tree-cfg.h (should_remove_lhs_p): New predicate.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-low.h"
58 #include "tree-cfgcleanup.h"
59 #include "gimplify.h"
60 #include "attribs.h"
61
62 /* This file contains functions for building the Control Flow Graph (CFG)
63 for a function tree. */
64
65 /* Local declarations. */
66
67 /* Initial capacity for the basic block array. */
68 static const int initial_cfg_capacity = 20;
69
70 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
71 which use a particular edge. The CASE_LABEL_EXPRs are chained together
72 via their CASE_CHAIN field, which we clear after we're done with the
73 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
74
75 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
76 update the case vector in response to edge redirections.
77
78 Right now this table is set up and torn down at key points in the
79 compilation process. It would be nice if we could make the table
80 more persistent. The key is getting notification of changes to
81 the CFG (particularly edge removal, creation and redirection). */
82
83 static hash_map<edge, tree> *edge_to_cases;
84
85 /* If we record edge_to_cases, this bitmap will hold indexes
86 of basic blocks that end in a GIMPLE_SWITCH which we touched
87 due to edge manipulations. */
88
89 static bitmap touched_switch_bbs;
90
91 /* CFG statistics. */
92 struct cfg_stats_d
93 {
94 long num_merged_labels;
95 };
96
97 static struct cfg_stats_d cfg_stats;
98
99 /* Data to pass to replace_block_vars_by_duplicates_1. */
100 struct replace_decls_d
101 {
102 hash_map<tree, tree> *vars_map;
103 tree to_context;
104 };
105
106 /* Hash table to store last discriminator assigned for each locus. */
107 struct locus_discrim_map
108 {
109 location_t locus;
110 int discriminator;
111 };
112
113 /* Hashtable helpers. */
114
115 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
116 {
117 static inline hashval_t hash (const locus_discrim_map *);
118 static inline bool equal (const locus_discrim_map *,
119 const locus_discrim_map *);
120 };
121
122 /* Trivial hash function for a location_t. ITEM is a pointer to
123 a hash table entry that maps a location_t to a discriminator. */
124
125 inline hashval_t
126 locus_discrim_hasher::hash (const locus_discrim_map *item)
127 {
128 return LOCATION_LINE (item->locus);
129 }
130
131 /* Equality function for the locus-to-discriminator map. A and B
132 point to the two hash table entries to compare. */
133
134 inline bool
135 locus_discrim_hasher::equal (const locus_discrim_map *a,
136 const locus_discrim_map *b)
137 {
138 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
139 }
140
141 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
142
143 /* Basic blocks and flowgraphs. */
144 static void make_blocks (gimple_seq);
145
146 /* Edges. */
147 static void make_edges (void);
148 static void assign_discriminators (void);
149 static void make_cond_expr_edges (basic_block);
150 static void make_gimple_switch_edges (gswitch *, basic_block);
151 static bool make_goto_expr_edges (basic_block);
152 static void make_gimple_asm_edges (basic_block);
153 static edge gimple_redirect_edge_and_branch (edge, basic_block);
154 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
155
156 /* Various helpers. */
157 static inline bool stmt_starts_bb_p (gimple *, gimple *);
158 static int gimple_verify_flow_info (void);
159 static void gimple_make_forwarder_block (edge);
160 static gimple *first_non_label_stmt (basic_block);
161 static bool verify_gimple_transaction (gtransaction *);
162 static bool call_can_make_abnormal_goto (gimple *);
163
164 /* Flowgraph optimization and cleanup. */
165 static void gimple_merge_blocks (basic_block, basic_block);
166 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
167 static void remove_bb (basic_block);
168 static edge find_taken_edge_computed_goto (basic_block, tree);
169 static edge find_taken_edge_cond_expr (basic_block, tree);
170 static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree);
171 static tree find_case_label_for_value (gswitch *, tree);
172
173 void
174 init_empty_tree_cfg_for_function (struct function *fn)
175 {
176 /* Initialize the basic block array. */
177 init_flow (fn);
178 profile_status_for_fn (fn) = PROFILE_ABSENT;
179 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
180 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
181 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
182 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
183 initial_cfg_capacity);
184
185 /* Build a mapping of labels to their associated blocks. */
186 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
188 initial_cfg_capacity);
189
190 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
191 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
192
193 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
194 = EXIT_BLOCK_PTR_FOR_FN (fn);
195 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
196 = ENTRY_BLOCK_PTR_FOR_FN (fn);
197 }
198
199 void
200 init_empty_tree_cfg (void)
201 {
202 init_empty_tree_cfg_for_function (cfun);
203 }
204
205 /*---------------------------------------------------------------------------
206 Create basic blocks
207 ---------------------------------------------------------------------------*/
208
209 /* Entry point to the CFG builder for trees. SEQ is the sequence of
210 statements to be added to the flowgraph. */
211
212 static void
213 build_gimple_cfg (gimple_seq seq)
214 {
215 /* Register specific gimple functions. */
216 gimple_register_cfg_hooks ();
217
218 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
219
220 init_empty_tree_cfg ();
221
222 make_blocks (seq);
223
224 /* Make sure there is always at least one block, even if it's empty. */
225 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
226 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
227
228 /* Adjust the size of the array. */
229 if (basic_block_info_for_fn (cfun)->length ()
230 < (size_t) n_basic_blocks_for_fn (cfun))
231 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
232 n_basic_blocks_for_fn (cfun));
233
234 /* To speed up statement iterator walks, we first purge dead labels. */
235 cleanup_dead_labels ();
236
237 /* Group case nodes to reduce the number of edges.
238 We do this after cleaning up dead labels because otherwise we miss
239 a lot of obvious case merging opportunities. */
240 group_case_labels ();
241
242 /* Create the edges of the flowgraph. */
243 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
244 make_edges ();
245 assign_discriminators ();
246 cleanup_dead_labels ();
247 delete discriminator_per_locus;
248 discriminator_per_locus = NULL;
249 }
250
251 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
252 them and propagate the information to LOOP. We assume that the annotations
253 come immediately before the condition in BB, if any. */
254
255 static void
256 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
257 {
258 gimple_stmt_iterator gsi = gsi_last_bb (bb);
259 gimple *stmt = gsi_stmt (gsi);
260
261 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
262 return;
263
264 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
265 {
266 stmt = gsi_stmt (gsi);
267 if (gimple_code (stmt) != GIMPLE_CALL)
268 break;
269 if (!gimple_call_internal_p (stmt)
270 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
271 break;
272
273 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
274 {
275 case annot_expr_ivdep_kind:
276 loop->safelen = INT_MAX;
277 break;
278 case annot_expr_no_vector_kind:
279 loop->dont_vectorize = true;
280 break;
281 case annot_expr_vector_kind:
282 loop->force_vectorize = true;
283 cfun->has_force_vectorize_loops = true;
284 break;
285 default:
286 gcc_unreachable ();
287 }
288
289 stmt = gimple_build_assign (gimple_call_lhs (stmt),
290 gimple_call_arg (stmt, 0));
291 gsi_replace (&gsi, stmt, true);
292 }
293 }
294
295 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
296 them and propagate the information to the loop. We assume that the
297 annotations come immediately before the condition of the loop. */
298
299 static void
300 replace_loop_annotate (void)
301 {
302 struct loop *loop;
303 basic_block bb;
304 gimple_stmt_iterator gsi;
305 gimple *stmt;
306
307 FOR_EACH_LOOP (loop, 0)
308 {
309 /* First look into the header. */
310 replace_loop_annotate_in_block (loop->header, loop);
311
312 /* Then look into the latch, if any. */
313 if (loop->latch)
314 replace_loop_annotate_in_block (loop->latch, loop);
315 }
316
317 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
318 FOR_EACH_BB_FN (bb, cfun)
319 {
320 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
321 {
322 stmt = gsi_stmt (gsi);
323 if (gimple_code (stmt) != GIMPLE_CALL)
324 continue;
325 if (!gimple_call_internal_p (stmt)
326 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
327 continue;
328
329 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
330 {
331 case annot_expr_ivdep_kind:
332 case annot_expr_no_vector_kind:
333 case annot_expr_vector_kind:
334 break;
335 default:
336 gcc_unreachable ();
337 }
338
339 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
340 stmt = gimple_build_assign (gimple_call_lhs (stmt),
341 gimple_call_arg (stmt, 0));
342 gsi_replace (&gsi, stmt, true);
343 }
344 }
345 }
346
347
348 static unsigned int
349 execute_build_cfg (void)
350 {
351 gimple_seq body = gimple_body (current_function_decl);
352
353 build_gimple_cfg (body);
354 gimple_set_body (current_function_decl, NULL);
355 if (dump_file && (dump_flags & TDF_DETAILS))
356 {
357 fprintf (dump_file, "Scope blocks:\n");
358 dump_scope_blocks (dump_file, dump_flags);
359 }
360 cleanup_tree_cfg ();
361 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
362 replace_loop_annotate ();
363 return 0;
364 }
365
366 namespace {
367
368 const pass_data pass_data_build_cfg =
369 {
370 GIMPLE_PASS, /* type */
371 "cfg", /* name */
372 OPTGROUP_NONE, /* optinfo_flags */
373 TV_TREE_CFG, /* tv_id */
374 PROP_gimple_leh, /* properties_required */
375 ( PROP_cfg | PROP_loops ), /* properties_provided */
376 0, /* properties_destroyed */
377 0, /* todo_flags_start */
378 0, /* todo_flags_finish */
379 };
380
381 class pass_build_cfg : public gimple_opt_pass
382 {
383 public:
384 pass_build_cfg (gcc::context *ctxt)
385 : gimple_opt_pass (pass_data_build_cfg, ctxt)
386 {}
387
388 /* opt_pass methods: */
389 virtual unsigned int execute (function *) { return execute_build_cfg (); }
390
391 }; // class pass_build_cfg
392
393 } // anon namespace
394
395 gimple_opt_pass *
396 make_pass_build_cfg (gcc::context *ctxt)
397 {
398 return new pass_build_cfg (ctxt);
399 }
400
401
402 /* Return true if T is a computed goto. */
403
404 bool
405 computed_goto_p (gimple *t)
406 {
407 return (gimple_code (t) == GIMPLE_GOTO
408 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
409 }
410
411 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
412 the other edge points to a bb with just __builtin_unreachable ().
413 I.e. return true for C->M edge in:
414 <bb C>:
415 ...
416 if (something)
417 goto <bb N>;
418 else
419 goto <bb M>;
420 <bb N>:
421 __builtin_unreachable ();
422 <bb M>: */
423
424 bool
425 assert_unreachable_fallthru_edge_p (edge e)
426 {
427 basic_block pred_bb = e->src;
428 gimple *last = last_stmt (pred_bb);
429 if (last && gimple_code (last) == GIMPLE_COND)
430 {
431 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
432 if (other_bb == e->dest)
433 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
434 if (EDGE_COUNT (other_bb->succs) == 0)
435 {
436 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
437 gimple *stmt;
438
439 if (gsi_end_p (gsi))
440 return false;
441 stmt = gsi_stmt (gsi);
442 while (is_gimple_debug (stmt) || gimple_clobber_p (stmt))
443 {
444 gsi_next (&gsi);
445 if (gsi_end_p (gsi))
446 return false;
447 stmt = gsi_stmt (gsi);
448 }
449 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
450 }
451 }
452 return false;
453 }
454
455
456 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
457 could alter control flow except via eh. We initialize the flag at
458 CFG build time and only ever clear it later. */
459
460 static void
461 gimple_call_initialize_ctrl_altering (gimple *stmt)
462 {
463 int flags = gimple_call_flags (stmt);
464
465 /* A call alters control flow if it can make an abnormal goto. */
466 if (call_can_make_abnormal_goto (stmt)
467 /* A call also alters control flow if it does not return. */
468 || flags & ECF_NORETURN
469 /* TM ending statements have backedges out of the transaction.
470 Return true so we split the basic block containing them.
471 Note that the TM_BUILTIN test is merely an optimization. */
472 || ((flags & ECF_TM_BUILTIN)
473 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
474 /* BUILT_IN_RETURN call is same as return statement. */
475 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
476 /* IFN_UNIQUE should be the last insn, to make checking for it
477 as cheap as possible. */
478 || (gimple_call_internal_p (stmt)
479 && gimple_call_internal_unique_p (stmt)))
480 gimple_call_set_ctrl_altering (stmt, true);
481 else
482 gimple_call_set_ctrl_altering (stmt, false);
483 }
484
485
486 /* Insert SEQ after BB and build a flowgraph. */
487
488 static basic_block
489 make_blocks_1 (gimple_seq seq, basic_block bb)
490 {
491 gimple_stmt_iterator i = gsi_start (seq);
492 gimple *stmt = NULL;
493 bool start_new_block = true;
494 bool first_stmt_of_seq = true;
495
496 while (!gsi_end_p (i))
497 {
498 gimple *prev_stmt;
499
500 prev_stmt = stmt;
501 stmt = gsi_stmt (i);
502
503 if (stmt && is_gimple_call (stmt))
504 gimple_call_initialize_ctrl_altering (stmt);
505
506 /* If the statement starts a new basic block or if we have determined
507 in a previous pass that we need to create a new block for STMT, do
508 so now. */
509 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
510 {
511 if (!first_stmt_of_seq)
512 gsi_split_seq_before (&i, &seq);
513 bb = create_basic_block (seq, bb);
514 start_new_block = false;
515 }
516
517 /* Now add STMT to BB and create the subgraphs for special statement
518 codes. */
519 gimple_set_bb (stmt, bb);
520
521 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
522 next iteration. */
523 if (stmt_ends_bb_p (stmt))
524 {
525 /* If the stmt can make abnormal goto use a new temporary
526 for the assignment to the LHS. This makes sure the old value
527 of the LHS is available on the abnormal edge. Otherwise
528 we will end up with overlapping life-ranges for abnormal
529 SSA names. */
530 if (gimple_has_lhs (stmt)
531 && stmt_can_make_abnormal_goto (stmt)
532 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
533 {
534 tree lhs = gimple_get_lhs (stmt);
535 tree tmp = create_tmp_var (TREE_TYPE (lhs));
536 gimple *s = gimple_build_assign (lhs, tmp);
537 gimple_set_location (s, gimple_location (stmt));
538 gimple_set_block (s, gimple_block (stmt));
539 gimple_set_lhs (stmt, tmp);
540 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
541 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
542 DECL_GIMPLE_REG_P (tmp) = 1;
543 gsi_insert_after (&i, s, GSI_SAME_STMT);
544 }
545 start_new_block = true;
546 }
547
548 gsi_next (&i);
549 first_stmt_of_seq = false;
550 }
551 return bb;
552 }
553
554 /* Build a flowgraph for the sequence of stmts SEQ. */
555
556 static void
557 make_blocks (gimple_seq seq)
558 {
559 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
560 }
561
562 /* Create and return a new empty basic block after bb AFTER. */
563
564 static basic_block
565 create_bb (void *h, void *e, basic_block after)
566 {
567 basic_block bb;
568
569 gcc_assert (!e);
570
571 /* Create and initialize a new basic block. Since alloc_block uses
572 GC allocation that clears memory to allocate a basic block, we do
573 not have to clear the newly allocated basic block here. */
574 bb = alloc_block ();
575
576 bb->index = last_basic_block_for_fn (cfun);
577 bb->flags = BB_NEW;
578 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
579
580 /* Add the new block to the linked list of blocks. */
581 link_block (bb, after);
582
583 /* Grow the basic block array if needed. */
584 if ((size_t) last_basic_block_for_fn (cfun)
585 == basic_block_info_for_fn (cfun)->length ())
586 {
587 size_t new_size =
588 (last_basic_block_for_fn (cfun)
589 + (last_basic_block_for_fn (cfun) + 3) / 4);
590 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
591 }
592
593 /* Add the newly created block to the array. */
594 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
595
596 n_basic_blocks_for_fn (cfun)++;
597 last_basic_block_for_fn (cfun)++;
598
599 return bb;
600 }
601
602
603 /*---------------------------------------------------------------------------
604 Edge creation
605 ---------------------------------------------------------------------------*/
606
607 /* If basic block BB has an abnormal edge to a basic block
608 containing IFN_ABNORMAL_DISPATCHER internal call, return
609 that the dispatcher's basic block, otherwise return NULL. */
610
611 basic_block
612 get_abnormal_succ_dispatcher (basic_block bb)
613 {
614 edge e;
615 edge_iterator ei;
616
617 FOR_EACH_EDGE (e, ei, bb->succs)
618 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
619 {
620 gimple_stmt_iterator gsi
621 = gsi_start_nondebug_after_labels_bb (e->dest);
622 gimple *g = gsi_stmt (gsi);
623 if (g
624 && is_gimple_call (g)
625 && gimple_call_internal_p (g)
626 && gimple_call_internal_fn (g) == IFN_ABNORMAL_DISPATCHER)
627 return e->dest;
628 }
629 return NULL;
630 }
631
632 /* Helper function for make_edges. Create a basic block with
633 with ABNORMAL_DISPATCHER internal call in it if needed, and
634 create abnormal edges from BBS to it and from it to FOR_BB
635 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
636
637 static void
638 handle_abnormal_edges (basic_block *dispatcher_bbs,
639 basic_block for_bb, int *bb_to_omp_idx,
640 auto_vec<basic_block> *bbs, bool computed_goto)
641 {
642 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
643 unsigned int idx = 0;
644 basic_block bb;
645 bool inner = false;
646
647 if (bb_to_omp_idx)
648 {
649 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
650 if (bb_to_omp_idx[for_bb->index] != 0)
651 inner = true;
652 }
653
654 /* If the dispatcher has been created already, then there are basic
655 blocks with abnormal edges to it, so just make a new edge to
656 for_bb. */
657 if (*dispatcher == NULL)
658 {
659 /* Check if there are any basic blocks that need to have
660 abnormal edges to this dispatcher. If there are none, return
661 early. */
662 if (bb_to_omp_idx == NULL)
663 {
664 if (bbs->is_empty ())
665 return;
666 }
667 else
668 {
669 FOR_EACH_VEC_ELT (*bbs, idx, bb)
670 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
671 break;
672 if (bb == NULL)
673 return;
674 }
675
676 /* Create the dispatcher bb. */
677 *dispatcher = create_basic_block (NULL, for_bb);
678 if (computed_goto)
679 {
680 /* Factor computed gotos into a common computed goto site. Also
681 record the location of that site so that we can un-factor the
682 gotos after we have converted back to normal form. */
683 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
684
685 /* Create the destination of the factored goto. Each original
686 computed goto will put its desired destination into this
687 variable and jump to the label we create immediately below. */
688 tree var = create_tmp_var (ptr_type_node, "gotovar");
689
690 /* Build a label for the new block which will contain the
691 factored computed goto. */
692 tree factored_label_decl
693 = create_artificial_label (UNKNOWN_LOCATION);
694 gimple *factored_computed_goto_label
695 = gimple_build_label (factored_label_decl);
696 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
697
698 /* Build our new computed goto. */
699 gimple *factored_computed_goto = gimple_build_goto (var);
700 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
701
702 FOR_EACH_VEC_ELT (*bbs, idx, bb)
703 {
704 if (bb_to_omp_idx
705 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
706 continue;
707
708 gsi = gsi_last_bb (bb);
709 gimple *last = gsi_stmt (gsi);
710
711 gcc_assert (computed_goto_p (last));
712
713 /* Copy the original computed goto's destination into VAR. */
714 gimple *assignment
715 = gimple_build_assign (var, gimple_goto_dest (last));
716 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
717
718 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
719 e->goto_locus = gimple_location (last);
720 gsi_remove (&gsi, true);
721 }
722 }
723 else
724 {
725 tree arg = inner ? boolean_true_node : boolean_false_node;
726 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
727 1, arg);
728 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
729 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
730
731 /* Create predecessor edges of the dispatcher. */
732 FOR_EACH_VEC_ELT (*bbs, idx, bb)
733 {
734 if (bb_to_omp_idx
735 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
736 continue;
737 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
738 }
739 }
740 }
741
742 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
743 }
744
745 /* Creates outgoing edges for BB. Returns 1 when it ends with an
746 computed goto, returns 2 when it ends with a statement that
747 might return to this function via an nonlocal goto, otherwise
748 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
749
750 static int
751 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
752 {
753 gimple *last = last_stmt (bb);
754 bool fallthru = false;
755 int ret = 0;
756
757 if (!last)
758 return ret;
759
760 switch (gimple_code (last))
761 {
762 case GIMPLE_GOTO:
763 if (make_goto_expr_edges (bb))
764 ret = 1;
765 fallthru = false;
766 break;
767 case GIMPLE_RETURN:
768 {
769 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
770 e->goto_locus = gimple_location (last);
771 fallthru = false;
772 }
773 break;
774 case GIMPLE_COND:
775 make_cond_expr_edges (bb);
776 fallthru = false;
777 break;
778 case GIMPLE_SWITCH:
779 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
780 fallthru = false;
781 break;
782 case GIMPLE_RESX:
783 make_eh_edges (last);
784 fallthru = false;
785 break;
786 case GIMPLE_EH_DISPATCH:
787 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
788 break;
789
790 case GIMPLE_CALL:
791 /* If this function receives a nonlocal goto, then we need to
792 make edges from this call site to all the nonlocal goto
793 handlers. */
794 if (stmt_can_make_abnormal_goto (last))
795 ret = 2;
796
797 /* If this statement has reachable exception handlers, then
798 create abnormal edges to them. */
799 make_eh_edges (last);
800
801 /* BUILTIN_RETURN is really a return statement. */
802 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
803 {
804 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
805 fallthru = false;
806 }
807 /* Some calls are known not to return. */
808 else
809 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
810 break;
811
812 case GIMPLE_ASSIGN:
813 /* A GIMPLE_ASSIGN may throw internally and thus be considered
814 control-altering. */
815 if (is_ctrl_altering_stmt (last))
816 make_eh_edges (last);
817 fallthru = true;
818 break;
819
820 case GIMPLE_ASM:
821 make_gimple_asm_edges (bb);
822 fallthru = true;
823 break;
824
825 CASE_GIMPLE_OMP:
826 fallthru = make_gimple_omp_edges (bb, pcur_region, pomp_index);
827 break;
828
829 case GIMPLE_TRANSACTION:
830 {
831 gtransaction *txn = as_a <gtransaction *> (last);
832 tree label1 = gimple_transaction_label_norm (txn);
833 tree label2 = gimple_transaction_label_uninst (txn);
834
835 if (label1)
836 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
837 if (label2)
838 make_edge (bb, label_to_block (label2),
839 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
840
841 tree label3 = gimple_transaction_label_over (txn);
842 if (gimple_transaction_subcode (txn)
843 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
844 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
845
846 fallthru = false;
847 }
848 break;
849
850 default:
851 gcc_assert (!stmt_ends_bb_p (last));
852 fallthru = true;
853 break;
854 }
855
856 if (fallthru)
857 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
858
859 return ret;
860 }
861
862 /* Join all the blocks in the flowgraph. */
863
864 static void
865 make_edges (void)
866 {
867 basic_block bb;
868 struct omp_region *cur_region = NULL;
869 auto_vec<basic_block> ab_edge_goto;
870 auto_vec<basic_block> ab_edge_call;
871 int *bb_to_omp_idx = NULL;
872 int cur_omp_region_idx = 0;
873
874 /* Create an edge from entry to the first block with executable
875 statements in it. */
876 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
877 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
878 EDGE_FALLTHRU);
879
880 /* Traverse the basic block array placing edges. */
881 FOR_EACH_BB_FN (bb, cfun)
882 {
883 int mer;
884
885 if (bb_to_omp_idx)
886 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
887
888 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
889 if (mer == 1)
890 ab_edge_goto.safe_push (bb);
891 else if (mer == 2)
892 ab_edge_call.safe_push (bb);
893
894 if (cur_region && bb_to_omp_idx == NULL)
895 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
896 }
897
898 /* Computed gotos are hell to deal with, especially if there are
899 lots of them with a large number of destinations. So we factor
900 them to a common computed goto location before we build the
901 edge list. After we convert back to normal form, we will un-factor
902 the computed gotos since factoring introduces an unwanted jump.
903 For non-local gotos and abnormal edges from calls to calls that return
904 twice or forced labels, factor the abnormal edges too, by having all
905 abnormal edges from the calls go to a common artificial basic block
906 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
907 basic block to all forced labels and calls returning twice.
908 We do this per-OpenMP structured block, because those regions
909 are guaranteed to be single entry single exit by the standard,
910 so it is not allowed to enter or exit such regions abnormally this way,
911 thus all computed gotos, non-local gotos and setjmp/longjmp calls
912 must not transfer control across SESE region boundaries. */
913 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
914 {
915 gimple_stmt_iterator gsi;
916 basic_block dispatcher_bb_array[2] = { NULL, NULL };
917 basic_block *dispatcher_bbs = dispatcher_bb_array;
918 int count = n_basic_blocks_for_fn (cfun);
919
920 if (bb_to_omp_idx)
921 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
922
923 FOR_EACH_BB_FN (bb, cfun)
924 {
925 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
926 {
927 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
928 tree target;
929
930 if (!label_stmt)
931 break;
932
933 target = gimple_label_label (label_stmt);
934
935 /* Make an edge to every label block that has been marked as a
936 potential target for a computed goto or a non-local goto. */
937 if (FORCED_LABEL (target))
938 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
939 &ab_edge_goto, true);
940 if (DECL_NONLOCAL (target))
941 {
942 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
943 &ab_edge_call, false);
944 break;
945 }
946 }
947
948 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
949 gsi_next_nondebug (&gsi);
950 if (!gsi_end_p (gsi))
951 {
952 /* Make an edge to every setjmp-like call. */
953 gimple *call_stmt = gsi_stmt (gsi);
954 if (is_gimple_call (call_stmt)
955 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
956 || gimple_call_builtin_p (call_stmt,
957 BUILT_IN_SETJMP_RECEIVER)))
958 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
959 &ab_edge_call, false);
960 }
961 }
962
963 if (bb_to_omp_idx)
964 XDELETE (dispatcher_bbs);
965 }
966
967 XDELETE (bb_to_omp_idx);
968
969 free_omp_regions ();
970 }
971
972 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
973 needed. Returns true if new bbs were created.
974 Note: This is transitional code, and should not be used for new code. We
975 should be able to get rid of this by rewriting all target va-arg
976 gimplification hooks to use an interface gimple_build_cond_value as described
977 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
978
979 bool
980 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
981 {
982 gimple *stmt = gsi_stmt (*gsi);
983 basic_block bb = gimple_bb (stmt);
984 basic_block lastbb, afterbb;
985 int old_num_bbs = n_basic_blocks_for_fn (cfun);
986 edge e;
987 lastbb = make_blocks_1 (seq, bb);
988 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
989 return false;
990 e = split_block (bb, stmt);
991 /* Move e->dest to come after the new basic blocks. */
992 afterbb = e->dest;
993 unlink_block (afterbb);
994 link_block (afterbb, lastbb);
995 redirect_edge_succ (e, bb->next_bb);
996 bb = bb->next_bb;
997 while (bb != afterbb)
998 {
999 struct omp_region *cur_region = NULL;
1000 int cur_omp_region_idx = 0;
1001 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1002 gcc_assert (!mer && !cur_region);
1003 add_bb_to_loop (bb, afterbb->loop_father);
1004 bb = bb->next_bb;
1005 }
1006 return true;
1007 }
1008
1009 /* Find the next available discriminator value for LOCUS. The
1010 discriminator distinguishes among several basic blocks that
1011 share a common locus, allowing for more accurate sample-based
1012 profiling. */
1013
1014 static int
1015 next_discriminator_for_locus (location_t locus)
1016 {
1017 struct locus_discrim_map item;
1018 struct locus_discrim_map **slot;
1019
1020 item.locus = locus;
1021 item.discriminator = 0;
1022 slot = discriminator_per_locus->find_slot_with_hash (
1023 &item, LOCATION_LINE (locus), INSERT);
1024 gcc_assert (slot);
1025 if (*slot == HTAB_EMPTY_ENTRY)
1026 {
1027 *slot = XNEW (struct locus_discrim_map);
1028 gcc_assert (*slot);
1029 (*slot)->locus = locus;
1030 (*slot)->discriminator = 0;
1031 }
1032 (*slot)->discriminator++;
1033 return (*slot)->discriminator;
1034 }
1035
1036 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1037
1038 static bool
1039 same_line_p (location_t locus1, location_t locus2)
1040 {
1041 expanded_location from, to;
1042
1043 if (locus1 == locus2)
1044 return true;
1045
1046 from = expand_location (locus1);
1047 to = expand_location (locus2);
1048
1049 if (from.line != to.line)
1050 return false;
1051 if (from.file == to.file)
1052 return true;
1053 return (from.file != NULL
1054 && to.file != NULL
1055 && filename_cmp (from.file, to.file) == 0);
1056 }
1057
1058 /* Assign discriminators to each basic block. */
1059
1060 static void
1061 assign_discriminators (void)
1062 {
1063 basic_block bb;
1064
1065 FOR_EACH_BB_FN (bb, cfun)
1066 {
1067 edge e;
1068 edge_iterator ei;
1069 gimple *last = last_stmt (bb);
1070 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1071
1072 if (locus == UNKNOWN_LOCATION)
1073 continue;
1074
1075 FOR_EACH_EDGE (e, ei, bb->succs)
1076 {
1077 gimple *first = first_non_label_stmt (e->dest);
1078 gimple *last = last_stmt (e->dest);
1079 if ((first && same_line_p (locus, gimple_location (first)))
1080 || (last && same_line_p (locus, gimple_location (last))))
1081 {
1082 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1083 bb->discriminator = next_discriminator_for_locus (locus);
1084 else
1085 e->dest->discriminator = next_discriminator_for_locus (locus);
1086 }
1087 }
1088 }
1089 }
1090
1091 /* Create the edges for a GIMPLE_COND starting at block BB. */
1092
1093 static void
1094 make_cond_expr_edges (basic_block bb)
1095 {
1096 gcond *entry = as_a <gcond *> (last_stmt (bb));
1097 gimple *then_stmt, *else_stmt;
1098 basic_block then_bb, else_bb;
1099 tree then_label, else_label;
1100 edge e;
1101
1102 gcc_assert (entry);
1103 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1104
1105 /* Entry basic blocks for each component. */
1106 then_label = gimple_cond_true_label (entry);
1107 else_label = gimple_cond_false_label (entry);
1108 then_bb = label_to_block (then_label);
1109 else_bb = label_to_block (else_label);
1110 then_stmt = first_stmt (then_bb);
1111 else_stmt = first_stmt (else_bb);
1112
1113 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1114 e->goto_locus = gimple_location (then_stmt);
1115 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1116 if (e)
1117 e->goto_locus = gimple_location (else_stmt);
1118
1119 /* We do not need the labels anymore. */
1120 gimple_cond_set_true_label (entry, NULL_TREE);
1121 gimple_cond_set_false_label (entry, NULL_TREE);
1122 }
1123
1124
1125 /* Called for each element in the hash table (P) as we delete the
1126 edge to cases hash table.
1127
1128 Clear all the TREE_CHAINs to prevent problems with copying of
1129 SWITCH_EXPRs and structure sharing rules, then free the hash table
1130 element. */
1131
1132 bool
1133 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1134 {
1135 tree t, next;
1136
1137 for (t = value; t; t = next)
1138 {
1139 next = CASE_CHAIN (t);
1140 CASE_CHAIN (t) = NULL;
1141 }
1142
1143 return true;
1144 }
1145
1146 /* Start recording information mapping edges to case labels. */
1147
1148 void
1149 start_recording_case_labels (void)
1150 {
1151 gcc_assert (edge_to_cases == NULL);
1152 edge_to_cases = new hash_map<edge, tree>;
1153 touched_switch_bbs = BITMAP_ALLOC (NULL);
1154 }
1155
1156 /* Return nonzero if we are recording information for case labels. */
1157
1158 static bool
1159 recording_case_labels_p (void)
1160 {
1161 return (edge_to_cases != NULL);
1162 }
1163
1164 /* Stop recording information mapping edges to case labels and
1165 remove any information we have recorded. */
1166 void
1167 end_recording_case_labels (void)
1168 {
1169 bitmap_iterator bi;
1170 unsigned i;
1171 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1172 delete edge_to_cases;
1173 edge_to_cases = NULL;
1174 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1175 {
1176 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1177 if (bb)
1178 {
1179 gimple *stmt = last_stmt (bb);
1180 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1181 group_case_labels_stmt (as_a <gswitch *> (stmt));
1182 }
1183 }
1184 BITMAP_FREE (touched_switch_bbs);
1185 }
1186
1187 /* If we are inside a {start,end}_recording_cases block, then return
1188 a chain of CASE_LABEL_EXPRs from T which reference E.
