vec.h (FOR_EACH_VEC_ELT): Define.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "except.h"
43 #include "cfgloop.h"
44 #include "cfglayout.h"
45 #include "tree-ssa-propagate.h"
46 #include "value-prof.h"
47 #include "pointer-set.h"
48 #include "tree-inline.h"
49
50 /* This file contains functions for building the Control Flow Graph (CFG)
51 for a function tree. */
52
53 /* Local declarations. */
54
55 /* Initial capacity for the basic block array. */
56 static const int initial_cfg_capacity = 20;
57
58 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
59 which use a particular edge. The CASE_LABEL_EXPRs are chained together
60 via their TREE_CHAIN field, which we clear after we're done with the
61 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62
63 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
64 update the case vector in response to edge redirections.
65
66 Right now this table is set up and torn down at key points in the
67 compilation process. It would be nice if we could make the table
68 more persistent. The key is getting notification of changes to
69 the CFG (particularly edge removal, creation and redirection). */
70
71 static struct pointer_map_t *edge_to_cases;
72
73 /* If we record edge_to_cases, this bitmap will hold indexes
74 of basic blocks that end in a GIMPLE_SWITCH which we touched
75 due to edge manipulations. */
76
77 static bitmap touched_switch_bbs;
78
79 /* CFG statistics. */
80 struct cfg_stats_d
81 {
82 long num_merged_labels;
83 };
84
85 static struct cfg_stats_d cfg_stats;
86
87 /* Nonzero if we found a computed goto while building basic blocks. */
88 static bool found_computed_goto;
89
90 /* Hash table to store last discriminator assigned for each locus. */
91 struct locus_discrim_map
92 {
93 location_t locus;
94 int discriminator;
95 };
96 static htab_t discriminator_per_locus;
97
98 /* Basic blocks and flowgraphs. */
99 static void make_blocks (gimple_seq);
100 static void factor_computed_gotos (void);
101
102 /* Edges. */
103 static void make_edges (void);
104 static void make_cond_expr_edges (basic_block);
105 static void make_gimple_switch_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static void make_gimple_asm_edges (basic_block);
108 static unsigned int locus_map_hash (const void *);
109 static int locus_map_eq (const void *, const void *);
110 static void assign_discriminator (location_t, basic_block);
111 static edge gimple_redirect_edge_and_branch (edge, basic_block);
112 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
113 static unsigned int split_critical_edges (void);
114
115 /* Various helpers. */
116 static inline bool stmt_starts_bb_p (gimple, gimple);
117 static int gimple_verify_flow_info (void);
118 static void gimple_make_forwarder_block (edge);
119 static void gimple_cfg2vcg (FILE *);
120 static gimple first_non_label_stmt (basic_block);
121
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
131
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
134 {
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
145
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
152
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
162 }
163
164 void
165 init_empty_tree_cfg (void)
166 {
167 init_empty_tree_cfg_for_function (cfun);
168 }
169
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
173
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
176
177 static void
178 build_gimple_cfg (gimple_seq seq)
179 {
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
182
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184
185 init_empty_tree_cfg ();
186
187 found_computed_goto = 0;
188 make_blocks (seq);
189
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
197
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
201
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
208
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
213
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
220
221 /* Debugging dumps. */
222
223 /* Write the flowgraph to a VCG file. */
224 {
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
228 {
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
231 }
232 }
233
234 #ifdef ENABLE_CHECKING
235 verify_stmts ();
236 #endif
237 }
238
239 static unsigned int
240 execute_build_cfg (void)
241 {
242 gimple_seq body = gimple_body (current_function_decl);
243
244 build_gimple_cfg (body);
245 gimple_set_body (current_function_decl, NULL);
246 if (dump_file && (dump_flags & TDF_DETAILS))
247 {
248 fprintf (dump_file, "Scope blocks:\n");
249 dump_scope_blocks (dump_file, dump_flags);
250 }
251 return 0;
252 }
253
254 struct gimple_opt_pass pass_build_cfg =
255 {
256 {
257 GIMPLE_PASS,
258 "cfg", /* name */
259 NULL, /* gate */
260 execute_build_cfg, /* execute */
261 NULL, /* sub */
262 NULL, /* next */
263 0, /* static_pass_number */
264 TV_TREE_CFG, /* tv_id */
265 PROP_gimple_leh, /* properties_required */
266 PROP_cfg, /* properties_provided */
267 0, /* properties_destroyed */
268 0, /* todo_flags_start */
269 TODO_verify_stmts | TODO_cleanup_cfg
270 | TODO_dump_func /* todo_flags_finish */
271 }
272 };
273
274
275 /* Return true if T is a computed goto. */
276
277 static bool
278 computed_goto_p (gimple t)
279 {
280 return (gimple_code (t) == GIMPLE_GOTO
281 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
282 }
283
284
285 /* Search the CFG for any computed gotos. If found, factor them to a
286 common computed goto site. Also record the location of that site so
287 that we can un-factor the gotos after we have converted back to
288 normal form. */
289
290 static void
291 factor_computed_gotos (void)
292 {
293 basic_block bb;
294 tree factored_label_decl = NULL;
295 tree var = NULL;
296 gimple factored_computed_goto_label = NULL;
297 gimple factored_computed_goto = NULL;
298
299 /* We know there are one or more computed gotos in this function.
300 Examine the last statement in each basic block to see if the block
301 ends with a computed goto. */
302
303 FOR_EACH_BB (bb)
304 {
305 gimple_stmt_iterator gsi = gsi_last_bb (bb);
306 gimple last;
307
308 if (gsi_end_p (gsi))
309 continue;
310
311 last = gsi_stmt (gsi);
312
313 /* Ignore the computed goto we create when we factor the original
314 computed gotos. */
315 if (last == factored_computed_goto)
316 continue;
317
318 /* If the last statement is a computed goto, factor it. */
319 if (computed_goto_p (last))
320 {
321 gimple assignment;
322
323 /* The first time we find a computed goto we need to create
324 the factored goto block and the variable each original
325 computed goto will use for their goto destination. */
326 if (!factored_computed_goto)
327 {
328 basic_block new_bb = create_empty_bb (bb);
329 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
330
331 /* Create the destination of the factored goto. Each original
332 computed goto will put its desired destination into this
333 variable and jump to the label we create immediately
334 below. */
335 var = create_tmp_var (ptr_type_node, "gotovar");
336
337 /* Build a label for the new block which will contain the
338 factored computed goto. */
339 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
340 factored_computed_goto_label
341 = gimple_build_label (factored_label_decl);
342 gsi_insert_after (&new_gsi, factored_computed_goto_label,
343 GSI_NEW_STMT);
344
345 /* Build our new computed goto. */
346 factored_computed_goto = gimple_build_goto (var);
347 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
348 }
349
