Verify that context of local DECLs is the current function
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-low.h"
58 #include "tree-cfgcleanup.h"
59 #include "gimplify.h"
60 #include "attribs.h"
61
62 /* This file contains functions for building the Control Flow Graph (CFG)
63 for a function tree. */
64
65 /* Local declarations. */
66
67 /* Initial capacity for the basic block array. */
68 static const int initial_cfg_capacity = 20;
69
70 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
71 which use a particular edge. The CASE_LABEL_EXPRs are chained together
72 via their CASE_CHAIN field, which we clear after we're done with the
73 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
74
75 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
76 update the case vector in response to edge redirections.
77
78 Right now this table is set up and torn down at key points in the
79 compilation process. It would be nice if we could make the table
80 more persistent. The key is getting notification of changes to
81 the CFG (particularly edge removal, creation and redirection). */
82
83 static hash_map<edge, tree> *edge_to_cases;
84
85 /* If we record edge_to_cases, this bitmap will hold indexes
86 of basic blocks that end in a GIMPLE_SWITCH which we touched
87 due to edge manipulations. */
88
89 static bitmap touched_switch_bbs;
90
91 /* CFG statistics. */
92 struct cfg_stats_d
93 {
94 long num_merged_labels;
95 };
96
97 static struct cfg_stats_d cfg_stats;
98
99 /* Data to pass to replace_block_vars_by_duplicates_1. */
100 struct replace_decls_d
101 {
102 hash_map<tree, tree> *vars_map;
103 tree to_context;
104 };
105
106 /* Hash table to store last discriminator assigned for each locus. */
107 struct locus_discrim_map
108 {
109 location_t locus;
110 int discriminator;
111 };
112
113 /* Hashtable helpers. */
114
115 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
116 {
117 static inline hashval_t hash (const locus_discrim_map *);
118 static inline bool equal (const locus_discrim_map *,
119 const locus_discrim_map *);
120 };
121
122 /* Trivial hash function for a location_t. ITEM is a pointer to
123 a hash table entry that maps a location_t to a discriminator. */
124
125 inline hashval_t
126 locus_discrim_hasher::hash (const locus_discrim_map *item)
127 {
128 return LOCATION_LINE (item->locus);
129 }
130
131 /* Equality function for the locus-to-discriminator map. A and B
132 point to the two hash table entries to compare. */
133
134 inline bool
135 locus_discrim_hasher::equal (const locus_discrim_map *a,
136 const locus_discrim_map *b)
137 {
138 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
139 }
140
141 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
142
143 /* Basic blocks and flowgraphs. */
144 static void make_blocks (gimple_seq);
145
146 /* Edges. */
147 static void make_edges (void);
148 static void assign_discriminators (void);
149 static void make_cond_expr_edges (basic_block);
150 static void make_gimple_switch_edges (gswitch *, basic_block);
151 static bool make_goto_expr_edges (basic_block);
152 static void make_gimple_asm_edges (basic_block);
153 static edge gimple_redirect_edge_and_branch (edge, basic_block);
154 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
155
156 /* Various helpers. */
157 static inline bool stmt_starts_bb_p (gimple *, gimple *);
158 static int gimple_verify_flow_info (void);
159 static void gimple_make_forwarder_block (edge);
160 static gimple *first_non_label_stmt (basic_block);
161 static bool verify_gimple_transaction (gtransaction *);
162 static bool call_can_make_abnormal_goto (gimple *);
163
164 /* Flowgraph optimization and cleanup. */
165 static void gimple_merge_blocks (basic_block, basic_block);
166 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
167 static void remove_bb (basic_block);
168 static edge find_taken_edge_computed_goto (basic_block, tree);
169 static edge find_taken_edge_cond_expr (basic_block, tree);
170 static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree);
171 static tree find_case_label_for_value (gswitch *, tree);
172
173 void
174 init_empty_tree_cfg_for_function (struct function *fn)
175 {
176 /* Initialize the basic block array. */
177 init_flow (fn);
178 profile_status_for_fn (fn) = PROFILE_ABSENT;
179 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
180 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
181 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
182 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
183 initial_cfg_capacity);
184
185 /* Build a mapping of labels to their associated blocks. */
186 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
188 initial_cfg_capacity);
189
190 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
191 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
192
193 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
194 = EXIT_BLOCK_PTR_FOR_FN (fn);
195 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
196 = ENTRY_BLOCK_PTR_FOR_FN (fn);
197 }
198
199 void
200 init_empty_tree_cfg (void)
201 {
202 init_empty_tree_cfg_for_function (cfun);
203 }
204
205 /*---------------------------------------------------------------------------
206 Create basic blocks
207 ---------------------------------------------------------------------------*/
208
209 /* Entry point to the CFG builder for trees. SEQ is the sequence of
210 statements to be added to the flowgraph. */
211
212 static void
213 build_gimple_cfg (gimple_seq seq)
214 {
215 /* Register specific gimple functions. */
216 gimple_register_cfg_hooks ();
217
218 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
219
220 init_empty_tree_cfg ();
221
222 make_blocks (seq);
223
224 /* Make sure there is always at least one block, even if it's empty. */
225 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
226 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
227
228 /* Adjust the size of the array. */
229 if (basic_block_info_for_fn (cfun)->length ()
230 < (size_t) n_basic_blocks_for_fn (cfun))
231 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
232 n_basic_blocks_for_fn (cfun));
233
234 /* To speed up statement iterator walks, we first purge dead labels. */
235 cleanup_dead_labels ();
236
237 /* Group case nodes to reduce the number of edges.
238 We do this after cleaning up dead labels because otherwise we miss
239 a lot of obvious case merging opportunities. */
240 group_case_labels ();
241
242 /* Create the edges of the flowgraph. */
243 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
244 make_edges ();
245 assign_discriminators ();
246 cleanup_dead_labels ();
247 delete discriminator_per_locus;
248 discriminator_per_locus = NULL;
249 }
250
251 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
252 them and propagate the information to LOOP. We assume that the annotations
253 come immediately before the condition in BB, if any. */
254
255 static void
256 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
257 {
258 gimple_stmt_iterator gsi = gsi_last_bb (bb);
259 gimple *stmt = gsi_stmt (gsi);
260
261 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
262 return;
263
264 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
265 {
266 stmt = gsi_stmt (gsi);
267 if (gimple_code (stmt) != GIMPLE_CALL)
268 break;
269 if (!gimple_call_internal_p (stmt)
270 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
271 break;
272
273 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
274 {
275 case annot_expr_ivdep_kind:
276 loop->safelen = INT_MAX;
277 break;
278 case annot_expr_no_vector_kind:
279 loop->dont_vectorize = true;
280 break;
281 case annot_expr_vector_kind:
282 loop->force_vectorize = true;
283 cfun->has_force_vectorize_loops = true;
284 break;
285 default:
286 gcc_unreachable ();
287 }
288
289 stmt = gimple_build_assign (gimple_call_lhs (stmt),
290 gimple_call_arg (stmt, 0));
291 gsi_replace (&gsi, stmt, true);
292 }
293 }
294
295 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
296 them and propagate the information to the loop. We assume that the
297 annotations come immediately before the condition of the loop. */
298
299 static void
300 replace_loop_annotate (void)
301 {
302 struct loop *loop;
303 basic_block bb;
304 gimple_stmt_iterator gsi;
305 gimple *stmt;
306
307 FOR_EACH_LOOP (loop, 0)
308 {
309 /* First look into the header. */
310 replace_loop_annotate_in_block (loop->header, loop);
311
312 /* Then look into the latch, if any. */
313 if (loop->latch)
314 replace_loop_annotate_in_block (loop->latch, loop);
315 }
316
317 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
318 FOR_EACH_BB_FN (bb, cfun)
319 {
320 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
321 {
322 stmt = gsi_stmt (gsi);
323 if (gimple_code (stmt) != GIMPLE_CALL)
324 continue;
325 if (!gimple_call_internal_p (stmt)
326 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
327 continue;
328
329 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
330 {
331 case annot_expr_ivdep_kind:
332 case annot_expr_no_vector_kind:
333 case annot_expr_vector_kind:
334 break;
335 default:
336 gcc_unreachable ();
337 }
338
339 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
340 stmt = gimple_build_assign (gimple_call_lhs (stmt),
341 gimple_call_arg (stmt, 0));
342 gsi_replace (&gsi, stmt, true);
343 }
344 }
345 }
346
347
348 static unsigned int
349 execute_build_cfg (void)
350 {
351 gimple_seq body = gimple_body (current_function_decl);
352
353 build_gimple_cfg (body);
354 gimple_set_body (current_function_decl, NULL);
355 if (dump_file && (dump_flags & TDF_DETAILS))
356 {
357 fprintf (dump_file, "Scope blocks:\n");
358 dump_scope_blocks (dump_file, dump_flags);
359 }
360 cleanup_tree_cfg ();
361 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
362 replace_loop_annotate ();
363 return 0;
364 }
365
366 namespace {
367
368 const pass_data pass_data_build_cfg =
369 {
370 GIMPLE_PASS, /* type */
371 "cfg", /* name */
372 OPTGROUP_NONE, /* optinfo_flags */
373 TV_TREE_CFG, /* tv_id */
374 PROP_gimple_leh, /* properties_required */
375 ( PROP_cfg | PROP_loops ), /* properties_provided */
376 0, /* properties_destroyed */
377 0, /* todo_flags_start */
378 0, /* todo_flags_finish */
379 };
380
381 class pass_build_cfg : public gimple_opt_pass
382 {
383 public:
384 pass_build_cfg (gcc::context *ctxt)
385 : gimple_opt_pass (pass_data_build_cfg, ctxt)
386 {}
387
388 /* opt_pass methods: */
389 virtual unsigned int execute (function *) { return execute_build_cfg (); }
390
391 }; // class pass_build_cfg
392
393 } // anon namespace
394
395 gimple_opt_pass *
396 make_pass_build_cfg (gcc::context *ctxt)
397 {
398 return new pass_build_cfg (ctxt);
399 }
400
401
402 /* Return true if T is a computed goto. */
403
404 bool
405 computed_goto_p (gimple *t)
406 {
407 return (gimple_code (t) == GIMPLE_GOTO
408 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
409 }
410
411 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
412 the other edge points to a bb with just __builtin_unreachable ().
413 I.e. return true for C->M edge in:
414 <bb C>:
415 ...
416 if (something)
417 goto <bb N>;
418 else
419 goto <bb M>;
420 <bb N>:
421 __builtin_unreachable ();
422 <bb M>: */
423
424 bool
425 assert_unreachable_fallthru_edge_p (edge e)
426 {
427 basic_block pred_bb = e->src;
428 gimple *last = last_stmt (pred_bb);
429 if (last && gimple_code (last) == GIMPLE_COND)
430 {
431 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
432 if (other_bb == e->dest)
433 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
434 if (EDGE_COUNT (other_bb->succs) == 0)
435 {
436 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
437 gimple *stmt;
438
439 if (gsi_end_p (gsi))
440 return false;
441 stmt = gsi_stmt (gsi);
442 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
443 {
444 gsi_next (&gsi);
445 if (gsi_end_p (gsi))
446 return false;
447 stmt = gsi_stmt (gsi);
448 }
449 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
450 }
451 }
452 return false;
453 }
454
455
456 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
457 could alter control flow except via eh. We initialize the flag at
458 CFG build time and only ever clear it later. */
459
460 static void
461 gimple_call_initialize_ctrl_altering (gimple *stmt)
462 {
463 int flags = gimple_call_flags (stmt);
464
465 /* A call alters control flow if it can make an abnormal goto. */
466 if (call_can_make_abnormal_goto (stmt)
467 /* A call also alters control flow if it does not return. */
468 || flags & ECF_NORETURN
469 /* TM ending statements have backedges out of the transaction.
470 Return true so we split the basic block containing them.
471 Note that the TM_BUILTIN test is merely an optimization. */
472 || ((flags & ECF_TM_BUILTIN)
473 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
474 /* BUILT_IN_RETURN call is same as return statement. */
475 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
476 /* IFN_UNIQUE should be the last insn, to make checking for it
477 as cheap as possible. */
478 || (gimple_call_internal_p (stmt)
479 && gimple_call_internal_unique_p (stmt)))
480 gimple_call_set_ctrl_altering (stmt, true);
481 else
482 gimple_call_set_ctrl_altering (stmt, false);
483 }
484
485
486 /* Insert SEQ after BB and build a flowgraph. */
487
488 static basic_block
489 make_blocks_1 (gimple_seq seq, basic_block bb)
490 {
491 gimple_stmt_iterator i = gsi_start (seq);
492 gimple *stmt = NULL;
493 bool start_new_block = true;
494 bool first_stmt_of_seq = true;
495
496 while (!gsi_end_p (i))
497 {
498 gimple *prev_stmt;
499
500 prev_stmt = stmt;
501 stmt = gsi_stmt (i);
502
503 if (stmt && is_gimple_call (stmt))
504 gimple_call_initialize_ctrl_altering (stmt);
505
506 /* If the statement starts a new basic block or if we have determined
507 in a previous pass that we need to create a new block for STMT, do
508 so now. */
509 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
510 {
511 if (!first_stmt_of_seq)
512 gsi_split_seq_before (&i, &seq);
513 bb = create_basic_block (seq, bb);
514 start_new_block = false;
515 }
516
517 /* Now add STMT to BB and create the subgraphs for special statement
518 codes. */
519 gimple_set_bb (stmt, bb);
520
521 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
522 next iteration. */
523 if (stmt_ends_bb_p (stmt))
524 {
525 /* If the stmt can make abnormal goto use a new temporary
526 for the assignment to the LHS. This makes sure the old value
527 of the LHS is available on the abnormal edge. Otherwise
528 we will end up with overlapping life-ranges for abnormal
529 SSA names. */
530 if (gimple_has_lhs (stmt)
531 && stmt_can_make_abnormal_goto (stmt)
532 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
533 {
534 tree lhs = gimple_get_lhs (stmt);
535 tree tmp = create_tmp_var (TREE_TYPE (lhs));
536 gimple *s = gimple_build_assign (lhs, tmp);
537 gimple_set_location (s, gimple_location (stmt));
538 gimple_set_block (s, gimple_block (stmt));
539 gimple_set_lhs (stmt, tmp);
540 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
541 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
542 DECL_GIMPLE_REG_P (tmp) = 1;
543 gsi_insert_after (&i, s, GSI_SAME_STMT);
544 }
545 start_new_block = true;
546 }
547
548 gsi_next (&i);
549 first_stmt_of_seq = false;
550 }
551 return bb;
552 }
553
554 /* Build a flowgraph for the sequence of stmts SEQ. */
555
556 static void
557 make_blocks (gimple_seq seq)
558 {
559 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
560 }
561
562 /* Create and return a new empty basic block after bb AFTER. */
563
564 static basic_block
565 create_bb (void *h, void *e, basic_block after)
566 {
567 basic_block bb;
568
569 gcc_assert (!e);
570
571 /* Create and initialize a new basic block. Since alloc_block uses
572 GC allocation that clears memory to allocate a basic block, we do
573 not have to clear the newly allocated basic block here. */
574 bb = alloc_block ();
575
576 bb->index = last_basic_block_for_fn (cfun);
577 bb->flags = BB_NEW;
578 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
579
580 /* Add the new block to the linked list of blocks. */
581 link_block (bb, after);
582
583 /* Grow the basic block array if needed. */
584 if ((size_t) last_basic_block_for_fn (cfun)
585 == basic_block_info_for_fn (cfun)->length ())
586 {
587 size_t new_size =
588 (last_basic_block_for_fn (cfun)
589 + (last_basic_block_for_fn (cfun) + 3) / 4);
590 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
591 }
592
593 /* Add the newly created block to the array. */
594 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
595
596 n_basic_blocks_for_fn (cfun)++;
597 last_basic_block_for_fn (cfun)++;
598
599 return bb;
600 }
601
602
603 /*---------------------------------------------------------------------------
604 Edge creation
605 ---------------------------------------------------------------------------*/
606
607 /* If basic block BB has an abnormal edge to a basic block
608 containing IFN_ABNORMAL_DISPATCHER internal call, return
609 that the dispatcher's basic block, otherwise return NULL. */
610
611 basic_block
612 get_abnormal_succ_dispatcher (basic_block bb)
613 {
614 edge e;
615 edge_iterator ei;
616
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
619 {
620 gimple_stmt_iterator gsi
621 = gsi_start_nondebug_after_labels_bb (e->dest);
622 gimple *g = gsi_stmt (gsi);
623 if (g
624 && is_gimple_call (g)
625 && gimple_call_internal_p (g)
626 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
627 return e->dest;
628 }
629 return NULL;
630 }
631
632 /* Helper function for make_edges. Create a basic block with
633 with ABNORMAL_DISPATCHER internal call in it if needed, and
634 create abnormal edges from BBS to it and from it to FOR_BB
635 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
636
637 static void
638 handle_abnormal_edges (basic_block *dispatcher_bbs,
639 basic_block for_bb, int *bb_to_omp_idx,
640 auto_vec<basic_block> *bbs, bool computed_goto)
641 {
642 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
643 unsigned int idx = 0;
644 basic_block bb;
645 bool inner = false;
646
647 if (bb_to_omp_idx)
648 {
649 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
650 if (bb_to_omp_idx[for_bb->index] != 0)
651 inner = true;
652 }
653
654 /* If the dispatcher has been created already, then there are basic
655 blocks with abnormal edges to it, so just make a new edge to
656 for_bb. */
657 if (*dispatcher == NULL)
658 {
659 /* Check if there are any basic blocks that need to have
660 abnormal edges to this dispatcher. If there are none, return
661 early. */
662 if (bb_to_omp_idx == NULL)
663 {
664 if (bbs->is_empty ())
665 return;
666 }
667 else
668 {
669 FOR_EACH_VEC_ELT (*bbs, idx, bb)
670 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
671 break;
672 if (bb == NULL)
673 return;
674 }
675
676 /* Create the dispatcher bb. */
677 *dispatcher = create_basic_block (NULL, for_bb);
678 if (computed_goto)
679 {
680 /* Factor computed gotos into a common computed goto site. Also
681 record the location of that site so that we can un-factor the
682 gotos after we have converted back to normal form. */
683 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
684
685 /* Create the destination of the factored goto. Each original
686 computed goto will put its desired destination into this
687 variable and jump to the label we create immediately below. */
688 tree var = create_tmp_var (ptr_type_node, "gotovar");
689
690 /* Build a label for the new block which will contain the
691 factored computed goto. */
692 tree factored_label_decl
693 = create_artificial_label (UNKNOWN_LOCATION);
694 gimple *factored_computed_goto_label
695 = gimple_build_label (factored_label_decl);
696 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
697
698 /* Build our new computed goto. */
699 gimple *factored_computed_goto = gimple_build_goto (var);
700 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
701
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
703 {
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
707
708 gsi = gsi_last_bb (bb);
709 gimple *last = gsi_stmt (gsi);
710
711 gcc_assert (computed_goto_p (last));
712
713 /* Copy the original computed goto's destination into VAR. */
714 gimple *assignment
715 = gimple_build_assign (var, gimple_goto_dest (last));
716 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
717
718 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
719 e->goto_locus = gimple_location (last);
720 gsi_remove (&gsi, true);
721 }
722 }
723 else
724 {
725 tree arg = inner ? boolean_true_node : boolean_false_node;
726 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
727 1, arg);
728 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
729 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
730
731 /* Create predecessor edges of the dispatcher. */
732 FOR_EACH_VEC_ELT (*bbs, idx, bb)
733 {
734 if (bb_to_omp_idx
735 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
736 continue;
737 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
738 }
739 }
740 }
741
742 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
743 }
744
745 /* Creates outgoing edges for BB. Returns 1 when it ends with an
746 computed goto, returns 2 when it ends with a statement that
747 might return to this function via an nonlocal goto, otherwise
748 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
749
750 static int
751 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
752 {
753 gimple *last = last_stmt (bb);
754 bool fallthru = false;
755 int ret = 0;
756
757 if (!last)
758 return ret;
759
760 switch (gimple_code (last))
761 {
762 case GIMPLE_GOTO:
763 if (make_goto_expr_edges (bb))
764 ret = 1;
765 fallthru = false;
766 break;
767 case GIMPLE_RETURN:
768 {
769 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
770 e->goto_locus = gimple_location (last);
771 fallthru = false;
772 }
773 break;
774 case GIMPLE_COND:
775 make_cond_expr_edges (bb);
776 fallthru = false;
777 break;
778 case GIMPLE_SWITCH:
779 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
780 fallthru = false;
781 break;
782 case GIMPLE_RESX:
783 make_eh_edges (last);
784 fallthru = false;
785 break;
786 case GIMPLE_EH_DISPATCH:
787 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
788 break;
789
790 case GIMPLE_CALL:
791 /* If this function receives a nonlocal goto, then we need to
792 make edges from this call site to all the nonlocal goto
793 handlers. */
794 if (stmt_can_make_abnormal_goto (last))
795 ret = 2;
796
797 /* If this statement has reachable exception handlers, then
798 create abnormal edges to them. */
799 make_eh_edges (last);
800
801 /* BUILTIN_RETURN is really a return statement. */
802 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
803 {
804 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
805 fallthru = false;
806 }
807 /* Some calls are known not to return. */
808 else
809 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
810 break;
811
812 case GIMPLE_ASSIGN:
813 /* A GIMPLE_ASSIGN may throw internally and thus be considered
814 control-altering. */
815 if (is_ctrl_altering_stmt (last))
816 make_eh_edges (last);
817 fallthru = true;
818 break;
819
820 case GIMPLE_ASM:
821 make_gimple_asm_edges (bb);
822 fallthru = true;
823 break;
824
825 CASE_GIMPLE_OMP:
826 fallthru = make_gimple_omp_edges (bb, pcur_region, pomp_index);
827 break;
828
829 case GIMPLE_TRANSACTION:
830 {
831 gtransaction *txn = as_a <gtransaction *> (last);
832 tree label1 = gimple_transaction_label_norm (txn);
833 tree label2 = gimple_transaction_label_uninst (txn);
834
835 if (label1)
836 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
837 if (label2)
838 make_edge (bb, label_to_block (label2),
839 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
840
841 tree label3 = gimple_transaction_label_over (txn);
842 if (gimple_transaction_subcode (txn)
843 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
844 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
845
846 fallthru = false;
847 }
848 break;
849
850 default:
851 gcc_assert (!stmt_ends_bb_p (last));
852 fallthru = true;
853 break;
854 }
855
856 if (fallthru)
857 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
858
859 return ret;
860 }
861
862 /* Join all the blocks in the flowgraph. */
863
864 static void
865 make_edges (void)
866 {
867 basic_block bb;
868 struct omp_region *cur_region = NULL;
869 auto_vec<basic_block> ab_edge_goto;
870 auto_vec<basic_block> ab_edge_call;
871 int *bb_to_omp_idx = NULL;
872 int cur_omp_region_idx = 0;
873
874 /* Create an edge from entry to the first block with executable
875 statements in it. */
876 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
877 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
878 EDGE_FALLTHRU);
879
880 /* Traverse the basic block array placing edges. */
881 FOR_EACH_BB_FN (bb, cfun)
882 {
883 int mer;
884
885 if (bb_to_omp_idx)
886 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
887
888 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
889 if (mer == 1)
890 ab_edge_goto.safe_push (bb);
891 else if (mer == 2)
892 ab_edge_call.safe_push (bb);
893
894 if (cur_region && bb_to_omp_idx == NULL)
895 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
896 }
897
898 /* Computed gotos are hell to deal with, especially if there are
899 lots of them with a large number of destinations. So we factor
900 them to a common computed goto location before we build the
901 edge list. After we convert back to normal form, we will un-factor
902 the computed gotos since factoring introduces an unwanted jump.
903 For non-local gotos and abnormal edges from calls to calls that return
904 twice or forced labels, factor the abnormal edges too, by having all
905 abnormal edges from the calls go to a common artificial basic block
906 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
907 basic block to all forced labels and calls returning twice.
908 We do this per-OpenMP structured block, because those regions
909 are guaranteed to be single entry single exit by the standard,
910 so it is not allowed to enter or exit such regions abnormally this way,
911 thus all computed gotos, non-local gotos and setjmp/longjmp calls
912 must not transfer control across SESE region boundaries. */
913 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
914 {
915 gimple_stmt_iterator gsi;
916 basic_block dispatcher_bb_array[2] = { NULL, NULL };
917 basic_block *dispatcher_bbs = dispatcher_bb_array;
918 int count = n_basic_blocks_for_fn (cfun);
919
920 if (bb_to_omp_idx)
921 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
922
923 FOR_EACH_BB_FN (bb, cfun)
924 {
925 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
926 {
927 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
928 tree target;
929
930 if (!label_stmt)
931 break;
932
933 target = gimple_label_label (label_stmt);
934
935 /* Make an edge to every label block that has been marked as a
936 potential target for a computed goto or a non-local goto. */
937 if (FORCED_LABEL (target))
938 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
939 &ab_edge_goto, true);
940 if (DECL_NONLOCAL (target))
941 {
942 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
943 &ab_edge_call, false);
944 break;
945 }
946 }
947
948 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
949 gsi_next_nondebug (&gsi);
950 if (!gsi_end_p (gsi))
951 {
952 /* Make an edge to every setjmp-like call. */
953 gimple *call_stmt = gsi_stmt (gsi);
954 if (is_gimple_call (call_stmt)
955 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
956 || gimple_call_builtin_p (call_stmt,
957 BUILT_IN_SETJMP_RECEIVER)))
958 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
959 &ab_edge_call, false);
960 }
961 }
962
963 if (bb_to_omp_idx)
964 XDELETE (dispatcher_bbs);
965 }
966
967 XDELETE (bb_to_omp_idx);
968
969 free_omp_regions ();
970 }
971
972 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
973 needed. Returns true if new bbs were created.
974 Note: This is transitional code, and should not be used for new code. We
975 should be able to get rid of this by rewriting all target va-arg
976 gimplification hooks to use an interface gimple_build_cond_value as described
977 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
978
979 bool
980 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
981 {
982 gimple *stmt = gsi_stmt (*gsi);
983 basic_block bb = gimple_bb (stmt);
984 basic_block lastbb, afterbb;
985 int old_num_bbs = n_basic_blocks_for_fn (cfun);
986 edge e;
987 lastbb = make_blocks_1 (seq, bb);
988 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
989 return false;
990 e = split_block (bb, stmt);
991 /* Move e->dest to come after the new basic blocks. */
992 afterbb = e->dest;
993 unlink_block (afterbb);
994 link_block (afterbb, lastbb);
995 redirect_edge_succ (e, bb->next_bb);
996 bb = bb->next_bb;
997 while (bb != afterbb)
998 {
999 struct omp_region *cur_region = NULL;
1000 int cur_omp_region_idx = 0;
1001 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1002 gcc_assert (!mer && !cur_region);
1003 add_bb_to_loop (bb, afterbb->loop_father);
1004 bb = bb->next_bb;
1005 }
1006 return true;
1007 }
1008
1009 /* Find the next available discriminator value for LOCUS. The
1010 discriminator distinguishes among several basic blocks that
1011 share a common locus, allowing for more accurate sample-based
1012 profiling. */
1013
1014 static int
1015 next_discriminator_for_locus (location_t locus)
1016 {
1017 struct locus_discrim_map item;
1018 struct locus_discrim_map **slot;
1019
1020 item.locus = locus;
1021 item.discriminator = 0;
1022 slot = discriminator_per_locus->find_slot_with_hash (
1023 &item, LOCATION_LINE (locus), INSERT);
1024 gcc_assert (slot);
1025 if (*slot == HTAB_EMPTY_ENTRY)
1026 {
1027 *slot = XNEW (struct locus_discrim_map);
1028 gcc_assert (*slot);
1029 (*slot)->locus = locus;
1030 (*slot)->discriminator = 0;
1031 }
1032 (*slot)->discriminator++;
1033 return (*slot)->discriminator;
1034 }
1035
1036 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1037
1038 static bool
1039 same_line_p (location_t locus1, location_t locus2)
1040 {
1041 expanded_location from, to;
1042
1043 if (locus1 == locus2)
1044 return true;
1045
1046 from = expand_location (locus1);
1047 to = expand_location (locus2);
1048
1049 if (from.line != to.line)
1050 return false;
1051 if (from.file == to.file)
1052 return true;
1053 return (from.file != NULL
1054 && to.file != NULL
1055 && filename_cmp (from.file, to.file) == 0);
1056 }
1057
1058 /* Assign discriminators to each basic block. */
1059
1060 static void
1061 assign_discriminators (void)
1062 {
1063 basic_block bb;
1064
1065 FOR_EACH_BB_FN (bb, cfun)
1066 {
1067 edge e;
1068 edge_iterator ei;
1069 gimple *last = last_stmt (bb);
1070 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1071
1072 if (locus == UNKNOWN_LOCATION)
1073 continue;
1074
1075 FOR_EACH_EDGE (e, ei, bb->succs)
1076 {
1077 gimple *first = first_non_label_stmt (e->dest);
1078 gimple *last = last_stmt (e->dest);
1079 if ((first && same_line_p (locus, gimple_location (first)))
1080 || (last && same_line_p (locus, gimple_location (last))))
1081 {
1082 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1083 bb->discriminator = next_discriminator_for_locus (locus);
1084 else
1085 e->dest->discriminator = next_discriminator_for_locus (locus);
1086 }
1087 }
1088 }
1089 }
1090
1091 /* Create the edges for a GIMPLE_COND starting at block BB. */
1092
1093 static void
1094 make_cond_expr_edges (basic_block bb)
1095 {
1096 gcond *entry = as_a <gcond *> (last_stmt (bb));
1097 gimple *then_stmt, *else_stmt;
1098 basic_block then_bb, else_bb;
1099 tree then_label, else_label;
1100 edge e;
1101
1102 gcc_assert (entry);
1103 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1104
1105 /* Entry basic blocks for each component. */
1106 then_label = gimple_cond_true_label (entry);
1107 else_label = gimple_cond_false_label (entry);
1108 then_bb = label_to_block (then_label);
1109 else_bb = label_to_block (else_label);
1110 then_stmt = first_stmt (then_bb);
1111 else_stmt = first_stmt (else_bb);
1112
1113 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1114 e->goto_locus = gimple_location (then_stmt);
1115 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1116 if (e)
1117 e->goto_locus = gimple_location (else_stmt);
1118
1119 /* We do not need the labels anymore. */
1120 gimple_cond_set_true_label (entry, NULL_TREE);
1121 gimple_cond_set_false_label (entry, NULL_TREE);
1122 }
1123
1124
1125 /* Called for each element in the hash table (P) as we delete the
1126 edge to cases hash table.
1127
1128 Clear all the TREE_CHAINs to prevent problems with copying of
1129 SWITCH_EXPRs and structure sharing rules, then free the hash table
1130 element. */
1131
1132 bool
1133 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1134 {
1135 tree t, next;
1136
1137 for (t = value; t; t = next)
1138 {
1139 next = CASE_CHAIN (t);
1140 CASE_CHAIN (t) = NULL;
1141 }
1142
1143 return true;
1144 }
1145
1146 /* Start recording information mapping edges to case labels. */
1147
1148 void
1149 start_recording_case_labels (void)
1150 {
1151 gcc_assert (edge_to_cases == NULL);
1152 edge_to_cases = new hash_map<edge, tree>;
1153 touched_switch_bbs = BITMAP_ALLOC (NULL);
1154 }
1155
1156 /* Return nonzero if we are recording information for case labels. */
1157
1158 static bool
1159 recording_case_labels_p (void)
1160 {
1161 return (edge_to_cases != NULL);
1162 }
1163
1164 /* Stop recording information mapping edges to case labels and
1165 remove any information we have recorded. */
1166 void
1167 end_recording_case_labels (void)
1168 {
1169 bitmap_iterator bi;
1170 unsigned i;
1171 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1172 delete edge_to_cases;
1173 edge_to_cases = NULL;
1174 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1175 {
1176 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1177 if (bb)
1178 {
1179 gimple *stmt = last_stmt (bb);
1180 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1181 group_case_labels_stmt (as_a <gswitch *> (stmt));
1182 }
1183 }
1184 BITMAP_FREE (touched_switch_bbs);
1185 }
1186
1187 /* If we are inside a {start,end}_recording_cases block, then return
1188 a chain of CASE_LABEL_EXPRs from T which reference E.
