /* If the source has one successor, the edge is not abnormal and
2983 the last statement does not end a basic block, insert there.
2984 Except for the entry block. */
2985 src = e->src;
2986 if ((e->flags & EDGE_ABNORMAL) == 0
2987 && single_succ_p (src)
2988 && src != ENTRY_BLOCK_PTR)
2989 {
2990 *bsi = bsi_last (src);
2991 if (bsi_end_p (*bsi))
2992 return true;
2993
2994 tmp = bsi_stmt (*bsi);
2995 if (!stmt_ends_bb_p (tmp))
2996 return true;
2997
2998 /* Insert code just before returning the value. We may need to decompose
2999 the return in the case it contains non-trivial operand. */
3000 if (TREE_CODE (tmp) == RETURN_EXPR)
3001 {
3002 tree op = TREE_OPERAND (tmp, 0);
3003 if (op && !is_gimple_val (op))
3004 {
3005 gcc_assert (TREE_CODE (op) == GIMPLE_MODIFY_STMT);
3006 bsi_insert_before (bsi, op, BSI_NEW_STMT);
3007 TREE_OPERAND (tmp, 0) = GIMPLE_STMT_OPERAND (op, 0);
3008 }
3009 bsi_prev (bsi);
3010 return true;
3011 }
3012 }
3013
3014 /* Otherwise, create a new basic block, and split this edge. */
3015 dest = split_edge (e);
3016 if (new_bb)
3017 *new_bb = dest;
3018 e = single_pred_edge (dest);
3019 goto restart;
3020 }
3021
3022
3023 /* This routine will commit all pending edge insertions, creating any new
3024 basic blocks which are necessary. */
3025
3026 void
3027 bsi_commit_edge_inserts (void)
3028 {
3029 basic_block bb;
3030 edge e;
3031 edge_iterator ei;
3032
3033 bsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR), NULL);
3034
3035 FOR_EACH_BB (bb)
3036 FOR_EACH_EDGE (e, ei, bb->succs)
3037 bsi_commit_one_edge_insert (e, NULL);
3038 }
3039
3040
3041 /* Commit insertions pending at edge E. If a new block is created, set NEW_BB
3042 to this block, otherwise set it to NULL. */
3043
3044 void
3045 bsi_commit_one_edge_insert (edge e, basic_block *new_bb)
3046 {
3047 if (new_bb)
3048 *new_bb = NULL;
3049 if (PENDING_STMT (e))
3050 {
3051 block_stmt_iterator bsi;
3052 tree stmt = PENDING_STMT (e);
3053
3054 PENDING_STMT (e) = NULL_TREE;
3055
3056 if (tree_find_edge_insert_loc (e, &bsi, new_bb))
3057 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3058 else
3059 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3060 }
3061 }
3062
3063
3064 /* Add STMT to the pending list of edge E. No actual insertion is
3065 made until a call to bsi_commit_edge_inserts () is made. */
3066
3067 void
3068 bsi_insert_on_edge (edge e, tree stmt)
3069 {
3070 append_to_statement_list (stmt, &PENDING_STMT (e));
3071 }
3072
3073 /* Similar to bsi_insert_on_edge+bsi_commit_edge_inserts. If a new
3074 block has to be created, it is returned. */
3075
3076 basic_block
3077 bsi_insert_on_edge_immediate (edge e, tree stmt)
3078 {
3079 block_stmt_iterator bsi;
3080 basic_block new_bb = NULL;
3081
3082 gcc_assert (!PENDING_STMT (e));
3083
3084 if (tree_find_edge_insert_loc (e, &bsi, &new_bb))
3085 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
3086 else
3087 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
3088
3089 return new_bb;
3090 }
3091
3092 /*---------------------------------------------------------------------------
3093 Tree specific functions for CFG manipulation
3094 ---------------------------------------------------------------------------*/
3095
3096 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
3097
3098 static void
3099 reinstall_phi_args (edge new_edge, edge old_edge)
3100 {
3101 tree var, phi;
3102
3103 if (!PENDING_STMT (old_edge))
3104 return;
3105
3106 for (var = PENDING_STMT (old_edge), phi = phi_nodes (new_edge->dest);
3107 var && phi;
3108 var = TREE_CHAIN (var), phi = PHI_CHAIN (phi))
3109 {
3110 tree result = TREE_PURPOSE (var);
3111 tree arg = TREE_VALUE (var);
3112
3113 gcc_assert (result == PHI_RESULT (phi));
3114
3115 add_phi_arg (phi, arg, new_edge);
3116 }
3117
3118 PENDING_STMT (old_edge) = NULL;
3119 }
3120
3121 /* Returns the basic block after which the new basic block created
3122 by splitting edge EDGE_IN should be placed. Tries to keep the new block
3123 near its "logical" location. This is of most help to humans looking
3124 at debugging dumps. */
3125
3126 static basic_block
3127 split_edge_bb_loc (edge edge_in)
3128 {
3129 basic_block dest = edge_in->dest;
3130
3131 if (dest->prev_bb && find_edge (dest->prev_bb, dest))
3132 return edge_in->src;
3133 else
3134 return dest->prev_bb;
3135 }
3136
3137 /* Split a (typically critical) edge EDGE_IN. Return the new block.
3138 Abort on abnormal edges. */
3139
3140 static basic_block
3141 tree_split_edge (edge edge_in)
3142 {
3143 basic_block new_bb, after_bb, dest;
3144 edge new_edge, e;
3145
3146 /* Abnormal edges cannot be split. */
3147 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
3148
3149 dest = edge_in->dest;
3150
3151 after_bb = split_edge_bb_loc (edge_in);
3152
3153 new_bb = create_empty_bb (after_bb);
3154 new_bb->frequency = EDGE_FREQUENCY (edge_in);
3155 new_bb->count = edge_in->count;
3156 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
3157 new_edge->probability = REG_BR_PROB_BASE;
3158 new_edge->count = edge_in->count;
3159
3160 e = redirect_edge_and_branch (edge_in, new_bb);
3161 gcc_assert (e);
3162 reinstall_phi_args (new_edge, e);
3163
3164 return new_bb;
3165 }
3166
3167
3168 /* Return true when BB has label LABEL in it. */
3169
3170 static bool
3171 has_label_p (basic_block bb, tree label)
3172 {
3173 block_stmt_iterator bsi;
3174
3175 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3176 {
3177 tree stmt = bsi_stmt (bsi);
3178
3179 if (TREE_CODE (stmt) != LABEL_EXPR)
3180 return false;
3181 if (LABEL_EXPR_LABEL (stmt) == label)
3182 return true;
3183 }
3184 return false;
3185 }
3186
3187
3188 /* Callback for walk_tree, check that all elements with address taken are
3189 properly noticed as such. The DATA is an int* that is 1 if TP was seen
3190 inside a PHI node. */
3191
3192 static tree
3193 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3194 {
3195 tree t = *tp, x;
3196 bool in_phi = (data != NULL);
3197
3198 if (TYPE_P (t))
3199 *walk_subtrees = 0;
3200
3201 /* Check operand N for being valid GIMPLE and give error MSG if not. */
3202 #define CHECK_OP(N, MSG) \
3203 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
3204 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
3205
3206 switch (TREE_CODE (t))
3207 {
3208 case SSA_NAME:
3209 if (SSA_NAME_IN_FREE_LIST (t))
3210 {
3211 error ("SSA name in freelist but still referenced");
3212 return *tp;
3213 }
3214 break;
3215
3216 case ASSERT_EXPR:
3217 x = fold (ASSERT_EXPR_COND (t));
3218 if (x == boolean_false_node)
3219 {
3220 error ("ASSERT_EXPR with an always-false condition");
3221 return *tp;
3222 }
3223 break;
3224
3225 case MODIFY_EXPR:
3226 gcc_unreachable ();
3227
3228 case GIMPLE_MODIFY_STMT:
3229 x = GIMPLE_STMT_OPERAND (t, 0);
3230 if (TREE_CODE (x) == BIT_FIELD_REF
3231 && is_gimple_reg (TREE_OPERAND (x, 0)))
3232 {
3233 error ("GIMPLE register modified with BIT_FIELD_REF");
3234 return t;
3235 }
3236 break;
3237
3238 case ADDR_EXPR:
3239 {
3240 bool old_invariant;
3241 bool old_constant;
3242 bool old_side_effects;
3243 bool new_invariant;
3244 bool new_constant;
3245 bool new_side_effects;
3246
3247 /* ??? tree-ssa-alias.c may have overlooked dead PHI nodes, missing
3248 dead PHIs that take the address of something. But if the PHI
3249 result is dead, the fact that it takes the address of anything
3250 is irrelevant. Because we can not tell from here if a PHI result
3251 is dead, we just skip this check for PHIs altogether. This means
3252 we may be missing "valid" checks, but what can you do?