350 /* Copy the original computed goto's destination into VAR. */
351 assignment = gimple_build_assign (var, gimple_goto_dest (last));
352 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
353
354 /* And re-vector the computed goto to the new destination. */
355 gimple_goto_set_dest (last, factored_label_decl);
356 }
357 }
358 }
359
360
361 /* Build a flowgraph for the sequence of stmts SEQ. */
362
363 static void
364 make_blocks (gimple_seq seq)
365 {
366 gimple_stmt_iterator i = gsi_start (seq);
367 gimple stmt = NULL;
368 bool start_new_block = true;
369 bool first_stmt_of_seq = true;
370 basic_block bb = ENTRY_BLOCK_PTR;
371
372 while (!gsi_end_p (i))
373 {
374 gimple prev_stmt;
375
376 prev_stmt = stmt;
377 stmt = gsi_stmt (i);
378
379 /* If the statement starts a new basic block or if we have determined
380 in a previous pass that we need to create a new block for STMT, do
381 so now. */
382 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
383 {
384 if (!first_stmt_of_seq)
385 seq = gsi_split_seq_before (&i);
386 bb = create_basic_block (seq, NULL, bb);
387 start_new_block = false;
388 }
389
390 /* Now add STMT to BB and create the subgraphs for special statement
391 codes. */
392 gimple_set_bb (stmt, bb);
393
394 if (computed_goto_p (stmt))
395 found_computed_goto = true;
396
397 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
398 next iteration. */
399 if (stmt_ends_bb_p (stmt))
400 {
401 /* If the stmt can make abnormal goto use a new temporary
402 for the assignment to the LHS. This makes sure the old value
403 of the LHS is available on the abnormal edge. Otherwise
404 we will end up with overlapping life-ranges for abnormal
405 SSA names. */
406 if (gimple_has_lhs (stmt)
407 && stmt_can_make_abnormal_goto (stmt)
408 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
409 {
410 tree lhs = gimple_get_lhs (stmt);
411 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
412 gimple s = gimple_build_assign (lhs, tmp);
413 gimple_set_location (s, gimple_location (stmt));
414 gimple_set_block (s, gimple_block (stmt));
415 gimple_set_lhs (stmt, tmp);
416 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
417 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
418 DECL_GIMPLE_REG_P (tmp) = 1;
419 gsi_insert_after (&i, s, GSI_SAME_STMT);
420 }
421 start_new_block = true;
422 }
423
424 gsi_next (&i);
425 first_stmt_of_seq = false;
426 }
427 }
428
429
430 /* Create and return a new empty basic block after bb AFTER. */
431
432 static basic_block
433 create_bb (void *h, void *e, basic_block after)
434 {
435 basic_block bb;
436
437 gcc_assert (!e);
438
439 /* Create and initialize a new basic block. Since alloc_block uses
440 GC allocation that clears memory to allocate a basic block, we do
441 not have to clear the newly allocated basic block here. */
442 bb = alloc_block ();
443
444 bb->index = last_basic_block;
445 bb->flags = BB_NEW;
446 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
447 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
448
449 /* Add the new block to the linked list of blocks. */
450 link_block (bb, after);
451
452 /* Grow the basic block array if needed. */
453 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
454 {
455 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
456 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
457 }
458
459 /* Add the newly created block to the array. */
460 SET_BASIC_BLOCK (last_basic_block, bb);
461
462 n_basic_blocks++;
463 last_basic_block++;
464
465 return bb;
466 }
467
468
469 /*---------------------------------------------------------------------------
470 Edge creation
471 ---------------------------------------------------------------------------*/
472
473 /* Fold COND_EXPR_COND of each COND_EXPR. */
474
475 void
476 fold_cond_expr_cond (void)
477 {
478 basic_block bb;
479
480 FOR_EACH_BB (bb)
481 {
482 gimple stmt = last_stmt (bb);
483
484 if (stmt && gimple_code (stmt) == GIMPLE_COND)
485 {
486 location_t loc = gimple_location (stmt);
487 tree cond;
488 bool zerop, onep;
489
490 fold_defer_overflow_warnings ();
491 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
492 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
493 if (cond)
494 {
495 zerop = integer_zerop (cond);
496 onep = integer_onep (cond);
497 }
498 else
499 zerop = onep = false;
500
501 fold_undefer_overflow_warnings (zerop || onep,
502 stmt,
503 WARN_STRICT_OVERFLOW_CONDITIONAL);
504 if (zerop)
505 gimple_cond_make_false (stmt);
506 else if (onep)
507 gimple_cond_make_true (stmt);
508 }
509 }
510 }
511
512 /* Join all the blocks in the flowgraph. */
513
514 static void
515 make_edges (void)
516 {
517 basic_block bb;
518 struct omp_region *cur_region = NULL;
519
520 /* Create an edge from entry to the first block with executable
521 statements in it. */
522 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
523
524 /* Traverse the basic block array placing edges. */
525 FOR_EACH_BB (bb)
526 {
527 gimple last = last_stmt (bb);
528 bool fallthru;
529
530 if (last)
531 {
532 enum gimple_code code = gimple_code (last);
533 switch (code)
534 {
535 case GIMPLE_GOTO:
536 make_goto_expr_edges (bb);
537 fallthru = false;
538 break;
539 case GIMPLE_RETURN:
540 make_edge (bb, EXIT_BLOCK_PTR, 0);
541 fallthru = false;
542 break;
543 case GIMPLE_COND:
544 make_cond_expr_edges (bb);
545 fallthru = false;
546 break;
547 case GIMPLE_SWITCH:
548 make_gimple_switch_edges (bb);
549 fallthru = false;
550 break;
551 case GIMPLE_RESX:
552 make_eh_edges (last);
553 fallthru = false;
554 break;
555 case GIMPLE_EH_DISPATCH:
556 fallthru = make_eh_dispatch_edges (last);
557 break;
558
559 case GIMPLE_CALL:
560 /* If this function receives a nonlocal goto, then we need to
561 make edges from this call site to all the nonlocal goto
562 handlers. */
563 if (stmt_can_make_abnormal_goto (last))
564 make_abnormal_goto_edges (bb, true);
565
566 /* If this statement has reachable exception handlers, then
567 create abnormal edges to them. */
568 make_eh_edges (last);
569
570 /* BUILTIN_RETURN is really a return statement. */
571 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
572 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
573 /* Some calls are known not to return. */
574 else
575 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
576 break;
577
578 case GIMPLE_ASSIGN:
579 /* A GIMPLE_ASSIGN may throw internally and thus be considered
580 control-altering. */
581 if (is_ctrl_altering_stmt (last))
582 make_eh_edges (last);
583 fallthru = true;
584 break;
585
586 case GIMPLE_ASM:
587 make_gimple_asm_edges (bb);
588 fallthru = true;
589 break;
590
591 case GIMPLE_OMP_PARALLEL:
592 case GIMPLE_OMP_TASK:
593 case GIMPLE_OMP_FOR:
594 case GIMPLE_OMP_SINGLE:
595 case GIMPLE_OMP_MASTER:
596 case GIMPLE_OMP_ORDERED:
597 case GIMPLE_OMP_CRITICAL:
598 case GIMPLE_OMP_SECTION:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS:
604 cur_region = new_omp_region (bb, code, cur_region);
605 fallthru = true;
606 break;
607
608 case GIMPLE_OMP_SECTIONS_SWITCH:
609 fallthru = false;
610 break;
611
612 case GIMPLE_OMP_ATOMIC_LOAD:
613 case GIMPLE_OMP_ATOMIC_STORE:
614 fallthru = true;
615 break;
616
617 case GIMPLE_OMP_RETURN:
618 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
619 somewhere other than the next block. This will be
620 created later. */
621 cur_region->exit = bb;
622 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
623 cur_region = cur_region->outer;
624 break;
625
626 case GIMPLE_OMP_CONTINUE:
627 cur_region->cont = bb;