1189
1190 Otherwise return NULL. */
1191
1192 static tree
1193 get_cases_for_edge (edge e, gswitch *t)
1194 {
1195 tree *slot;
1196 size_t i, n;
1197
1198 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1199 chains available. Return NULL so the caller can detect this case. */
1200 if (!recording_case_labels_p ())
1201 return NULL;
1202
1203 slot = edge_to_cases->get (e);
1204 if (slot)
1205 return *slot;
1206
1207 /* If we did not find E in the hash table, then this must be the first
1208 time we have been queried for information about E & T. Add all the
1209 elements from T to the hash table then perform the query again. */
1210
1211 n = gimple_switch_num_labels (t);
1212 for (i = 0; i < n; i++)
1213 {
1214 tree elt = gimple_switch_label (t, i);
1215 tree lab = CASE_LABEL (elt);
1216 basic_block label_bb = label_to_block (lab);
1217 edge this_edge = find_edge (e->src, label_bb);
1218
1219 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1220 a new chain. */
1221 tree &s = edge_to_cases->get_or_insert (this_edge);
1222 CASE_CHAIN (elt) = s;
1223 s = elt;
1224 }
1225
1226 return *edge_to_cases->get (e);
1227 }
1228
1229 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1230
1231 static void
1232 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1233 {
1234 size_t i, n;
1235
1236 n = gimple_switch_num_labels (entry);
1237
1238 for (i = 0; i < n; ++i)
1239 {
1240 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1241 basic_block label_bb = label_to_block (lab);
1242 make_edge (bb, label_bb, 0);
1243 }
1244 }
1245
1246
1247 /* Return the basic block holding label DEST. */
1248
1249 basic_block
1250 label_to_block_fn (struct function *ifun, tree dest)
1251 {
1252 int uid = LABEL_DECL_UID (dest);
1253
1254 /* We would die hard when faced by an undefined label. Emit a label to
1255 the very first basic block. This will hopefully make even the dataflow
1256 and undefined variable warnings quite right. */
1257 if (seen_error () && uid < 0)
1258 {
1259 gimple_stmt_iterator gsi =
1260 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1261 gimple *stmt;
1262
1263 stmt = gimple_build_label (dest);
1264 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1265 uid = LABEL_DECL_UID (dest);
1266 }
1267 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1268 return NULL;
1269 return (*ifun->cfg->x_label_to_block_map)[uid];
1270 }
1271
1272 /* Create edges for a goto statement at block BB. Returns true
1273 if abnormal edges should be created. */
1274
1275 static bool
1276 make_goto_expr_edges (basic_block bb)
1277 {
1278 gimple_stmt_iterator last = gsi_last_bb (bb);
1279 gimple *goto_t = gsi_stmt (last);
1280
1281 /* A simple GOTO creates normal edges. */
1282 if (simple_goto_p (goto_t))
1283 {
1284 tree dest = gimple_goto_dest (goto_t);
1285 basic_block label_bb = label_to_block (dest);
1286 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1287 e->goto_locus = gimple_location (goto_t);
1288 gsi_remove (&last, true);
1289 return false;
1290 }
1291
1292 /* A computed GOTO creates abnormal edges. */
1293 return true;
1294 }
1295
1296 /* Create edges for an asm statement with labels at block BB. */
1297
1298 static void
1299 make_gimple_asm_edges (basic_block bb)
1300 {
1301 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1302 int i, n = gimple_asm_nlabels (stmt);
1303
1304 for (i = 0; i < n; ++i)
1305 {
1306 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1307 basic_block label_bb = label_to_block (label);
1308 make_edge (bb, label_bb, 0);
1309 }
1310 }
1311
1312 /*---------------------------------------------------------------------------
1313 Flowgraph analysis
1314 ---------------------------------------------------------------------------*/
1315
1316 /* Cleanup useless labels in basic blocks. This is something we wish
1317 to do early because it allows us to group case labels before creating
1318 the edges for the CFG, and it speeds up block statement iterators in
1319 all passes later on.
1320 We rerun this pass after CFG is created, to get rid of the labels that
1321 are no longer referenced. After then we do not run it any more, since
1322 (almost) no new labels should be created. */
1323
1324 /* A map from basic block index to the leading label of that block. */
1325 static struct label_record
1326 {
1327 /* The label. */
1328 tree label;
1329
1330 /* True if the label is referenced from somewhere. */
1331 bool used;
1332 } *label_for_bb;
1333
1334 /* Given LABEL return the first label in the same basic block. */
1335
1336 static tree
1337 main_block_label (tree label)
1338 {
1339 basic_block bb = label_to_block (label);
1340 tree main_label = label_for_bb[bb->index].label;
1341
1342 /* label_to_block possibly inserted undefined label into the chain. */
1343 if (!main_label)
1344 {
1345 label_for_bb[bb->index].label = label;
1346 main_label = label;
1347 }
1348
1349 label_for_bb[bb->index].used = true;
1350 return main_label;
1351 }
1352
1353 /* Clean up redundant labels within the exception tree. */
1354
1355 static void
1356 cleanup_dead_labels_eh (void)
1357 {
1358 eh_landing_pad lp;
1359 eh_region r;
1360 tree lab;
1361 int i;
1362
1363 if (cfun->eh == NULL)
1364 return;
1365
1366 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1367 if (lp && lp->post_landing_pad)
1368 {
1369 lab = main_block_label (lp->post_landing_pad);
1370 if (lab != lp->post_landing_pad)
1371 {
1372 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1373 EH_LANDING_PAD_NR (lab) = lp->index;
1374 }
1375 }
1376
1377 FOR_ALL_EH_REGION (r)
1378 switch (r->type)
1379 {
1380 case ERT_CLEANUP:
1381 case ERT_MUST_NOT_THROW:
1382 break;
1383
1384 case ERT_TRY:
1385 {
1386 eh_catch c;
1387 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1388 {
1389 lab = c->label;
1390 if (lab)
1391 c->label = main_block_label (lab);
1392 }
1393 }
1394 break;
1395
1396 case ERT_ALLOWED_EXCEPTIONS:
1397 lab = r->u.allowed.label;
1398 if (lab)
1399 r->u.allowed.label = main_block_label (lab);
1400 break;
1401 }
1402 }
1403
1404
1405 /* Cleanup redundant labels. This is a three-step process:
1406 1) Find the leading label for each block.
1407 2) Redirect all references to labels to the leading labels.
1408 3) Cleanup all useless labels. */
1409
1410 void
1411 cleanup_dead_labels (void)
1412 {
1413 basic_block bb;
1414 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1415
1416 /* Find a suitable label for each block. We use the first user-defined
1417 label if there is one, or otherwise just the first label we see. */
1418 FOR_EACH_BB_FN (bb, cfun)
1419 {
1420 gimple_stmt_iterator i;
1421
1422 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1423 {
1424 tree label;
1425 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1426
1427 if (!label_stmt)
1428 break;
1429
1430 label = gimple_label_label (label_stmt);
1431
1432 /* If we have not yet seen a label for the current block,
1433 remember this one and see if there are more labels. */
1434 if (!label_for_bb[bb->index].label)
1435 {
1436 label_for_bb[bb->index].label = label;
1437 continue;
1438 }
1439
1440 /* If we did see a label for the current block already, but it
1441 is an artificially created label, replace it if the current
1442 label is a user defined label. */
1443 if (!DECL_ARTIFICIAL (label)
1444 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1445 {
1446 label_for_bb[bb->index].label = label;
1447 break;
1448 }
1449 }
1450 }
1451
1452 /* Now redirect all jumps/branches to the selected label.
1453 First do so for each block ending in a control statement. */
1454 FOR_EACH_BB_FN (bb, cfun)
1455 {
1456 gimple *stmt = last_stmt (bb);
1457 tree label, new_label;
1458
1459 if (!stmt)
1460 continue;
1461
1462 switch (gimple_code (stmt))
1463 {
1464 case GIMPLE_COND:
1465 {
1466 gcond *cond_stmt = as_a <gcond *> (stmt);
1467 label = gimple_cond_true_label (cond_stmt);
1468 if (label)
1469 {
1470 new_label = main_block_label (label);
1471 if (new_label != label)
1472 gimple_cond_set_true_label (cond_stmt, new_label);
1473 }
1474
1475 label = gimple_cond_false_label (cond_stmt);
1476 if (label)
1477 {
1478 new_label = main_block_label (label);
1479 if (new_label != label)
1480 gimple_cond_set_false_label (cond_stmt, new_label);
1481 }
1482 }
1483 break;
1484
1485 case GIMPLE_SWITCH:
1486 {
1487 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1488 size_t i, n = gimple_switch_num_labels (switch_stmt);
1489
1490 /* Replace all destination labels. */
1491 for (i = 0; i < n; ++i)
1492 {
1493 tree case_label = gimple_switch_label (switch_stmt, i);
1494 label = CASE_LABEL (case_label);
1495 new_label = main_block_label (label);
1496 if (new_label != label)
1497 CASE_LABEL (case_label) = new_label;
1498 }
1499 break;
1500 }
1501
1502 case GIMPLE_ASM:
1503 {
1504 gasm *asm_stmt = as_a <gasm *> (stmt);
1505 int i, n = gimple_asm_nlabels (asm_stmt);
1506
1507 for (i = 0; i < n; ++i)
1508 {
1509 tree cons = gimple_asm_label_op (asm_stmt, i);
1510 tree label = main_block_label (TREE_VALUE (cons));
1511 TREE_VALUE (cons) = label;
1512 }
1513 break;
1514 }
1515
1516 /* We have to handle gotos until they're removed, and we don't
1517 remove them until after we've created the CFG edges. */
1518 case GIMPLE_GOTO:
1519 if (!computed_goto_p (stmt))
1520 {
1521 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1522 label = gimple_goto_dest (goto_stmt);
1523 new_label = main_block_label (label);
1524 if (new_label != label)
1525 gimple_goto_set_dest (goto_stmt, new_label);
1526 }
1527 break;
1528
1529 case GIMPLE_TRANSACTION:
1530 {
1531 gtransaction *txn = as_a <gtransaction *> (stmt);
1532
1533 label = gimple_transaction_label_norm (txn);
1534 if (label)
1535 {
1536 new_label = main_block_label (label);
1537 if (new_label != label)
1538 gimple_transaction_set_label_norm (txn, new_label);
1539 }
1540
1541 label = gimple_transaction_label_uninst (txn);
1542 if (label)
1543 {
1544 new_label = main_block_label (label);
1545 if (new_label != label)
1546 gimple_transaction_set_label_uninst (txn, new_label);
1547 }
1548
1549 label = gimple_transaction_label_over (txn);
1550 if (label)
1551 {
1552 new_label = main_block_label (label);
1553 if (new_label != label)
1554 gimple_transaction_set_label_over (txn, new_label);
1555 }
1556 }
1557 break;
1558
1559 default:
1560 break;
1561 }
1562 }
1563
1564 /* Do the same for the exception region tree labels. */
1565 cleanup_dead_labels_eh ();
1566
1567 /* Finally, purge dead labels. All user-defined labels and labels that
1568 can be the target of non-local gotos and labels which have their
1569 address taken are preserved. */
1570 FOR_EACH_BB_FN (bb, cfun)
1571 {
1572 gimple_stmt_iterator i;
1573 tree label_for_this_bb = label_for_bb[bb->index].label;
1574
1575 if (!label_for_this_bb)
1576 continue;
1577
1578 /* If the main label of the block is unused, we may still remove it. */
1579 if (!label_for_bb[bb->index].used)
1580 label_for_this_bb = NULL;
1581
1582 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1583 {
1584 tree label;
1585 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1586
1587 if (!label_stmt)
1588 break;
1589
1590 label = gimple_label_label (label_stmt);
1591
1592 if (label == label_for_this_bb
1593 || !DECL_ARTIFICIAL (label)
1594 || DECL_NONLOCAL (label)
1595 || FORCED_LABEL (label))
1596 gsi_next (&i);
1597 else
1598 gsi_remove (&i, true);
1599 }
1600 }
1601
1602 free (label_for_bb);
1603 }
1604
1605 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1606 the ones jumping to the same label.
1607 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1608
1609 void
1610 group_case_labels_stmt (gswitch *stmt)
1611 {
1612 int old_size = gimple_switch_num_labels (stmt);
1613 int i, j, new_size = old_size;
1614 basic_block default_bb = NULL;
1615
1616 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1617
1618 /* Look for possible opportunities to merge cases. */
1619 i = 1;
1620 while (i < old_size)
1621 {
1622 tree base_case, base_high;
1623 basic_block base_bb;
1624
1625 base_case = gimple_switch_label (stmt, i);
1626
1627 gcc_assert (base_case);
1628 base_bb = label_to_block (CASE_LABEL (base_case));
1629
1630 /* Discard cases that have the same destination as the
1631 default case. */
1632 if (base_bb == default_bb)
1633 {
1634 gimple_switch_set_label (stmt, i, NULL_TREE);
1635 i++;
1636 new_size--;
1637 continue;
1638 }
1639
1640 base_high = CASE_HIGH (base_case)
1641 ? CASE_HIGH (base_case)
1642 : CASE_LOW (base_case);
1643 i++;
1644
1645 /* Try to merge case labels. Break out when we reach the end
1646 of the label vector or when we cannot merge the next case
1647 label with the current one. */
1648 while (i < old_size)
1649 {
1650 tree merge_case = gimple_switch_label (stmt, i);
1651 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1652 wide_int bhp1 = wi::add (base_high, 1);
1653
1654 /* Merge the cases if they jump to the same place,
1655 and their ranges are consecutive. */
1656 if (merge_bb == base_bb
1657 && wi::eq_p (CASE_LOW (merge_case), bhp1))
1658 {
1659 base_high = CASE_HIGH (merge_case) ?
1660 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1661 CASE_HIGH (base_case) = base_high;
1662 gimple_switch_set_label (stmt, i, NULL_TREE);
1663 new_size--;
1664 i++;
1665 }
1666 else
1667 break;
1668 }
1669 }
1670
1671 /* Compress the case labels in the label vector, and adjust the
1672 length of the vector. */
1673 for (i = 0, j = 0; i < new_size; i++)
1674 {
1675 while (! gimple_switch_label (stmt, j))
1676 j++;
1677 gimple_switch_set_label (stmt, i,
1678 gimple_switch_label (stmt, j++));
1679 }
1680
1681 gcc_assert (new_size <= old_size);
1682 gimple_switch_set_num_labels (stmt, new_size);
1683 }
1684
1685 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1686 and scan the sorted vector of cases. Combine the ones jumping to the
1687 same label. */
1688
1689 void
1690 group_case_labels (void)
1691 {
1692 basic_block bb;
1693
1694 FOR_EACH_BB_FN (bb, cfun)
1695 {
1696 gimple *stmt = last_stmt (bb);
1697 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1698 group_case_labels_stmt (as_a <gswitch *> (stmt));
1699 }
1700 }
1701
1702 /* Checks whether we can merge block B into block A. */
1703
1704 static bool
1705 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1706 {
1707 gimple *stmt;
1708
1709 if (!single_succ_p (a))
1710 return false;
1711
1712 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1713 return false;
1714
1715 if (single_succ (a) != b)
1716 return false;
1717
1718 if (!single_pred_p (b))
1719 return false;
1720
1721 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1722 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1723 return false;
1724
1725 /* If A ends by a statement causing exceptions or something similar, we
1726 cannot merge the blocks. */
1727 stmt = last_stmt (a);
1728 if (stmt && stmt_ends_bb_p (stmt))
1729 return false;
1730
1731 /* Do not allow a block with only a non-local label to be merged. */
1732 if (stmt)
1733 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1734 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1735 return false;
1736
1737 /* Examine the labels at the beginning of B. */
1738 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1739 gsi_next (&gsi))
1740 {
1741 tree lab;
1742 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1743 if (!label_stmt)
1744 break;
1745 lab = gimple_label_label (label_stmt);
1746
1747 /* Do not remove user forced labels or for -O0 any user labels. */
1748 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1749 return false;
1750 }
1751
1752 /* Protect simple loop latches. We only want to avoid merging
1753 the latch with the loop header or with a block in another
1754 loop in this case. */
1755 if (current_loops
1756 && b->loop_father->latch == b
1757 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1758 && (b->loop_father->header == a
1759 || b->loop_father != a->loop_father))
1760 return false;
1761
1762 /* It must be possible to eliminate all phi nodes in B. If ssa form
1763 is not up-to-date and a name-mapping is registered, we cannot eliminate
1764 any phis. Symbols marked for renaming are never a problem though. */
1765 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1766 gsi_next (&gsi))
1767 {
1768 gphi *phi = gsi.phi ();
1769 /* Technically only new names matter. */
1770 if (name_registered_for_update_p (PHI_RESULT (phi)))
1771 return false;
1772 }
1773
1774 /* When not optimizing, don't merge if we'd lose goto_locus. */
1775 if (!optimize
1776 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1777 {
1778 location_t goto_locus = single_succ_edge (a)->goto_locus;
1779 gimple_stmt_iterator prev, next;
1780 prev = gsi_last_nondebug_bb (a);
1781 next = gsi_after_labels (b);
1782 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1783 gsi_next_nondebug (&next);
1784 if ((gsi_end_p (prev)
1785 || gimple_location (gsi_stmt (prev)) != goto_locus)
1786 && (gsi_end_p (next)
1787 || gimple_location (gsi_stmt (next)) != goto_locus))
1788 return false;
1789 }
1790
1791 return true;
1792 }
1793
1794 /* Replaces all uses of NAME by VAL. */
1795
1796 void
1797 replace_uses_by (tree name, tree val)
1798 {
1799 imm_use_iterator imm_iter;
1800 use_operand_p use;
1801 gimple *stmt;
1802 edge e;
1803
1804 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1805 {
1806 /* Mark the block if we change the last stmt in it. */
1807 if (cfgcleanup_altered_bbs
1808 && stmt_ends_bb_p (stmt))
1809 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1810
1811 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1812 {
1813 replace_exp (use, val);
1814
1815 if (gimple_code (stmt) == GIMPLE_PHI)
1816 {
1817 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1818 PHI_ARG_INDEX_FROM_USE (use));
1819 if (e->flags & EDGE_ABNORMAL
1820 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1821 {
1822 /* This can only occur for virtual operands, since
1823 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1824 would prevent replacement. */
1825 gcc_checking_assert (virtual_operand_p (name));
1826 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1827 }
1828 }
1829 }
1830
1831 if (gimple_code (stmt) != GIMPLE_PHI)
1832 {
1833 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1834 gimple *orig_stmt = stmt;
1835 size_t i;
1836
1837 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1838 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1839 only change sth from non-invariant to invariant, and only
1840 when propagating constants. */
1841 if (is_gimple_min_invariant (val))
1842 for (i = 0; i < gimple_num_ops (stmt); i++)
1843 {
1844 tree op = gimple_op (stmt, i);
1845 /* Operands may be empty here. For example, the labels
1846 of a GIMPLE_COND are nulled out following the creation
1847 of the corresponding CFG edges. */
1848 if (op && TREE_CODE (op) == ADDR_EXPR)
1849 recompute_tree_invariant_for_addr_expr (op);
1850 }
1851
1852 if (fold_stmt (&gsi))
1853 stmt = gsi_stmt (gsi);
1854
1855 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1856 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1857
1858 update_stmt (stmt);
1859 }
1860 }
1861
1862 gcc_checking_assert (has_zero_uses (name));
1863
1864 /* Also update the trees stored in loop structures. */
1865 if (current_loops)
1866 {
1867 struct loop *loop;
1868
1869 FOR_EACH_LOOP (loop, 0)
1870 {
1871 substitute_in_loop_info (loop, name, val);
1872 }
1873 }
1874 }
1875
1876 /* Merge block B into block A. */
1877
1878 static void
1879 gimple_merge_blocks (basic_block a, basic_block b)
1880 {
1881 gimple_stmt_iterator last, gsi;
1882 gphi_iterator psi;
1883
1884 if (dump_file)
1885 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1886
1887 /* Remove all single-valued PHI nodes from block B of the form
1888 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1889 gsi = gsi_last_bb (a);
1890 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1891 {
1892 gimple *phi = gsi_stmt (psi);
1893 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1894 gimple *copy;
1895 bool may_replace_uses = (virtual_operand_p (def)
1896 || may_propagate_copy (def, use));
1897
1898 /* In case we maintain loop closed ssa form, do not propagate arguments
1899 of loop exit phi nodes. */
1900 if (current_loops
1901 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1902 && !virtual_operand_p (def)
1903 && TREE_CODE (use) == SSA_NAME
1904 && a->loop_father != b->loop_father)
1905 may_replace_uses = false;
1906
1907 if (!may_replace_uses)
1908 {
1909 gcc_assert (!virtual_operand_p (def));
1910
1911 /* Note that just emitting the copies is fine -- there is no problem
1912 with ordering of phi nodes. This is because A is the single
1913 predecessor of B, therefore results of the phi nodes cannot
1914 appear as arguments of the phi nodes. */
1915 copy = gimple_build_assign (def, use);
1916 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1917 remove_phi_node (&psi, false);
1918 }
1919 else
1920 {
1921 /* If we deal with a PHI for virtual operands, we can simply
1922 propagate these without fussing with folding or updating
1923 the stmt. */
1924 if (virtual_operand_p (def))
1925 {
1926 imm_use_iterator iter;
1927 use_operand_p use_p;
1928 gimple *stmt;
1929
1930 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1931 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1932 SET_USE (use_p, use);
1933
1934 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1935 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1936 }
1937 else
1938 replace_uses_by (def, use);
1939
1940 remove_phi_node (&psi, true);
1941 }
1942 }
1943
1944 /* Ensure that B follows A. */
1945 move_block_after (b, a);
1946
1947 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1948 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1949
1950 /* Remove labels from B and set gimple_bb to A for other statements. */
1951 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1952 {
1953 gimple *stmt = gsi_stmt (gsi);
1954 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1955 {
1956 tree label = gimple_label_label (label_stmt);
1957 int lp_nr;
1958
1959 gsi_remove (&gsi, false);
1960
1961 /* Now that we can thread computed gotos, we might have
1962 a situation where we have a forced label in block B
1963 However, the label at the start of block B might still be
1964 used in other ways (think about the runtime checking for
1965 Fortran assigned gotos). So we can not just delete the
1966 label. Instead we move the label to the start of block A. */
1967 if (FORCED_LABEL (label))
1968 {
1969 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1970 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1971 }
1972 /* Other user labels keep around in a form of a debug stmt. */
1973 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1974 {
1975 gimple *dbg = gimple_build_debug_bind (label,
1976 integer_zero_node,
1977 stmt);
1978 gimple_debug_bind_reset_value (dbg);
1979 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1980 }
1981
1982 lp_nr = EH_LANDING_PAD_NR (label);
1983 if (lp_nr)
1984 {
1985 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1986 lp->post_landing_pad = NULL;
1987 }
1988 }
1989 else
1990 {
1991 gimple_set_bb (stmt, a);
1992 gsi_next (&gsi);
1993 }
1994 }
1995
1996 /* When merging two BBs, if their counts are different, the larger count
1997 is selected as the new bb count. This is to handle inconsistent
1998 profiles. */
1999 if (a->loop_father == b->loop_father)
2000 {
2001 a->count = MAX (a->count, b->count);
2002 a->frequency = MAX (a->frequency, b->frequency);
2003 }
2004
2005 /* Merge the sequences. */
2006 last = gsi_last_bb (a);
2007 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2008 set_bb_seq (b, NULL);
2009
2010 if (cfgcleanup_altered_bbs)
2011 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2012 }
2013
2014
2015 /* Return the one of two successors of BB that is not reachable by a
2016 complex edge, if there is one. Else, return BB. We use
2017 this in optimizations that use post-dominators for their heuristics,
2018 to catch the cases in C++ where function calls are involved. */
2019
2020 basic_block
2021 single_noncomplex_succ (basic_block bb)
2022 {
2023 edge e0, e1;
2024 if (EDGE_COUNT (bb->succs) != 2)
2025 return bb;
2026
2027 e0 = EDGE_SUCC (bb, 0);
2028 e1 = EDGE_SUCC (bb, 1);
2029 if (e0->flags & EDGE_COMPLEX)
2030 return e1->dest;
2031 if (e1->flags & EDGE_COMPLEX)
2032 return e0->dest;
2033
2034 return bb;
2035 }
2036
2037 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2038
2039 void
2040 notice_special_calls (gcall *call)
2041 {
2042 int flags = gimple_call_flags (call);
2043
2044 if (flags & ECF_MAY_BE_ALLOCA)
2045 cfun->calls_alloca = true;
2046 if (flags & ECF_RETURNS_TWICE)
2047 cfun->calls_setjmp = true;
2048 }
2049
2050
2051 /* Clear flags set by notice_special_calls. Used by dead code removal
2052 to update the flags. */
2053
2054 void
2055 clear_special_calls (void)
2056 {
2057 cfun->calls_alloca = false;
2058 cfun->calls_setjmp = false;
2059 }
2060
2061 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2062
2063 static void
2064 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2065 {
2066 /* Since this block is no longer reachable, we can just delete all
2067 of its PHI nodes. */
2068 remove_phi_nodes (bb);
2069
2070 /* Remove edges to BB's successors. */
2071 while (EDGE_COUNT (bb->succs) > 0)
2072 remove_edge (EDGE_SUCC (bb, 0));
2073 }
2074
2075
2076 /* Remove statements of basic block BB. */
2077
2078 static void
2079 remove_bb (basic_block bb)
2080 {
2081 gimple_stmt_iterator i;
2082
2083 if (dump_file)
2084 {
2085 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2086 if (dump_flags & TDF_DETAILS)
2087 {
2088 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2089 fprintf (dump_file, "\n");
2090 }
2091 }
2092
2093 if (current_loops)
2094 {
2095 struct loop *loop = bb->loop_father;
2096
2097 /* If a loop gets removed, clean up the information associated
2098 with it. */
2099 if (loop->latch == bb
2100 || loop->header == bb)
2101 free_numbers_of_iterations_estimates_loop (loop);
2102 }
2103
2104 /* Remove all the instructions in the block. */
2105 if (bb_seq (bb) != NULL)
2106 {
2107 /* Walk backwards so as to get a chance to substitute all
2108 released DEFs into debug stmts. See
2109 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2110 details. */
2111 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2112 {
2113 gimple *stmt = gsi_stmt (i);
2114 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2115 if (label_stmt
2116 && (FORCED_LABEL (gimple_label_label (label_stmt))
2117 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2118 {
2119 basic_block new_bb;
2120 gimple_stmt_iterator new_gsi;
2121
2122 /* A non-reachable non-local label may still be referenced.
2123 But it no longer needs to carry the extra semantics of
2124 non-locality. */
2125 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2126 {
2127 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2128 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2129 }
2130
2131 new_bb = bb->prev_bb;
2132 new_gsi = gsi_start_bb (new_bb);
2133 gsi_remove (&i, false);
2134 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2135 }
2136 else
2137 {
2138 /* Release SSA definitions. */
2139 release_defs (stmt);
2140 gsi_remove (&i, true);
2141 }
2142
2143 if (gsi_end_p (i))
2144 i = gsi_last_bb (bb);
2145 else
2146 gsi_prev (&i);
2147 }
2148 }
2149
2150 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2151 bb->il.gimple.seq = NULL;
2152 bb->il.gimple.phi_nodes = NULL;
2153 }
2154
2155
2156 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2157 predicate VAL, return the edge that will be taken out of the block.
2158 If VAL does not match a unique edge, NULL is returned. */
2159
2160 edge
2161 find_taken_edge (basic_block bb, tree val)
2162 {
2163 gimple *stmt;
2164
2165 stmt = last_stmt (bb);
2166
2167 gcc_assert (stmt);
2168 gcc_assert (is_ctrl_stmt (stmt));
2169
2170 if (val == NULL)
2171 return NULL;
2172
2173 if (!is_gimple_min_invariant (val))
2174 return NULL;
2175
2176 if (gimple_code (stmt) == GIMPLE_COND)
2177 return find_taken_edge_cond_expr (bb, val);
2178
2179 if (gimple_code (stmt) == GIMPLE_SWITCH)
2180 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val);
2181
2182 if (computed_goto_p (stmt))
2183 {
2184 /* Only optimize if the argument is a label, if the argument is
2185 not a label then we can not construct a proper CFG.
2186
2187 It may be the case that we only need to allow the LABEL_REF to
2188 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2189 appear inside a LABEL_EXPR just to be safe. */
2190 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2191 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2192 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2193 return NULL;
2194 }
2195
2196 gcc_unreachable ();
2197 }
2198
2199 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2200 statement, determine which of the outgoing edges will be taken out of the
2201 block. Return NULL if either edge may be taken. */
2202
2203 static edge
2204 find_taken_edge_computed_goto (basic_block bb, tree val)
2205 {
2206 basic_block dest;
2207 edge e = NULL;
2208
2209 dest = label_to_block (val);
2210 if (dest)
2211 {
2212 e = find_edge (bb, dest);
2213 gcc_assert (e != NULL);
2214 }
2215
2216 return e;
2217 }
2218
2219 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2220 statement, determine which of the two edges will be taken out of the
2221 block. Return NULL if either edge may be taken. */
2222
2223 static edge
2224 find_taken_edge_cond_expr (basic_block bb, tree val)
2225 {
2226 edge true_edge, false_edge;
2227
2228 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2229
2230 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2231 return (integer_zerop (val) ? false_edge : true_edge);
2232 }
2233
2234 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2235 statement, determine which edge will be taken out of the block. Return
2236 NULL if any edge may be taken. */
2237
2238 static edge
2239 find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb,
2240 tree val)
2241 {
2242 basic_block dest_bb;
2243 edge e;
2244 tree taken_case;
2245
2246 taken_case = find_case_label_for_value (switch_stmt, val);
2247 dest_bb = label_to_block (CASE_LABEL (taken_case));
2248
2249 e = find_edge (bb, dest_bb);
2250 gcc_assert (e);
2251 return e;
2252 }
2253
2254
2255 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2256 We can make optimal use here of the fact that the case labels are
2257 sorted: We can do a binary search for a case matching VAL. */
2258
2259 static tree
2260 find_case_label_for_value (gswitch *switch_stmt, tree val)
2261 {
2262 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2263 tree default_case = gimple_switch_default_label (switch_stmt);
2264
2265 for (low = 0, high = n; high - low > 1; )
2266 {
2267 size_t i = (high + low) / 2;
2268 tree t = gimple_switch_label (switch_stmt, i);
2269 int cmp;
2270
2271 /* Cache the result of comparing CASE_LOW and val. */
2272 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2273
2274 if (cmp > 0)
2275 high = i;
2276 else
2277 low = i;
2278
2279 if (CASE_HIGH (t) == NULL)
2280 {
2281 /* A singe-valued case label. */
2282 if (cmp == 0)
2283 return t;
2284 }
2285 else
2286 {
2287 /* A case range. We can only handle integer ranges. */
2288 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2289 return t;
2290 }
2291 }
2292
2293 return default_case;
2294 }
2295
2296
2297 /* Dump a basic block on stderr. */
2298
2299 void
2300 gimple_debug_bb (basic_block bb)
2301 {
2302 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2303 }
2304
2305
2306 /* Dump basic block with index N on stderr. */
2307
2308 basic_block
2309 gimple_debug_bb_n (int n)
2310 {
2311 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2312 return BASIC_BLOCK_FOR_FN (cfun, n);
2313 }
2314
2315
2316 /* Dump the CFG on stderr.
2317
2318 FLAGS are the same used by the tree dumping functions
2319 (see TDF_* in dumpfile.h). */
2320
2321 void
2322 gimple_debug_cfg (int flags)
2323 {
2324 gimple_dump_cfg (stderr, flags);
2325 }
2326
2327
2328 /* Dump the program showing basic block boundaries on the given FILE.