3253 This was PR19217. */
3254 if (in_phi)
3255 break;
3256
3257 old_invariant = TREE_INVARIANT (t);
3258 old_constant = TREE_CONSTANT (t);
3259 old_side_effects = TREE_SIDE_EFFECTS (t);
3260
3261 recompute_tree_invariant_for_addr_expr (t);
3262 new_invariant = TREE_INVARIANT (t);
3263 new_side_effects = TREE_SIDE_EFFECTS (t);
3264 new_constant = TREE_CONSTANT (t);
3265
3266 if (old_invariant != new_invariant)
3267 {
3268 error ("invariant not recomputed when ADDR_EXPR changed");
3269 return t;
3270 }
3271
3272 if (old_constant != new_constant)
3273 {
3274 error ("constant not recomputed when ADDR_EXPR changed");
3275 return t;
3276 }
3277 if (old_side_effects != new_side_effects)
3278 {
3279 error ("side effects not recomputed when ADDR_EXPR changed");
3280 return t;
3281 }
3282
3283 /* Skip any references (they will be checked when we recurse down the
3284 tree) and ensure that any variable used as a prefix is marked
3285 addressable. */
3286 for (x = TREE_OPERAND (t, 0);
3287 handled_component_p (x);
3288 x = TREE_OPERAND (x, 0))
3289 ;
3290
3291 if (TREE_CODE (x) != VAR_DECL && TREE_CODE (x) != PARM_DECL)
3292 return NULL;
3293 if (!TREE_ADDRESSABLE (x))
3294 {
3295 error ("address taken, but ADDRESSABLE bit not set");
3296 return x;
3297 }
3298 break;
3299 }
3300
3301 case COND_EXPR:
3302 x = COND_EXPR_COND (t);
3303 if (TREE_CODE (TREE_TYPE (x)) != BOOLEAN_TYPE)
3304 {
3305 error ("non-boolean used in condition");
3306 return x;
3307 }
3308 if (!is_gimple_condexpr (x))
3309 {
3310 error ("invalid conditional operand");
3311 return x;
3312 }
3313 break;
3314
3315 case NOP_EXPR:
3316 case CONVERT_EXPR:
3317 case FIX_TRUNC_EXPR:
3318 case FLOAT_EXPR:
3319 case NEGATE_EXPR:
3320 case ABS_EXPR:
3321 case BIT_NOT_EXPR:
3322 case NON_LVALUE_EXPR:
3323 case TRUTH_NOT_EXPR:
3324 CHECK_OP (0, "invalid operand to unary operator");
3325 break;
3326
3327 case REALPART_EXPR:
3328 case IMAGPART_EXPR:
3329 case COMPONENT_REF:
3330 case ARRAY_REF:
3331 case ARRAY_RANGE_REF:
3332 case BIT_FIELD_REF:
3333 case VIEW_CONVERT_EXPR:
3334 /* We have a nest of references. Verify that each of the operands
3335 that determine where to reference is either a constant or a variable,
3336 verify that the base is valid, and then show we've already checked
3337 the subtrees. */
3338 while (handled_component_p (t))
3339 {
3340 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3341 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3342 else if (TREE_CODE (t) == ARRAY_REF
3343 || TREE_CODE (t) == ARRAY_RANGE_REF)
3344 {
3345 CHECK_OP (1, "invalid array index");
3346 if (TREE_OPERAND (t, 2))
3347 CHECK_OP (2, "invalid array lower bound");
3348 if (TREE_OPERAND (t, 3))
3349 CHECK_OP (3, "invalid array stride");
3350 }
3351 else if (TREE_CODE (t) == BIT_FIELD_REF)
3352 {
3353 CHECK_OP (1, "invalid operand to BIT_FIELD_REF");
3354 CHECK_OP (2, "invalid operand to BIT_FIELD_REF");
3355 }
3356
3357 t = TREE_OPERAND (t, 0);
3358 }
3359
3360 if (!CONSTANT_CLASS_P (t) && !is_gimple_lvalue (t))
3361 {
3362 error ("invalid reference prefix");
3363 return t;
3364 }
3365 *walk_subtrees = 0;
3366 break;
3367
3368 case LT_EXPR:
3369 case LE_EXPR:
3370 case GT_EXPR:
3371 case GE_EXPR:
3372 case EQ_EXPR:
3373 case NE_EXPR:
3374 case UNORDERED_EXPR:
3375 case ORDERED_EXPR:
3376 case UNLT_EXPR:
3377 case UNLE_EXPR:
3378 case UNGT_EXPR:
3379 case UNGE_EXPR:
3380 case UNEQ_EXPR:
3381 case LTGT_EXPR:
3382 case PLUS_EXPR:
3383 case MINUS_EXPR:
3384 case MULT_EXPR:
3385 case TRUNC_DIV_EXPR:
3386 case CEIL_DIV_EXPR:
3387 case FLOOR_DIV_EXPR:
3388 case ROUND_DIV_EXPR:
3389 case TRUNC_MOD_EXPR:
3390 case CEIL_MOD_EXPR:
3391 case FLOOR_MOD_EXPR:
3392 case ROUND_MOD_EXPR:
3393 case RDIV_EXPR:
3394 case EXACT_DIV_EXPR:
3395 case MIN_EXPR:
3396 case MAX_EXPR:
3397 case LSHIFT_EXPR:
3398 case RSHIFT_EXPR:
3399 case LROTATE_EXPR:
3400 case RROTATE_EXPR:
3401 case BIT_IOR_EXPR:
3402 case BIT_XOR_EXPR:
3403 case BIT_AND_EXPR:
3404 CHECK_OP (0, "invalid operand to binary operator");
3405 CHECK_OP (1, "invalid operand to binary operator");
3406 break;
3407
3408 case CONSTRUCTOR:
3409 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3410 *walk_subtrees = 0;
3411 break;
3412
3413 default:
3414 break;
3415 }
3416 return NULL;
3417
3418 #undef CHECK_OP
3419 }
3420
3421
3422 /* Verify STMT, return true if STMT is not in GIMPLE form.
3423 TODO: Implement type checking. */
3424
3425 static bool
3426 verify_stmt (tree stmt, bool last_in_block)
3427 {
3428 tree addr;
3429
3430 if (OMP_DIRECTIVE_P (stmt))
3431 {
3432 /* OpenMP directives are validated by the FE and never operated
3433 on by the optimizers. Furthermore, OMP_FOR may contain
3434 non-gimple expressions when the main index variable has had
3435 its address taken. This does not affect the loop itself
3436 because the header of an OMP_FOR is merely used to determine
3437 how to setup the parallel iteration. */
3438 return false;
3439 }
3440
3441 if (!is_gimple_stmt (stmt))
3442 {
3443 error ("is not a valid GIMPLE statement");
3444 goto fail;
3445 }
3446
3447 addr = walk_tree (&stmt, verify_expr, NULL, NULL);
3448 if (addr)
3449 {
3450 debug_generic_stmt (addr);
3451 return true;
3452 }
3453
3454 /* If the statement is marked as part of an EH region, then it is
3455 expected that the statement could throw. Verify that when we
3456 have optimizations that simplify statements such that we prove
3457 that they cannot throw, that we update other data structures
3458 to match. */
3459 if (lookup_stmt_eh_region (stmt) >= 0)
3460 {
3461 if (!tree_could_throw_p (stmt))
3462 {
3463 error ("statement marked for throw, but doesn%'t");
3464 goto fail;
3465 }
3466 if (!last_in_block && tree_can_throw_internal (stmt))
3467 {
3468 error ("statement marked for throw in middle of block");
3469 goto fail;
3470 }
3471 }
3472
3473 return false;
3474
3475 fail:
3476 debug_generic_stmt (stmt);
3477 return true;
3478 }
3479
3480
3481 /* Return true when the T can be shared. */
3482
3483 static bool
3484 tree_node_can_be_shared (tree t)
3485 {
3486 if (IS_TYPE_OR_DECL_P (t)
3487 || is_gimple_min_invariant (t)
3488 || TREE_CODE (t) == SSA_NAME
3489 || t == error_mark_node
3490 || TREE_CODE (t) == IDENTIFIER_NODE)
3491 return true;
3492
3493 if (TREE_CODE (t) == CASE_LABEL_EXPR)
3494 return true;
3495
3496 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
3497 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
3498 || TREE_CODE (t) == COMPONENT_REF
3499 || TREE_CODE (t) == REALPART_EXPR
3500 || TREE_CODE (t) == IMAGPART_EXPR)
3501 t = TREE_OPERAND (t, 0);
3502
3503 if (DECL_P (t))
3504 return true;
3505
3506 return false;
3507 }
3508
3509
3510 /* Called via walk_trees. Verify tree sharing. */
3511
3512 static tree
3513 verify_node_sharing (tree * tp, int *walk_subtrees, void *data)
3514 {
3515 htab_t htab = (htab_t) data;
3516 void **slot;
3517
3518 if (tree_node_can_be_shared (*tp))
3519 {
3520 *walk_subtrees = false;
3521 return NULL;
3522 }
3523
3524 slot = htab_find_slot (htab, *tp, INSERT);
3525 if (*slot)
3526 return (tree) *slot;
3527 *slot = *tp;
3528
3529 return NULL;
3530 }
3531
3532
3533 /* Helper function for verify_gimple_tuples. */
3534
3535 static tree
3536 verify_gimple_tuples_1 (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
3537 void *data ATTRIBUTE_UNUSED)
3538 {
3539 switch (TREE_CODE (*tp))
3540 {
3541 case MODIFY_EXPR:
3542 error ("unexpected non-tuple");
3543 debug_tree (*tp);
3544 gcc_unreachable ();
3545 return NULL_TREE;
3546
3547 default:
3548 return NULL_TREE;
3549 }
3550 }
3551
3552 /* Verify that there are no trees that should have been converted to
3553 gimple tuples. Return true if T contains a node that should have
3554 been converted to a gimple tuple, but hasn't. */
3555
3556 static bool
3557 verify_gimple_tuples (tree t)
3558 {
3559 return walk_tree (&t, verify_gimple_tuples_1, NULL, NULL) != NULL;
3560 }
3561
3562 /* Verify the GIMPLE statement chain. */
3563
3564 void
3565 verify_stmts (void)
3566 {
3567 basic_block bb;
3568 block_stmt_iterator bsi;
3569 bool err = false;
3570 htab_t htab;
3571 tree addr;
3572
3573 timevar_push (TV_TREE_STMT_VERIFY);
3574 htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3575
3576 FOR_EACH_BB (bb)
3577 {
3578 tree phi;
3579 int i;
3580
3581 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3582 {
3583 int phi_num_args = PHI_NUM_ARGS (phi);
3584
3585 if (bb_for_stmt (phi) != bb)
3586 {
3587 error ("bb_for_stmt (phi) is set to a wrong basic block");
3588 err |= true;
3589 }
3590
3591 for (i = 0; i < phi_num_args; i++)
3592 {
3593 tree t = PHI_ARG_DEF (phi, i);
3594 tree addr;
3595
3596 /* Addressable variables do have SSA_NAMEs but they
3597 are not considered gimple values. */
3598 if (TREE_CODE (t) != SSA_NAME
3599 && TREE_CODE (t) != FUNCTION_DECL
3600 && !is_gimple_val (t))
3601 {
3602 error ("PHI def is not a GIMPLE value");
3603 debug_generic_stmt (phi);
3604 debug_generic_stmt (t);
3605 err |= true;
3606 }
3607
3608 addr = walk_tree (&t, verify_expr, (void *) 1, NULL);
3609 if (addr)
3610 {
3611 debug_generic_stmt (addr);
3612 err |= true;
3613 }
3614
3615 addr = walk_tree (&t, verify_node_sharing, htab, NULL);
3616 if (addr)
3617 {
3618 error ("incorrect sharing of tree nodes");
3619 debug_generic_stmt (phi);
3620 debug_generic_stmt (addr);
3621 err |= true;
3622 }
3623 }
3624 }
3625
3626 for (bsi = bsi_start (bb); !bsi_end_p (bsi); )
3627 {
3628 tree stmt = bsi_stmt (bsi);
3629
3630 err |= verify_gimple_tuples (stmt);
3631
3632 if (bb_for_stmt (stmt) != bb)
3633 {
3634 error ("bb_for_stmt (stmt) is set to a wrong basic block");
3635 err |= true;
3636 }
3637
3638 bsi_next (&bsi);
3639 err |= verify_stmt (stmt, bsi_end_p (bsi));
3640 addr = walk_tree (&stmt, verify_node_sharing, htab, NULL);
3641 if (addr)
3642 {
3643 error ("incorrect sharing of tree nodes");
3644 debug_generic_stmt (stmt);
3645 debug_generic_stmt (addr);