1189
1190 Otherwise return NULL. */
1191
1192 static tree
1193 get_cases_for_edge (edge e, gswitch *t)
1194 {
1195 tree *slot;
1196 size_t i, n;
1197
1198 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1199 chains available. Return NULL so the caller can detect this case. */
1200 if (!recording_case_labels_p ())
1201 return NULL;
1202
1203 slot = edge_to_cases->get (e);
1204 if (slot)
1205 return *slot;
1206
1207 /* If we did not find E in the hash table, then this must be the first
1208 time we have been queried for information about E & T. Add all the
1209 elements from T to the hash table then perform the query again. */
1210
1211 n = gimple_switch_num_labels (t);
1212 for (i = 0; i < n; i++)
1213 {
1214 tree elt = gimple_switch_label (t, i);
1215 tree lab = CASE_LABEL (elt);
1216 basic_block label_bb = label_to_block (lab);
1217 edge this_edge = find_edge (e->src, label_bb);
1218
1219 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1220 a new chain. */
1221 tree &s = edge_to_cases->get_or_insert (this_edge);
1222 CASE_CHAIN (elt) = s;
1223 s = elt;
1224 }
1225
1226 return *edge_to_cases->get (e);
1227 }
1228
1229 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1230
1231 static void
1232 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1233 {
1234 size_t i, n;
1235
1236 n = gimple_switch_num_labels (entry);
1237
1238 for (i = 0; i < n; ++i)
1239 {
1240 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1241 basic_block label_bb = label_to_block (lab);
1242 make_edge (bb, label_bb, 0);
1243 }
1244 }
1245
1246
1247 /* Return the basic block holding label DEST. */
1248
1249 basic_block
1250 label_to_block_fn (struct function *ifun, tree dest)
1251 {
1252 int uid = LABEL_DECL_UID (dest);
1253
1254 /* We would die hard when faced by an undefined label. Emit a label to
1255 the very first basic block. This will hopefully make even the dataflow
1256 and undefined variable warnings quite right. */
1257 if (seen_error () && uid < 0)
1258 {
1259 gimple_stmt_iterator gsi =
1260 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1261 gimple *stmt;
1262
1263 stmt = gimple_build_label (dest);
1264 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1265 uid = LABEL_DECL_UID (dest);
1266 }
1267 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1268 return NULL;
1269 return (*ifun->cfg->x_label_to_block_map)[uid];
1270 }
1271
1272 /* Create edges for a goto statement at block BB. Returns true
1273 if abnormal edges should be created. */
1274
1275 static bool
1276 make_goto_expr_edges (basic_block bb)
1277 {
1278 gimple_stmt_iterator last = gsi_last_bb (bb);
1279 gimple *goto_t = gsi_stmt (last);
1280
1281 /* A simple GOTO creates normal edges. */
1282 if (simple_goto_p (goto_t))
1283 {
1284 tree dest = gimple_goto_dest (goto_t);
1285 basic_block label_bb = label_to_block (dest);
1286 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1287 e->goto_locus = gimple_location (goto_t);
1288 gsi_remove (&last, true);
1289 return false;
1290 }
1291
1292 /* A computed GOTO creates abnormal edges. */
1293 return true;
1294 }
1295
1296 /* Create edges for an asm statement with labels at block BB. */
1297
1298 static void
1299 make_gimple_asm_edges (basic_block bb)
1300 {
1301 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1302 int i, n = gimple_asm_nlabels (stmt);
1303
1304 for (i = 0; i < n; ++i)
1305 {
1306 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1307 basic_block label_bb = label_to_block (label);
1308 make_edge (bb, label_bb, 0);
1309 }
1310 }
1311
1312 /*---------------------------------------------------------------------------
1313 Flowgraph analysis
1314 ---------------------------------------------------------------------------*/
1315
1316 /* Cleanup useless labels in basic blocks. This is something we wish
1317 to do early because it allows us to group case labels before creating
1318 the edges for the CFG, and it speeds up block statement iterators in
1319 all passes later on.
1320 We rerun this pass after CFG is created, to get rid of the labels that
1321 are no longer referenced. After then we do not run it any more, since
1322 (almost) no new labels should be created. */
1323
1324 /* A map from basic block index to the leading label of that block. */
1325 static struct label_record
1326 {
1327 /* The label. */
1328 tree label;
1329
1330 /* True if the label is referenced from somewhere. */
1331 bool used;
1332 } *label_for_bb;
1333
1334 /* Given LABEL return the first label in the same basic block. */
1335
1336 static tree
1337 main_block_label (tree label)
1338 {
1339 basic_block bb = label_to_block (label);
1340 tree main_label = label_for_bb[bb->index].label;
1341
1342 /* label_to_block possibly inserted undefined label into the chain. */
1343 if (!main_label)
1344 {
1345 label_for_bb[bb->index].label = label;
1346 main_label = label;
1347 }
1348
1349 label_for_bb[bb->index].used = true;
1350 return main_label;
1351 }
1352
1353 /* Clean up redundant labels within the exception tree. */
1354
1355 static void
1356 cleanup_dead_labels_eh (void)
1357 {
1358 eh_landing_pad lp;
1359 eh_region r;
1360 tree lab;
1361 int i;
1362
1363 if (cfun->eh == NULL)
1364 return;
1365
1366 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1367 if (lp && lp->post_landing_pad)
1368 {
1369 lab = main_block_label (lp->post_landing_pad);
1370 if (lab != lp->post_landing_pad)
1371 {
1372 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1373 EH_LANDING_PAD_NR (lab) = lp->index;
1374 }
1375 }
1376
1377 FOR_ALL_EH_REGION (r)
1378 switch (r->type)
1379 {
1380 case ERT_CLEANUP:
1381 case ERT_MUST_NOT_THROW:
1382 break;
1383
1384 case ERT_TRY:
1385 {
1386 eh_catch c;
1387 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1388 {
1389 lab = c->label;
1390 if (lab)
1391 c->label = main_block_label (lab);
1392 }
1393 }
1394 break;
1395
1396 case ERT_ALLOWED_EXCEPTIONS:
1397 lab = r->u.allowed.label;
1398 if (lab)
1399 r->u.allowed.label = main_block_label (lab);
1400 break;
1401 }
1402 }
1403
1404
1405 /* Cleanup redundant labels. This is a three-step process:
1406 1) Find the leading label for each block.
1407 2) Redirect all references to labels to the leading labels.
1408 3) Cleanup all useless labels. */
1409
1410 void
1411 cleanup_dead_labels (void)
1412 {
1413 basic_block bb;
1414 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1415
1416 /* Find a suitable label for each block. We use the first user-defined
1417 label if there is one, or otherwise just the first label we see. */
1418 FOR_EACH_BB_FN (bb, cfun)
1419 {
1420 gimple_stmt_iterator i;
1421
1422 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1423 {
1424 tree label;
1425 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1426
1427 if (!label_stmt)
1428 break;
1429
1430 label = gimple_label_label (label_stmt);
1431
1432 /* If we have not yet seen a label for the current block,
1433 remember this one and see if there are more labels. */
1434 if (!label_for_bb[bb->index].label)
1435 {
1436 label_for_bb[bb->index].label = label;
1437 continue;
1438 }
1439
1440 /* If we did see a label for the current block already, but it
1441 is an artificially created label, replace it if the current
1442 label is a user defined label. */
1443 if (!DECL_ARTIFICIAL (label)
1444 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1445 {
1446 label_for_bb[bb->index].label = label;
1447 break;
1448 }
1449 }
1450 }
1451
1452 /* Now redirect all jumps/branches to the selected label.
1453 First do so for each block ending in a control statement. */
1454 FOR_EACH_BB_FN (bb, cfun)
1455 {
1456 gimple *stmt = last_stmt (bb);
1457 tree label, new_label;
1458
1459 if (!stmt)
1460 continue;
1461
1462 switch (gimple_code (stmt))
1463 {
1464 case GIMPLE_COND:
1465 {
1466 gcond *cond_stmt = as_a <gcond *> (stmt);
1467 label = gimple_cond_true_label (cond_stmt);
1468 if (label)
1469 {
1470 new_label = main_block_label (label);
1471 if (new_label != label)
1472 gimple_cond_set_true_label (cond_stmt, new_label);
1473 }
1474
1475 label = gimple_cond_false_label (cond_stmt);
1476 if (label)
1477 {
1478 new_label = main_block_label (label);
1479 if (new_label != label)
1480 gimple_cond_set_false_label (cond_stmt, new_label);
1481 }
1482 }
1483 break;
1484
1485 case GIMPLE_SWITCH:
1486 {
1487 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1488 size_t i, n = gimple_switch_num_labels (switch_stmt);
1489
1490 /* Replace all destination labels. */
1491 for (i = 0; i < n; ++i)
1492 {
1493 tree case_label = gimple_switch_label (switch_stmt, i);
1494 label = CASE_LABEL (case_label);
1495 new_label = main_block_label (label);
1496 if (new_label != label)
1497 CASE_LABEL (case_label) = new_label;
1498 }
1499 break;
1500 }
1501
1502 case GIMPLE_ASM:
1503 {
1504 gasm *asm_stmt = as_a <gasm *> (stmt);
1505 int i, n = gimple_asm_nlabels (asm_stmt);
1506
1507 for (i = 0; i < n; ++i)
1508 {
1509 tree cons = gimple_asm_label_op (asm_stmt, i);
1510 tree label = main_block_label (TREE_VALUE (cons));
1511 TREE_VALUE (cons) = label;
1512 }
1513 break;
1514 }
1515
1516 /* We have to handle gotos until they're removed, and we don't
1517 remove them until after we've created the CFG edges. */
1518 case GIMPLE_GOTO:
1519 if (!computed_goto_p (stmt))
1520 {
1521 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1522 label = gimple_goto_dest (goto_stmt);
1523 new_label = main_block_label (label);
1524 if (new_label != label)
1525 gimple_goto_set_dest (goto_stmt, new_label);
1526 }
1527 break;
1528
1529 case GIMPLE_TRANSACTION:
1530 {
1531 gtransaction *txn = as_a <gtransaction *> (stmt);
1532
1533 label = gimple_transaction_label_norm (txn);
1534 if (label)
1535 {
1536 new_label = main_block_label (label);
1537 if (new_label != label)
1538 gimple_transaction_set_label_norm (txn, new_label);
1539 }
1540
1541 label = gimple_transaction_label_uninst (txn);
1542 if (label)
1543 {
1544 new_label = main_block_label (label);
1545 if (new_label != label)
1546 gimple_transaction_set_label_uninst (txn, new_label);
1547 }
1548
1549 label = gimple_transaction_label_over (txn);
1550 if (label)
1551 {
1552 new_label = main_block_label (label);
1553 if (new_label != label)
1554 gimple_transaction_set_label_over (txn, new_label);
1555 }
1556 }
1557 break;
1558
1559 default:
1560 break;
1561 }
1562 }
1563
1564 /* Do the same for the exception region tree labels. */
1565 cleanup_dead_labels_eh ();
1566
1567 /* Finally, purge dead labels. All user-defined labels and labels that
1568 can be the target of non-local gotos and labels which have their
1569 address taken are preserved. */
1570 FOR_EACH_BB_FN (bb, cfun)
1571 {
1572 gimple_stmt_iterator i;
1573 tree label_for_this_bb = label_for_bb[bb->index].label;
1574
1575 if (!label_for_this_bb)
1576 continue;
1577
1578 /* If the main label of the block is unused, we may still remove it. */
1579 if (!label_for_bb[bb->index].used)
1580 label_for_this_bb = NULL;
1581
1582 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1583 {
1584 tree label;
1585 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1586
1587 if (!label_stmt)
1588 break;
1589
1590 label = gimple_label_label (label_stmt);
1591
1592 if (label == label_for_this_bb
1593 || !DECL_ARTIFICIAL (label)
1594 || DECL_NONLOCAL (label)
1595 || FORCED_LABEL (label))
1596 gsi_next (&i);
1597 else
1598 gsi_remove (&i, true);
1599 }
1600 }
1601
1602 free (label_for_bb);
1603 }
1604
1605 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1606 the ones jumping to the same label.
1607 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1608
1609 void
1610 group_case_labels_stmt (gswitch *stmt)
1611 {
1612 int old_size = gimple_switch_num_labels (stmt);
1613 int i, j, new_size = old_size;
1614 basic_block default_bb = NULL;
1615
1616 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1617
1618 /* Look for possible opportunities to merge cases. */
1619 i = 1;
1620 while (i < old_size)
1621 {
1622 tree base_case, base_high;
1623 basic_block base_bb;
1624
1625 base_case = gimple_switch_label (stmt, i);
1626
1627 gcc_assert (base_case);
1628 base_bb = label_to_block (CASE_LABEL (base_case));
1629
1630 /* Discard cases that have the same destination as the
1631 default case. */
1632 if (base_bb == default_bb)
1633 {
1634 gimple_switch_set_label (stmt, i, NULL_TREE);
1635 i++;
1636 new_size--;
1637 continue;
1638 }
1639
1640 base_high = CASE_HIGH (base_case)
1641 ? CASE_HIGH (base_case)
1642 : CASE_LOW (base_case);
1643 i++;
1644
1645 /* Try to merge case labels. Break out when we reach the end
1646 of the label vector or when we cannot merge the next case
1647 label with the current one. */
1648 while (i < old_size)
1649 {
1650 tree merge_case = gimple_switch_label (stmt, i);
1651 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1652 wide_int bhp1 = wi::add (base_high, 1);
1653
1654 /* Merge the cases if they jump to the same place,
1655 and their ranges are consecutive. */
1656 if (merge_bb == base_bb
1657 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1658 {
1659 base_high = CASE_HIGH (merge_case) ?
1660 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1661 CASE_HIGH (base_case) = base_high;
1662 gimple_switch_set_label (stmt, i, NULL_TREE);
1663 new_size--;
1664 i++;
1665 }
1666 else
1667 break;
1668 }
1669 }
1670
1671 /* Compress the case labels in the label vector, and adjust the
1672 length of the vector. */
1673 for (i = 0, j = 0; i < new_size; i++)
1674 {
1675 while (! gimple_switch_label (stmt, j))
1676 j++;
1677 gimple_switch_set_label (stmt, i,
1678 gimple_switch_label (stmt, j++));
1679 }
1680
1681 gcc_assert (new_size <= old_size);
1682 gimple_switch_set_num_labels (stmt, new_size);
1683 }
1684
1685 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1686 and scan the sorted vector of cases. Combine the ones jumping to the
1687 same label. */
1688
1689 void
1690 group_case_labels (void)
1691 {
1692 basic_block bb;
1693
1694 FOR_EACH_BB_FN (bb, cfun)
1695 {
1696 gimple *stmt = last_stmt (bb);
1697 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1698 group_case_labels_stmt (as_a <gswitch *> (stmt));
1699 }
1700 }
1701
1702 /* Checks whether we can merge block B into block A. */
1703
1704 static bool
1705 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1706 {
1707 gimple *stmt;
1708
1709 if (!single_succ_p (a))
1710 return false;
1711
1712 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1713 return false;
1714
1715 if (single_succ (a) != b)
1716 return false;
1717
1718 if (!single_pred_p (b))
1719 return false;
1720
1721 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1722 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1723 return false;
1724
1725 /* If A ends by a statement causing exceptions or something similar, we
1726 cannot merge the blocks. */
1727 stmt = last_stmt (a);
1728 if (stmt && stmt_ends_bb_p (stmt))
1729 return false;
1730
1731 /* Do not allow a block with only a non-local label to be merged. */
1732 if (stmt)
1733 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1734 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1735 return false;
1736
1737 /* Examine the labels at the beginning of B. */
1738 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1739 gsi_next (&gsi))
1740 {
1741 tree lab;
1742 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1743 if (!label_stmt)
1744 break;
1745 lab = gimple_label_label (label_stmt);
1746
1747 /* Do not remove user forced labels or for -O0 any user labels. */
1748 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1749 return false;
1750 }
1751
1752 /* Protect simple loop latches. We only want to avoid merging
1753 the latch with the loop header or with a block in another
1754 loop in this case. */
1755 if (current_loops
1756 && b->loop_father->latch == b
1757 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1758 && (b->loop_father->header == a
1759 || b->loop_father != a->loop_father))
1760 return false;
1761
1762 /* It must be possible to eliminate all phi nodes in B. If ssa form
1763 is not up-to-date and a name-mapping is registered, we cannot eliminate
1764 any phis. Symbols marked for renaming are never a problem though. */
1765 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1766 gsi_next (&gsi))
1767 {
1768 gphi *phi = gsi.phi ();
1769 /* Technically only new names matter. */
1770 if (name_registered_for_update_p (PHI_RESULT (phi)))
1771 return false;
1772 }
1773
1774 /* When not optimizing, don't merge if we'd lose goto_locus. */
1775 if (!optimize
1776 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1777 {
1778 location_t goto_locus = single_succ_edge (a)->goto_locus;
1779 gimple_stmt_iterator prev, next;
1780 prev = gsi_last_nondebug_bb (a);
1781 next = gsi_after_labels (b);
1782 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1783 gsi_next_nondebug (&next);
1784 if ((gsi_end_p (prev)
1785 || gimple_location (gsi_stmt (prev)) != goto_locus)
1786 && (gsi_end_p (next)
1787 || gimple_location (gsi_stmt (next)) != goto_locus))
1788 return false;
1789 }
1790
1791 return true;
1792 }
1793
1794 /* Replaces all uses of NAME by VAL. */
1795
1796 void
1797 replace_uses_by (tree name, tree val)
1798 {
1799 imm_use_iterator imm_iter;
1800 use_operand_p use;
1801 gimple *stmt;
1802 edge e;
1803
1804 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1805 {
1806 /* Mark the block if we change the last stmt in it. */
1807 if (cfgcleanup_altered_bbs
1808 && stmt_ends_bb_p (stmt))
1809 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1810
1811 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1812 {
1813 replace_exp (use, val);
1814
1815 if (gimple_code (stmt) == GIMPLE_PHI)
1816 {
1817 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1818 PHI_ARG_INDEX_FROM_USE (use));
1819 if (e->flags & EDGE_ABNORMAL
1820 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1821 {
1822 /* This can only occur for virtual operands, since
1823 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1824 would prevent replacement. */
1825 gcc_checking_assert (virtual_operand_p (name));
1826 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1827 }
1828 }
1829 }
1830
1831 if (gimple_code (stmt) != GIMPLE_PHI)
1832 {
1833 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1834 gimple *orig_stmt = stmt;
1835 size_t i;
1836
1837 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1838 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1839 only change sth from non-invariant to invariant, and only
1840 when propagating constants. */
1841 if (is_gimple_min_invariant (val))
1842 for (i = 0; i < gimple_num_ops (stmt); i++)
1843 {
1844 tree op = gimple_op (stmt, i);
1845 /* Operands may be empty here. For example, the labels
1846 of a GIMPLE_COND are nulled out following the creation
1847 of the corresponding CFG edges. */
1848 if (op && TREE_CODE (op) == ADDR_EXPR)
1849 recompute_tree_invariant_for_addr_expr (op);
1850 }
1851
1852 if (fold_stmt (&gsi))
1853 stmt = gsi_stmt (gsi);
1854
1855 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1856 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1857
1858 update_stmt (stmt);
1859 }
1860 }
1861
1862 gcc_checking_assert (has_zero_uses (name));
1863
1864 /* Also update the trees stored in loop structures. */
1865 if (current_loops)
1866 {
1867 struct loop *loop;
1868
1869 FOR_EACH_LOOP (loop, 0)
1870 {
1871 substitute_in_loop_info (loop, name, val);
1872 }
1873 }
1874 }
1875
1876 /* Merge block B into block A. */
1877
1878 static void
1879 gimple_merge_blocks (basic_block a, basic_block b)
1880 {
1881 gimple_stmt_iterator last, gsi;
1882 gphi_iterator psi;
1883
1884 if (dump_file)
1885 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1886
1887 /* Remove all single-valued PHI nodes from block B of the form
1888 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1889 gsi = gsi_last_bb (a);
1890 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1891 {
1892 gimple *phi = gsi_stmt (psi);
1893 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1894 gimple *copy;
1895 bool may_replace_uses = (virtual_operand_p (def)
1896 || may_propagate_copy (def, use));
1897
1898 /* In case we maintain loop closed ssa form, do not propagate arguments
1899 of loop exit phi nodes. */
1900 if (current_loops
1901 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1902 && !virtual_operand_p (def)
1903 && TREE_CODE (use) == SSA_NAME
1904 && a->loop_father != b->loop_father)
1905 may_replace_uses = false;
1906
1907 if (!may_replace_uses)
1908 {
1909 gcc_assert (!virtual_operand_p (def));
1910
1911 /* Note that just emitting the copies is fine -- there is no problem
1912 with ordering of phi nodes. This is because A is the single
1913 predecessor of B, therefore results of the phi nodes cannot
1914 appear as arguments of the phi nodes. */
1915 copy = gimple_build_assign (def, use);
1916 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1917 remove_phi_node (&psi, false);
1918 }
1919 else
1920 {
1921 /* If we deal with a PHI for virtual operands, we can simply
1922 propagate these without fussing with folding or updating
1923 the stmt. */
1924 if (virtual_operand_p (def))
1925 {
1926 imm_use_iterator iter;
1927 use_operand_p use_p;
1928 gimple *stmt;
1929
1930 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1931 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1932 SET_USE (use_p, use);
1933
1934 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1935 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1936 }
1937 else
1938 replace_uses_by (def, use);
1939
1940 remove_phi_node (&psi, true);
1941 }
1942 }
1943
1944 /* Ensure that B follows A. */
1945 move_block_after (b, a);
1946
1947 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1948 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1949
1950 /* Remove labels from B and set gimple_bb to A for other statements. */
1951 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1952 {
1953 gimple *stmt = gsi_stmt (gsi);
1954 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1955 {
1956 tree label = gimple_label_label (label_stmt);
1957 int lp_nr;
1958
1959 gsi_remove (&gsi, false);
1960
1961 /* Now that we can thread computed gotos, we might have
1962 a situation where we have a forced label in block B
1963 However, the label at the start of block B might still be
1964 used in other ways (think about the runtime checking for
1965 Fortran assigned gotos). So we can not just delete the
1966 label. Instead we move the label to the start of block A. */
1967 if (FORCED_LABEL (label))
1968 {
1969 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1970 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1971 }
1972 /* Other user labels keep around in a form of a debug stmt. */
1973 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1974 {
1975 gimple *dbg = gimple_build_debug_bind (label,
1976 integer_zero_node,
1977 stmt);
1978 gimple_debug_bind_reset_value (dbg);
1979 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1980 }
1981
1982 lp_nr = EH_LANDING_PAD_NR (label);
1983 if (lp_nr)
1984 {
1985 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1986 lp->post_landing_pad = NULL;
1987 }
1988 }
1989 else
1990 {
1991 gimple_set_bb (stmt, a);
1992 gsi_next (&gsi);
1993 }
1994 }
1995
1996 /* When merging two BBs, if their counts are different, the larger count
1997 is selected as the new bb count. This is to handle inconsistent
1998 profiles. */
1999 if (a->loop_father == b->loop_father)
2000 {
2001 a->count = MAX (a->count, b->count);
2002 a->frequency = MAX (a->frequency, b->frequency);
2003 }
2004
2005 /* Merge the sequences. */
2006 last = gsi_last_bb (a);
2007 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2008 set_bb_seq (b, NULL);
2009
2010 if (cfgcleanup_altered_bbs)
2011 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2012 }
2013
2014
2015 /* Return the one of two successors of BB that is not reachable by a
2016 complex edge, if there is one. Else, return BB. We use
2017 this in optimizations that use post-dominators for their heuristics,
2018 to catch the cases in C++ where function calls are involved. */
2019
2020 basic_block
2021 single_noncomplex_succ (basic_block bb)
2022 {
2023 edge e0, e1;
2024 if (EDGE_COUNT (bb->succs) != 2)
2025 return bb;
2026
2027 e0 = EDGE_SUCC (bb, 0);
2028 e1 = EDGE_SUCC (bb, 1);
2029 if (e0->flags & EDGE_COMPLEX)
2030 return e1->dest;
2031 if (e1->flags & EDGE_COMPLEX)
2032 return e0->dest;
2033
2034 return bb;
2035 }
2036
2037 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2038
2039 void
2040 notice_special_calls (gcall *call)
2041 {
2042 int flags = gimple_call_flags (call);
2043
2044 if (flags & ECF_MAY_BE_ALLOCA)
2045 cfun->calls_alloca = true;
2046 if (flags & ECF_RETURNS_TWICE)
2047 cfun->calls_setjmp = true;
2048 }
2049
2050
2051 /* Clear flags set by notice_special_calls. Used by dead code removal
2052 to update the flags. */
2053
2054 void
2055 clear_special_calls (void)
2056 {
2057 cfun->calls_alloca = false;
2058 cfun->calls_setjmp = false;
2059 }
2060
2061 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2062
2063 static void
2064 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2065 {
2066 /* Since this block is no longer reachable, we can just delete all
2067 of its PHI nodes. */
2068 remove_phi_nodes (bb);
2069
2070 /* Remove edges to BB's successors. */
2071 while (EDGE_COUNT (bb->succs) > 0)
2072 remove_edge (EDGE_SUCC (bb, 0));
2073 }
2074
2075
2076 /* Remove statements of basic block BB. */
2077
2078 static void
2079 remove_bb (basic_block bb)
2080 {
2081 gimple_stmt_iterator i;
2082
2083 if (dump_file)
2084 {
2085 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2086 if (dump_flags & TDF_DETAILS)
2087 {
2088 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2089 fprintf (dump_file, "\n");
2090 }
2091 }
2092
2093 if (current_loops)
2094 {
2095 struct loop *loop = bb->loop_father;
2096
2097 /* If a loop gets removed, clean up the information associated
2098 with it. */
2099 if (loop->latch == bb
2100 || loop->header == bb)
2101 free_numbers_of_iterations_estimates_loop (loop);
2102 }
2103
2104 /* Remove all the instructions in the block. */
2105 if (bb_seq (bb) != NULL)
2106 {
2107 /* Walk backwards so as to get a chance to substitute all
2108 released DEFs into debug stmts. See
2109 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2110 details. */
2111 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2112 {
2113 gimple *stmt = gsi_stmt (i);
2114 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2115 if (label_stmt
2116 && (FORCED_LABEL (gimple_label_label (label_stmt))
2117 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2118 {
2119 basic_block new_bb;
2120 gimple_stmt_iterator new_gsi;
2121
2122 /* A non-reachable non-local label may still be referenced.
2123 But it no longer needs to carry the extra semantics of
2124 non-locality. */
2125 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2126 {
2127 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2128 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2129 }
2130
2131 new_bb = bb->prev_bb;
2132 new_gsi = gsi_start_bb (new_bb);
2133 gsi_remove (&i, false);
2134 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2135 }
2136 else
2137 {
2138 /* Release SSA definitions if we are in SSA. Note that we
2139 may be called when not in SSA. For example,
2140 final_cleanup calls this function via
2141 cleanup_tree_cfg. */
2142 if (gimple_in_ssa_p (cfun))
2143 release_defs (stmt);
2144
2145 gsi_remove (&i, true);
2146 }
2147
2148 if (gsi_end_p (i))
2149 i = gsi_last_bb (bb);
2150 else
2151 gsi_prev (&i);
2152 }
2153 }
2154
2155 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2156 bb->il.gimple.seq = NULL;
2157 bb->il.gimple.phi_nodes = NULL;
2158 }
2159
2160
2161 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2162 predicate VAL, return the edge that will be taken out of the block.
2163 If VAL does not match a unique edge, NULL is returned. */
2164
2165 edge
2166 find_taken_edge (basic_block bb, tree val)
2167 {
2168 gimple *stmt;
2169
2170 stmt = last_stmt (bb);
2171
2172 gcc_assert (stmt);
2173 gcc_assert (is_ctrl_stmt (stmt));
2174
2175 if (val == NULL)
2176 return NULL;
2177
2178 if (!is_gimple_min_invariant (val))
2179 return NULL;
2180
2181 if (gimple_code (stmt) == GIMPLE_COND)
2182 return find_taken_edge_cond_expr (bb, val);
2183
2184 if (gimple_code (stmt) == GIMPLE_SWITCH)
2185 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val);
2186
2187 if (computed_goto_p (stmt))
2188 {
2189 /* Only optimize if the argument is a label, if the argument is
2190 not a label then we can not construct a proper CFG.
2191
2192 It may be the case that we only need to allow the LABEL_REF to
2193 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2194 appear inside a LABEL_EXPR just to be safe. */
2195 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2196 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2197 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2198 return NULL;
2199 }
2200
2201 gcc_unreachable ();
2202 }
2203
2204 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2205 statement, determine which of the outgoing edges will be taken out of the
2206 block. Return NULL if either edge may be taken. */
2207
2208 static edge
2209 find_taken_edge_computed_goto (basic_block bb, tree val)
2210 {
2211 basic_block dest;
2212 edge e = NULL;
2213
2214 dest = label_to_block (val);
2215 if (dest)
2216 {
2217 e = find_edge (bb, dest);
2218 gcc_assert (e != NULL);
2219 }
2220
2221 return e;
2222 }
2223
2224 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2225 statement, determine which of the two edges will be taken out of the
2226 block. Return NULL if either edge may be taken. */
2227
2228 static edge
2229 find_taken_edge_cond_expr (basic_block bb, tree val)
2230 {
2231 edge true_edge, false_edge;
2232
2233 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2234
2235 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2236 return (integer_zerop (val) ? false_edge : true_edge);
2237 }
2238
2239 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2240 statement, determine which edge will be taken out of the block. Return
2241 NULL if any edge may be taken. */
2242
2243 static edge
2244 find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb,
2245 tree val)
2246 {
2247 basic_block dest_bb;
2248 edge e;
2249 tree taken_case;
2250
2251 taken_case = find_case_label_for_value (switch_stmt, val);
2252 dest_bb = label_to_block (CASE_LABEL (taken_case));
2253
2254 e = find_edge (bb, dest_bb);
2255 gcc_assert (e);
2256 return e;
2257 }
2258
2259
2260 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2261 We can make optimal use here of the fact that the case labels are
2262 sorted: We can do a binary search for a case matching VAL. */
2263
2264 static tree
2265 find_case_label_for_value (gswitch *switch_stmt, tree val)
2266 {
2267 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2268 tree default_case = gimple_switch_default_label (switch_stmt);
2269
2270 for (low = 0, high = n; high - low > 1; )
2271 {
2272 size_t i = (high + low) / 2;
2273 tree t = gimple_switch_label (switch_stmt, i);
2274 int cmp;
2275
2276 /* Cache the result of comparing CASE_LOW and val. */
2277 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2278
2279 if (cmp > 0)
2280 high = i;
2281 else
2282 low = i;
2283
2284 if (CASE_HIGH (t) == NULL)
2285 {
2286 /* A singe-valued case label. */
2287 if (cmp == 0)
2288 return t;
2289 }
2290 else
2291 {
2292 /* A case range. We can only handle integer ranges. */
2293 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2294 return t;
2295 }
2296 }
2297
2298 return default_case;
2299 }
2300
2301
2302 /* Dump a basic block on stderr. */
2303
2304 void
2305 gimple_debug_bb (basic_block bb)
2306 {
2307 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2308 }
2309
2310
2311 /* Dump basic block with index N on stderr. */
2312
2313 basic_block
2314 gimple_debug_bb_n (int n)
2315 {
2316 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2317 return BASIC_BLOCK_FOR_FN (cfun, n);
2318 }
2319
2320
2321 /* Dump the CFG on stderr.
2322
2323 FLAGS are the same used by the tree dumping functions
2324 (see TDF_* in dumpfile.h). */
2325
2326 void
2327 gimple_debug_cfg (int flags)
2328 {
2329 gimple_dump_cfg (stderr, flags);
2330 }
2331
2332
2333 /* Dump the program showing basic block boundaries on the given FILE.