628 switch (cur_region->type)
629 {
630 case GIMPLE_OMP_FOR:
631 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
632 succs edges as abnormal to prevent splitting
633 them. */
634 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
635 /* Make the loopback edge. */
636 make_edge (bb, single_succ (cur_region->entry),
637 EDGE_ABNORMAL);
638
639 /* Create an edge from GIMPLE_OMP_FOR to exit, which
640 corresponds to the case that the body of the loop
641 is not executed at all. */
642 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
643 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
644 fallthru = false;
645 break;
646
647 case GIMPLE_OMP_SECTIONS:
648 /* Wire up the edges into and out of the nested sections. */
649 {
650 basic_block switch_bb = single_succ (cur_region->entry);
651
652 struct omp_region *i;
653 for (i = cur_region->inner; i ; i = i->next)
654 {
655 gcc_assert (i->type == GIMPLE_OMP_SECTION);
656 make_edge (switch_bb, i->entry, 0);
657 make_edge (i->exit, bb, EDGE_FALLTHRU);
658 }
659
660 /* Make the loopback edge to the block with
661 GIMPLE_OMP_SECTIONS_SWITCH. */
662 make_edge (bb, switch_bb, 0);
663
664 /* Make the edge from the switch to exit. */
665 make_edge (switch_bb, bb->next_bb, 0);
666 fallthru = false;
667 }
668 break;
669
670 default:
671 gcc_unreachable ();
672 }
673 break;
674
675 default:
676 gcc_assert (!stmt_ends_bb_p (last));
677 fallthru = true;
678 }
679 }
680 else
681 fallthru = true;
682
683 if (fallthru)
684 {
685 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
686 if (last)
687 assign_discriminator (gimple_location (last), bb->next_bb);
688 }
689 }
690
691 if (root_omp_region)
692 free_omp_regions ();
693
694 /* Fold COND_EXPR_COND of each COND_EXPR. */
695 fold_cond_expr_cond ();
696 }
697
698 /* Trivial hash function for a location_t. ITEM is a pointer to
699 a hash table entry that maps a location_t to a discriminator. */
700
701 static unsigned int
702 locus_map_hash (const void *item)
703 {
704 return ((const struct locus_discrim_map *) item)->locus;
705 }
706
707 /* Equality function for the locus-to-discriminator map. VA and VB
708 point to the two hash table entries to compare. */
709
710 static int
711 locus_map_eq (const void *va, const void *vb)
712 {
713 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
714 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
715 return a->locus == b->locus;
716 }
717
718 /* Find the next available discriminator value for LOCUS. The
719 discriminator distinguishes among several basic blocks that
720 share a common locus, allowing for more accurate sample-based
721 profiling. */
722
723 static int
724 next_discriminator_for_locus (location_t locus)
725 {
726 struct locus_discrim_map item;
727 struct locus_discrim_map **slot;
728
729 item.locus = locus;
730 item.discriminator = 0;
731 slot = (struct locus_discrim_map **)
732 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
733 (hashval_t) locus, INSERT);
734 gcc_assert (slot);
735 if (*slot == HTAB_EMPTY_ENTRY)
736 {
737 *slot = XNEW (struct locus_discrim_map);
738 gcc_assert (*slot);
739 (*slot)->locus = locus;
740 (*slot)->discriminator = 0;
741 }
742 (*slot)->discriminator++;
743 return (*slot)->discriminator;
744 }
745
746 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
747
748 static bool
749 same_line_p (location_t locus1, location_t locus2)
750 {
751 expanded_location from, to;
752
753 if (locus1 == locus2)
754 return true;
755
756 from = expand_location (locus1);
757 to = expand_location (locus2);
758
759 if (from.line != to.line)
760 return false;
761 if (from.file == to.file)
762 return true;
763 return (from.file != NULL
764 && to.file != NULL
765 && strcmp (from.file, to.file) == 0);
766 }
767
768 /* Assign a unique discriminator value to block BB if it begins at the same
769 LOCUS as its predecessor block. */
770
771 static void
772 assign_discriminator (location_t locus, basic_block bb)
773 {
774 gimple first_in_to_bb, last_in_to_bb;
775
776 if (locus == 0 || bb->discriminator != 0)
777 return;
778
779 first_in_to_bb = first_non_label_stmt (bb);
780 last_in_to_bb = last_stmt (bb);
781 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
782 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
783 bb->discriminator = next_discriminator_for_locus (locus);
784 }
785
786 /* Create the edges for a GIMPLE_COND starting at block BB. */
787
788 static void
789 make_cond_expr_edges (basic_block bb)
790 {
791 gimple entry = last_stmt (bb);
792 gimple then_stmt, else_stmt;
793 basic_block then_bb, else_bb;
794 tree then_label, else_label;
795 edge e;
796 location_t entry_locus;
797
798 gcc_assert (entry);
799 gcc_assert (gimple_code (entry) == GIMPLE_COND);
800
801 entry_locus = gimple_location (entry);
802
803 /* Entry basic blocks for each component. */
804 then_label = gimple_cond_true_label (entry);
805 else_label = gimple_cond_false_label (entry);
806 then_bb = label_to_block (then_label);
807 else_bb = label_to_block (else_label);
808 then_stmt = first_stmt (then_bb);
809 else_stmt = first_stmt (else_bb);
810
811 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
812 assign_discriminator (entry_locus, then_bb);
813 e->goto_locus = gimple_location (then_stmt);
814 if (e->goto_locus)
815 e->goto_block = gimple_block (then_stmt);
816 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
817 if (e)
818 {
819 assign_discriminator (entry_locus, else_bb);
820 e->goto_locus = gimple_location (else_stmt);
821 if (e->goto_locus)
822 e->goto_block = gimple_block (else_stmt);
823 }
824
825 /* We do not need the labels anymore. */
826 gimple_cond_set_true_label (entry, NULL_TREE);
827 gimple_cond_set_false_label (entry, NULL_TREE);
828 }
829
830
831 /* Called for each element in the hash table (P) as we delete the
832 edge to cases hash table.
833
834 Clear all the TREE_CHAINs to prevent problems with copying of
835 SWITCH_EXPRs and structure sharing rules, then free the hash table
836 element. */
837
838 static bool
839 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
840 void *data ATTRIBUTE_UNUSED)
841 {
842 tree t, next;
843
844 for (t = (tree) *value; t; t = next)
845 {
846 next = TREE_CHAIN (t);
847 TREE_CHAIN (t) = NULL;
848 }
849
850 *value = NULL;
851 return false;
852 }
853
854 /* Start recording information mapping edges to case labels. */
855
856 void
857 start_recording_case_labels (void)
858 {
859 gcc_assert (edge_to_cases == NULL);
860 edge_to_cases = pointer_map_create ();
861 touched_switch_bbs = BITMAP_ALLOC (NULL);
862 }
863
864 /* Return nonzero if we are recording information for case labels. */
865
866 static bool
867 recording_case_labels_p (void)
868 {
869 return (edge_to_cases != NULL);
870 }
871
872 /* Stop recording information mapping edges to case labels and
873 remove any information we have recorded. */
874 void
875 end_recording_case_labels (void)
876 {
877 bitmap_iterator bi;
878 unsigned i;
879 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
880 pointer_map_destroy (edge_to_cases);
881 edge_to_cases = NULL;
882 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
883 {
884 basic_block bb = BASIC_BLOCK (i);
885 if (bb)
886 {
887 gimple stmt = last_stmt (bb);
888 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
889 group_case_labels_stmt (stmt);
890 }
891 }
892 BITMAP_FREE (touched_switch_bbs);
893 }
894
895 /* If we are inside a {start,end}_recording_cases block, then return
896 a chain of CASE_LABEL_EXPRs from T which reference E.