3646 err |= true;
3647 }
3648 }
3649 }
3650
3651 if (err)
3652 internal_error ("verify_stmts failed");
3653
3654 htab_delete (htab);
3655 verify_histograms ();
3656 timevar_pop (TV_TREE_STMT_VERIFY);
3657 }
3658
3659
3660 /* Verifies that the flow information is OK. */
3661
3662 static int
3663 tree_verify_flow_info (void)
3664 {
3665 int err = 0;
3666 basic_block bb;
3667 block_stmt_iterator bsi;
3668 tree stmt;
3669 edge e;
3670 edge_iterator ei;
3671
3672 if (ENTRY_BLOCK_PTR->stmt_list)
3673 {
3674 error ("ENTRY_BLOCK has a statement list associated with it");
3675 err = 1;
3676 }
3677
3678 if (EXIT_BLOCK_PTR->stmt_list)
3679 {
3680 error ("EXIT_BLOCK has a statement list associated with it");
3681 err = 1;
3682 }
3683
3684 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
3685 if (e->flags & EDGE_FALLTHRU)
3686 {
3687 error ("fallthru to exit from bb %d", e->src->index);
3688 err = 1;
3689 }
3690
3691 FOR_EACH_BB (bb)
3692 {
3693 bool found_ctrl_stmt = false;
3694
3695 stmt = NULL_TREE;
3696
3697 /* Skip labels on the start of basic block. */
3698 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
3699 {
3700 tree prev_stmt = stmt;
3701
3702 stmt = bsi_stmt (bsi);
3703
3704 if (TREE_CODE (stmt) != LABEL_EXPR)
3705 break;
3706
3707 if (prev_stmt && DECL_NONLOCAL (LABEL_EXPR_LABEL (stmt)))
3708 {
3709 error ("nonlocal label ");
3710 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3711 fprintf (stderr, " is not first in a sequence of labels in bb %d",
3712 bb->index);
3713 err = 1;
3714 }
3715
3716 if (label_to_block (LABEL_EXPR_LABEL (stmt)) != bb)
3717 {
3718 error ("label ");
3719 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3720 fprintf (stderr, " to block does not match in bb %d",
3721 bb->index);
3722 err = 1;
3723 }
3724
3725 if (decl_function_context (LABEL_EXPR_LABEL (stmt))
3726 != current_function_decl)
3727 {
3728 error ("label ");
3729 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3730 fprintf (stderr, " has incorrect context in bb %d",
3731 bb->index);
3732 err = 1;
3733 }
3734 }
3735
3736 /* Verify that body of basic block BB is free of control flow. */
3737 for (; !bsi_end_p (bsi); bsi_next (&bsi))
3738 {
3739 tree stmt = bsi_stmt (bsi);
3740
3741 if (found_ctrl_stmt)
3742 {
3743 error ("control flow in the middle of basic block %d",
3744 bb->index);
3745 err = 1;
3746 }
3747
3748 if (stmt_ends_bb_p (stmt))
3749 found_ctrl_stmt = true;
3750
3751 if (TREE_CODE (stmt) == LABEL_EXPR)
3752 {
3753 error ("label ");
3754 print_generic_expr (stderr, LABEL_EXPR_LABEL (stmt), 0);
3755 fprintf (stderr, " in the middle of basic block %d", bb->index);
3756 err = 1;
3757 }
3758 }
3759
3760 bsi = bsi_last (bb);
3761 if (bsi_end_p (bsi))
3762 continue;
3763
3764 stmt = bsi_stmt (bsi);
3765
3766 err |= verify_eh_edges (stmt);
3767
3768 if (is_ctrl_stmt (stmt))
3769 {
3770 FOR_EACH_EDGE (e, ei, bb->succs)
3771 if (e->flags & EDGE_FALLTHRU)
3772 {
3773 error ("fallthru edge after a control statement in bb %d",
3774 bb->index);
3775 err = 1;
3776 }
3777 }
3778
3779 if (TREE_CODE (stmt) != COND_EXPR)
3780 {
3781 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
3782 after anything else but if statement. */
3783 FOR_EACH_EDGE (e, ei, bb->succs)
3784 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
3785 {
3786 error ("true/false edge after a non-COND_EXPR in bb %d",
3787 bb->index);
3788 err = 1;
3789 }
3790 }
3791
3792 switch (TREE_CODE (stmt))
3793 {
3794 case COND_EXPR:
3795 {
3796 edge true_edge;
3797 edge false_edge;
3798 if (TREE_CODE (COND_EXPR_THEN (stmt)) != GOTO_EXPR
3799 || TREE_CODE (COND_EXPR_ELSE (stmt)) != GOTO_EXPR)
3800 {
3801 error ("structured COND_EXPR at the end of bb %d", bb->index);
3802 err = 1;
3803 }
3804
3805 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
3806
3807 if (!true_edge || !false_edge
3808 || !(true_edge->flags & EDGE_TRUE_VALUE)
3809 || !(false_edge->flags & EDGE_FALSE_VALUE)
3810 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3811 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
3812 || EDGE_COUNT (bb->succs) >= 3)
3813 {
3814 error ("wrong outgoing edge flags at end of bb %d",
3815 bb->index);
3816 err = 1;
3817 }
3818
3819 if (!has_label_p (true_edge->dest,
3820 GOTO_DESTINATION (COND_EXPR_THEN (stmt))))
3821 {
3822 error ("%<then%> label does not match edge at end of bb %d",
3823 bb->index);
3824 err = 1;
3825 }
3826
3827 if (!has_label_p (false_edge->dest,
3828 GOTO_DESTINATION (COND_EXPR_ELSE (stmt))))
3829 {
3830 error ("%<else%> label does not match edge at end of bb %d",
3831 bb->index);
3832 err = 1;
3833 }
3834 }
3835 break;
3836
3837 case GOTO_EXPR:
3838 if (simple_goto_p (stmt))
3839 {
3840 error ("explicit goto at end of bb %d", bb->index);
3841 err = 1;
3842 }
3843 else
3844 {
3845 /* FIXME. We should double check that the labels in the
3846 destination blocks have their address taken. */
3847 FOR_EACH_EDGE (e, ei, bb->succs)
3848 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
3849 | EDGE_FALSE_VALUE))
3850 || !(e->flags & EDGE_ABNORMAL))
3851 {
3852 error ("wrong outgoing edge flags at end of bb %d",
3853 bb->index);
3854 err = 1;
3855 }
3856 }
3857 break;
3858
3859 case RETURN_EXPR:
3860 if (!single_succ_p (bb)
3861 || (single_succ_edge (bb)->flags
3862 & (EDGE_FALLTHRU | EDGE_ABNORMAL
3863 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3864 {
3865 error ("wrong outgoing edge flags at end of bb %d", bb->index);
3866 err = 1;
3867 }
3868 if (single_succ (bb) != EXIT_BLOCK_PTR)
3869 {
3870 error ("return edge does not point to exit in bb %d",
3871 bb->index);
3872 err = 1;
3873 }
3874 break;
3875
3876 case SWITCH_EXPR:
3877 {
3878 tree prev;
3879 edge e;
3880 size_t i, n;
3881 tree vec;
3882
3883 vec = SWITCH_LABELS (stmt);
3884 n = TREE_VEC_LENGTH (vec);
3885
3886 /* Mark all the destination basic blocks. */
3887 for (i = 0; i < n; ++i)
3888 {
3889 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3890 basic_block label_bb = label_to_block (lab);
3891
3892 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
3893 label_bb->aux = (void *)1;
3894 }
3895
3896 /* Verify that the case labels are sorted. */
3897 prev = TREE_VEC_ELT (vec, 0);
3898 for (i = 1; i < n - 1; ++i)
3899 {
3900 tree c = TREE_VEC_ELT (vec, i);
3901 if (! CASE_LOW (c))
3902 {
3903 error ("found default case not at end of case vector");
3904 err = 1;
3905 continue;
3906 }
3907 if (! tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
3908 {
3909 error ("case labels not sorted: ");
3910 print_generic_expr (stderr, prev, 0);
3911 fprintf (stderr," is greater than ");
3912 print_generic_expr (stderr, c, 0);
3913 fprintf (stderr," but comes before it.\n");
3914 err = 1;
3915 }
3916 prev = c;
3917 }
3918 if (CASE_LOW (TREE_VEC_ELT (vec, n - 1)))
3919 {
3920 error ("no default case found at end of case vector");
3921 err = 1;
3922 }
3923
3924 FOR_EACH_EDGE (e, ei, bb->succs)
3925 {
3926 if (!e->dest->aux)
3927 {
3928 error ("extra outgoing edge %d->%d",
3929 bb->index, e->dest->index);
3930 err = 1;
3931 }
3932 e->dest->aux = (void *)2;
3933 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
3934 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
3935 {
3936 error ("wrong outgoing edge flags at end of bb %d",
3937 bb->index);
3938 err = 1;
3939 }
3940 }
3941
3942 /* Check that we have all of them. */
3943 for (i = 0; i < n; ++i)
3944 {
3945 tree lab = CASE_LABEL (TREE_VEC_ELT (vec, i));
3946 basic_block label_bb = label_to_block (lab);
3947
3948 if (label_bb->aux != (void *)2)
3949 {
3950 error ("missing edge %i->%i",
3951 bb->index, label_bb->index);
3952 err = 1;
3953 }
3954 }
3955
3956 FOR_EACH_EDGE (e, ei, bb->succs)
3957 e->dest->aux = (void *)0;
3958 }
3959
3960 default: ;
3961 }
3962 }
3963
3964 if (dom_computed[CDI_DOMINATORS] >= DOM_NO_FAST_QUERY)
3965 verify_dominators (CDI_DOMINATORS);
3966
3967 return err;
3968 }
3969
3970
3971 /* Updates phi nodes after creating a forwarder block joined
3972 by edge FALLTHRU. */
3973
3974 static void
3975 tree_make_forwarder_block (edge fallthru)
3976 {
3977 edge e;
3978 edge_iterator ei;
3979 basic_block dummy, bb;
3980 tree phi, new_phi, var;
3981
3982 dummy = fallthru->src;
3983 bb = fallthru->dest;
3984
3985 if (single_pred_p (bb))
3986 return;
3987
3988 /* If we redirected a branch we must create new PHI nodes at the
3989 start of BB. */
3990 for (phi = phi_nodes (dummy); phi; phi = PHI_CHAIN (phi))
3991 {
3992 var = PHI_RESULT (phi);
3993 new_phi = create_phi_node (var, bb);
3994 SSA_NAME_DEF_STMT (var) = new_phi;
3995 SET_PHI_RESULT (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
3996 add_phi_arg (new_phi, PHI_RESULT (phi), fallthru);
3997 }
3998
3999 /* Ensure that the PHI node chain is in the same order. */
4000 set_phi_nodes (bb, phi_reverse (phi_nodes (bb)));
4001
4002 /* Add the arguments we have stored on edges. */
4003 FOR_EACH_EDGE (e, ei, bb->preds)
4004 {
4005 if (e == fallthru)
4006 continue;
4007
4008 flush_pending_stmts (e);
4009 }
4010 }
4011
4012
4013 /* Return a non-special label in the head of basic block BLOCK.
4014 Create one if it doesn't exist. */
4015
4016 tree
4017 tree_block_label (basic_block bb)
4018 {
4019 block_stmt_iterator i, s = bsi_start (bb);
4020 bool first = true;
4021 tree label, stmt;
4022
4023 for (i = s; !bsi_end_p (i); first = false, bsi_next (&i))
4024 {
4025 stmt = bsi_stmt (i);
4026 if (TREE_CODE (stmt) != LABEL_EXPR)
4027 break;
4028 label = LABEL_EXPR_LABEL (stmt);
4029 if (!DECL_NONLOCAL (label))
4030 {
4031 if (!first)
4032 bsi_move_before (&i, &s);
4033 return label;
4034 }
4035 }
4036
4037 label = create_artificial_label ();
4038 stmt = build1 (LABEL_EXPR, void_type_node, label);
4039 bsi_insert_before (&s, stmt, BSI_NEW_STMT);
4040 return label;
4041 }
4042
4043
4044 /* Attempt to perform edge redirection by replacing a possibly complex
4045 jump instruction by a goto or by removing the jump completely.