2334
2335 FLAGS are the same used by the tree dumping functions (see TDF_* in
2336 tree.h). */
2337
2338 void
2339 gimple_dump_cfg (FILE *file, int flags)
2340 {
2341 if (flags & TDF_DETAILS)
2342 {
2343 dump_function_header (file, current_function_decl, flags);
2344 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2345 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2346 last_basic_block_for_fn (cfun));
2347
2348 brief_dump_cfg (file, flags | TDF_COMMENT);
2349 fprintf (file, "\n");
2350 }
2351
2352 if (flags & TDF_STATS)
2353 dump_cfg_stats (file);
2354
2355 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2356 }
2357
2358
2359 /* Dump CFG statistics on FILE. */
2360
2361 void
2362 dump_cfg_stats (FILE *file)
2363 {
2364 static long max_num_merged_labels = 0;
2365 unsigned long size, total = 0;
2366 long num_edges;
2367 basic_block bb;
2368 const char * const fmt_str = "%-30s%-13s%12s\n";
2369 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2370 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2371 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2372 const char *funcname = current_function_name ();
2373
2374 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2375
2376 fprintf (file, "---------------------------------------------------------\n");
2377 fprintf (file, fmt_str, "", " Number of ", "Memory");
2378 fprintf (file, fmt_str, "", " instances ", "used ");
2379 fprintf (file, "---------------------------------------------------------\n");
2380
2381 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2382 total += size;
2383 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2384 SCALE (size), LABEL (size));
2385
2386 num_edges = 0;
2387 FOR_EACH_BB_FN (bb, cfun)
2388 num_edges += EDGE_COUNT (bb->succs);
2389 size = num_edges * sizeof (struct edge_def);
2390 total += size;
2391 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2392
2393 fprintf (file, "---------------------------------------------------------\n");
2394 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2395 LABEL (total));
2396 fprintf (file, "---------------------------------------------------------\n");
2397 fprintf (file, "\n");
2398
2399 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2400 max_num_merged_labels = cfg_stats.num_merged_labels;
2401
2402 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2403 cfg_stats.num_merged_labels, max_num_merged_labels);
2404
2405 fprintf (file, "\n");
2406 }
2407
2408
2409 /* Dump CFG statistics on stderr. Keep extern so that it's always
2410 linked in the final executable. */
2411
2412 DEBUG_FUNCTION void
2413 debug_cfg_stats (void)
2414 {
2415 dump_cfg_stats (stderr);
2416 }
2417
2418 /*---------------------------------------------------------------------------
2419 Miscellaneous helpers
2420 ---------------------------------------------------------------------------*/
2421
2422 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2423 flow. Transfers of control flow associated with EH are excluded. */
2424
2425 static bool
2426 call_can_make_abnormal_goto (gimple *t)
2427 {
2428 /* If the function has no non-local labels, then a call cannot make an
2429 abnormal transfer of control. */
2430 if (!cfun->has_nonlocal_label
2431 && !cfun->calls_setjmp)
2432 return false;
2433
2434 /* Likewise if the call has no side effects. */
2435 if (!gimple_has_side_effects (t))
2436 return false;
2437
2438 /* Likewise if the called function is leaf. */
2439 if (gimple_call_flags (t) & ECF_LEAF)
2440 return false;
2441
2442 return true;
2443 }
2444
2445
2446 /* Return true if T can make an abnormal transfer of control flow.
2447 Transfers of control flow associated with EH are excluded. */
2448
2449 bool
2450 stmt_can_make_abnormal_goto (gimple *t)
2451 {
2452 if (computed_goto_p (t))
2453 return true;
2454 if (is_gimple_call (t))
2455 return call_can_make_abnormal_goto (t);
2456 return false;
2457 }
2458
2459
2460 /* Return true if T represents a stmt that always transfers control. */
2461
2462 bool
2463 is_ctrl_stmt (gimple *t)
2464 {
2465 switch (gimple_code (t))
2466 {
2467 case GIMPLE_COND:
2468 case GIMPLE_SWITCH:
2469 case GIMPLE_GOTO:
2470 case GIMPLE_RETURN:
2471 case GIMPLE_RESX:
2472 return true;
2473 default:
2474 return false;
2475 }
2476 }
2477
2478
2479 /* Return true if T is a statement that may alter the flow of control
2480 (e.g., a call to a non-returning function). */
2481
2482 bool
2483 is_ctrl_altering_stmt (gimple *t)
2484 {
2485 gcc_assert (t);
2486
2487 switch (gimple_code (t))
2488 {
2489 case GIMPLE_CALL:
2490 /* Per stmt call flag indicates whether the call could alter
2491 controlflow. */
2492 if (gimple_call_ctrl_altering_p (t))
2493 return true;
2494 break;
2495
2496 case GIMPLE_EH_DISPATCH:
2497 /* EH_DISPATCH branches to the individual catch handlers at
2498 this level of a try or allowed-exceptions region. It can
2499 fallthru to the next statement as well. */
2500 return true;
2501
2502 case GIMPLE_ASM:
2503 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2504 return true;
2505 break;
2506
2507 CASE_GIMPLE_OMP:
2508 /* OpenMP directives alter control flow. */
2509 return true;
2510
2511 case GIMPLE_TRANSACTION:
2512 /* A transaction start alters control flow. */
2513 return true;
2514
2515 default:
2516 break;
2517 }
2518
2519 /* If a statement can throw, it alters control flow. */
2520 return stmt_can_throw_internal (t);
2521 }
2522
2523
2524 /* Return true if T is a simple local goto. */
2525
2526 bool
2527 simple_goto_p (gimple *t)
2528 {
2529 return (gimple_code (t) == GIMPLE_GOTO
2530 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2531 }
2532
2533
2534 /* Return true if STMT should start a new basic block. PREV_STMT is
2535 the statement preceding STMT. It is used when STMT is a label or a
2536 case label. Labels should only start a new basic block if their
2537 previous statement wasn't a label. Otherwise, sequence of labels
2538 would generate unnecessary basic blocks that only contain a single
2539 label. */
2540
2541 static inline bool
2542 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2543 {
2544 if (stmt == NULL)
2545 return false;
2546
2547 /* Labels start a new basic block only if the preceding statement
2548 wasn't a label of the same type. This prevents the creation of
2549 consecutive blocks that have nothing but a single label. */
2550 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2551 {
2552 /* Nonlocal and computed GOTO targets always start a new block. */
2553 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2554 || FORCED_LABEL (gimple_label_label (label_stmt)))
2555 return true;
2556
2557 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2558 {
2559 if (DECL_NONLOCAL (gimple_label_label (
2560 as_a <glabel *> (prev_stmt))))
2561 return true;
2562
2563 cfg_stats.num_merged_labels++;
2564 return false;
2565 }
2566 else
2567 return true;
2568 }
2569 else if (gimple_code (stmt) == GIMPLE_CALL
2570 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2571 /* setjmp acts similar to a nonlocal GOTO target and thus should
2572 start a new block. */
2573 return true;
2574
2575 return false;
2576 }
2577
2578
2579 /* Return true if T should end a basic block. */
2580
2581 bool
2582 stmt_ends_bb_p (gimple *t)
2583 {
2584 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2585 }
2586
2587 /* Remove block annotations and other data structures. */
2588
2589 void
2590 delete_tree_cfg_annotations (struct function *fn)
2591 {
2592 vec_free (label_to_block_map_for_fn (fn));
2593 }
2594
2595 /* Return the virtual phi in BB. */
2596
2597 gphi *
2598 get_virtual_phi (basic_block bb)
2599 {
2600 for (gphi_iterator gsi = gsi_start_phis (bb);
2601 !gsi_end_p (gsi);
2602 gsi_next (&gsi))
2603 {
2604 gphi *phi = gsi.phi ();
2605
2606 if (virtual_operand_p (PHI_RESULT (phi)))
2607 return phi;
2608 }
2609
2610 return NULL;
2611 }
2612
2613 /* Return the first statement in basic block BB. */
2614
2615 gimple *
2616 first_stmt (basic_block bb)
2617 {
2618 gimple_stmt_iterator i = gsi_start_bb (bb);
2619 gimple *stmt = NULL;
2620
2621 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2622 {
2623 gsi_next (&i);
2624 stmt = NULL;
2625 }
2626 return stmt;
2627 }
2628
2629 /* Return the first non-label statement in basic block BB. */
2630
2631 static gimple *
2632 first_non_label_stmt (basic_block bb)
2633 {
2634 gimple_stmt_iterator i = gsi_start_bb (bb);
2635 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2636 gsi_next (&i);
2637 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2638 }
2639
2640 /* Return the last statement in basic block BB. */
2641
2642 gimple *
2643 last_stmt (basic_block bb)
2644 {
2645 gimple_stmt_iterator i = gsi_last_bb (bb);
2646 gimple *stmt = NULL;
2647
2648 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2649 {
2650 gsi_prev (&i);
2651 stmt = NULL;
2652 }
2653 return stmt;
2654 }
2655
2656 /* Return the last statement of an otherwise empty block. Return NULL
2657 if the block is totally empty, or if it contains more than one
2658 statement. */
2659
2660 gimple *
2661 last_and_only_stmt (basic_block bb)
2662 {
2663 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2664 gimple *last, *prev;
2665
2666 if (gsi_end_p (i))
2667 return NULL;
2668
2669 last = gsi_stmt (i);
2670 gsi_prev_nondebug (&i);
2671 if (gsi_end_p (i))
2672 return last;
2673
2674 /* Empty statements should no longer appear in the instruction stream.
2675 Everything that might have appeared before should be deleted by
2676 remove_useless_stmts, and the optimizers should just gsi_remove
2677 instead of smashing with build_empty_stmt.
2678
2679 Thus the only thing that should appear here in a block containing
2680 one executable statement is a label. */
2681 prev = gsi_stmt (i);
2682 if (gimple_code (prev) == GIMPLE_LABEL)
2683 return last;
2684 else
2685 return NULL;
2686 }
2687
2688 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2689
2690 static void
2691 reinstall_phi_args (edge new_edge, edge old_edge)
2692 {
2693 edge_var_map *vm;
2694 int i;
2695 gphi_iterator phis;
2696
2697 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2698 if (!v)
2699 return;
2700
2701 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2702 v->iterate (i, &vm) && !gsi_end_p (phis);
2703 i++, gsi_next (&phis))
2704 {
2705 gphi *phi = phis.phi ();
2706 tree result = redirect_edge_var_map_result (vm);
2707 tree arg = redirect_edge_var_map_def (vm);
2708
2709 gcc_assert (result == gimple_phi_result (phi));
2710
2711 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2712 }
2713
2714 redirect_edge_var_map_clear (old_edge);
2715 }
2716
2717 /* Returns the basic block after which the new basic block created
2718 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2719 near its "logical" location. This is of most help to humans looking
2720 at debugging dumps. */
2721
2722 basic_block
2723 split_edge_bb_loc (edge edge_in)
2724 {
2725 basic_block dest = edge_in->dest;
2726 basic_block dest_prev = dest->prev_bb;
2727
2728 if (dest_prev)
2729 {
2730 edge e = find_edge (dest_prev, dest);
2731 if (e && !(e->flags & EDGE_COMPLEX))
2732 return edge_in->src;
2733 }
2734 return dest_prev;
2735 }
2736
2737 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2738 Abort on abnormal edges. */
2739
2740 static basic_block
2741 gimple_split_edge (edge edge_in)
2742 {
2743 basic_block new_bb, after_bb, dest;
2744 edge new_edge, e;
2745
2746 /* Abnormal edges cannot be split. */
2747 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2748
2749 dest = edge_in->dest;
2750
2751 after_bb = split_edge_bb_loc (edge_in);
2752
2753 new_bb = create_empty_bb (after_bb);
2754 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2755 new_bb->count = edge_in->count;
2756 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2757 new_edge->probability = REG_BR_PROB_BASE;
2758 new_edge->count = edge_in->count;
2759
2760 e = redirect_edge_and_branch (edge_in, new_bb);
2761 gcc_assert (e == edge_in);
2762 reinstall_phi_args (new_edge, e);
2763
2764 return new_bb;
2765 }
2766
2767
2768 /* Verify properties of the address expression T with base object BASE. */
2769
2770 static tree
2771 verify_address (tree t, tree base)
2772 {
2773 bool old_constant;
2774 bool old_side_effects;
2775 bool new_constant;
2776 bool new_side_effects;
2777
2778 old_constant = TREE_CONSTANT (t);
2779 old_side_effects = TREE_SIDE_EFFECTS (t);
2780
2781 recompute_tree_invariant_for_addr_expr (t);
2782 new_side_effects = TREE_SIDE_EFFECTS (t);
2783 new_constant = TREE_CONSTANT (t);
2784
2785 if (old_constant != new_constant)
2786 {
2787 error ("constant not recomputed when ADDR_EXPR changed");
2788 return t;
2789 }
2790 if (old_side_effects != new_side_effects)
2791 {
2792 error ("side effects not recomputed when ADDR_EXPR changed");
2793 return t;
2794 }
2795
2796 if (!(TREE_CODE (base) == VAR_DECL
2797 || TREE_CODE (base) == PARM_DECL
2798 || TREE_CODE (base) == RESULT_DECL))
2799 return NULL_TREE;
2800
2801 if (DECL_GIMPLE_REG_P (base))
2802 {
2803 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2804 return base;
2805 }
2806
2807 return NULL_TREE;
2808 }
2809
2810 /* Callback for walk_tree, check that all elements with address taken are
2811 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2812 inside a PHI node. */
2813
2814 static tree
2815 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2816 {
2817 tree t = *tp, x;
2818
2819 if (TYPE_P (t))
2820 *walk_subtrees = 0;
2821
2822 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2823 #define CHECK_OP(N, MSG) \
2824 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2825 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2826
2827 switch (TREE_CODE (t))
2828 {
2829 case SSA_NAME:
2830 if (SSA_NAME_IN_FREE_LIST (t))
2831 {
2832 error ("SSA name in freelist but still referenced");
2833 return *tp;
2834 }
2835 break;
2836
2837 case PARM_DECL:
2838 case VAR_DECL:
2839 case RESULT_DECL:
2840 {
2841 tree context = decl_function_context (t);
2842 if (context != cfun->decl
2843 && !SCOPE_FILE_SCOPE_P (context)
2844 && !TREE_STATIC (t)
2845 && !DECL_EXTERNAL (t))
2846 {
2847 error ("Local declaration from a different function");
2848 return t;
2849 }
2850 }
2851 break;
2852
2853 case INDIRECT_REF:
2854 error ("INDIRECT_REF in gimple IL");
2855 return t;
2856
2857 case MEM_REF:
2858 x = TREE_OPERAND (t, 0);
2859 if (!POINTER_TYPE_P (TREE_TYPE (x))
2860 || !is_gimple_mem_ref_addr (x))
2861 {
2862 error ("invalid first operand of MEM_REF");
2863 return x;
2864 }
2865 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2866 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2867 {
2868 error ("invalid offset operand of MEM_REF");
2869 return TREE_OPERAND (t, 1);
2870 }
2871 if (TREE_CODE (x) == ADDR_EXPR)
2872 {
2873 tree va = verify_address (x, TREE_OPERAND (x, 0));
2874 if (va)
2875 return va;
2876 x = TREE_OPERAND (x, 0);
2877 }
2878 walk_tree (&x, verify_expr, data, NULL);
2879 *walk_subtrees = 0;
2880 break;
2881
2882 case ASSERT_EXPR:
2883 x = fold (ASSERT_EXPR_COND (t));
2884 if (x == boolean_false_node)
2885 {
2886 error ("ASSERT_EXPR with an always-false condition");
2887 return *tp;
2888 }
2889 break;
2890
2891 case MODIFY_EXPR:
2892 error ("MODIFY_EXPR not expected while having tuples");
2893 return *tp;
2894
2895 case ADDR_EXPR:
2896 {
2897 tree tem;
2898
2899 gcc_assert (is_gimple_address (t));
2900
2901 /* Skip any references (they will be checked when we recurse down the
2902 tree) and ensure that any variable used as a prefix is marked
2903 addressable. */
2904 for (x = TREE_OPERAND (t, 0);
2905 handled_component_p (x);
2906 x = TREE_OPERAND (x, 0))
2907 ;
2908
2909 if ((tem = verify_address (t, x)))
2910 return tem;
2911
2912 if (!(TREE_CODE (x) == VAR_DECL
2913 || TREE_CODE (x) == PARM_DECL
2914 || TREE_CODE (x) == RESULT_DECL))
2915 return NULL;
2916
2917 if (!TREE_ADDRESSABLE (x))
2918 {
2919 error ("address taken, but ADDRESSABLE bit not set");
2920 return x;
2921 }
2922
2923 break;
2924 }
2925
2926 case COND_EXPR:
2927 x = COND_EXPR_COND (t);
2928 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2929 {
2930 error ("non-integral used in condition");
2931 return x;
2932 }
2933 if (!is_gimple_condexpr (x))
2934 {
2935 error ("invalid conditional operand");
2936 return x;
2937 }
2938 break;
2939
2940 case NON_LVALUE_EXPR:
2941 case TRUTH_NOT_EXPR:
2942 gcc_unreachable ();
2943
2944 CASE_CONVERT:
2945 case FIX_TRUNC_EXPR:
2946 case FLOAT_EXPR:
2947 case NEGATE_EXPR:
2948 case ABS_EXPR:
2949 case BIT_NOT_EXPR:
2950 CHECK_OP (0, "invalid operand to unary operator");
2951 break;
2952
2953 case REALPART_EXPR:
2954 case IMAGPART_EXPR:
2955 case BIT_FIELD_REF:
2956 if (!is_gimple_reg_type (TREE_TYPE (t)))
2957 {
2958 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2959 return t;
2960 }
2961
2962 if (TREE_CODE (t) == BIT_FIELD_REF)
2963 {
2964 tree t0 = TREE_OPERAND (t, 0);
2965 tree t1 = TREE_OPERAND (t, 1);
2966 tree t2 = TREE_OPERAND (t, 2);
2967 if (!tree_fits_uhwi_p (t1)
2968 || !tree_fits_uhwi_p (t2))
2969 {
2970 error ("invalid position or size operand to BIT_FIELD_REF");
2971 return t;
2972 }
2973 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2974 && (TYPE_PRECISION (TREE_TYPE (t))
2975 != tree_to_uhwi (t1)))
2976 {
2977 error ("integral result type precision does not match "
2978 "field size of BIT_FIELD_REF");
2979 return t;
2980 }
2981 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2982 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2983 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
2984 != tree_to_uhwi (t1)))
2985 {
2986 error ("mode size of non-integral result does not "
2987 "match field size of BIT_FIELD_REF");
2988 return t;
2989 }
2990 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2991 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2992 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2993 {
2994 error ("position plus size exceeds size of referenced object in "
2995 "BIT_FIELD_REF");
2996 return t;
2997 }
2998 }
2999 t = TREE_OPERAND (t, 0);
3000
3001 /* Fall-through. */
3002 case COMPONENT_REF:
3003 case ARRAY_REF:
3004 case ARRAY_RANGE_REF:
3005 case VIEW_CONVERT_EXPR:
3006 /* We have a nest of references. Verify that each of the operands
3007 that determine where to reference is either a constant or a variable,
3008 verify that the base is valid, and then show we've already checked
3009 the subtrees. */
3010 while (handled_component_p (t))
3011 {
3012 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3013 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3014 else if (TREE_CODE (t) == ARRAY_REF
3015 || TREE_CODE (t) == ARRAY_RANGE_REF)
3016 {
3017 CHECK_OP (1, "invalid array index");
3018 if (TREE_OPERAND (t, 2))
3019 CHECK_OP (2, "invalid array lower bound");
3020 if (TREE_OPERAND (t, 3))
3021 CHECK_OP (3, "invalid array stride");
3022 }
3023 else if (TREE_CODE (t) == BIT_FIELD_REF
3024 || TREE_CODE (t) == REALPART_EXPR
3025 || TREE_CODE (t) == IMAGPART_EXPR)
3026 {
3027 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3028 "REALPART_EXPR");
3029 return t;
3030 }
3031
3032 t = TREE_OPERAND (t, 0);
3033 }
3034
3035 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3036 {
3037 error ("invalid reference prefix");
3038 return t;
3039 }
3040 walk_tree (&t, verify_expr, data, NULL);
3041 *walk_subtrees = 0;
3042 break;
3043 case PLUS_EXPR:
3044 case MINUS_EXPR:
3045 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3046 POINTER_PLUS_EXPR. */
3047 if (POINTER_TYPE_P (TREE_TYPE (t)))
3048 {
3049 error ("invalid operand to plus/minus, type is a pointer");
3050 return t;
3051 }
3052 CHECK_OP (0, "invalid operand to binary operator");
3053 CHECK_OP (1, "invalid operand to binary operator");
3054 break;
3055
3056 case POINTER_PLUS_EXPR:
3057 /* Check to make sure the first operand is a pointer or reference type. */
3058 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3059 {
3060 error ("invalid operand to pointer plus, first operand is not a pointer");
3061 return t;
3062 }
3063 /* Check to make sure the second operand is a ptrofftype. */
3064 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3065 {
3066 error ("invalid operand to pointer plus, second operand is not an "
3067 "integer type of appropriate width");
3068 return t;
3069 }
3070 /* FALLTHROUGH */
3071 case LT_EXPR:
3072 case LE_EXPR:
3073 case GT_EXPR:
3074 case GE_EXPR:
3075 case EQ_EXPR:
3076 case NE_EXPR:
3077 case UNORDERED_EXPR:
3078 case ORDERED_EXPR:
3079 case UNLT_EXPR:
3080 case UNLE_EXPR:
3081 case UNGT_EXPR:
3082 case UNGE_EXPR:
3083 case UNEQ_EXPR:
3084 case LTGT_EXPR:
3085 case MULT_EXPR:
3086 case TRUNC_DIV_EXPR:
3087 case CEIL_DIV_EXPR:
3088 case FLOOR_DIV_EXPR:
3089 case ROUND_DIV_EXPR:
3090 case TRUNC_MOD_EXPR:
3091 case CEIL_MOD_EXPR:
3092 case FLOOR_MOD_EXPR:
3093 case ROUND_MOD_EXPR:
3094 case RDIV_EXPR:
3095 case EXACT_DIV_EXPR:
3096 case MIN_EXPR:
3097 case MAX_EXPR:
3098 case LSHIFT_EXPR:
3099 case RSHIFT_EXPR:
3100 case LROTATE_EXPR:
3101 case RROTATE_EXPR:
3102 case BIT_IOR_EXPR:
3103 case BIT_XOR_EXPR:
3104 case BIT_AND_EXPR:
3105 CHECK_OP (0, "invalid operand to binary operator");
3106 CHECK_OP (1, "invalid operand to binary operator");
3107 break;
3108
3109 case CONSTRUCTOR:
3110 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3111 *walk_subtrees = 0;
3112 break;
3113
3114 case CASE_LABEL_EXPR:
3115 if (CASE_CHAIN (t))
3116 {
3117 error ("invalid CASE_CHAIN");
3118 return t;
3119 }
3120 break;
3121
3122 default:
3123 break;
3124 }
3125 return NULL;
3126
3127 #undef CHECK_OP
3128 }
3129
3130
3131 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3132 Returns true if there is an error, otherwise false. */
3133
3134 static bool
3135 verify_types_in_gimple_min_lval (tree expr)
3136 {
3137 tree op;
3138
3139 if (is_gimple_id (expr))
3140 return false;
3141
3142 if (TREE_CODE (expr) != TARGET_MEM_REF
3143 && TREE_CODE (expr) != MEM_REF)
3144 {
3145 error ("invalid expression for min lvalue");
3146 return true;
3147 }
3148
3149 /* TARGET_MEM_REFs are strange beasts. */
3150 if (TREE_CODE (expr) == TARGET_MEM_REF)
3151 return false;
3152
3153 op = TREE_OPERAND (expr, 0);
3154 if (!is_gimple_val (op))
3155 {
3156 error ("invalid operand in indirect reference");
3157 debug_generic_stmt (op);
3158 return true;
3159 }
3160 /* Memory references now generally can involve a value conversion. */
3161
3162 return false;
3163 }
3164
3165 /* Verify if EXPR is a valid GIMPLE reference expression. If
3166 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3167 if there is an error, otherwise false. */
3168
3169 static bool
3170 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3171 {
3172 while (handled_component_p (expr))
3173 {
3174 tree op = TREE_OPERAND (expr, 0);
3175
3176 if (TREE_CODE (expr) == ARRAY_REF
3177 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3178 {
3179 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3180 || (TREE_OPERAND (expr, 2)
3181 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3182 || (TREE_OPERAND (expr, 3)
3183 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3184 {
3185 error ("invalid operands to array reference");
3186 debug_generic_stmt (expr);
3187 return true;
3188 }
3189 }
3190
3191 /* Verify if the reference array element types are compatible. */
3192 if (TREE_CODE (expr) == ARRAY_REF
3193 && !useless_type_conversion_p (TREE_TYPE (expr),
3194 TREE_TYPE (TREE_TYPE (op))))
3195 {
3196 error ("type mismatch in array reference");
3197 debug_generic_stmt (TREE_TYPE (expr));
3198 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3199 return true;
3200 }
3201 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3202 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3203 TREE_TYPE (TREE_TYPE (op))))
3204 {
3205 error ("type mismatch in array range reference");
3206 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3207 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3208 return true;
3209 }
3210
3211 if ((TREE_CODE (expr) == REALPART_EXPR
3212 || TREE_CODE (expr) == IMAGPART_EXPR)
3213 && !useless_type_conversion_p (TREE_TYPE (expr),
3214 TREE_TYPE (TREE_TYPE (op))))
3215 {
3216 error ("type mismatch in real/imagpart reference");
3217 debug_generic_stmt (TREE_TYPE (expr));
3218 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3219 return true;
3220 }
3221
3222 if (TREE_CODE (expr) == COMPONENT_REF
3223 && !useless_type_conversion_p (TREE_TYPE (expr),
3224 TREE_TYPE (TREE_OPERAND (expr, 1))))
3225 {
3226 error ("type mismatch in component reference");
3227 debug_generic_stmt (TREE_TYPE (expr));
3228 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3229 return true;
3230 }
3231
3232 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3233 {
3234 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3235 that their operand is not an SSA name or an invariant when
3236 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3237 bug). Otherwise there is nothing to verify, gross mismatches at
3238 most invoke undefined behavior. */
3239 if (require_lvalue
3240 && (TREE_CODE (op) == SSA_NAME
3241 || is_gimple_min_invariant (op)))
3242 {
3243 error ("conversion of an SSA_NAME on the left hand side");
3244 debug_generic_stmt (expr);
3245 return true;
3246 }
3247 else if (TREE_CODE (op) == SSA_NAME
3248 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3249 {
3250 error ("conversion of register to a different size");
3251 debug_generic_stmt (expr);
3252 return true;
3253 }
3254 else if (!handled_component_p (op))
3255 return false;
3256 }
3257
3258 expr = op;
3259 }
3260
3261 if (TREE_CODE (expr) == MEM_REF)
3262 {
3263 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3264 {
3265 error ("invalid address operand in MEM_REF");
3266 debug_generic_stmt (expr);
3267 return true;
3268 }
3269 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3270 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3271 {
3272 error ("invalid offset operand in MEM_REF");
3273 debug_generic_stmt (expr);
3274 return true;
3275 }
3276 }
3277 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3278 {
3279 if (!TMR_BASE (expr)
3280 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3281 {
3282 error ("invalid address operand in TARGET_MEM_REF");
3283 return true;
3284 }
3285 if (!TMR_OFFSET (expr)
3286 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3287 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3288 {
3289 error ("invalid offset operand in TARGET_MEM_REF");
3290 debug_generic_stmt (expr);
3291 return true;
3292 }
3293 }
3294
3295 return ((require_lvalue || !is_gimple_min_invariant (expr))
3296 && verify_types_in_gimple_min_lval (expr));
3297 }
3298
3299 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3300 list of pointer-to types that is trivially convertible to DEST. */
3301
3302 static bool
3303 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3304 {
3305 tree src;
3306
3307 if (!TYPE_POINTER_TO (src_obj))
3308 return true;
3309
3310 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3311 if (useless_type_conversion_p (dest, src))
3312 return true;
3313
3314 return false;
3315 }
3316
3317 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3318 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3319
3320 static bool
3321 valid_fixed_convert_types_p (tree type1, tree type2)
3322 {
3323 return (FIXED_POINT_TYPE_P (type1)
3324 && (INTEGRAL_TYPE_P (type2)
3325 || SCALAR_FLOAT_TYPE_P (type2)
3326 || FIXED_POINT_TYPE_P (type2)));
3327 }
3328
3329 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3330 is a problem, otherwise false. */
3331
3332 static bool
3333 verify_gimple_call (gcall *stmt)
3334 {
3335 tree fn = gimple_call_fn (stmt);
3336 tree fntype, fndecl;
3337 unsigned i;
3338
3339 if (gimple_call_internal_p (stmt))
3340 {
3341 if (fn)
3342 {
3343 error ("gimple call has two targets");
3344 debug_generic_stmt (fn);
3345 return true;
3346 }
3347 }
3348 else
3349 {
3350 if (!fn)
3351 {
3352 error ("gimple call has no target");
3353 return true;
3354 }
3355 }
3356
3357 if (fn && !is_gimple_call_addr (fn))
3358 {
3359 error ("invalid function in gimple call");
3360 debug_generic_stmt (fn);
3361 return true;
3362 }
3363
3364 if (fn
3365 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3366 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3367 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3368 {
3369 error ("non-function in gimple call");
3370 return true;
3371 }
3372
3373 fndecl = gimple_call_fndecl (stmt);
3374 if (fndecl
3375 && TREE_CODE (fndecl) == FUNCTION_DECL
3376 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3377 && !DECL_PURE_P (fndecl)
3378 && !TREE_READONLY (fndecl))
3379 {
3380 error ("invalid pure const state for function");
3381 return true;
3382 }
3383
3384 tree lhs = gimple_call_lhs (stmt);
3385 if (lhs
3386 && (!is_gimple_lvalue (lhs)
3387 || verify_types_in_gimple_reference (lhs, true)))
3388 {
3389 error ("invalid LHS in gimple call");
3390 return true;
3391 }
3392
3393 if (lhs
3394 && gimple_call_ctrl_altering_p (stmt)
3395 && gimple_call_noreturn_p (stmt)
3396 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (lhs))) == INTEGER_CST
3397 && !TREE_ADDRESSABLE (TREE_TYPE (lhs)))
3398 {
3399 error ("LHS in noreturn call");
3400 return true;
3401 }
3402
3403 fntype = gimple_call_fntype (stmt);
3404 if (fntype
3405 && lhs
3406 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3407 /* ??? At least C++ misses conversions at assignments from
3408 void * call results.
3409 ??? Java is completely off. Especially with functions
3410 returning java.lang.Object.
3411 For now simply allow arbitrary pointer type conversions. */
3412 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3413 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3414 {
3415 error ("invalid conversion in gimple call");
3416 debug_generic_stmt (TREE_TYPE (lhs));
3417 debug_generic_stmt (TREE_TYPE (fntype));
3418 return true;
3419 }
3420
3421 if (gimple_call_chain (stmt)
3422 && !is_gimple_val (gimple_call_chain (stmt)))
3423 {
3424 error ("invalid static chain in gimple call");
3425 debug_generic_stmt (gimple_call_chain (stmt));
3426 return true;
3427 }
3428
3429 /* If there is a static chain argument, the call should either be
3430 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3431 if (gimple_call_chain (stmt)
3432 && fndecl
3433 && !DECL_STATIC_CHAIN (fndecl))
3434 {
3435 error ("static chain with function that doesn%'t use one");
3436 return true;
3437 }
3438
3439 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3440 {
3441 switch (DECL_FUNCTION_CODE (fndecl))
3442 {
3443 case BUILT_IN_UNREACHABLE:
3444 case BUILT_IN_TRAP:
3445 if (gimple_call_num_args (stmt) > 0)
3446 {
3447 /* Built-in unreachable with parameters might not be caught by
3448 undefined behavior sanitizer. Front-ends do check users do not
3449 call them that way but we also produce calls to
3450 __builtin_unreachable internally, for example when IPA figures
3451 out a call cannot happen in a legal program. In such cases,
3452 we must make sure arguments are stripped off. */
3453 error ("__builtin_unreachable or __builtin_trap call with "
3454 "arguments");
3455 return true;
3456 }
3457 break;
3458 default:
3459 break;
3460 }
3461 }
3462
3463 /* ??? The C frontend passes unpromoted arguments in case it
3464 didn't see a function declaration before the call. So for now
3465 leave the call arguments mostly unverified. Once we gimplify
3466 unit-at-a-time we have a chance to fix this. */
3467
3468 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3469 {
3470 tree arg = gimple_call_arg (stmt, i);
3471 if ((is_gimple_reg_type (TREE_TYPE (arg))
3472 && !is_gimple_val (arg))
3473 || (!is_gimple_reg_type (TREE_TYPE (arg))
3474 && !is_gimple_lvalue (arg)))
3475 {
3476 error ("invalid argument to gimple call");
3477 debug_generic_expr (arg);
3478 return true;
3479 }
3480 }
3481
3482 return false;
3483 }
3484
3485 /* Verifies the gimple comparison with the result type TYPE and
3486 the operands OP0 and OP1, comparison code is CODE. */
3487
3488 static bool
3489 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3490 {
3491 tree op0_type = TREE_TYPE (op0);
3492 tree op1_type = TREE_TYPE (op1);
3493
3494 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3495 {
3496 error ("invalid operands in gimple comparison");
3497 return true;
3498 }
3499
3500 /* For comparisons we do not have the operations type as the
3501 effective type the comparison is carried out in. Instead
3502 we require that either the first operand is trivially
3503 convertible into the second, or the other way around.