897
898 Otherwise return NULL. */
899
900 static tree
901 get_cases_for_edge (edge e, gimple t)
902 {
903 void **slot;
904 size_t i, n;
905
906 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
907 chains available. Return NULL so the caller can detect this case. */
908 if (!recording_case_labels_p ())
909 return NULL;
910
911 slot = pointer_map_contains (edge_to_cases, e);
912 if (slot)
913 return (tree) *slot;
914
915 /* If we did not find E in the hash table, then this must be the first
916 time we have been queried for information about E & T. Add all the
917 elements from T to the hash table then perform the query again. */
918
919 n = gimple_switch_num_labels (t);
920 for (i = 0; i < n; i++)
921 {
922 tree elt = gimple_switch_label (t, i);
923 tree lab = CASE_LABEL (elt);
924 basic_block label_bb = label_to_block (lab);
925 edge this_edge = find_edge (e->src, label_bb);
926
927 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
928 a new chain. */
929 slot = pointer_map_insert (edge_to_cases, this_edge);
930 TREE_CHAIN (elt) = (tree) *slot;
931 *slot = elt;
932 }
933
934 return (tree) *pointer_map_contains (edge_to_cases, e);
935 }
936
937 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
938
939 static void
940 make_gimple_switch_edges (basic_block bb)
941 {
942 gimple entry = last_stmt (bb);
943 location_t entry_locus;
944 size_t i, n;
945
946 entry_locus = gimple_location (entry);
947
948 n = gimple_switch_num_labels (entry);
949
950 for (i = 0; i < n; ++i)
951 {
952 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
953 basic_block label_bb = label_to_block (lab);
954 make_edge (bb, label_bb, 0);
955 assign_discriminator (entry_locus, label_bb);
956 }
957 }
958
959
960 /* Return the basic block holding label DEST. */
961
962 basic_block
963 label_to_block_fn (struct function *ifun, tree dest)
964 {
965 int uid = LABEL_DECL_UID (dest);
966
967 /* We would die hard when faced by an undefined label. Emit a label to
968 the very first basic block. This will hopefully make even the dataflow
969 and undefined variable warnings quite right. */
970 if (seen_error () && uid < 0)
971 {
972 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
973 gimple stmt;
974
975 stmt = gimple_build_label (dest);
976 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
977 uid = LABEL_DECL_UID (dest);
978 }
979 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
980 <= (unsigned int) uid)
981 return NULL;
982 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
983 }
984
985 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
986 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
987
988 void
989 make_abnormal_goto_edges (basic_block bb, bool for_call)
990 {
991 basic_block target_bb;
992 gimple_stmt_iterator gsi;
993
994 FOR_EACH_BB (target_bb)
995 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
996 {
997 gimple label_stmt = gsi_stmt (gsi);
998 tree target;
999
1000 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1001 break;
1002
1003 target = gimple_label_label (label_stmt);
1004
1005 /* Make an edge to every label block that has been marked as a
1006 potential target for a computed goto or a non-local goto. */
1007 if ((FORCED_LABEL (target) && !for_call)
1008 || (DECL_NONLOCAL (target) && for_call))
1009 {
1010 make_edge (bb, target_bb, EDGE_ABNORMAL);
1011 break;
1012 }
1013 }
1014 }
1015
1016 /* Create edges for a goto statement at block BB. */
1017
1018 static void
1019 make_goto_expr_edges (basic_block bb)
1020 {
1021 gimple_stmt_iterator last = gsi_last_bb (bb);
1022 gimple goto_t = gsi_stmt (last);
1023
1024 /* A simple GOTO creates normal edges. */
1025 if (simple_goto_p (goto_t))
1026 {
1027 tree dest = gimple_goto_dest (goto_t);
1028 basic_block label_bb = label_to_block (dest);
1029 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1030 e->goto_locus = gimple_location (goto_t);
1031 assign_discriminator (e->goto_locus, label_bb);
1032 if (e->goto_locus)
1033 e->goto_block = gimple_block (goto_t);
1034 gsi_remove (&last, true);
1035 return;
1036 }
1037
1038 /* A computed GOTO creates abnormal edges. */
1039 make_abnormal_goto_edges (bb, false);
1040 }
1041
1042 /* Create edges for an asm statement with labels at block BB. */
1043
1044 static void
1045 make_gimple_asm_edges (basic_block bb)
1046 {
1047 gimple stmt = last_stmt (bb);
1048 location_t stmt_loc = gimple_location (stmt);
1049 int i, n = gimple_asm_nlabels (stmt);
1050
1051 for (i = 0; i < n; ++i)
1052 {
1053 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1054 basic_block label_bb = label_to_block (label);
1055 make_edge (bb, label_bb, 0);
1056 assign_discriminator (stmt_loc, label_bb);
1057 }
1058 }
1059
1060 /*---------------------------------------------------------------------------
1061 Flowgraph analysis
1062 ---------------------------------------------------------------------------*/
1063
1064 /* Cleanup useless labels in basic blocks. This is something we wish
1065 to do early because it allows us to group case labels before creating
1066 the edges for the CFG, and it speeds up block statement iterators in
1067 all passes later on.
1068 We rerun this pass after CFG is created, to get rid of the labels that
1069 are no longer referenced. After then we do not run it any more, since
1070 (almost) no new labels should be created. */
1071
1072 /* A map from basic block index to the leading label of that block. */
1073 static struct label_record
1074 {
1075 /* The label. */
1076 tree label;
1077
1078 /* True if the label is referenced from somewhere. */
1079 bool used;
1080 } *label_for_bb;
1081
1082 /* Given LABEL return the first label in the same basic block. */
1083
1084 static tree
1085 main_block_label (tree label)
1086 {
1087 basic_block bb = label_to_block (label);
1088 tree main_label = label_for_bb[bb->index].label;
1089
1090 /* label_to_block possibly inserted undefined label into the chain. */
1091 if (!main_label)
1092 {
1093 label_for_bb[bb->index].label = label;
1094 main_label = label;
1095 }
1096
1097 label_for_bb[bb->index].used = true;
1098 return main_label;
1099 }
1100
1101 /* Clean up redundant labels within the exception tree. */
1102
1103 static void
1104 cleanup_dead_labels_eh (void)
1105 {
1106 eh_landing_pad lp;
1107 eh_region r;
1108 tree lab;
1109 int i;
1110
1111 if (cfun->eh == NULL)
1112 return;
1113
1114 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1115 if (lp && lp->post_landing_pad)
1116 {
1117 lab = main_block_label (lp->post_landing_pad);
1118 if (lab != lp->post_landing_pad)
1119 {
1120 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1121 EH_LANDING_PAD_NR (lab) = lp->index;
1122 }
1123 }
1124
1125 FOR_ALL_EH_REGION (r)
1126 switch (r->type)
1127 {
1128 case ERT_CLEANUP:
1129 case ERT_MUST_NOT_THROW:
1130 break;
1131
1132 case ERT_TRY:
1133 {
1134 eh_catch c;
1135 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1136 {
1137 lab = c->label;
1138 if (lab)
1139 c->label = main_block_label (lab);
1140 }
1141 }
1142 break;
1143
1144 case ERT_ALLOWED_EXCEPTIONS:
1145 lab = r->u.allowed.label;
1146 if (lab)
1147 r->u.allowed.label = main_block_label (lab);
1148 break;
1149 }
1150 }
1151
1152
1153 /* Cleanup redundant labels. This is a three-step process:
1154 1) Find the leading label for each block.
1155 2) Redirect all references to labels to the leading labels.
1156 3) Cleanup all useless labels. */
1157
1158 void
1159 cleanup_dead_labels (void)
1160 {
1161 basic_block bb;
1162 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1163
1164 /* Find a suitable label for each block. We use the first user-defined
1165 label if there is one, or otherwise just the first label we see. */
1166 FOR_EACH_BB (bb)
1167 {
1168 gimple_stmt_iterator i;
1169
1170 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1171 {
1172 tree label;
1173 gimple stmt = gsi_stmt (i);
1174
1175 if (gimple_code (stmt) != GIMPLE_LABEL)
1176 break;
1177
1178 label = gimple_label_label (stmt);
1179
1180 /* If we have not yet seen a label for the current block,
1181 remember this one and see if there are more labels. */
1182 if (!label_for_bb[bb->index].label)
1183 {
1184 label_for_bb[bb->index].label = label;
1185 continue;
1186 }
1187
1188 /* If we did see a label for the current block already, but it
1189 is an artificially created label, replace it if the current
1190 label is a user defined label. */
1191 if (!DECL_ARTIFICIAL (label)
1192 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1193 {
1194 label_for_bb[bb->index].label = label;
1195 break;
1196 }
1197 }
1198 }
1199
1200 /* Now redirect all jumps/branches to the selected label.