4046 This can apply only if all edges now point to the same block. The
4047 parameters and return values are equivalent to
4048 redirect_edge_and_branch. */
4049
4050 static edge
4051 tree_try_redirect_by_replacing_jump (edge e, basic_block target)
4052 {
4053 basic_block src = e->src;
4054 block_stmt_iterator b;
4055 tree stmt;
4056
4057 /* We can replace or remove a complex jump only when we have exactly
4058 two edges. */
4059 if (EDGE_COUNT (src->succs) != 2
4060 /* Verify that all targets will be TARGET. Specifically, the
4061 edge that is not E must also go to TARGET. */
4062 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4063 return NULL;
4064
4065 b = bsi_last (src);
4066 if (bsi_end_p (b))
4067 return NULL;
4068 stmt = bsi_stmt (b);
4069
4070 if (TREE_CODE (stmt) == COND_EXPR
4071 || TREE_CODE (stmt) == SWITCH_EXPR)
4072 {
4073 bsi_remove (&b, true);
4074 e = ssa_redirect_edge (e, target);
4075 e->flags = EDGE_FALLTHRU;
4076 return e;
4077 }
4078
4079 return NULL;
4080 }
4081
4082
4083 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4084 edge representing the redirected branch. */
4085
4086 static edge
4087 tree_redirect_edge_and_branch (edge e, basic_block dest)
4088 {
4089 basic_block bb = e->src;
4090 block_stmt_iterator bsi;
4091 edge ret;
4092 tree label, stmt;
4093
4094 if (e->flags & EDGE_ABNORMAL)
4095 return NULL;
4096
4097 if (e->src != ENTRY_BLOCK_PTR
4098 && (ret = tree_try_redirect_by_replacing_jump (e, dest)))
4099 return ret;
4100
4101 if (e->dest == dest)
4102 return NULL;
4103
4104 label = tree_block_label (dest);
4105
4106 bsi = bsi_last (bb);
4107 stmt = bsi_end_p (bsi) ? NULL : bsi_stmt (bsi);
4108
4109 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
4110 {
4111 case COND_EXPR:
4112 stmt = (e->flags & EDGE_TRUE_VALUE
4113 ? COND_EXPR_THEN (stmt)
4114 : COND_EXPR_ELSE (stmt));
4115 GOTO_DESTINATION (stmt) = label;
4116 break;
4117
4118 case GOTO_EXPR:
4119 /* No non-abnormal edges should lead from a non-simple goto, and
4120 simple ones should be represented implicitly. */
4121 gcc_unreachable ();
4122
4123 case SWITCH_EXPR:
4124 {
4125 tree cases = get_cases_for_edge (e, stmt);
4126
4127 /* If we have a list of cases associated with E, then use it
4128 as it's a lot faster than walking the entire case vector. */
4129 if (cases)
4130 {
4131 edge e2 = find_edge (e->src, dest);
4132 tree last, first;
4133
4134 first = cases;
4135 while (cases)
4136 {
4137 last = cases;
4138 CASE_LABEL (cases) = label;
4139 cases = TREE_CHAIN (cases);
4140 }
4141
4142 /* If there was already an edge in the CFG, then we need
4143 to move all the cases associated with E to E2. */
4144 if (e2)
4145 {
4146 tree cases2 = get_cases_for_edge (e2, stmt);
4147
4148 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4149 TREE_CHAIN (cases2) = first;
4150 }
4151 }
4152 else
4153 {
4154 tree vec = SWITCH_LABELS (stmt);
4155 size_t i, n = TREE_VEC_LENGTH (vec);
4156
4157 for (i = 0; i < n; i++)
4158 {
4159 tree elt = TREE_VEC_ELT (vec, i);
4160
4161 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4162 CASE_LABEL (elt) = label;
4163 }
4164 }
4165
4166 break;
4167 }
4168
4169 case RETURN_EXPR:
4170 bsi_remove (&bsi, true);
4171 e->flags |= EDGE_FALLTHRU;
4172 break;
4173
4174 default:
4175 /* Otherwise it must be a fallthru edge, and we don't need to
4176 do anything besides redirecting it. */
4177 gcc_assert (e->flags & EDGE_FALLTHRU);
4178 break;
4179 }
4180
4181 /* Update/insert PHI nodes as necessary. */
4182
4183 /* Now update the edges in the CFG. */
4184 e = ssa_redirect_edge (e, dest);
4185
4186 return e;
4187 }
4188
4189
4190 /* Simple wrapper, as we can always redirect fallthru edges. */
4191
4192 static basic_block
4193 tree_redirect_edge_and_branch_force (edge e, basic_block dest)
4194 {
4195 e = tree_redirect_edge_and_branch (e, dest);
4196 gcc_assert (e);
4197
4198 return NULL;
4199 }
4200
4201
4202 /* Splits basic block BB after statement STMT (but at least after the
4203 labels). If STMT is NULL, BB is split just after the labels. */
4204
4205 static basic_block
4206 tree_split_block (basic_block bb, void *stmt)
4207 {
4208 block_stmt_iterator bsi;
4209 tree_stmt_iterator tsi_tgt;
4210 tree act;
4211 basic_block new_bb;
4212 edge e;
4213 edge_iterator ei;
4214
4215 new_bb = create_empty_bb (bb);
4216
4217 /* Redirect the outgoing edges. */
4218 new_bb->succs = bb->succs;
4219 bb->succs = NULL;
4220 FOR_EACH_EDGE (e, ei, new_bb->succs)
4221 e->src = new_bb;
4222
4223 if (stmt && TREE_CODE ((tree) stmt) == LABEL_EXPR)
4224 stmt = NULL;
4225
4226 /* Move everything from BSI to the new basic block. */
4227 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4228 {
4229 act = bsi_stmt (bsi);
4230 if (TREE_CODE (act) == LABEL_EXPR)
4231 continue;
4232
4233 if (!stmt)
4234 break;
4235
4236 if (stmt == act)
4237 {
4238 bsi_next (&bsi);
4239 break;
4240 }
4241 }
4242
4243 if (bsi_end_p (bsi))
4244 return new_bb;
4245
4246 /* Split the statement list - avoid re-creating new containers as this
4247 brings ugly quadratic memory consumption in the inliner.
4248 (We are still quadratic since we need to update stmt BB pointers,
4249 sadly.) */
4250 new_bb->stmt_list = tsi_split_statement_list_before (&bsi.tsi);
4251 for (tsi_tgt = tsi_start (new_bb->stmt_list);
4252 !tsi_end_p (tsi_tgt); tsi_next (&tsi_tgt))
4253 change_bb_for_stmt (tsi_stmt (tsi_tgt), new_bb);
4254
4255 return new_bb;
4256 }
4257
4258
4259 /* Moves basic block BB after block AFTER. */
4260
4261 static bool
4262 tree_move_block_after (basic_block bb, basic_block after)
4263 {
4264 if (bb->prev_bb == after)
4265 return true;
4266
4267 unlink_block (bb);
4268 link_block (bb, after);
4269
4270 return true;
4271 }
4272
4273
4274 /* Return true if basic_block can be duplicated. */
4275
4276 static bool
4277 tree_can_duplicate_bb_p (basic_block bb ATTRIBUTE_UNUSED)
4278 {
4279 return true;
4280 }
4281
4282
4283 /* Create a duplicate of the basic block BB. NOTE: This does not
4284 preserve SSA form. */
4285
4286 static basic_block
4287 tree_duplicate_bb (basic_block bb)
4288 {
4289 basic_block new_bb;
4290 block_stmt_iterator bsi, bsi_tgt;
4291 tree phi;
4292
4293 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
4294
4295 /* Copy the PHI nodes. We ignore PHI node arguments here because
4296 the incoming edges have not been setup yet. */
4297 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4298 {
4299 tree copy = create_phi_node (PHI_RESULT (phi), new_bb);
4300 create_new_def_for (PHI_RESULT (copy), copy, PHI_RESULT_PTR (copy));
4301 }
4302
4303 /* Keep the chain of PHI nodes in the same order so that they can be
4304 updated by ssa_redirect_edge. */
4305 set_phi_nodes (new_bb, phi_reverse (phi_nodes (new_bb)));
4306
4307 bsi_tgt = bsi_start (new_bb);
4308 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
4309 {
4310 def_operand_p def_p;
4311 ssa_op_iter op_iter;
4312 tree stmt, copy;
4313 int region;
4314
4315 stmt = bsi_stmt (bsi);
4316 if (TREE_CODE (stmt) == LABEL_EXPR)
4317 continue;
4318
4319 /* Create a new copy of STMT and duplicate STMT's virtual
4320 operands. */
4321 copy = unshare_expr (stmt);
4322 bsi_insert_after (&bsi_tgt, copy, BSI_NEW_STMT);
4323 copy_virtual_operands (copy, stmt);
4324 region = lookup_stmt_eh_region (stmt);
4325 if (region >= 0)
4326 add_stmt_to_eh_region (copy, region);
4327 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
4328
4329 /* Create new names for all the definitions created by COPY and
4330 add replacement mappings for each new name. */
4331 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
4332 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
4333 }
4334
4335 return new_bb;
4336 }
4337
4338
4339 /* Basic block BB_COPY was created by code duplication. Add phi node
4340 arguments for edges going out of BB_COPY. The blocks that were
4341 duplicated have BB_DUPLICATED set. */
4342
4343 void
4344 add_phi_args_after_copy_bb (basic_block bb_copy)
4345 {
4346 basic_block bb, dest;
4347 edge e, e_copy;
4348 edge_iterator ei;
4349 tree phi, phi_copy, phi_next, def;
4350
4351 bb = get_bb_original (bb_copy);
4352
4353 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
4354 {
4355 if (!phi_nodes (e_copy->dest))
4356 continue;
4357
4358 if (e_copy->dest->flags & BB_DUPLICATED)
4359 dest = get_bb_original (e_copy->dest);
4360 else
4361 dest = e_copy->dest;
4362
4363 e = find_edge (bb, dest);
4364 if (!e)
4365 {
4366 /* During loop unrolling the target of the latch edge is copied.
4367 In this case we are not looking for edge to dest, but to
4368 duplicated block whose original was dest. */
4369 FOR_EACH_EDGE (e, ei, bb->succs)
4370 if ((e->dest->flags & BB_DUPLICATED)
4371 && get_bb_original (e->dest) == dest)
4372 break;
4373
4374 gcc_assert (e != NULL);
4375 }
4376
4377 for (phi = phi_nodes (e->dest), phi_copy = phi_nodes (e_copy->dest);
4378 phi;
4379 phi = phi_next, phi_copy = PHI_CHAIN (phi_copy))
4380 {
4381 phi_next = PHI_CHAIN (phi);
4382 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
4383 add_phi_arg (phi_copy, def, e_copy);
4384 }
4385 }
4386 }
4387
4388 /* Blocks in REGION_COPY array of length N_REGION were created by
4389 duplication of basic blocks. Add phi node arguments for edges
4390 going from these blocks. */
4391
4392 void
4393 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region)
4394 {
4395 unsigned i;
4396
4397 for (i = 0; i < n_region; i++)
4398 region_copy[i]->flags |= BB_DUPLICATED;
4399
4400 for (i = 0; i < n_region; i++)
4401 add_phi_args_after_copy_bb (region_copy[i]);
4402
4403 for (i = 0; i < n_region; i++)
4404 region_copy[i]->flags &= ~BB_DUPLICATED;
4405 }
4406
4407 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
4408 important exit edge EXIT. By important we mean that no SSA name defined
4409 inside region is live over the other exit edges of the region. All entry
4410 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
4411 to the duplicate of the region. SSA form, dominance and loop information
4412 is updated. The new basic blocks are stored to REGION_COPY in the same
4413 order as they had in REGION, provided that REGION_COPY is not NULL.