3504 Because we special-case pointers to void we allow
3505 comparisons of pointers with the same mode as well. */
3506 if (!useless_type_conversion_p (op0_type, op1_type)
3507 && !useless_type_conversion_p (op1_type, op0_type)
3508 && (!POINTER_TYPE_P (op0_type)
3509 || !POINTER_TYPE_P (op1_type)
3510 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3511 {
3512 error ("mismatching comparison operand types");
3513 debug_generic_expr (op0_type);
3514 debug_generic_expr (op1_type);
3515 return true;
3516 }
3517
3518 /* The resulting type of a comparison may be an effective boolean type. */
3519 if (INTEGRAL_TYPE_P (type)
3520 && (TREE_CODE (type) == BOOLEAN_TYPE
3521 || TYPE_PRECISION (type) == 1))
3522 {
3523 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3524 || TREE_CODE (op1_type) == VECTOR_TYPE)
3525 && code != EQ_EXPR && code != NE_EXPR
3526 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3527 && !VECTOR_INTEGER_TYPE_P (op0_type))
3528 {
3529 error ("unsupported operation or type for vector comparison"
3530 " returning a boolean");
3531 debug_generic_expr (op0_type);
3532 debug_generic_expr (op1_type);
3533 return true;
3534 }
3535 }
3536 /* Or a boolean vector type with the same element count
3537 as the comparison operand types. */
3538 else if (TREE_CODE (type) == VECTOR_TYPE
3539 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3540 {
3541 if (TREE_CODE (op0_type) != VECTOR_TYPE
3542 || TREE_CODE (op1_type) != VECTOR_TYPE)
3543 {
3544 error ("non-vector operands in vector comparison");
3545 debug_generic_expr (op0_type);
3546 debug_generic_expr (op1_type);
3547 return true;
3548 }
3549
3550 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3551 {
3552 error ("invalid vector comparison resulting type");
3553 debug_generic_expr (type);
3554 return true;
3555 }
3556 }
3557 else
3558 {
3559 error ("bogus comparison result type");
3560 debug_generic_expr (type);
3561 return true;
3562 }
3563
3564 return false;
3565 }
3566
3567 /* Verify a gimple assignment statement STMT with an unary rhs.
3568 Returns true if anything is wrong. */
3569
3570 static bool
3571 verify_gimple_assign_unary (gassign *stmt)
3572 {
3573 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3574 tree lhs = gimple_assign_lhs (stmt);
3575 tree lhs_type = TREE_TYPE (lhs);
3576 tree rhs1 = gimple_assign_rhs1 (stmt);
3577 tree rhs1_type = TREE_TYPE (rhs1);
3578
3579 if (!is_gimple_reg (lhs))
3580 {
3581 error ("non-register as LHS of unary operation");
3582 return true;
3583 }
3584
3585 if (!is_gimple_val (rhs1))
3586 {
3587 error ("invalid operand in unary operation");
3588 return true;
3589 }
3590
3591 /* First handle conversions. */
3592 switch (rhs_code)
3593 {
3594 CASE_CONVERT:
3595 {
3596 /* Allow conversions from pointer type to integral type only if
3597 there is no sign or zero extension involved.
3598 For targets were the precision of ptrofftype doesn't match that
3599 of pointers we need to allow arbitrary conversions to ptrofftype. */
3600 if ((POINTER_TYPE_P (lhs_type)
3601 && INTEGRAL_TYPE_P (rhs1_type))
3602 || (POINTER_TYPE_P (rhs1_type)
3603 && INTEGRAL_TYPE_P (lhs_type)
3604 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3605 || ptrofftype_p (sizetype))))
3606 return false;
3607
3608 /* Allow conversion from integral to offset type and vice versa. */
3609 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3610 && INTEGRAL_TYPE_P (rhs1_type))
3611 || (INTEGRAL_TYPE_P (lhs_type)
3612 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3613 return false;
3614
3615 /* Otherwise assert we are converting between types of the
3616 same kind. */
3617 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3618 {
3619 error ("invalid types in nop conversion");
3620 debug_generic_expr (lhs_type);
3621 debug_generic_expr (rhs1_type);
3622 return true;
3623 }
3624
3625 return false;
3626 }
3627
3628 case ADDR_SPACE_CONVERT_EXPR:
3629 {
3630 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3631 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3632 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3633 {
3634 error ("invalid types in address space conversion");
3635 debug_generic_expr (lhs_type);
3636 debug_generic_expr (rhs1_type);
3637 return true;
3638 }
3639
3640 return false;
3641 }
3642
3643 case FIXED_CONVERT_EXPR:
3644 {
3645 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3646 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3647 {
3648 error ("invalid types in fixed-point conversion");
3649 debug_generic_expr (lhs_type);
3650 debug_generic_expr (rhs1_type);
3651 return true;
3652 }
3653
3654 return false;
3655 }
3656
3657 case FLOAT_EXPR:
3658 {
3659 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3660 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3661 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3662 {
3663 error ("invalid types in conversion to floating point");
3664 debug_generic_expr (lhs_type);
3665 debug_generic_expr (rhs1_type);
3666 return true;
3667 }
3668
3669 return false;
3670 }
3671
3672 case FIX_TRUNC_EXPR:
3673 {
3674 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3675 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3676 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3677 {
3678 error ("invalid types in conversion to integer");
3679 debug_generic_expr (lhs_type);
3680 debug_generic_expr (rhs1_type);
3681 return true;
3682 }
3683
3684 return false;
3685 }
3686 case REDUC_MAX_EXPR:
3687 case REDUC_MIN_EXPR:
3688 case REDUC_PLUS_EXPR:
3689 if (!VECTOR_TYPE_P (rhs1_type)
3690 || !useless_type_conversion_p (lhs_type, TREE_TYPE (rhs1_type)))
3691 {
3692 error ("reduction should convert from vector to element type");
3693 debug_generic_expr (lhs_type);
3694 debug_generic_expr (rhs1_type);
3695 return true;
3696 }
3697 return false;
3698
3699 case VEC_UNPACK_HI_EXPR:
3700 case VEC_UNPACK_LO_EXPR:
3701 case VEC_UNPACK_FLOAT_HI_EXPR:
3702 case VEC_UNPACK_FLOAT_LO_EXPR:
3703 /* FIXME. */
3704 return false;
3705
3706 case NEGATE_EXPR:
3707 case ABS_EXPR:
3708 case BIT_NOT_EXPR:
3709 case PAREN_EXPR:
3710 case CONJ_EXPR:
3711 break;
3712
3713 default:
3714 gcc_unreachable ();
3715 }
3716
3717 /* For the remaining codes assert there is no conversion involved. */
3718 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3719 {
3720 error ("non-trivial conversion in unary operation");
3721 debug_generic_expr (lhs_type);
3722 debug_generic_expr (rhs1_type);
3723 return true;
3724 }
3725
3726 return false;
3727 }
3728
3729 /* Verify a gimple assignment statement STMT with a binary rhs.
3730 Returns true if anything is wrong. */
3731
3732 static bool
3733 verify_gimple_assign_binary (gassign *stmt)
3734 {
3735 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3736 tree lhs = gimple_assign_lhs (stmt);
3737 tree lhs_type = TREE_TYPE (lhs);
3738 tree rhs1 = gimple_assign_rhs1 (stmt);
3739 tree rhs1_type = TREE_TYPE (rhs1);
3740 tree rhs2 = gimple_assign_rhs2 (stmt);
3741 tree rhs2_type = TREE_TYPE (rhs2);
3742
3743 if (!is_gimple_reg (lhs))
3744 {
3745 error ("non-register as LHS of binary operation");
3746 return true;
3747 }
3748
3749 if (!is_gimple_val (rhs1)
3750 || !is_gimple_val (rhs2))
3751 {
3752 error ("invalid operands in binary operation");
3753 return true;
3754 }
3755
3756 /* First handle operations that involve different types. */
3757 switch (rhs_code)
3758 {
3759 case COMPLEX_EXPR:
3760 {
3761 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3762 || !(INTEGRAL_TYPE_P (rhs1_type)
3763 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3764 || !(INTEGRAL_TYPE_P (rhs2_type)
3765 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3766 {
3767 error ("type mismatch in complex expression");
3768 debug_generic_expr (lhs_type);
3769 debug_generic_expr (rhs1_type);
3770 debug_generic_expr (rhs2_type);
3771 return true;
3772 }
3773
3774 return false;
3775 }
3776
3777 case LSHIFT_EXPR:
3778 case RSHIFT_EXPR:
3779 case LROTATE_EXPR:
3780 case RROTATE_EXPR:
3781 {
3782 /* Shifts and rotates are ok on integral types, fixed point
3783 types and integer vector types. */
3784 if ((!INTEGRAL_TYPE_P (rhs1_type)
3785 && !FIXED_POINT_TYPE_P (rhs1_type)
3786 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3787 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3788 || (!INTEGRAL_TYPE_P (rhs2_type)
3789 /* Vector shifts of vectors are also ok. */
3790 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3791 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3792 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3793 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3794 || !useless_type_conversion_p (lhs_type, rhs1_type))
3795 {
3796 error ("type mismatch in shift expression");
3797 debug_generic_expr (lhs_type);
3798 debug_generic_expr (rhs1_type);
3799 debug_generic_expr (rhs2_type);
3800 return true;
3801 }
3802
3803 return false;
3804 }
3805
3806 case WIDEN_LSHIFT_EXPR:
3807 {
3808 if (!INTEGRAL_TYPE_P (lhs_type)
3809 || !INTEGRAL_TYPE_P (rhs1_type)
3810 || TREE_CODE (rhs2) != INTEGER_CST
3811 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3812 {
3813 error ("type mismatch in widening vector shift expression");
3814 debug_generic_expr (lhs_type);
3815 debug_generic_expr (rhs1_type);
3816 debug_generic_expr (rhs2_type);
3817 return true;
3818 }
3819
3820 return false;
3821 }
3822
3823 case VEC_WIDEN_LSHIFT_HI_EXPR:
3824 case VEC_WIDEN_LSHIFT_LO_EXPR:
3825 {
3826 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3827 || TREE_CODE (lhs_type) != VECTOR_TYPE
3828 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3829 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3830 || TREE_CODE (rhs2) != INTEGER_CST
3831 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3832 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3833 {
3834 error ("type mismatch in widening vector shift expression");
3835 debug_generic_expr (lhs_type);
3836 debug_generic_expr (rhs1_type);
3837 debug_generic_expr (rhs2_type);
3838 return true;
3839 }
3840
3841 return false;
3842 }
3843
3844 case PLUS_EXPR:
3845 case MINUS_EXPR:
3846 {
3847 tree lhs_etype = lhs_type;
3848 tree rhs1_etype = rhs1_type;
3849 tree rhs2_etype = rhs2_type;
3850 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3851 {
3852 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3853 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3854 {
3855 error ("invalid non-vector operands to vector valued plus");
3856 return true;
3857 }
3858 lhs_etype = TREE_TYPE (lhs_type);
3859 rhs1_etype = TREE_TYPE (rhs1_type);
3860 rhs2_etype = TREE_TYPE (rhs2_type);
3861 }
3862 if (POINTER_TYPE_P (lhs_etype)
3863 || POINTER_TYPE_P (rhs1_etype)
3864 || POINTER_TYPE_P (rhs2_etype))
3865 {
3866 error ("invalid (pointer) operands to plus/minus");
3867 return true;
3868 }
3869
3870 /* Continue with generic binary expression handling. */
3871 break;
3872 }
3873
3874 case POINTER_PLUS_EXPR:
3875 {
3876 if (!POINTER_TYPE_P (rhs1_type)
3877 || !useless_type_conversion_p (lhs_type, rhs1_type)
3878 || !ptrofftype_p (rhs2_type))
3879 {
3880 error ("type mismatch in pointer plus expression");
3881 debug_generic_stmt (lhs_type);
3882 debug_generic_stmt (rhs1_type);
3883 debug_generic_stmt (rhs2_type);
3884 return true;
3885 }
3886
3887 return false;
3888 }
3889
3890 case TRUTH_ANDIF_EXPR:
3891 case TRUTH_ORIF_EXPR:
3892 case TRUTH_AND_EXPR:
3893 case TRUTH_OR_EXPR:
3894 case TRUTH_XOR_EXPR:
3895
3896 gcc_unreachable ();
3897
3898 case LT_EXPR:
3899 case LE_EXPR:
3900 case GT_EXPR:
3901 case GE_EXPR:
3902 case EQ_EXPR:
3903 case NE_EXPR:
3904 case UNORDERED_EXPR:
3905 case ORDERED_EXPR:
3906 case UNLT_EXPR:
3907 case UNLE_EXPR:
3908 case UNGT_EXPR:
3909 case UNGE_EXPR:
3910 case UNEQ_EXPR:
3911 case LTGT_EXPR:
3912 /* Comparisons are also binary, but the result type is not
3913 connected to the operand types. */
3914 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3915
3916 case WIDEN_MULT_EXPR:
3917 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3918 return true;
3919 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3920 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3921
3922 case WIDEN_SUM_EXPR:
3923 case VEC_WIDEN_MULT_HI_EXPR:
3924 case VEC_WIDEN_MULT_LO_EXPR:
3925 case VEC_WIDEN_MULT_EVEN_EXPR:
3926 case VEC_WIDEN_MULT_ODD_EXPR:
3927 case VEC_PACK_TRUNC_EXPR:
3928 case VEC_PACK_SAT_EXPR:
3929 case VEC_PACK_FIX_TRUNC_EXPR:
3930 /* FIXME. */
3931 return false;
3932
3933 case MULT_EXPR:
3934 case MULT_HIGHPART_EXPR:
3935 case TRUNC_DIV_EXPR:
3936 case CEIL_DIV_EXPR:
3937 case FLOOR_DIV_EXPR:
3938 case ROUND_DIV_EXPR:
3939 case TRUNC_MOD_EXPR:
3940 case CEIL_MOD_EXPR:
3941 case FLOOR_MOD_EXPR:
3942 case ROUND_MOD_EXPR:
3943 case RDIV_EXPR:
3944 case EXACT_DIV_EXPR:
3945 case MIN_EXPR:
3946 case MAX_EXPR:
3947 case BIT_IOR_EXPR:
3948 case BIT_XOR_EXPR:
3949 case BIT_AND_EXPR:
3950 /* Continue with generic binary expression handling. */
3951 break;
3952
3953 default:
3954 gcc_unreachable ();
3955 }
3956
3957 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3958 || !useless_type_conversion_p (lhs_type, rhs2_type))
3959 {
3960 error ("type mismatch in binary expression");
3961 debug_generic_stmt (lhs_type);
3962 debug_generic_stmt (rhs1_type);
3963 debug_generic_stmt (rhs2_type);
3964 return true;
3965 }
3966
3967 return false;
3968 }
3969
3970 /* Verify a gimple assignment statement STMT with a ternary rhs.
3971 Returns true if anything is wrong. */
3972
3973 static bool
3974 verify_gimple_assign_ternary (gassign *stmt)
3975 {
3976 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3977 tree lhs = gimple_assign_lhs (stmt);
3978 tree lhs_type = TREE_TYPE (lhs);
3979 tree rhs1 = gimple_assign_rhs1 (stmt);
3980 tree rhs1_type = TREE_TYPE (rhs1);
3981 tree rhs2 = gimple_assign_rhs2 (stmt);
3982 tree rhs2_type = TREE_TYPE (rhs2);
3983 tree rhs3 = gimple_assign_rhs3 (stmt);
3984 tree rhs3_type = TREE_TYPE (rhs3);
3985
3986 if (!is_gimple_reg (lhs))
3987 {
3988 error ("non-register as LHS of ternary operation");
3989 return true;
3990 }
3991
3992 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3993 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3994 || !is_gimple_val (rhs2)
3995 || !is_gimple_val (rhs3))
3996 {
3997 error ("invalid operands in ternary operation");
3998 return true;
3999 }
4000
4001 /* First handle operations that involve different types. */
4002 switch (rhs_code)
4003 {
4004 case WIDEN_MULT_PLUS_EXPR:
4005 case WIDEN_MULT_MINUS_EXPR:
4006 if ((!INTEGRAL_TYPE_P (rhs1_type)
4007 && !FIXED_POINT_TYPE_P (rhs1_type))
4008 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4009 || !useless_type_conversion_p (lhs_type, rhs3_type)
4010 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4011 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4012 {
4013 error ("type mismatch in widening multiply-accumulate expression");
4014 debug_generic_expr (lhs_type);
4015 debug_generic_expr (rhs1_type);
4016 debug_generic_expr (rhs2_type);
4017 debug_generic_expr (rhs3_type);
4018 return true;
4019 }
4020 break;
4021
4022 case FMA_EXPR:
4023 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4024 || !useless_type_conversion_p (lhs_type, rhs2_type)
4025 || !useless_type_conversion_p (lhs_type, rhs3_type))
4026 {
4027 error ("type mismatch in fused multiply-add expression");
4028 debug_generic_expr (lhs_type);
4029 debug_generic_expr (rhs1_type);
4030 debug_generic_expr (rhs2_type);
4031 debug_generic_expr (rhs3_type);
4032 return true;
4033 }
4034 break;
4035
4036 case VEC_COND_EXPR:
4037 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4038 || TYPE_VECTOR_SUBPARTS (rhs1_type)
4039 != TYPE_VECTOR_SUBPARTS (lhs_type))
4040 {
4041 error ("the first argument of a VEC_COND_EXPR must be of a "
4042 "boolean vector type of the same number of elements "
4043 "as the result");
4044 debug_generic_expr (lhs_type);
4045 debug_generic_expr (rhs1_type);
4046 return true;
4047 }
4048 /* Fallthrough. */
4049 case COND_EXPR:
4050 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4051 || !useless_type_conversion_p (lhs_type, rhs3_type))
4052 {
4053 error ("type mismatch in conditional expression");
4054 debug_generic_expr (lhs_type);
4055 debug_generic_expr (rhs2_type);
4056 debug_generic_expr (rhs3_type);
4057 return true;
4058 }
4059 break;
4060
4061 case VEC_PERM_EXPR:
4062 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4063 || !useless_type_conversion_p (lhs_type, rhs2_type))
4064 {
4065 error ("type mismatch in vector permute expression");
4066 debug_generic_expr (lhs_type);
4067 debug_generic_expr (rhs1_type);
4068 debug_generic_expr (rhs2_type);
4069 debug_generic_expr (rhs3_type);
4070 return true;
4071 }
4072
4073 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4074 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4075 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4076 {
4077 error ("vector types expected in vector permute expression");
4078 debug_generic_expr (lhs_type);
4079 debug_generic_expr (rhs1_type);
4080 debug_generic_expr (rhs2_type);
4081 debug_generic_expr (rhs3_type);
4082 return true;
4083 }
4084
4085 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4086 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4087 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4088 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4089 != TYPE_VECTOR_SUBPARTS (lhs_type))
4090 {
4091 error ("vectors with different element number found "
4092 "in vector permute expression");
4093 debug_generic_expr (lhs_type);
4094 debug_generic_expr (rhs1_type);
4095 debug_generic_expr (rhs2_type);
4096 debug_generic_expr (rhs3_type);
4097 return true;
4098 }
4099
4100 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4101 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
4102 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
4103 {
4104 error ("invalid mask type in vector permute expression");
4105 debug_generic_expr (lhs_type);
4106 debug_generic_expr (rhs1_type);
4107 debug_generic_expr (rhs2_type);
4108 debug_generic_expr (rhs3_type);
4109 return true;
4110 }
4111
4112 return false;
4113
4114 case SAD_EXPR:
4115 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4116 || !useless_type_conversion_p (lhs_type, rhs3_type)
4117 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4118 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4119 {
4120 error ("type mismatch in sad expression");
4121 debug_generic_expr (lhs_type);
4122 debug_generic_expr (rhs1_type);
4123 debug_generic_expr (rhs2_type);
4124 debug_generic_expr (rhs3_type);
4125 return true;
4126 }
4127
4128 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4129 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4130 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4131 {
4132 error ("vector types expected in sad expression");
4133 debug_generic_expr (lhs_type);
4134 debug_generic_expr (rhs1_type);
4135 debug_generic_expr (rhs2_type);
4136 debug_generic_expr (rhs3_type);
4137 return true;
4138 }
4139
4140 return false;
4141
4142 case DOT_PROD_EXPR:
4143 case REALIGN_LOAD_EXPR:
4144 /* FIXME. */
4145 return false;
4146
4147 default:
4148 gcc_unreachable ();
4149 }
4150 return false;
4151 }
4152
4153 /* Verify a gimple assignment statement STMT with a single rhs.
4154 Returns true if anything is wrong. */
4155
4156 static bool
4157 verify_gimple_assign_single (gassign *stmt)
4158 {
4159 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4160 tree lhs = gimple_assign_lhs (stmt);
4161 tree lhs_type = TREE_TYPE (lhs);
4162 tree rhs1 = gimple_assign_rhs1 (stmt);
4163 tree rhs1_type = TREE_TYPE (rhs1);
4164 bool res = false;
4165
4166 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4167 {
4168 error ("non-trivial conversion at assignment");
4169 debug_generic_expr (lhs_type);
4170 debug_generic_expr (rhs1_type);
4171 return true;
4172 }
4173
4174 if (gimple_clobber_p (stmt)
4175 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4176 {
4177 error ("non-decl/MEM_REF LHS in clobber statement");
4178 debug_generic_expr (lhs);
4179 return true;
4180 }
4181
4182 if (handled_component_p (lhs)
4183 || TREE_CODE (lhs) == MEM_REF
4184 || TREE_CODE (lhs) == TARGET_MEM_REF)
4185 res |= verify_types_in_gimple_reference (lhs, true);
4186
4187 /* Special codes we cannot handle via their class. */
4188 switch (rhs_code)
4189 {
4190 case ADDR_EXPR:
4191 {
4192 tree op = TREE_OPERAND (rhs1, 0);
4193 if (!is_gimple_addressable (op))
4194 {
4195 error ("invalid operand in unary expression");
4196 return true;
4197 }
4198
4199 /* Technically there is no longer a need for matching types, but
4200 gimple hygiene asks for this check. In LTO we can end up
4201 combining incompatible units and thus end up with addresses
4202 of globals that change their type to a common one. */
4203 if (!in_lto_p
4204 && !types_compatible_p (TREE_TYPE (op),
4205 TREE_TYPE (TREE_TYPE (rhs1)))
4206 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4207 TREE_TYPE (op)))
4208 {
4209 error ("type mismatch in address expression");
4210 debug_generic_stmt (TREE_TYPE (rhs1));
4211 debug_generic_stmt (TREE_TYPE (op));
4212 return true;
4213 }
4214
4215 return verify_types_in_gimple_reference (op, true);
4216 }
4217
4218 /* tcc_reference */
4219 case INDIRECT_REF:
4220 error ("INDIRECT_REF in gimple IL");
4221 return true;
4222
4223 case COMPONENT_REF:
4224 case BIT_FIELD_REF:
4225 case ARRAY_REF:
4226 case ARRAY_RANGE_REF:
4227 case VIEW_CONVERT_EXPR:
4228 case REALPART_EXPR:
4229 case IMAGPART_EXPR:
4230 case TARGET_MEM_REF:
4231 case MEM_REF:
4232 if (!is_gimple_reg (lhs)
4233 && is_gimple_reg_type (TREE_TYPE (lhs)))
4234 {
4235 error ("invalid rhs for gimple memory store");
4236 debug_generic_stmt (lhs);
4237 debug_generic_stmt (rhs1);
4238 return true;
4239 }
4240 return res || verify_types_in_gimple_reference (rhs1, false);
4241
4242 /* tcc_constant */
4243 case SSA_NAME:
4244 case INTEGER_CST:
4245 case REAL_CST:
4246 case FIXED_CST:
4247 case COMPLEX_CST:
4248 case VECTOR_CST:
4249 case STRING_CST:
4250 return res;
4251
4252 /* tcc_declaration */
4253 case CONST_DECL:
4254 return res;
4255 case VAR_DECL:
4256 case PARM_DECL:
4257 if (!is_gimple_reg (lhs)
4258 && !is_gimple_reg (rhs1)
4259 && is_gimple_reg_type (TREE_TYPE (lhs)))
4260 {
4261 error ("invalid rhs for gimple memory store");
4262 debug_generic_stmt (lhs);
4263 debug_generic_stmt (rhs1);
4264 return true;
4265 }
4266 return res;
4267
4268 case CONSTRUCTOR:
4269 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4270 {
4271 unsigned int i;
4272 tree elt_i, elt_v, elt_t = NULL_TREE;
4273
4274 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4275 return res;
4276 /* For vector CONSTRUCTORs we require that either it is empty
4277 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4278 (then the element count must be correct to cover the whole
4279 outer vector and index must be NULL on all elements, or it is
4280 a CONSTRUCTOR of scalar elements, where we as an exception allow
4281 smaller number of elements (assuming zero filling) and
4282 consecutive indexes as compared to NULL indexes (such
4283 CONSTRUCTORs can appear in the IL from FEs). */
4284 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4285 {
4286 if (elt_t == NULL_TREE)
4287 {
4288 elt_t = TREE_TYPE (elt_v);
4289 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4290 {
4291 tree elt_t = TREE_TYPE (elt_v);
4292 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4293 TREE_TYPE (elt_t)))
4294 {
4295 error ("incorrect type of vector CONSTRUCTOR"
4296 " elements");
4297 debug_generic_stmt (rhs1);
4298 return true;
4299 }
4300 else if (CONSTRUCTOR_NELTS (rhs1)
4301 * TYPE_VECTOR_SUBPARTS (elt_t)
4302 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4303 {
4304 error ("incorrect number of vector CONSTRUCTOR"
4305 " elements");
4306 debug_generic_stmt (rhs1);
4307 return true;
4308 }
4309 }
4310 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4311 elt_t))
4312 {
4313 error ("incorrect type of vector CONSTRUCTOR elements");
4314 debug_generic_stmt (rhs1);
4315 return true;
4316 }
4317 else if (CONSTRUCTOR_NELTS (rhs1)
4318 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4319 {
4320 error ("incorrect number of vector CONSTRUCTOR elements");
4321 debug_generic_stmt (rhs1);
4322 return true;
4323 }
4324 }
4325 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4326 {
4327 error ("incorrect type of vector CONSTRUCTOR elements");
4328 debug_generic_stmt (rhs1);
4329 return true;
4330 }
4331 if (elt_i != NULL_TREE
4332 && (TREE_CODE (elt_t) == VECTOR_TYPE
4333 || TREE_CODE (elt_i) != INTEGER_CST
4334 || compare_tree_int (elt_i, i) != 0))
4335 {
4336 error ("vector CONSTRUCTOR with non-NULL element index");
4337 debug_generic_stmt (rhs1);
4338 return true;
4339 }
4340 if (!is_gimple_val (elt_v))
4341 {
4342 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4343 debug_generic_stmt (rhs1);
4344 return true;
4345 }
4346 }
4347 }
4348 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4349 {
4350 error ("non-vector CONSTRUCTOR with elements");
4351 debug_generic_stmt (rhs1);
4352 return true;
4353 }
4354 return res;
4355 case OBJ_TYPE_REF:
4356 case ASSERT_EXPR:
4357 case WITH_SIZE_EXPR:
4358 /* FIXME. */
4359 return res;
4360
4361 default:;
4362 }
4363
4364 return res;
4365 }
4366
4367 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4368 is a problem, otherwise false. */
4369
4370 static bool
4371 verify_gimple_assign (gassign *stmt)
4372 {
4373 switch (gimple_assign_rhs_class (stmt))
4374 {
4375 case GIMPLE_SINGLE_RHS:
4376 return verify_gimple_assign_single (stmt);
4377
4378 case GIMPLE_UNARY_RHS:
4379 return verify_gimple_assign_unary (stmt);
4380
4381 case GIMPLE_BINARY_RHS:
4382 return verify_gimple_assign_binary (stmt);
4383
4384 case GIMPLE_TERNARY_RHS:
4385 return verify_gimple_assign_ternary (stmt);
4386
4387 default:
4388 gcc_unreachable ();
4389 }
4390 }
4391
4392 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4393 is a problem, otherwise false. */
4394
4395 static bool
4396 verify_gimple_return (greturn *stmt)
4397 {
4398 tree op = gimple_return_retval (stmt);
4399 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4400
4401 /* We cannot test for present return values as we do not fix up missing
4402 return values from the original source. */
4403 if (op == NULL)
4404 return false;
4405
4406 if (!is_gimple_val (op)
4407 && TREE_CODE (op) != RESULT_DECL)
4408 {
4409 error ("invalid operand in return statement");
4410 debug_generic_stmt (op);
4411 return true;
4412 }
4413
4414 if ((TREE_CODE (op) == RESULT_DECL
4415 && DECL_BY_REFERENCE (op))
4416 || (TREE_CODE (op) == SSA_NAME
4417 && SSA_NAME_VAR (op)
4418 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4419 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4420 op = TREE_TYPE (op);
4421
4422 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4423 {
4424 error ("invalid conversion in return statement");
4425 debug_generic_stmt (restype);
4426 debug_generic_stmt (TREE_TYPE (op));
4427 return true;
4428 }
4429
4430 return false;
4431 }
4432
4433
4434 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4435 is a problem, otherwise false. */
4436
4437 static bool
4438 verify_gimple_goto (ggoto *stmt)
4439 {
4440 tree dest = gimple_goto_dest (stmt);
4441
4442 /* ??? We have two canonical forms of direct goto destinations, a
4443 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4444 if (TREE_CODE (dest) != LABEL_DECL
4445 && (!is_gimple_val (dest)
4446 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4447 {
4448 error ("goto destination is neither a label nor a pointer");
4449 return true;
4450 }
4451
4452 return false;
4453 }
4454
4455 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4456 is a problem, otherwise false. */
4457
4458 static bool
4459 verify_gimple_switch (gswitch *stmt)
4460 {
4461 unsigned int i, n;
4462 tree elt, prev_upper_bound = NULL_TREE;
4463 tree index_type, elt_type = NULL_TREE;
4464
4465 if (!is_gimple_val (gimple_switch_index (stmt)))
4466 {
4467 error ("invalid operand to switch statement");
4468 debug_generic_stmt (gimple_switch_index (stmt));
4469 return true;
4470 }
4471
4472 index_type = TREE_TYPE (gimple_switch_index (stmt));
4473 if (! INTEGRAL_TYPE_P (index_type))
4474 {
4475 error ("non-integral type switch statement");
4476 debug_generic_expr (index_type);
4477 return true;
4478 }
4479
4480 elt = gimple_switch_label (stmt, 0);
4481 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4482 {
4483 error ("invalid default case label in switch statement");
4484 debug_generic_expr (elt);
4485 return true;
4486 }
4487
4488 n = gimple_switch_num_labels (stmt);
4489 for (i = 1; i < n; i++)
4490 {
4491 elt = gimple_switch_label (stmt, i);
4492
4493 if (! CASE_LOW (elt))
4494 {
4495 error ("invalid case label in switch statement");
4496 debug_generic_expr (elt);
4497 return true;
4498 }
4499 if (CASE_HIGH (elt)
4500 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4501 {
4502 error ("invalid case range in switch statement");
4503 debug_generic_expr (elt);
4504 return true;
4505 }
4506
4507 if (elt_type)
4508 {
4509 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4510 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4511 {
4512 error ("type mismatch for case label in switch statement");
4513 debug_generic_expr (elt);
4514 return true;
4515 }
4516 }
4517 else
4518 {
4519 elt_type = TREE_TYPE (CASE_LOW (elt));
4520 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4521 {
4522 error ("type precision mismatch in switch statement");
4523 return true;
4524 }
4525 }
4526
4527 if (prev_upper_bound)
4528 {
4529 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4530 {
4531 error ("case labels not sorted in switch statement");
4532 return true;
4533 }
4534 }
4535
4536 prev_upper_bound = CASE_HIGH (elt);
4537 if (! prev_upper_bound)
4538 prev_upper_bound = CASE_LOW (elt);
4539 }
4540
4541 return false;
4542 }
4543
4544 /* Verify a gimple debug statement STMT.
4545 Returns true if anything is wrong. */
4546
4547 static bool
4548 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4549 {
4550 /* There isn't much that could be wrong in a gimple debug stmt. A
4551 gimple debug bind stmt, for example, maps a tree, that's usually
4552 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4553 component or member of an aggregate type, to another tree, that
4554 can be an arbitrary expression. These stmts expand into debug
4555 insns, and are converted to debug notes by var-tracking.c. */
4556 return false;
4557 }
4558
4559 /* Verify a gimple label statement STMT.