1201 First do so for each block ending in a control statement. */
1202 FOR_EACH_BB (bb)
1203 {
1204 gimple stmt = last_stmt (bb);
1205 if (!stmt)
1206 continue;
1207
1208 switch (gimple_code (stmt))
1209 {
1210 case GIMPLE_COND:
1211 {
1212 tree true_label = gimple_cond_true_label (stmt);
1213 tree false_label = gimple_cond_false_label (stmt);
1214
1215 if (true_label)
1216 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1217 if (false_label)
1218 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1219 break;
1220 }
1221
1222 case GIMPLE_SWITCH:
1223 {
1224 size_t i, n = gimple_switch_num_labels (stmt);
1225
1226 /* Replace all destination labels. */
1227 for (i = 0; i < n; ++i)
1228 {
1229 tree case_label = gimple_switch_label (stmt, i);
1230 tree label = main_block_label (CASE_LABEL (case_label));
1231 CASE_LABEL (case_label) = label;
1232 }
1233 break;
1234 }
1235
1236 case GIMPLE_ASM:
1237 {
1238 int i, n = gimple_asm_nlabels (stmt);
1239
1240 for (i = 0; i < n; ++i)
1241 {
1242 tree cons = gimple_asm_label_op (stmt, i);
1243 tree label = main_block_label (TREE_VALUE (cons));
1244 TREE_VALUE (cons) = label;
1245 }
1246 break;
1247 }
1248
1249 /* We have to handle gotos until they're removed, and we don't
1250 remove them until after we've created the CFG edges. */
1251 case GIMPLE_GOTO:
1252 if (!computed_goto_p (stmt))
1253 {
1254 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1255 gimple_goto_set_dest (stmt, new_dest);
1256 }
1257 break;
1258
1259 default:
1260 break;
1261 }
1262 }
1263
1264 /* Do the same for the exception region tree labels. */
1265 cleanup_dead_labels_eh ();
1266
1267 /* Finally, purge dead labels. All user-defined labels and labels that
1268 can be the target of non-local gotos and labels which have their
1269 address taken are preserved. */
1270 FOR_EACH_BB (bb)
1271 {
1272 gimple_stmt_iterator i;
1273 tree label_for_this_bb = label_for_bb[bb->index].label;
1274
1275 if (!label_for_this_bb)
1276 continue;
1277
1278 /* If the main label of the block is unused, we may still remove it. */
1279 if (!label_for_bb[bb->index].used)
1280 label_for_this_bb = NULL;
1281
1282 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1283 {
1284 tree label;
1285 gimple stmt = gsi_stmt (i);
1286
1287 if (gimple_code (stmt) != GIMPLE_LABEL)
1288 break;
1289
1290 label = gimple_label_label (stmt);
1291
1292 if (label == label_for_this_bb
1293 || !DECL_ARTIFICIAL (label)
1294 || DECL_NONLOCAL (label)
1295 || FORCED_LABEL (label))
1296 gsi_next (&i);
1297 else
1298 gsi_remove (&i, true);
1299 }
1300 }
1301
1302 free (label_for_bb);
1303 }
1304
1305 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1306 the ones jumping to the same label.
1307 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1308
1309 static void
1310 group_case_labels_stmt (gimple stmt)
1311 {
1312 int old_size = gimple_switch_num_labels (stmt);
1313 int i, j, new_size = old_size;
1314 tree default_case = NULL_TREE;
1315 tree default_label = NULL_TREE;
1316 bool has_default;
1317
1318 /* The default label is always the first case in a switch
1319 statement after gimplification if it was not optimized
1320 away */
1321 if (!CASE_LOW (gimple_switch_default_label (stmt))
1322 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1323 {
1324 default_case = gimple_switch_default_label (stmt);
1325 default_label = CASE_LABEL (default_case);
1326 has_default = true;
1327 }
1328 else
1329 has_default = false;
1330
1331 /* Look for possible opportunities to merge cases. */
1332 if (has_default)
1333 i = 1;
1334 else
1335 i = 0;
1336 while (i < old_size)
1337 {
1338 tree base_case, base_label, base_high;
1339 base_case = gimple_switch_label (stmt, i);
1340
1341 gcc_assert (base_case);
1342 base_label = CASE_LABEL (base_case);
1343
1344 /* Discard cases that have the same destination as the
1345 default case. */
1346 if (base_label == default_label)
1347 {
1348 gimple_switch_set_label (stmt, i, NULL_TREE);
1349 i++;
1350 new_size--;
1351 continue;
1352 }
1353
1354 base_high = CASE_HIGH (base_case)
1355 ? CASE_HIGH (base_case)
1356 : CASE_LOW (base_case);
1357 i++;
1358
1359 /* Try to merge case labels. Break out when we reach the end
1360 of the label vector or when we cannot merge the next case
1361 label with the current one. */
1362 while (i < old_size)
1363 {
1364 tree merge_case = gimple_switch_label (stmt, i);
1365 tree merge_label = CASE_LABEL (merge_case);
1366 tree t = int_const_binop (PLUS_EXPR, base_high,
1367 integer_one_node, 1);
1368
1369 /* Merge the cases if they jump to the same place,
1370 and their ranges are consecutive. */
1371 if (merge_label == base_label
1372 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1373 {
1374 base_high = CASE_HIGH (merge_case) ?
1375 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1376 CASE_HIGH (base_case) = base_high;
1377 gimple_switch_set_label (stmt, i, NULL_TREE);
1378 new_size--;
1379 i++;
1380 }
1381 else
1382 break;
1383 }
1384 }
1385
1386 /* Compress the case labels in the label vector, and adjust the
1387 length of the vector. */
1388 for (i = 0, j = 0; i < new_size; i++)
1389 {
1390 while (! gimple_switch_label (stmt, j))
1391 j++;
1392 gimple_switch_set_label (stmt, i,
1393 gimple_switch_label (stmt, j++));
1394 }
1395
1396 gcc_assert (new_size <= old_size);
1397 gimple_switch_set_num_labels (stmt, new_size);
1398 }
1399
1400 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1401 and scan the sorted vector of cases. Combine the ones jumping to the
1402 same label. */
1403
1404 void
1405 group_case_labels (void)
1406 {
1407 basic_block bb;
1408
1409 FOR_EACH_BB (bb)
1410 {
1411 gimple stmt = last_stmt (bb);
1412 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1413 group_case_labels_stmt (stmt);
1414 }
1415 }
1416
1417 /* Checks whether we can merge block B into block A. */
1418
1419 static bool
1420 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1421 {
1422 gimple stmt;
1423 gimple_stmt_iterator gsi;
1424 gimple_seq phis;
1425
1426 if (!single_succ_p (a))
1427 return false;
1428
1429 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1430 return false;
1431
1432 if (single_succ (a) != b)
1433 return false;
1434
1435 if (!single_pred_p (b))
1436 return false;
1437
1438 if (b == EXIT_BLOCK_PTR)
1439 return false;
1440
1441 /* If A ends by a statement causing exceptions or something similar, we
1442 cannot merge the blocks. */
1443 stmt = last_stmt (a);
1444 if (stmt && stmt_ends_bb_p (stmt))
1445 return false;
1446
1447 /* Do not allow a block with only a non-local label to be merged. */
1448 if (stmt
1449 && gimple_code (stmt) == GIMPLE_LABEL
1450 && DECL_NONLOCAL (gimple_label_label (stmt)))
1451 return false;
1452
1453 /* Examine the labels at the beginning of B. */
1454 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1455 {
1456 tree lab;
1457 stmt = gsi_stmt (gsi);
1458 if (gimple_code (stmt) != GIMPLE_LABEL)
1459 break;
1460 lab = gimple_label_label (stmt);
1461
1462 /* Do not remove user labels. */
1463 if (!DECL_ARTIFICIAL (lab))
1464 return false;
1465 }
1466
1467 /* Protect the loop latches. */
1468 if (current_loops && b->loop_father->latch == b)
1469 return false;
1470
1471 /* It must be possible to eliminate all phi nodes in B. If ssa form
1472 is not up-to-date and a name-mapping is registered, we cannot eliminate
1473 any phis. Symbols marked for renaming are never a problem though. */
1474 phis = phi_nodes (b);
1475 if (!gimple_seq_empty_p (phis)
1476 && name_mappings_registered_p ())
1477 return false;
1478
1479 /* When not optimizing, don't merge if we'd lose goto_locus. */
1480 if (!optimize
1481 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1482 {
1483 location_t goto_locus = single_succ_edge (a)->goto_locus;
1484 gimple_stmt_iterator prev, next;
1485 prev = gsi_last_nondebug_bb (a);
1486 next = gsi_after_labels (b);
1487 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1488 gsi_next_nondebug (&next);
1489 if ((gsi_end_p (prev)
1490 || gimple_location (gsi_stmt (prev)) != goto_locus)
1491 && (gsi_end_p (next)
1492 || gimple_location (gsi_stmt (next)) != goto_locus))
1493 return false;
1494 }
1495
1496 return true;
1497 }
1498
1499 /* Return true if the var whose chain of uses starts at PTR has no
1500 nondebug uses. */
1501 bool
1502 has_zero_uses_1 (const ssa_use_operand_t *head)
1503 {
1504 const ssa_use_operand_t *ptr;
1505
1506 for (ptr = head->next; ptr != head; ptr = ptr->next)
1507 if (!is_gimple_debug (USE_STMT (ptr)))
1508 return false;
1509
1510 return true;
1511 }
1512
1513 /* Return true if the var whose chain of uses starts at PTR has a
1514 single nondebug use. Set USE_P and STMT to that single nondebug
1515 use, if so, or to NULL otherwise. */
1516 bool
1517 single_imm_use_1 (const ssa_use_operand_t *head,
1518 use_operand_p *use_p, gimple *stmt)
1519 {