4414 The function returns false if it is unable to copy the region,
4415 true otherwise. */
4416
4417 bool
4418 tree_duplicate_sese_region (edge entry, edge exit,
4419 basic_block *region, unsigned n_region,
4420 basic_block *region_copy)
4421 {
4422 unsigned i, n_doms;
4423 bool free_region_copy = false, copying_header = false;
4424 struct loop *loop = entry->dest->loop_father;
4425 edge exit_copy;
4426 basic_block *doms;
4427 edge redirected;
4428 int total_freq = 0, entry_freq = 0;
4429 gcov_type total_count = 0, entry_count = 0;
4430
4431 if (!can_copy_bbs_p (region, n_region))
4432 return false;
4433
4434 /* Some sanity checking. Note that we do not check for all possible
4435 missuses of the functions. I.e. if you ask to copy something weird,
4436 it will work, but the state of structures probably will not be
4437 correct. */
4438 for (i = 0; i < n_region; i++)
4439 {
4440 /* We do not handle subloops, i.e. all the blocks must belong to the
4441 same loop. */
4442 if (region[i]->loop_father != loop)
4443 return false;
4444
4445 if (region[i] != entry->dest
4446 && region[i] == loop->header)
4447 return false;
4448 }
4449
4450 loop->copy = loop;
4451
4452 /* In case the function is used for loop header copying (which is the primary
4453 use), ensure that EXIT and its copy will be new latch and entry edges. */
4454 if (loop->header == entry->dest)
4455 {
4456 copying_header = true;
4457 loop->copy = loop->outer;
4458
4459 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
4460 return false;
4461
4462 for (i = 0; i < n_region; i++)
4463 if (region[i] != exit->src
4464 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
4465 return false;
4466 }
4467
4468 if (!region_copy)
4469 {
4470 region_copy = XNEWVEC (basic_block, n_region);
4471 free_region_copy = true;
4472 }
4473
4474 gcc_assert (!need_ssa_update_p ());
4475
4476 /* Record blocks outside the region that are dominated by something
4477 inside. */
4478 doms = XNEWVEC (basic_block, n_basic_blocks);
4479 initialize_original_copy_tables ();
4480
4481 n_doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region, doms);
4482
4483 if (entry->dest->count)
4484 {
4485 total_count = entry->dest->count;
4486 entry_count = entry->count;
4487 /* Fix up corner cases, to avoid division by zero or creation of negative
4488 frequencies. */
4489 if (entry_count > total_count)
4490 entry_count = total_count;
4491 }
4492 else
4493 {
4494 total_freq = entry->dest->frequency;
4495 entry_freq = EDGE_FREQUENCY (entry);
4496 /* Fix up corner cases, to avoid division by zero or creation of negative
4497 frequencies. */
4498 if (total_freq == 0)
4499 total_freq = 1;
4500 else if (entry_freq > total_freq)
4501 entry_freq = total_freq;
4502 }
4503
4504 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
4505 split_edge_bb_loc (entry));
4506 if (total_count)
4507 {
4508 scale_bbs_frequencies_gcov_type (region, n_region,
4509 total_count - entry_count,
4510 total_count);
4511 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
4512 total_count);
4513 }
4514 else
4515 {
4516 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
4517 total_freq);
4518 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
4519 }
4520
4521 if (copying_header)
4522 {
4523 loop->header = exit->dest;
4524 loop->latch = exit->src;
4525 }
4526
4527 /* Redirect the entry and add the phi node arguments. */
4528 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
4529 gcc_assert (redirected != NULL);
4530 flush_pending_stmts (entry);
4531
4532 /* Concerning updating of dominators: We must recount dominators
4533 for entry block and its copy. Anything that is outside of the
4534 region, but was dominated by something inside needs recounting as
4535 well. */
4536 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
4537 doms[n_doms++] = get_bb_original (entry->dest);
4538 iterate_fix_dominators (CDI_DOMINATORS, doms, n_doms);
4539 free (doms);
4540
4541 /* Add the other PHI node arguments. */
4542 add_phi_args_after_copy (region_copy, n_region);
4543
4544 /* Update the SSA web. */
4545 update_ssa (TODO_update_ssa);
4546
4547 if (free_region_copy)
4548 free (region_copy);
4549
4550 free_original_copy_tables ();
4551 return true;
4552 }
4553
4554 /*
4555 DEF_VEC_P(basic_block);
4556 DEF_VEC_ALLOC_P(basic_block,heap);
4557 */
4558
4559 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
4560 adding blocks when the dominator traversal reaches EXIT. This
4561 function silently assumes that ENTRY strictly dominates EXIT. */
4562
4563 static void
4564 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
4565 VEC(basic_block,heap) **bbs_p)
4566 {
4567 basic_block son;
4568
4569 for (son = first_dom_son (CDI_DOMINATORS, entry);
4570 son;
4571 son = next_dom_son (CDI_DOMINATORS, son))
4572 {
4573 VEC_safe_push (basic_block, heap, *bbs_p, son);
4574 if (son != exit)
4575 gather_blocks_in_sese_region (son, exit, bbs_p);
4576 }
4577 }
4578
4579
4580 struct move_stmt_d
4581 {
4582 tree block;
4583 tree from_context;
4584 tree to_context;
4585 bitmap vars_to_remove;
4586 htab_t new_label_map;
4587 bool remap_decls_p;
4588 };
4589
4590 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
4591 contained in *TP and change the DECL_CONTEXT of every local
4592 variable referenced in *TP. */
4593
4594 static tree
4595 move_stmt_r (tree *tp, int *walk_subtrees, void *data)
4596 {
4597 struct move_stmt_d *p = (struct move_stmt_d *) data;
4598 tree t = *tp;
4599
4600 if (p->block
4601 && (EXPR_P (t) || GIMPLE_STMT_P (t)))
4602 TREE_BLOCK (t) = p->block;
4603
4604 if (OMP_DIRECTIVE_P (t)
4605 && TREE_CODE (t) != OMP_RETURN
4606 && TREE_CODE (t) != OMP_CONTINUE)
4607 {
4608 /* Do not remap variables inside OMP directives. Variables
4609 referenced in clauses and directive header belong to the
4610 parent function and should not be moved into the child
4611 function. */
4612 bool save_remap_decls_p = p->remap_decls_p;
4613 p->remap_decls_p = false;
4614 *walk_subtrees = 0;
4615
4616 walk_tree (&OMP_BODY (t), move_stmt_r, p, NULL);
4617
4618 p->remap_decls_p = save_remap_decls_p;
4619 }
4620 else if (DECL_P (t) && DECL_CONTEXT (t) == p->from_context)
4621 {
4622 if (TREE_CODE (t) == LABEL_DECL)
4623 {
4624 if (p->new_label_map)
4625 {
4626 struct tree_map in, *out;
4627 in.from = t;
4628 out = htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
4629 if (out)
4630 *tp = t = out->to;
4631 }
4632
4633 DECL_CONTEXT (t) = p->to_context;
4634 }
4635 else if (p->remap_decls_p)
4636 {
4637 DECL_CONTEXT (t) = p->to_context;
4638
4639 if (TREE_CODE (t) == VAR_DECL)
4640 {
4641 struct function *f = DECL_STRUCT_FUNCTION (p->to_context);
4642 f->unexpanded_var_list
4643 = tree_cons (0, t, f->unexpanded_var_list);
4644
4645 /* Mark T to be removed from the original function,
4646 otherwise it will be given a DECL_RTL when the
4647 original function is expanded. */
4648 bitmap_set_bit (p->vars_to_remove, DECL_UID (t));
4649 }
4650 }
4651 }
4652 else if (TYPE_P (t))
4653 *walk_subtrees = 0;
4654
4655 return NULL_TREE;
4656 }
4657
4658
4659 /* Move basic block BB from function CFUN to function DEST_FN. The
4660 block is moved out of the original linked list and placed after
4661 block AFTER in the new list. Also, the block is removed from the
4662 original array of blocks and placed in DEST_FN's array of blocks.
4663 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
4664 updated to reflect the moved edges.
4665
4666 On exit, local variables that need to be removed from
4667 CFUN->UNEXPANDED_VAR_LIST will have been added to VARS_TO_REMOVE. */
4668
4669 static void
4670 move_block_to_fn (struct function *dest_cfun, basic_block bb,
4671 basic_block after, bool update_edge_count_p,
4672 bitmap vars_to_remove, htab_t new_label_map, int eh_offset)
4673 {
4674 struct control_flow_graph *cfg;
4675 edge_iterator ei;
4676 edge e;
4677 block_stmt_iterator si;
4678 struct move_stmt_d d;
4679 unsigned old_len, new_len;
4680
4681 /* Link BB to the new linked list. */
4682 move_block_after (bb, after);
4683
4684 /* Update the edge count in the corresponding flowgraphs. */
4685 if (update_edge_count_p)
4686 FOR_EACH_EDGE (e, ei, bb->succs)
4687 {
4688 cfun->cfg->x_n_edges--;
4689 dest_cfun->cfg->x_n_edges++;
4690 }
4691
4692 /* Remove BB from the original basic block array. */
4693 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
4694 cfun->cfg->x_n_basic_blocks--;
4695
4696 /* Grow DEST_CFUN's basic block array if needed. */
4697 cfg = dest_cfun->cfg;
4698 cfg->x_n_basic_blocks++;
4699 if (bb->index > cfg->x_last_basic_block)
4700 cfg->x_last_basic_block = bb->index;
4701
4702 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
4703 if ((unsigned) cfg->x_last_basic_block >= old_len)
4704 {
4705 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
4706 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
4707 new_len);
4708 }
4709
4710 VEC_replace (basic_block, cfg->x_basic_block_info,
4711 cfg->x_last_basic_block, bb);
4712
4713 /* The statements in BB need to be associated with a new TREE_BLOCK.
4714 Labels need to be associated with a new label-to-block map. */
4715 memset (&d, 0, sizeof (d));
4716 d.vars_to_remove = vars_to_remove;
4717
4718 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4719 {
4720 tree stmt = bsi_stmt (si);
4721 int region;
4722
4723 d.from_context = cfun->decl;
4724 d.to_context = dest_cfun->decl;
4725 d.remap_decls_p = true;
4726 d.new_label_map = new_label_map;
4727 if (TREE_BLOCK (stmt))
4728 d.block = DECL_INITIAL (dest_cfun->decl);
4729
4730 walk_tree (&stmt, move_stmt_r, &d, NULL);
4731
4732 if (TREE_CODE (stmt) == LABEL_EXPR)
4733 {
4734 tree label = LABEL_EXPR_LABEL (stmt);
4735 int uid = LABEL_DECL_UID (label);
4736
4737 gcc_assert (uid > -1);
4738
4739 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
4740 if (old_len <= (unsigned) uid)
4741 {
4742 new_len = 3 * uid / 2;
4743 VEC_safe_grow_cleared (basic_block, gc,
4744 cfg->x_label_to_block_map, new_len);
4745 }
4746
4747 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
4748 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
4749
4750 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
4751
4752 if (uid >= dest_cfun->last_label_uid)
4753 dest_cfun->last_label_uid = uid + 1;
4754 }
4755 else if (TREE_CODE (stmt) == RESX_EXPR && eh_offset != 0)
4756 TREE_OPERAND (stmt, 0) =
4757 build_int_cst (NULL_TREE,
4758 TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0))
4759 + eh_offset);
4760
4761 region = lookup_stmt_eh_region (stmt);
4762 if (region >= 0)
4763 {
4764 add_stmt_to_eh_region_fn (dest_cfun, stmt, region + eh_offset);
4765 remove_stmt_from_eh_region (stmt);
4766 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
4767 gimple_remove_stmt_histograms (cfun, stmt);
4768 }
4769 }
4770 }
4771
4772 /* Examine the statements in BB (which is in SRC_CFUN); find and return
4773 the outermost EH region. Use REGION as the incoming base EH region. */
4774
4775 static int
4776 find_outermost_region_in_block (struct function *src_cfun,
4777 basic_block bb, int region)
4778 {
4779 block_stmt_iterator si;
4780
4781 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4782 {
4783 tree stmt = bsi_stmt (si);
4784 int stmt_region;
4785
4786 if (TREE_CODE (stmt) == RESX_EXPR)
4787 stmt_region = TREE_INT_CST_LOW (TREE_OPERAND (stmt, 0));
4788 else
4789 stmt_region = lookup_stmt_eh_region_fn (src_cfun, stmt);
4790 if (stmt_region > 0)
4791 {
4792 if (region < 0)
4793 region = stmt_region;
4794 else if (stmt_region != region)
4795 {
4796 region = eh_region_outermost (src_cfun, stmt_region, region);
4797 gcc_assert (region != -1);
4798 }
4799 }
4800 }
4801
4802 return region;
4803 }
4804
4805 static tree
4806 new_label_mapper (tree decl, void *data)
4807 {
4808 htab_t hash = (htab_t) data;
4809 struct tree_map *m;
4810 void **slot;
4811
4812 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
4813
4814 m = xmalloc (sizeof (struct tree_map));
4815 m->hash = DECL_UID (decl);
4816 m->from = decl;
4817 m->to = create_artificial_label ();
4818 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
4819
4820 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
4821 gcc_assert (*slot == NULL);
4822
4823 *slot = m;
4824
4825 return m->to;
4826 }
4827
4828 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
4829 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
4830 single basic block in the original CFG and the new basic block is
4831 returned. DEST_CFUN must not have a CFG yet.