2329
2330 FLAGS are the same used by the tree dumping functions (see TDF_* in
2331 tree.h). */
2332
2333 void
2334 gimple_dump_cfg (FILE *file, int flags)
2335 {
2336 if (flags & TDF_DETAILS)
2337 {
2338 dump_function_header (file, current_function_decl, flags);
2339 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2340 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2341 last_basic_block_for_fn (cfun));
2342
2343 brief_dump_cfg (file, flags | TDF_COMMENT);
2344 fprintf (file, "\n");
2345 }
2346
2347 if (flags & TDF_STATS)
2348 dump_cfg_stats (file);
2349
2350 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2351 }
2352
2353
2354 /* Dump CFG statistics on FILE. */
2355
2356 void
2357 dump_cfg_stats (FILE *file)
2358 {
2359 static long max_num_merged_labels = 0;
2360 unsigned long size, total = 0;
2361 long num_edges;
2362 basic_block bb;
2363 const char * const fmt_str = "%-30s%-13s%12s\n";
2364 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2365 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2366 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2367 const char *funcname = current_function_name ();
2368
2369 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2370
2371 fprintf (file, "---------------------------------------------------------\n");
2372 fprintf (file, fmt_str, "", " Number of ", "Memory");
2373 fprintf (file, fmt_str, "", " instances ", "used ");
2374 fprintf (file, "---------------------------------------------------------\n");
2375
2376 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2377 total += size;
2378 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2379 SCALE (size), LABEL (size));
2380
2381 num_edges = 0;
2382 FOR_EACH_BB_FN (bb, cfun)
2383 num_edges += EDGE_COUNT (bb->succs);
2384 size = num_edges * sizeof (struct edge_def);
2385 total += size;
2386 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2387
2388 fprintf (file, "---------------------------------------------------------\n");
2389 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2390 LABEL (total));
2391 fprintf (file, "---------------------------------------------------------\n");
2392 fprintf (file, "\n");
2393
2394 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2395 max_num_merged_labels = cfg_stats.num_merged_labels;
2396
2397 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2398 cfg_stats.num_merged_labels, max_num_merged_labels);
2399
2400 fprintf (file, "\n");
2401 }
2402
2403
2404 /* Dump CFG statistics on stderr. Keep extern so that it's always
2405 linked in the final executable. */
2406
2407 DEBUG_FUNCTION void
2408 debug_cfg_stats (void)
2409 {
2410 dump_cfg_stats (stderr);
2411 }
2412
2413 /*---------------------------------------------------------------------------
2414 Miscellaneous helpers
2415 ---------------------------------------------------------------------------*/
2416
2417 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2418 flow. Transfers of control flow associated with EH are excluded. */
2419
2420 static bool
2421 call_can_make_abnormal_goto (gimple *t)
2422 {
2423 /* If the function has no non-local labels, then a call cannot make an
2424 abnormal transfer of control. */
2425 if (!cfun->has_nonlocal_label
2426 && !cfun->calls_setjmp)
2427 return false;
2428
2429 /* Likewise if the call has no side effects. */
2430 if (!gimple_has_side_effects (t))
2431 return false;
2432
2433 /* Likewise if the called function is leaf. */
2434 if (gimple_call_flags (t) & ECF_LEAF)
2435 return false;
2436
2437 return true;
2438 }
2439
2440
2441 /* Return true if T can make an abnormal transfer of control flow.
2442 Transfers of control flow associated with EH are excluded. */
2443
2444 bool
2445 stmt_can_make_abnormal_goto (gimple *t)
2446 {
2447 if (computed_goto_p (t))
2448 return true;
2449 if (is_gimple_call (t))
2450 return call_can_make_abnormal_goto (t);
2451 return false;
2452 }
2453
2454
2455 /* Return true if T represents a stmt that always transfers control. */
2456
2457 bool
2458 is_ctrl_stmt (gimple *t)
2459 {
2460 switch (gimple_code (t))
2461 {
2462 case GIMPLE_COND:
2463 case GIMPLE_SWITCH:
2464 case GIMPLE_GOTO:
2465 case GIMPLE_RETURN:
2466 case GIMPLE_RESX:
2467 return true;
2468 default:
2469 return false;
2470 }
2471 }
2472
2473
2474 /* Return true if T is a statement that may alter the flow of control
2475 (e.g., a call to a non-returning function). */
2476
2477 bool
2478 is_ctrl_altering_stmt (gimple *t)
2479 {
2480 gcc_assert (t);
2481
2482 switch (gimple_code (t))
2483 {
2484 case GIMPLE_CALL:
2485 /* Per stmt call flag indicates whether the call could alter
2486 controlflow. */
2487 if (gimple_call_ctrl_altering_p (t))
2488 return true;
2489 break;
2490
2491 case GIMPLE_EH_DISPATCH:
2492 /* EH_DISPATCH branches to the individual catch handlers at
2493 this level of a try or allowed-exceptions region. It can
2494 fallthru to the next statement as well. */
2495 return true;
2496
2497 case GIMPLE_ASM:
2498 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2499 return true;
2500 break;
2501
2502 CASE_GIMPLE_OMP:
2503 /* OpenMP directives alter control flow. */
2504 return true;
2505
2506 case GIMPLE_TRANSACTION:
2507 /* A transaction start alters control flow. */
2508 return true;
2509
2510 default:
2511 break;
2512 }
2513
2514 /* If a statement can throw, it alters control flow. */
2515 return stmt_can_throw_internal (t);
2516 }
2517
2518
2519 /* Return true if T is a simple local goto. */
2520
2521 bool
2522 simple_goto_p (gimple *t)
2523 {
2524 return (gimple_code (t) == GIMPLE_GOTO
2525 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2526 }
2527
2528
2529 /* Return true if STMT should start a new basic block. PREV_STMT is
2530 the statement preceding STMT. It is used when STMT is a label or a
2531 case label. Labels should only start a new basic block if their
2532 previous statement wasn't a label. Otherwise, sequence of labels
2533 would generate unnecessary basic blocks that only contain a single
2534 label. */
2535
2536 static inline bool
2537 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2538 {
2539 if (stmt == NULL)
2540 return false;
2541
2542 /* Labels start a new basic block only if the preceding statement
2543 wasn't a label of the same type. This prevents the creation of
2544 consecutive blocks that have nothing but a single label. */
2545 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2546 {
2547 /* Nonlocal and computed GOTO targets always start a new block. */
2548 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2549 || FORCED_LABEL (gimple_label_label (label_stmt)))
2550 return true;
2551
2552 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2553 {
2554 if (DECL_NONLOCAL (gimple_label_label (
2555 as_a <glabel *> (prev_stmt))))
2556 return true;
2557
2558 cfg_stats.num_merged_labels++;
2559 return false;
2560 }
2561 else
2562 return true;
2563 }
2564 else if (gimple_code (stmt) == GIMPLE_CALL
2565 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2566 /* setjmp acts similar to a nonlocal GOTO target and thus should
2567 start a new block. */
2568 return true;
2569
2570 return false;
2571 }
2572
2573
2574 /* Return true if T should end a basic block. */
2575
2576 bool
2577 stmt_ends_bb_p (gimple *t)
2578 {
2579 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2580 }
2581
2582 /* Remove block annotations and other data structures. */
2583
2584 void
2585 delete_tree_cfg_annotations (struct function *fn)
2586 {
2587 vec_free (label_to_block_map_for_fn (fn));
2588 }
2589
2590 /* Return the virtual phi in BB. */
2591
2592 gphi *
2593 get_virtual_phi (basic_block bb)
2594 {
2595 for (gphi_iterator gsi = gsi_start_phis (bb);
2596 !gsi_end_p (gsi);
2597 gsi_next (&gsi))
2598 {
2599 gphi *phi = gsi.phi ();
2600
2601 if (virtual_operand_p (PHI_RESULT (phi)))
2602 return phi;
2603 }
2604
2605 return NULL;
2606 }
2607
2608 /* Return the first statement in basic block BB. */
2609
2610 gimple *
2611 first_stmt (basic_block bb)
2612 {
2613 gimple_stmt_iterator i = gsi_start_bb (bb);
2614 gimple *stmt = NULL;
2615
2616 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2617 {
2618 gsi_next (&i);
2619 stmt = NULL;
2620 }
2621 return stmt;
2622 }
2623
2624 /* Return the first non-label statement in basic block BB. */
2625
2626 static gimple *
2627 first_non_label_stmt (basic_block bb)
2628 {
2629 gimple_stmt_iterator i = gsi_start_bb (bb);
2630 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2631 gsi_next (&i);
2632 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2633 }
2634
2635 /* Return the last statement in basic block BB. */
2636
2637 gimple *
2638 last_stmt (basic_block bb)
2639 {
2640 gimple_stmt_iterator i = gsi_last_bb (bb);
2641 gimple *stmt = NULL;
2642
2643 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2644 {
2645 gsi_prev (&i);
2646 stmt = NULL;
2647 }
2648 return stmt;
2649 }
2650
2651 /* Return the last statement of an otherwise empty block. Return NULL
2652 if the block is totally empty, or if it contains more than one
2653 statement. */
2654
2655 gimple *
2656 last_and_only_stmt (basic_block bb)
2657 {
2658 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2659 gimple *last, *prev;
2660
2661 if (gsi_end_p (i))
2662 return NULL;
2663
2664 last = gsi_stmt (i);
2665 gsi_prev_nondebug (&i);
2666 if (gsi_end_p (i))
2667 return last;
2668
2669 /* Empty statements should no longer appear in the instruction stream.
2670 Everything that might have appeared before should be deleted by
2671 remove_useless_stmts, and the optimizers should just gsi_remove
2672 instead of smashing with build_empty_stmt.
2673
2674 Thus the only thing that should appear here in a block containing
2675 one executable statement is a label. */
2676 prev = gsi_stmt (i);
2677 if (gimple_code (prev) == GIMPLE_LABEL)
2678 return last;
2679 else
2680 return NULL;
2681 }
2682
2683 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2684
2685 static void
2686 reinstall_phi_args (edge new_edge, edge old_edge)
2687 {
2688 edge_var_map *vm;
2689 int i;
2690 gphi_iterator phis;
2691
2692 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2693 if (!v)
2694 return;
2695
2696 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2697 v->iterate (i, &vm) && !gsi_end_p (phis);
2698 i++, gsi_next (&phis))
2699 {
2700 gphi *phi = phis.phi ();
2701 tree result = redirect_edge_var_map_result (vm);
2702 tree arg = redirect_edge_var_map_def (vm);
2703
2704 gcc_assert (result == gimple_phi_result (phi));
2705
2706 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2707 }
2708
2709 redirect_edge_var_map_clear (old_edge);
2710 }
2711
2712 /* Returns the basic block after which the new basic block created
2713 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2714 near its "logical" location. This is of most help to humans looking
2715 at debugging dumps. */
2716
2717 basic_block
2718 split_edge_bb_loc (edge edge_in)
2719 {
2720 basic_block dest = edge_in->dest;
2721 basic_block dest_prev = dest->prev_bb;
2722
2723 if (dest_prev)
2724 {
2725 edge e = find_edge (dest_prev, dest);
2726 if (e && !(e->flags & EDGE_COMPLEX))
2727 return edge_in->src;
2728 }
2729 return dest_prev;
2730 }
2731
2732 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2733 Abort on abnormal edges. */
2734
2735 static basic_block
2736 gimple_split_edge (edge edge_in)
2737 {
2738 basic_block new_bb, after_bb, dest;
2739 edge new_edge, e;
2740
2741 /* Abnormal edges cannot be split. */
2742 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2743
2744 dest = edge_in->dest;
2745
2746 after_bb = split_edge_bb_loc (edge_in);
2747
2748 new_bb = create_empty_bb (after_bb);
2749 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2750 new_bb->count = edge_in->count;
2751 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2752 new_edge->probability = REG_BR_PROB_BASE;
2753 new_edge->count = edge_in->count;
2754
2755 e = redirect_edge_and_branch (edge_in, new_bb);
2756 gcc_assert (e == edge_in);
2757 reinstall_phi_args (new_edge, e);
2758
2759 return new_bb;
2760 }
2761
2762
2763 /* Verify properties of the address expression T with base object BASE. */
2764
2765 static tree
2766 verify_address (tree t, tree base)
2767 {
2768 bool old_constant;
2769 bool old_side_effects;
2770 bool new_constant;
2771 bool new_side_effects;
2772
2773 old_constant = TREE_CONSTANT (t);
2774 old_side_effects = TREE_SIDE_EFFECTS (t);
2775
2776 recompute_tree_invariant_for_addr_expr (t);
2777 new_side_effects = TREE_SIDE_EFFECTS (t);
2778 new_constant = TREE_CONSTANT (t);
2779
2780 if (old_constant != new_constant)
2781 {
2782 error ("constant not recomputed when ADDR_EXPR changed");
2783 return t;
2784 }
2785 if (old_side_effects != new_side_effects)
2786 {
2787 error ("side effects not recomputed when ADDR_EXPR changed");
2788 return t;
2789 }
2790
2791 if (!(TREE_CODE (base) == VAR_DECL
2792 || TREE_CODE (base) == PARM_DECL
2793 || TREE_CODE (base) == RESULT_DECL))
2794 return NULL_TREE;
2795
2796 if (DECL_GIMPLE_REG_P (base))
2797 {
2798 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2799 return base;
2800 }
2801
2802 return NULL_TREE;
2803 }
2804
2805 /* Callback for walk_tree, check that all elements with address taken are
2806 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2807 inside a PHI node. */
2808
2809 static tree
2810 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2811 {
2812 tree t = *tp, x;
2813
2814 if (TYPE_P (t))
2815 *walk_subtrees = 0;
2816
2817 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2818 #define CHECK_OP(N, MSG) \
2819 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2820 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2821
2822 switch (TREE_CODE (t))
2823 {
2824 case SSA_NAME:
2825 if (SSA_NAME_IN_FREE_LIST (t))
2826 {
2827 error ("SSA name in freelist but still referenced");
2828 return *tp;
2829 }
2830 break;
2831
2832 case PARM_DECL:
2833 case VAR_DECL:
2834 case RESULT_DECL:
2835 {
2836 tree context = decl_function_context (t);
2837 if (context != cfun->decl
2838 && !SCOPE_FILE_SCOPE_P (context)
2839 && !TREE_STATIC (t)
2840 && !DECL_EXTERNAL (t))
2841 {
2842 error ("Local declaration from a different function");
2843 return t;
2844 }
2845 }
2846 break;
2847
2848 case INDIRECT_REF:
2849 error ("INDIRECT_REF in gimple IL");
2850 return t;
2851
2852 case MEM_REF:
2853 x = TREE_OPERAND (t, 0);
2854 if (!POINTER_TYPE_P (TREE_TYPE (x))
2855 || !is_gimple_mem_ref_addr (x))
2856 {
2857 error ("invalid first operand of MEM_REF");
2858 return x;
2859 }
2860 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2861 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2862 {
2863 error ("invalid offset operand of MEM_REF");
2864 return TREE_OPERAND (t, 1);
2865 }
2866 if (TREE_CODE (x) == ADDR_EXPR)
2867 {
2868 tree va = verify_address (x, TREE_OPERAND (x, 0));
2869 if (va)
2870 return va;
2871 x = TREE_OPERAND (x, 0);
2872 }
2873 walk_tree (&x, verify_expr, data, NULL);
2874 *walk_subtrees = 0;
2875 break;
2876
2877 case ASSERT_EXPR:
2878 x = fold (ASSERT_EXPR_COND (t));
2879 if (x == boolean_false_node)
2880 {
2881 error ("ASSERT_EXPR with an always-false condition");
2882 return *tp;
2883 }
2884 break;
2885
2886 case MODIFY_EXPR:
2887 error ("MODIFY_EXPR not expected while having tuples");
2888 return *tp;
2889
2890 case ADDR_EXPR:
2891 {
2892 tree tem;
2893
2894 gcc_assert (is_gimple_address (t));
2895
2896 /* Skip any references (they will be checked when we recurse down the
2897 tree) and ensure that any variable used as a prefix is marked
2898 addressable. */
2899 for (x = TREE_OPERAND (t, 0);
2900 handled_component_p (x);
2901 x = TREE_OPERAND (x, 0))
2902 ;
2903
2904 if ((tem = verify_address (t, x)))
2905 return tem;
2906
2907 if (!(TREE_CODE (x) == VAR_DECL
2908 || TREE_CODE (x) == PARM_DECL
2909 || TREE_CODE (x) == RESULT_DECL))
2910 return NULL;
2911
2912 if (!TREE_ADDRESSABLE (x))
2913 {
2914 error ("address taken, but ADDRESSABLE bit not set");
2915 return x;
2916 }
2917
2918 break;
2919 }
2920
2921 case COND_EXPR:
2922 x = COND_EXPR_COND (t);
2923 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2924 {
2925 error ("non-integral used in condition");
2926 return x;
2927 }
2928 if (!is_gimple_condexpr (x))
2929 {
2930 error ("invalid conditional operand");
2931 return x;
2932 }
2933 break;
2934
2935 case NON_LVALUE_EXPR:
2936 case TRUTH_NOT_EXPR:
2937 gcc_unreachable ();
2938
2939 CASE_CONVERT:
2940 case FIX_TRUNC_EXPR:
2941 case FLOAT_EXPR:
2942 case NEGATE_EXPR:
2943 case ABS_EXPR:
2944 case BIT_NOT_EXPR:
2945 CHECK_OP (0, "invalid operand to unary operator");
2946 break;
2947
2948 case REALPART_EXPR:
2949 case IMAGPART_EXPR:
2950 case BIT_FIELD_REF:
2951 if (!is_gimple_reg_type (TREE_TYPE (t)))
2952 {
2953 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2954 return t;
2955 }
2956
2957 if (TREE_CODE (t) == BIT_FIELD_REF)
2958 {
2959 tree t0 = TREE_OPERAND (t, 0);
2960 tree t1 = TREE_OPERAND (t, 1);
2961 tree t2 = TREE_OPERAND (t, 2);
2962 if (!tree_fits_uhwi_p (t1)
2963 || !tree_fits_uhwi_p (t2))
2964 {
2965 error ("invalid position or size operand to BIT_FIELD_REF");
2966 return t;
2967 }
2968 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2969 && (TYPE_PRECISION (TREE_TYPE (t))
2970 != tree_to_uhwi (t1)))
2971 {
2972 error ("integral result type precision does not match "
2973 "field size of BIT_FIELD_REF");
2974 return t;
2975 }
2976 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2977 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2978 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
2979 != tree_to_uhwi (t1)))
2980 {
2981 error ("mode size of non-integral result does not "
2982 "match field size of BIT_FIELD_REF");
2983 return t;
2984 }
2985 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2986 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2987 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2988 {
2989 error ("position plus size exceeds size of referenced object in "
2990 "BIT_FIELD_REF");
2991 return t;
2992 }
2993 }
2994 t = TREE_OPERAND (t, 0);
2995
2996 /* Fall-through. */
2997 case COMPONENT_REF:
2998 case ARRAY_REF:
2999 case ARRAY_RANGE_REF:
3000 case VIEW_CONVERT_EXPR:
3001 /* We have a nest of references. Verify that each of the operands
3002 that determine where to reference is either a constant or a variable,
3003 verify that the base is valid, and then show we've already checked
3004 the subtrees. */
3005 while (handled_component_p (t))
3006 {
3007 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3008 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3009 else if (TREE_CODE (t) == ARRAY_REF
3010 || TREE_CODE (t) == ARRAY_RANGE_REF)
3011 {
3012 CHECK_OP (1, "invalid array index");
3013 if (TREE_OPERAND (t, 2))
3014 CHECK_OP (2, "invalid array lower bound");
3015 if (TREE_OPERAND (t, 3))
3016 CHECK_OP (3, "invalid array stride");
3017 }
3018 else if (TREE_CODE (t) == BIT_FIELD_REF
3019 || TREE_CODE (t) == REALPART_EXPR
3020 || TREE_CODE (t) == IMAGPART_EXPR)
3021 {
3022 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3023 "REALPART_EXPR");
3024 return t;
3025 }
3026
3027 t = TREE_OPERAND (t, 0);
3028 }
3029
3030 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3031 {
3032 error ("invalid reference prefix");
3033 return t;
3034 }
3035 walk_tree (&t, verify_expr, data, NULL);
3036 *walk_subtrees = 0;
3037 break;
3038 case PLUS_EXPR:
3039 case MINUS_EXPR:
3040 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3041 POINTER_PLUS_EXPR. */
3042 if (POINTER_TYPE_P (TREE_TYPE (t)))
3043 {
3044 error ("invalid operand to plus/minus, type is a pointer");
3045 return t;
3046 }
3047 CHECK_OP (0, "invalid operand to binary operator");
3048 CHECK_OP (1, "invalid operand to binary operator");
3049 break;
3050
3051 case POINTER_PLUS_EXPR:
3052 /* Check to make sure the first operand is a pointer or reference type. */
3053 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3054 {
3055 error ("invalid operand to pointer plus, first operand is not a pointer");
3056 return t;
3057 }
3058 /* Check to make sure the second operand is a ptrofftype. */
3059 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3060 {
3061 error ("invalid operand to pointer plus, second operand is not an "
3062 "integer type of appropriate width");
3063 return t;
3064 }
3065 /* FALLTHROUGH */
3066 case LT_EXPR:
3067 case LE_EXPR:
3068 case GT_EXPR:
3069 case GE_EXPR:
3070 case EQ_EXPR:
3071 case NE_EXPR:
3072 case UNORDERED_EXPR:
3073 case ORDERED_EXPR:
3074 case UNLT_EXPR:
3075 case UNLE_EXPR:
3076 case UNGT_EXPR:
3077 case UNGE_EXPR:
3078 case UNEQ_EXPR:
3079 case LTGT_EXPR:
3080 case MULT_EXPR:
3081 case TRUNC_DIV_EXPR:
3082 case CEIL_DIV_EXPR:
3083 case FLOOR_DIV_EXPR:
3084 case ROUND_DIV_EXPR:
3085 case TRUNC_MOD_EXPR:
3086 case CEIL_MOD_EXPR:
3087 case FLOOR_MOD_EXPR:
3088 case ROUND_MOD_EXPR:
3089 case RDIV_EXPR:
3090 case EXACT_DIV_EXPR:
3091 case MIN_EXPR:
3092 case MAX_EXPR:
3093 case LSHIFT_EXPR:
3094 case RSHIFT_EXPR:
3095 case LROTATE_EXPR:
3096 case RROTATE_EXPR:
3097 case BIT_IOR_EXPR:
3098 case BIT_XOR_EXPR:
3099 case BIT_AND_EXPR:
3100 CHECK_OP (0, "invalid operand to binary operator");
3101 CHECK_OP (1, "invalid operand to binary operator");
3102 break;
3103
3104 case CONSTRUCTOR:
3105 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3106 *walk_subtrees = 0;
3107 break;
3108
3109 case CASE_LABEL_EXPR:
3110 if (CASE_CHAIN (t))
3111 {
3112 error ("invalid CASE_CHAIN");
3113 return t;
3114 }
3115 break;
3116
3117 default:
3118 break;
3119 }
3120 return NULL;
3121
3122 #undef CHECK_OP
3123 }
3124
3125
3126 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3127 Returns true if there is an error, otherwise false. */
3128
3129 static bool
3130 verify_types_in_gimple_min_lval (tree expr)
3131 {
3132 tree op;
3133
3134 if (is_gimple_id (expr))
3135 return false;
3136
3137 if (TREE_CODE (expr) != TARGET_MEM_REF
3138 && TREE_CODE (expr) != MEM_REF)
3139 {
3140 error ("invalid expression for min lvalue");
3141 return true;
3142 }
3143
3144 /* TARGET_MEM_REFs are strange beasts. */
3145 if (TREE_CODE (expr) == TARGET_MEM_REF)
3146 return false;
3147
3148 op = TREE_OPERAND (expr, 0);
3149 if (!is_gimple_val (op))
3150 {
3151 error ("invalid operand in indirect reference");
3152 debug_generic_stmt (op);
3153 return true;
3154 }
3155 /* Memory references now generally can involve a value conversion. */
3156
3157 return false;
3158 }
3159
3160 /* Verify if EXPR is a valid GIMPLE reference expression. If
3161 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3162 if there is an error, otherwise false. */
3163
3164 static bool
3165 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3166 {
3167 while (handled_component_p (expr))
3168 {
3169 tree op = TREE_OPERAND (expr, 0);
3170
3171 if (TREE_CODE (expr) == ARRAY_REF
3172 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3173 {
3174 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3175 || (TREE_OPERAND (expr, 2)
3176 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3177 || (TREE_OPERAND (expr, 3)
3178 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3179 {
3180 error ("invalid operands to array reference");
3181 debug_generic_stmt (expr);
3182 return true;
3183 }
3184 }
3185
3186 /* Verify if the reference array element types are compatible. */
3187 if (TREE_CODE (expr) == ARRAY_REF
3188 && !useless_type_conversion_p (TREE_TYPE (expr),
3189 TREE_TYPE (TREE_TYPE (op))))
3190 {
3191 error ("type mismatch in array reference");
3192 debug_generic_stmt (TREE_TYPE (expr));
3193 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3194 return true;
3195 }
3196 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3197 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3198 TREE_TYPE (TREE_TYPE (op))))
3199 {
3200 error ("type mismatch in array range reference");
3201 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3202 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3203 return true;
3204 }
3205
3206 if ((TREE_CODE (expr) == REALPART_EXPR
3207 || TREE_CODE (expr) == IMAGPART_EXPR)
3208 && !useless_type_conversion_p (TREE_TYPE (expr),
3209 TREE_TYPE (TREE_TYPE (op))))
3210 {
3211 error ("type mismatch in real/imagpart reference");
3212 debug_generic_stmt (TREE_TYPE (expr));
3213 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3214 return true;
3215 }
3216
3217 if (TREE_CODE (expr) == COMPONENT_REF
3218 && !useless_type_conversion_p (TREE_TYPE (expr),
3219 TREE_TYPE (TREE_OPERAND (expr, 1))))
3220 {
3221 error ("type mismatch in component reference");
3222 debug_generic_stmt (TREE_TYPE (expr));
3223 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3224 return true;
3225 }
3226
3227 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3228 {
3229 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3230 that their operand is not an SSA name or an invariant when
3231 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3232 bug). Otherwise there is nothing to verify, gross mismatches at
3233 most invoke undefined behavior. */
3234 if (require_lvalue
3235 && (TREE_CODE (op) == SSA_NAME
3236 || is_gimple_min_invariant (op)))
3237 {
3238 error ("conversion of an SSA_NAME on the left hand side");
3239 debug_generic_stmt (expr);
3240 return true;
3241 }
3242 else if (TREE_CODE (op) == SSA_NAME
3243 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3244 {
3245 error ("conversion of register to a different size");
3246 debug_generic_stmt (expr);
3247 return true;
3248 }
3249 else if (!handled_component_p (op))
3250 return false;
3251 }
3252
3253 expr = op;
3254 }
3255
3256 if (TREE_CODE (expr) == MEM_REF)
3257 {
3258 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3259 {
3260 error ("invalid address operand in MEM_REF");
3261 debug_generic_stmt (expr);
3262 return true;
3263 }
3264 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3265 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3266 {
3267 error ("invalid offset operand in MEM_REF");
3268 debug_generic_stmt (expr);
3269 return true;
3270 }
3271 }
3272 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3273 {
3274 if (!TMR_BASE (expr)
3275 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3276 {
3277 error ("invalid address operand in TARGET_MEM_REF");
3278 return true;
3279 }
3280 if (!TMR_OFFSET (expr)
3281 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3282 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3283 {
3284 error ("invalid offset operand in TARGET_MEM_REF");
3285 debug_generic_stmt (expr);
3286 return true;
3287 }
3288 }
3289
3290 return ((require_lvalue || !is_gimple_min_invariant (expr))
3291 && verify_types_in_gimple_min_lval (expr));
3292 }
3293
3294 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3295 list of pointer-to types that is trivially convertible to DEST. */
3296
3297 static bool
3298 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3299 {
3300 tree src;
3301
3302 if (!TYPE_POINTER_TO (src_obj))
3303 return true;
3304
3305 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3306 if (useless_type_conversion_p (dest, src))
3307 return true;
3308
3309 return false;
3310 }
3311
3312 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3313 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3314
3315 static bool
3316 valid_fixed_convert_types_p (tree type1, tree type2)
3317 {
3318 return (FIXED_POINT_TYPE_P (type1)
3319 && (INTEGRAL_TYPE_P (type2)
3320 || SCALAR_FLOAT_TYPE_P (type2)
3321 || FIXED_POINT_TYPE_P (type2)));
3322 }
3323
3324 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3325 is a problem, otherwise false. */
3326
3327 static bool
3328 verify_gimple_call (gcall *stmt)
3329 {
3330 tree fn = gimple_call_fn (stmt);
3331 tree fntype, fndecl;
3332 unsigned i;
3333
3334 if (gimple_call_internal_p (stmt))
3335 {
3336 if (fn)
3337 {
3338 error ("gimple call has two targets");
3339 debug_generic_stmt (fn);
3340 return true;
3341 }
3342 }
3343 else
3344 {
3345 if (!fn)
3346 {
3347 error ("gimple call has no target");
3348 return true;
3349 }
3350 }
3351
3352 if (fn && !is_gimple_call_addr (fn))
3353 {
3354 error ("invalid function in gimple call");
3355 debug_generic_stmt (fn);
3356 return true;
3357 }
3358
3359 if (fn
3360 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3361 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3362 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3363 {
3364 error ("non-function in gimple call");
3365 return true;
3366 }
3367
3368 fndecl = gimple_call_fndecl (stmt);
3369 if (fndecl
3370 && TREE_CODE (fndecl) == FUNCTION_DECL
3371 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3372 && !DECL_PURE_P (fndecl)
3373 && !TREE_READONLY (fndecl))
3374 {
3375 error ("invalid pure const state for function");
3376 return true;
3377 }
3378
3379 tree lhs = gimple_call_lhs (stmt);
3380 if (lhs
3381 && (!is_gimple_lvalue (lhs)
3382 || verify_types_in_gimple_reference (lhs, true)))
3383 {
3384 error ("invalid LHS in gimple call");
3385 return true;
3386 }
3387
3388 if (gimple_call_ctrl_altering_p (stmt)
3389 && gimple_call_noreturn_p (stmt)
3390 && should_remove_lhs_p (lhs))
3391 {
3392 error ("LHS in noreturn call");
3393 return true;
3394 }
3395
3396 fntype = gimple_call_fntype (stmt);
3397 if (fntype
3398 && lhs
3399 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3400 /* ??? At least C++ misses conversions at assignments from
3401 void * call results.
3402 ??? Java is completely off. Especially with functions
3403 returning java.lang.Object.
3404 For now simply allow arbitrary pointer type conversions. */
3405 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3406 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3407 {
3408 error ("invalid conversion in gimple call");
3409 debug_generic_stmt (TREE_TYPE (lhs));
3410 debug_generic_stmt (TREE_TYPE (fntype));
3411 return true;
3412 }
3413
3414 if (gimple_call_chain (stmt)
3415 && !is_gimple_val (gimple_call_chain (stmt)))
3416 {
3417 error ("invalid static chain in gimple call");
3418 debug_generic_stmt (gimple_call_chain (stmt));
3419 return true;
3420 }
3421
3422 /* If there is a static chain argument, the call should either be
3423 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3424 if (gimple_call_chain (stmt)
3425 && fndecl
3426 && !DECL_STATIC_CHAIN (fndecl))
3427 {
3428 error ("static chain with function that doesn%'t use one");
3429 return true;
3430 }
3431
3432 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3433 {
3434 switch (DECL_FUNCTION_CODE (fndecl))
3435 {
3436 case BUILT_IN_UNREACHABLE:
3437 case BUILT_IN_TRAP:
3438 if (gimple_call_num_args (stmt) > 0)
3439 {
3440 /* Built-in unreachable with parameters might not be caught by
3441 undefined behavior sanitizer. Front-ends do check users do not
3442 call them that way but we also produce calls to
3443 __builtin_unreachable internally, for example when IPA figures
3444 out a call cannot happen in a legal program. In such cases,
3445 we must make sure arguments are stripped off. */
3446 error ("__builtin_unreachable or __builtin_trap call with "
3447 "arguments");
3448 return true;
3449 }
3450 break;
3451 default:
3452 break;
3453 }
3454 }
3455
3456 /* ??? The C frontend passes unpromoted arguments in case it
3457 didn't see a function declaration before the call. So for now
3458 leave the call arguments mostly unverified. Once we gimplify
3459 unit-at-a-time we have a chance to fix this. */
3460
3461 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3462 {
3463 tree arg = gimple_call_arg (stmt, i);
3464 if ((is_gimple_reg_type (TREE_TYPE (arg))
3465 && !is_gimple_val (arg))
3466 || (!is_gimple_reg_type (TREE_TYPE (arg))
3467 && !is_gimple_lvalue (arg)))
3468 {
3469 error ("invalid argument to gimple call");
3470 debug_generic_expr (arg);
3471 return true;
3472 }
3473 }
3474
3475 return false;
3476 }
3477
3478 /* Verifies the gimple comparison with the result type TYPE and
3479 the operands OP0 and OP1, comparison code is CODE. */
3480
3481 static bool
3482 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3483 {
3484 tree op0_type = TREE_TYPE (op0);
3485 tree op1_type = TREE_TYPE (op1);
3486
3487 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3488 {
3489 error ("invalid operands in gimple comparison");
3490 return true;
3491 }
3492
3493 /* For comparisons we do not have the operations type as the
3494 effective type the comparison is carried out in. Instead
3495 we require that either the first operand is trivially
3496 convertible into the second, or the other way around.