1520 ssa_use_operand_t *ptr, *single_use = 0;
1521
1522 for (ptr = head->next; ptr != head; ptr = ptr->next)
1523 if (!is_gimple_debug (USE_STMT (ptr)))
1524 {
1525 if (single_use)
1526 {
1527 single_use = NULL;
1528 break;
1529 }
1530 single_use = ptr;
1531 }
1532
1533 if (use_p)
1534 *use_p = single_use;
1535
1536 if (stmt)
1537 *stmt = single_use ? single_use->loc.stmt : NULL;
1538
1539 return !!single_use;
1540 }
1541
1542 /* Replaces all uses of NAME by VAL. */
1543
1544 void
1545 replace_uses_by (tree name, tree val)
1546 {
1547 imm_use_iterator imm_iter;
1548 use_operand_p use;
1549 gimple stmt;
1550 edge e;
1551
1552 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1553 {
1554 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1555 {
1556 replace_exp (use, val);
1557
1558 if (gimple_code (stmt) == GIMPLE_PHI)
1559 {
1560 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1561 if (e->flags & EDGE_ABNORMAL)
1562 {
1563 /* This can only occur for virtual operands, since
1564 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1565 would prevent replacement. */
1566 gcc_assert (!is_gimple_reg (name));
1567 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1568 }
1569 }
1570 }
1571
1572 if (gimple_code (stmt) != GIMPLE_PHI)
1573 {
1574 size_t i;
1575
1576 fold_stmt_inplace (stmt);
1577 if (cfgcleanup_altered_bbs)
1578 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1579
1580 /* FIXME. This should go in update_stmt. */
1581 for (i = 0; i < gimple_num_ops (stmt); i++)
1582 {
1583 tree op = gimple_op (stmt, i);
1584 /* Operands may be empty here. For example, the labels
1585 of a GIMPLE_COND are nulled out following the creation
1586 of the corresponding CFG edges. */
1587 if (op && TREE_CODE (op) == ADDR_EXPR)
1588 recompute_tree_invariant_for_addr_expr (op);
1589 }
1590
1591 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1592 update_stmt (stmt);
1593 }
1594 }
1595
1596 gcc_assert (has_zero_uses (name));
1597
1598 /* Also update the trees stored in loop structures. */
1599 if (current_loops)
1600 {
1601 struct loop *loop;
1602 loop_iterator li;
1603
1604 FOR_EACH_LOOP (li, loop, 0)
1605 {
1606 substitute_in_loop_info (loop, name, val);
1607 }
1608 }
1609 }
1610
1611 /* Merge block B into block A. */
1612
1613 static void
1614 gimple_merge_blocks (basic_block a, basic_block b)
1615 {
1616 gimple_stmt_iterator last, gsi, psi;
1617 gimple_seq phis = phi_nodes (b);
1618
1619 if (dump_file)
1620 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1621
1622 /* Remove all single-valued PHI nodes from block B of the form
1623 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1624 gsi = gsi_last_bb (a);
1625 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1626 {
1627 gimple phi = gsi_stmt (psi);
1628 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1629 gimple copy;
1630 bool may_replace_uses = !is_gimple_reg (def)
1631 || may_propagate_copy (def, use);
1632
1633 /* In case we maintain loop closed ssa form, do not propagate arguments
1634 of loop exit phi nodes. */
1635 if (current_loops
1636 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1637 && is_gimple_reg (def)
1638 && TREE_CODE (use) == SSA_NAME
1639 && a->loop_father != b->loop_father)
1640 may_replace_uses = false;
1641
1642 if (!may_replace_uses)
1643 {
1644 gcc_assert (is_gimple_reg (def));
1645
1646 /* Note that just emitting the copies is fine -- there is no problem
1647 with ordering of phi nodes. This is because A is the single
1648 predecessor of B, therefore results of the phi nodes cannot
1649 appear as arguments of the phi nodes. */
1650 copy = gimple_build_assign (def, use);
1651 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1652 remove_phi_node (&psi, false);
1653 }
1654 else
1655 {
1656 /* If we deal with a PHI for virtual operands, we can simply
1657 propagate these without fussing with folding or updating
1658 the stmt. */
1659 if (!is_gimple_reg (def))
1660 {
1661 imm_use_iterator iter;
1662 use_operand_p use_p;
1663 gimple stmt;
1664
1665 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1666 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1667 SET_USE (use_p, use);
1668
1669 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1670 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1671 }
1672 else
1673 replace_uses_by (def, use);
1674
1675 remove_phi_node (&psi, true);
1676 }
1677 }
1678
1679 /* Ensure that B follows A. */
1680 move_block_after (b, a);
1681
1682 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1683 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1684
1685 /* Remove labels from B and set gimple_bb to A for other statements. */
1686 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1687 {
1688 gimple stmt = gsi_stmt (gsi);
1689 if (gimple_code (stmt) == GIMPLE_LABEL)
1690 {
1691 tree label = gimple_label_label (stmt);
1692 int lp_nr;
1693
1694 gsi_remove (&gsi, false);
1695
1696 /* Now that we can thread computed gotos, we might have
1697 a situation where we have a forced label in block B
1698 However, the label at the start of block B might still be
1699 used in other ways (think about the runtime checking for
1700 Fortran assigned gotos). So we can not just delete the
1701 label. Instead we move the label to the start of block A. */
1702 if (FORCED_LABEL (label))
1703 {
1704 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1705 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1706 }
1707
1708 lp_nr = EH_LANDING_PAD_NR (label);
1709 if (lp_nr)
1710 {
1711 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1712 lp->post_landing_pad = NULL;
1713 }
1714 }
1715 else
1716 {
1717 gimple_set_bb (stmt, a);
1718 gsi_next (&gsi);
1719 }
1720 }
1721
1722 /* Merge the sequences. */
1723 last = gsi_last_bb (a);
1724 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1725 set_bb_seq (b, NULL);
1726
1727 if (cfgcleanup_altered_bbs)
1728 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1729 }
1730
1731
1732 /* Return the one of two successors of BB that is not reachable by a
1733 complex edge, if there is one. Else, return BB. We use
1734 this in optimizations that use post-dominators for their heuristics,
1735 to catch the cases in C++ where function calls are involved. */
1736
1737 basic_block
1738 single_noncomplex_succ (basic_block bb)
1739 {
1740 edge e0, e1;
1741 if (EDGE_COUNT (bb->succs) != 2)
1742 return bb;
1743
1744 e0 = EDGE_SUCC (bb, 0);
1745 e1 = EDGE_SUCC (bb, 1);
1746 if (e0->flags & EDGE_COMPLEX)
1747 return e1->dest;
1748 if (e1->flags & EDGE_COMPLEX)
1749 return e0->dest;
1750
1751 return bb;
1752 }
1753
1754 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1755
1756 void
1757 notice_special_calls (gimple call)
1758 {
1759 int flags = gimple_call_flags (call);
1760
1761 if (flags & ECF_MAY_BE_ALLOCA)
1762 cfun->calls_alloca = true;
1763 if (flags & ECF_RETURNS_TWICE)
1764 cfun->calls_setjmp = true;
1765 }
1766
1767
1768 /* Clear flags set by notice_special_calls. Used by dead code removal
1769 to update the flags. */
1770
1771 void
1772 clear_special_calls (void)
1773 {
1774 cfun->calls_alloca = false;
1775 cfun->calls_setjmp = false;
1776 }
1777
1778 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1779
1780 static void
1781 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1782 {
1783 /* Since this block is no longer reachable, we can just delete all
1784 of its PHI nodes. */
1785 remove_phi_nodes (bb);
1786
1787 /* Remove edges to BB's successors. */
1788 while (EDGE_COUNT (bb->succs) > 0)
1789 remove_edge (EDGE_SUCC (bb, 0));
1790 }
1791
1792
1793 /* Remove statements of basic block BB. */
1794
1795 static void
1796 remove_bb (basic_block bb)
1797 {
1798 gimple_stmt_iterator i;
1799
1800 if (dump_file)
1801 {
1802 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1803 if (dump_flags & TDF_DETAILS)
1804 {
1805 dump_bb (bb, dump_file, 0);
1806 fprintf (dump_file, "\n");
1807 }
1808 }
1809
1810 if (current_loops)
1811 {
1812 struct loop *loop = bb->loop_father;
1813
1814 /* If a loop gets removed, clean up the information associated
1815 with it. */
1816 if (loop->latch == bb
1817 || loop->header == bb)
1818 free_numbers_of_iterations_estimates_loop (loop);
1819 }
1820
1821 /* Remove all the instructions in the block. */
1822 if (bb_seq (bb) != NULL)
1823 {
1824 /* Walk backwards so as to get a chance to substitute all
1825 released DEFs into debug stmts. See
1826 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1827 details. */
1828 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1829 {
1830 gimple stmt = gsi_stmt (i);
1831 if (gimple_code (stmt) == GIMPLE_LABEL
1832 && (FORCED_LABEL (gimple_label_label (stmt))
1833 || DECL_NONLOCAL (gimple_label_label (stmt))))
1834 {
1835 basic_block new_bb;
1836 gimple_stmt_iterator new_gsi;
1837
1838 /* A non-reachable non-local label may still be referenced.