4832
4833 Note that the region need not be a pure SESE region. Blocks inside
4834 the region may contain calls to abort/exit. The only restriction
4835 is that ENTRY_BB should be the only entry point and it must
4836 dominate EXIT_BB.
4837
4838 All local variables referenced in the region are assumed to be in
4839 the corresponding BLOCK_VARS and unexpanded variable lists
4840 associated with DEST_CFUN. */
4841
4842 basic_block
4843 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
4844 basic_block exit_bb)
4845 {
4846 VEC(basic_block,heap) *bbs;
4847 basic_block after, bb, *entry_pred, *exit_succ;
4848 struct function *saved_cfun;
4849 int *entry_flag, *exit_flag, eh_offset;
4850 unsigned i, num_entry_edges, num_exit_edges;
4851 edge e;
4852 edge_iterator ei;
4853 bitmap vars_to_remove;
4854 htab_t new_label_map;
4855
4856 saved_cfun = cfun;
4857
4858 /* Collect all the blocks in the region. Manually add ENTRY_BB
4859 because it won't be added by dfs_enumerate_from. */
4860 calculate_dominance_info (CDI_DOMINATORS);
4861
4862 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
4863 region. */
4864 gcc_assert (entry_bb != exit_bb
4865 && (!exit_bb
4866 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
4867
4868 bbs = NULL;
4869 VEC_safe_push (basic_block, heap, bbs, entry_bb);
4870 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
4871
4872 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
4873 the predecessor edges to ENTRY_BB and the successor edges to
4874 EXIT_BB so that we can re-attach them to the new basic block that
4875 will replace the region. */
4876 num_entry_edges = EDGE_COUNT (entry_bb->preds);
4877 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
4878 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
4879 i = 0;
4880 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
4881 {
4882 entry_flag[i] = e->flags;
4883 entry_pred[i++] = e->src;
4884 remove_edge (e);
4885 }
4886
4887 if (exit_bb)
4888 {
4889 num_exit_edges = EDGE_COUNT (exit_bb->succs);
4890 exit_succ = (basic_block *) xcalloc (num_exit_edges,
4891 sizeof (basic_block));
4892 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
4893 i = 0;
4894 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
4895 {
4896 exit_flag[i] = e->flags;
4897 exit_succ[i++] = e->dest;
4898 remove_edge (e);
4899 }
4900 }
4901 else
4902 {
4903 num_exit_edges = 0;
4904 exit_succ = NULL;
4905 exit_flag = NULL;
4906 }
4907
4908 /* Switch context to the child function to initialize DEST_FN's CFG. */
4909 gcc_assert (dest_cfun->cfg == NULL);
4910 cfun = dest_cfun;
4911
4912 init_empty_tree_cfg ();
4913
4914 /* Initialize EH information for the new function. */
4915 eh_offset = 0;
4916 new_label_map = NULL;
4917 if (saved_cfun->eh)
4918 {
4919 int region = -1;
4920
4921 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4922 region = find_outermost_region_in_block (saved_cfun, bb, region);
4923
4924 init_eh_for_function ();
4925 if (region != -1)
4926 {
4927 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
4928 eh_offset = duplicate_eh_regions (saved_cfun, new_label_mapper,
4929 new_label_map, region, 0);
4930 }
4931 }
4932
4933 cfun = saved_cfun;
4934
4935 /* Move blocks from BBS into DEST_CFUN. */
4936 gcc_assert (VEC_length (basic_block, bbs) >= 2);
4937 after = dest_cfun->cfg->x_entry_block_ptr;
4938 vars_to_remove = BITMAP_ALLOC (NULL);
4939 for (i = 0; VEC_iterate (basic_block, bbs, i, bb); i++)
4940 {
4941 /* No need to update edge counts on the last block. It has
4942 already been updated earlier when we detached the region from
4943 the original CFG. */
4944 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, vars_to_remove,
4945 new_label_map, eh_offset);
4946 after = bb;
4947 }
4948
4949 if (new_label_map)
4950 htab_delete (new_label_map);
4951
4952 /* Remove the variables marked in VARS_TO_REMOVE from
4953 CFUN->UNEXPANDED_VAR_LIST. Otherwise, they will be given a
4954 DECL_RTL in the context of CFUN. */
4955 if (!bitmap_empty_p (vars_to_remove))
4956 {
4957 tree *p;
4958
4959 for (p = &cfun->unexpanded_var_list; *p; )
4960 {
4961 tree var = TREE_VALUE (*p);
4962 if (bitmap_bit_p (vars_to_remove, DECL_UID (var)))
4963 {
4964 *p = TREE_CHAIN (*p);
4965 continue;
4966 }
4967
4968 p = &TREE_CHAIN (*p);
4969 }
4970 }
4971
4972 BITMAP_FREE (vars_to_remove);
4973
4974 /* Rewire the entry and exit blocks. The successor to the entry
4975 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
4976 the child function. Similarly, the predecessor of DEST_FN's
4977 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
4978 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
4979 various CFG manipulation function get to the right CFG.
4980
4981 FIXME, this is silly. The CFG ought to become a parameter to
4982 these helpers. */
4983 cfun = dest_cfun;
4984 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
4985 if (exit_bb)
4986 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
4987 cfun = saved_cfun;
4988
4989 /* Back in the original function, the SESE region has disappeared,
4990 create a new basic block in its place. */
4991 bb = create_empty_bb (entry_pred[0]);
4992 for (i = 0; i < num_entry_edges; i++)
4993 make_edge (entry_pred[i], bb, entry_flag[i]);
4994
4995 for (i = 0; i < num_exit_edges; i++)
4996 make_edge (bb, exit_succ[i], exit_flag[i]);
4997
4998 if (exit_bb)
4999 {
5000 free (exit_flag);
5001 free (exit_succ);
5002 }
5003 free (entry_flag);
5004 free (entry_pred);
5005 free_dominance_info (CDI_DOMINATORS);
5006 free_dominance_info (CDI_POST_DOMINATORS);
5007 VEC_free (basic_block, heap, bbs);
5008
5009 return bb;
5010 }
5011
5012
5013 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree.h) */
5014
5015 void
5016 dump_function_to_file (tree fn, FILE *file, int flags)
5017 {
5018 tree arg, vars, var;
5019 bool ignore_topmost_bind = false, any_var = false;
5020 basic_block bb;
5021 tree chain;
5022 struct function *saved_cfun;
5023
5024 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
5025
5026 arg = DECL_ARGUMENTS (fn);
5027 while (arg)
5028 {
5029 print_generic_expr (file, arg, dump_flags);
5030 if (TREE_CHAIN (arg))
5031 fprintf (file, ", ");
5032 arg = TREE_CHAIN (arg);
5033 }
5034 fprintf (file, ")\n");
5035
5036 if (flags & TDF_DETAILS)
5037 dump_eh_tree (file, DECL_STRUCT_FUNCTION (fn));
5038 if (flags & TDF_RAW)
5039 {
5040 dump_node (fn, TDF_SLIM | flags, file);
5041 return;
5042 }
5043
5044 /* Switch CFUN to point to FN. */
5045 saved_cfun = cfun;
5046 cfun = DECL_STRUCT_FUNCTION (fn);
5047
5048 /* When GIMPLE is lowered, the variables are no longer available in
5049 BIND_EXPRs, so display them separately. */
5050 if (cfun && cfun->decl == fn && cfun->unexpanded_var_list)
5051 {
5052 ignore_topmost_bind = true;
5053
5054 fprintf (file, "{\n");
5055 for (vars = cfun->unexpanded_var_list; vars; vars = TREE_CHAIN (vars))
5056 {
5057 var = TREE_VALUE (vars);
5058
5059 print_generic_decl (file, var, flags);
5060 fprintf (file, "\n");
5061
5062 any_var = true;
5063 }
5064 }
5065
5066 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
5067 {
5068 /* Make a CFG based dump. */
5069 check_bb_profile (ENTRY_BLOCK_PTR, file);
5070 if (!ignore_topmost_bind)
5071 fprintf (file, "{\n");
5072
5073 if (any_var && n_basic_blocks)
5074 fprintf (file, "\n");
5075
5076 FOR_EACH_BB (bb)
5077 dump_generic_bb (file, bb, 2, flags);
5078
5079 fprintf (file, "}\n");
5080 check_bb_profile (EXIT_BLOCK_PTR, file);
5081 }
5082 else
5083 {
5084 int indent;
5085
5086 /* Make a tree based dump. */
5087 chain = DECL_SAVED_TREE (fn);
5088
5089 if (chain && TREE_CODE (chain) == BIND_EXPR)
5090 {
5091 if (ignore_topmost_bind)
5092 {
5093 chain = BIND_EXPR_BODY (chain);
5094 indent = 2;
5095 }
5096 else
5097 indent = 0;
5098 }
5099 else
5100 {
5101 if (!ignore_topmost_bind)
5102 fprintf (file, "{\n");
5103 indent = 2;
5104 }
5105
5106 if (any_var)
5107 fprintf (file, "\n");
5108
5109 print_generic_stmt_indented (file, chain, flags, indent);
5110 if (ignore_topmost_bind)
5111 fprintf (file, "}\n");
5112 }
5113
5114 fprintf (file, "\n\n");
5115
5116 /* Restore CFUN. */
5117 cfun = saved_cfun;
5118 }
5119
5120
5121 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
5122
5123 void
5124 debug_function (tree fn, int flags)
5125 {
5126 dump_function_to_file (fn, stderr, flags);
5127 }
5128
5129
5130 /* Pretty print of the loops intermediate representation. */
5131 static void print_loop (FILE *, struct loop *, int);
5132 static void print_pred_bbs (FILE *, basic_block bb);
5133 static void print_succ_bbs (FILE *, basic_block bb);
5134
5135
5136 /* Print on FILE the indexes for the predecessors of basic_block BB. */
5137
5138 static void
5139 print_pred_bbs (FILE *file, basic_block bb)
5140 {
5141 edge e;
5142 edge_iterator ei;
5143
5144 FOR_EACH_EDGE (e, ei, bb->preds)
5145 fprintf (file, "bb_%d ", e->src->index);
5146 }
5147
5148
5149 /* Print on FILE the indexes for the successors of basic_block BB. */
5150
5151 static void
5152 print_succ_bbs (FILE *file, basic_block bb)
5153 {
5154 edge e;
5155 edge_iterator ei;
5156
5157 FOR_EACH_EDGE (e, ei, bb->succs)
5158 fprintf (file, "bb_%d ", e->dest->index);
5159 }
5160
5161
5162 /* Pretty print LOOP on FILE, indented INDENT spaces. */
5163
5164 static void
5165 print_loop (FILE *file, struct loop *loop, int indent)
5166 {
5167 char *s_indent;
5168 basic_block bb;
5169
5170 if (loop == NULL)
5171 return;
5172
5173 s_indent = (char *) alloca ((size_t) indent + 1);
5174 memset ((void *) s_indent, ' ', (size_t) indent);
5175 s_indent[indent] = '\0';
5176
5177 /* Print the loop's header. */
5178 fprintf (file, "%sloop_%d\n", s_indent, loop->num);
5179
5180 /* Print the loop's body. */
5181 fprintf (file, "%s{\n", s_indent);
5182 FOR_EACH_BB (bb)
5183 if (bb->loop_father == loop)
5184 {
5185 /* Print the basic_block's header. */
5186 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
5187 print_pred_bbs (file, bb);
5188 fprintf (file, "}, succs = {");
5189 print_succ_bbs (file, bb);
5190 fprintf (file, "})\n");
5191
5192 /* Print the basic_block's body. */
5193 fprintf (file, "%s {\n", s_indent);
5194 tree_dump_bb (bb, file, indent + 4);
5195 fprintf (file, "%s }\n", s_indent);
5196 }
5197
5198 print_loop (file, loop->inner, indent + 2);
5199 fprintf (file, "%s}\n", s_indent);
5200 print_loop (file, loop->next, indent);
5201 }
5202
5203
5204 /* Follow a CFG edge from the entry point of the program, and on entry
5205 of a loop, pretty print the loop structure on FILE. */
5206
5207 void
5208 print_loop_ir (FILE *file)
5209 {
5210 basic_block bb;
5211
5212 bb = BASIC_BLOCK (NUM_FIXED_BLOCKS);
5213 if (bb && bb->loop_father)
5214 print_loop (file, bb->loop_father, 0);
5215 }
5216
5217
5218 /* Debugging loops structure at tree level. */
5219
5220 void
5221 debug_loop_ir (void)
5222 {
5223 print_loop_ir (stderr);
5224 }
5225
5226
5227 /* Return true if BB ends with a call, possibly followed by some
5228 instructions that must stay with the call. Return false,
5229 otherwise. */
5230
5231 static bool
5232 tree_block_ends_with_call_p (basic_block bb)
5233 {
5234 block_stmt_iterator bsi = bsi_last (bb);
5235 return get_call_expr_in (bsi_stmt (bsi)) != NULL;
5236 }
5237
5238
5239 /* Return true if BB ends with a conditional branch. Return false,
5240 otherwise. */
5241
5242 static bool
5243 tree_block_ends_with_condjump_p (basic_block bb)
5244 {
5245 tree stmt = last_stmt (bb);
5246 return (stmt && TREE_CODE (stmt) == COND_EXPR);
5247 }
5248
5249
5250 /* Return true if we need to add fake edge to exit at statement T.