3497 Because we special-case pointers to void we allow
3498 comparisons of pointers with the same mode as well. */
3499 if (!useless_type_conversion_p (op0_type, op1_type)
3500 && !useless_type_conversion_p (op1_type, op0_type)
3501 && (!POINTER_TYPE_P (op0_type)
3502 || !POINTER_TYPE_P (op1_type)
3503 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3504 {
3505 error ("mismatching comparison operand types");
3506 debug_generic_expr (op0_type);
3507 debug_generic_expr (op1_type);
3508 return true;
3509 }
3510
3511 /* The resulting type of a comparison may be an effective boolean type. */
3512 if (INTEGRAL_TYPE_P (type)
3513 && (TREE_CODE (type) == BOOLEAN_TYPE
3514 || TYPE_PRECISION (type) == 1))
3515 {
3516 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3517 || TREE_CODE (op1_type) == VECTOR_TYPE)
3518 && code != EQ_EXPR && code != NE_EXPR
3519 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3520 && !VECTOR_INTEGER_TYPE_P (op0_type))
3521 {
3522 error ("unsupported operation or type for vector comparison"
3523 " returning a boolean");
3524 debug_generic_expr (op0_type);
3525 debug_generic_expr (op1_type);
3526 return true;
3527 }
3528 }
3529 /* Or a boolean vector type with the same element count
3530 as the comparison operand types. */
3531 else if (TREE_CODE (type) == VECTOR_TYPE
3532 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3533 {
3534 if (TREE_CODE (op0_type) != VECTOR_TYPE
3535 || TREE_CODE (op1_type) != VECTOR_TYPE)
3536 {
3537 error ("non-vector operands in vector comparison");
3538 debug_generic_expr (op0_type);
3539 debug_generic_expr (op1_type);
3540 return true;
3541 }
3542
3543 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3544 {
3545 error ("invalid vector comparison resulting type");
3546 debug_generic_expr (type);
3547 return true;
3548 }
3549 }
3550 else
3551 {
3552 error ("bogus comparison result type");
3553 debug_generic_expr (type);
3554 return true;
3555 }
3556
3557 return false;
3558 }
3559
3560 /* Verify a gimple assignment statement STMT with an unary rhs.
3561 Returns true if anything is wrong. */
3562
3563 static bool
3564 verify_gimple_assign_unary (gassign *stmt)
3565 {
3566 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3567 tree lhs = gimple_assign_lhs (stmt);
3568 tree lhs_type = TREE_TYPE (lhs);
3569 tree rhs1 = gimple_assign_rhs1 (stmt);
3570 tree rhs1_type = TREE_TYPE (rhs1);
3571
3572 if (!is_gimple_reg (lhs))
3573 {
3574 error ("non-register as LHS of unary operation");
3575 return true;
3576 }
3577
3578 if (!is_gimple_val (rhs1))
3579 {
3580 error ("invalid operand in unary operation");
3581 return true;
3582 }
3583
3584 /* First handle conversions. */
3585 switch (rhs_code)
3586 {
3587 CASE_CONVERT:
3588 {
3589 /* Allow conversions from pointer type to integral type only if
3590 there is no sign or zero extension involved.
3591 For targets were the precision of ptrofftype doesn't match that
3592 of pointers we need to allow arbitrary conversions to ptrofftype. */
3593 if ((POINTER_TYPE_P (lhs_type)
3594 && INTEGRAL_TYPE_P (rhs1_type))
3595 || (POINTER_TYPE_P (rhs1_type)
3596 && INTEGRAL_TYPE_P (lhs_type)
3597 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3598 || ptrofftype_p (sizetype))))
3599 return false;
3600
3601 /* Allow conversion from integral to offset type and vice versa. */
3602 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3603 && INTEGRAL_TYPE_P (rhs1_type))
3604 || (INTEGRAL_TYPE_P (lhs_type)
3605 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3606 return false;
3607
3608 /* Otherwise assert we are converting between types of the
3609 same kind. */
3610 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3611 {
3612 error ("invalid types in nop conversion");
3613 debug_generic_expr (lhs_type);
3614 debug_generic_expr (rhs1_type);
3615 return true;
3616 }
3617
3618 return false;
3619 }
3620
3621 case ADDR_SPACE_CONVERT_EXPR:
3622 {
3623 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3624 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3625 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3626 {
3627 error ("invalid types in address space conversion");
3628 debug_generic_expr (lhs_type);
3629 debug_generic_expr (rhs1_type);
3630 return true;
3631 }
3632
3633 return false;
3634 }
3635
3636 case FIXED_CONVERT_EXPR:
3637 {
3638 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3639 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3640 {
3641 error ("invalid types in fixed-point conversion");
3642 debug_generic_expr (lhs_type);
3643 debug_generic_expr (rhs1_type);
3644 return true;
3645 }
3646
3647 return false;
3648 }
3649
3650 case FLOAT_EXPR:
3651 {
3652 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3653 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3654 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3655 {
3656 error ("invalid types in conversion to floating point");
3657 debug_generic_expr (lhs_type);
3658 debug_generic_expr (rhs1_type);
3659 return true;
3660 }
3661
3662 return false;
3663 }
3664
3665 case FIX_TRUNC_EXPR:
3666 {
3667 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3668 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3669 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3670 {
3671 error ("invalid types in conversion to integer");
3672 debug_generic_expr (lhs_type);
3673 debug_generic_expr (rhs1_type);
3674 return true;
3675 }
3676
3677 return false;
3678 }
3679 case REDUC_MAX_EXPR:
3680 case REDUC_MIN_EXPR:
3681 case REDUC_PLUS_EXPR:
3682 if (!VECTOR_TYPE_P (rhs1_type)
3683 || !useless_type_conversion_p (lhs_type, TREE_TYPE (rhs1_type)))
3684 {
3685 error ("reduction should convert from vector to element type");
3686 debug_generic_expr (lhs_type);
3687 debug_generic_expr (rhs1_type);
3688 return true;
3689 }
3690 return false;
3691
3692 case VEC_UNPACK_HI_EXPR:
3693 case VEC_UNPACK_LO_EXPR:
3694 case VEC_UNPACK_FLOAT_HI_EXPR:
3695 case VEC_UNPACK_FLOAT_LO_EXPR:
3696 /* FIXME. */
3697 return false;
3698
3699 case NEGATE_EXPR:
3700 case ABS_EXPR:
3701 case BIT_NOT_EXPR:
3702 case PAREN_EXPR:
3703 case CONJ_EXPR:
3704 break;
3705
3706 default:
3707 gcc_unreachable ();
3708 }
3709
3710 /* For the remaining codes assert there is no conversion involved. */
3711 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3712 {
3713 error ("non-trivial conversion in unary operation");
3714 debug_generic_expr (lhs_type);
3715 debug_generic_expr (rhs1_type);
3716 return true;
3717 }
3718
3719 return false;
3720 }
3721
3722 /* Verify a gimple assignment statement STMT with a binary rhs.
3723 Returns true if anything is wrong. */
3724
3725 static bool
3726 verify_gimple_assign_binary (gassign *stmt)
3727 {
3728 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3729 tree lhs = gimple_assign_lhs (stmt);
3730 tree lhs_type = TREE_TYPE (lhs);
3731 tree rhs1 = gimple_assign_rhs1 (stmt);
3732 tree rhs1_type = TREE_TYPE (rhs1);
3733 tree rhs2 = gimple_assign_rhs2 (stmt);
3734 tree rhs2_type = TREE_TYPE (rhs2);
3735
3736 if (!is_gimple_reg (lhs))
3737 {
3738 error ("non-register as LHS of binary operation");
3739 return true;
3740 }
3741
3742 if (!is_gimple_val (rhs1)
3743 || !is_gimple_val (rhs2))
3744 {
3745 error ("invalid operands in binary operation");
3746 return true;
3747 }
3748
3749 /* First handle operations that involve different types. */
3750 switch (rhs_code)
3751 {
3752 case COMPLEX_EXPR:
3753 {
3754 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3755 || !(INTEGRAL_TYPE_P (rhs1_type)
3756 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3757 || !(INTEGRAL_TYPE_P (rhs2_type)
3758 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3759 {
3760 error ("type mismatch in complex expression");
3761 debug_generic_expr (lhs_type);
3762 debug_generic_expr (rhs1_type);
3763 debug_generic_expr (rhs2_type);
3764 return true;
3765 }
3766
3767 return false;
3768 }
3769
3770 case LSHIFT_EXPR:
3771 case RSHIFT_EXPR:
3772 case LROTATE_EXPR:
3773 case RROTATE_EXPR:
3774 {
3775 /* Shifts and rotates are ok on integral types, fixed point
3776 types and integer vector types. */
3777 if ((!INTEGRAL_TYPE_P (rhs1_type)
3778 && !FIXED_POINT_TYPE_P (rhs1_type)
3779 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3780 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3781 || (!INTEGRAL_TYPE_P (rhs2_type)
3782 /* Vector shifts of vectors are also ok. */
3783 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3784 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3785 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3786 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3787 || !useless_type_conversion_p (lhs_type, rhs1_type))
3788 {
3789 error ("type mismatch in shift expression");
3790 debug_generic_expr (lhs_type);
3791 debug_generic_expr (rhs1_type);
3792 debug_generic_expr (rhs2_type);
3793 return true;
3794 }
3795
3796 return false;
3797 }
3798
3799 case WIDEN_LSHIFT_EXPR:
3800 {
3801 if (!INTEGRAL_TYPE_P (lhs_type)
3802 || !INTEGRAL_TYPE_P (rhs1_type)
3803 || TREE_CODE (rhs2) != INTEGER_CST
3804 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3805 {
3806 error ("type mismatch in widening vector shift expression");
3807 debug_generic_expr (lhs_type);
3808 debug_generic_expr (rhs1_type);
3809 debug_generic_expr (rhs2_type);
3810 return true;
3811 }
3812
3813 return false;
3814 }
3815
3816 case VEC_WIDEN_LSHIFT_HI_EXPR:
3817 case VEC_WIDEN_LSHIFT_LO_EXPR:
3818 {
3819 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3820 || TREE_CODE (lhs_type) != VECTOR_TYPE
3821 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3822 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3823 || TREE_CODE (rhs2) != INTEGER_CST
3824 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3825 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3826 {
3827 error ("type mismatch in widening vector shift expression");
3828 debug_generic_expr (lhs_type);
3829 debug_generic_expr (rhs1_type);
3830 debug_generic_expr (rhs2_type);
3831 return true;
3832 }
3833
3834 return false;
3835 }
3836
3837 case PLUS_EXPR:
3838 case MINUS_EXPR:
3839 {
3840 tree lhs_etype = lhs_type;
3841 tree rhs1_etype = rhs1_type;
3842 tree rhs2_etype = rhs2_type;
3843 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3844 {
3845 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3846 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3847 {
3848 error ("invalid non-vector operands to vector valued plus");
3849 return true;
3850 }
3851 lhs_etype = TREE_TYPE (lhs_type);
3852 rhs1_etype = TREE_TYPE (rhs1_type);
3853 rhs2_etype = TREE_TYPE (rhs2_type);
3854 }
3855 if (POINTER_TYPE_P (lhs_etype)
3856 || POINTER_TYPE_P (rhs1_etype)
3857 || POINTER_TYPE_P (rhs2_etype))
3858 {
3859 error ("invalid (pointer) operands to plus/minus");
3860 return true;
3861 }
3862
3863 /* Continue with generic binary expression handling. */
3864 break;
3865 }
3866
3867 case POINTER_PLUS_EXPR:
3868 {
3869 if (!POINTER_TYPE_P (rhs1_type)
3870 || !useless_type_conversion_p (lhs_type, rhs1_type)
3871 || !ptrofftype_p (rhs2_type))
3872 {
3873 error ("type mismatch in pointer plus expression");
3874 debug_generic_stmt (lhs_type);
3875 debug_generic_stmt (rhs1_type);
3876 debug_generic_stmt (rhs2_type);
3877 return true;
3878 }
3879
3880 return false;
3881 }
3882
3883 case TRUTH_ANDIF_EXPR:
3884 case TRUTH_ORIF_EXPR:
3885 case TRUTH_AND_EXPR:
3886 case TRUTH_OR_EXPR:
3887 case TRUTH_XOR_EXPR:
3888
3889 gcc_unreachable ();
3890
3891 case LT_EXPR:
3892 case LE_EXPR:
3893 case GT_EXPR:
3894 case GE_EXPR:
3895 case EQ_EXPR:
3896 case NE_EXPR:
3897 case UNORDERED_EXPR:
3898 case ORDERED_EXPR:
3899 case UNLT_EXPR:
3900 case UNLE_EXPR:
3901 case UNGT_EXPR:
3902 case UNGE_EXPR:
3903 case UNEQ_EXPR:
3904 case LTGT_EXPR:
3905 /* Comparisons are also binary, but the result type is not
3906 connected to the operand types. */
3907 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
3908
3909 case WIDEN_MULT_EXPR:
3910 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3911 return true;
3912 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3913 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3914
3915 case WIDEN_SUM_EXPR:
3916 case VEC_WIDEN_MULT_HI_EXPR:
3917 case VEC_WIDEN_MULT_LO_EXPR:
3918 case VEC_WIDEN_MULT_EVEN_EXPR:
3919 case VEC_WIDEN_MULT_ODD_EXPR:
3920 case VEC_PACK_TRUNC_EXPR:
3921 case VEC_PACK_SAT_EXPR:
3922 case VEC_PACK_FIX_TRUNC_EXPR:
3923 /* FIXME. */
3924 return false;
3925
3926 case MULT_EXPR:
3927 case MULT_HIGHPART_EXPR:
3928 case TRUNC_DIV_EXPR:
3929 case CEIL_DIV_EXPR:
3930 case FLOOR_DIV_EXPR:
3931 case ROUND_DIV_EXPR:
3932 case TRUNC_MOD_EXPR:
3933 case CEIL_MOD_EXPR:
3934 case FLOOR_MOD_EXPR:
3935 case ROUND_MOD_EXPR:
3936 case RDIV_EXPR:
3937 case EXACT_DIV_EXPR:
3938 case MIN_EXPR:
3939 case MAX_EXPR:
3940 case BIT_IOR_EXPR:
3941 case BIT_XOR_EXPR:
3942 case BIT_AND_EXPR:
3943 /* Continue with generic binary expression handling. */
3944 break;
3945
3946 default:
3947 gcc_unreachable ();
3948 }
3949
3950 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3951 || !useless_type_conversion_p (lhs_type, rhs2_type))
3952 {
3953 error ("type mismatch in binary expression");
3954 debug_generic_stmt (lhs_type);
3955 debug_generic_stmt (rhs1_type);
3956 debug_generic_stmt (rhs2_type);
3957 return true;
3958 }
3959
3960 return false;
3961 }
3962
3963 /* Verify a gimple assignment statement STMT with a ternary rhs.
3964 Returns true if anything is wrong. */
3965
3966 static bool
3967 verify_gimple_assign_ternary (gassign *stmt)
3968 {
3969 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3970 tree lhs = gimple_assign_lhs (stmt);
3971 tree lhs_type = TREE_TYPE (lhs);
3972 tree rhs1 = gimple_assign_rhs1 (stmt);
3973 tree rhs1_type = TREE_TYPE (rhs1);
3974 tree rhs2 = gimple_assign_rhs2 (stmt);
3975 tree rhs2_type = TREE_TYPE (rhs2);
3976 tree rhs3 = gimple_assign_rhs3 (stmt);
3977 tree rhs3_type = TREE_TYPE (rhs3);
3978
3979 if (!is_gimple_reg (lhs))
3980 {
3981 error ("non-register as LHS of ternary operation");
3982 return true;
3983 }
3984
3985 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3986 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3987 || !is_gimple_val (rhs2)
3988 || !is_gimple_val (rhs3))
3989 {
3990 error ("invalid operands in ternary operation");
3991 return true;
3992 }
3993
3994 /* First handle operations that involve different types. */
3995 switch (rhs_code)
3996 {
3997 case WIDEN_MULT_PLUS_EXPR:
3998 case WIDEN_MULT_MINUS_EXPR:
3999 if ((!INTEGRAL_TYPE_P (rhs1_type)
4000 && !FIXED_POINT_TYPE_P (rhs1_type))
4001 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4002 || !useless_type_conversion_p (lhs_type, rhs3_type)
4003 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4004 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4005 {
4006 error ("type mismatch in widening multiply-accumulate expression");
4007 debug_generic_expr (lhs_type);
4008 debug_generic_expr (rhs1_type);
4009 debug_generic_expr (rhs2_type);
4010 debug_generic_expr (rhs3_type);
4011 return true;
4012 }
4013 break;
4014
4015 case FMA_EXPR:
4016 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4017 || !useless_type_conversion_p (lhs_type, rhs2_type)
4018 || !useless_type_conversion_p (lhs_type, rhs3_type))
4019 {
4020 error ("type mismatch in fused multiply-add expression");
4021 debug_generic_expr (lhs_type);
4022 debug_generic_expr (rhs1_type);
4023 debug_generic_expr (rhs2_type);
4024 debug_generic_expr (rhs3_type);
4025 return true;
4026 }
4027 break;
4028
4029 case VEC_COND_EXPR:
4030 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4031 || TYPE_VECTOR_SUBPARTS (rhs1_type)
4032 != TYPE_VECTOR_SUBPARTS (lhs_type))
4033 {
4034 error ("the first argument of a VEC_COND_EXPR must be of a "
4035 "boolean vector type of the same number of elements "
4036 "as the result");
4037 debug_generic_expr (lhs_type);
4038 debug_generic_expr (rhs1_type);
4039 return true;
4040 }
4041 /* Fallthrough. */
4042 case COND_EXPR:
4043 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4044 || !useless_type_conversion_p (lhs_type, rhs3_type))
4045 {
4046 error ("type mismatch in conditional expression");
4047 debug_generic_expr (lhs_type);
4048 debug_generic_expr (rhs2_type);
4049 debug_generic_expr (rhs3_type);
4050 return true;
4051 }
4052 break;
4053
4054 case VEC_PERM_EXPR:
4055 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4056 || !useless_type_conversion_p (lhs_type, rhs2_type))
4057 {
4058 error ("type mismatch in vector permute expression");
4059 debug_generic_expr (lhs_type);
4060 debug_generic_expr (rhs1_type);
4061 debug_generic_expr (rhs2_type);
4062 debug_generic_expr (rhs3_type);
4063 return true;
4064 }
4065
4066 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4067 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4068 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4069 {
4070 error ("vector types expected in vector permute expression");
4071 debug_generic_expr (lhs_type);
4072 debug_generic_expr (rhs1_type);
4073 debug_generic_expr (rhs2_type);
4074 debug_generic_expr (rhs3_type);
4075 return true;
4076 }
4077
4078 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4079 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4080 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4081 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4082 != TYPE_VECTOR_SUBPARTS (lhs_type))
4083 {
4084 error ("vectors with different element number found "
4085 "in vector permute expression");
4086 debug_generic_expr (lhs_type);
4087 debug_generic_expr (rhs1_type);
4088 debug_generic_expr (rhs2_type);
4089 debug_generic_expr (rhs3_type);
4090 return true;
4091 }
4092
4093 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4094 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
4095 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
4096 {
4097 error ("invalid mask type in vector permute expression");
4098 debug_generic_expr (lhs_type);
4099 debug_generic_expr (rhs1_type);
4100 debug_generic_expr (rhs2_type);
4101 debug_generic_expr (rhs3_type);
4102 return true;
4103 }
4104
4105 return false;
4106
4107 case SAD_EXPR:
4108 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4109 || !useless_type_conversion_p (lhs_type, rhs3_type)
4110 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4111 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4112 {
4113 error ("type mismatch in sad expression");
4114 debug_generic_expr (lhs_type);
4115 debug_generic_expr (rhs1_type);
4116 debug_generic_expr (rhs2_type);
4117 debug_generic_expr (rhs3_type);
4118 return true;
4119 }
4120
4121 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4122 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4123 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4124 {
4125 error ("vector types expected in sad expression");
4126 debug_generic_expr (lhs_type);
4127 debug_generic_expr (rhs1_type);
4128 debug_generic_expr (rhs2_type);
4129 debug_generic_expr (rhs3_type);
4130 return true;
4131 }
4132
4133 return false;
4134
4135 case BIT_INSERT_EXPR:
4136 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4137 {
4138 error ("type mismatch in BIT_INSERT_EXPR");
4139 debug_generic_expr (lhs_type);
4140 debug_generic_expr (rhs1_type);
4141 return true;
4142 }
4143 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4144 && INTEGRAL_TYPE_P (rhs2_type))
4145 || (VECTOR_TYPE_P (rhs1_type)
4146 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4147 {
4148 error ("not allowed type combination in BIT_INSERT_EXPR");
4149 debug_generic_expr (rhs1_type);
4150 debug_generic_expr (rhs2_type);
4151 return true;
4152 }
4153 if (! tree_fits_uhwi_p (rhs3)
4154 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4155 {
4156 error ("invalid position or size in BIT_INSERT_EXPR");
4157 return true;
4158 }
4159 if (INTEGRAL_TYPE_P (rhs1_type))
4160 {
4161 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4162 if (bitpos >= TYPE_PRECISION (rhs1_type)
4163 || (bitpos + TYPE_PRECISION (rhs2_type)
4164 > TYPE_PRECISION (rhs1_type)))
4165 {
4166 error ("insertion out of range in BIT_INSERT_EXPR");
4167 return true;
4168 }
4169 }
4170 else if (VECTOR_TYPE_P (rhs1_type))
4171 {
4172 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4173 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4174 if (bitpos % bitsize != 0)
4175 {
4176 error ("vector insertion not at element boundary");
4177 return true;
4178 }
4179 }
4180 return false;
4181
4182 case DOT_PROD_EXPR:
4183 case REALIGN_LOAD_EXPR:
4184 /* FIXME. */
4185 return false;
4186
4187 default:
4188 gcc_unreachable ();
4189 }
4190 return false;
4191 }
4192
4193 /* Verify a gimple assignment statement STMT with a single rhs.
4194 Returns true if anything is wrong. */
4195
4196 static bool
4197 verify_gimple_assign_single (gassign *stmt)
4198 {
4199 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4200 tree lhs = gimple_assign_lhs (stmt);
4201 tree lhs_type = TREE_TYPE (lhs);
4202 tree rhs1 = gimple_assign_rhs1 (stmt);
4203 tree rhs1_type = TREE_TYPE (rhs1);
4204 bool res = false;
4205
4206 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4207 {
4208 error ("non-trivial conversion at assignment");
4209 debug_generic_expr (lhs_type);
4210 debug_generic_expr (rhs1_type);
4211 return true;
4212 }
4213
4214 if (gimple_clobber_p (stmt)
4215 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4216 {
4217 error ("non-decl/MEM_REF LHS in clobber statement");
4218 debug_generic_expr (lhs);
4219 return true;
4220 }
4221
4222 if (handled_component_p (lhs)
4223 || TREE_CODE (lhs) == MEM_REF
4224 || TREE_CODE (lhs) == TARGET_MEM_REF)
4225 res |= verify_types_in_gimple_reference (lhs, true);
4226
4227 /* Special codes we cannot handle via their class. */
4228 switch (rhs_code)
4229 {
4230 case ADDR_EXPR:
4231 {
4232 tree op = TREE_OPERAND (rhs1, 0);
4233 if (!is_gimple_addressable (op))
4234 {
4235 error ("invalid operand in unary expression");
4236 return true;
4237 }
4238
4239 /* Technically there is no longer a need for matching types, but
4240 gimple hygiene asks for this check. In LTO we can end up
4241 combining incompatible units and thus end up with addresses
4242 of globals that change their type to a common one. */
4243 if (!in_lto_p
4244 && !types_compatible_p (TREE_TYPE (op),
4245 TREE_TYPE (TREE_TYPE (rhs1)))
4246 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4247 TREE_TYPE (op)))
4248 {
4249 error ("type mismatch in address expression");
4250 debug_generic_stmt (TREE_TYPE (rhs1));
4251 debug_generic_stmt (TREE_TYPE (op));
4252 return true;
4253 }
4254
4255 return verify_types_in_gimple_reference (op, true);
4256 }
4257
4258 /* tcc_reference */
4259 case INDIRECT_REF:
4260 error ("INDIRECT_REF in gimple IL");
4261 return true;
4262
4263 case COMPONENT_REF:
4264 case BIT_FIELD_REF:
4265 case ARRAY_REF:
4266 case ARRAY_RANGE_REF:
4267 case VIEW_CONVERT_EXPR:
4268 case REALPART_EXPR:
4269 case IMAGPART_EXPR:
4270 case TARGET_MEM_REF:
4271 case MEM_REF:
4272 if (!is_gimple_reg (lhs)
4273 && is_gimple_reg_type (TREE_TYPE (lhs)))
4274 {
4275 error ("invalid rhs for gimple memory store");
4276 debug_generic_stmt (lhs);
4277 debug_generic_stmt (rhs1);
4278 return true;
4279 }
4280 return res || verify_types_in_gimple_reference (rhs1, false);
4281
4282 /* tcc_constant */
4283 case SSA_NAME:
4284 case INTEGER_CST:
4285 case REAL_CST:
4286 case FIXED_CST:
4287 case COMPLEX_CST:
4288 case VECTOR_CST:
4289 case STRING_CST:
4290 return res;
4291
4292 /* tcc_declaration */
4293 case CONST_DECL:
4294 return res;
4295 case VAR_DECL:
4296 case PARM_DECL:
4297 if (!is_gimple_reg (lhs)
4298 && !is_gimple_reg (rhs1)
4299 && is_gimple_reg_type (TREE_TYPE (lhs)))
4300 {
4301 error ("invalid rhs for gimple memory store");
4302 debug_generic_stmt (lhs);
4303 debug_generic_stmt (rhs1);
4304 return true;
4305 }
4306 return res;
4307
4308 case CONSTRUCTOR:
4309 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4310 {
4311 unsigned int i;
4312 tree elt_i, elt_v, elt_t = NULL_TREE;
4313
4314 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4315 return res;
4316 /* For vector CONSTRUCTORs we require that either it is empty
4317 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4318 (then the element count must be correct to cover the whole
4319 outer vector and index must be NULL on all elements, or it is
4320 a CONSTRUCTOR of scalar elements, where we as an exception allow
4321 smaller number of elements (assuming zero filling) and
4322 consecutive indexes as compared to NULL indexes (such
4323 CONSTRUCTORs can appear in the IL from FEs). */
4324 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4325 {
4326 if (elt_t == NULL_TREE)
4327 {
4328 elt_t = TREE_TYPE (elt_v);
4329 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4330 {
4331 tree elt_t = TREE_TYPE (elt_v);
4332 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4333 TREE_TYPE (elt_t)))
4334 {
4335 error ("incorrect type of vector CONSTRUCTOR"
4336 " elements");
4337 debug_generic_stmt (rhs1);
4338 return true;
4339 }
4340 else if (CONSTRUCTOR_NELTS (rhs1)
4341 * TYPE_VECTOR_SUBPARTS (elt_t)
4342 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4343 {
4344 error ("incorrect number of vector CONSTRUCTOR"
4345 " elements");
4346 debug_generic_stmt (rhs1);
4347 return true;
4348 }
4349 }
4350 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4351 elt_t))
4352 {
4353 error ("incorrect type of vector CONSTRUCTOR elements");
4354 debug_generic_stmt (rhs1);
4355 return true;
4356 }
4357 else if (CONSTRUCTOR_NELTS (rhs1)
4358 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4359 {
4360 error ("incorrect number of vector CONSTRUCTOR elements");
4361 debug_generic_stmt (rhs1);
4362 return true;
4363 }
4364 }
4365 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4366 {
4367 error ("incorrect type of vector CONSTRUCTOR elements");
4368 debug_generic_stmt (rhs1);
4369 return true;
4370 }
4371 if (elt_i != NULL_TREE
4372 && (TREE_CODE (elt_t) == VECTOR_TYPE
4373 || TREE_CODE (elt_i) != INTEGER_CST
4374 || compare_tree_int (elt_i, i) != 0))
4375 {
4376 error ("vector CONSTRUCTOR with non-NULL element index");
4377 debug_generic_stmt (rhs1);
4378 return true;
4379 }
4380 if (!is_gimple_val (elt_v))
4381 {
4382 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4383 debug_generic_stmt (rhs1);
4384 return true;
4385 }
4386 }
4387 }
4388 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4389 {
4390 error ("non-vector CONSTRUCTOR with elements");
4391 debug_generic_stmt (rhs1);
4392 return true;
4393 }
4394 return res;
4395 case OBJ_TYPE_REF:
4396 case ASSERT_EXPR:
4397 case WITH_SIZE_EXPR:
4398 /* FIXME. */
4399 return res;
4400
4401 default:;
4402 }
4403
4404 return res;
4405 }
4406
4407 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4408 is a problem, otherwise false. */
4409
4410 static bool
4411 verify_gimple_assign (gassign *stmt)
4412 {
4413 switch (gimple_assign_rhs_class (stmt))
4414 {
4415 case GIMPLE_SINGLE_RHS:
4416 return verify_gimple_assign_single (stmt);
4417
4418 case GIMPLE_UNARY_RHS:
4419 return verify_gimple_assign_unary (stmt);
4420
4421 case GIMPLE_BINARY_RHS:
4422 return verify_gimple_assign_binary (stmt);
4423
4424 case GIMPLE_TERNARY_RHS:
4425 return verify_gimple_assign_ternary (stmt);
4426
4427 default:
4428 gcc_unreachable ();
4429 }
4430 }
4431
4432 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4433 is a problem, otherwise false. */
4434
4435 static bool
4436 verify_gimple_return (greturn *stmt)
4437 {
4438 tree op = gimple_return_retval (stmt);
4439 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4440
4441 /* We cannot test for present return values as we do not fix up missing
4442 return values from the original source. */
4443 if (op == NULL)
4444 return false;
4445
4446 if (!is_gimple_val (op)
4447 && TREE_CODE (op) != RESULT_DECL)
4448 {
4449 error ("invalid operand in return statement");
4450 debug_generic_stmt (op);
4451 return true;
4452 }
4453
4454 if ((TREE_CODE (op) == RESULT_DECL
4455 && DECL_BY_REFERENCE (op))
4456 || (TREE_CODE (op) == SSA_NAME
4457 && SSA_NAME_VAR (op)
4458 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4459 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4460 op = TREE_TYPE (op);
4461
4462 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4463 {
4464 error ("invalid conversion in return statement");
4465 debug_generic_stmt (restype);
4466 debug_generic_stmt (TREE_TYPE (op));
4467 return true;
4468 }
4469
4470 return false;
4471 }
4472
4473
4474 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4475 is a problem, otherwise false. */
4476
4477 static bool
4478 verify_gimple_goto (ggoto *stmt)
4479 {
4480 tree dest = gimple_goto_dest (stmt);
4481
4482 /* ??? We have two canonical forms of direct goto destinations, a
4483 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4484 if (TREE_CODE (dest) != LABEL_DECL
4485 && (!is_gimple_val (dest)
4486 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4487 {
4488 error ("goto destination is neither a label nor a pointer");
4489 return true;
4490 }
4491
4492 return false;
4493 }
4494
4495 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4496 is a problem, otherwise false. */
4497
4498 static bool
4499 verify_gimple_switch (gswitch *stmt)
4500 {
4501 unsigned int i, n;
4502 tree elt, prev_upper_bound = NULL_TREE;
4503 tree index_type, elt_type = NULL_TREE;
4504
4505 if (!is_gimple_val (gimple_switch_index (stmt)))
4506 {
4507 error ("invalid operand to switch statement");
4508 debug_generic_stmt (gimple_switch_index (stmt));
4509 return true;
4510 }
4511
4512 index_type = TREE_TYPE (gimple_switch_index (stmt));
4513 if (! INTEGRAL_TYPE_P (index_type))
4514 {
4515 error ("non-integral type switch statement");
4516 debug_generic_expr (index_type);
4517 return true;
4518 }
4519
4520 elt = gimple_switch_label (stmt, 0);
4521 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4522 {
4523 error ("invalid default case label in switch statement");
4524 debug_generic_expr (elt);
4525 return true;
4526 }
4527
4528 n = gimple_switch_num_labels (stmt);
4529 for (i = 1; i < n; i++)
4530 {
4531 elt = gimple_switch_label (stmt, i);
4532
4533 if (! CASE_LOW (elt))
4534 {
4535 error ("invalid case label in switch statement");
4536 debug_generic_expr (elt);
4537 return true;
4538 }
4539 if (CASE_HIGH (elt)
4540 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4541 {
4542 error ("invalid case range in switch statement");
4543 debug_generic_expr (elt);
4544 return true;
4545 }
4546
4547 if (elt_type)
4548 {
4549 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4550 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4551 {
4552 error ("type mismatch for case label in switch statement");
4553 debug_generic_expr (elt);
4554 return true;
4555 }
4556 }
4557 else
4558 {
4559 elt_type = TREE_TYPE (CASE_LOW (elt));
4560 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4561 {
4562 error ("type precision mismatch in switch statement");
4563 return true;
4564 }
4565 }
4566
4567 if (prev_upper_bound)
4568 {
4569 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4570 {
4571 error ("case labels not sorted in switch statement");
4572 return true;
4573 }
4574 }
4575
4576 prev_upper_bound = CASE_HIGH (elt);
4577 if (! prev_upper_bound)
4578 prev_upper_bound = CASE_LOW (elt);
4579 }
4580
4581 return false;
4582 }
4583
4584 /* Verify a gimple debug statement STMT.