4560 Returns true if anything is wrong. */
4561
4562 static bool
4563 verify_gimple_label (glabel *stmt)
4564 {
4565 tree decl = gimple_label_label (stmt);
4566 int uid;
4567 bool err = false;
4568
4569 if (TREE_CODE (decl) != LABEL_DECL)
4570 return true;
4571 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4572 && DECL_CONTEXT (decl) != current_function_decl)
4573 {
4574 error ("label's context is not the current function decl");
4575 err |= true;
4576 }
4577
4578 uid = LABEL_DECL_UID (decl);
4579 if (cfun->cfg
4580 && (uid == -1
4581 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4582 {
4583 error ("incorrect entry in label_to_block_map");
4584 err |= true;
4585 }
4586
4587 uid = EH_LANDING_PAD_NR (decl);
4588 if (uid)
4589 {
4590 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4591 if (decl != lp->post_landing_pad)
4592 {
4593 error ("incorrect setting of landing pad number");
4594 err |= true;
4595 }
4596 }
4597
4598 return err;
4599 }
4600
4601 /* Verify a gimple cond statement STMT.
4602 Returns true if anything is wrong. */
4603
4604 static bool
4605 verify_gimple_cond (gcond *stmt)
4606 {
4607 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4608 {
4609 error ("invalid comparison code in gimple cond");
4610 return true;
4611 }
4612 if (!(!gimple_cond_true_label (stmt)
4613 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4614 || !(!gimple_cond_false_label (stmt)
4615 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4616 {
4617 error ("invalid labels in gimple cond");
4618 return true;
4619 }
4620
4621 return verify_gimple_comparison (boolean_type_node,
4622 gimple_cond_lhs (stmt),
4623 gimple_cond_rhs (stmt),
4624 gimple_cond_code (stmt));
4625 }
4626
4627 /* Verify the GIMPLE statement STMT. Returns true if there is an
4628 error, otherwise false. */
4629
4630 static bool
4631 verify_gimple_stmt (gimple *stmt)
4632 {
4633 switch (gimple_code (stmt))
4634 {
4635 case GIMPLE_ASSIGN:
4636 return verify_gimple_assign (as_a <gassign *> (stmt));
4637
4638 case GIMPLE_LABEL:
4639 return verify_gimple_label (as_a <glabel *> (stmt));
4640
4641 case GIMPLE_CALL:
4642 return verify_gimple_call (as_a <gcall *> (stmt));
4643
4644 case GIMPLE_COND:
4645 return verify_gimple_cond (as_a <gcond *> (stmt));
4646
4647 case GIMPLE_GOTO:
4648 return verify_gimple_goto (as_a <ggoto *> (stmt));
4649
4650 case GIMPLE_SWITCH:
4651 return verify_gimple_switch (as_a <gswitch *> (stmt));
4652
4653 case GIMPLE_RETURN:
4654 return verify_gimple_return (as_a <greturn *> (stmt));
4655
4656 case GIMPLE_ASM:
4657 return false;
4658
4659 case GIMPLE_TRANSACTION:
4660 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4661
4662 /* Tuples that do not have tree operands. */
4663 case GIMPLE_NOP:
4664 case GIMPLE_PREDICT:
4665 case GIMPLE_RESX:
4666 case GIMPLE_EH_DISPATCH:
4667 case GIMPLE_EH_MUST_NOT_THROW:
4668 return false;
4669
4670 CASE_GIMPLE_OMP:
4671 /* OpenMP directives are validated by the FE and never operated
4672 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4673 non-gimple expressions when the main index variable has had
4674 its address taken. This does not affect the loop itself
4675 because the header of an GIMPLE_OMP_FOR is merely used to determine
4676 how to setup the parallel iteration. */
4677 return false;
4678
4679 case GIMPLE_DEBUG:
4680 return verify_gimple_debug (stmt);
4681
4682 default:
4683 gcc_unreachable ();
4684 }
4685 }
4686
4687 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4688 and false otherwise. */
4689
4690 static bool
4691 verify_gimple_phi (gimple *phi)
4692 {
4693 bool err = false;
4694 unsigned i;
4695 tree phi_result = gimple_phi_result (phi);
4696 bool virtual_p;
4697
4698 if (!phi_result)
4699 {
4700 error ("invalid PHI result");
4701 return true;
4702 }
4703
4704 virtual_p = virtual_operand_p (phi_result);
4705 if (TREE_CODE (phi_result) != SSA_NAME
4706 || (virtual_p
4707 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4708 {
4709 error ("invalid PHI result");
4710 err = true;
4711 }
4712
4713 for (i = 0; i < gimple_phi_num_args (phi); i++)
4714 {
4715 tree t = gimple_phi_arg_def (phi, i);
4716
4717 if (!t)
4718 {
4719 error ("missing PHI def");
4720 err |= true;
4721 continue;
4722 }
4723 /* Addressable variables do have SSA_NAMEs but they
4724 are not considered gimple values. */
4725 else if ((TREE_CODE (t) == SSA_NAME
4726 && virtual_p != virtual_operand_p (t))
4727 || (virtual_p
4728 && (TREE_CODE (t) != SSA_NAME
4729 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4730 || (!virtual_p
4731 && !is_gimple_val (t)))
4732 {
4733 error ("invalid PHI argument");
4734 debug_generic_expr (t);
4735 err |= true;
4736 }
4737 #ifdef ENABLE_TYPES_CHECKING
4738 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4739 {
4740 error ("incompatible types in PHI argument %u", i);
4741 debug_generic_stmt (TREE_TYPE (phi_result));
4742 debug_generic_stmt (TREE_TYPE (t));
4743 err |= true;
4744 }
4745 #endif
4746 }
4747
4748 return err;
4749 }
4750
4751 /* Verify the GIMPLE statements inside the sequence STMTS. */
4752
4753 static bool
4754 verify_gimple_in_seq_2 (gimple_seq stmts)
4755 {
4756 gimple_stmt_iterator ittr;
4757 bool err = false;
4758
4759 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4760 {
4761 gimple *stmt = gsi_stmt (ittr);
4762
4763 switch (gimple_code (stmt))
4764 {
4765 case GIMPLE_BIND:
4766 err |= verify_gimple_in_seq_2 (
4767 gimple_bind_body (as_a <gbind *> (stmt)));
4768 break;
4769
4770 case GIMPLE_TRY:
4771 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4772 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4773 break;
4774
4775 case GIMPLE_EH_FILTER:
4776 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4777 break;
4778
4779 case GIMPLE_EH_ELSE:
4780 {
4781 geh_else *eh_else = as_a <geh_else *> (stmt);
4782 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
4783 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
4784 }
4785 break;
4786
4787 case GIMPLE_CATCH:
4788 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
4789 as_a <gcatch *> (stmt)));
4790 break;
4791
4792 case GIMPLE_TRANSACTION:
4793 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
4794 break;
4795
4796 default:
4797 {
4798 bool err2 = verify_gimple_stmt (stmt);
4799 if (err2)
4800 debug_gimple_stmt (stmt);
4801 err |= err2;
4802 }
4803 }
4804 }
4805
4806 return err;
4807 }
4808
4809 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4810 is a problem, otherwise false. */
4811
4812 static bool
4813 verify_gimple_transaction (gtransaction *stmt)
4814 {
4815 tree lab;
4816
4817 lab = gimple_transaction_label_norm (stmt);
4818 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4819 return true;
4820 lab = gimple_transaction_label_uninst (stmt);
4821 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4822 return true;
4823 lab = gimple_transaction_label_over (stmt);
4824 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4825 return true;
4826
4827 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4828 }
4829
4830
4831 /* Verify the GIMPLE statements inside the statement list STMTS. */
4832
4833 DEBUG_FUNCTION void
4834 verify_gimple_in_seq (gimple_seq stmts)
4835 {
4836 timevar_push (TV_TREE_STMT_VERIFY);
4837 if (verify_gimple_in_seq_2 (stmts))
4838 internal_error ("verify_gimple failed");
4839 timevar_pop (TV_TREE_STMT_VERIFY);
4840 }
4841
4842 /* Return true when the T can be shared. */
4843
4844 static bool
4845 tree_node_can_be_shared (tree t)
4846 {
4847 if (IS_TYPE_OR_DECL_P (t)
4848 || is_gimple_min_invariant (t)
4849 || TREE_CODE (t) == SSA_NAME
4850 || t == error_mark_node
4851 || TREE_CODE (t) == IDENTIFIER_NODE)
4852 return true;
4853
4854 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4855 return true;
4856
4857 if (DECL_P (t))
4858 return true;
4859
4860 return false;
4861 }
4862
4863 /* Called via walk_tree. Verify tree sharing. */
4864
4865 static tree
4866 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4867 {
4868 hash_set<void *> *visited = (hash_set<void *> *) data;
4869
4870 if (tree_node_can_be_shared (*tp))
4871 {
4872 *walk_subtrees = false;
4873 return NULL;
4874 }
4875
4876 if (visited->add (*tp))
4877 return *tp;
4878
4879 return NULL;
4880 }
4881
4882 /* Called via walk_gimple_stmt. Verify tree sharing. */
4883
4884 static tree
4885 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4886 {
4887 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4888 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4889 }
4890
4891 static bool eh_error_found;
4892 bool
4893 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
4894 hash_set<gimple *> *visited)
4895 {
4896 if (!visited->contains (stmt))
4897 {
4898 error ("dead STMT in EH table");
4899 debug_gimple_stmt (stmt);
4900 eh_error_found = true;
4901 }
4902 return true;
4903 }
4904
4905 /* Verify if the location LOCs block is in BLOCKS. */
4906
4907 static bool
4908 verify_location (hash_set<tree> *blocks, location_t loc)
4909 {
4910 tree block = LOCATION_BLOCK (loc);
4911 if (block != NULL_TREE
4912 && !blocks->contains (block))
4913 {
4914 error ("location references block not in block tree");
4915 return true;
4916 }
4917 if (block != NULL_TREE)
4918 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4919 return false;
4920 }
4921
4922 /* Called via walk_tree. Verify that expressions have no blocks. */
4923
4924 static tree
4925 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4926 {
4927 if (!EXPR_P (*tp))
4928 {
4929 *walk_subtrees = false;
4930 return NULL;
4931 }
4932
4933 location_t loc = EXPR_LOCATION (*tp);
4934 if (LOCATION_BLOCK (loc) != NULL)
4935 return *tp;
4936
4937 return NULL;
4938 }
4939
4940 /* Called via walk_tree. Verify locations of expressions. */
4941
4942 static tree
4943 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4944 {
4945 hash_set<tree> *blocks = (hash_set<tree> *) data;
4946
4947 if (TREE_CODE (*tp) == VAR_DECL
4948 && DECL_HAS_DEBUG_EXPR_P (*tp))
4949 {
4950 tree t = DECL_DEBUG_EXPR (*tp);
4951 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4952 if (addr)
4953 return addr;
4954 }
4955 if ((TREE_CODE (*tp) == VAR_DECL
4956 || TREE_CODE (*tp) == PARM_DECL
4957 || TREE_CODE (*tp) == RESULT_DECL)
4958 && DECL_HAS_VALUE_EXPR_P (*tp))
4959 {
4960 tree t = DECL_VALUE_EXPR (*tp);
4961 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4962 if (addr)
4963 return addr;
4964 }
4965
4966 if (!EXPR_P (*tp))
4967 {
4968 *walk_subtrees = false;
4969 return NULL;
4970 }
4971
4972 location_t loc = EXPR_LOCATION (*tp);
4973 if (verify_location (blocks, loc))
4974 return *tp;
4975
4976 return NULL;
4977 }
4978
4979 /* Called via walk_gimple_op. Verify locations of expressions. */
4980
4981 static tree
4982 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4983 {
4984 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4985 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4986 }
4987
4988 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4989
4990 static void
4991 collect_subblocks (hash_set<tree> *blocks, tree block)
4992 {
4993 tree t;
4994 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4995 {
4996 blocks->add (t);
4997 collect_subblocks (blocks, t);
4998 }
4999 }
5000
5001 /* Verify the GIMPLE statements in the CFG of FN. */
5002
5003 DEBUG_FUNCTION void
5004 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5005 {
5006 basic_block bb;
5007 bool err = false;
5008
5009 timevar_push (TV_TREE_STMT_VERIFY);
5010 hash_set<void *> visited;
5011 hash_set<gimple *> visited_stmts;
5012
5013 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5014 hash_set<tree> blocks;
5015 if (DECL_INITIAL (fn->decl))
5016 {
5017 blocks.add (DECL_INITIAL (fn->decl));
5018 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5019 }
5020
5021 FOR_EACH_BB_FN (bb, fn)
5022 {
5023 gimple_stmt_iterator gsi;
5024
5025 for (gphi_iterator gpi = gsi_start_phis (bb);
5026 !gsi_end_p (gpi);
5027 gsi_next (&gpi))
5028 {
5029 gphi *phi = gpi.phi ();
5030 bool err2 = false;
5031 unsigned i;
5032
5033 visited_stmts.add (phi);
5034
5035 if (gimple_bb (phi) != bb)
5036 {
5037 error ("gimple_bb (phi) is set to a wrong basic block");
5038 err2 = true;
5039 }
5040
5041 err2 |= verify_gimple_phi (phi);
5042
5043 /* Only PHI arguments have locations. */
5044 if (gimple_location (phi) != UNKNOWN_LOCATION)
5045 {
5046 error ("PHI node with location");
5047 err2 = true;
5048 }
5049
5050 for (i = 0; i < gimple_phi_num_args (phi); i++)
5051 {
5052 tree arg = gimple_phi_arg_def (phi, i);
5053 tree addr = walk_tree (&arg, verify_node_sharing_1,
5054 &visited, NULL);
5055 if (addr)
5056 {
5057 error ("incorrect sharing of tree nodes");
5058 debug_generic_expr (addr);
5059 err2 |= true;
5060 }
5061 location_t loc = gimple_phi_arg_location (phi, i);
5062 if (virtual_operand_p (gimple_phi_result (phi))
5063 && loc != UNKNOWN_LOCATION)
5064 {
5065 error ("virtual PHI with argument locations");
5066 err2 = true;
5067 }
5068 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5069 if (addr)
5070 {
5071 debug_generic_expr (addr);
5072 err2 = true;
5073 }
5074 err2 |= verify_location (&blocks, loc);
5075 }
5076
5077 if (err2)
5078 debug_gimple_stmt (phi);
5079 err |= err2;
5080 }
5081
5082 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5083 {
5084 gimple *stmt = gsi_stmt (gsi);
5085 bool err2 = false;
5086 struct walk_stmt_info wi;
5087 tree addr;
5088 int lp_nr;
5089
5090 visited_stmts.add (stmt);
5091
5092 if (gimple_bb (stmt) != bb)
5093 {
5094 error ("gimple_bb (stmt) is set to a wrong basic block");
5095 err2 = true;
5096 }
5097
5098 err2 |= verify_gimple_stmt (stmt);
5099 err2 |= verify_location (&blocks, gimple_location (stmt));
5100
5101 memset (&wi, 0, sizeof (wi));
5102 wi.info = (void *) &visited;
5103 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5104 if (addr)
5105 {
5106 error ("incorrect sharing of tree nodes");
5107 debug_generic_expr (addr);
5108 err2 |= true;
5109 }
5110
5111 memset (&wi, 0, sizeof (wi));
5112 wi.info = (void *) &blocks;
5113 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5114 if (addr)
5115 {
5116 debug_generic_expr (addr);
5117 err2 |= true;
5118 }
5119
5120 /* ??? Instead of not checking these stmts at all the walker
5121 should know its context via wi. */
5122 if (!is_gimple_debug (stmt)
5123 && !is_gimple_omp (stmt))
5124 {
5125 memset (&wi, 0, sizeof (wi));
5126 addr = walk_gimple_op (stmt, verify_expr, &wi);
5127 if (addr)
5128 {
5129 debug_generic_expr (addr);
5130 inform (gimple_location (stmt), "in statement");
5131 err2 |= true;
5132 }
5133 }
5134
5135 /* If the statement is marked as part of an EH region, then it is
5136 expected that the statement could throw. Verify that when we
5137 have optimizations that simplify statements such that we prove
5138 that they cannot throw, that we update other data structures
5139 to match. */
5140 lp_nr = lookup_stmt_eh_lp (stmt);
5141 if (lp_nr > 0)
5142 {
5143 if (!stmt_could_throw_p (stmt))
5144 {
5145 if (verify_nothrow)
5146 {
5147 error ("statement marked for throw, but doesn%'t");
5148 err2 |= true;
5149 }
5150 }
5151 else if (!gsi_one_before_end_p (gsi))
5152 {
5153 error ("statement marked for throw in middle of block");
5154 err2 |= true;
5155 }
5156 }
5157
5158 if (err2)
5159 debug_gimple_stmt (stmt);
5160 err |= err2;
5161 }
5162 }
5163
5164 eh_error_found = false;
5165 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5166 if (eh_table)
5167 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5168 (&visited_stmts);
5169
5170 if (err || eh_error_found)
5171 internal_error ("verify_gimple failed");
5172
5173 verify_histograms ();
5174 timevar_pop (TV_TREE_STMT_VERIFY);
5175 }
5176
5177
5178 /* Verifies that the flow information is OK. */
5179
5180 static int
5181 gimple_verify_flow_info (void)
5182 {
5183 int err = 0;
5184 basic_block bb;
5185 gimple_stmt_iterator gsi;
5186 gimple *stmt;
5187 edge e;
5188 edge_iterator ei;
5189
5190 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5191 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5192 {
5193 error ("ENTRY_BLOCK has IL associated with it");
5194 err = 1;
5195 }
5196
5197 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5198 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5199 {
5200 error ("EXIT_BLOCK has IL associated with it");
5201 err = 1;
5202 }
5203
5204 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5205 if (e->flags & EDGE_FALLTHRU)
5206 {
5207 error ("fallthru to exit from bb %d", e->src->index);
5208 err = 1;
5209 }
5210
5211 FOR_EACH_BB_FN (bb, cfun)
5212 {
5213 bool found_ctrl_stmt = false;
5214
5215 stmt = NULL;
5216
5217 /* Skip labels on the start of basic block. */
5218 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5219 {
5220 tree label;
5221 gimple *prev_stmt = stmt;
5222
5223 stmt = gsi_stmt (gsi);
5224
5225 if (gimple_code (stmt) != GIMPLE_LABEL)
5226 break;
5227
5228 label = gimple_label_label (as_a <glabel *> (stmt));
5229 if (prev_stmt && DECL_NONLOCAL (label))
5230 {
5231 error ("nonlocal label ");
5232 print_generic_expr (stderr, label, 0);
5233 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5234 bb->index);
5235 err = 1;
5236 }
5237
5238 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5239 {
5240 error ("EH landing pad label ");
5241 print_generic_expr (stderr, label, 0);
5242 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5243 bb->index);
5244 err = 1;
5245 }
5246
5247 if (label_to_block (label) != bb)
5248 {
5249 error ("label ");
5250 print_generic_expr (stderr, label, 0);
5251 fprintf (stderr, " to block does not match in bb %d",
5252 bb->index);
5253 err = 1;
5254 }
5255
5256 if (decl_function_context (label) != current_function_decl)
5257 {
5258 error ("label ");
5259 print_generic_expr (stderr, label, 0);
5260 fprintf (stderr, " has incorrect context in bb %d",
5261 bb->index);
5262 err = 1;
5263 }
5264 }
5265
5266 /* Verify that body of basic block BB is free of control flow. */
5267 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5268 {
5269 gimple *stmt = gsi_stmt (gsi);
5270
5271 if (found_ctrl_stmt)
5272 {
5273 error ("control flow in the middle of basic block %d",
5274 bb->index);
5275 err = 1;
5276 }
5277
5278 if (stmt_ends_bb_p (stmt))
5279 found_ctrl_stmt = true;
5280
5281 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5282 {
5283 error ("label ");
5284 print_generic_expr (stderr, gimple_label_label (label_stmt), 0);
5285 fprintf (stderr, " in the middle of basic block %d", bb->index);
5286 err = 1;
5287 }
5288 }
5289
5290 gsi = gsi_last_bb (bb);
5291 if (gsi_end_p (gsi))
5292 continue;
5293
5294 stmt = gsi_stmt (gsi);
5295
5296 if (gimple_code (stmt) == GIMPLE_LABEL)
5297 continue;
5298
5299 err |= verify_eh_edges (stmt);
5300
5301 if (is_ctrl_stmt (stmt))
5302 {
5303 FOR_EACH_EDGE (e, ei, bb->succs)
5304 if (e->flags & EDGE_FALLTHRU)
5305 {
5306 error ("fallthru edge after a control statement in bb %d",
5307 bb->index);
5308 err = 1;
5309 }
5310 }
5311
5312 if (gimple_code (stmt) != GIMPLE_COND)
5313 {
5314 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5315 after anything else but if statement. */
5316 FOR_EACH_EDGE (e, ei, bb->succs)
5317 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5318 {
5319 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5320 bb->index);
5321 err = 1;
5322 }
5323 }
5324
5325 switch (gimple_code (stmt))
5326 {
5327 case GIMPLE_COND:
5328 {
5329 edge true_edge;
5330 edge false_edge;
5331
5332 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5333
5334 if (!true_edge
5335 || !false_edge
5336 || !(true_edge->flags & EDGE_TRUE_VALUE)
5337 || !(false_edge->flags & EDGE_FALSE_VALUE)
5338 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5339 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5340 || EDGE_COUNT (bb->succs) >= 3)
5341 {
5342 error ("wrong outgoing edge flags at end of bb %d",
5343 bb->index);
5344 err = 1;
5345 }
5346 }
5347 break;
5348
5349 case GIMPLE_GOTO:
5350 if (simple_goto_p (stmt))
5351 {
5352 error ("explicit goto at end of bb %d", bb->index);
5353 err = 1;
5354 }
5355 else
5356 {
5357 /* FIXME. We should double check that the labels in the
5358 destination blocks have their address taken. */
5359 FOR_EACH_EDGE (e, ei, bb->succs)
5360 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5361 | EDGE_FALSE_VALUE))
5362 || !(e->flags & EDGE_ABNORMAL))
5363 {
5364 error ("wrong outgoing edge flags at end of bb %d",
5365 bb->index);
5366 err = 1;
5367 }
5368 }
5369 break;
5370
5371 case GIMPLE_CALL:
5372 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5373 break;
5374 /* ... fallthru ... */
5375 case GIMPLE_RETURN:
5376 if (!single_succ_p (bb)
5377 || (single_succ_edge (bb)->flags
5378 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5379 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5380 {
5381 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5382 err = 1;
5383 }
5384 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5385 {
5386 error ("return edge does not point to exit in bb %d",
5387 bb->index);
5388 err = 1;
5389 }
5390 break;
5391
5392 case GIMPLE_SWITCH:
5393 {
5394 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5395 tree prev;
5396 edge e;
5397 size_t i, n;
5398
5399 n = gimple_switch_num_labels (switch_stmt);
5400
5401 /* Mark all the destination basic blocks. */
5402 for (i = 0; i < n; ++i)
5403 {
5404 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5405 basic_block label_bb = label_to_block (lab);
5406 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5407 label_bb->aux = (void *)1;
5408 }
5409
5410 /* Verify that the case labels are sorted. */
5411 prev = gimple_switch_label (switch_stmt, 0);
5412 for (i = 1; i < n; ++i)
5413 {
5414 tree c = gimple_switch_label (switch_stmt, i);
5415 if (!CASE_LOW (c))
5416 {
5417 error ("found default case not at the start of "
5418 "case vector");
5419 err = 1;
5420 continue;
5421 }
5422 if (CASE_LOW (prev)
5423 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5424 {
5425 error ("case labels not sorted: ");
5426 print_generic_expr (stderr, prev, 0);
5427 fprintf (stderr," is greater than ");
5428 print_generic_expr (stderr, c, 0);
5429 fprintf (stderr," but comes before it.\n");
5430 err = 1;
5431 }
5432 prev = c;
5433 }
5434 /* VRP will remove the default case if it can prove it will
5435 never be executed. So do not verify there always exists
5436 a default case here. */
5437
5438 FOR_EACH_EDGE (e, ei, bb->succs)
5439 {
5440 if (!e->dest->aux)
5441 {
5442 error ("extra outgoing edge %d->%d",
5443 bb->index, e->dest->index);
5444 err = 1;
5445 }
5446
5447 e->dest->aux = (void *)2;
5448 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5449 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5450 {
5451 error ("wrong outgoing edge flags at end of bb %d",
5452 bb->index);
5453 err = 1;
5454 }
5455 }
5456
5457 /* Check that we have all of them. */
5458 for (i = 0; i < n; ++i)
5459 {
5460 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5461 basic_block label_bb = label_to_block (lab);
5462
5463 if (label_bb->aux != (void *)2)
5464 {
5465 error ("missing edge %i->%i", bb->index, label_bb->index);
5466 err = 1;
5467 }
5468 }
5469
5470 FOR_EACH_EDGE (e, ei, bb->succs)
5471 e->dest->aux = (void *)0;
5472 }
5473 break;
5474
5475 case GIMPLE_EH_DISPATCH:
5476 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5477 break;
5478
5479 default:
5480 break;
5481 }
5482 }
5483
5484 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5485 verify_dominators (CDI_DOMINATORS);
5486
5487 return err;
5488 }
5489
5490
5491 /* Updates phi nodes after creating a forwarder block joined
5492 by edge FALLTHRU. */
5493
5494 static void
5495 gimple_make_forwarder_block (edge fallthru)
5496 {
5497 edge e;
5498 edge_iterator ei;
5499 basic_block dummy, bb;
5500 tree var;
5501 gphi_iterator gsi;
5502
5503 dummy = fallthru->src;
5504 bb = fallthru->dest;
5505
5506 if (single_pred_p (bb))
5507 return;
5508
5509 /* If we redirected a branch we must create new PHI nodes at the
5510 start of BB. */
5511 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5512 {
5513 gphi *phi, *new_phi;
5514
5515 phi = gsi.phi ();
5516 var = gimple_phi_result (phi);
5517 new_phi = create_phi_node (var, bb);
5518 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5519 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5520 UNKNOWN_LOCATION);
5521 }
5522
5523 /* Add the arguments we have stored on edges. */
5524 FOR_EACH_EDGE (e, ei, bb->preds)
5525 {
5526 if (e == fallthru)
5527 continue;
5528
5529 flush_pending_stmts (e);
5530 }
5531 }
5532
5533
5534 /* Return a non-special label in the head of basic block BLOCK.
5535 Create one if it doesn't exist. */
5536
5537 tree
5538 gimple_block_label (basic_block bb)
5539 {
5540 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5541 bool first = true;
5542 tree label;
5543 glabel *stmt;
5544
5545 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5546 {
5547 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5548 if (!stmt)
5549 break;
5550 label = gimple_label_label (stmt);
5551 if (!DECL_NONLOCAL (label))
5552 {
5553 if (!first)
5554 gsi_move_before (&i, &s);
5555 return label;
5556 }
5557 }
5558
5559 label = create_artificial_label (UNKNOWN_LOCATION);
5560 stmt = gimple_build_label (label);
5561 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5562 return label;
5563 }
5564
5565
5566 /* Attempt to perform edge redirection by replacing a possibly complex
5567 jump instruction by a goto or by removing the jump completely.
5568 This can apply only if all edges now point to the same block. The
5569 parameters and return values are equivalent to
5570 redirect_edge_and_branch. */
5571
5572 static edge
5573 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5574 {
5575 basic_block src = e->src;
5576 gimple_stmt_iterator i;
5577 gimple *stmt;
5578
5579 /* We can replace or remove a complex jump only when we have exactly
5580 two edges. */
5581 if (EDGE_COUNT (src->succs) != 2
5582 /* Verify that all targets will be TARGET. Specifically, the
5583 edge that is not E must also go to TARGET. */
5584 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5585 return NULL;
5586
5587 i = gsi_last_bb (src);
5588 if (gsi_end_p (i))
5589 return NULL;
5590
5591 stmt = gsi_stmt (i);
5592
5593 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5594 {
5595 gsi_remove (&i, true);
5596 e = ssa_redirect_edge (e, target);
5597 e->flags = EDGE_FALLTHRU;
5598 return e;
5599 }
5600
5601 return NULL;
5602 }
5603
5604
5605 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5606 edge representing the redirected branch. */
5607
5608 static edge
5609 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5610 {
5611 basic_block bb = e->src;
5612 gimple_stmt_iterator gsi;
5613 edge ret;
5614 gimple *stmt;
5615
5616 if (e->flags & EDGE_ABNORMAL)
5617 return NULL;
5618
5619 if (e->dest == dest)
5620 return NULL;
5621
5622 if (e->flags & EDGE_EH)
5623 return redirect_eh_edge (e, dest);
5624
5625 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5626 {
5627 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5628 if (ret)
5629 return ret;
5630 }
5631
5632 gsi = gsi_last_bb (bb);
5633 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5634
5635 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5636 {
5637 case GIMPLE_COND:
5638 /* For COND_EXPR, we only need to redirect the edge. */
5639 break;
5640
5641 case GIMPLE_GOTO:
5642 /* No non-abnormal edges should lead from a non-simple goto, and
5643 simple ones should be represented implicitly. */
5644 gcc_unreachable ();
5645
5646 case GIMPLE_SWITCH:
5647 {
5648 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5649 tree label = gimple_block_label (dest);
5650 tree cases = get_cases_for_edge (e, switch_stmt);
5651
5652 /* If we have a list of cases associated with E, then use it
5653 as it's a lot faster than walking the entire case vector. */
5654 if (cases)
5655 {
5656 edge e2 = find_edge (e->src, dest);
5657 tree last, first;
5658
5659 first = cases;
5660 while (cases)
5661 {
5662 last = cases;
5663 CASE_LABEL (cases) = label;
5664 cases = CASE_CHAIN (cases);
5665 }
5666
5667 /* If there was already an edge in the CFG, then we need
5668 to move all the cases associated with E to E2. */
5669 if (e2)
5670 {
5671 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5672
5673 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5674 CASE_CHAIN (cases2) = first;
5675 }
5676 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5677 }
5678 else
5679 {
5680 size_t i, n = gimple_switch_num_labels (switch_stmt);
5681
5682 for (i = 0; i < n; i++)
5683 {
5684 tree elt = gimple_switch_label (switch_stmt, i);
5685 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5686 CASE_LABEL (elt) = label;
5687 }
5688 }
5689 }
5690 break;
5691
5692 case GIMPLE_ASM:
5693 {
5694 gasm *asm_stmt = as_a <gasm *> (stmt);
5695 int i, n = gimple_asm_nlabels (asm_stmt);
5696 tree label = NULL;
5697
5698 for (i = 0; i < n; ++i)
5699 {
5700 tree cons = gimple_asm_label_op (asm_stmt, i);
5701 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5702 {
5703 if (!label)
5704 label = gimple_block_label (dest);
5705 TREE_VALUE (cons) = label;
5706 }
5707 }
5708
5709 /* If we didn't find any label matching the former edge in the
5710 asm labels, we must be redirecting the fallthrough
5711 edge. */
5712 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5713 }
5714 break;
5715
5716 case GIMPLE_RETURN:
5717 gsi_remove (&gsi, true);
5718 e->flags |= EDGE_FALLTHRU;
5719 break;
5720
5721 case GIMPLE_OMP_RETURN:
5722 case GIMPLE_OMP_CONTINUE:
5723 case GIMPLE_OMP_SECTIONS_SWITCH:
5724 case GIMPLE_OMP_FOR:
5725 /* The edges from OMP constructs can be simply redirected. */
5726 break;
5727
5728 case GIMPLE_EH_DISPATCH:
5729 if (!(e->flags & EDGE_FALLTHRU))
5730 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5731 break;
5732
5733 case GIMPLE_TRANSACTION:
5734 if (e->flags & EDGE_TM_ABORT)
5735 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5736 gimple_block_label (dest));
5737 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5738 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5739 gimple_block_label (dest));
5740 else
5741 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5742 gimple_block_label (dest));
5743 break;
5744
5745 default:
5746 /* Otherwise it must be a fallthru edge, and we don't need to
5747 do anything besides redirecting it. */
5748 gcc_assert (e->flags & EDGE_FALLTHRU);
5749 break;
5750 }
5751
5752 /* Update/insert PHI nodes as necessary. */
5753
5754 /* Now update the edges in the CFG. */
5755 e = ssa_redirect_edge (e, dest);
5756
5757 return e;
5758 }
5759
5760 /* Returns true if it is possible to remove edge E by redirecting
5761 it to the destination of the other edge from E->src. */
5762
5763 static bool
5764 gimple_can_remove_branch_p (const_edge e)
5765 {
5766 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5767 return false;
5768
5769 return true;
5770 }
5771
5772 /* Simple wrapper, as we can always redirect fallthru edges. */
5773
5774 static basic_block
5775 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5776 {
5777 e = gimple_redirect_edge_and_branch (e, dest);
5778 gcc_assert (e);
5779
5780 return NULL;
5781 }
5782
5783
5784 /* Splits basic block BB after statement STMT (but at least after the
5785 labels). If STMT is NULL, BB is split just after the labels. */
5786
5787 static basic_block
5788 gimple_split_block (basic_block bb, void *stmt)
5789 {
5790 gimple_stmt_iterator gsi;
5791 gimple_stmt_iterator gsi_tgt;
5792 gimple_seq list;
5793 basic_block new_bb;
5794 edge e;
5795 edge_iterator ei;
5796
5797 new_bb = create_empty_bb (bb);
5798
5799 /* Redirect the outgoing edges. */
5800 new_bb->succs = bb->succs;
5801 bb->succs = NULL;
5802 FOR_EACH_EDGE (e, ei, new_bb->succs)
5803 e->src = new_bb;
5804
5805 /* Get a stmt iterator pointing to the first stmt to move. */
5806 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
5807 gsi = gsi_after_labels (bb);
5808 else
5809 {
5810 gsi = gsi_for_stmt ((gimple *) stmt);
5811 gsi_next (&gsi);
5812 }
5813
5814 /* Move everything from GSI to the new basic block. */
5815 if (gsi_end_p (gsi))
5816 return new_bb;
5817
5818 /* Split the statement list - avoid re-creating new containers as this
5819 brings ugly quadratic memory consumption in the inliner.