1839 But it no longer needs to carry the extra semantics of
1840 non-locality. */
1841 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1842 {
1843 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1844 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1845 }
1846
1847 new_bb = bb->prev_bb;
1848 new_gsi = gsi_start_bb (new_bb);
1849 gsi_remove (&i, false);
1850 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1851 }
1852 else
1853 {
1854 /* Release SSA definitions if we are in SSA. Note that we
1855 may be called when not in SSA. For example,
1856 final_cleanup calls this function via
1857 cleanup_tree_cfg. */
1858 if (gimple_in_ssa_p (cfun))
1859 release_defs (stmt);
1860
1861 gsi_remove (&i, true);
1862 }
1863
1864 if (gsi_end_p (i))
1865 i = gsi_last_bb (bb);
1866 else
1867 gsi_prev (&i);
1868 }
1869 }
1870
1871 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1872 bb->il.gimple = NULL;
1873 }
1874
1875
1876 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1877 predicate VAL, return the edge that will be taken out of the block.
1878 If VAL does not match a unique edge, NULL is returned. */
1879
1880 edge
1881 find_taken_edge (basic_block bb, tree val)
1882 {
1883 gimple stmt;
1884
1885 stmt = last_stmt (bb);
1886
1887 gcc_assert (stmt);
1888 gcc_assert (is_ctrl_stmt (stmt));
1889
1890 if (val == NULL)
1891 return NULL;
1892
1893 if (!is_gimple_min_invariant (val))
1894 return NULL;
1895
1896 if (gimple_code (stmt) == GIMPLE_COND)
1897 return find_taken_edge_cond_expr (bb, val);
1898
1899 if (gimple_code (stmt) == GIMPLE_SWITCH)
1900 return find_taken_edge_switch_expr (bb, val);
1901
1902 if (computed_goto_p (stmt))
1903 {
1904 /* Only optimize if the argument is a label, if the argument is
1905 not a label then we can not construct a proper CFG.
1906
1907 It may be the case that we only need to allow the LABEL_REF to
1908 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1909 appear inside a LABEL_EXPR just to be safe. */
1910 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1911 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1912 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1913 return NULL;
1914 }
1915
1916 gcc_unreachable ();
1917 }
1918
1919 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1920 statement, determine which of the outgoing edges will be taken out of the
1921 block. Return NULL if either edge may be taken. */
1922
1923 static edge
1924 find_taken_edge_computed_goto (basic_block bb, tree val)
1925 {
1926 basic_block dest;
1927 edge e = NULL;
1928
1929 dest = label_to_block (val);
1930 if (dest)
1931 {
1932 e = find_edge (bb, dest);
1933 gcc_assert (e != NULL);
1934 }
1935
1936 return e;
1937 }
1938
1939 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1940 statement, determine which of the two edges will be taken out of the
1941 block. Return NULL if either edge may be taken. */
1942
1943 static edge
1944 find_taken_edge_cond_expr (basic_block bb, tree val)
1945 {
1946 edge true_edge, false_edge;
1947
1948 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1949
1950 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1951 return (integer_zerop (val) ? false_edge : true_edge);
1952 }
1953
1954 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1955 statement, determine which edge will be taken out of the block. Return
1956 NULL if any edge may be taken. */
1957
1958 static edge
1959 find_taken_edge_switch_expr (basic_block bb, tree val)
1960 {
1961 basic_block dest_bb;
1962 edge e;
1963 gimple switch_stmt;
1964 tree taken_case;
1965
1966 switch_stmt = last_stmt (bb);
1967 taken_case = find_case_label_for_value (switch_stmt, val);
1968 dest_bb = label_to_block (CASE_LABEL (taken_case));
1969
1970 e = find_edge (bb, dest_bb);
1971 gcc_assert (e);
1972 return e;
1973 }
1974
1975
1976 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1977 We can make optimal use here of the fact that the case labels are
1978 sorted: We can do a binary search for a case matching VAL. */
1979
1980 static tree
1981 find_case_label_for_value (gimple switch_stmt, tree val)
1982 {
1983 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1984 tree default_case = gimple_switch_default_label (switch_stmt);
1985
1986 for (low = 0, high = n; high - low > 1; )
1987 {
1988 size_t i = (high + low) / 2;
1989 tree t = gimple_switch_label (switch_stmt, i);
1990 int cmp;
1991
1992 /* Cache the result of comparing CASE_LOW and val. */
1993 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1994
1995 if (cmp > 0)
1996 high = i;
1997 else
1998 low = i;
1999
2000 if (CASE_HIGH (t) == NULL)
2001 {
2002 /* A singe-valued case label. */
2003 if (cmp == 0)
2004 return t;
2005 }
2006 else
2007 {
2008 /* A case range. We can only handle integer ranges. */
2009 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2010 return t;
2011 }
2012 }
2013
2014 return default_case;
2015 }
2016
2017
2018 /* Dump a basic block on stderr. */
2019
2020 void
2021 gimple_debug_bb (basic_block bb)
2022 {
2023 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2024 }
2025
2026
2027 /* Dump basic block with index N on stderr. */
2028
2029 basic_block
2030 gimple_debug_bb_n (int n)
2031 {
2032 gimple_debug_bb (BASIC_BLOCK (n));
2033 return BASIC_BLOCK (n);
2034 }
2035
2036
2037 /* Dump the CFG on stderr.
2038
2039 FLAGS are the same used by the tree dumping functions
2040 (see TDF_* in tree-pass.h). */
2041
2042 void
2043 gimple_debug_cfg (int flags)
2044 {
2045 gimple_dump_cfg (stderr, flags);
2046 }
2047
2048
2049 /* Dump the program showing basic block boundaries on the given FILE.