5251 Helper function for tree_flow_call_edges_add. */
5252
5253 static bool
5254 need_fake_edge_p (tree t)
5255 {
5256 tree call;
5257
5258 /* NORETURN and LONGJMP calls already have an edge to exit.
5259 CONST and PURE calls do not need one.
5260 We don't currently check for CONST and PURE here, although
5261 it would be a good idea, because those attributes are
5262 figured out from the RTL in mark_constant_function, and
5263 the counter incrementation code from -fprofile-arcs
5264 leads to different results from -fbranch-probabilities. */
5265 call = get_call_expr_in (t);
5266 if (call
5267 && !(call_expr_flags (call) & ECF_NORETURN))
5268 return true;
5269
5270 if (TREE_CODE (t) == ASM_EXPR
5271 && (ASM_VOLATILE_P (t) || ASM_INPUT_P (t)))
5272 return true;
5273
5274 return false;
5275 }
5276
5277
5278 /* Add fake edges to the function exit for any non constant and non
5279 noreturn calls, volatile inline assembly in the bitmap of blocks
5280 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
5281 the number of blocks that were split.
5282
5283 The goal is to expose cases in which entering a basic block does
5284 not imply that all subsequent instructions must be executed. */
5285
5286 static int
5287 tree_flow_call_edges_add (sbitmap blocks)
5288 {
5289 int i;
5290 int blocks_split = 0;
5291 int last_bb = last_basic_block;
5292 bool check_last_block = false;
5293
5294 if (n_basic_blocks == NUM_FIXED_BLOCKS)
5295 return 0;
5296
5297 if (! blocks)
5298 check_last_block = true;
5299 else
5300 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
5301
5302 /* In the last basic block, before epilogue generation, there will be
5303 a fallthru edge to EXIT. Special care is required if the last insn
5304 of the last basic block is a call because make_edge folds duplicate
5305 edges, which would result in the fallthru edge also being marked
5306 fake, which would result in the fallthru edge being removed by
5307 remove_fake_edges, which would result in an invalid CFG.
5308
5309 Moreover, we can't elide the outgoing fake edge, since the block
5310 profiler needs to take this into account in order to solve the minimal
5311 spanning tree in the case that the call doesn't return.
5312
5313 Handle this by adding a dummy instruction in a new last basic block. */
5314 if (check_last_block)
5315 {
5316 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
5317 block_stmt_iterator bsi = bsi_last (bb);
5318 tree t = NULL_TREE;
5319 if (!bsi_end_p (bsi))
5320 t = bsi_stmt (bsi);
5321
5322 if (t && need_fake_edge_p (t))
5323 {
5324 edge e;
5325
5326 e = find_edge (bb, EXIT_BLOCK_PTR);
5327 if (e)
5328 {
5329 bsi_insert_on_edge (e, build_empty_stmt ());
5330 bsi_commit_edge_inserts ();
5331 }
5332 }
5333 }
5334
5335 /* Now add fake edges to the function exit for any non constant
5336 calls since there is no way that we can determine if they will
5337 return or not... */
5338 for (i = 0; i < last_bb; i++)
5339 {
5340 basic_block bb = BASIC_BLOCK (i);
5341 block_stmt_iterator bsi;
5342 tree stmt, last_stmt;
5343
5344 if (!bb)
5345 continue;
5346
5347 if (blocks && !TEST_BIT (blocks, i))
5348 continue;
5349
5350 bsi = bsi_last (bb);
5351 if (!bsi_end_p (bsi))
5352 {
5353 last_stmt = bsi_stmt (bsi);
5354 do
5355 {
5356 stmt = bsi_stmt (bsi);
5357 if (need_fake_edge_p (stmt))
5358 {
5359 edge e;
5360 /* The handling above of the final block before the
5361 epilogue should be enough to verify that there is
5362 no edge to the exit block in CFG already.
5363 Calling make_edge in such case would cause us to
5364 mark that edge as fake and remove it later. */
5365 #ifdef ENABLE_CHECKING
5366 if (stmt == last_stmt)
5367 {
5368 e = find_edge (bb, EXIT_BLOCK_PTR);
5369 gcc_assert (e == NULL);
5370 }
5371 #endif
5372
5373 /* Note that the following may create a new basic block
5374 and renumber the existing basic blocks. */
5375 if (stmt != last_stmt)
5376 {
5377 e = split_block (bb, stmt);
5378 if (e)
5379 blocks_split++;
5380 }
5381 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
5382 }
5383 bsi_prev (&bsi);
5384 }
5385 while (!bsi_end_p (bsi));
5386 }
5387 }
5388
5389 if (blocks_split)
5390 verify_flow_info ();
5391
5392 return blocks_split;
5393 }
5394
5395 /* Purge dead abnormal call edges from basic block BB. */
5396
5397 bool
5398 tree_purge_dead_abnormal_call_edges (basic_block bb)
5399 {
5400 bool changed = tree_purge_dead_eh_edges (bb);
5401
5402 if (current_function_has_nonlocal_label)
5403 {
5404 tree stmt = last_stmt (bb);
5405 edge_iterator ei;
5406 edge e;
5407
5408 if (!(stmt && tree_can_make_abnormal_goto (stmt)))
5409 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5410 {
5411 if (e->flags & EDGE_ABNORMAL)
5412 {
5413 remove_edge (e);
5414 changed = true;
5415 }
5416 else
5417 ei_next (&ei);
5418 }
5419
5420 /* See tree_purge_dead_eh_edges below. */
5421 if (changed)
5422 free_dominance_info (CDI_DOMINATORS);
5423 }
5424
5425 return changed;
5426 }
5427
5428 /* Purge dead EH edges from basic block BB. */
5429
5430 bool
5431 tree_purge_dead_eh_edges (basic_block bb)
5432 {
5433 bool changed = false;
5434 edge e;
5435 edge_iterator ei;
5436 tree stmt = last_stmt (bb);
5437
5438 if (stmt && tree_can_throw_internal (stmt))
5439 return false;
5440
5441 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
5442 {
5443 if (e->flags & EDGE_EH)
5444 {
5445 remove_edge (e);
5446 changed = true;
5447 }
5448 else
5449 ei_next (&ei);
5450 }
5451
5452 /* Removal of dead EH edges might change dominators of not
5453 just immediate successors. E.g. when bb1 is changed so that
5454 it no longer can throw and bb1->bb3 and bb1->bb4 are dead
5455 eh edges purged by this function in:
5456 0
5457 / \
5458 v v
5459 1-->2
5460 / \ |
5461 v v |
5462 3-->4 |
5463 \ v
5464 --->5
5465 |
5466 -
5467 idom(bb5) must be recomputed. For now just free the dominance
5468 info. */
5469 if (changed)
5470 free_dominance_info (CDI_DOMINATORS);
5471
5472 return changed;
5473 }
5474
5475 bool
5476 tree_purge_all_dead_eh_edges (bitmap blocks)
5477 {
5478 bool changed = false;
5479 unsigned i;
5480 bitmap_iterator bi;
5481
5482 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
5483 {
5484 changed |= tree_purge_dead_eh_edges (BASIC_BLOCK (i));
5485 }
5486
5487 return changed;
5488 }
5489
5490 /* This function is called whenever a new edge is created or
5491 redirected. */
5492
5493 static void
5494 tree_execute_on_growing_pred (edge e)
5495 {
5496 basic_block bb = e->dest;
5497
5498 if (phi_nodes (bb))
5499 reserve_phi_args_for_new_edge (bb);
5500 }
5501
5502 /* This function is called immediately before edge E is removed from
5503 the edge vector E->dest->preds. */
5504
5505 static void
5506 tree_execute_on_shrinking_pred (edge e)
5507 {
5508 if (phi_nodes (e->dest))
5509 remove_phi_args (e);
5510 }
5511
5512 /*---------------------------------------------------------------------------
5513 Helper functions for Loop versioning
5514 ---------------------------------------------------------------------------*/
5515
5516 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
5517 of 'first'. Both of them are dominated by 'new_head' basic block. When
5518 'new_head' was created by 'second's incoming edge it received phi arguments
5519 on the edge by split_edge(). Later, additional edge 'e' was created to
5520 connect 'new_head' and 'first'. Now this routine adds phi args on this
5521 additional edge 'e' that new_head to second edge received as part of edge
5522 splitting.
5523 */
5524
5525 static void
5526 tree_lv_adjust_loop_header_phi (basic_block first, basic_block second,
5527 basic_block new_head, edge e)
5528 {
5529 tree phi1, phi2;
5530 edge e2 = find_edge (new_head, second);
5531
5532 /* Because NEW_HEAD has been created by splitting SECOND's incoming
5533 edge, we should always have an edge from NEW_HEAD to SECOND. */
5534 gcc_assert (e2 != NULL);
5535
5536 /* Browse all 'second' basic block phi nodes and add phi args to
5537 edge 'e' for 'first' head. PHI args are always in correct order. */
5538
5539 for (phi2 = phi_nodes (second), phi1 = phi_nodes (first);
5540 phi2 && phi1;
5541 phi2 = PHI_CHAIN (phi2), phi1 = PHI_CHAIN (phi1))
5542 {
5543 tree def = PHI_ARG_DEF (phi2, e2->dest_idx);
5544 add_phi_arg (phi1, def, e);
5545 }
5546 }
5547
5548 /* Adds a if else statement to COND_BB with condition COND_EXPR.