5820 (We are still quadratic since we need to update stmt BB pointers,
5821 sadly.) */
5822 gsi_split_seq_before (&gsi, &list);
5823 set_bb_seq (new_bb, list);
5824 for (gsi_tgt = gsi_start (list);
5825 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5826 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5827
5828 return new_bb;
5829 }
5830
5831
5832 /* Moves basic block BB after block AFTER. */
5833
5834 static bool
5835 gimple_move_block_after (basic_block bb, basic_block after)
5836 {
5837 if (bb->prev_bb == after)
5838 return true;
5839
5840 unlink_block (bb);
5841 link_block (bb, after);
5842
5843 return true;
5844 }
5845
5846
5847 /* Return TRUE if block BB has no executable statements, otherwise return
5848 FALSE. */
5849
5850 static bool
5851 gimple_empty_block_p (basic_block bb)
5852 {
5853 /* BB must have no executable statements. */
5854 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5855 if (phi_nodes (bb))
5856 return false;
5857 if (gsi_end_p (gsi))
5858 return true;
5859 if (is_gimple_debug (gsi_stmt (gsi)))
5860 gsi_next_nondebug (&gsi);
5861 return gsi_end_p (gsi);
5862 }
5863
5864
5865 /* Split a basic block if it ends with a conditional branch and if the
5866 other part of the block is not empty. */
5867
5868 static basic_block
5869 gimple_split_block_before_cond_jump (basic_block bb)
5870 {
5871 gimple *last, *split_point;
5872 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5873 if (gsi_end_p (gsi))
5874 return NULL;
5875 last = gsi_stmt (gsi);
5876 if (gimple_code (last) != GIMPLE_COND
5877 && gimple_code (last) != GIMPLE_SWITCH)
5878 return NULL;
5879 gsi_prev (&gsi);
5880 split_point = gsi_stmt (gsi);
5881 return split_block (bb, split_point)->dest;
5882 }
5883
5884
5885 /* Return true if basic_block can be duplicated. */
5886
5887 static bool
5888 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5889 {
5890 return true;
5891 }
5892
5893 /* Create a duplicate of the basic block BB. NOTE: This does not
5894 preserve SSA form. */
5895
5896 static basic_block
5897 gimple_duplicate_bb (basic_block bb)
5898 {
5899 basic_block new_bb;
5900 gimple_stmt_iterator gsi_tgt;
5901
5902 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5903
5904 /* Copy the PHI nodes. We ignore PHI node arguments here because
5905 the incoming edges have not been setup yet. */
5906 for (gphi_iterator gpi = gsi_start_phis (bb);
5907 !gsi_end_p (gpi);
5908 gsi_next (&gpi))
5909 {
5910 gphi *phi, *copy;
5911 phi = gpi.phi ();
5912 copy = create_phi_node (NULL_TREE, new_bb);
5913 create_new_def_for (gimple_phi_result (phi), copy,
5914 gimple_phi_result_ptr (copy));
5915 gimple_set_uid (copy, gimple_uid (phi));
5916 }
5917
5918 gsi_tgt = gsi_start_bb (new_bb);
5919 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
5920 !gsi_end_p (gsi);
5921 gsi_next (&gsi))
5922 {
5923 def_operand_p def_p;
5924 ssa_op_iter op_iter;
5925 tree lhs;
5926 gimple *stmt, *copy;
5927
5928 stmt = gsi_stmt (gsi);
5929 if (gimple_code (stmt) == GIMPLE_LABEL)
5930 continue;
5931
5932 /* Don't duplicate label debug stmts. */
5933 if (gimple_debug_bind_p (stmt)
5934 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5935 == LABEL_DECL)
5936 continue;
5937
5938 /* Create a new copy of STMT and duplicate STMT's virtual
5939 operands. */
5940 copy = gimple_copy (stmt);
5941 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5942
5943 maybe_duplicate_eh_stmt (copy, stmt);
5944 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5945
5946 /* When copying around a stmt writing into a local non-user
5947 aggregate, make sure it won't share stack slot with other
5948 vars. */
5949 lhs = gimple_get_lhs (stmt);
5950 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5951 {
5952 tree base = get_base_address (lhs);
5953 if (base
5954 && (TREE_CODE (base) == VAR_DECL
5955 || TREE_CODE (base) == RESULT_DECL)
5956 && DECL_IGNORED_P (base)
5957 && !TREE_STATIC (base)
5958 && !DECL_EXTERNAL (base)
5959 && (TREE_CODE (base) != VAR_DECL
5960 || !DECL_HAS_VALUE_EXPR_P (base)))
5961 DECL_NONSHAREABLE (base) = 1;
5962 }
5963
5964 /* Create new names for all the definitions created by COPY and
5965 add replacement mappings for each new name. */
5966 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5967 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5968 }
5969
5970 return new_bb;
5971 }
5972
5973 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5974
5975 static void
5976 add_phi_args_after_copy_edge (edge e_copy)
5977 {
5978 basic_block bb, bb_copy = e_copy->src, dest;
5979 edge e;
5980 edge_iterator ei;
5981 gphi *phi, *phi_copy;
5982 tree def;
5983 gphi_iterator psi, psi_copy;
5984
5985 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5986 return;
5987
5988 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5989
5990 if (e_copy->dest->flags & BB_DUPLICATED)
5991 dest = get_bb_original (e_copy->dest);
5992 else
5993 dest = e_copy->dest;
5994
5995 e = find_edge (bb, dest);
5996 if (!e)
5997 {
5998 /* During loop unrolling the target of the latch edge is copied.
5999 In this case we are not looking for edge to dest, but to
6000 duplicated block whose original was dest. */
6001 FOR_EACH_EDGE (e, ei, bb->succs)
6002 {
6003 if ((e->dest->flags & BB_DUPLICATED)
6004 && get_bb_original (e->dest) == dest)
6005 break;
6006 }
6007
6008 gcc_assert (e != NULL);
6009 }
6010
6011 for (psi = gsi_start_phis (e->dest),
6012 psi_copy = gsi_start_phis (e_copy->dest);
6013 !gsi_end_p (psi);
6014 gsi_next (&psi), gsi_next (&psi_copy))
6015 {
6016 phi = psi.phi ();
6017 phi_copy = psi_copy.phi ();
6018 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6019 add_phi_arg (phi_copy, def, e_copy,
6020 gimple_phi_arg_location_from_edge (phi, e));
6021 }
6022 }
6023
6024
6025 /* Basic block BB_COPY was created by code duplication. Add phi node
6026 arguments for edges going out of BB_COPY. The blocks that were
6027 duplicated have BB_DUPLICATED set. */
6028
6029 void
6030 add_phi_args_after_copy_bb (basic_block bb_copy)
6031 {
6032 edge e_copy;
6033 edge_iterator ei;
6034
6035 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6036 {
6037 add_phi_args_after_copy_edge (e_copy);
6038 }
6039 }
6040
6041 /* Blocks in REGION_COPY array of length N_REGION were created by
6042 duplication of basic blocks. Add phi node arguments for edges
6043 going from these blocks. If E_COPY is not NULL, also add
6044 phi node arguments for its destination.*/
6045
6046 void
6047 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6048 edge e_copy)
6049 {
6050 unsigned i;
6051
6052 for (i = 0; i < n_region; i++)
6053 region_copy[i]->flags |= BB_DUPLICATED;
6054
6055 for (i = 0; i < n_region; i++)
6056 add_phi_args_after_copy_bb (region_copy[i]);
6057 if (e_copy)
6058 add_phi_args_after_copy_edge (e_copy);
6059
6060 for (i = 0; i < n_region; i++)
6061 region_copy[i]->flags &= ~BB_DUPLICATED;
6062 }
6063
6064 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6065 important exit edge EXIT. By important we mean that no SSA name defined
6066 inside region is live over the other exit edges of the region. All entry
6067 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6068 to the duplicate of the region. Dominance and loop information is
6069 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6070 UPDATE_DOMINANCE is false then we assume that the caller will update the
6071 dominance information after calling this function. The new basic
6072 blocks are stored to REGION_COPY in the same order as they had in REGION,
6073 provided that REGION_COPY is not NULL.
6074 The function returns false if it is unable to copy the region,
6075 true otherwise. */
6076
6077 bool
6078 gimple_duplicate_sese_region (edge entry, edge exit,
6079 basic_block *region, unsigned n_region,
6080 basic_block *region_copy,
6081 bool update_dominance)
6082 {
6083 unsigned i;
6084 bool free_region_copy = false, copying_header = false;
6085 struct loop *loop = entry->dest->loop_father;
6086 edge exit_copy;
6087 vec<basic_block> doms;
6088 edge redirected;
6089 int total_freq = 0, entry_freq = 0;
6090 gcov_type total_count = 0, entry_count = 0;
6091
6092 if (!can_copy_bbs_p (region, n_region))
6093 return false;
6094
6095 /* Some sanity checking. Note that we do not check for all possible
6096 missuses of the functions. I.e. if you ask to copy something weird,
6097 it will work, but the state of structures probably will not be
6098 correct. */
6099 for (i = 0; i < n_region; i++)
6100 {
6101 /* We do not handle subloops, i.e. all the blocks must belong to the
6102 same loop. */
6103 if (region[i]->loop_father != loop)
6104 return false;
6105
6106 if (region[i] != entry->dest
6107 && region[i] == loop->header)
6108 return false;
6109 }
6110
6111 /* In case the function is used for loop header copying (which is the primary
6112 use), ensure that EXIT and its copy will be new latch and entry edges. */
6113 if (loop->header == entry->dest)
6114 {
6115 copying_header = true;
6116
6117 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6118 return false;
6119
6120 for (i = 0; i < n_region; i++)
6121 if (region[i] != exit->src
6122 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6123 return false;
6124 }
6125
6126 initialize_original_copy_tables ();
6127
6128 if (copying_header)
6129 set_loop_copy (loop, loop_outer (loop));
6130 else
6131 set_loop_copy (loop, loop);
6132
6133 if (!region_copy)
6134 {
6135 region_copy = XNEWVEC (basic_block, n_region);
6136 free_region_copy = true;
6137 }
6138
6139 /* Record blocks outside the region that are dominated by something
6140 inside. */
6141 if (update_dominance)
6142 {
6143 doms.create (0);
6144 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6145 }
6146
6147 if (entry->dest->count)
6148 {
6149 total_count = entry->dest->count;
6150 entry_count = entry->count;
6151 /* Fix up corner cases, to avoid division by zero or creation of negative
6152 frequencies. */
6153 if (entry_count > total_count)
6154 entry_count = total_count;
6155 }
6156 else
6157 {
6158 total_freq = entry->dest->frequency;
6159 entry_freq = EDGE_FREQUENCY (entry);
6160 /* Fix up corner cases, to avoid division by zero or creation of negative
6161 frequencies. */
6162 if (total_freq == 0)
6163 total_freq = 1;
6164 else if (entry_freq > total_freq)
6165 entry_freq = total_freq;
6166 }
6167
6168 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6169 split_edge_bb_loc (entry), update_dominance);
6170 if (total_count)
6171 {
6172 scale_bbs_frequencies_gcov_type (region, n_region,
6173 total_count - entry_count,
6174 total_count);
6175 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
6176 total_count);
6177 }
6178 else
6179 {
6180 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
6181 total_freq);
6182 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
6183 }
6184
6185 if (copying_header)
6186 {
6187 loop->header = exit->dest;
6188 loop->latch = exit->src;
6189 }
6190
6191 /* Redirect the entry and add the phi node arguments. */
6192 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6193 gcc_assert (redirected != NULL);
6194 flush_pending_stmts (entry);
6195
6196 /* Concerning updating of dominators: We must recount dominators
6197 for entry block and its copy. Anything that is outside of the
6198 region, but was dominated by something inside needs recounting as
6199 well. */
6200 if (update_dominance)
6201 {
6202 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6203 doms.safe_push (get_bb_original (entry->dest));
6204 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6205 doms.release ();
6206 }
6207
6208 /* Add the other PHI node arguments. */
6209 add_phi_args_after_copy (region_copy, n_region, NULL);
6210
6211 if (free_region_copy)
6212 free (region_copy);
6213
6214 free_original_copy_tables ();
6215 return true;
6216 }
6217
6218 /* Checks if BB is part of the region defined by N_REGION BBS. */
6219 static bool
6220 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6221 {
6222 unsigned int n;
6223
6224 for (n = 0; n < n_region; n++)
6225 {
6226 if (bb == bbs[n])
6227 return true;
6228 }
6229 return false;
6230 }
6231
6232 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6233 are stored to REGION_COPY in the same order in that they appear
6234 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6235 the region, EXIT an exit from it. The condition guarding EXIT
6236 is moved to ENTRY. Returns true if duplication succeeds, false
6237 otherwise.
6238
6239 For example,
6240
6241 some_code;
6242 if (cond)
6243 A;
6244 else
6245 B;
6246
6247 is transformed to
6248
6249 if (cond)
6250 {
6251 some_code;
6252 A;
6253 }
6254 else
6255 {
6256 some_code;
6257 B;
6258 }
6259 */
6260
6261 bool
6262 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6263 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6264 basic_block *region_copy ATTRIBUTE_UNUSED)
6265 {
6266 unsigned i;
6267 bool free_region_copy = false;
6268 struct loop *loop = exit->dest->loop_father;
6269 struct loop *orig_loop = entry->dest->loop_father;
6270 basic_block switch_bb, entry_bb, nentry_bb;
6271 vec<basic_block> doms;
6272 int total_freq = 0, exit_freq = 0;
6273 gcov_type total_count = 0, exit_count = 0;
6274 edge exits[2], nexits[2], e;
6275 gimple_stmt_iterator gsi;
6276 gimple *cond_stmt;
6277 edge sorig, snew;
6278 basic_block exit_bb;
6279 gphi_iterator psi;
6280 gphi *phi;
6281 tree def;
6282 struct loop *target, *aloop, *cloop;
6283
6284 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6285 exits[0] = exit;
6286 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6287
6288 if (!can_copy_bbs_p (region, n_region))
6289 return false;
6290
6291 initialize_original_copy_tables ();
6292 set_loop_copy (orig_loop, loop);
6293
6294 target= loop;
6295 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6296 {
6297 if (bb_part_of_region_p (aloop->header, region, n_region))
6298 {
6299 cloop = duplicate_loop (aloop, target);
6300 duplicate_subloops (aloop, cloop);
6301 }
6302 }
6303
6304 if (!region_copy)
6305 {
6306 region_copy = XNEWVEC (basic_block, n_region);
6307 free_region_copy = true;
6308 }
6309
6310 gcc_assert (!need_ssa_update_p (cfun));
6311
6312 /* Record blocks outside the region that are dominated by something
6313 inside. */
6314 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6315
6316 if (exit->src->count)
6317 {
6318 total_count = exit->src->count;
6319 exit_count = exit->count;
6320 /* Fix up corner cases, to avoid division by zero or creation of negative
6321 frequencies. */
6322 if (exit_count > total_count)
6323 exit_count = total_count;
6324 }
6325 else
6326 {
6327 total_freq = exit->src->frequency;
6328 exit_freq = EDGE_FREQUENCY (exit);
6329 /* Fix up corner cases, to avoid division by zero or creation of negative
6330 frequencies. */
6331 if (total_freq == 0)
6332 total_freq = 1;
6333 if (exit_freq > total_freq)
6334 exit_freq = total_freq;
6335 }
6336
6337 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6338 split_edge_bb_loc (exit), true);
6339 if (total_count)
6340 {
6341 scale_bbs_frequencies_gcov_type (region, n_region,
6342 total_count - exit_count,
6343 total_count);
6344 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6345 total_count);
6346 }
6347 else
6348 {
6349 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6350 total_freq);
6351 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6352 }
6353
6354 /* Create the switch block, and put the exit condition to it. */
6355 entry_bb = entry->dest;
6356 nentry_bb = get_bb_copy (entry_bb);
6357 if (!last_stmt (entry->src)
6358 || !stmt_ends_bb_p (last_stmt (entry->src)))
6359 switch_bb = entry->src;
6360 else
6361 switch_bb = split_edge (entry);
6362 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6363
6364 gsi = gsi_last_bb (switch_bb);
6365 cond_stmt = last_stmt (exit->src);
6366 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6367 cond_stmt = gimple_copy (cond_stmt);
6368
6369 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6370
6371 sorig = single_succ_edge (switch_bb);
6372 sorig->flags = exits[1]->flags;
6373 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6374
6375 /* Register the new edge from SWITCH_BB in loop exit lists. */
6376 rescan_loop_exit (snew, true, false);
6377
6378 /* Add the PHI node arguments. */
6379 add_phi_args_after_copy (region_copy, n_region, snew);
6380
6381 /* Get rid of now superfluous conditions and associated edges (and phi node
6382 arguments). */
6383 exit_bb = exit->dest;
6384
6385 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6386 PENDING_STMT (e) = NULL;
6387
6388 /* The latch of ORIG_LOOP was copied, and so was the backedge
6389 to the original header. We redirect this backedge to EXIT_BB. */
6390 for (i = 0; i < n_region; i++)
6391 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6392 {
6393 gcc_assert (single_succ_edge (region_copy[i]));
6394 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6395 PENDING_STMT (e) = NULL;
6396 for (psi = gsi_start_phis (exit_bb);
6397 !gsi_end_p (psi);
6398 gsi_next (&psi))
6399 {
6400 phi = psi.phi ();
6401 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6402 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6403 }
6404 }
6405 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6406 PENDING_STMT (e) = NULL;
6407
6408 /* Anything that is outside of the region, but was dominated by something
6409 inside needs to update dominance info. */
6410 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6411 doms.release ();
6412 /* Update the SSA web. */
6413 update_ssa (TODO_update_ssa);
6414
6415 if (free_region_copy)
6416 free (region_copy);
6417
6418 free_original_copy_tables ();
6419 return true;
6420 }
6421
6422 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6423 adding blocks when the dominator traversal reaches EXIT. This
6424 function silently assumes that ENTRY strictly dominates EXIT. */
6425
6426 void
6427 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6428 vec<basic_block> *bbs_p)
6429 {
6430 basic_block son;
6431
6432 for (son = first_dom_son (CDI_DOMINATORS, entry);
6433 son;
6434 son = next_dom_son (CDI_DOMINATORS, son))
6435 {
6436 bbs_p->safe_push (son);
6437 if (son != exit)
6438 gather_blocks_in_sese_region (son, exit, bbs_p);
6439 }
6440 }
6441
6442 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6443 The duplicates are recorded in VARS_MAP. */
6444
6445 static void
6446 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6447 tree to_context)
6448 {
6449 tree t = *tp, new_t;
6450 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6451
6452 if (DECL_CONTEXT (t) == to_context)
6453 return;
6454
6455 bool existed;
6456 tree &loc = vars_map->get_or_insert (t, &existed);
6457
6458 if (!existed)
6459 {
6460 if (SSA_VAR_P (t))
6461 {
6462 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6463 add_local_decl (f, new_t);
6464 }
6465 else
6466 {
6467 gcc_assert (TREE_CODE (t) == CONST_DECL);
6468 new_t = copy_node (t);
6469 }
6470 DECL_CONTEXT (new_t) = to_context;
6471
6472 loc = new_t;
6473 }
6474 else
6475 new_t = loc;
6476
6477 *tp = new_t;
6478 }
6479
6480
6481 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6482 VARS_MAP maps old ssa names and var_decls to the new ones. */
6483
6484 static tree
6485 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6486 tree to_context)
6487 {
6488 tree new_name;
6489
6490 gcc_assert (!virtual_operand_p (name));
6491
6492 tree *loc = vars_map->get (name);
6493
6494 if (!loc)
6495 {
6496 tree decl = SSA_NAME_VAR (name);
6497 if (decl)
6498 {
6499 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6500 replace_by_duplicate_decl (&decl, vars_map, to_context);
6501 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6502 decl, SSA_NAME_DEF_STMT (name));
6503 }
6504 else
6505 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6506 name, SSA_NAME_DEF_STMT (name));
6507
6508 /* Now that we've used the def stmt to define new_name, make sure it
6509 doesn't define name anymore. */
6510 SSA_NAME_DEF_STMT (name) = NULL;
6511
6512 vars_map->put (name, new_name);
6513 }
6514 else
6515 new_name = *loc;
6516
6517 return new_name;
6518 }
6519
6520 struct move_stmt_d
6521 {
6522 tree orig_block;
6523 tree new_block;
6524 tree from_context;
6525 tree to_context;
6526 hash_map<tree, tree> *vars_map;
6527 htab_t new_label_map;
6528 hash_map<void *, void *> *eh_map;
6529 bool remap_decls_p;
6530 };
6531
6532 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6533 contained in *TP if it has been ORIG_BLOCK previously and change the
6534 DECL_CONTEXT of every local variable referenced in *TP. */
6535
6536 static tree
6537 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6538 {
6539 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6540 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6541 tree t = *tp;
6542
6543 if (EXPR_P (t))
6544 {
6545 tree block = TREE_BLOCK (t);
6546 if (block == p->orig_block
6547 || (p->orig_block == NULL_TREE
6548 && block != NULL_TREE))
6549 TREE_SET_BLOCK (t, p->new_block);
6550 else if (flag_checking && block != NULL_TREE)
6551 {
6552 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6553 block = BLOCK_SUPERCONTEXT (block);
6554 gcc_assert (block == p->orig_block);
6555 }
6556 }
6557 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6558 {
6559 if (TREE_CODE (t) == SSA_NAME)
6560 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6561 else if (TREE_CODE (t) == PARM_DECL
6562 && gimple_in_ssa_p (cfun))
6563 *tp = *(p->vars_map->get (t));
6564 else if (TREE_CODE (t) == LABEL_DECL)
6565 {
6566 if (p->new_label_map)
6567 {
6568 struct tree_map in, *out;
6569 in.base.from = t;
6570 out = (struct tree_map *)
6571 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6572 if (out)
6573 *tp = t = out->to;
6574 }
6575
6576 DECL_CONTEXT (t) = p->to_context;
6577 }
6578 else if (p->remap_decls_p)
6579 {
6580 /* Replace T with its duplicate. T should no longer appear in the
6581 parent function, so this looks wasteful; however, it may appear
6582 in referenced_vars, and more importantly, as virtual operands of
6583 statements, and in alias lists of other variables. It would be
6584 quite difficult to expunge it from all those places. ??? It might
6585 suffice to do this for addressable variables. */
6586 if ((TREE_CODE (t) == VAR_DECL
6587 && !is_global_var (t))
6588 || TREE_CODE (t) == CONST_DECL)
6589 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6590 }
6591 *walk_subtrees = 0;
6592 }
6593 else if (TYPE_P (t))
6594 *walk_subtrees = 0;
6595
6596 return NULL_TREE;
6597 }
6598
6599 /* Helper for move_stmt_r. Given an EH region number for the source
6600 function, map that to the duplicate EH regio number in the dest. */
6601
6602 static int
6603 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6604 {
6605 eh_region old_r, new_r;
6606
6607 old_r = get_eh_region_from_number (old_nr);
6608 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6609
6610 return new_r->index;
6611 }
6612
6613 /* Similar, but operate on INTEGER_CSTs. */
6614
6615 static tree
6616 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6617 {
6618 int old_nr, new_nr;
6619
6620 old_nr = tree_to_shwi (old_t_nr);
6621 new_nr = move_stmt_eh_region_nr (old_nr, p);
6622
6623 return build_int_cst (integer_type_node, new_nr);
6624 }
6625
6626 /* Like move_stmt_op, but for gimple statements.
6627
6628 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6629 contained in the current statement in *GSI_P and change the
6630 DECL_CONTEXT of every local variable referenced in the current
6631 statement. */
6632
6633 static tree
6634 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6635 struct walk_stmt_info *wi)
6636 {
6637 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6638 gimple *stmt = gsi_stmt (*gsi_p);
6639 tree block = gimple_block (stmt);
6640
6641 if (block == p->orig_block
6642 || (p->orig_block == NULL_TREE
6643 && block != NULL_TREE))
6644 gimple_set_block (stmt, p->new_block);
6645
6646 switch (gimple_code (stmt))
6647 {
6648 case GIMPLE_CALL:
6649 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6650 {
6651 tree r, fndecl = gimple_call_fndecl (stmt);
6652 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6653 switch (DECL_FUNCTION_CODE (fndecl))
6654 {
6655 case BUILT_IN_EH_COPY_VALUES:
6656 r = gimple_call_arg (stmt, 1);
6657 r = move_stmt_eh_region_tree_nr (r, p);
6658 gimple_call_set_arg (stmt, 1, r);
6659 /* FALLTHRU */
6660
6661 case BUILT_IN_EH_POINTER:
6662 case BUILT_IN_EH_FILTER:
6663 r = gimple_call_arg (stmt, 0);
6664 r = move_stmt_eh_region_tree_nr (r, p);
6665 gimple_call_set_arg (stmt, 0, r);
6666 break;
6667
6668 default:
6669 break;
6670 }
6671 }
6672 break;
6673
6674 case GIMPLE_RESX:
6675 {
6676 gresx *resx_stmt = as_a <gresx *> (stmt);
6677 int r = gimple_resx_region (resx_stmt);
6678 r = move_stmt_eh_region_nr (r, p);
6679 gimple_resx_set_region (resx_stmt, r);
6680 }
6681 break;
6682
6683 case GIMPLE_EH_DISPATCH:
6684 {
6685 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6686 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6687 r = move_stmt_eh_region_nr (r, p);
6688 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6689 }
6690 break;
6691
6692 case GIMPLE_OMP_RETURN:
6693 case GIMPLE_OMP_CONTINUE:
6694 break;
6695 default:
6696 if (is_gimple_omp (stmt))
6697 {
6698 /* Do not remap variables inside OMP directives. Variables
6699 referenced in clauses and directive header belong to the
6700 parent function and should not be moved into the child
6701 function. */
6702 bool save_remap_decls_p = p->remap_decls_p;
6703 p->remap_decls_p = false;
6704 *handled_ops_p = true;
6705
6706 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6707 move_stmt_op, wi);
6708
6709 p->remap_decls_p = save_remap_decls_p;
6710 }
6711 break;
6712 }
6713
6714 return NULL_TREE;
6715 }
6716
6717 /* Move basic block BB from function CFUN to function DEST_FN. The
6718 block is moved out of the original linked list and placed after
6719 block AFTER in the new list. Also, the block is removed from the
6720 original array of blocks and placed in DEST_FN's array of blocks.
6721 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6722 updated to reflect the moved edges.
6723
6724 The local variables are remapped to new instances, VARS_MAP is used
6725 to record the mapping. */
6726
6727 static void
6728 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6729 basic_block after, bool update_edge_count_p,
6730 struct move_stmt_d *d)
6731 {
6732 struct control_flow_graph *cfg;
6733 edge_iterator ei;
6734 edge e;
6735 gimple_stmt_iterator si;
6736 unsigned old_len, new_len;
6737
6738 /* Remove BB from dominance structures. */
6739 delete_from_dominance_info (CDI_DOMINATORS, bb);
6740
6741 /* Move BB from its current loop to the copy in the new function. */
6742 if (current_loops)
6743 {
6744 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6745 if (new_loop)
6746 bb->loop_father = new_loop;
6747 }
6748
6749 /* Link BB to the new linked list. */
6750 move_block_after (bb, after);
6751
6752 /* Update the edge count in the corresponding flowgraphs. */
6753 if (update_edge_count_p)
6754 FOR_EACH_EDGE (e, ei, bb->succs)
6755 {
6756 cfun->cfg->x_n_edges--;
6757 dest_cfun->cfg->x_n_edges++;
6758 }
6759
6760 /* Remove BB from the original basic block array. */
6761 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6762 cfun->cfg->x_n_basic_blocks--;
6763
6764 /* Grow DEST_CFUN's basic block array if needed. */
6765 cfg = dest_cfun->cfg;
6766 cfg->x_n_basic_blocks++;
6767 if (bb->index >= cfg->x_last_basic_block)
6768 cfg->x_last_basic_block = bb->index + 1;
6769
6770 old_len = vec_safe_length (cfg->x_basic_block_info);
6771 if ((unsigned) cfg->x_last_basic_block >= old_len)
6772 {
6773 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6774 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6775 }
6776
6777 (*cfg->x_basic_block_info)[bb->index] = bb;
6778
6779 /* Remap the variables in phi nodes. */
6780 for (gphi_iterator psi = gsi_start_phis (bb);
6781 !gsi_end_p (psi); )
6782 {
6783 gphi *phi = psi.phi ();
6784 use_operand_p use;
6785 tree op = PHI_RESULT (phi);
6786 ssa_op_iter oi;
6787 unsigned i;
6788
6789 if (virtual_operand_p (op))
6790 {
6791 /* Remove the phi nodes for virtual operands (alias analysis will be
6792 run for the new function, anyway). */
6793 remove_phi_node (&psi, true);
6794 continue;
6795 }
6796
6797 SET_PHI_RESULT (phi,
6798 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6799 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6800 {
6801 op = USE_FROM_PTR (use);
6802 if (TREE_CODE (op) == SSA_NAME)
6803 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6804 }
6805
6806 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6807 {
6808 location_t locus = gimple_phi_arg_location (phi, i);
6809 tree block = LOCATION_BLOCK (locus);
6810
6811 if (locus == UNKNOWN_LOCATION)
6812 continue;
6813 if (d->orig_block == NULL_TREE || block == d->orig_block)
6814 {
6815 locus = set_block (locus, d->new_block);
6816 gimple_phi_arg_set_location (phi, i, locus);
6817 }
6818 }
6819
6820 gsi_next (&psi);
6821 }
6822
6823 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6824 {
6825 gimple *stmt = gsi_stmt (si);
6826 struct walk_stmt_info wi;
6827
6828 memset (&wi, 0, sizeof (wi));
6829 wi.info = d;
6830 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6831
6832 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
6833 {
6834 tree label = gimple_label_label (label_stmt);
6835 int uid = LABEL_DECL_UID (label);
6836
6837 gcc_assert (uid > -1);
6838
6839 old_len = vec_safe_length (cfg->x_label_to_block_map);
6840 if (old_len <= (unsigned) uid)
6841 {
6842 new_len = 3 * uid / 2 + 1;
6843 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6844 }
6845
6846 (*cfg->x_label_to_block_map)[uid] = bb;
6847 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6848
6849 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6850
6851 if (uid >= dest_cfun->cfg->last_label_uid)
6852 dest_cfun->cfg->last_label_uid = uid + 1;
6853 }
6854
6855 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6856 remove_stmt_from_eh_lp_fn (cfun, stmt);
6857
6858 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6859 gimple_remove_stmt_histograms (cfun, stmt);
6860
6861 /* We cannot leave any operands allocated from the operand caches of
6862 the current function. */
6863 free_stmt_operands (cfun, stmt);
6864 push_cfun (dest_cfun);
6865 update_stmt (stmt);
6866 pop_cfun ();
6867 }
6868
6869 FOR_EACH_EDGE (e, ei, bb->succs)
6870 if (e->goto_locus != UNKNOWN_LOCATION)
6871 {
6872 tree block = LOCATION_BLOCK (e->goto_locus);
6873 if (d->orig_block == NULL_TREE
6874 || block == d->orig_block)
6875 e->goto_locus = set_block (e->goto_locus, d->new_block);
6876 }
6877 }
6878
6879 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6880 the outermost EH region. Use REGION as the incoming base EH region. */
6881
6882 static eh_region
6883 find_outermost_region_in_block (struct function *src_cfun,
6884 basic_block bb, eh_region region)
6885 {
6886 gimple_stmt_iterator si;
6887
6888 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6889 {
6890 gimple *stmt = gsi_stmt (si);
6891 eh_region stmt_region;
6892 int lp_nr;
6893
6894 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6895 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6896 if (stmt_region)
6897 {
6898 if (region == NULL)
6899 region = stmt_region;
6900 else if (stmt_region != region)
6901 {
6902 region = eh_region_outermost (src_cfun, stmt_region, region);
6903 gcc_assert (region != NULL);
6904 }
6905 }
6906 }
6907
6908 return region;
6909 }
6910
6911 static tree
6912 new_label_mapper (tree decl, void *data)
6913 {
6914 htab_t hash = (htab_t) data;
6915 struct tree_map *m;
6916 void **slot;
6917
6918 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6919
6920 m = XNEW (struct tree_map);
6921 m->hash = DECL_UID (decl);
6922 m->base.from = decl;
6923 m->to = create_artificial_label (UNKNOWN_LOCATION);
6924 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6925 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6926 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6927
6928 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6929 gcc_assert (*slot == NULL);
6930
6931 *slot = m;
6932
6933 return m->to;
6934 }
6935
6936 /* Tree walker to replace the decls used inside value expressions by
6937 duplicates. */
6938
6939 static tree
6940 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
6941 {
6942 struct replace_decls_d *rd = (struct replace_decls_d *)data;
6943
6944 switch (TREE_CODE (*tp))
6945 {
6946 case VAR_DECL:
6947 case PARM_DECL:
6948 case RESULT_DECL:
6949 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
6950 break;
6951 default:
6952 break;
6953 }
6954
6955 if (IS_TYPE_OR_DECL_P (*tp))
6956 *walk_subtrees = false;
6957
6958 return NULL;
6959 }
6960
6961 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6962 subblocks. */
6963
6964 static void
6965 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
6966 tree to_context)
6967 {
6968 tree *tp, t;
6969
6970 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6971 {
6972 t = *tp;
6973 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6974 continue;
6975 replace_by_duplicate_decl (&t, vars_map, to_context);
6976 if (t != *tp)
6977 {
6978 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6979 {
6980 tree x = DECL_VALUE_EXPR (*tp);
6981 struct replace_decls_d rd = { vars_map, to_context };
6982 unshare_expr (x);
6983 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
6984 SET_DECL_VALUE_EXPR (t, x);
6985 DECL_HAS_VALUE_EXPR_P (t) = 1;
6986 }
6987 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6988 *tp = t;
6989 }
6990 }
6991
6992 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6993 replace_block_vars_by_duplicates (block, vars_map, to_context);
6994 }
6995
6996 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6997 from FN1 to FN2. */
6998
6999 static void
7000 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7001 struct loop *loop)
7002 {
7003 /* Discard it from the old loop array. */
7004 (*get_loops (fn1))[loop->num] = NULL;
7005
7006 /* Place it in the new loop array, assigning it a new number. */
7007 loop->num = number_of_loops (fn2);
7008 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7009
7010 /* Recurse to children. */
7011 for (loop = loop->inner; loop; loop = loop->next)
7012 fixup_loop_arrays_after_move (fn1, fn2, loop);
7013 }
7014
7015 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7016 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7017
7018 DEBUG_FUNCTION void
7019 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7020 {
7021 basic_block bb;
7022 edge_iterator ei;
7023 edge e;
7024 bitmap bbs = BITMAP_ALLOC (NULL);
7025 int i;
7026
7027 gcc_assert (entry != NULL);
7028 gcc_assert (entry != exit);
7029 gcc_assert (bbs_p != NULL);
7030
7031 gcc_assert (bbs_p->length () > 0);
7032
7033 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7034 bitmap_set_bit (bbs, bb->index);
7035
7036 gcc_assert (bitmap_bit_p (bbs, entry->index));
7037 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7038
7039 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7040 {
7041 if (bb == entry)
7042 {
7043 gcc_assert (single_pred_p (entry));
7044 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7045 }
7046 else
7047 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7048 {
7049 e = ei_edge (ei);
7050 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7051 }
7052
7053 if (bb == exit)
7054 {
7055 gcc_assert (single_succ_p (exit));
7056 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7057 }
7058 else
7059 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7060 {
7061 e = ei_edge (ei);
7062 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7063 }
7064 }
7065
7066 BITMAP_FREE (bbs);
7067 }
7068
7069 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7070
7071 bool
7072 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7073 {
7074 bitmap release_names = (bitmap)data;
7075
7076 if (TREE_CODE (from) != SSA_NAME)
7077 return true;
7078
7079 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7080 return true;
7081 }
7082
7083 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7084 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7085 single basic block in the original CFG and the new basic block is
7086 returned. DEST_CFUN must not have a CFG yet.