4585 Returns true if anything is wrong. */
4586
4587 static bool
4588 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4589 {
4590 /* There isn't much that could be wrong in a gimple debug stmt. A
4591 gimple debug bind stmt, for example, maps a tree, that's usually
4592 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4593 component or member of an aggregate type, to another tree, that
4594 can be an arbitrary expression. These stmts expand into debug
4595 insns, and are converted to debug notes by var-tracking.c. */
4596 return false;
4597 }
4598
4599 /* Verify a gimple label statement STMT.
4600 Returns true if anything is wrong. */
4601
4602 static bool
4603 verify_gimple_label (glabel *stmt)
4604 {
4605 tree decl = gimple_label_label (stmt);
4606 int uid;
4607 bool err = false;
4608
4609 if (TREE_CODE (decl) != LABEL_DECL)
4610 return true;
4611 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4612 && DECL_CONTEXT (decl) != current_function_decl)
4613 {
4614 error ("label's context is not the current function decl");
4615 err |= true;
4616 }
4617
4618 uid = LABEL_DECL_UID (decl);
4619 if (cfun->cfg
4620 && (uid == -1
4621 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4622 {
4623 error ("incorrect entry in label_to_block_map");
4624 err |= true;
4625 }
4626
4627 uid = EH_LANDING_PAD_NR (decl);
4628 if (uid)
4629 {
4630 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4631 if (decl != lp->post_landing_pad)
4632 {
4633 error ("incorrect setting of landing pad number");
4634 err |= true;
4635 }
4636 }
4637
4638 return err;
4639 }
4640
4641 /* Verify a gimple cond statement STMT.
4642 Returns true if anything is wrong. */
4643
4644 static bool
4645 verify_gimple_cond (gcond *stmt)
4646 {
4647 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4648 {
4649 error ("invalid comparison code in gimple cond");
4650 return true;
4651 }
4652 if (!(!gimple_cond_true_label (stmt)
4653 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4654 || !(!gimple_cond_false_label (stmt)
4655 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4656 {
4657 error ("invalid labels in gimple cond");
4658 return true;
4659 }
4660
4661 return verify_gimple_comparison (boolean_type_node,
4662 gimple_cond_lhs (stmt),
4663 gimple_cond_rhs (stmt),
4664 gimple_cond_code (stmt));
4665 }
4666
4667 /* Verify the GIMPLE statement STMT. Returns true if there is an
4668 error, otherwise false. */
4669
4670 static bool
4671 verify_gimple_stmt (gimple *stmt)
4672 {
4673 switch (gimple_code (stmt))
4674 {
4675 case GIMPLE_ASSIGN:
4676 return verify_gimple_assign (as_a <gassign *> (stmt));
4677
4678 case GIMPLE_LABEL:
4679 return verify_gimple_label (as_a <glabel *> (stmt));
4680
4681 case GIMPLE_CALL:
4682 return verify_gimple_call (as_a <gcall *> (stmt));
4683
4684 case GIMPLE_COND:
4685 return verify_gimple_cond (as_a <gcond *> (stmt));
4686
4687 case GIMPLE_GOTO:
4688 return verify_gimple_goto (as_a <ggoto *> (stmt));
4689
4690 case GIMPLE_SWITCH:
4691 return verify_gimple_switch (as_a <gswitch *> (stmt));
4692
4693 case GIMPLE_RETURN:
4694 return verify_gimple_return (as_a <greturn *> (stmt));
4695
4696 case GIMPLE_ASM:
4697 return false;
4698
4699 case GIMPLE_TRANSACTION:
4700 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4701
4702 /* Tuples that do not have tree operands. */
4703 case GIMPLE_NOP:
4704 case GIMPLE_PREDICT:
4705 case GIMPLE_RESX:
4706 case GIMPLE_EH_DISPATCH:
4707 case GIMPLE_EH_MUST_NOT_THROW:
4708 return false;
4709
4710 CASE_GIMPLE_OMP:
4711 /* OpenMP directives are validated by the FE and never operated
4712 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4713 non-gimple expressions when the main index variable has had
4714 its address taken. This does not affect the loop itself
4715 because the header of an GIMPLE_OMP_FOR is merely used to determine
4716 how to setup the parallel iteration. */
4717 return false;
4718
4719 case GIMPLE_DEBUG:
4720 return verify_gimple_debug (stmt);
4721
4722 default:
4723 gcc_unreachable ();
4724 }
4725 }
4726
4727 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4728 and false otherwise. */
4729
4730 static bool
4731 verify_gimple_phi (gimple *phi)
4732 {
4733 bool err = false;
4734 unsigned i;
4735 tree phi_result = gimple_phi_result (phi);
4736 bool virtual_p;
4737
4738 if (!phi_result)
4739 {
4740 error ("invalid PHI result");
4741 return true;
4742 }
4743
4744 virtual_p = virtual_operand_p (phi_result);
4745 if (TREE_CODE (phi_result) != SSA_NAME
4746 || (virtual_p
4747 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4748 {
4749 error ("invalid PHI result");
4750 err = true;
4751 }
4752
4753 for (i = 0; i < gimple_phi_num_args (phi); i++)
4754 {
4755 tree t = gimple_phi_arg_def (phi, i);
4756
4757 if (!t)
4758 {
4759 error ("missing PHI def");
4760 err |= true;
4761 continue;
4762 }
4763 /* Addressable variables do have SSA_NAMEs but they
4764 are not considered gimple values. */
4765 else if ((TREE_CODE (t) == SSA_NAME
4766 && virtual_p != virtual_operand_p (t))
4767 || (virtual_p
4768 && (TREE_CODE (t) != SSA_NAME
4769 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4770 || (!virtual_p
4771 && !is_gimple_val (t)))
4772 {
4773 error ("invalid PHI argument");
4774 debug_generic_expr (t);
4775 err |= true;
4776 }
4777 #ifdef ENABLE_TYPES_CHECKING
4778 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4779 {
4780 error ("incompatible types in PHI argument %u", i);
4781 debug_generic_stmt (TREE_TYPE (phi_result));
4782 debug_generic_stmt (TREE_TYPE (t));
4783 err |= true;
4784 }
4785 #endif
4786 }
4787
4788 return err;
4789 }
4790
4791 /* Verify the GIMPLE statements inside the sequence STMTS. */
4792
4793 static bool
4794 verify_gimple_in_seq_2 (gimple_seq stmts)
4795 {
4796 gimple_stmt_iterator ittr;
4797 bool err = false;
4798
4799 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4800 {
4801 gimple *stmt = gsi_stmt (ittr);
4802
4803 switch (gimple_code (stmt))
4804 {
4805 case GIMPLE_BIND:
4806 err |= verify_gimple_in_seq_2 (
4807 gimple_bind_body (as_a <gbind *> (stmt)));
4808 break;
4809
4810 case GIMPLE_TRY:
4811 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4812 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4813 break;
4814
4815 case GIMPLE_EH_FILTER:
4816 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4817 break;
4818
4819 case GIMPLE_EH_ELSE:
4820 {
4821 geh_else *eh_else = as_a <geh_else *> (stmt);
4822 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
4823 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
4824 }
4825 break;
4826
4827 case GIMPLE_CATCH:
4828 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
4829 as_a <gcatch *> (stmt)));
4830 break;
4831
4832 case GIMPLE_TRANSACTION:
4833 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
4834 break;
4835
4836 default:
4837 {
4838 bool err2 = verify_gimple_stmt (stmt);
4839 if (err2)
4840 debug_gimple_stmt (stmt);
4841 err |= err2;
4842 }
4843 }
4844 }
4845
4846 return err;
4847 }
4848
4849 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4850 is a problem, otherwise false. */
4851
4852 static bool
4853 verify_gimple_transaction (gtransaction *stmt)
4854 {
4855 tree lab;
4856
4857 lab = gimple_transaction_label_norm (stmt);
4858 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4859 return true;
4860 lab = gimple_transaction_label_uninst (stmt);
4861 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4862 return true;
4863 lab = gimple_transaction_label_over (stmt);
4864 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4865 return true;
4866
4867 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4868 }
4869
4870
4871 /* Verify the GIMPLE statements inside the statement list STMTS. */
4872
4873 DEBUG_FUNCTION void
4874 verify_gimple_in_seq (gimple_seq stmts)
4875 {
4876 timevar_push (TV_TREE_STMT_VERIFY);
4877 if (verify_gimple_in_seq_2 (stmts))
4878 internal_error ("verify_gimple failed");
4879 timevar_pop (TV_TREE_STMT_VERIFY);
4880 }
4881
4882 /* Return true when the T can be shared. */
4883
4884 static bool
4885 tree_node_can_be_shared (tree t)
4886 {
4887 if (IS_TYPE_OR_DECL_P (t)
4888 || is_gimple_min_invariant (t)
4889 || TREE_CODE (t) == SSA_NAME
4890 || t == error_mark_node
4891 || TREE_CODE (t) == IDENTIFIER_NODE)
4892 return true;
4893
4894 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4895 return true;
4896
4897 if (DECL_P (t))
4898 return true;
4899
4900 return false;
4901 }
4902
4903 /* Called via walk_tree. Verify tree sharing. */
4904
4905 static tree
4906 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4907 {
4908 hash_set<void *> *visited = (hash_set<void *> *) data;
4909
4910 if (tree_node_can_be_shared (*tp))
4911 {
4912 *walk_subtrees = false;
4913 return NULL;
4914 }
4915
4916 if (visited->add (*tp))
4917 return *tp;
4918
4919 return NULL;
4920 }
4921
4922 /* Called via walk_gimple_stmt. Verify tree sharing. */
4923
4924 static tree
4925 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4926 {
4927 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4928 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4929 }
4930
4931 static bool eh_error_found;
4932 bool
4933 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
4934 hash_set<gimple *> *visited)
4935 {
4936 if (!visited->contains (stmt))
4937 {
4938 error ("dead STMT in EH table");
4939 debug_gimple_stmt (stmt);
4940 eh_error_found = true;
4941 }
4942 return true;
4943 }
4944
4945 /* Verify if the location LOCs block is in BLOCKS. */
4946
4947 static bool
4948 verify_location (hash_set<tree> *blocks, location_t loc)
4949 {
4950 tree block = LOCATION_BLOCK (loc);
4951 if (block != NULL_TREE
4952 && !blocks->contains (block))
4953 {
4954 error ("location references block not in block tree");
4955 return true;
4956 }
4957 if (block != NULL_TREE)
4958 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4959 return false;
4960 }
4961
4962 /* Called via walk_tree. Verify that expressions have no blocks. */
4963
4964 static tree
4965 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4966 {
4967 if (!EXPR_P (*tp))
4968 {
4969 *walk_subtrees = false;
4970 return NULL;
4971 }
4972
4973 location_t loc = EXPR_LOCATION (*tp);
4974 if (LOCATION_BLOCK (loc) != NULL)
4975 return *tp;
4976
4977 return NULL;
4978 }
4979
4980 /* Called via walk_tree. Verify locations of expressions. */
4981
4982 static tree
4983 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4984 {
4985 hash_set<tree> *blocks = (hash_set<tree> *) data;
4986
4987 if (TREE_CODE (*tp) == VAR_DECL
4988 && DECL_HAS_DEBUG_EXPR_P (*tp))
4989 {
4990 tree t = DECL_DEBUG_EXPR (*tp);
4991 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4992 if (addr)
4993 return addr;
4994 }
4995 if ((TREE_CODE (*tp) == VAR_DECL
4996 || TREE_CODE (*tp) == PARM_DECL
4997 || TREE_CODE (*tp) == RESULT_DECL)
4998 && DECL_HAS_VALUE_EXPR_P (*tp))
4999 {
5000 tree t = DECL_VALUE_EXPR (*tp);
5001 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5002 if (addr)
5003 return addr;
5004 }
5005
5006 if (!EXPR_P (*tp))
5007 {
5008 *walk_subtrees = false;
5009 return NULL;
5010 }
5011
5012 location_t loc = EXPR_LOCATION (*tp);
5013 if (verify_location (blocks, loc))
5014 return *tp;
5015
5016 return NULL;
5017 }
5018
5019 /* Called via walk_gimple_op. Verify locations of expressions. */
5020
5021 static tree
5022 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5023 {
5024 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5025 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5026 }
5027
5028 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5029
5030 static void
5031 collect_subblocks (hash_set<tree> *blocks, tree block)
5032 {
5033 tree t;
5034 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5035 {
5036 blocks->add (t);
5037 collect_subblocks (blocks, t);
5038 }
5039 }
5040
5041 /* Verify the GIMPLE statements in the CFG of FN. */
5042
5043 DEBUG_FUNCTION void
5044 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5045 {
5046 basic_block bb;
5047 bool err = false;
5048
5049 timevar_push (TV_TREE_STMT_VERIFY);
5050 hash_set<void *> visited;
5051 hash_set<gimple *> visited_stmts;
5052
5053 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5054 hash_set<tree> blocks;
5055 if (DECL_INITIAL (fn->decl))
5056 {
5057 blocks.add (DECL_INITIAL (fn->decl));
5058 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5059 }
5060
5061 FOR_EACH_BB_FN (bb, fn)
5062 {
5063 gimple_stmt_iterator gsi;
5064
5065 for (gphi_iterator gpi = gsi_start_phis (bb);
5066 !gsi_end_p (gpi);
5067 gsi_next (&gpi))
5068 {
5069 gphi *phi = gpi.phi ();
5070 bool err2 = false;
5071 unsigned i;
5072
5073 visited_stmts.add (phi);
5074
5075 if (gimple_bb (phi) != bb)
5076 {
5077 error ("gimple_bb (phi) is set to a wrong basic block");
5078 err2 = true;
5079 }
5080
5081 err2 |= verify_gimple_phi (phi);
5082
5083 /* Only PHI arguments have locations. */
5084 if (gimple_location (phi) != UNKNOWN_LOCATION)
5085 {
5086 error ("PHI node with location");
5087 err2 = true;
5088 }
5089
5090 for (i = 0; i < gimple_phi_num_args (phi); i++)
5091 {
5092 tree arg = gimple_phi_arg_def (phi, i);
5093 tree addr = walk_tree (&arg, verify_node_sharing_1,
5094 &visited, NULL);
5095 if (addr)
5096 {
5097 error ("incorrect sharing of tree nodes");
5098 debug_generic_expr (addr);
5099 err2 |= true;
5100 }
5101 location_t loc = gimple_phi_arg_location (phi, i);
5102 if (virtual_operand_p (gimple_phi_result (phi))
5103 && loc != UNKNOWN_LOCATION)
5104 {
5105 error ("virtual PHI with argument locations");
5106 err2 = true;
5107 }
5108 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5109 if (addr)
5110 {
5111 debug_generic_expr (addr);
5112 err2 = true;
5113 }
5114 err2 |= verify_location (&blocks, loc);
5115 }
5116
5117 if (err2)
5118 debug_gimple_stmt (phi);
5119 err |= err2;
5120 }
5121
5122 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5123 {
5124 gimple *stmt = gsi_stmt (gsi);
5125 bool err2 = false;
5126 struct walk_stmt_info wi;
5127 tree addr;
5128 int lp_nr;
5129
5130 visited_stmts.add (stmt);
5131
5132 if (gimple_bb (stmt) != bb)
5133 {
5134 error ("gimple_bb (stmt) is set to a wrong basic block");
5135 err2 = true;
5136 }
5137
5138 err2 |= verify_gimple_stmt (stmt);
5139 err2 |= verify_location (&blocks, gimple_location (stmt));
5140
5141 memset (&wi, 0, sizeof (wi));
5142 wi.info = (void *) &visited;
5143 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5144 if (addr)
5145 {
5146 error ("incorrect sharing of tree nodes");
5147 debug_generic_expr (addr);
5148 err2 |= true;
5149 }
5150
5151 memset (&wi, 0, sizeof (wi));
5152 wi.info = (void *) &blocks;
5153 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5154 if (addr)
5155 {
5156 debug_generic_expr (addr);
5157 err2 |= true;
5158 }
5159
5160 /* ??? Instead of not checking these stmts at all the walker
5161 should know its context via wi. */
5162 if (!is_gimple_debug (stmt)
5163 && !is_gimple_omp (stmt))
5164 {
5165 memset (&wi, 0, sizeof (wi));
5166 addr = walk_gimple_op (stmt, verify_expr, &wi);
5167 if (addr)
5168 {
5169 debug_generic_expr (addr);
5170 inform (gimple_location (stmt), "in statement");
5171 err2 |= true;
5172 }
5173 }
5174
5175 /* If the statement is marked as part of an EH region, then it is
5176 expected that the statement could throw. Verify that when we
5177 have optimizations that simplify statements such that we prove
5178 that they cannot throw, that we update other data structures
5179 to match. */
5180 lp_nr = lookup_stmt_eh_lp (stmt);
5181 if (lp_nr > 0)
5182 {
5183 if (!stmt_could_throw_p (stmt))
5184 {
5185 if (verify_nothrow)
5186 {
5187 error ("statement marked for throw, but doesn%'t");
5188 err2 |= true;
5189 }
5190 }
5191 else if (!gsi_one_before_end_p (gsi))
5192 {
5193 error ("statement marked for throw in middle of block");
5194 err2 |= true;
5195 }
5196 }
5197
5198 if (err2)
5199 debug_gimple_stmt (stmt);
5200 err |= err2;
5201 }
5202 }
5203
5204 eh_error_found = false;
5205 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5206 if (eh_table)
5207 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5208 (&visited_stmts);
5209
5210 if (err || eh_error_found)
5211 internal_error ("verify_gimple failed");
5212
5213 verify_histograms ();
5214 timevar_pop (TV_TREE_STMT_VERIFY);
5215 }
5216
5217
5218 /* Verifies that the flow information is OK. */
5219
5220 static int
5221 gimple_verify_flow_info (void)
5222 {
5223 int err = 0;
5224 basic_block bb;
5225 gimple_stmt_iterator gsi;
5226 gimple *stmt;
5227 edge e;
5228 edge_iterator ei;
5229
5230 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5231 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5232 {
5233 error ("ENTRY_BLOCK has IL associated with it");
5234 err = 1;
5235 }
5236
5237 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5238 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5239 {
5240 error ("EXIT_BLOCK has IL associated with it");
5241 err = 1;
5242 }
5243
5244 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5245 if (e->flags & EDGE_FALLTHRU)
5246 {
5247 error ("fallthru to exit from bb %d", e->src->index);
5248 err = 1;
5249 }
5250
5251 FOR_EACH_BB_FN (bb, cfun)
5252 {
5253 bool found_ctrl_stmt = false;
5254
5255 stmt = NULL;
5256
5257 /* Skip labels on the start of basic block. */
5258 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5259 {
5260 tree label;
5261 gimple *prev_stmt = stmt;
5262
5263 stmt = gsi_stmt (gsi);
5264
5265 if (gimple_code (stmt) != GIMPLE_LABEL)
5266 break;
5267
5268 label = gimple_label_label (as_a <glabel *> (stmt));
5269 if (prev_stmt && DECL_NONLOCAL (label))
5270 {
5271 error ("nonlocal label ");
5272 print_generic_expr (stderr, label, 0);
5273 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5274 bb->index);
5275 err = 1;
5276 }
5277
5278 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5279 {
5280 error ("EH landing pad label ");
5281 print_generic_expr (stderr, label, 0);
5282 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5283 bb->index);
5284 err = 1;
5285 }
5286
5287 if (label_to_block (label) != bb)
5288 {
5289 error ("label ");
5290 print_generic_expr (stderr, label, 0);
5291 fprintf (stderr, " to block does not match in bb %d",
5292 bb->index);
5293 err = 1;
5294 }
5295
5296 if (decl_function_context (label) != current_function_decl)
5297 {
5298 error ("label ");
5299 print_generic_expr (stderr, label, 0);
5300 fprintf (stderr, " has incorrect context in bb %d",
5301 bb->index);
5302 err = 1;
5303 }
5304 }
5305
5306 /* Verify that body of basic block BB is free of control flow. */
5307 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5308 {
5309 gimple *stmt = gsi_stmt (gsi);
5310
5311 if (found_ctrl_stmt)
5312 {
5313 error ("control flow in the middle of basic block %d",
5314 bb->index);
5315 err = 1;
5316 }
5317
5318 if (stmt_ends_bb_p (stmt))
5319 found_ctrl_stmt = true;
5320
5321 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5322 {
5323 error ("label ");
5324 print_generic_expr (stderr, gimple_label_label (label_stmt), 0);
5325 fprintf (stderr, " in the middle of basic block %d", bb->index);
5326 err = 1;
5327 }
5328 }
5329
5330 gsi = gsi_last_bb (bb);
5331 if (gsi_end_p (gsi))
5332 continue;
5333
5334 stmt = gsi_stmt (gsi);
5335
5336 if (gimple_code (stmt) == GIMPLE_LABEL)
5337 continue;
5338
5339 err |= verify_eh_edges (stmt);
5340
5341 if (is_ctrl_stmt (stmt))
5342 {
5343 FOR_EACH_EDGE (e, ei, bb->succs)
5344 if (e->flags & EDGE_FALLTHRU)
5345 {
5346 error ("fallthru edge after a control statement in bb %d",
5347 bb->index);
5348 err = 1;
5349 }
5350 }
5351
5352 if (gimple_code (stmt) != GIMPLE_COND)
5353 {
5354 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5355 after anything else but if statement. */
5356 FOR_EACH_EDGE (e, ei, bb->succs)
5357 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5358 {
5359 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5360 bb->index);
5361 err = 1;
5362 }
5363 }
5364
5365 switch (gimple_code (stmt))
5366 {
5367 case GIMPLE_COND:
5368 {
5369 edge true_edge;
5370 edge false_edge;
5371
5372 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5373
5374 if (!true_edge
5375 || !false_edge
5376 || !(true_edge->flags & EDGE_TRUE_VALUE)
5377 || !(false_edge->flags & EDGE_FALSE_VALUE)
5378 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5379 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5380 || EDGE_COUNT (bb->succs) >= 3)
5381 {
5382 error ("wrong outgoing edge flags at end of bb %d",
5383 bb->index);
5384 err = 1;
5385 }
5386 }
5387 break;
5388
5389 case GIMPLE_GOTO:
5390 if (simple_goto_p (stmt))
5391 {
5392 error ("explicit goto at end of bb %d", bb->index);
5393 err = 1;
5394 }
5395 else
5396 {
5397 /* FIXME. We should double check that the labels in the
5398 destination blocks have their address taken. */
5399 FOR_EACH_EDGE (e, ei, bb->succs)
5400 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5401 | EDGE_FALSE_VALUE))
5402 || !(e->flags & EDGE_ABNORMAL))
5403 {
5404 error ("wrong outgoing edge flags at end of bb %d",
5405 bb->index);
5406 err = 1;
5407 }
5408 }
5409 break;
5410
5411 case GIMPLE_CALL:
5412 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5413 break;
5414 /* ... fallthru ... */
5415 case GIMPLE_RETURN:
5416 if (!single_succ_p (bb)
5417 || (single_succ_edge (bb)->flags
5418 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5419 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5420 {
5421 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5422 err = 1;
5423 }
5424 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5425 {
5426 error ("return edge does not point to exit in bb %d",
5427 bb->index);
5428 err = 1;
5429 }
5430 break;
5431
5432 case GIMPLE_SWITCH:
5433 {
5434 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5435 tree prev;
5436 edge e;
5437 size_t i, n;
5438
5439 n = gimple_switch_num_labels (switch_stmt);
5440
5441 /* Mark all the destination basic blocks. */
5442 for (i = 0; i < n; ++i)
5443 {
5444 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5445 basic_block label_bb = label_to_block (lab);
5446 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5447 label_bb->aux = (void *)1;
5448 }
5449
5450 /* Verify that the case labels are sorted. */
5451 prev = gimple_switch_label (switch_stmt, 0);
5452 for (i = 1; i < n; ++i)
5453 {
5454 tree c = gimple_switch_label (switch_stmt, i);
5455 if (!CASE_LOW (c))
5456 {
5457 error ("found default case not at the start of "
5458 "case vector");
5459 err = 1;
5460 continue;
5461 }
5462 if (CASE_LOW (prev)
5463 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5464 {
5465 error ("case labels not sorted: ");
5466 print_generic_expr (stderr, prev, 0);
5467 fprintf (stderr," is greater than ");
5468 print_generic_expr (stderr, c, 0);
5469 fprintf (stderr," but comes before it.\n");
5470 err = 1;
5471 }
5472 prev = c;
5473 }
5474 /* VRP will remove the default case if it can prove it will
5475 never be executed. So do not verify there always exists
5476 a default case here. */
5477
5478 FOR_EACH_EDGE (e, ei, bb->succs)
5479 {
5480 if (!e->dest->aux)
5481 {
5482 error ("extra outgoing edge %d->%d",
5483 bb->index, e->dest->index);
5484 err = 1;
5485 }
5486
5487 e->dest->aux = (void *)2;
5488 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5489 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5490 {
5491 error ("wrong outgoing edge flags at end of bb %d",
5492 bb->index);
5493 err = 1;
5494 }
5495 }
5496
5497 /* Check that we have all of them. */
5498 for (i = 0; i < n; ++i)
5499 {
5500 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5501 basic_block label_bb = label_to_block (lab);
5502
5503 if (label_bb->aux != (void *)2)
5504 {
5505 error ("missing edge %i->%i", bb->index, label_bb->index);
5506 err = 1;
5507 }
5508 }
5509
5510 FOR_EACH_EDGE (e, ei, bb->succs)
5511 e->dest->aux = (void *)0;
5512 }
5513 break;
5514
5515 case GIMPLE_EH_DISPATCH:
5516 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5517 break;
5518
5519 default:
5520 break;
5521 }
5522 }
5523
5524 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5525 verify_dominators (CDI_DOMINATORS);
5526
5527 return err;
5528 }
5529
5530
5531 /* Updates phi nodes after creating a forwarder block joined
5532 by edge FALLTHRU. */
5533
5534 static void
5535 gimple_make_forwarder_block (edge fallthru)
5536 {
5537 edge e;
5538 edge_iterator ei;
5539 basic_block dummy, bb;
5540 tree var;
5541 gphi_iterator gsi;
5542
5543 dummy = fallthru->src;
5544 bb = fallthru->dest;
5545
5546 if (single_pred_p (bb))
5547 return;
5548
5549 /* If we redirected a branch we must create new PHI nodes at the
5550 start of BB. */
5551 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5552 {
5553 gphi *phi, *new_phi;
5554
5555 phi = gsi.phi ();
5556 var = gimple_phi_result (phi);
5557 new_phi = create_phi_node (var, bb);
5558 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5559 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5560 UNKNOWN_LOCATION);
5561 }
5562
5563 /* Add the arguments we have stored on edges. */
5564 FOR_EACH_EDGE (e, ei, bb->preds)
5565 {
5566 if (e == fallthru)
5567 continue;
5568
5569 flush_pending_stmts (e);
5570 }
5571 }
5572
5573
5574 /* Return a non-special label in the head of basic block BLOCK.
5575 Create one if it doesn't exist. */
5576
5577 tree
5578 gimple_block_label (basic_block bb)
5579 {
5580 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5581 bool first = true;
5582 tree label;
5583 glabel *stmt;
5584
5585 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5586 {
5587 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5588 if (!stmt)
5589 break;
5590 label = gimple_label_label (stmt);
5591 if (!DECL_NONLOCAL (label))
5592 {
5593 if (!first)
5594 gsi_move_before (&i, &s);
5595 return label;
5596 }
5597 }
5598
5599 label = create_artificial_label (UNKNOWN_LOCATION);
5600 stmt = gimple_build_label (label);
5601 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5602 return label;
5603 }
5604
5605
5606 /* Attempt to perform edge redirection by replacing a possibly complex
5607 jump instruction by a goto or by removing the jump completely.
5608 This can apply only if all edges now point to the same block. The
5609 parameters and return values are equivalent to
5610 redirect_edge_and_branch. */
5611
5612 static edge
5613 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5614 {
5615 basic_block src = e->src;
5616 gimple_stmt_iterator i;
5617 gimple *stmt;
5618
5619 /* We can replace or remove a complex jump only when we have exactly
5620 two edges. */
5621 if (EDGE_COUNT (src->succs) != 2
5622 /* Verify that all targets will be TARGET. Specifically, the
5623 edge that is not E must also go to TARGET. */
5624 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5625 return NULL;
5626
5627 i = gsi_last_bb (src);
5628 if (gsi_end_p (i))
5629 return NULL;
5630
5631 stmt = gsi_stmt (i);
5632
5633 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5634 {
5635 gsi_remove (&i, true);
5636 e = ssa_redirect_edge (e, target);
5637 e->flags = EDGE_FALLTHRU;
5638 return e;
5639 }
5640
5641 return NULL;
5642 }
5643
5644
5645 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5646 edge representing the redirected branch. */
5647
5648 static edge
5649 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5650 {
5651 basic_block bb = e->src;
5652 gimple_stmt_iterator gsi;
5653 edge ret;
5654 gimple *stmt;
5655
5656 if (e->flags & EDGE_ABNORMAL)
5657 return NULL;
5658
5659 if (e->dest == dest)
5660 return NULL;
5661
5662 if (e->flags & EDGE_EH)
5663 return redirect_eh_edge (e, dest);
5664
5665 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5666 {
5667 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5668 if (ret)
5669 return ret;
5670 }
5671
5672 gsi = gsi_last_bb (bb);
5673 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5674
5675 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5676 {
5677 case GIMPLE_COND:
5678 /* For COND_EXPR, we only need to redirect the edge. */
5679 break;
5680
5681 case GIMPLE_GOTO:
5682 /* No non-abnormal edges should lead from a non-simple goto, and
5683 simple ones should be represented implicitly. */
5684 gcc_unreachable ();
5685
5686 case GIMPLE_SWITCH:
5687 {
5688 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5689 tree label = gimple_block_label (dest);
5690 tree cases = get_cases_for_edge (e, switch_stmt);
5691
5692 /* If we have a list of cases associated with E, then use it
5693 as it's a lot faster than walking the entire case vector. */
5694 if (cases)
5695 {
5696 edge e2 = find_edge (e->src, dest);
5697 tree last, first;
5698
5699 first = cases;
5700 while (cases)
5701 {
5702 last = cases;
5703 CASE_LABEL (cases) = label;
5704 cases = CASE_CHAIN (cases);
5705 }
5706
5707 /* If there was already an edge in the CFG, then we need
5708 to move all the cases associated with E to E2. */
5709 if (e2)
5710 {
5711 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5712
5713 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5714 CASE_CHAIN (cases2) = first;
5715 }
5716 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5717 }
5718 else
5719 {
5720 size_t i, n = gimple_switch_num_labels (switch_stmt);
5721
5722 for (i = 0; i < n; i++)
5723 {
5724 tree elt = gimple_switch_label (switch_stmt, i);
5725 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5726 CASE_LABEL (elt) = label;
5727 }
5728 }
5729 }
5730 break;
5731
5732 case GIMPLE_ASM:
5733 {
5734 gasm *asm_stmt = as_a <gasm *> (stmt);
5735 int i, n = gimple_asm_nlabels (asm_stmt);
5736 tree label = NULL;
5737
5738 for (i = 0; i < n; ++i)
5739 {
5740 tree cons = gimple_asm_label_op (asm_stmt, i);
5741 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5742 {
5743 if (!label)
5744 label = gimple_block_label (dest);
5745 TREE_VALUE (cons) = label;
5746 }
5747 }
5748
5749 /* If we didn't find any label matching the former edge in the
5750 asm labels, we must be redirecting the fallthrough
5751 edge. */
5752 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5753 }
5754 break;
5755
5756 case GIMPLE_RETURN:
5757 gsi_remove (&gsi, true);
5758 e->flags |= EDGE_FALLTHRU;
5759 break;
5760
5761 case GIMPLE_OMP_RETURN:
5762 case GIMPLE_OMP_CONTINUE:
5763 case GIMPLE_OMP_SECTIONS_SWITCH:
5764 case GIMPLE_OMP_FOR:
5765 /* The edges from OMP constructs can be simply redirected. */
5766 break;
5767
5768 case GIMPLE_EH_DISPATCH:
5769 if (!(e->flags & EDGE_FALLTHRU))
5770 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
5771 break;
5772
5773 case GIMPLE_TRANSACTION:
5774 if (e->flags & EDGE_TM_ABORT)
5775 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
5776 gimple_block_label (dest));
5777 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
5778 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
5779 gimple_block_label (dest));
5780 else
5781 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
5782 gimple_block_label (dest));
5783 break;
5784
5785 default:
5786 /* Otherwise it must be a fallthru edge, and we don't need to
5787 do anything besides redirecting it. */
5788 gcc_assert (e->flags & EDGE_FALLTHRU);
5789 break;
5790 }
5791
5792 /* Update/insert PHI nodes as necessary. */
5793
5794 /* Now update the edges in the CFG. */
5795 e = ssa_redirect_edge (e, dest);
5796
5797 return e;
5798 }
5799
5800 /* Returns true if it is possible to remove edge E by redirecting
5801 it to the destination of the other edge from E->src. */
5802
5803 static bool
5804 gimple_can_remove_branch_p (const_edge e)
5805 {
5806 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5807 return false;
5808
5809 return true;
5810 }
5811
5812 /* Simple wrapper, as we can always redirect fallthru edges. */
5813
5814 static basic_block
5815 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5816 {
5817 e = gimple_redirect_edge_and_branch (e, dest);
5818 gcc_assert (e);
5819
5820 return NULL;
5821 }
5822
5823
5824 /* Splits basic block BB after statement STMT (but at least after the
5825 labels). If STMT is NULL, BB is split just after the labels. */
5826
5827 static basic_block
5828 gimple_split_block (basic_block bb, void *stmt)
5829 {
5830 gimple_stmt_iterator gsi;
5831 gimple_stmt_iterator gsi_tgt;
5832 gimple_seq list;
5833 basic_block new_bb;
5834 edge e;
5835 edge_iterator ei;
5836
5837 new_bb = create_empty_bb (bb);
5838
5839 /* Redirect the outgoing edges. */
5840 new_bb->succs = bb->succs;
5841 bb->succs = NULL;
5842 FOR_EACH_EDGE (e, ei, new_bb->succs)
5843 e->src = new_bb;
5844
5845 /* Get a stmt iterator pointing to the first stmt to move. */
5846 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
5847 gsi = gsi_after_labels (bb);
5848 else
5849 {
5850 gsi = gsi_for_stmt ((gimple *) stmt);
5851 gsi_next (&gsi);
5852 }
5853
5854 /* Move everything from GSI to the new basic block. */
5855 if (gsi_end_p (gsi))
5856 return new_bb;
5857
5858 /* Split the statement list - avoid re-creating new containers as this
5859 brings ugly quadratic memory consumption in the inliner.