5549 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
5550 the destination of the ELSE part. */
5551 static void
5552 tree_lv_add_condition_to_bb (basic_block first_head, basic_block second_head,
5553 basic_block cond_bb, void *cond_e)
5554 {
5555 block_stmt_iterator bsi;
5556 tree goto1 = NULL_TREE;
5557 tree goto2 = NULL_TREE;
5558 tree new_cond_expr = NULL_TREE;
5559 tree cond_expr = (tree) cond_e;
5560 edge e0;
5561
5562 /* Build new conditional expr */
5563 goto1 = build1 (GOTO_EXPR, void_type_node, tree_block_label (first_head));
5564 goto2 = build1 (GOTO_EXPR, void_type_node, tree_block_label (second_head));
5565 new_cond_expr = build3 (COND_EXPR, void_type_node, cond_expr, goto1, goto2);
5566
5567 /* Add new cond in cond_bb. */
5568 bsi = bsi_start (cond_bb);
5569 bsi_insert_after (&bsi, new_cond_expr, BSI_NEW_STMT);
5570 /* Adjust edges appropriately to connect new head with first head
5571 as well as second head. */
5572 e0 = single_succ_edge (cond_bb);
5573 e0->flags &= ~EDGE_FALLTHRU;
5574 e0->flags |= EDGE_FALSE_VALUE;
5575 }
5576
5577 struct cfg_hooks tree_cfg_hooks = {
5578 "tree",
5579 tree_verify_flow_info,
5580 tree_dump_bb, /* dump_bb */
5581 create_bb, /* create_basic_block */
5582 tree_redirect_edge_and_branch,/* redirect_edge_and_branch */
5583 tree_redirect_edge_and_branch_force,/* redirect_edge_and_branch_force */
5584 remove_bb, /* delete_basic_block */
5585 tree_split_block, /* split_block */
5586 tree_move_block_after, /* move_block_after */
5587 tree_can_merge_blocks_p, /* can_merge_blocks_p */
5588 tree_merge_blocks, /* merge_blocks */
5589 tree_predict_edge, /* predict_edge */
5590 tree_predicted_by_p, /* predicted_by_p */
5591 tree_can_duplicate_bb_p, /* can_duplicate_block_p */
5592 tree_duplicate_bb, /* duplicate_block */
5593 tree_split_edge, /* split_edge */
5594 tree_make_forwarder_block, /* make_forward_block */
5595 NULL, /* tidy_fallthru_edge */
5596 tree_block_ends_with_call_p, /* block_ends_with_call_p */
5597 tree_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
5598 tree_flow_call_edges_add, /* flow_call_edges_add */
5599 tree_execute_on_growing_pred, /* execute_on_growing_pred */
5600 tree_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
5601 tree_duplicate_loop_to_header_edge, /* duplicate loop for trees */
5602 tree_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
5603 tree_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
5604 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
5605 flush_pending_stmts /* flush_pending_stmts */
5606 };
5607
5608
5609 /* Split all critical edges. */
5610
5611 static unsigned int
5612 split_critical_edges (void)
5613 {
5614 basic_block bb;
5615 edge e;
5616 edge_iterator ei;
5617
5618 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
5619 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
5620 mappings around the calls to split_edge. */
5621 start_recording_case_labels ();
5622 FOR_ALL_BB (bb)
5623 {
5624 FOR_EACH_EDGE (e, ei, bb->succs)
5625 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
5626 {
5627 split_edge (e);
5628 }
5629 }
5630 end_recording_case_labels ();
5631 return 0;
5632 }
5633
5634 struct tree_opt_pass pass_split_crit_edges =
5635 {
5636 "crited", /* name */
5637 NULL, /* gate */
5638 split_critical_edges, /* execute */
5639 NULL, /* sub */
5640 NULL, /* next */
5641 0, /* static_pass_number */
5642 TV_TREE_SPLIT_EDGES, /* tv_id */
5643 PROP_cfg, /* properties required */
5644 PROP_no_crit_edges, /* properties_provided */
5645 0, /* properties_destroyed */
5646 0, /* todo_flags_start */
5647 TODO_dump_func, /* todo_flags_finish */
5648 0 /* letter */
5649 };
5650
5651 \f
5652 /* Return EXP if it is a valid GIMPLE rvalue, else gimplify it into
5653 a temporary, make sure and register it to be renamed if necessary,
5654 and finally return the temporary. Put the statements to compute
5655 EXP before the current statement in BSI. */
5656
5657 tree
5658 gimplify_val (block_stmt_iterator *bsi, tree type, tree exp)
5659 {
5660 tree t, new_stmt, orig_stmt;
5661
5662 if (is_gimple_val (exp))
5663 return exp;
5664
5665 t = make_rename_temp (type, NULL);
5666 new_stmt = build2_gimple (GIMPLE_MODIFY_STMT, t, exp);
5667
5668 orig_stmt = bsi_stmt (*bsi);
5669 SET_EXPR_LOCUS (new_stmt, EXPR_LOCUS (orig_stmt));
5670 TREE_BLOCK (new_stmt) = TREE_BLOCK (orig_stmt);
5671
5672 bsi_insert_before (bsi, new_stmt, BSI_SAME_STMT);
5673 if (gimple_in_ssa_p (cfun))
5674 mark_symbols_for_renaming (new_stmt);
5675
5676 return t;
5677 }
5678
5679 /* Build a ternary operation and gimplify it. Emit code before BSI.
5680 Return the gimple_val holding the result. */
5681
5682 tree
5683 gimplify_build3 (block_stmt_iterator *bsi, enum tree_code code,
5684 tree type, tree a, tree b, tree c)
5685 {
5686 tree ret;
5687
5688 ret = fold_build3 (code, type, a, b, c);
5689 STRIP_NOPS (ret);
5690
5691 return gimplify_val (bsi, type, ret);
5692 }
5693
5694 /* Build a binary operation and gimplify it. Emit code before BSI.
5695 Return the gimple_val holding the result. */
5696
5697 tree
5698 gimplify_build2 (block_stmt_iterator *bsi, enum tree_code code,
5699 tree type, tree a, tree b)
5700 {
5701 tree ret;
5702
5703 ret = fold_build2 (code, type, a, b);
5704 STRIP_NOPS (ret);
5705
5706 return gimplify_val (bsi, type, ret);
5707 }
5708
5709 /* Build a unary operation and gimplify it. Emit code before BSI.
5710 Return the gimple_val holding the result. */
5711
5712 tree
5713 gimplify_build1 (block_stmt_iterator *bsi, enum tree_code code, tree type,
5714 tree a)
5715 {
5716 tree ret;
5717
5718 ret = fold_build1 (code, type, a);
5719 STRIP_NOPS (ret);
5720
5721 return gimplify_val (bsi, type, ret);
5722 }
5723
5724
5725 \f
5726 /* Emit return warnings. */
5727
5728 static unsigned int
5729 execute_warn_function_return (void)
5730 {
5731 #ifdef USE_MAPPED_LOCATION
5732 source_location location;
5733 #else
5734 location_t *locus;
5735 #endif
5736 tree last;
5737 edge e;
5738 edge_iterator ei;
5739
5740 /* If we have a path to EXIT, then we do return. */
5741 if (TREE_THIS_VOLATILE (cfun->decl)
5742 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
5743 {
5744 #ifdef USE_MAPPED_LOCATION
5745 location = UNKNOWN_LOCATION;
5746 #else
5747 locus = NULL;
5748 #endif
5749 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5750 {
5751 last = last_stmt (e->src);
5752 if (TREE_CODE (last) == RETURN_EXPR
5753 #ifdef USE_MAPPED_LOCATION
5754 && (location = EXPR_LOCATION (last)) != UNKNOWN_LOCATION)
5755 #else
5756 && (locus = EXPR_LOCUS (last)) != NULL)
5757 #endif
5758 break;
5759 }
5760 #ifdef USE_MAPPED_LOCATION
5761 if (location == UNKNOWN_LOCATION)
5762 location = cfun->function_end_locus;
5763 warning (0, "%H%<noreturn%> function does return", &location);
5764 #else
5765 if (!locus)
5766 locus = &cfun->function_end_locus;
5767 warning (0, "%H%<noreturn%> function does return", locus);
5768 #endif
5769 }
5770
5771 /* If we see "return;" in some basic block, then we do reach the end
5772 without returning a value. */
5773 else if (warn_return_type
5774 && !TREE_NO_WARNING (cfun->decl)
5775 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
5776 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
5777 {
5778 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5779 {
5780 tree last = last_stmt (e->src);
5781 if (TREE_CODE (last) == RETURN_EXPR
5782 && TREE_OPERAND (last, 0) == NULL
5783 && !TREE_NO_WARNING (last))
5784 {
5785 #ifdef USE_MAPPED_LOCATION
5786 location = EXPR_LOCATION (last);
5787 if (location == UNKNOWN_LOCATION)
5788 location = cfun->function_end_locus;
5789 warning (0, "%Hcontrol reaches end of non-void function", &location);
5790 #else
5791 locus = EXPR_LOCUS (last);
5792 if (!locus)
5793 locus = &cfun->function_end_locus;
5794 warning (0, "%Hcontrol reaches end of non-void function", locus);
5795 #endif
5796 TREE_NO_WARNING (cfun->decl) = 1;
5797 break;
5798 }
5799 }
5800 }
5801 return 0;
5802 }
5803
5804
5805 /* Given a basic block B which ends with a conditional and has
5806 precisely two successors, determine which of the edges is taken if
5807 the conditional is true and which is taken if the conditional is
5808 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
5809
5810 void
5811 extract_true_false_edges_from_block (basic_block b,
5812 edge *true_edge,
5813 edge *false_edge)
5814 {
5815 edge e = EDGE_SUCC (b, 0);
5816
5817 if (e->flags & EDGE_TRUE_VALUE)
5818 {
5819 *true_edge = e;
5820 *false_edge = EDGE_SUCC (b, 1);
5821 }
5822 else
5823 {
5824 *false_edge = e;
5825 *true_edge = EDGE_SUCC (b, 1);
5826 }
5827 }
5828
5829 struct tree_opt_pass pass_warn_function_return =
5830 {
5831 NULL, /* name */
5832 NULL, /* gate */
5833 execute_warn_function_return, /* execute */
5834 NULL, /* sub */
5835 NULL, /* next */
5836 0, /* static_pass_number */
5837 0, /* tv_id */
5838 PROP_cfg, /* properties_required */
5839 0, /* properties_provided */
5840 0, /* properties_destroyed */
5841 0, /* todo_flags_start */
5842 0, /* todo_flags_finish */
5843 0 /* letter */
5844 };
5845
5846 /* Emit noreturn warnings. */
5847
5848 static unsigned int
5849 execute_warn_function_noreturn (void)
5850 {
5851 if (warn_missing_noreturn
5852 && !TREE_THIS_VOLATILE (cfun->decl)
5853 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0
5854 && !lang_hooks.function.missing_noreturn_ok_p (cfun->decl))
5855 warning (OPT_Wmissing_noreturn, "%Jfunction might be possible candidate "
5856 "for attribute %<noreturn%>",
5857 cfun->decl);
5858 return 0;
5859 }
5860
5861 struct tree_opt_pass pass_warn_function_noreturn =
5862 {
5863 NULL, /* name */
5864 NULL, /* gate */
5865 execute_warn_function_noreturn, /* execute */
5866 NULL, /* sub */
5867 NULL, /* next */
5868 0, /* static_pass_number */
5869 0, /* tv_id */
5870 PROP_cfg, /* properties_required */
5871 0, /* properties_provided */
5872 0, /* properties_destroyed */
5873 0, /* todo_flags_start */
5874 0, /* todo_flags_finish */
5875 0 /* letter */
5876 };