7087
7088 Note that the region need not be a pure SESE region. Blocks inside
7089 the region may contain calls to abort/exit. The only restriction
7090 is that ENTRY_BB should be the only entry point and it must
7091 dominate EXIT_BB.
7092
7093 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7094 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7095 to the new function.
7096
7097 All local variables referenced in the region are assumed to be in
7098 the corresponding BLOCK_VARS and unexpanded variable lists
7099 associated with DEST_CFUN.
7100
7101 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7102 reimplement move_sese_region_to_fn by duplicating the region rather than
7103 moving it. */
7104
7105 basic_block
7106 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7107 basic_block exit_bb, tree orig_block)
7108 {
7109 vec<basic_block> bbs, dom_bbs;
7110 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7111 basic_block after, bb, *entry_pred, *exit_succ, abb;
7112 struct function *saved_cfun = cfun;
7113 int *entry_flag, *exit_flag;
7114 unsigned *entry_prob, *exit_prob;
7115 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7116 edge e;
7117 edge_iterator ei;
7118 htab_t new_label_map;
7119 hash_map<void *, void *> *eh_map;
7120 struct loop *loop = entry_bb->loop_father;
7121 struct loop *loop0 = get_loop (saved_cfun, 0);
7122 struct move_stmt_d d;
7123
7124 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7125 region. */
7126 gcc_assert (entry_bb != exit_bb
7127 && (!exit_bb
7128 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7129
7130 /* Collect all the blocks in the region. Manually add ENTRY_BB
7131 because it won't be added by dfs_enumerate_from. */
7132 bbs.create (0);
7133 bbs.safe_push (entry_bb);
7134 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7135
7136 if (flag_checking)
7137 verify_sese (entry_bb, exit_bb, &bbs);
7138
7139 /* The blocks that used to be dominated by something in BBS will now be
7140 dominated by the new block. */
7141 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7142 bbs.address (),
7143 bbs.length ());
7144
7145 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7146 the predecessor edges to ENTRY_BB and the successor edges to
7147 EXIT_BB so that we can re-attach them to the new basic block that
7148 will replace the region. */
7149 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7150 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7151 entry_flag = XNEWVEC (int, num_entry_edges);
7152 entry_prob = XNEWVEC (unsigned, num_entry_edges);
7153 i = 0;
7154 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7155 {
7156 entry_prob[i] = e->probability;
7157 entry_flag[i] = e->flags;
7158 entry_pred[i++] = e->src;
7159 remove_edge (e);
7160 }
7161
7162 if (exit_bb)
7163 {
7164 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7165 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7166 exit_flag = XNEWVEC (int, num_exit_edges);
7167 exit_prob = XNEWVEC (unsigned, num_exit_edges);
7168 i = 0;
7169 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7170 {
7171 exit_prob[i] = e->probability;
7172 exit_flag[i] = e->flags;
7173 exit_succ[i++] = e->dest;
7174 remove_edge (e);
7175 }
7176 }
7177 else
7178 {
7179 num_exit_edges = 0;
7180 exit_succ = NULL;
7181 exit_flag = NULL;
7182 exit_prob = NULL;
7183 }
7184
7185 /* Switch context to the child function to initialize DEST_FN's CFG. */
7186 gcc_assert (dest_cfun->cfg == NULL);
7187 push_cfun (dest_cfun);
7188
7189 init_empty_tree_cfg ();
7190
7191 /* Initialize EH information for the new function. */
7192 eh_map = NULL;
7193 new_label_map = NULL;
7194 if (saved_cfun->eh)
7195 {
7196 eh_region region = NULL;
7197
7198 FOR_EACH_VEC_ELT (bbs, i, bb)
7199 region = find_outermost_region_in_block (saved_cfun, bb, region);
7200
7201 init_eh_for_function ();
7202 if (region != NULL)
7203 {
7204 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7205 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7206 new_label_mapper, new_label_map);
7207 }
7208 }
7209
7210 /* Initialize an empty loop tree. */
7211 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7212 init_loops_structure (dest_cfun, loops, 1);
7213 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7214 set_loops_for_fn (dest_cfun, loops);
7215
7216 /* Move the outlined loop tree part. */
7217 num_nodes = bbs.length ();
7218 FOR_EACH_VEC_ELT (bbs, i, bb)
7219 {
7220 if (bb->loop_father->header == bb)
7221 {
7222 struct loop *this_loop = bb->loop_father;
7223 struct loop *outer = loop_outer (this_loop);
7224 if (outer == loop
7225 /* If the SESE region contains some bbs ending with
7226 a noreturn call, those are considered to belong
7227 to the outermost loop in saved_cfun, rather than
7228 the entry_bb's loop_father. */
7229 || outer == loop0)
7230 {
7231 if (outer != loop)
7232 num_nodes -= this_loop->num_nodes;
7233 flow_loop_tree_node_remove (bb->loop_father);
7234 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7235 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7236 }
7237 }
7238 else if (bb->loop_father == loop0 && loop0 != loop)
7239 num_nodes--;
7240
7241 /* Remove loop exits from the outlined region. */
7242 if (loops_for_fn (saved_cfun)->exits)
7243 FOR_EACH_EDGE (e, ei, bb->succs)
7244 {
7245 struct loops *l = loops_for_fn (saved_cfun);
7246 loop_exit **slot
7247 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7248 NO_INSERT);
7249 if (slot)
7250 l->exits->clear_slot (slot);
7251 }
7252 }
7253
7254
7255 /* Adjust the number of blocks in the tree root of the outlined part. */
7256 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7257
7258 /* Setup a mapping to be used by move_block_to_fn. */
7259 loop->aux = current_loops->tree_root;
7260 loop0->aux = current_loops->tree_root;
7261
7262 pop_cfun ();
7263
7264 /* Move blocks from BBS into DEST_CFUN. */
7265 gcc_assert (bbs.length () >= 2);
7266 after = dest_cfun->cfg->x_entry_block_ptr;
7267 hash_map<tree, tree> vars_map;
7268
7269 memset (&d, 0, sizeof (d));
7270 d.orig_block = orig_block;
7271 d.new_block = DECL_INITIAL (dest_cfun->decl);
7272 d.from_context = cfun->decl;
7273 d.to_context = dest_cfun->decl;
7274 d.vars_map = &vars_map;
7275 d.new_label_map = new_label_map;
7276 d.eh_map = eh_map;
7277 d.remap_decls_p = true;
7278
7279 if (gimple_in_ssa_p (cfun))
7280 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7281 {
7282 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7283 set_ssa_default_def (dest_cfun, arg, narg);
7284 vars_map.put (arg, narg);
7285 }
7286
7287 FOR_EACH_VEC_ELT (bbs, i, bb)
7288 {
7289 /* No need to update edge counts on the last block. It has
7290 already been updated earlier when we detached the region from
7291 the original CFG. */
7292 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7293 after = bb;
7294 }
7295
7296 loop->aux = NULL;
7297 loop0->aux = NULL;
7298 /* Loop sizes are no longer correct, fix them up. */
7299 loop->num_nodes -= num_nodes;
7300 for (struct loop *outer = loop_outer (loop);
7301 outer; outer = loop_outer (outer))
7302 outer->num_nodes -= num_nodes;
7303 loop0->num_nodes -= bbs.length () - num_nodes;
7304
7305 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7306 {
7307 struct loop *aloop;
7308 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7309 if (aloop != NULL)
7310 {
7311 if (aloop->simduid)
7312 {
7313 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7314 d.to_context);
7315 dest_cfun->has_simduid_loops = true;
7316 }
7317 if (aloop->force_vectorize)
7318 dest_cfun->has_force_vectorize_loops = true;
7319 }
7320 }
7321
7322 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7323 if (orig_block)
7324 {
7325 tree block;
7326 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7327 == NULL_TREE);
7328 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7329 = BLOCK_SUBBLOCKS (orig_block);
7330 for (block = BLOCK_SUBBLOCKS (orig_block);
7331 block; block = BLOCK_CHAIN (block))
7332 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7333 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7334 }
7335
7336 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7337 &vars_map, dest_cfun->decl);
7338
7339 if (new_label_map)
7340 htab_delete (new_label_map);
7341 if (eh_map)
7342 delete eh_map;
7343
7344 if (gimple_in_ssa_p (cfun))
7345 {
7346 /* We need to release ssa-names in a defined order, so first find them,
7347 and then iterate in ascending version order. */
7348 bitmap release_names = BITMAP_ALLOC (NULL);
7349 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7350 bitmap_iterator bi;
7351 unsigned i;
7352 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7353 release_ssa_name (ssa_name (i));
7354 BITMAP_FREE (release_names);
7355 }
7356
7357 /* Rewire the entry and exit blocks. The successor to the entry
7358 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7359 the child function. Similarly, the predecessor of DEST_FN's
7360 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7361 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7362 various CFG manipulation function get to the right CFG.
7363
7364 FIXME, this is silly. The CFG ought to become a parameter to
7365 these helpers. */
7366 push_cfun (dest_cfun);
7367 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7368 if (exit_bb)
7369 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7370 pop_cfun ();
7371
7372 /* Back in the original function, the SESE region has disappeared,
7373 create a new basic block in its place. */
7374 bb = create_empty_bb (entry_pred[0]);
7375 if (current_loops)
7376 add_bb_to_loop (bb, loop);
7377 for (i = 0; i < num_entry_edges; i++)
7378 {
7379 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7380 e->probability = entry_prob[i];
7381 }
7382
7383 for (i = 0; i < num_exit_edges; i++)
7384 {
7385 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7386 e->probability = exit_prob[i];
7387 }
7388
7389 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7390 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7391 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7392 dom_bbs.release ();
7393
7394 if (exit_bb)
7395 {
7396 free (exit_prob);
7397 free (exit_flag);
7398 free (exit_succ);
7399 }
7400 free (entry_prob);
7401 free (entry_flag);
7402 free (entry_pred);
7403 bbs.release ();
7404
7405 return bb;
7406 }
7407
7408 /* Dump default def DEF to file FILE using FLAGS and indentation
7409 SPC. */
7410
7411 static void
7412 dump_default_def (FILE *file, tree def, int spc, int flags)
7413 {
7414 for (int i = 0; i < spc; ++i)
7415 fprintf (file, " ");
7416 dump_ssaname_info_to_file (file, def, spc);
7417
7418 print_generic_expr (file, TREE_TYPE (def), flags);
7419 fprintf (file, " ");
7420 print_generic_expr (file, def, flags);
7421 fprintf (file, " = ");
7422 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7423 fprintf (file, ";\n");
7424 }
7425
7426 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7427 */
7428
7429 void
7430 dump_function_to_file (tree fndecl, FILE *file, int flags)
7431 {
7432 tree arg, var, old_current_fndecl = current_function_decl;
7433 struct function *dsf;
7434 bool ignore_topmost_bind = false, any_var = false;
7435 basic_block bb;
7436 tree chain;
7437 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7438 && decl_is_tm_clone (fndecl));
7439 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7440
7441 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7442 {
7443 fprintf (file, "__attribute__((");
7444
7445 bool first = true;
7446 tree chain;
7447 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7448 first = false, chain = TREE_CHAIN (chain))
7449 {
7450 if (!first)
7451 fprintf (file, ", ");
7452
7453 print_generic_expr (file, get_attribute_name (chain), dump_flags);
7454 if (TREE_VALUE (chain) != NULL_TREE)
7455 {
7456 fprintf (file, " (");
7457 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7458 fprintf (file, ")");
7459 }
7460 }
7461
7462 fprintf (file, "))\n");
7463 }
7464
7465 current_function_decl = fndecl;
7466 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7467
7468 arg = DECL_ARGUMENTS (fndecl);
7469 while (arg)
7470 {
7471 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7472 fprintf (file, " ");
7473 print_generic_expr (file, arg, dump_flags);
7474 if (flags & TDF_VERBOSE)
7475 print_node (file, "", arg, 4);
7476 if (DECL_CHAIN (arg))
7477 fprintf (file, ", ");
7478 arg = DECL_CHAIN (arg);
7479 }
7480 fprintf (file, ")\n");
7481
7482 if (flags & TDF_VERBOSE)
7483 print_node (file, "", fndecl, 2);
7484
7485 dsf = DECL_STRUCT_FUNCTION (fndecl);
7486 if (dsf && (flags & TDF_EH))
7487 dump_eh_tree (file, dsf);
7488
7489 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7490 {
7491 dump_node (fndecl, TDF_SLIM | flags, file);
7492 current_function_decl = old_current_fndecl;
7493 return;
7494 }
7495
7496 /* When GIMPLE is lowered, the variables are no longer available in
7497 BIND_EXPRs, so display them separately. */
7498 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7499 {
7500 unsigned ix;
7501 ignore_topmost_bind = true;
7502
7503 fprintf (file, "{\n");
7504 if (gimple_in_ssa_p (fun)
7505 && (flags & TDF_ALIAS))
7506 {
7507 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7508 arg = DECL_CHAIN (arg))
7509 {
7510 tree def = ssa_default_def (fun, arg);
7511 if (def)
7512 dump_default_def (file, def, 2, flags);
7513 }
7514
7515 tree res = DECL_RESULT (fun->decl);
7516 if (res != NULL_TREE
7517 && DECL_BY_REFERENCE (res))
7518 {
7519 tree def = ssa_default_def (fun, res);
7520 if (def)
7521 dump_default_def (file, def, 2, flags);
7522 }
7523
7524 tree static_chain = fun->static_chain_decl;
7525 if (static_chain != NULL_TREE)
7526 {
7527 tree def = ssa_default_def (fun, static_chain);
7528 if (def)
7529 dump_default_def (file, def, 2, flags);
7530 }
7531 }
7532
7533 if (!vec_safe_is_empty (fun->local_decls))
7534 FOR_EACH_LOCAL_DECL (fun, ix, var)
7535 {
7536 print_generic_decl (file, var, flags);
7537 if (flags & TDF_VERBOSE)
7538 print_node (file, "", var, 4);
7539 fprintf (file, "\n");
7540
7541 any_var = true;
7542 }
7543 if (gimple_in_ssa_p (cfun))
7544 for (ix = 1; ix < num_ssa_names; ++ix)
7545 {
7546 tree name = ssa_name (ix);
7547 if (name && !SSA_NAME_VAR (name))
7548 {
7549 fprintf (file, " ");
7550 print_generic_expr (file, TREE_TYPE (name), flags);
7551 fprintf (file, " ");
7552 print_generic_expr (file, name, flags);
7553 fprintf (file, ";\n");
7554
7555 any_var = true;
7556 }
7557 }
7558 }
7559
7560 if (fun && fun->decl == fndecl
7561 && fun->cfg
7562 && basic_block_info_for_fn (fun))
7563 {
7564 /* If the CFG has been built, emit a CFG-based dump. */
7565 if (!ignore_topmost_bind)
7566 fprintf (file, "{\n");
7567
7568 if (any_var && n_basic_blocks_for_fn (fun))
7569 fprintf (file, "\n");
7570
7571 FOR_EACH_BB_FN (bb, fun)
7572 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7573
7574 fprintf (file, "}\n");
7575 }
7576 else if (DECL_SAVED_TREE (fndecl) == NULL)
7577 {
7578 /* The function is now in GIMPLE form but the CFG has not been
7579 built yet. Emit the single sequence of GIMPLE statements
7580 that make up its body. */
7581 gimple_seq body = gimple_body (fndecl);
7582
7583 if (gimple_seq_first_stmt (body)
7584 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7585 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7586 print_gimple_seq (file, body, 0, flags);
7587 else
7588 {
7589 if (!ignore_topmost_bind)
7590 fprintf (file, "{\n");
7591
7592 if (any_var)
7593 fprintf (file, "\n");
7594
7595 print_gimple_seq (file, body, 2, flags);
7596 fprintf (file, "}\n");
7597 }
7598 }
7599 else
7600 {
7601 int indent;
7602
7603 /* Make a tree based dump. */
7604 chain = DECL_SAVED_TREE (fndecl);
7605 if (chain && TREE_CODE (chain) == BIND_EXPR)
7606 {
7607 if (ignore_topmost_bind)
7608 {
7609 chain = BIND_EXPR_BODY (chain);
7610 indent = 2;
7611 }
7612 else
7613 indent = 0;
7614 }
7615 else
7616 {
7617 if (!ignore_topmost_bind)
7618 {
7619 fprintf (file, "{\n");
7620 /* No topmost bind, pretend it's ignored for later. */
7621 ignore_topmost_bind = true;
7622 }
7623 indent = 2;
7624 }
7625
7626 if (any_var)
7627 fprintf (file, "\n");
7628
7629 print_generic_stmt_indented (file, chain, flags, indent);
7630 if (ignore_topmost_bind)
7631 fprintf (file, "}\n");
7632 }
7633
7634 if (flags & TDF_ENUMERATE_LOCALS)
7635 dump_enumerated_decls (file, flags);
7636 fprintf (file, "\n\n");
7637
7638 current_function_decl = old_current_fndecl;
7639 }
7640
7641 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7642
7643 DEBUG_FUNCTION void
7644 debug_function (tree fn, int flags)
7645 {
7646 dump_function_to_file (fn, stderr, flags);
7647 }
7648
7649
7650 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7651
7652 static void
7653 print_pred_bbs (FILE *file, basic_block bb)
7654 {
7655 edge e;
7656 edge_iterator ei;
7657
7658 FOR_EACH_EDGE (e, ei, bb->preds)
7659 fprintf (file, "bb_%d ", e->src->index);
7660 }
7661
7662
7663 /* Print on FILE the indexes for the successors of basic_block BB. */
7664
7665 static void
7666 print_succ_bbs (FILE *file, basic_block bb)
7667 {
7668 edge e;
7669 edge_iterator ei;
7670
7671 FOR_EACH_EDGE (e, ei, bb->succs)
7672 fprintf (file, "bb_%d ", e->dest->index);
7673 }
7674
7675 /* Print to FILE the basic block BB following the VERBOSITY level. */
7676
7677 void
7678 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7679 {
7680 char *s_indent = (char *) alloca ((size_t) indent + 1);
7681 memset ((void *) s_indent, ' ', (size_t) indent);
7682 s_indent[indent] = '\0';
7683
7684 /* Print basic_block's header. */
7685 if (verbosity >= 2)
7686 {
7687 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7688 print_pred_bbs (file, bb);
7689 fprintf (file, "}, succs = {");
7690 print_succ_bbs (file, bb);
7691 fprintf (file, "})\n");
7692 }
7693
7694 /* Print basic_block's body. */
7695 if (verbosity >= 3)
7696 {
7697 fprintf (file, "%s {\n", s_indent);
7698 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7699 fprintf (file, "%s }\n", s_indent);
7700 }
7701 }
7702
7703 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7704
7705 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7706 VERBOSITY level this outputs the contents of the loop, or just its
7707 structure. */
7708
7709 static void
7710 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7711 {
7712 char *s_indent;
7713 basic_block bb;
7714
7715 if (loop == NULL)
7716 return;
7717
7718 s_indent = (char *) alloca ((size_t) indent + 1);
7719 memset ((void *) s_indent, ' ', (size_t) indent);
7720 s_indent[indent] = '\0';
7721
7722 /* Print loop's header. */
7723 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7724 if (loop->header)
7725 fprintf (file, "header = %d", loop->header->index);
7726 else
7727 {
7728 fprintf (file, "deleted)\n");
7729 return;
7730 }
7731 if (loop->latch)
7732 fprintf (file, ", latch = %d", loop->latch->index);
7733 else
7734 fprintf (file, ", multiple latches");
7735 fprintf (file, ", niter = ");
7736 print_generic_expr (file, loop->nb_iterations, 0);
7737
7738 if (loop->any_upper_bound)
7739 {
7740 fprintf (file, ", upper_bound = ");
7741 print_decu (loop->nb_iterations_upper_bound, file);
7742 }
7743
7744 if (loop->any_estimate)
7745 {
7746 fprintf (file, ", estimate = ");
7747 print_decu (loop->nb_iterations_estimate, file);
7748 }
7749 fprintf (file, ")\n");
7750
7751 /* Print loop's body. */
7752 if (verbosity >= 1)
7753 {
7754 fprintf (file, "%s{\n", s_indent);
7755 FOR_EACH_BB_FN (bb, cfun)
7756 if (bb->loop_father == loop)
7757 print_loops_bb (file, bb, indent, verbosity);
7758
7759 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7760 fprintf (file, "%s}\n", s_indent);
7761 }
7762 }
7763
7764 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7765 spaces. Following VERBOSITY level this outputs the contents of the
7766 loop, or just its structure. */
7767
7768 static void
7769 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7770 int verbosity)
7771 {
7772 if (loop == NULL)
7773 return;
7774
7775 print_loop (file, loop, indent, verbosity);
7776 print_loop_and_siblings (file, loop->next, indent, verbosity);
7777 }
7778
7779 /* Follow a CFG edge from the entry point of the program, and on entry
7780 of a loop, pretty print the loop structure on FILE. */
7781
7782 void
7783 print_loops (FILE *file, int verbosity)
7784 {
7785 basic_block bb;
7786
7787 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7788 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
7789 if (bb && bb->loop_father)
7790 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7791 }
7792
7793 /* Dump a loop. */
7794
7795 DEBUG_FUNCTION void
7796 debug (struct loop &ref)
7797 {
7798 print_loop (stderr, &ref, 0, /*verbosity*/0);
7799 }
7800
7801 DEBUG_FUNCTION void
7802 debug (struct loop *ptr)
7803 {
7804 if (ptr)
7805 debug (*ptr);
7806 else
7807 fprintf (stderr, "<nil>\n");
7808 }
7809
7810 /* Dump a loop verbosely. */
7811
7812 DEBUG_FUNCTION void
7813 debug_verbose (struct loop &ref)
7814 {
7815 print_loop (stderr, &ref, 0, /*verbosity*/3);
7816 }
7817
7818 DEBUG_FUNCTION void
7819 debug_verbose (struct loop *ptr)
7820 {
7821 if (ptr)
7822 debug (*ptr);
7823 else
7824 fprintf (stderr, "<nil>\n");
7825 }
7826
7827
7828 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7829
7830 DEBUG_FUNCTION void
7831 debug_loops (int verbosity)
7832 {
7833 print_loops (stderr, verbosity);
7834 }
7835
7836 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7837
7838 DEBUG_FUNCTION void
7839 debug_loop (struct loop *loop, int verbosity)
7840 {
7841 print_loop (stderr, loop, 0, verbosity);
7842 }
7843
7844 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7845 level. */
7846
7847 DEBUG_FUNCTION void
7848 debug_loop_num (unsigned num, int verbosity)
7849 {
7850 debug_loop (get_loop (cfun, num), verbosity);
7851 }
7852
7853 /* Return true if BB ends with a call, possibly followed by some
7854 instructions that must stay with the call. Return false,
7855 otherwise. */
7856
7857 static bool
7858 gimple_block_ends_with_call_p (basic_block bb)
7859 {
7860 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7861 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7862 }
7863
7864
7865 /* Return true if BB ends with a conditional branch. Return false,
7866 otherwise. */
7867
7868 static bool
7869 gimple_block_ends_with_condjump_p (const_basic_block bb)
7870 {
7871 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
7872 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7873 }
7874
7875
7876 /* Return true if we need to add fake edge to exit at statement T.
7877 Helper function for gimple_flow_call_edges_add. */
7878
7879 static bool
7880 need_fake_edge_p (gimple *t)
7881 {
7882 tree fndecl = NULL_TREE;
7883 int call_flags = 0;
7884
7885 /* NORETURN and LONGJMP calls already have an edge to exit.
7886 CONST and PURE calls do not need one.
7887 We don't currently check for CONST and PURE here, although
7888 it would be a good idea, because those attributes are
7889 figured out from the RTL in mark_constant_function, and
7890 the counter incrementation code from -fprofile-arcs
7891 leads to different results from -fbranch-probabilities. */
7892 if (is_gimple_call (t))
7893 {
7894 fndecl = gimple_call_fndecl (t);
7895 call_flags = gimple_call_flags (t);
7896 }
7897
7898 if (is_gimple_call (t)
7899 && fndecl
7900 && DECL_BUILT_IN (fndecl)
7901 && (call_flags & ECF_NOTHROW)
7902 && !(call_flags & ECF_RETURNS_TWICE)
7903 /* fork() doesn't really return twice, but the effect of
7904 wrapping it in __gcov_fork() which calls __gcov_flush()
7905 and clears the counters before forking has the same
7906 effect as returning twice. Force a fake edge. */
7907 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7908 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7909 return false;
7910
7911 if (is_gimple_call (t))
7912 {
7913 edge_iterator ei;
7914 edge e;
7915 basic_block bb;
7916
7917 if (!(call_flags & ECF_NORETURN))
7918 return true;
7919
7920 bb = gimple_bb (t);
7921 FOR_EACH_EDGE (e, ei, bb->succs)
7922 if ((e->flags & EDGE_FAKE) == 0)
7923 return true;
7924 }
7925
7926 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
7927 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
7928 return true;
7929
7930 return false;
7931 }
7932
7933
7934 /* Add fake edges to the function exit for any non constant and non
7935 noreturn calls (or noreturn calls with EH/abnormal edges),
7936 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7937 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7938 that were split.
7939
7940 The goal is to expose cases in which entering a basic block does
7941 not imply that all subsequent instructions must be executed. */
7942
7943 static int
7944 gimple_flow_call_edges_add (sbitmap blocks)
7945 {
7946 int i;
7947 int blocks_split = 0;
7948 int last_bb = last_basic_block_for_fn (cfun);
7949 bool check_last_block = false;
7950
7951 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7952 return 0;
7953
7954 if (! blocks)
7955 check_last_block = true;
7956 else
7957 check_last_block = bitmap_bit_p (blocks,
7958 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7959
7960 /* In the last basic block, before epilogue generation, there will be
7961 a fallthru edge to EXIT. Special care is required if the last insn
7962 of the last basic block is a call because make_edge folds duplicate
7963 edges, which would result in the fallthru edge also being marked
7964 fake, which would result in the fallthru edge being removed by
7965 remove_fake_edges, which would result in an invalid CFG.
7966
7967 Moreover, we can't elide the outgoing fake edge, since the block
7968 profiler needs to take this into account in order to solve the minimal
7969 spanning tree in the case that the call doesn't return.
7970
7971 Handle this by adding a dummy instruction in a new last basic block. */
7972 if (check_last_block)
7973 {
7974 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7975 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7976 gimple *t = NULL;
7977
7978 if (!gsi_end_p (gsi))
7979 t = gsi_stmt (gsi);
7980
7981 if (t && need_fake_edge_p (t))
7982 {
7983 edge e;
7984
7985 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7986 if (e)
7987 {
7988 gsi_insert_on_edge (e, gimple_build_nop ());
7989 gsi_commit_edge_inserts ();
7990 }
7991 }
7992 }
7993
7994 /* Now add fake edges to the function exit for any non constant
7995 calls since there is no way that we can determine if they will
7996 return or not... */
7997 for (i = 0; i < last_bb; i++)
7998 {
7999 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8000 gimple_stmt_iterator gsi;
8001 gimple *stmt, *last_stmt;
8002
8003 if (!bb)
8004 continue;
8005
8006 if (blocks && !bitmap_bit_p (blocks, i))
8007 continue;
8008
8009 gsi = gsi_last_nondebug_bb (bb);
8010 if (!gsi_end_p (gsi))
8011 {
8012 last_stmt = gsi_stmt (gsi);
8013 do
8014 {
8015 stmt = gsi_stmt (gsi);
8016 if (need_fake_edge_p (stmt))
8017 {
8018 edge e;
8019
8020 /* The handling above of the final block before the
8021 epilogue should be enough to verify that there is
8022 no edge to the exit block in CFG already.
8023 Calling make_edge in such case would cause us to
8024 mark that edge as fake and remove it later. */
8025 if (flag_checking && stmt == last_stmt)
8026 {
8027 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8028 gcc_assert (e == NULL);
8029 }
8030
8031 /* Note that the following may create a new basic block
8032 and renumber the existing basic blocks. */
8033 if (stmt != last_stmt)
8034 {
8035 e = split_block (bb, stmt);
8036 if (e)
8037 blocks_split++;
8038 }
8039 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8040 }
8041 gsi_prev (&gsi);
8042 }
8043 while (!gsi_end_p (gsi));
8044 }
8045 }
8046
8047 if (blocks_split)
8048 verify_flow_info ();
8049
8050 return blocks_split;
8051 }
8052
8053 /* Removes edge E and all the blocks dominated by it, and updates dominance
8054 information. The IL in E->src needs to be updated separately.