5860 (We are still quadratic since we need to update stmt BB pointers,
5861 sadly.) */
5862 gsi_split_seq_before (&gsi, &list);
5863 set_bb_seq (new_bb, list);
5864 for (gsi_tgt = gsi_start (list);
5865 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5866 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5867
5868 return new_bb;
5869 }
5870
5871
5872 /* Moves basic block BB after block AFTER. */
5873
5874 static bool
5875 gimple_move_block_after (basic_block bb, basic_block after)
5876 {
5877 if (bb->prev_bb == after)
5878 return true;
5879
5880 unlink_block (bb);
5881 link_block (bb, after);
5882
5883 return true;
5884 }
5885
5886
5887 /* Return TRUE if block BB has no executable statements, otherwise return
5888 FALSE. */
5889
5890 static bool
5891 gimple_empty_block_p (basic_block bb)
5892 {
5893 /* BB must have no executable statements. */
5894 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5895 if (phi_nodes (bb))
5896 return false;
5897 if (gsi_end_p (gsi))
5898 return true;
5899 if (is_gimple_debug (gsi_stmt (gsi)))
5900 gsi_next_nondebug (&gsi);
5901 return gsi_end_p (gsi);
5902 }
5903
5904
5905 /* Split a basic block if it ends with a conditional branch and if the
5906 other part of the block is not empty. */
5907
5908 static basic_block
5909 gimple_split_block_before_cond_jump (basic_block bb)
5910 {
5911 gimple *last, *split_point;
5912 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5913 if (gsi_end_p (gsi))
5914 return NULL;
5915 last = gsi_stmt (gsi);
5916 if (gimple_code (last) != GIMPLE_COND
5917 && gimple_code (last) != GIMPLE_SWITCH)
5918 return NULL;
5919 gsi_prev (&gsi);
5920 split_point = gsi_stmt (gsi);
5921 return split_block (bb, split_point)->dest;
5922 }
5923
5924
5925 /* Return true if basic_block can be duplicated. */
5926
5927 static bool
5928 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5929 {
5930 return true;
5931 }
5932
5933 /* Create a duplicate of the basic block BB. NOTE: This does not
5934 preserve SSA form. */
5935
5936 static basic_block
5937 gimple_duplicate_bb (basic_block bb)
5938 {
5939 basic_block new_bb;
5940 gimple_stmt_iterator gsi_tgt;
5941
5942 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5943
5944 /* Copy the PHI nodes. We ignore PHI node arguments here because
5945 the incoming edges have not been setup yet. */
5946 for (gphi_iterator gpi = gsi_start_phis (bb);
5947 !gsi_end_p (gpi);
5948 gsi_next (&gpi))
5949 {
5950 gphi *phi, *copy;
5951 phi = gpi.phi ();
5952 copy = create_phi_node (NULL_TREE, new_bb);
5953 create_new_def_for (gimple_phi_result (phi), copy,
5954 gimple_phi_result_ptr (copy));
5955 gimple_set_uid (copy, gimple_uid (phi));
5956 }
5957
5958 gsi_tgt = gsi_start_bb (new_bb);
5959 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
5960 !gsi_end_p (gsi);
5961 gsi_next (&gsi))
5962 {
5963 def_operand_p def_p;
5964 ssa_op_iter op_iter;
5965 tree lhs;
5966 gimple *stmt, *copy;
5967
5968 stmt = gsi_stmt (gsi);
5969 if (gimple_code (stmt) == GIMPLE_LABEL)
5970 continue;
5971
5972 /* Don't duplicate label debug stmts. */
5973 if (gimple_debug_bind_p (stmt)
5974 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5975 == LABEL_DECL)
5976 continue;
5977
5978 /* Create a new copy of STMT and duplicate STMT's virtual
5979 operands. */
5980 copy = gimple_copy (stmt);
5981 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5982
5983 maybe_duplicate_eh_stmt (copy, stmt);
5984 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5985
5986 /* When copying around a stmt writing into a local non-user
5987 aggregate, make sure it won't share stack slot with other
5988 vars. */
5989 lhs = gimple_get_lhs (stmt);
5990 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5991 {
5992 tree base = get_base_address (lhs);
5993 if (base
5994 && (TREE_CODE (base) == VAR_DECL
5995 || TREE_CODE (base) == RESULT_DECL)
5996 && DECL_IGNORED_P (base)
5997 && !TREE_STATIC (base)
5998 && !DECL_EXTERNAL (base)
5999 && (TREE_CODE (base) != VAR_DECL
6000 || !DECL_HAS_VALUE_EXPR_P (base)))
6001 DECL_NONSHAREABLE (base) = 1;
6002 }
6003
6004 /* Create new names for all the definitions created by COPY and
6005 add replacement mappings for each new name. */
6006 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6007 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6008 }
6009
6010 return new_bb;
6011 }
6012
6013 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6014
6015 static void
6016 add_phi_args_after_copy_edge (edge e_copy)
6017 {
6018 basic_block bb, bb_copy = e_copy->src, dest;
6019 edge e;
6020 edge_iterator ei;
6021 gphi *phi, *phi_copy;
6022 tree def;
6023 gphi_iterator psi, psi_copy;
6024
6025 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6026 return;
6027
6028 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6029
6030 if (e_copy->dest->flags & BB_DUPLICATED)
6031 dest = get_bb_original (e_copy->dest);
6032 else
6033 dest = e_copy->dest;
6034
6035 e = find_edge (bb, dest);
6036 if (!e)
6037 {
6038 /* During loop unrolling the target of the latch edge is copied.
6039 In this case we are not looking for edge to dest, but to
6040 duplicated block whose original was dest. */
6041 FOR_EACH_EDGE (e, ei, bb->succs)
6042 {
6043 if ((e->dest->flags & BB_DUPLICATED)
6044 && get_bb_original (e->dest) == dest)
6045 break;
6046 }
6047
6048 gcc_assert (e != NULL);
6049 }
6050
6051 for (psi = gsi_start_phis (e->dest),
6052 psi_copy = gsi_start_phis (e_copy->dest);
6053 !gsi_end_p (psi);
6054 gsi_next (&psi), gsi_next (&psi_copy))
6055 {
6056 phi = psi.phi ();
6057 phi_copy = psi_copy.phi ();
6058 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6059 add_phi_arg (phi_copy, def, e_copy,
6060 gimple_phi_arg_location_from_edge (phi, e));
6061 }
6062 }
6063
6064
6065 /* Basic block BB_COPY was created by code duplication. Add phi node
6066 arguments for edges going out of BB_COPY. The blocks that were
6067 duplicated have BB_DUPLICATED set. */
6068
6069 void
6070 add_phi_args_after_copy_bb (basic_block bb_copy)
6071 {
6072 edge e_copy;
6073 edge_iterator ei;
6074
6075 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6076 {
6077 add_phi_args_after_copy_edge (e_copy);
6078 }
6079 }
6080
6081 /* Blocks in REGION_COPY array of length N_REGION were created by
6082 duplication of basic blocks. Add phi node arguments for edges
6083 going from these blocks. If E_COPY is not NULL, also add
6084 phi node arguments for its destination.*/
6085
6086 void
6087 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6088 edge e_copy)
6089 {
6090 unsigned i;
6091
6092 for (i = 0; i < n_region; i++)
6093 region_copy[i]->flags |= BB_DUPLICATED;
6094
6095 for (i = 0; i < n_region; i++)
6096 add_phi_args_after_copy_bb (region_copy[i]);
6097 if (e_copy)
6098 add_phi_args_after_copy_edge (e_copy);
6099
6100 for (i = 0; i < n_region; i++)
6101 region_copy[i]->flags &= ~BB_DUPLICATED;
6102 }
6103
6104 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6105 important exit edge EXIT. By important we mean that no SSA name defined
6106 inside region is live over the other exit edges of the region. All entry
6107 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6108 to the duplicate of the region. Dominance and loop information is
6109 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6110 UPDATE_DOMINANCE is false then we assume that the caller will update the
6111 dominance information after calling this function. The new basic
6112 blocks are stored to REGION_COPY in the same order as they had in REGION,
6113 provided that REGION_COPY is not NULL.
6114 The function returns false if it is unable to copy the region,
6115 true otherwise. */
6116
6117 bool
6118 gimple_duplicate_sese_region (edge entry, edge exit,
6119 basic_block *region, unsigned n_region,
6120 basic_block *region_copy,
6121 bool update_dominance)
6122 {
6123 unsigned i;
6124 bool free_region_copy = false, copying_header = false;
6125 struct loop *loop = entry->dest->loop_father;
6126 edge exit_copy;
6127 vec<basic_block> doms;
6128 edge redirected;
6129 int total_freq = 0, entry_freq = 0;
6130 gcov_type total_count = 0, entry_count = 0;
6131
6132 if (!can_copy_bbs_p (region, n_region))
6133 return false;
6134
6135 /* Some sanity checking. Note that we do not check for all possible
6136 missuses of the functions. I.e. if you ask to copy something weird,
6137 it will work, but the state of structures probably will not be
6138 correct. */
6139 for (i = 0; i < n_region; i++)
6140 {
6141 /* We do not handle subloops, i.e. all the blocks must belong to the
6142 same loop. */
6143 if (region[i]->loop_father != loop)
6144 return false;
6145
6146 if (region[i] != entry->dest
6147 && region[i] == loop->header)
6148 return false;
6149 }
6150
6151 /* In case the function is used for loop header copying (which is the primary
6152 use), ensure that EXIT and its copy will be new latch and entry edges. */
6153 if (loop->header == entry->dest)
6154 {
6155 copying_header = true;
6156
6157 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6158 return false;
6159
6160 for (i = 0; i < n_region; i++)
6161 if (region[i] != exit->src
6162 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6163 return false;
6164 }
6165
6166 initialize_original_copy_tables ();
6167
6168 if (copying_header)
6169 set_loop_copy (loop, loop_outer (loop));
6170 else
6171 set_loop_copy (loop, loop);
6172
6173 if (!region_copy)
6174 {
6175 region_copy = XNEWVEC (basic_block, n_region);
6176 free_region_copy = true;
6177 }
6178
6179 /* Record blocks outside the region that are dominated by something
6180 inside. */
6181 if (update_dominance)
6182 {
6183 doms.create (0);
6184 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6185 }
6186
6187 if (entry->dest->count)
6188 {
6189 total_count = entry->dest->count;
6190 entry_count = entry->count;
6191 /* Fix up corner cases, to avoid division by zero or creation of negative
6192 frequencies. */
6193 if (entry_count > total_count)
6194 entry_count = total_count;
6195 }
6196 else
6197 {
6198 total_freq = entry->dest->frequency;
6199 entry_freq = EDGE_FREQUENCY (entry);
6200 /* Fix up corner cases, to avoid division by zero or creation of negative
6201 frequencies. */
6202 if (total_freq == 0)
6203 total_freq = 1;
6204 else if (entry_freq > total_freq)
6205 entry_freq = total_freq;
6206 }
6207
6208 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6209 split_edge_bb_loc (entry), update_dominance);
6210 if (total_count)
6211 {
6212 scale_bbs_frequencies_gcov_type (region, n_region,
6213 total_count - entry_count,
6214 total_count);
6215 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
6216 total_count);
6217 }
6218 else
6219 {
6220 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
6221 total_freq);
6222 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
6223 }
6224
6225 if (copying_header)
6226 {
6227 loop->header = exit->dest;
6228 loop->latch = exit->src;
6229 }
6230
6231 /* Redirect the entry and add the phi node arguments. */
6232 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6233 gcc_assert (redirected != NULL);
6234 flush_pending_stmts (entry);
6235
6236 /* Concerning updating of dominators: We must recount dominators
6237 for entry block and its copy. Anything that is outside of the
6238 region, but was dominated by something inside needs recounting as
6239 well. */
6240 if (update_dominance)
6241 {
6242 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6243 doms.safe_push (get_bb_original (entry->dest));
6244 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6245 doms.release ();
6246 }
6247
6248 /* Add the other PHI node arguments. */
6249 add_phi_args_after_copy (region_copy, n_region, NULL);
6250
6251 if (free_region_copy)
6252 free (region_copy);
6253
6254 free_original_copy_tables ();
6255 return true;
6256 }
6257
6258 /* Checks if BB is part of the region defined by N_REGION BBS. */
6259 static bool
6260 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6261 {
6262 unsigned int n;
6263
6264 for (n = 0; n < n_region; n++)
6265 {
6266 if (bb == bbs[n])
6267 return true;
6268 }
6269 return false;
6270 }
6271
6272 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6273 are stored to REGION_COPY in the same order in that they appear
6274 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6275 the region, EXIT an exit from it. The condition guarding EXIT
6276 is moved to ENTRY. Returns true if duplication succeeds, false
6277 otherwise.
6278
6279 For example,
6280
6281 some_code;
6282 if (cond)
6283 A;
6284 else
6285 B;
6286
6287 is transformed to
6288
6289 if (cond)
6290 {
6291 some_code;
6292 A;
6293 }
6294 else
6295 {
6296 some_code;
6297 B;
6298 }
6299 */
6300
6301 bool
6302 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
6303 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
6304 basic_block *region_copy ATTRIBUTE_UNUSED)
6305 {
6306 unsigned i;
6307 bool free_region_copy = false;
6308 struct loop *loop = exit->dest->loop_father;
6309 struct loop *orig_loop = entry->dest->loop_father;
6310 basic_block switch_bb, entry_bb, nentry_bb;
6311 vec<basic_block> doms;
6312 int total_freq = 0, exit_freq = 0;
6313 gcov_type total_count = 0, exit_count = 0;
6314 edge exits[2], nexits[2], e;
6315 gimple_stmt_iterator gsi;
6316 gimple *cond_stmt;
6317 edge sorig, snew;
6318 basic_block exit_bb;
6319 gphi_iterator psi;
6320 gphi *phi;
6321 tree def;
6322 struct loop *target, *aloop, *cloop;
6323
6324 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6325 exits[0] = exit;
6326 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6327
6328 if (!can_copy_bbs_p (region, n_region))
6329 return false;
6330
6331 initialize_original_copy_tables ();
6332 set_loop_copy (orig_loop, loop);
6333
6334 target= loop;
6335 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6336 {
6337 if (bb_part_of_region_p (aloop->header, region, n_region))
6338 {
6339 cloop = duplicate_loop (aloop, target);
6340 duplicate_subloops (aloop, cloop);
6341 }
6342 }
6343
6344 if (!region_copy)
6345 {
6346 region_copy = XNEWVEC (basic_block, n_region);
6347 free_region_copy = true;
6348 }
6349
6350 gcc_assert (!need_ssa_update_p (cfun));
6351
6352 /* Record blocks outside the region that are dominated by something
6353 inside. */
6354 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6355
6356 if (exit->src->count)
6357 {
6358 total_count = exit->src->count;
6359 exit_count = exit->count;
6360 /* Fix up corner cases, to avoid division by zero or creation of negative
6361 frequencies. */
6362 if (exit_count > total_count)
6363 exit_count = total_count;
6364 }
6365 else
6366 {
6367 total_freq = exit->src->frequency;
6368 exit_freq = EDGE_FREQUENCY (exit);
6369 /* Fix up corner cases, to avoid division by zero or creation of negative
6370 frequencies. */
6371 if (total_freq == 0)
6372 total_freq = 1;
6373 if (exit_freq > total_freq)
6374 exit_freq = total_freq;
6375 }
6376
6377 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6378 split_edge_bb_loc (exit), true);
6379 if (total_count)
6380 {
6381 scale_bbs_frequencies_gcov_type (region, n_region,
6382 total_count - exit_count,
6383 total_count);
6384 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6385 total_count);
6386 }
6387 else
6388 {
6389 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6390 total_freq);
6391 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6392 }
6393
6394 /* Create the switch block, and put the exit condition to it. */
6395 entry_bb = entry->dest;
6396 nentry_bb = get_bb_copy (entry_bb);
6397 if (!last_stmt (entry->src)
6398 || !stmt_ends_bb_p (last_stmt (entry->src)))
6399 switch_bb = entry->src;
6400 else
6401 switch_bb = split_edge (entry);
6402 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6403
6404 gsi = gsi_last_bb (switch_bb);
6405 cond_stmt = last_stmt (exit->src);
6406 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6407 cond_stmt = gimple_copy (cond_stmt);
6408
6409 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6410
6411 sorig = single_succ_edge (switch_bb);
6412 sorig->flags = exits[1]->flags;
6413 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6414
6415 /* Register the new edge from SWITCH_BB in loop exit lists. */
6416 rescan_loop_exit (snew, true, false);
6417
6418 /* Add the PHI node arguments. */
6419 add_phi_args_after_copy (region_copy, n_region, snew);
6420
6421 /* Get rid of now superfluous conditions and associated edges (and phi node
6422 arguments). */
6423 exit_bb = exit->dest;
6424
6425 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6426 PENDING_STMT (e) = NULL;
6427
6428 /* The latch of ORIG_LOOP was copied, and so was the backedge
6429 to the original header. We redirect this backedge to EXIT_BB. */
6430 for (i = 0; i < n_region; i++)
6431 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6432 {
6433 gcc_assert (single_succ_edge (region_copy[i]));
6434 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6435 PENDING_STMT (e) = NULL;
6436 for (psi = gsi_start_phis (exit_bb);
6437 !gsi_end_p (psi);
6438 gsi_next (&psi))
6439 {
6440 phi = psi.phi ();
6441 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6442 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6443 }
6444 }
6445 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6446 PENDING_STMT (e) = NULL;
6447
6448 /* Anything that is outside of the region, but was dominated by something
6449 inside needs to update dominance info. */
6450 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6451 doms.release ();
6452 /* Update the SSA web. */
6453 update_ssa (TODO_update_ssa);
6454
6455 if (free_region_copy)
6456 free (region_copy);
6457
6458 free_original_copy_tables ();
6459 return true;
6460 }
6461
6462 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6463 adding blocks when the dominator traversal reaches EXIT. This
6464 function silently assumes that ENTRY strictly dominates EXIT. */
6465
6466 void
6467 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6468 vec<basic_block> *bbs_p)
6469 {
6470 basic_block son;
6471
6472 for (son = first_dom_son (CDI_DOMINATORS, entry);
6473 son;
6474 son = next_dom_son (CDI_DOMINATORS, son))
6475 {
6476 bbs_p->safe_push (son);
6477 if (son != exit)
6478 gather_blocks_in_sese_region (son, exit, bbs_p);
6479 }
6480 }
6481
6482 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6483 The duplicates are recorded in VARS_MAP. */
6484
6485 static void
6486 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6487 tree to_context)
6488 {
6489 tree t = *tp, new_t;
6490 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6491
6492 if (DECL_CONTEXT (t) == to_context)
6493 return;
6494
6495 bool existed;
6496 tree &loc = vars_map->get_or_insert (t, &existed);
6497
6498 if (!existed)
6499 {
6500 if (SSA_VAR_P (t))
6501 {
6502 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6503 add_local_decl (f, new_t);
6504 }
6505 else
6506 {
6507 gcc_assert (TREE_CODE (t) == CONST_DECL);
6508 new_t = copy_node (t);
6509 }
6510 DECL_CONTEXT (new_t) = to_context;
6511
6512 loc = new_t;
6513 }
6514 else
6515 new_t = loc;
6516
6517 *tp = new_t;
6518 }
6519
6520
6521 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6522 VARS_MAP maps old ssa names and var_decls to the new ones. */
6523
6524 static tree
6525 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6526 tree to_context)
6527 {
6528 tree new_name;
6529
6530 gcc_assert (!virtual_operand_p (name));
6531
6532 tree *loc = vars_map->get (name);
6533
6534 if (!loc)
6535 {
6536 tree decl = SSA_NAME_VAR (name);
6537 if (decl)
6538 {
6539 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6540 replace_by_duplicate_decl (&decl, vars_map, to_context);
6541 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6542 decl, SSA_NAME_DEF_STMT (name));
6543 }
6544 else
6545 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6546 name, SSA_NAME_DEF_STMT (name));
6547
6548 /* Now that we've used the def stmt to define new_name, make sure it
6549 doesn't define name anymore. */
6550 SSA_NAME_DEF_STMT (name) = NULL;
6551
6552 vars_map->put (name, new_name);
6553 }
6554 else
6555 new_name = *loc;
6556
6557 return new_name;
6558 }
6559
6560 struct move_stmt_d
6561 {
6562 tree orig_block;
6563 tree new_block;
6564 tree from_context;
6565 tree to_context;
6566 hash_map<tree, tree> *vars_map;
6567 htab_t new_label_map;
6568 hash_map<void *, void *> *eh_map;
6569 bool remap_decls_p;
6570 };
6571
6572 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6573 contained in *TP if it has been ORIG_BLOCK previously and change the
6574 DECL_CONTEXT of every local variable referenced in *TP. */
6575
6576 static tree
6577 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6578 {
6579 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6580 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6581 tree t = *tp;
6582
6583 if (EXPR_P (t))
6584 {
6585 tree block = TREE_BLOCK (t);
6586 if (block == p->orig_block
6587 || (p->orig_block == NULL_TREE
6588 && block != NULL_TREE))
6589 TREE_SET_BLOCK (t, p->new_block);
6590 else if (flag_checking && block != NULL_TREE)
6591 {
6592 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6593 block = BLOCK_SUPERCONTEXT (block);
6594 gcc_assert (block == p->orig_block);
6595 }
6596 }
6597 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6598 {
6599 if (TREE_CODE (t) == SSA_NAME)
6600 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6601 else if (TREE_CODE (t) == PARM_DECL
6602 && gimple_in_ssa_p (cfun))
6603 *tp = *(p->vars_map->get (t));
6604 else if (TREE_CODE (t) == LABEL_DECL)
6605 {
6606 if (p->new_label_map)
6607 {
6608 struct tree_map in, *out;
6609 in.base.from = t;
6610 out = (struct tree_map *)
6611 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6612 if (out)
6613 *tp = t = out->to;
6614 }
6615
6616 DECL_CONTEXT (t) = p->to_context;
6617 }
6618 else if (p->remap_decls_p)
6619 {
6620 /* Replace T with its duplicate. T should no longer appear in the
6621 parent function, so this looks wasteful; however, it may appear
6622 in referenced_vars, and more importantly, as virtual operands of
6623 statements, and in alias lists of other variables. It would be
6624 quite difficult to expunge it from all those places. ??? It might
6625 suffice to do this for addressable variables. */
6626 if ((TREE_CODE (t) == VAR_DECL
6627 && !is_global_var (t))
6628 || TREE_CODE (t) == CONST_DECL)
6629 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6630 }
6631 *walk_subtrees = 0;
6632 }
6633 else if (TYPE_P (t))
6634 *walk_subtrees = 0;
6635
6636 return NULL_TREE;
6637 }
6638
6639 /* Helper for move_stmt_r. Given an EH region number for the source
6640 function, map that to the duplicate EH regio number in the dest. */
6641
6642 static int
6643 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6644 {
6645 eh_region old_r, new_r;
6646
6647 old_r = get_eh_region_from_number (old_nr);
6648 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6649
6650 return new_r->index;
6651 }
6652
6653 /* Similar, but operate on INTEGER_CSTs. */
6654
6655 static tree
6656 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6657 {
6658 int old_nr, new_nr;
6659
6660 old_nr = tree_to_shwi (old_t_nr);
6661 new_nr = move_stmt_eh_region_nr (old_nr, p);
6662
6663 return build_int_cst (integer_type_node, new_nr);
6664 }
6665
6666 /* Like move_stmt_op, but for gimple statements.
6667
6668 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6669 contained in the current statement in *GSI_P and change the
6670 DECL_CONTEXT of every local variable referenced in the current
6671 statement. */
6672
6673 static tree
6674 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6675 struct walk_stmt_info *wi)
6676 {
6677 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6678 gimple *stmt = gsi_stmt (*gsi_p);
6679 tree block = gimple_block (stmt);
6680
6681 if (block == p->orig_block
6682 || (p->orig_block == NULL_TREE
6683 && block != NULL_TREE))
6684 gimple_set_block (stmt, p->new_block);
6685
6686 switch (gimple_code (stmt))
6687 {
6688 case GIMPLE_CALL:
6689 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6690 {
6691 tree r, fndecl = gimple_call_fndecl (stmt);
6692 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6693 switch (DECL_FUNCTION_CODE (fndecl))
6694 {
6695 case BUILT_IN_EH_COPY_VALUES:
6696 r = gimple_call_arg (stmt, 1);
6697 r = move_stmt_eh_region_tree_nr (r, p);
6698 gimple_call_set_arg (stmt, 1, r);
6699 /* FALLTHRU */
6700
6701 case BUILT_IN_EH_POINTER:
6702 case BUILT_IN_EH_FILTER:
6703 r = gimple_call_arg (stmt, 0);
6704 r = move_stmt_eh_region_tree_nr (r, p);
6705 gimple_call_set_arg (stmt, 0, r);
6706 break;
6707
6708 default:
6709 break;
6710 }
6711 }
6712 break;
6713
6714 case GIMPLE_RESX:
6715 {
6716 gresx *resx_stmt = as_a <gresx *> (stmt);
6717 int r = gimple_resx_region (resx_stmt);
6718 r = move_stmt_eh_region_nr (r, p);
6719 gimple_resx_set_region (resx_stmt, r);
6720 }
6721 break;
6722
6723 case GIMPLE_EH_DISPATCH:
6724 {
6725 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6726 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6727 r = move_stmt_eh_region_nr (r, p);
6728 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6729 }
6730 break;
6731
6732 case GIMPLE_OMP_RETURN:
6733 case GIMPLE_OMP_CONTINUE:
6734 break;
6735 default:
6736 if (is_gimple_omp (stmt))
6737 {
6738 /* Do not remap variables inside OMP directives. Variables
6739 referenced in clauses and directive header belong to the
6740 parent function and should not be moved into the child
6741 function. */
6742 bool save_remap_decls_p = p->remap_decls_p;
6743 p->remap_decls_p = false;
6744 *handled_ops_p = true;
6745
6746 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6747 move_stmt_op, wi);
6748
6749 p->remap_decls_p = save_remap_decls_p;
6750 }
6751 break;
6752 }
6753
6754 return NULL_TREE;
6755 }
6756
6757 /* Move basic block BB from function CFUN to function DEST_FN. The
6758 block is moved out of the original linked list and placed after
6759 block AFTER in the new list. Also, the block is removed from the
6760 original array of blocks and placed in DEST_FN's array of blocks.
6761 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6762 updated to reflect the moved edges.
6763
6764 The local variables are remapped to new instances, VARS_MAP is used
6765 to record the mapping. */
6766
6767 static void
6768 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6769 basic_block after, bool update_edge_count_p,
6770 struct move_stmt_d *d)
6771 {
6772 struct control_flow_graph *cfg;
6773 edge_iterator ei;
6774 edge e;
6775 gimple_stmt_iterator si;
6776 unsigned old_len, new_len;
6777
6778 /* Remove BB from dominance structures. */
6779 delete_from_dominance_info (CDI_DOMINATORS, bb);
6780
6781 /* Move BB from its current loop to the copy in the new function. */
6782 if (current_loops)
6783 {
6784 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6785 if (new_loop)
6786 bb->loop_father = new_loop;
6787 }
6788
6789 /* Link BB to the new linked list. */
6790 move_block_after (bb, after);
6791
6792 /* Update the edge count in the corresponding flowgraphs. */
6793 if (update_edge_count_p)
6794 FOR_EACH_EDGE (e, ei, bb->succs)
6795 {
6796 cfun->cfg->x_n_edges--;
6797 dest_cfun->cfg->x_n_edges++;
6798 }
6799
6800 /* Remove BB from the original basic block array. */
6801 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6802 cfun->cfg->x_n_basic_blocks--;
6803
6804 /* Grow DEST_CFUN's basic block array if needed. */
6805 cfg = dest_cfun->cfg;
6806 cfg->x_n_basic_blocks++;
6807 if (bb->index >= cfg->x_last_basic_block)
6808 cfg->x_last_basic_block = bb->index + 1;
6809
6810 old_len = vec_safe_length (cfg->x_basic_block_info);
6811 if ((unsigned) cfg->x_last_basic_block >= old_len)
6812 {
6813 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6814 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6815 }
6816
6817 (*cfg->x_basic_block_info)[bb->index] = bb;
6818
6819 /* Remap the variables in phi nodes. */
6820 for (gphi_iterator psi = gsi_start_phis (bb);
6821 !gsi_end_p (psi); )
6822 {
6823 gphi *phi = psi.phi ();
6824 use_operand_p use;
6825 tree op = PHI_RESULT (phi);
6826 ssa_op_iter oi;
6827 unsigned i;
6828
6829 if (virtual_operand_p (op))
6830 {
6831 /* Remove the phi nodes for virtual operands (alias analysis will be
6832 run for the new function, anyway). */
6833 remove_phi_node (&psi, true);
6834 continue;
6835 }
6836
6837 SET_PHI_RESULT (phi,
6838 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6839 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6840 {
6841 op = USE_FROM_PTR (use);
6842 if (TREE_CODE (op) == SSA_NAME)
6843 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6844 }
6845
6846 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6847 {
6848 location_t locus = gimple_phi_arg_location (phi, i);
6849 tree block = LOCATION_BLOCK (locus);
6850
6851 if (locus == UNKNOWN_LOCATION)
6852 continue;
6853 if (d->orig_block == NULL_TREE || block == d->orig_block)
6854 {
6855 locus = set_block (locus, d->new_block);
6856 gimple_phi_arg_set_location (phi, i, locus);
6857 }
6858 }
6859
6860 gsi_next (&psi);
6861 }
6862
6863 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6864 {
6865 gimple *stmt = gsi_stmt (si);
6866 struct walk_stmt_info wi;
6867
6868 memset (&wi, 0, sizeof (wi));
6869 wi.info = d;
6870 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6871
6872 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
6873 {
6874 tree label = gimple_label_label (label_stmt);
6875 int uid = LABEL_DECL_UID (label);
6876
6877 gcc_assert (uid > -1);
6878
6879 old_len = vec_safe_length (cfg->x_label_to_block_map);
6880 if (old_len <= (unsigned) uid)
6881 {
6882 new_len = 3 * uid / 2 + 1;
6883 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6884 }
6885
6886 (*cfg->x_label_to_block_map)[uid] = bb;
6887 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6888
6889 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6890
6891 if (uid >= dest_cfun->cfg->last_label_uid)
6892 dest_cfun->cfg->last_label_uid = uid + 1;
6893 }
6894
6895 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6896 remove_stmt_from_eh_lp_fn (cfun, stmt);
6897
6898 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6899 gimple_remove_stmt_histograms (cfun, stmt);
6900
6901 /* We cannot leave any operands allocated from the operand caches of
6902 the current function. */
6903 free_stmt_operands (cfun, stmt);
6904 push_cfun (dest_cfun);
6905 update_stmt (stmt);
6906 pop_cfun ();
6907 }
6908
6909 FOR_EACH_EDGE (e, ei, bb->succs)
6910 if (e->goto_locus != UNKNOWN_LOCATION)
6911 {
6912 tree block = LOCATION_BLOCK (e->goto_locus);
6913 if (d->orig_block == NULL_TREE
6914 || block == d->orig_block)
6915 e->goto_locus = set_block (e->goto_locus, d->new_block);
6916 }
6917 }
6918
6919 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6920 the outermost EH region. Use REGION as the incoming base EH region. */
6921
6922 static eh_region
6923 find_outermost_region_in_block (struct function *src_cfun,
6924 basic_block bb, eh_region region)
6925 {
6926 gimple_stmt_iterator si;
6927
6928 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6929 {
6930 gimple *stmt = gsi_stmt (si);
6931 eh_region stmt_region;
6932 int lp_nr;
6933
6934 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6935 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6936 if (stmt_region)
6937 {
6938 if (region == NULL)
6939 region = stmt_region;
6940 else if (stmt_region != region)
6941 {
6942 region = eh_region_outermost (src_cfun, stmt_region, region);
6943 gcc_assert (region != NULL);
6944 }
6945 }
6946 }
6947
6948 return region;
6949 }
6950
6951 static tree
6952 new_label_mapper (tree decl, void *data)
6953 {
6954 htab_t hash = (htab_t) data;
6955 struct tree_map *m;
6956 void **slot;
6957
6958 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6959
6960 m = XNEW (struct tree_map);
6961 m->hash = DECL_UID (decl);
6962 m->base.from = decl;
6963 m->to = create_artificial_label (UNKNOWN_LOCATION);
6964 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6965 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6966 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6967
6968 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6969 gcc_assert (*slot == NULL);
6970
6971 *slot = m;
6972
6973 return m->to;
6974 }
6975
6976 /* Tree walker to replace the decls used inside value expressions by
6977 duplicates. */
6978
6979 static tree
6980 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
6981 {
6982 struct replace_decls_d *rd = (struct replace_decls_d *)data;
6983
6984 switch (TREE_CODE (*tp))
6985 {
6986 case VAR_DECL:
6987 case PARM_DECL:
6988 case RESULT_DECL:
6989 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
6990 break;
6991 default:
6992 break;
6993 }
6994
6995 if (IS_TYPE_OR_DECL_P (*tp))
6996 *walk_subtrees = false;
6997
6998 return NULL;
6999 }
7000
7001 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7002 subblocks. */
7003
7004 static void
7005 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7006 tree to_context)
7007 {
7008 tree *tp, t;
7009
7010 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7011 {
7012 t = *tp;
7013 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
7014 continue;
7015 replace_by_duplicate_decl (&t, vars_map, to_context);
7016 if (t != *tp)
7017 {
7018 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
7019 {
7020 tree x = DECL_VALUE_EXPR (*tp);
7021 struct replace_decls_d rd = { vars_map, to_context };
7022 unshare_expr (x);
7023 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7024 SET_DECL_VALUE_EXPR (t, x);
7025 DECL_HAS_VALUE_EXPR_P (t) = 1;
7026 }
7027 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7028 *tp = t;
7029 }
7030 }
7031
7032 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7033 replace_block_vars_by_duplicates (block, vars_map, to_context);
7034 }
7035
7036 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7037 from FN1 to FN2. */
7038
7039 static void
7040 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7041 struct loop *loop)
7042 {
7043 /* Discard it from the old loop array. */
7044 (*get_loops (fn1))[loop->num] = NULL;
7045
7046 /* Place it in the new loop array, assigning it a new number. */
7047 loop->num = number_of_loops (fn2);
7048 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7049
7050 /* Recurse to children. */
7051 for (loop = loop->inner; loop; loop = loop->next)
7052 fixup_loop_arrays_after_move (fn1, fn2, loop);
7053 }
7054
7055 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7056 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7057
7058 DEBUG_FUNCTION void
7059 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7060 {
7061 basic_block bb;
7062 edge_iterator ei;
7063 edge e;
7064 bitmap bbs = BITMAP_ALLOC (NULL);
7065 int i;
7066
7067 gcc_assert (entry != NULL);
7068 gcc_assert (entry != exit);
7069 gcc_assert (bbs_p != NULL);
7070
7071 gcc_assert (bbs_p->length () > 0);
7072
7073 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7074 bitmap_set_bit (bbs, bb->index);
7075
7076 gcc_assert (bitmap_bit_p (bbs, entry->index));
7077 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7078
7079 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7080 {
7081 if (bb == entry)
7082 {
7083 gcc_assert (single_pred_p (entry));
7084 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7085 }
7086 else
7087 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7088 {
7089 e = ei_edge (ei);
7090 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7091 }
7092
7093 if (bb == exit)
7094 {
7095 gcc_assert (single_succ_p (exit));
7096 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7097 }
7098 else
7099 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7100 {
7101 e = ei_edge (ei);
7102 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7103 }
7104 }
7105
7106 BITMAP_FREE (bbs);
7107 }
7108
7109 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7110
7111 bool
7112 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7113 {
7114 bitmap release_names = (bitmap)data;
7115
7116 if (TREE_CODE (from) != SSA_NAME)
7117 return true;
7118
7119 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7120 return true;
7121 }
7122
7123 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7124 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7125 single basic block in the original CFG and the new basic block is
7126 returned. DEST_CFUN must not have a CFG yet.
7127
7128 Note that the region need not be a pure SESE region. Blocks inside
7129 the region may contain calls to abort/exit. The only restriction
7130 is that ENTRY_BB should be the only entry point and it must
7131 dominate EXIT_BB.
7132
7133 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7134 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7135 to the new function.
7136
7137 All local variables referenced in the region are assumed to be in
7138 the corresponding BLOCK_VARS and unexpanded variable lists
7139 associated with DEST_CFUN.
7140
7141 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7142 reimplement move_sese_region_to_fn by duplicating the region rather than
7143 moving it. */
7144
7145 basic_block
7146 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7147 basic_block exit_bb, tree orig_block)
7148 {
7149 vec<basic_block> bbs, dom_bbs;
7150 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7151 basic_block after, bb, *entry_pred, *exit_succ, abb;
7152 struct function *saved_cfun = cfun;
7153 int *entry_flag, *exit_flag;
7154 unsigned *entry_prob, *exit_prob;
7155 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7156 edge e;
7157 edge_iterator ei;
7158 htab_t new_label_map;
7159 hash_map<void *, void *> *eh_map;
7160 struct loop *loop = entry_bb->loop_father;
7161 struct loop *loop0 = get_loop (saved_cfun, 0);
7162 struct move_stmt_d d;
7163
7164 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7165 region. */
7166 gcc_assert (entry_bb != exit_bb
7167 && (!exit_bb
7168 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7169
7170 /* Collect all the blocks in the region. Manually add ENTRY_BB
7171 because it won't be added by dfs_enumerate_from. */
7172 bbs.create (0);
7173 bbs.safe_push (entry_bb);
7174 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7175
7176 if (flag_checking)
7177 verify_sese (entry_bb, exit_bb, &bbs);
7178
7179 /* The blocks that used to be dominated by something in BBS will now be
7180 dominated by the new block. */
7181 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7182 bbs.address (),
7183 bbs.length ());
7184
7185 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7186 the predecessor edges to ENTRY_BB and the successor edges to
7187 EXIT_BB so that we can re-attach them to the new basic block that
7188 will replace the region. */
7189 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7190 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7191 entry_flag = XNEWVEC (int, num_entry_edges);
7192 entry_prob = XNEWVEC (unsigned, num_entry_edges);
7193 i = 0;
7194 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7195 {
7196 entry_prob[i] = e->probability;
7197 entry_flag[i] = e->flags;
7198 entry_pred[i++] = e->src;
7199 remove_edge (e);
7200 }
7201
7202 if (exit_bb)
7203 {
7204 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7205 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7206 exit_flag = XNEWVEC (int, num_exit_edges);
7207 exit_prob = XNEWVEC (unsigned, num_exit_edges);
7208 i = 0;
7209 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7210 {
7211 exit_prob[i] = e->probability;
7212 exit_flag[i] = e->flags;
7213 exit_succ[i++] = e->dest;
7214 remove_edge (e);
7215 }
7216 }
7217 else
7218 {
7219 num_exit_edges = 0;
7220 exit_succ = NULL;
7221 exit_flag = NULL;
7222 exit_prob = NULL;
7223 }
7224
7225 /* Switch context to the child function to initialize DEST_FN's CFG. */
7226 gcc_assert (dest_cfun->cfg == NULL);
7227 push_cfun (dest_cfun);
7228
7229 init_empty_tree_cfg ();
7230
7231 /* Initialize EH information for the new function. */
7232 eh_map = NULL;
7233 new_label_map = NULL;
7234 if (saved_cfun->eh)
7235 {
7236 eh_region region = NULL;
7237
7238 FOR_EACH_VEC_ELT (bbs, i, bb)
7239 region = find_outermost_region_in_block (saved_cfun, bb, region);
7240
7241 init_eh_for_function ();
7242 if (region != NULL)
7243 {
7244 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7245 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7246 new_label_mapper, new_label_map);
7247 }
7248 }
7249
7250 /* Initialize an empty loop tree. */
7251 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7252 init_loops_structure (dest_cfun, loops, 1);
7253 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7254 set_loops_for_fn (dest_cfun, loops);
7255
7256 /* Move the outlined loop tree part. */
7257 num_nodes = bbs.length ();
7258 FOR_EACH_VEC_ELT (bbs, i, bb)
7259 {
7260 if (bb->loop_father->header == bb)
7261 {
7262 struct loop *this_loop = bb->loop_father;
7263 struct loop *outer = loop_outer (this_loop);
7264 if (outer == loop
7265 /* If the SESE region contains some bbs ending with
7266 a noreturn call, those are considered to belong
7267 to the outermost loop in saved_cfun, rather than
7268 the entry_bb's loop_father. */
7269 || outer == loop0)
7270 {
7271 if (outer != loop)
7272 num_nodes -= this_loop->num_nodes;
7273 flow_loop_tree_node_remove (bb->loop_father);
7274 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7275 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7276 }
7277 }
7278 else if (bb->loop_father == loop0 && loop0 != loop)
7279 num_nodes--;
7280
7281 /* Remove loop exits from the outlined region. */
7282 if (loops_for_fn (saved_cfun)->exits)
7283 FOR_EACH_EDGE (e, ei, bb->succs)
7284 {
7285 struct loops *l = loops_for_fn (saved_cfun);
7286 loop_exit **slot
7287 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7288 NO_INSERT);
7289 if (slot)
7290 l->exits->clear_slot (slot);
7291 }
7292 }
7293
7294
7295 /* Adjust the number of blocks in the tree root of the outlined part. */
7296 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7297
7298 /* Setup a mapping to be used by move_block_to_fn. */
7299 loop->aux = current_loops->tree_root;
7300 loop0->aux = current_loops->tree_root;
7301
7302 pop_cfun ();
7303
7304 /* Move blocks from BBS into DEST_CFUN. */
7305 gcc_assert (bbs.length () >= 2);
7306 after = dest_cfun->cfg->x_entry_block_ptr;
7307 hash_map<tree, tree> vars_map;
7308
7309 memset (&d, 0, sizeof (d));
7310 d.orig_block = orig_block;
7311 d.new_block = DECL_INITIAL (dest_cfun->decl);
7312 d.from_context = cfun->decl;
7313 d.to_context = dest_cfun->decl;
7314 d.vars_map = &vars_map;
7315 d.new_label_map = new_label_map;
7316 d.eh_map = eh_map;
7317 d.remap_decls_p = true;
7318
7319 if (gimple_in_ssa_p (cfun))
7320 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7321 {
7322 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7323 set_ssa_default_def (dest_cfun, arg, narg);
7324 vars_map.put (arg, narg);
7325 }
7326
7327 FOR_EACH_VEC_ELT (bbs, i, bb)
7328 {
7329 /* No need to update edge counts on the last block. It has
7330 already been updated earlier when we detached the region from
7331 the original CFG. */
7332 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7333 after = bb;
7334 }
7335
7336 loop->aux = NULL;
7337 loop0->aux = NULL;
7338 /* Loop sizes are no longer correct, fix them up. */
7339 loop->num_nodes -= num_nodes;
7340 for (struct loop *outer = loop_outer (loop);
7341 outer; outer = loop_outer (outer))
7342 outer->num_nodes -= num_nodes;
7343 loop0->num_nodes -= bbs.length () - num_nodes;
7344
7345 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7346 {
7347 struct loop *aloop;
7348 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7349 if (aloop != NULL)
7350 {
7351 if (aloop->simduid)
7352 {
7353 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7354 d.to_context);
7355 dest_cfun->has_simduid_loops = true;
7356 }
7357 if (aloop->force_vectorize)
7358 dest_cfun->has_force_vectorize_loops = true;
7359 }
7360 }
7361
7362 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7363 if (orig_block)
7364 {
7365 tree block;
7366 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7367 == NULL_TREE);
7368 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7369 = BLOCK_SUBBLOCKS (orig_block);
7370 for (block = BLOCK_SUBBLOCKS (orig_block);
7371 block; block = BLOCK_CHAIN (block))
7372 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7373 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7374 }
7375
7376 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7377 &vars_map, dest_cfun->decl);
7378
7379 if (new_label_map)
7380 htab_delete (new_label_map);
7381 if (eh_map)
7382 delete eh_map;
7383
7384 if (gimple_in_ssa_p (cfun))
7385 {
7386 /* We need to release ssa-names in a defined order, so first find them,
7387 and then iterate in ascending version order. */
7388 bitmap release_names = BITMAP_ALLOC (NULL);
7389 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7390 bitmap_iterator bi;
7391 unsigned i;
7392 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7393 release_ssa_name (ssa_name (i));
7394 BITMAP_FREE (release_names);
7395 }
7396
7397 /* Rewire the entry and exit blocks. The successor to the entry
7398 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7399 the child function. Similarly, the predecessor of DEST_FN's
7400 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7401 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7402 various CFG manipulation function get to the right CFG.
7403
7404 FIXME, this is silly. The CFG ought to become a parameter to
7405 these helpers. */
7406 push_cfun (dest_cfun);
7407 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7408 if (exit_bb)
7409 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7410 pop_cfun ();
7411
7412 /* Back in the original function, the SESE region has disappeared,
7413 create a new basic block in its place. */
7414 bb = create_empty_bb (entry_pred[0]);
7415 if (current_loops)
7416 add_bb_to_loop (bb, loop);
7417 for (i = 0; i < num_entry_edges; i++)
7418 {
7419 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7420 e->probability = entry_prob[i];
7421 }
7422
7423 for (i = 0; i < num_exit_edges; i++)
7424 {
7425 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7426 e->probability = exit_prob[i];
7427 }
7428
7429 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7430 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7431 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7432 dom_bbs.release ();
7433
7434 if (exit_bb)
7435 {
7436 free (exit_prob);
7437 free (exit_flag);
7438 free (exit_succ);
7439 }
7440 free (entry_prob);
7441 free (entry_flag);
7442 free (entry_pred);
7443 bbs.release ();
7444
7445 return bb;
7446 }
7447
7448 /* Dump default def DEF to file FILE using FLAGS and indentation
7449 SPC. */
7450
7451 static void
7452 dump_default_def (FILE *file, tree def, int spc, int flags)
7453 {
7454 for (int i = 0; i < spc; ++i)
7455 fprintf (file, " ");
7456 dump_ssaname_info_to_file (file, def, spc);
7457
7458 print_generic_expr (file, TREE_TYPE (def), flags);
7459 fprintf (file, " ");
7460 print_generic_expr (file, def, flags);
7461 fprintf (file, " = ");
7462 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7463 fprintf (file, ";\n");
7464 }
7465
7466 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7467 */
7468
7469 void
7470 dump_function_to_file (tree fndecl, FILE *file, int flags)
7471 {
7472 tree arg, var, old_current_fndecl = current_function_decl;
7473 struct function *dsf;
7474 bool ignore_topmost_bind = false, any_var = false;
7475 basic_block bb;
7476 tree chain;
7477 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7478 && decl_is_tm_clone (fndecl));
7479 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7480
7481 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7482 {
7483 fprintf (file, "__attribute__((");
7484
7485 bool first = true;
7486 tree chain;
7487 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7488 first = false, chain = TREE_CHAIN (chain))
7489 {
7490 if (!first)
7491 fprintf (file, ", ");
7492
7493 print_generic_expr (file, get_attribute_name (chain), dump_flags);
7494 if (TREE_VALUE (chain) != NULL_TREE)
7495 {
7496 fprintf (file, " (");
7497 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7498 fprintf (file, ")");
7499 }
7500 }
7501
7502 fprintf (file, "))\n");
7503 }
7504
7505 current_function_decl = fndecl;
7506 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7507
7508 arg = DECL_ARGUMENTS (fndecl);
7509 while (arg)
7510 {
7511 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7512 fprintf (file, " ");
7513 print_generic_expr (file, arg, dump_flags);
7514 if (flags & TDF_VERBOSE)
7515 print_node (file, "", arg, 4);
7516 if (DECL_CHAIN (arg))
7517 fprintf (file, ", ");
7518 arg = DECL_CHAIN (arg);
7519 }
7520 fprintf (file, ")\n");
7521
7522 if (flags & TDF_VERBOSE)
7523 print_node (file, "", fndecl, 2);
7524
7525 dsf = DECL_STRUCT_FUNCTION (fndecl);
7526 if (dsf && (flags & TDF_EH))
7527 dump_eh_tree (file, dsf);
7528
7529 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7530 {
7531 dump_node (fndecl, TDF_SLIM | flags, file);
7532 current_function_decl = old_current_fndecl;
7533 return;
7534 }
7535
7536 /* When GIMPLE is lowered, the variables are no longer available in
7537 BIND_EXPRs, so display them separately. */
7538 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7539 {
7540 unsigned ix;
7541 ignore_topmost_bind = true;
7542
7543 fprintf (file, "{\n");
7544 if (gimple_in_ssa_p (fun)
7545 && (flags & TDF_ALIAS))
7546 {
7547 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7548 arg = DECL_CHAIN (arg))
7549 {
7550 tree def = ssa_default_def (fun, arg);
7551 if (def)
7552 dump_default_def (file, def, 2, flags);
7553 }
7554
7555 tree res = DECL_RESULT (fun->decl);
7556 if (res != NULL_TREE
7557 && DECL_BY_REFERENCE (res))
7558 {
7559 tree def = ssa_default_def (fun, res);
7560 if (def)
7561 dump_default_def (file, def, 2, flags);
7562 }
7563
7564 tree static_chain = fun->static_chain_decl;
7565 if (static_chain != NULL_TREE)
7566 {
7567 tree def = ssa_default_def (fun, static_chain);
7568 if (def)
7569 dump_default_def (file, def, 2, flags);
7570 }
7571 }
7572
7573 if (!vec_safe_is_empty (fun->local_decls))
7574 FOR_EACH_LOCAL_DECL (fun, ix, var)
7575 {
7576 print_generic_decl (file, var, flags);
7577 if (flags & TDF_VERBOSE)
7578 print_node (file, "", var, 4);
7579 fprintf (file, "\n");
7580
7581 any_var = true;
7582 }
7583 if (gimple_in_ssa_p (cfun))
7584 for (ix = 1; ix < num_ssa_names; ++ix)
7585 {
7586 tree name = ssa_name (ix);
7587 if (name && !SSA_NAME_VAR (name))
7588 {
7589 fprintf (file, " ");
7590 print_generic_expr (file, TREE_TYPE (name), flags);
7591 fprintf (file, " ");
7592 print_generic_expr (file, name, flags);
7593 fprintf (file, ";\n");
7594
7595 any_var = true;
7596 }
7597 }
7598 }
7599
7600 if (fun && fun->decl == fndecl
7601 && fun->cfg
7602 && basic_block_info_for_fn (fun))
7603 {
7604 /* If the CFG has been built, emit a CFG-based dump. */
7605 if (!ignore_topmost_bind)
7606 fprintf (file, "{\n");
7607
7608 if (any_var && n_basic_blocks_for_fn (fun))
7609 fprintf (file, "\n");
7610
7611 FOR_EACH_BB_FN (bb, fun)
7612 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7613
7614 fprintf (file, "}\n");
7615 }
7616 else if (DECL_SAVED_TREE (fndecl) == NULL)
7617 {
7618 /* The function is now in GIMPLE form but the CFG has not been
7619 built yet. Emit the single sequence of GIMPLE statements
7620 that make up its body. */
7621 gimple_seq body = gimple_body (fndecl);
7622
7623 if (gimple_seq_first_stmt (body)
7624 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7625 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7626 print_gimple_seq (file, body, 0, flags);
7627 else
7628 {
7629 if (!ignore_topmost_bind)
7630 fprintf (file, "{\n");
7631
7632 if (any_var)
7633 fprintf (file, "\n");
7634
7635 print_gimple_seq (file, body, 2, flags);
7636 fprintf (file, "}\n");
7637 }
7638 }
7639 else
7640 {
7641 int indent;
7642
7643 /* Make a tree based dump. */
7644 chain = DECL_SAVED_TREE (fndecl);
7645 if (chain && TREE_CODE (chain) == BIND_EXPR)
7646 {
7647 if (ignore_topmost_bind)
7648 {
7649 chain = BIND_EXPR_BODY (chain);
7650 indent = 2;
7651 }
7652 else
7653 indent = 0;
7654 }
7655 else
7656 {
7657 if (!ignore_topmost_bind)
7658 {
7659 fprintf (file, "{\n");
7660 /* No topmost bind, pretend it's ignored for later. */
7661 ignore_topmost_bind = true;
7662 }
7663 indent = 2;
7664 }
7665
7666 if (any_var)
7667 fprintf (file, "\n");
7668
7669 print_generic_stmt_indented (file, chain, flags, indent);
7670 if (ignore_topmost_bind)
7671 fprintf (file, "}\n");
7672 }
7673
7674 if (flags & TDF_ENUMERATE_LOCALS)
7675 dump_enumerated_decls (file, flags);
7676 fprintf (file, "\n\n");
7677
7678 current_function_decl = old_current_fndecl;
7679 }
7680
7681 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7682
7683 DEBUG_FUNCTION void
7684 debug_function (tree fn, int flags)
7685 {
7686 dump_function_to_file (fn, stderr, flags);
7687 }
7688
7689
7690 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7691
7692 static void
7693 print_pred_bbs (FILE *file, basic_block bb)
7694 {
7695 edge e;
7696 edge_iterator ei;
7697
7698 FOR_EACH_EDGE (e, ei, bb->preds)
7699 fprintf (file, "bb_%d ", e->src->index);
7700 }
7701
7702
7703 /* Print on FILE the indexes for the successors of basic_block BB. */
7704
7705 static void
7706 print_succ_bbs (FILE *file, basic_block bb)
7707 {
7708 edge e;
7709 edge_iterator ei;
7710
7711 FOR_EACH_EDGE (e, ei, bb->succs)
7712 fprintf (file, "bb_%d ", e->dest->index);
7713 }
7714
7715 /* Print to FILE the basic block BB following the VERBOSITY level. */
7716
7717 void
7718 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7719 {
7720 char *s_indent = (char *) alloca ((size_t) indent + 1);
7721 memset ((void *) s_indent, ' ', (size_t) indent);
7722 s_indent[indent] = '\0';
7723
7724 /* Print basic_block's header. */
7725 if (verbosity >= 2)
7726 {
7727 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7728 print_pred_bbs (file, bb);
7729 fprintf (file, "}, succs = {");
7730 print_succ_bbs (file, bb);
7731 fprintf (file, "})\n");
7732 }
7733
7734 /* Print basic_block's body. */
7735 if (verbosity >= 3)
7736 {
7737 fprintf (file, "%s {\n", s_indent);
7738 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7739 fprintf (file, "%s }\n", s_indent);
7740 }
7741 }
7742
7743 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7744
7745 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7746 VERBOSITY level this outputs the contents of the loop, or just its
7747 structure. */
7748
7749 static void
7750 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7751 {
7752 char *s_indent;
7753 basic_block bb;
7754
7755 if (loop == NULL)
7756 return;
7757
7758 s_indent = (char *) alloca ((size_t) indent + 1);
7759 memset ((void *) s_indent, ' ', (size_t) indent);
7760 s_indent[indent] = '\0';
7761
7762 /* Print loop's header. */
7763 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7764 if (loop->header)
7765 fprintf (file, "header = %d", loop->header->index);
7766 else
7767 {
7768 fprintf (file, "deleted)\n");
7769 return;
7770 }
7771 if (loop->latch)
7772 fprintf (file, ", latch = %d", loop->latch->index);
7773 else
7774 fprintf (file, ", multiple latches");
7775 fprintf (file, ", niter = ");
7776 print_generic_expr (file, loop->nb_iterations, 0);
7777
7778 if (loop->any_upper_bound)
7779 {
7780 fprintf (file, ", upper_bound = ");
7781 print_decu (loop->nb_iterations_upper_bound, file);
7782 }
7783
7784 if (loop->any_estimate)
7785 {
7786 fprintf (file, ", estimate = ");
7787 print_decu (loop->nb_iterations_estimate, file);
7788 }
7789 fprintf (file, ")\n");
7790
7791 /* Print loop's body. */
7792 if (verbosity >= 1)
7793 {
7794 fprintf (file, "%s{\n", s_indent);
7795 FOR_EACH_BB_FN (bb, cfun)
7796 if (bb->loop_father == loop)
7797 print_loops_bb (file, bb, indent, verbosity);
7798
7799 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7800 fprintf (file, "%s}\n", s_indent);
7801 }
7802 }
7803
7804 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7805 spaces. Following VERBOSITY level this outputs the contents of the
7806 loop, or just its structure. */
7807
7808 static void
7809 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7810 int verbosity)
7811 {
7812 if (loop == NULL)
7813 return;
7814
7815 print_loop (file, loop, indent, verbosity);
7816 print_loop_and_siblings (file, loop->next, indent, verbosity);
7817 }
7818
7819 /* Follow a CFG edge from the entry point of the program, and on entry
7820 of a loop, pretty print the loop structure on FILE. */
7821
7822 void
7823 print_loops (FILE *file, int verbosity)
7824 {
7825 basic_block bb;
7826
7827 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7828 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
7829 if (bb && bb->loop_father)
7830 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7831 }
7832
7833 /* Dump a loop. */
7834
7835 DEBUG_FUNCTION void
7836 debug (struct loop &ref)
7837 {
7838 print_loop (stderr, &ref, 0, /*verbosity*/0);
7839 }
7840
7841 DEBUG_FUNCTION void
7842 debug (struct loop *ptr)
7843 {
7844 if (ptr)
7845 debug (*ptr);
7846 else
7847 fprintf (stderr, "<nil>\n");
7848 }
7849
7850 /* Dump a loop verbosely. */
7851
7852 DEBUG_FUNCTION void
7853 debug_verbose (struct loop &ref)
7854 {
7855 print_loop (stderr, &ref, 0, /*verbosity*/3);
7856 }
7857
7858 DEBUG_FUNCTION void
7859 debug_verbose (struct loop *ptr)
7860 {
7861 if (ptr)
7862 debug (*ptr);
7863 else
7864 fprintf (stderr, "<nil>\n");
7865 }
7866
7867
7868 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7869
7870 DEBUG_FUNCTION void
7871 debug_loops (int verbosity)
7872 {
7873 print_loops (stderr, verbosity);
7874 }
7875
7876 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7877
7878 DEBUG_FUNCTION void
7879 debug_loop (struct loop *loop, int verbosity)
7880 {
7881 print_loop (stderr, loop, 0, verbosity);
7882 }
7883
7884 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7885 level. */
7886
7887 DEBUG_FUNCTION void
7888 debug_loop_num (unsigned num, int verbosity)
7889 {
7890 debug_loop (get_loop (cfun, num), verbosity);
7891 }
7892
7893 /* Return true if BB ends with a call, possibly followed by some
7894 instructions that must stay with the call. Return false,
7895 otherwise. */
7896
7897 static bool
7898 gimple_block_ends_with_call_p (basic_block bb)
7899 {
7900 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7901 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7902 }
7903
7904
7905 /* Return true if BB ends with a conditional branch. Return false,
7906 otherwise. */
7907
7908 static bool
7909 gimple_block_ends_with_condjump_p (const_basic_block bb)
7910 {
7911 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
7912 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7913 }
7914
7915
7916 /* Return true if we need to add fake edge to exit at statement T.
7917 Helper function for gimple_flow_call_edges_add. */
7918
7919 static bool
7920 need_fake_edge_p (gimple *t)
7921 {
7922 tree fndecl = NULL_TREE;
7923 int call_flags = 0;
7924
7925 /* NORETURN and LONGJMP calls already have an edge to exit.
7926 CONST and PURE calls do not need one.
7927 We don't currently check for CONST and PURE here, although
7928 it would be a good idea, because those attributes are
7929 figured out from the RTL in mark_constant_function, and
7930 the counter incrementation code from -fprofile-arcs
7931 leads to different results from -fbranch-probabilities. */
7932 if (is_gimple_call (t))
7933 {
7934 fndecl = gimple_call_fndecl (t);
7935 call_flags = gimple_call_flags (t);
7936 }
7937
7938 if (is_gimple_call (t)
7939 && fndecl
7940 && DECL_BUILT_IN (fndecl)
7941 && (call_flags & ECF_NOTHROW)
7942 && !(call_flags & ECF_RETURNS_TWICE)
7943 /* fork() doesn't really return twice, but the effect of
7944 wrapping it in __gcov_fork() which calls __gcov_flush()
7945 and clears the counters before forking has the same
7946 effect as returning twice. Force a fake edge. */
7947 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7948 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7949 return false;
7950
7951 if (is_gimple_call (t))
7952 {
7953 edge_iterator ei;
7954 edge e;
7955 basic_block bb;
7956
7957 if (!(call_flags & ECF_NORETURN))
7958 return true;
7959
7960 bb = gimple_bb (t);
7961 FOR_EACH_EDGE (e, ei, bb->succs)
7962 if ((e->flags & EDGE_FAKE) == 0)
7963 return true;
7964 }
7965
7966 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
7967 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
7968 return true;
7969
7970 return false;
7971 }
7972
7973
7974 /* Add fake edges to the function exit for any non constant and non
7975 noreturn calls (or noreturn calls with EH/abnormal edges),
7976 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7977 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7978 that were split.
7979
7980 The goal is to expose cases in which entering a basic block does
7981 not imply that all subsequent instructions must be executed. */
7982
7983 static int
7984 gimple_flow_call_edges_add (sbitmap blocks)
7985 {
7986 int i;
7987 int blocks_split = 0;
7988 int last_bb = last_basic_block_for_fn (cfun);
7989 bool check_last_block = false;
7990
7991 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7992 return 0;
7993
7994 if (! blocks)
7995 check_last_block = true;
7996 else
7997 check_last_block = bitmap_bit_p (blocks,
7998 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7999
8000 /* In the last basic block, before epilogue generation, there will be
8001 a fallthru edge to EXIT. Special care is required if the last insn
8002 of the last basic block is a call because make_edge folds duplicate
8003 edges, which would result in the fallthru edge also being marked
8004 fake, which would result in the fallthru edge being removed by
8005 remove_fake_edges, which would result in an invalid CFG.
8006
8007 Moreover, we can't elide the outgoing fake edge, since the block
8008 profiler needs to take this into account in order to solve the minimal
8009 spanning tree in the case that the call doesn't return.
8010
8011 Handle this by adding a dummy instruction in a new last basic block. */
8012 if (check_last_block)
8013 {
8014 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8015 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8016 gimple *t = NULL;
8017
8018 if (!gsi_end_p (gsi))
8019 t = gsi_stmt (gsi);
8020
8021 if (t && need_fake_edge_p (t))
8022 {
8023 edge e;
8024
8025 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8026 if (e)
8027 {
8028 gsi_insert_on_edge (e, gimple_build_nop ());
8029 gsi_commit_edge_inserts ();
8030 }
8031 }
8032 }
8033
8034 /* Now add fake edges to the function exit for any non constant
8035 calls since there is no way that we can determine if they will
8036 return or not... */
8037 for (i = 0; i < last_bb; i++)
8038 {
8039 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8040 gimple_stmt_iterator gsi;
8041 gimple *stmt, *last_stmt;
8042
8043 if (!bb)
8044 continue;
8045
8046 if (blocks && !bitmap_bit_p (blocks, i))
8047 continue;
8048
8049 gsi = gsi_last_nondebug_bb (bb);
8050 if (!gsi_end_p (gsi))
8051 {
8052 last_stmt = gsi_stmt (gsi);
8053 do
8054 {
8055 stmt = gsi_stmt (gsi);
8056 if (need_fake_edge_p (stmt))
8057 {
8058 edge e;
8059
8060 /* The handling above of the final block before the
8061 epilogue should be enough to verify that there is
8062 no edge to the exit block in CFG already.
8063 Calling make_edge in such case would cause us to
8064 mark that edge as fake and remove it later. */
8065 if (flag_checking && stmt == last_stmt)
8066 {
8067 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8068 gcc_assert (e == NULL);
8069 }
8070
8071 /* Note that the following may create a new basic block
8072 and renumber the existing basic blocks. */
8073 if (stmt != last_stmt)
8074 {
8075 e = split_block (bb, stmt);
8076 if (e)
8077 blocks_split++;
8078 }
8079 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8080 }
8081 gsi_prev (&gsi);
8082 }
8083 while (!gsi_end_p (gsi));
8084 }
8085 }
8086
8087 if (blocks_split)
8088 verify_flow_info ();
8089
8090 return blocks_split;
8091 }
8092
8093 /* Removes edge E and all the blocks dominated by it, and updates dominance
8094 information. The IL in E->src needs to be updated separately.