8055 If dominance info is not available, only the edge E is removed.*/
8056
8057 void
8058 remove_edge_and_dominated_blocks (edge e)
8059 {
8060 vec<basic_block> bbs_to_remove = vNULL;
8061 vec<basic_block> bbs_to_fix_dom = vNULL;
8062 bitmap df, df_idom;
8063 edge f;
8064 edge_iterator ei;
8065 bool none_removed = false;
8066 unsigned i;
8067 basic_block bb, dbb;
8068 bitmap_iterator bi;
8069
8070 /* If we are removing a path inside a non-root loop that may change
8071 loop ownership of blocks or remove loops. Mark loops for fixup. */
8072 if (current_loops
8073 && loop_outer (e->src->loop_father) != NULL
8074 && e->src->loop_father == e->dest->loop_father)
8075 loops_state_set (LOOPS_NEED_FIXUP);
8076
8077 if (!dom_info_available_p (CDI_DOMINATORS))
8078 {
8079 remove_edge (e);
8080 return;
8081 }
8082
8083 /* No updating is needed for edges to exit. */
8084 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8085 {
8086 if (cfgcleanup_altered_bbs)
8087 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8088 remove_edge (e);
8089 return;
8090 }
8091
8092 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8093 that is not dominated by E->dest, then this set is empty. Otherwise,
8094 all the basic blocks dominated by E->dest are removed.
8095
8096 Also, to DF_IDOM we store the immediate dominators of the blocks in
8097 the dominance frontier of E (i.e., of the successors of the
8098 removed blocks, if there are any, and of E->dest otherwise). */
8099 FOR_EACH_EDGE (f, ei, e->dest->preds)
8100 {
8101 if (f == e)
8102 continue;
8103
8104 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8105 {
8106 none_removed = true;
8107 break;
8108 }
8109 }
8110
8111 df = BITMAP_ALLOC (NULL);
8112 df_idom = BITMAP_ALLOC (NULL);
8113
8114 if (none_removed)
8115 bitmap_set_bit (df_idom,
8116 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8117 else
8118 {
8119 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8120 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8121 {
8122 FOR_EACH_EDGE (f, ei, bb->succs)
8123 {
8124 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8125 bitmap_set_bit (df, f->dest->index);
8126 }
8127 }
8128 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8129 bitmap_clear_bit (df, bb->index);
8130
8131 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8132 {
8133 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8134 bitmap_set_bit (df_idom,
8135 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8136 }
8137 }
8138
8139 if (cfgcleanup_altered_bbs)
8140 {
8141 /* Record the set of the altered basic blocks. */
8142 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8143 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8144 }
8145
8146 /* Remove E and the cancelled blocks. */
8147 if (none_removed)
8148 remove_edge (e);
8149 else
8150 {
8151 /* Walk backwards so as to get a chance to substitute all
8152 released DEFs into debug stmts. See
8153 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8154 details. */
8155 for (i = bbs_to_remove.length (); i-- > 0; )
8156 delete_basic_block (bbs_to_remove[i]);
8157 }
8158
8159 /* Update the dominance information. The immediate dominator may change only
8160 for blocks whose immediate dominator belongs to DF_IDOM:
8161
8162 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8163 removal. Let Z the arbitrary block such that idom(Z) = Y and
8164 Z dominates X after the removal. Before removal, there exists a path P
8165 from Y to X that avoids Z. Let F be the last edge on P that is
8166 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8167 dominates W, and because of P, Z does not dominate W), and W belongs to
8168 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8169 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8170 {
8171 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8172 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8173 dbb;
8174 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8175 bbs_to_fix_dom.safe_push (dbb);
8176 }
8177
8178 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8179
8180 BITMAP_FREE (df);
8181 BITMAP_FREE (df_idom);
8182 bbs_to_remove.release ();
8183 bbs_to_fix_dom.release ();
8184 }
8185
8186 /* Purge dead EH edges from basic block BB. */
8187
8188 bool
8189 gimple_purge_dead_eh_edges (basic_block bb)
8190 {
8191 bool changed = false;
8192 edge e;
8193 edge_iterator ei;
8194 gimple *stmt = last_stmt (bb);
8195
8196 if (stmt && stmt_can_throw_internal (stmt))
8197 return false;
8198
8199 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8200 {
8201 if (e->flags & EDGE_EH)
8202 {
8203 remove_edge_and_dominated_blocks (e);
8204 changed = true;
8205 }
8206 else
8207 ei_next (&ei);
8208 }
8209
8210 return changed;
8211 }
8212
8213 /* Purge dead EH edges from basic block listed in BLOCKS. */
8214
8215 bool
8216 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8217 {
8218 bool changed = false;
8219 unsigned i;
8220 bitmap_iterator bi;
8221
8222 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8223 {
8224 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8225
8226 /* Earlier gimple_purge_dead_eh_edges could have removed
8227 this basic block already. */
8228 gcc_assert (bb || changed);
8229 if (bb != NULL)
8230 changed |= gimple_purge_dead_eh_edges (bb);
8231 }
8232
8233 return changed;
8234 }
8235
8236 /* Purge dead abnormal call edges from basic block BB. */
8237
8238 bool
8239 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8240 {
8241 bool changed = false;
8242 edge e;
8243 edge_iterator ei;
8244 gimple *stmt = last_stmt (bb);
8245
8246 if (!cfun->has_nonlocal_label
8247 && !cfun->calls_setjmp)
8248 return false;
8249
8250 if (stmt && stmt_can_make_abnormal_goto (stmt))
8251 return false;
8252
8253 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8254 {
8255 if (e->flags & EDGE_ABNORMAL)
8256 {
8257 if (e->flags & EDGE_FALLTHRU)
8258 e->flags &= ~EDGE_ABNORMAL;
8259 else
8260 remove_edge_and_dominated_blocks (e);
8261 changed = true;
8262 }
8263 else
8264 ei_next (&ei);
8265 }
8266
8267 return changed;
8268 }
8269
8270 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8271
8272 bool
8273 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8274 {
8275 bool changed = false;
8276 unsigned i;
8277 bitmap_iterator bi;
8278
8279 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8280 {
8281 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8282
8283 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8284 this basic block already. */
8285 gcc_assert (bb || changed);
8286 if (bb != NULL)
8287 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8288 }
8289
8290 return changed;
8291 }
8292
8293 /* This function is called whenever a new edge is created or
8294 redirected. */
8295
8296 static void
8297 gimple_execute_on_growing_pred (edge e)
8298 {
8299 basic_block bb = e->dest;
8300
8301 if (!gimple_seq_empty_p (phi_nodes (bb)))
8302 reserve_phi_args_for_new_edge (bb);
8303 }
8304
8305 /* This function is called immediately before edge E is removed from
8306 the edge vector E->dest->preds. */
8307
8308 static void
8309 gimple_execute_on_shrinking_pred (edge e)
8310 {
8311 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8312 remove_phi_args (e);
8313 }
8314
8315 /*---------------------------------------------------------------------------
8316 Helper functions for Loop versioning
8317 ---------------------------------------------------------------------------*/
8318
8319 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8320 of 'first'. Both of them are dominated by 'new_head' basic block. When
8321 'new_head' was created by 'second's incoming edge it received phi arguments
8322 on the edge by split_edge(). Later, additional edge 'e' was created to
8323 connect 'new_head' and 'first'. Now this routine adds phi args on this
8324 additional edge 'e' that new_head to second edge received as part of edge
8325 splitting. */
8326
8327 static void
8328 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8329 basic_block new_head, edge e)
8330 {
8331 gphi *phi1, *phi2;
8332 gphi_iterator psi1, psi2;
8333 tree def;
8334 edge e2 = find_edge (new_head, second);
8335
8336 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8337 edge, we should always have an edge from NEW_HEAD to SECOND. */
8338 gcc_assert (e2 != NULL);
8339
8340 /* Browse all 'second' basic block phi nodes and add phi args to
8341 edge 'e' for 'first' head. PHI args are always in correct order. */
8342
8343 for (psi2 = gsi_start_phis (second),
8344 psi1 = gsi_start_phis (first);
8345 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8346 gsi_next (&psi2), gsi_next (&psi1))
8347 {
8348 phi1 = psi1.phi ();
8349 phi2 = psi2.phi ();
8350 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8351 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8352 }
8353 }
8354
8355
8356 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8357 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8358 the destination of the ELSE part. */
8359
8360 static void
8361 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8362 basic_block second_head ATTRIBUTE_UNUSED,
8363 basic_block cond_bb, void *cond_e)
8364 {
8365 gimple_stmt_iterator gsi;
8366 gimple *new_cond_expr;
8367 tree cond_expr = (tree) cond_e;
8368 edge e0;
8369
8370 /* Build new conditional expr */
8371 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8372 NULL_TREE, NULL_TREE);
8373
8374 /* Add new cond in cond_bb. */
8375 gsi = gsi_last_bb (cond_bb);
8376 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8377
8378 /* Adjust edges appropriately to connect new head with first head
8379 as well as second head. */
8380 e0 = single_succ_edge (cond_bb);
8381 e0->flags &= ~EDGE_FALLTHRU;
8382 e0->flags |= EDGE_FALSE_VALUE;
8383 }
8384
8385
8386 /* Do book-keeping of basic block BB for the profile consistency checker.
8387 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8388 then do post-pass accounting. Store the counting in RECORD. */
8389 static void
8390 gimple_account_profile_record (basic_block bb, int after_pass,
8391 struct profile_record *record)
8392 {
8393 gimple_stmt_iterator i;
8394 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8395 {
8396 record->size[after_pass]
8397 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8398 if (profile_status_for_fn (cfun) == PROFILE_READ)
8399 record->time[after_pass]
8400 += estimate_num_insns (gsi_stmt (i),
8401 &eni_time_weights) * bb->count;
8402 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8403 record->time[after_pass]
8404 += estimate_num_insns (gsi_stmt (i),
8405 &eni_time_weights) * bb->frequency;
8406 }
8407 }
8408
8409 struct cfg_hooks gimple_cfg_hooks = {
8410 "gimple",
8411 gimple_verify_flow_info,
8412 gimple_dump_bb, /* dump_bb */
8413 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8414 create_bb, /* create_basic_block */
8415 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8416 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8417 gimple_can_remove_branch_p, /* can_remove_branch_p */
8418 remove_bb, /* delete_basic_block */
8419 gimple_split_block, /* split_block */
8420 gimple_move_block_after, /* move_block_after */
8421 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8422 gimple_merge_blocks, /* merge_blocks */
8423 gimple_predict_edge, /* predict_edge */
8424 gimple_predicted_by_p, /* predicted_by_p */
8425 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8426 gimple_duplicate_bb, /* duplicate_block */
8427 gimple_split_edge, /* split_edge */
8428 gimple_make_forwarder_block, /* make_forward_block */
8429 NULL, /* tidy_fallthru_edge */
8430 NULL, /* force_nonfallthru */
8431 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8432 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8433 gimple_flow_call_edges_add, /* flow_call_edges_add */
8434 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8435 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8436 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8437 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8438 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8439 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8440 flush_pending_stmts, /* flush_pending_stmts */
8441 gimple_empty_block_p, /* block_empty_p */
8442 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8443 gimple_account_profile_record,
8444 };
8445
8446
8447 /* Split all critical edges. */
8448
8449 unsigned int
8450 split_critical_edges (void)
8451 {
8452 basic_block bb;
8453 edge e;
8454 edge_iterator ei;
8455
8456 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8457 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8458 mappings around the calls to split_edge. */
8459 start_recording_case_labels ();
8460 FOR_ALL_BB_FN (bb, cfun)
8461 {
8462 FOR_EACH_EDGE (e, ei, bb->succs)
8463 {
8464 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8465 split_edge (e);
8466 /* PRE inserts statements to edges and expects that
8467 since split_critical_edges was done beforehand, committing edge
8468 insertions will not split more edges. In addition to critical
8469 edges we must split edges that have multiple successors and
8470 end by control flow statements, such as RESX.
8471 Go ahead and split them too. This matches the logic in
8472 gimple_find_edge_insert_loc. */
8473 else if ((!single_pred_p (e->dest)
8474 || !gimple_seq_empty_p (phi_nodes (e->dest))
8475 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8476 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8477 && !(e->flags & EDGE_ABNORMAL))
8478 {
8479 gimple_stmt_iterator gsi;
8480
8481 gsi = gsi_last_bb (e->src);
8482 if (!gsi_end_p (gsi)
8483 && stmt_ends_bb_p (gsi_stmt (gsi))
8484 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8485 && !gimple_call_builtin_p (gsi_stmt (gsi),
8486 BUILT_IN_RETURN)))
8487 split_edge (e);
8488 }
8489 }
8490 }
8491 end_recording_case_labels ();
8492 return 0;
8493 }
8494
8495 namespace {
8496
8497 const pass_data pass_data_split_crit_edges =
8498 {
8499 GIMPLE_PASS, /* type */
8500 "crited", /* name */
8501 OPTGROUP_NONE, /* optinfo_flags */
8502 TV_TREE_SPLIT_EDGES, /* tv_id */
8503 PROP_cfg, /* properties_required */
8504 PROP_no_crit_edges, /* properties_provided */
8505 0, /* properties_destroyed */
8506 0, /* todo_flags_start */
8507 0, /* todo_flags_finish */
8508 };
8509
8510 class pass_split_crit_edges : public gimple_opt_pass
8511 {
8512 public:
8513 pass_split_crit_edges (gcc::context *ctxt)
8514 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8515 {}
8516
8517 /* opt_pass methods: */
8518 virtual unsigned int execute (function *) { return split_critical_edges (); }
8519
8520 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8521 }; // class pass_split_crit_edges
8522
8523 } // anon namespace
8524
8525 gimple_opt_pass *
8526 make_pass_split_crit_edges (gcc::context *ctxt)
8527 {
8528 return new pass_split_crit_edges (ctxt);
8529 }
8530
8531
8532 /* Insert COND expression which is GIMPLE_COND after STMT
8533 in basic block BB with appropriate basic block split
8534 and creation of a new conditionally executed basic block.
8535 Return created basic block. */
8536 basic_block
8537 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond)
8538 {
8539 edge fall = split_block (bb, stmt);
8540 gimple_stmt_iterator iter = gsi_last_bb (bb);
8541 basic_block new_bb;
8542
8543 /* Insert cond statement. */
8544 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8545 if (gsi_end_p (iter))
8546 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8547 else
8548 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8549
8550 /* Create conditionally executed block. */
8551 new_bb = create_empty_bb (bb);
8552 make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8553 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8554
8555 /* Fix edge for split bb. */
8556 fall->flags = EDGE_FALSE_VALUE;
8557
8558 /* Update dominance info. */
8559 if (dom_info_available_p (CDI_DOMINATORS))
8560 {
8561 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8562 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8563 }
8564
8565 /* Update loop info. */
8566 if (current_loops)
8567 add_bb_to_loop (new_bb, bb->loop_father);
8568
8569 return new_bb;
8570 }
8571
8572 /* Build a ternary operation and gimplify it. Emit code before GSI.
8573 Return the gimple_val holding the result. */
8574
8575 tree
8576 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8577 tree type, tree a, tree b, tree c)
8578 {
8579 tree ret;
8580 location_t loc = gimple_location (gsi_stmt (*gsi));
8581
8582 ret = fold_build3_loc (loc, code, type, a, b, c);
8583 STRIP_NOPS (ret);
8584
8585 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8586 GSI_SAME_STMT);
8587 }
8588
8589 /* Build a binary operation and gimplify it. Emit code before GSI.
8590 Return the gimple_val holding the result. */
8591
8592 tree
8593 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8594 tree type, tree a, tree b)
8595 {
8596 tree ret;
8597
8598 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8599 STRIP_NOPS (ret);
8600
8601 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8602 GSI_SAME_STMT);
8603 }
8604
8605 /* Build a unary operation and gimplify it. Emit code before GSI.
8606 Return the gimple_val holding the result. */
8607
8608 tree
8609 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8610 tree a)
8611 {
8612 tree ret;
8613
8614 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8615 STRIP_NOPS (ret);
8616
8617 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8618 GSI_SAME_STMT);
8619 }
8620
8621
8622 \f
8623 /* Given a basic block B which ends with a conditional and has
8624 precisely two successors, determine which of the edges is taken if
8625 the conditional is true and which is taken if the conditional is
8626 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8627
8628 void
8629 extract_true_false_edges_from_block (basic_block b,
8630 edge *true_edge,
8631 edge *false_edge)
8632 {
8633 edge e = EDGE_SUCC (b, 0);
8634
8635 if (e->flags & EDGE_TRUE_VALUE)
8636 {
8637 *true_edge = e;
8638 *false_edge = EDGE_SUCC (b, 1);
8639 }
8640 else
8641 {
8642 *false_edge = e;
8643 *true_edge = EDGE_SUCC (b, 1);
8644 }
8645 }
8646
8647
8648 /* From a controlling predicate in the immediate dominator DOM of
8649 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8650 predicate evaluates to true and false and store them to
8651 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8652 they are non-NULL. Returns true if the edges can be determined,
8653 else return false. */
8654
8655 bool
8656 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
8657 edge *true_controlled_edge,
8658 edge *false_controlled_edge)
8659 {
8660 basic_block bb = phiblock;
8661 edge true_edge, false_edge, tem;
8662 edge e0 = NULL, e1 = NULL;
8663
8664 /* We have to verify that one edge into the PHI node is dominated
8665 by the true edge of the predicate block and the other edge
8666 dominated by the false edge. This ensures that the PHI argument
8667 we are going to take is completely determined by the path we
8668 take from the predicate block.
8669 We can only use BB dominance checks below if the destination of
8670 the true/false edges are dominated by their edge, thus only
8671 have a single predecessor. */
8672 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
8673 tem = EDGE_PRED (bb, 0);
8674 if (tem == true_edge
8675 || (single_pred_p (true_edge->dest)
8676 && (tem->src == true_edge->dest
8677 || dominated_by_p (CDI_DOMINATORS,
8678 tem->src, true_edge->dest))))
8679 e0 = tem;
8680 else if (tem == false_edge
8681 || (single_pred_p (false_edge->dest)
8682 && (tem->src == false_edge->dest
8683 || dominated_by_p (CDI_DOMINATORS,
8684 tem->src, false_edge->dest))))
8685 e1 = tem;
8686 else
8687 return false;
8688 tem = EDGE_PRED (bb, 1);
8689 if (tem == true_edge
8690 || (single_pred_p (true_edge->dest)
8691 && (tem->src == true_edge->dest
8692 || dominated_by_p (CDI_DOMINATORS,
8693 tem->src, true_edge->dest))))
8694 e0 = tem;
8695 else if (tem == false_edge
8696 || (single_pred_p (false_edge->dest)
8697 && (tem->src == false_edge->dest
8698 || dominated_by_p (CDI_DOMINATORS,
8699 tem->src, false_edge->dest))))
8700 e1 = tem;
8701 else
8702 return false;
8703 if (!e0 || !e1)
8704 return false;
8705
8706 if (true_controlled_edge)
8707 *true_controlled_edge = e0;
8708 if (false_controlled_edge)
8709 *false_controlled_edge = e1;
8710
8711 return true;
8712 }
8713
8714
8715
8716 /* Emit return warnings. */
8717
8718 namespace {
8719
8720 const pass_data pass_data_warn_function_return =
8721 {
8722 GIMPLE_PASS, /* type */
8723 "*warn_function_return", /* name */
8724 OPTGROUP_NONE, /* optinfo_flags */
8725 TV_NONE, /* tv_id */
8726 PROP_cfg, /* properties_required */
8727 0, /* properties_provided */
8728 0, /* properties_destroyed */
8729 0, /* todo_flags_start */
8730 0, /* todo_flags_finish */
8731 };
8732
8733 class pass_warn_function_return : public gimple_opt_pass
8734 {
8735 public:
8736 pass_warn_function_return (gcc::context *ctxt)
8737 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8738 {}
8739
8740 /* opt_pass methods: */
8741 virtual unsigned int execute (function *);
8742
8743 }; // class pass_warn_function_return
8744
8745 unsigned int
8746 pass_warn_function_return::execute (function *fun)
8747 {
8748 source_location location;
8749 gimple *last;
8750 edge e;
8751 edge_iterator ei;
8752
8753 if (!targetm.warn_func_return (fun->decl))
8754 return 0;
8755
8756 /* If we have a path to EXIT, then we do return. */
8757 if (TREE_THIS_VOLATILE (fun->decl)
8758 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8759 {
8760 location = UNKNOWN_LOCATION;
8761 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8762 {
8763 last = last_stmt (e->src);
8764 if ((gimple_code (last) == GIMPLE_RETURN
8765 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8766 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8767 break;
8768 }
8769 if (location == UNKNOWN_LOCATION)
8770 location = cfun->function_end_locus;
8771 warning_at (location, 0, "%<noreturn%> function does return");
8772 }
8773
8774 /* If we see "return;" in some basic block, then we do reach the end
8775 without returning a value. */
8776 else if (warn_return_type
8777 && !TREE_NO_WARNING (fun->decl)
8778 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8779 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8780 {
8781 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8782 {
8783 gimple *last = last_stmt (e->src);
8784 greturn *return_stmt = dyn_cast <greturn *> (last);
8785 if (return_stmt
8786 && gimple_return_retval (return_stmt) == NULL
8787 && !gimple_no_warning_p (last))
8788 {
8789 location = gimple_location (last);
8790 if (location == UNKNOWN_LOCATION)
8791 location = fun->function_end_locus;
8792 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8793 TREE_NO_WARNING (fun->decl) = 1;
8794 break;
8795 }
8796 }
8797 }
8798 return 0;
8799 }
8800
8801 } // anon namespace
8802
8803 gimple_opt_pass *
8804 make_pass_warn_function_return (gcc::context *ctxt)
8805 {
8806 return new pass_warn_function_return (ctxt);
8807 }
8808
8809 /* Walk a gimplified function and warn for functions whose return value is
8810 ignored and attribute((warn_unused_result)) is set. This is done before
8811 inlining, so we don't have to worry about that. */
8812
8813 static void
8814 do_warn_unused_result (gimple_seq seq)
8815 {
8816 tree fdecl, ftype;
8817 gimple_stmt_iterator i;
8818
8819 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8820 {
8821 gimple *g = gsi_stmt (i);
8822
8823 switch (gimple_code (g))
8824 {
8825 case GIMPLE_BIND:
8826 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
8827 break;
8828 case GIMPLE_TRY:
8829 do_warn_unused_result (gimple_try_eval (g));
8830 do_warn_unused_result (gimple_try_cleanup (g));
8831 break;
8832 case GIMPLE_CATCH:
8833 do_warn_unused_result (gimple_catch_handler (
8834 as_a <gcatch *> (g)));
8835 break;
8836 case GIMPLE_EH_FILTER:
8837 do_warn_unused_result (gimple_eh_filter_failure (g));
8838 break;
8839
8840 case GIMPLE_CALL:
8841 if (gimple_call_lhs (g))
8842 break;
8843 if (gimple_call_internal_p (g))
8844 break;
8845
8846 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8847 LHS. All calls whose value is ignored should be
8848 represented like this. Look for the attribute. */
8849 fdecl = gimple_call_fndecl (g);
8850 ftype = gimple_call_fntype (g);
8851
8852 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8853 {
8854 location_t loc = gimple_location (g);
8855
8856 if (fdecl)
8857 warning_at (loc, OPT_Wunused_result,
8858 "ignoring return value of %qD, "
8859 "declared with attribute warn_unused_result",
8860 fdecl);
8861 else
8862 warning_at (loc, OPT_Wunused_result,
8863 "ignoring return value of function "
8864 "declared with attribute warn_unused_result");
8865 }
8866 break;
8867
8868 default:
8869 /* Not a container, not a call, or a call whose value is used. */
8870 break;
8871 }
8872 }
8873 }
8874
8875 namespace {
8876
8877 const pass_data pass_data_warn_unused_result =
8878 {
8879 GIMPLE_PASS, /* type */
8880 "*warn_unused_result", /* name */
8881 OPTGROUP_NONE, /* optinfo_flags */
8882 TV_NONE, /* tv_id */
8883 PROP_gimple_any, /* properties_required */
8884 0, /* properties_provided */
8885 0, /* properties_destroyed */
8886 0, /* todo_flags_start */
8887 0, /* todo_flags_finish */
8888 };
8889
8890 class pass_warn_unused_result : public gimple_opt_pass
8891 {
8892 public:
8893 pass_warn_unused_result (gcc::context *ctxt)
8894 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8895 {}
8896
8897 /* opt_pass methods: */
8898 virtual bool gate (function *) { return flag_warn_unused_result; }
8899 virtual unsigned int execute (function *)
8900 {
8901 do_warn_unused_result (gimple_body (current_function_decl));
8902 return 0;
8903 }
8904
8905 }; // class pass_warn_unused_result
8906
8907 } // anon namespace
8908
8909 gimple_opt_pass *
8910 make_pass_warn_unused_result (gcc::context *ctxt)
8911 {
8912 return new pass_warn_unused_result (ctxt);
8913 }
8914
8915 /* IPA passes, compilation of earlier functions or inlining
8916 might have changed some properties, such as marked functions nothrow,
8917 pure, const or noreturn.
8918 Remove redundant edges and basic blocks, and create new ones if necessary.
8919
8920 This pass can't be executed as stand alone pass from pass manager, because
8921 in between inlining and this fixup the verify_flow_info would fail. */
8922
8923 unsigned int
8924 execute_fixup_cfg (void)
8925 {
8926 basic_block bb;
8927 gimple_stmt_iterator gsi;
8928 int todo = 0;
8929 gcov_type count_scale;
8930 edge e;
8931 edge_iterator ei;
8932
8933 count_scale
8934 = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl)->count,
8935 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8936
8937 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8938 cgraph_node::get (current_function_decl)->count;
8939 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8940 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8941 count_scale);
8942
8943 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8944 e->count = apply_scale (e->count, count_scale);
8945
8946 FOR_EACH_BB_FN (bb, cfun)
8947 {
8948 bb->count = apply_scale (bb->count, count_scale);
8949 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
8950 {
8951 gimple *stmt = gsi_stmt (gsi);
8952 tree decl = is_gimple_call (stmt)
8953 ? gimple_call_fndecl (stmt)
8954 : NULL;
8955 if (decl)
8956 {
8957 int flags = gimple_call_flags (stmt);
8958 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8959 {
8960 if (gimple_purge_dead_abnormal_call_edges (bb))
8961 todo |= TODO_cleanup_cfg;
8962
8963 if (gimple_in_ssa_p (cfun))
8964 {
8965 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8966 update_stmt (stmt);
8967 }
8968 }
8969
8970 if (flags & ECF_NORETURN
8971 && fixup_noreturn_call (stmt))
8972 todo |= TODO_cleanup_cfg;
8973 }
8974
8975 /* Remove stores to variables we marked write-only.
8976 Keep access when store has side effect, i.e. in case when source
8977 is volatile. */
8978 if (gimple_store_p (stmt)
8979 && !gimple_has_side_effects (stmt))
8980 {
8981 tree lhs = get_base_address (gimple_get_lhs (stmt));
8982
8983 if (TREE_CODE (lhs) == VAR_DECL
8984 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
8985 && varpool_node::get (lhs)->writeonly)
8986 {
8987 unlink_stmt_vdef (stmt);
8988 gsi_remove (&gsi, true);
8989 release_defs (stmt);
8990 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8991 continue;
8992 }
8993 }
8994 /* For calls we can simply remove LHS when it is known
8995 to be write-only. */
8996 if (is_gimple_call (stmt)
8997 && gimple_get_lhs (stmt))
8998 {
8999 tree lhs = get_base_address (gimple_get_lhs (stmt));
9000
9001 if (TREE_CODE (lhs) == VAR_DECL
9002 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9003 && varpool_node::get (lhs)->writeonly)
9004 {
9005 gimple_call_set_lhs (stmt, NULL);
9006 update_stmt (stmt);
9007 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9008 }
9009 }
9010
9011 if (maybe_clean_eh_stmt (stmt)
9012 && gimple_purge_dead_eh_edges (bb))
9013 todo |= TODO_cleanup_cfg;
9014 gsi_next (&gsi);
9015 }
9016
9017 FOR_EACH_EDGE (e, ei, bb->succs)
9018 e->count = apply_scale (e->count, count_scale);
9019
9020 /* If we have a basic block with no successors that does not
9021 end with a control statement or a noreturn call end it with
9022 a call to __builtin_unreachable. This situation can occur
9023 when inlining a noreturn call that does in fact return. */
9024 if (EDGE_COUNT (bb->succs) == 0)
9025 {
9026 gimple *stmt = last_stmt (bb);
9027 if (!stmt
9028 || (!is_ctrl_stmt (stmt)
9029 && (!is_gimple_call (stmt)
9030 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
9031 {
9032 if (stmt && is_gimple_call (stmt))
9033 gimple_call_set_ctrl_altering (stmt, false);
9034 stmt = gimple_build_call
9035 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
9036 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9037 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9038 }
9039 }
9040 }
9041 if (count_scale != REG_BR_PROB_BASE)
9042 compute_function_frequency ();
9043
9044 if (current_loops
9045 && (todo & TODO_cleanup_cfg))
9046 loops_state_set (LOOPS_NEED_FIXUP);
9047
9048 return todo;
9049 }
9050
9051 namespace {
9052
9053 const pass_data pass_data_fixup_cfg =
9054 {
9055 GIMPLE_PASS, /* type */
9056 "fixup_cfg", /* name */
9057 OPTGROUP_NONE, /* optinfo_flags */
9058 TV_NONE, /* tv_id */
9059 PROP_cfg, /* properties_required */
9060 0, /* properties_provided */
9061 0, /* properties_destroyed */
9062 0, /* todo_flags_start */
9063 0, /* todo_flags_finish */
9064 };
9065
9066 class pass_fixup_cfg : public gimple_opt_pass
9067 {
9068 public:
9069 pass_fixup_cfg (gcc::context *ctxt)
9070 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9071 {}
9072
9073 /* opt_pass methods: */
9074 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9075 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9076
9077 }; // class pass_fixup_cfg
9078
9079 } // anon namespace
9080
9081 gimple_opt_pass *
9082 make_pass_fixup_cfg (gcc::context *ctxt)
9083 {
9084 return new pass_fixup_cfg (ctxt);
9085 }
9086
9087 /* Garbage collection support for edge_def. */
9088
9089 extern void gt_ggc_mx (tree&);
9090 extern void gt_ggc_mx (gimple *&);
9091 extern void gt_ggc_mx (rtx&);
9092 extern void gt_ggc_mx (basic_block&);
9093
9094 static void
9095 gt_ggc_mx (rtx_insn *& x)
9096 {
9097 if (x)
9098 gt_ggc_mx_rtx_def ((void *) x);
9099 }
9100
9101 void
9102 gt_ggc_mx (edge_def *e)
9103 {
9104 tree block = LOCATION_BLOCK (e->goto_locus);
9105 gt_ggc_mx (e->src);
9106 gt_ggc_mx (e->dest);
9107 if (current_ir_type () == IR_GIMPLE)
9108 gt_ggc_mx (e->insns.g);
9109 else
9110 gt_ggc_mx (e->insns.r);
9111 gt_ggc_mx (block);
9112 }
9113
9114 /* PCH support for edge_def. */
9115
9116 extern void gt_pch_nx (tree&);
9117 extern void gt_pch_nx (gimple *&);
9118 extern void gt_pch_nx (rtx&);
9119 extern void gt_pch_nx (basic_block&);
9120
9121 static void
9122 gt_pch_nx (rtx_insn *& x)
9123 {
9124 if (x)
9125 gt_pch_nx_rtx_def ((void *) x);
9126 }
9127
9128 void
9129 gt_pch_nx (edge_def *e)
9130 {
9131 tree block = LOCATION_BLOCK (e->goto_locus);
9132 gt_pch_nx (e->src);
9133 gt_pch_nx (e->dest);
9134 if (current_ir_type () == IR_GIMPLE)
9135 gt_pch_nx (e->insns.g);
9136 else
9137 gt_pch_nx (e->insns.r);
9138 gt_pch_nx (block);
9139 }
9140
9141 void
9142 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9143 {
9144 tree block = LOCATION_BLOCK (e->goto_locus);
9145 op (&(e->src), cookie);
9146 op (&(e->dest), cookie);
9147 if (current_ir_type () == IR_GIMPLE)
9148 op (&(e->insns.g), cookie);
9149 else
9150 op (&(e->insns.r), cookie);
9151 op (&(block), cookie);
9152 }