8095 If dominance info is not available, only the edge E is removed.*/
8096
8097 void
8098 remove_edge_and_dominated_blocks (edge e)
8099 {
8100 vec<basic_block> bbs_to_remove = vNULL;
8101 vec<basic_block> bbs_to_fix_dom = vNULL;
8102 bitmap df, df_idom;
8103 edge f;
8104 edge_iterator ei;
8105 bool none_removed = false;
8106 unsigned i;
8107 basic_block bb, dbb;
8108 bitmap_iterator bi;
8109
8110 /* If we are removing a path inside a non-root loop that may change
8111 loop ownership of blocks or remove loops. Mark loops for fixup. */
8112 if (current_loops
8113 && loop_outer (e->src->loop_father) != NULL
8114 && e->src->loop_father == e->dest->loop_father)
8115 loops_state_set (LOOPS_NEED_FIXUP);
8116
8117 if (!dom_info_available_p (CDI_DOMINATORS))
8118 {
8119 remove_edge (e);
8120 return;
8121 }
8122
8123 /* No updating is needed for edges to exit. */
8124 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8125 {
8126 if (cfgcleanup_altered_bbs)
8127 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8128 remove_edge (e);
8129 return;
8130 }
8131
8132 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8133 that is not dominated by E->dest, then this set is empty. Otherwise,
8134 all the basic blocks dominated by E->dest are removed.
8135
8136 Also, to DF_IDOM we store the immediate dominators of the blocks in
8137 the dominance frontier of E (i.e., of the successors of the
8138 removed blocks, if there are any, and of E->dest otherwise). */
8139 FOR_EACH_EDGE (f, ei, e->dest->preds)
8140 {
8141 if (f == e)
8142 continue;
8143
8144 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8145 {
8146 none_removed = true;
8147 break;
8148 }
8149 }
8150
8151 df = BITMAP_ALLOC (NULL);
8152 df_idom = BITMAP_ALLOC (NULL);
8153
8154 if (none_removed)
8155 bitmap_set_bit (df_idom,
8156 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8157 else
8158 {
8159 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8160 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8161 {
8162 FOR_EACH_EDGE (f, ei, bb->succs)
8163 {
8164 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8165 bitmap_set_bit (df, f->dest->index);
8166 }
8167 }
8168 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8169 bitmap_clear_bit (df, bb->index);
8170
8171 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8172 {
8173 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8174 bitmap_set_bit (df_idom,
8175 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8176 }
8177 }
8178
8179 if (cfgcleanup_altered_bbs)
8180 {
8181 /* Record the set of the altered basic blocks. */
8182 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8183 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8184 }
8185
8186 /* Remove E and the cancelled blocks. */
8187 if (none_removed)
8188 remove_edge (e);
8189 else
8190 {
8191 /* Walk backwards so as to get a chance to substitute all
8192 released DEFs into debug stmts. See
8193 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8194 details. */
8195 for (i = bbs_to_remove.length (); i-- > 0; )
8196 delete_basic_block (bbs_to_remove[i]);
8197 }
8198
8199 /* Update the dominance information. The immediate dominator may change only
8200 for blocks whose immediate dominator belongs to DF_IDOM:
8201
8202 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8203 removal. Let Z the arbitrary block such that idom(Z) = Y and
8204 Z dominates X after the removal. Before removal, there exists a path P
8205 from Y to X that avoids Z. Let F be the last edge on P that is
8206 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8207 dominates W, and because of P, Z does not dominate W), and W belongs to
8208 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8209 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8210 {
8211 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8212 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8213 dbb;
8214 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8215 bbs_to_fix_dom.safe_push (dbb);
8216 }
8217
8218 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8219
8220 BITMAP_FREE (df);
8221 BITMAP_FREE (df_idom);
8222 bbs_to_remove.release ();
8223 bbs_to_fix_dom.release ();
8224 }
8225
8226 /* Purge dead EH edges from basic block BB. */
8227
8228 bool
8229 gimple_purge_dead_eh_edges (basic_block bb)
8230 {
8231 bool changed = false;
8232 edge e;
8233 edge_iterator ei;
8234 gimple *stmt = last_stmt (bb);
8235
8236 if (stmt && stmt_can_throw_internal (stmt))
8237 return false;
8238
8239 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8240 {
8241 if (e->flags & EDGE_EH)
8242 {
8243 remove_edge_and_dominated_blocks (e);
8244 changed = true;
8245 }
8246 else
8247 ei_next (&ei);
8248 }
8249
8250 return changed;
8251 }
8252
8253 /* Purge dead EH edges from basic block listed in BLOCKS. */
8254
8255 bool
8256 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8257 {
8258 bool changed = false;
8259 unsigned i;
8260 bitmap_iterator bi;
8261
8262 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8263 {
8264 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8265
8266 /* Earlier gimple_purge_dead_eh_edges could have removed
8267 this basic block already. */
8268 gcc_assert (bb || changed);
8269 if (bb != NULL)
8270 changed |= gimple_purge_dead_eh_edges (bb);
8271 }
8272
8273 return changed;
8274 }
8275
8276 /* Purge dead abnormal call edges from basic block BB. */
8277
8278 bool
8279 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8280 {
8281 bool changed = false;
8282 edge e;
8283 edge_iterator ei;
8284 gimple *stmt = last_stmt (bb);
8285
8286 if (!cfun->has_nonlocal_label
8287 && !cfun->calls_setjmp)
8288 return false;
8289
8290 if (stmt && stmt_can_make_abnormal_goto (stmt))
8291 return false;
8292
8293 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8294 {
8295 if (e->flags & EDGE_ABNORMAL)
8296 {
8297 if (e->flags & EDGE_FALLTHRU)
8298 e->flags &= ~EDGE_ABNORMAL;
8299 else
8300 remove_edge_and_dominated_blocks (e);
8301 changed = true;
8302 }
8303 else
8304 ei_next (&ei);
8305 }
8306
8307 return changed;
8308 }
8309
8310 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8311
8312 bool
8313 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8314 {
8315 bool changed = false;
8316 unsigned i;
8317 bitmap_iterator bi;
8318
8319 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8320 {
8321 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8322
8323 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8324 this basic block already. */
8325 gcc_assert (bb || changed);
8326 if (bb != NULL)
8327 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8328 }
8329
8330 return changed;
8331 }
8332
8333 /* This function is called whenever a new edge is created or
8334 redirected. */
8335
8336 static void
8337 gimple_execute_on_growing_pred (edge e)
8338 {
8339 basic_block bb = e->dest;
8340
8341 if (!gimple_seq_empty_p (phi_nodes (bb)))
8342 reserve_phi_args_for_new_edge (bb);
8343 }
8344
8345 /* This function is called immediately before edge E is removed from
8346 the edge vector E->dest->preds. */
8347
8348 static void
8349 gimple_execute_on_shrinking_pred (edge e)
8350 {
8351 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8352 remove_phi_args (e);
8353 }
8354
8355 /*---------------------------------------------------------------------------
8356 Helper functions for Loop versioning
8357 ---------------------------------------------------------------------------*/
8358
8359 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8360 of 'first'. Both of them are dominated by 'new_head' basic block. When
8361 'new_head' was created by 'second's incoming edge it received phi arguments
8362 on the edge by split_edge(). Later, additional edge 'e' was created to
8363 connect 'new_head' and 'first'. Now this routine adds phi args on this
8364 additional edge 'e' that new_head to second edge received as part of edge
8365 splitting. */
8366
8367 static void
8368 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8369 basic_block new_head, edge e)
8370 {
8371 gphi *phi1, *phi2;
8372 gphi_iterator psi1, psi2;
8373 tree def;
8374 edge e2 = find_edge (new_head, second);
8375
8376 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8377 edge, we should always have an edge from NEW_HEAD to SECOND. */
8378 gcc_assert (e2 != NULL);
8379
8380 /* Browse all 'second' basic block phi nodes and add phi args to
8381 edge 'e' for 'first' head. PHI args are always in correct order. */
8382
8383 for (psi2 = gsi_start_phis (second),
8384 psi1 = gsi_start_phis (first);
8385 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8386 gsi_next (&psi2), gsi_next (&psi1))
8387 {
8388 phi1 = psi1.phi ();
8389 phi2 = psi2.phi ();
8390 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8391 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8392 }
8393 }
8394
8395
8396 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8397 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8398 the destination of the ELSE part. */
8399
8400 static void
8401 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8402 basic_block second_head ATTRIBUTE_UNUSED,
8403 basic_block cond_bb, void *cond_e)
8404 {
8405 gimple_stmt_iterator gsi;
8406 gimple *new_cond_expr;
8407 tree cond_expr = (tree) cond_e;
8408 edge e0;
8409
8410 /* Build new conditional expr */
8411 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8412 NULL_TREE, NULL_TREE);
8413
8414 /* Add new cond in cond_bb. */
8415 gsi = gsi_last_bb (cond_bb);
8416 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8417
8418 /* Adjust edges appropriately to connect new head with first head
8419 as well as second head. */
8420 e0 = single_succ_edge (cond_bb);
8421 e0->flags &= ~EDGE_FALLTHRU;
8422 e0->flags |= EDGE_FALSE_VALUE;
8423 }
8424
8425
8426 /* Do book-keeping of basic block BB for the profile consistency checker.
8427 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8428 then do post-pass accounting. Store the counting in RECORD. */
8429 static void
8430 gimple_account_profile_record (basic_block bb, int after_pass,
8431 struct profile_record *record)
8432 {
8433 gimple_stmt_iterator i;
8434 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8435 {
8436 record->size[after_pass]
8437 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8438 if (profile_status_for_fn (cfun) == PROFILE_READ)
8439 record->time[after_pass]
8440 += estimate_num_insns (gsi_stmt (i),
8441 &eni_time_weights) * bb->count;
8442 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8443 record->time[after_pass]
8444 += estimate_num_insns (gsi_stmt (i),
8445 &eni_time_weights) * bb->frequency;
8446 }
8447 }
8448
8449 struct cfg_hooks gimple_cfg_hooks = {
8450 "gimple",
8451 gimple_verify_flow_info,
8452 gimple_dump_bb, /* dump_bb */
8453 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8454 create_bb, /* create_basic_block */
8455 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8456 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8457 gimple_can_remove_branch_p, /* can_remove_branch_p */
8458 remove_bb, /* delete_basic_block */
8459 gimple_split_block, /* split_block */
8460 gimple_move_block_after, /* move_block_after */
8461 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8462 gimple_merge_blocks, /* merge_blocks */
8463 gimple_predict_edge, /* predict_edge */
8464 gimple_predicted_by_p, /* predicted_by_p */
8465 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8466 gimple_duplicate_bb, /* duplicate_block */
8467 gimple_split_edge, /* split_edge */
8468 gimple_make_forwarder_block, /* make_forward_block */
8469 NULL, /* tidy_fallthru_edge */
8470 NULL, /* force_nonfallthru */
8471 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8472 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8473 gimple_flow_call_edges_add, /* flow_call_edges_add */
8474 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8475 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8476 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8477 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8478 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8479 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8480 flush_pending_stmts, /* flush_pending_stmts */
8481 gimple_empty_block_p, /* block_empty_p */
8482 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8483 gimple_account_profile_record,
8484 };
8485
8486
8487 /* Split all critical edges. */
8488
8489 unsigned int
8490 split_critical_edges (void)
8491 {
8492 basic_block bb;
8493 edge e;
8494 edge_iterator ei;
8495
8496 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8497 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8498 mappings around the calls to split_edge. */
8499 start_recording_case_labels ();
8500 FOR_ALL_BB_FN (bb, cfun)
8501 {
8502 FOR_EACH_EDGE (e, ei, bb->succs)
8503 {
8504 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8505 split_edge (e);
8506 /* PRE inserts statements to edges and expects that
8507 since split_critical_edges was done beforehand, committing edge
8508 insertions will not split more edges. In addition to critical
8509 edges we must split edges that have multiple successors and
8510 end by control flow statements, such as RESX.
8511 Go ahead and split them too. This matches the logic in
8512 gimple_find_edge_insert_loc. */
8513 else if ((!single_pred_p (e->dest)
8514 || !gimple_seq_empty_p (phi_nodes (e->dest))
8515 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8516 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8517 && !(e->flags & EDGE_ABNORMAL))
8518 {
8519 gimple_stmt_iterator gsi;
8520
8521 gsi = gsi_last_bb (e->src);
8522 if (!gsi_end_p (gsi)
8523 && stmt_ends_bb_p (gsi_stmt (gsi))
8524 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8525 && !gimple_call_builtin_p (gsi_stmt (gsi),
8526 BUILT_IN_RETURN)))
8527 split_edge (e);
8528 }
8529 }
8530 }
8531 end_recording_case_labels ();
8532 return 0;
8533 }
8534
8535 namespace {
8536
8537 const pass_data pass_data_split_crit_edges =
8538 {
8539 GIMPLE_PASS, /* type */
8540 "crited", /* name */
8541 OPTGROUP_NONE, /* optinfo_flags */
8542 TV_TREE_SPLIT_EDGES, /* tv_id */
8543 PROP_cfg, /* properties_required */
8544 PROP_no_crit_edges, /* properties_provided */
8545 0, /* properties_destroyed */
8546 0, /* todo_flags_start */
8547 0, /* todo_flags_finish */
8548 };
8549
8550 class pass_split_crit_edges : public gimple_opt_pass
8551 {
8552 public:
8553 pass_split_crit_edges (gcc::context *ctxt)
8554 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8555 {}
8556
8557 /* opt_pass methods: */
8558 virtual unsigned int execute (function *) { return split_critical_edges (); }
8559
8560 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8561 }; // class pass_split_crit_edges
8562
8563 } // anon namespace
8564
8565 gimple_opt_pass *
8566 make_pass_split_crit_edges (gcc::context *ctxt)
8567 {
8568 return new pass_split_crit_edges (ctxt);
8569 }
8570
8571
8572 /* Insert COND expression which is GIMPLE_COND after STMT
8573 in basic block BB with appropriate basic block split
8574 and creation of a new conditionally executed basic block.
8575 Return created basic block. */
8576 basic_block
8577 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond)
8578 {
8579 edge fall = split_block (bb, stmt);
8580 gimple_stmt_iterator iter = gsi_last_bb (bb);
8581 basic_block new_bb;
8582
8583 /* Insert cond statement. */
8584 gcc_assert (gimple_code (cond) == GIMPLE_COND);
8585 if (gsi_end_p (iter))
8586 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
8587 else
8588 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
8589
8590 /* Create conditionally executed block. */
8591 new_bb = create_empty_bb (bb);
8592 make_edge (bb, new_bb, EDGE_TRUE_VALUE);
8593 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
8594
8595 /* Fix edge for split bb. */
8596 fall->flags = EDGE_FALSE_VALUE;
8597
8598 /* Update dominance info. */
8599 if (dom_info_available_p (CDI_DOMINATORS))
8600 {
8601 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
8602 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
8603 }
8604
8605 /* Update loop info. */
8606 if (current_loops)
8607 add_bb_to_loop (new_bb, bb->loop_father);
8608
8609 return new_bb;
8610 }
8611
8612 /* Build a ternary operation and gimplify it. Emit code before GSI.
8613 Return the gimple_val holding the result. */
8614
8615 tree
8616 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8617 tree type, tree a, tree b, tree c)
8618 {
8619 tree ret;
8620 location_t loc = gimple_location (gsi_stmt (*gsi));
8621
8622 ret = fold_build3_loc (loc, code, type, a, b, c);
8623 STRIP_NOPS (ret);
8624
8625 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8626 GSI_SAME_STMT);
8627 }
8628
8629 /* Build a binary operation and gimplify it. Emit code before GSI.
8630 Return the gimple_val holding the result. */
8631
8632 tree
8633 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8634 tree type, tree a, tree b)
8635 {
8636 tree ret;
8637
8638 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8639 STRIP_NOPS (ret);
8640
8641 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8642 GSI_SAME_STMT);
8643 }
8644
8645 /* Build a unary operation and gimplify it. Emit code before GSI.
8646 Return the gimple_val holding the result. */
8647
8648 tree
8649 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8650 tree a)
8651 {
8652 tree ret;
8653
8654 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8655 STRIP_NOPS (ret);
8656
8657 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8658 GSI_SAME_STMT);
8659 }
8660
8661
8662 \f
8663 /* Given a basic block B which ends with a conditional and has
8664 precisely two successors, determine which of the edges is taken if
8665 the conditional is true and which is taken if the conditional is
8666 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8667
8668 void
8669 extract_true_false_edges_from_block (basic_block b,
8670 edge *true_edge,
8671 edge *false_edge)
8672 {
8673 edge e = EDGE_SUCC (b, 0);
8674
8675 if (e->flags & EDGE_TRUE_VALUE)
8676 {
8677 *true_edge = e;
8678 *false_edge = EDGE_SUCC (b, 1);
8679 }
8680 else
8681 {
8682 *false_edge = e;
8683 *true_edge = EDGE_SUCC (b, 1);
8684 }
8685 }
8686
8687
8688 /* From a controlling predicate in the immediate dominator DOM of
8689 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
8690 predicate evaluates to true and false and store them to
8691 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
8692 they are non-NULL. Returns true if the edges can be determined,
8693 else return false. */
8694
8695 bool
8696 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
8697 edge *true_controlled_edge,
8698 edge *false_controlled_edge)
8699 {
8700 basic_block bb = phiblock;
8701 edge true_edge, false_edge, tem;
8702 edge e0 = NULL, e1 = NULL;
8703
8704 /* We have to verify that one edge into the PHI node is dominated
8705 by the true edge of the predicate block and the other edge
8706 dominated by the false edge. This ensures that the PHI argument
8707 we are going to take is completely determined by the path we
8708 take from the predicate block.
8709 We can only use BB dominance checks below if the destination of
8710 the true/false edges are dominated by their edge, thus only
8711 have a single predecessor. */
8712 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
8713 tem = EDGE_PRED (bb, 0);
8714 if (tem == true_edge
8715 || (single_pred_p (true_edge->dest)
8716 && (tem->src == true_edge->dest
8717 || dominated_by_p (CDI_DOMINATORS,
8718 tem->src, true_edge->dest))))
8719 e0 = tem;
8720 else if (tem == false_edge
8721 || (single_pred_p (false_edge->dest)
8722 && (tem->src == false_edge->dest
8723 || dominated_by_p (CDI_DOMINATORS,
8724 tem->src, false_edge->dest))))
8725 e1 = tem;
8726 else
8727 return false;
8728 tem = EDGE_PRED (bb, 1);
8729 if (tem == true_edge
8730 || (single_pred_p (true_edge->dest)
8731 && (tem->src == true_edge->dest
8732 || dominated_by_p (CDI_DOMINATORS,
8733 tem->src, true_edge->dest))))
8734 e0 = tem;
8735 else if (tem == false_edge
8736 || (single_pred_p (false_edge->dest)
8737 && (tem->src == false_edge->dest
8738 || dominated_by_p (CDI_DOMINATORS,
8739 tem->src, false_edge->dest))))
8740 e1 = tem;
8741 else
8742 return false;
8743 if (!e0 || !e1)
8744 return false;
8745
8746 if (true_controlled_edge)
8747 *true_controlled_edge = e0;
8748 if (false_controlled_edge)
8749 *false_controlled_edge = e1;
8750
8751 return true;
8752 }
8753
8754
8755
8756 /* Emit return warnings. */
8757
8758 namespace {
8759
8760 const pass_data pass_data_warn_function_return =
8761 {
8762 GIMPLE_PASS, /* type */
8763 "*warn_function_return", /* name */
8764 OPTGROUP_NONE, /* optinfo_flags */
8765 TV_NONE, /* tv_id */
8766 PROP_cfg, /* properties_required */
8767 0, /* properties_provided */
8768 0, /* properties_destroyed */
8769 0, /* todo_flags_start */
8770 0, /* todo_flags_finish */
8771 };
8772
8773 class pass_warn_function_return : public gimple_opt_pass
8774 {
8775 public:
8776 pass_warn_function_return (gcc::context *ctxt)
8777 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8778 {}
8779
8780 /* opt_pass methods: */
8781 virtual unsigned int execute (function *);
8782
8783 }; // class pass_warn_function_return
8784
8785 unsigned int
8786 pass_warn_function_return::execute (function *fun)
8787 {
8788 source_location location;
8789 gimple *last;
8790 edge e;
8791 edge_iterator ei;
8792
8793 if (!targetm.warn_func_return (fun->decl))
8794 return 0;
8795
8796 /* If we have a path to EXIT, then we do return. */
8797 if (TREE_THIS_VOLATILE (fun->decl)
8798 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
8799 {
8800 location = UNKNOWN_LOCATION;
8801 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8802 {
8803 last = last_stmt (e->src);
8804 if ((gimple_code (last) == GIMPLE_RETURN
8805 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8806 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8807 break;
8808 }
8809 if (location == UNKNOWN_LOCATION)
8810 location = cfun->function_end_locus;
8811 warning_at (location, 0, "%<noreturn%> function does return");
8812 }
8813
8814 /* If we see "return;" in some basic block, then we do reach the end
8815 without returning a value. */
8816 else if (warn_return_type
8817 && !TREE_NO_WARNING (fun->decl)
8818 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0
8819 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
8820 {
8821 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
8822 {
8823 gimple *last = last_stmt (e->src);
8824 greturn *return_stmt = dyn_cast <greturn *> (last);
8825 if (return_stmt
8826 && gimple_return_retval (return_stmt) == NULL
8827 && !gimple_no_warning_p (last))
8828 {
8829 location = gimple_location (last);
8830 if (location == UNKNOWN_LOCATION)
8831 location = fun->function_end_locus;
8832 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8833 TREE_NO_WARNING (fun->decl) = 1;
8834 break;
8835 }
8836 }
8837 }
8838 return 0;
8839 }
8840
8841 } // anon namespace
8842
8843 gimple_opt_pass *
8844 make_pass_warn_function_return (gcc::context *ctxt)
8845 {
8846 return new pass_warn_function_return (ctxt);
8847 }
8848
8849 /* Walk a gimplified function and warn for functions whose return value is
8850 ignored and attribute((warn_unused_result)) is set. This is done before
8851 inlining, so we don't have to worry about that. */
8852
8853 static void
8854 do_warn_unused_result (gimple_seq seq)
8855 {
8856 tree fdecl, ftype;
8857 gimple_stmt_iterator i;
8858
8859 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8860 {
8861 gimple *g = gsi_stmt (i);
8862
8863 switch (gimple_code (g))
8864 {
8865 case GIMPLE_BIND:
8866 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
8867 break;
8868 case GIMPLE_TRY:
8869 do_warn_unused_result (gimple_try_eval (g));
8870 do_warn_unused_result (gimple_try_cleanup (g));
8871 break;
8872 case GIMPLE_CATCH:
8873 do_warn_unused_result (gimple_catch_handler (
8874 as_a <gcatch *> (g)));
8875 break;
8876 case GIMPLE_EH_FILTER:
8877 do_warn_unused_result (gimple_eh_filter_failure (g));
8878 break;
8879
8880 case GIMPLE_CALL:
8881 if (gimple_call_lhs (g))
8882 break;
8883 if (gimple_call_internal_p (g))
8884 break;
8885
8886 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8887 LHS. All calls whose value is ignored should be
8888 represented like this. Look for the attribute. */
8889 fdecl = gimple_call_fndecl (g);
8890 ftype = gimple_call_fntype (g);
8891
8892 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8893 {
8894 location_t loc = gimple_location (g);
8895
8896 if (fdecl)
8897 warning_at (loc, OPT_Wunused_result,
8898 "ignoring return value of %qD, "
8899 "declared with attribute warn_unused_result",
8900 fdecl);
8901 else
8902 warning_at (loc, OPT_Wunused_result,
8903 "ignoring return value of function "
8904 "declared with attribute warn_unused_result");
8905 }
8906 break;
8907
8908 default:
8909 /* Not a container, not a call, or a call whose value is used. */
8910 break;
8911 }
8912 }
8913 }
8914
8915 namespace {
8916
8917 const pass_data pass_data_warn_unused_result =
8918 {
8919 GIMPLE_PASS, /* type */
8920 "*warn_unused_result", /* name */
8921 OPTGROUP_NONE, /* optinfo_flags */
8922 TV_NONE, /* tv_id */
8923 PROP_gimple_any, /* properties_required */
8924 0, /* properties_provided */
8925 0, /* properties_destroyed */
8926 0, /* todo_flags_start */
8927 0, /* todo_flags_finish */
8928 };
8929
8930 class pass_warn_unused_result : public gimple_opt_pass
8931 {
8932 public:
8933 pass_warn_unused_result (gcc::context *ctxt)
8934 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8935 {}
8936
8937 /* opt_pass methods: */
8938 virtual bool gate (function *) { return flag_warn_unused_result; }
8939 virtual unsigned int execute (function *)
8940 {
8941 do_warn_unused_result (gimple_body (current_function_decl));
8942 return 0;
8943 }
8944
8945 }; // class pass_warn_unused_result
8946
8947 } // anon namespace
8948
8949 gimple_opt_pass *
8950 make_pass_warn_unused_result (gcc::context *ctxt)
8951 {
8952 return new pass_warn_unused_result (ctxt);
8953 }
8954
8955 /* IPA passes, compilation of earlier functions or inlining
8956 might have changed some properties, such as marked functions nothrow,
8957 pure, const or noreturn.
8958 Remove redundant edges and basic blocks, and create new ones if necessary.
8959
8960 This pass can't be executed as stand alone pass from pass manager, because
8961 in between inlining and this fixup the verify_flow_info would fail. */
8962
8963 unsigned int
8964 execute_fixup_cfg (void)
8965 {
8966 basic_block bb;
8967 gimple_stmt_iterator gsi;
8968 int todo = 0;
8969 gcov_type count_scale;
8970 edge e;
8971 edge_iterator ei;
8972
8973 count_scale
8974 = GCOV_COMPUTE_SCALE (cgraph_node::get (current_function_decl)->count,
8975 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8976
8977 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8978 cgraph_node::get (current_function_decl)->count;
8979 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8980 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8981 count_scale);
8982
8983 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8984 e->count = apply_scale (e->count, count_scale);
8985
8986 FOR_EACH_BB_FN (bb, cfun)
8987 {
8988 bb->count = apply_scale (bb->count, count_scale);
8989 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
8990 {
8991 gimple *stmt = gsi_stmt (gsi);
8992 tree decl = is_gimple_call (stmt)
8993 ? gimple_call_fndecl (stmt)
8994 : NULL;
8995 if (decl)
8996 {
8997 int flags = gimple_call_flags (stmt);
8998 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8999 {
9000 if (gimple_purge_dead_abnormal_call_edges (bb))
9001 todo |= TODO_cleanup_cfg;
9002
9003 if (gimple_in_ssa_p (cfun))
9004 {
9005 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9006 update_stmt (stmt);
9007 }
9008 }
9009
9010 if (flags & ECF_NORETURN
9011 && fixup_noreturn_call (stmt))
9012 todo |= TODO_cleanup_cfg;
9013 }
9014
9015 /* Remove stores to variables we marked write-only.
9016 Keep access when store has side effect, i.e. in case when source
9017 is volatile. */
9018 if (gimple_store_p (stmt)
9019 && !gimple_has_side_effects (stmt))
9020 {
9021 tree lhs = get_base_address (gimple_get_lhs (stmt));
9022
9023 if (TREE_CODE (lhs) == VAR_DECL
9024 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9025 && varpool_node::get (lhs)->writeonly)
9026 {
9027 unlink_stmt_vdef (stmt);
9028 gsi_remove (&gsi, true);
9029 release_defs (stmt);
9030 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9031 continue;
9032 }
9033 }
9034 /* For calls we can simply remove LHS when it is known
9035 to be write-only. */
9036 if (is_gimple_call (stmt)
9037 && gimple_get_lhs (stmt))
9038 {
9039 tree lhs = get_base_address (gimple_get_lhs (stmt));
9040
9041 if (TREE_CODE (lhs) == VAR_DECL
9042 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9043 && varpool_node::get (lhs)->writeonly)
9044 {
9045 gimple_call_set_lhs (stmt, NULL);
9046 update_stmt (stmt);
9047 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9048 }
9049 }
9050
9051 if (maybe_clean_eh_stmt (stmt)
9052 && gimple_purge_dead_eh_edges (bb))
9053 todo |= TODO_cleanup_cfg;
9054 gsi_next (&gsi);
9055 }
9056
9057 FOR_EACH_EDGE (e, ei, bb->succs)
9058 e->count = apply_scale (e->count, count_scale);
9059
9060 /* If we have a basic block with no successors that does not
9061 end with a control statement or a noreturn call end it with
9062 a call to __builtin_unreachable. This situation can occur
9063 when inlining a noreturn call that does in fact return. */
9064 if (EDGE_COUNT (bb->succs) == 0)
9065 {
9066 gimple *stmt = last_stmt (bb);
9067 if (!stmt
9068 || (!is_ctrl_stmt (stmt)
9069 && (!is_gimple_call (stmt)
9070 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
9071 {
9072 if (stmt && is_gimple_call (stmt))
9073 gimple_call_set_ctrl_altering (stmt, false);
9074 stmt = gimple_build_call
9075 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
9076 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9077 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9078 }
9079 }
9080 }
9081 if (count_scale != REG_BR_PROB_BASE)
9082 compute_function_frequency ();
9083
9084 if (current_loops
9085 && (todo & TODO_cleanup_cfg))
9086 loops_state_set (LOOPS_NEED_FIXUP);
9087
9088 return todo;
9089 }
9090
9091 namespace {
9092
9093 const pass_data pass_data_fixup_cfg =
9094 {
9095 GIMPLE_PASS, /* type */
9096 "fixup_cfg", /* name */
9097 OPTGROUP_NONE, /* optinfo_flags */
9098 TV_NONE, /* tv_id */
9099 PROP_cfg, /* properties_required */
9100 0, /* properties_provided */
9101 0, /* properties_destroyed */
9102 0, /* todo_flags_start */
9103 0, /* todo_flags_finish */
9104 };
9105
9106 class pass_fixup_cfg : public gimple_opt_pass
9107 {
9108 public:
9109 pass_fixup_cfg (gcc::context *ctxt)
9110 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9111 {}
9112
9113 /* opt_pass methods: */
9114 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9115 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9116
9117 }; // class pass_fixup_cfg
9118
9119 } // anon namespace
9120
9121 gimple_opt_pass *
9122 make_pass_fixup_cfg (gcc::context *ctxt)
9123 {
9124 return new pass_fixup_cfg (ctxt);
9125 }
9126
9127 /* Garbage collection support for edge_def. */
9128
9129 extern void gt_ggc_mx (tree&);
9130 extern void gt_ggc_mx (gimple *&);
9131 extern void gt_ggc_mx (rtx&);
9132 extern void gt_ggc_mx (basic_block&);
9133
9134 static void
9135 gt_ggc_mx (rtx_insn *& x)
9136 {
9137 if (x)
9138 gt_ggc_mx_rtx_def ((void *) x);
9139 }
9140
9141 void
9142 gt_ggc_mx (edge_def *e)
9143 {
9144 tree block = LOCATION_BLOCK (e->goto_locus);
9145 gt_ggc_mx (e->src);
9146 gt_ggc_mx (e->dest);
9147 if (current_ir_type () == IR_GIMPLE)
9148 gt_ggc_mx (e->insns.g);
9149 else
9150 gt_ggc_mx (e->insns.r);
9151 gt_ggc_mx (block);
9152 }
9153
9154 /* PCH support for edge_def. */
9155
9156 extern void gt_pch_nx (tree&);
9157 extern void gt_pch_nx (gimple *&);
9158 extern void gt_pch_nx (rtx&);
9159 extern void gt_pch_nx (basic_block&);
9160
9161 static void
9162 gt_pch_nx (rtx_insn *& x)
9163 {
9164 if (x)
9165 gt_pch_nx_rtx_def ((void *) x);
9166 }
9167
9168 void
9169 gt_pch_nx (edge_def *e)
9170 {
9171 tree block = LOCATION_BLOCK (e->goto_locus);
9172 gt_pch_nx (e->src);
9173 gt_pch_nx (e->dest);
9174 if (current_ir_type () == IR_GIMPLE)
9175 gt_pch_nx (e->insns.g);
9176 else
9177 gt_pch_nx (e->insns.r);
9178 gt_pch_nx (block);
9179 }
9180
9181 void
9182 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9183 {
9184 tree block = LOCATION_BLOCK (e->goto_locus);
9185 op (&(e->src), cookie);
9186 op (&(e->dest), cookie);
9187 if (current_ir_type () == IR_GIMPLE)
9188 op (&(e->insns.g), cookie);
9189 else
9190 op (&(e->insns.r), cookie);
9191 op (&(block), cookie);
9192 }