2050
2051 FLAGS are the same used by the tree dumping functions (see TDF_* in
2052 tree.h). */
2053
2054 void
2055 gimple_dump_cfg (FILE *file, int flags)
2056 {
2057 if (flags & TDF_DETAILS)
2058 {
2059 const char *funcname
2060 = lang_hooks.decl_printable_name (current_function_decl, 2);
2061
2062 fputc ('\n', file);
2063 fprintf (file, ";; Function %s\n\n", funcname);
2064 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2065 n_basic_blocks, n_edges, last_basic_block);
2066
2067 brief_dump_cfg (file);
2068 fprintf (file, "\n");
2069 }
2070
2071 if (flags & TDF_STATS)
2072 dump_cfg_stats (file);
2073
2074 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2075 }
2076
2077
2078 /* Dump CFG statistics on FILE. */
2079
2080 void
2081 dump_cfg_stats (FILE *file)
2082 {
2083 static long max_num_merged_labels = 0;
2084 unsigned long size, total = 0;
2085 long num_edges;
2086 basic_block bb;
2087 const char * const fmt_str = "%-30s%-13s%12s\n";
2088 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2089 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2090 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2091 const char *funcname
2092 = lang_hooks.decl_printable_name (current_function_decl, 2);
2093
2094
2095 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2096
2097 fprintf (file, "---------------------------------------------------------\n");
2098 fprintf (file, fmt_str, "", " Number of ", "Memory");
2099 fprintf (file, fmt_str, "", " instances ", "used ");
2100 fprintf (file, "---------------------------------------------------------\n");
2101
2102 size = n_basic_blocks * sizeof (struct basic_block_def);
2103 total += size;
2104 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2105 SCALE (size), LABEL (size));
2106
2107 num_edges = 0;
2108 FOR_EACH_BB (bb)
2109 num_edges += EDGE_COUNT (bb->succs);
2110 size = num_edges * sizeof (struct edge_def);
2111 total += size;
2112 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2113
2114 fprintf (file, "---------------------------------------------------------\n");
2115 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2116 LABEL (total));
2117 fprintf (file, "---------------------------------------------------------\n");
2118 fprintf (file, "\n");
2119
2120 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2121 max_num_merged_labels = cfg_stats.num_merged_labels;
2122
2123 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2124 cfg_stats.num_merged_labels, max_num_merged_labels);
2125
2126 fprintf (file, "\n");
2127 }
2128
2129
2130 /* Dump CFG statistics on stderr. Keep extern so that it's always
2131 linked in the final executable. */
2132
2133 DEBUG_FUNCTION void
2134 debug_cfg_stats (void)
2135 {
2136 dump_cfg_stats (stderr);
2137 }
2138
2139
2140 /* Dump the flowgraph to a .vcg FILE. */
2141
2142 static void
2143 gimple_cfg2vcg (FILE *file)
2144 {
2145 edge e;
2146 edge_iterator ei;
2147 basic_block bb;
2148 const char *funcname
2149 = lang_hooks.decl_printable_name (current_function_decl, 2);
2150
2151 /* Write the file header. */
2152 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2153 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2154 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2155
2156 /* Write blocks and edges. */
2157 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2158 {
2159 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2160 e->dest->index);
2161
2162 if (e->flags & EDGE_FAKE)
2163 fprintf (file, " linestyle: dotted priority: 10");
2164 else
2165 fprintf (file, " linestyle: solid priority: 100");
2166
2167 fprintf (file, " }\n");
2168 }
2169 fputc ('\n', file);
2170
2171 FOR_EACH_BB (bb)
2172 {
2173 enum gimple_code head_code, end_code;
2174 const char *head_name, *end_name;
2175 int head_line = 0;
2176 int end_line = 0;
2177 gimple first = first_stmt (bb);
2178 gimple last = last_stmt (bb);
2179
2180 if (first)
2181 {
2182 head_code = gimple_code (first);
2183 head_name = gimple_code_name[head_code];
2184 head_line = get_lineno (first);
2185 }
2186 else
2187 head_name = "no-statement";
2188
2189 if (last)
2190 {
2191 end_code = gimple_code (last);
2192 end_name = gimple_code_name[end_code];
2193 end_line = get_lineno (last);
2194 }
2195 else
2196 end_name = "no-statement";
2197
2198 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2199 bb->index, bb->index, head_name, head_line, end_name,
2200 end_line);
2201
2202 FOR_EACH_EDGE (e, ei, bb->succs)
2203 {
2204 if (e->dest == EXIT_BLOCK_PTR)
2205 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2206 else
2207 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2208
2209 if (e->flags & EDGE_FAKE)
2210 fprintf (file, " priority: 10 linestyle: dotted");
2211 else
2212 fprintf (file, " priority: 100 linestyle: solid");
2213
2214 fprintf (file, " }\n");
2215 }
2216
2217 if (bb->next_bb != EXIT_BLOCK_PTR)
2218 fputc ('\n', file);
2219 }
2220
2221 fputs ("}\n\n", file);
2222 }
2223
2224
2225
2226 /*---------------------------------------------------------------------------
2227 Miscellaneous helpers
2228 ---------------------------------------------------------------------------*/
2229
2230 /* Return true if T represents a stmt that always transfers control. */
2231
2232 bool
2233 is_ctrl_stmt (gimple t)
2234 {
2235 switch (gimple_code (t))
2236 {
2237 case GIMPLE_COND:
2238 case GIMPLE_SWITCH:
2239 case GIMPLE_GOTO:
2240 case GIMPLE_RETURN:
2241 case GIMPLE_RESX:
2242 return true;
2243 default:
2244 return false;
2245 }
2246 }
2247
2248
2249 /* Return true if T is a statement that may alter the flow of control
2250 (e.g., a call to a non-returning function). */
2251
2252 bool
2253 is_ctrl_altering_stmt (gimple t)
2254 {
2255 gcc_assert (t);
2256
2257 switch (gimple_code (t))
2258 {
2259 case GIMPLE_CALL:
2260 {
2261 int flags = gimple_call_flags (t);
2262
2263 /* A non-pure/const call alters flow control if the current
2264 function has nonlocal labels. */
2265 if (!(flags & (ECF_CONST | ECF_PURE)) && cfun->has_nonlocal_label)
2266 return true;
2267
2268 /* A call also alters control flow if it does not return. */
2269 if (flags & ECF_NORETURN)
2270 return true;
2271
2272 /* BUILT_IN_RETURN call is same as return statement. */
2273 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2274 return true;
2275 }
2276 break;
2277
2278 case GIMPLE_EH_DISPATCH:
2279 /* EH_DISPATCH branches to the individual catch handlers at
2280 this level of a try or allowed-exceptions region. It can
2281 fallthru to the next statement as well. */
2282 return true;
2283
2284 case GIMPLE_ASM:
2285 if (gimple_asm_nlabels (t) > 0)
2286 return true;
2287 break;
2288
2289 CASE_GIMPLE_OMP:
2290 /* OpenMP directives alter control flow. */
2291 return true;
2292
2293 default:
2294 break;
2295 }
2296
2297 /* If a statement can throw, it alters control flow. */
2298 return stmt_can_throw_internal (t);
2299 }
2300
2301
2302 /* Return true if T is a simple local goto. */
2303
2304 bool
2305 simple_goto_p (gimple t)
2306 {
2307 return (gimple_code (t) == GIMPLE_GOTO
2308 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2309 }
2310
2311
2312 /* Return true if T can make an abnormal transfer of control flow.
2313 Transfers of control flow associated with EH are excluded. */
2314
2315 bool
2316 stmt_can_make_abnormal_goto (gimple t)
2317 {
2318 if (computed_goto_p (t))
2319 return true;
2320 if (is_gimple_call (t))
2321 return gimple_has_side_effects (t) && cfun->has_nonlocal_label;
2322 return false;
2323 }
2324
2325
2326 /* Return true if STMT should start a new basic block. PREV_STMT is
2327 the statement preceding STMT. It is used when STMT is a label or a
2328 case label. Labels should only start a new basic block if their
2329 previous statement wasn't a label. Otherwise, sequence of labels
2330 would generate unnecessary basic blocks that only contain a single
2331 label. */
2332
2333 static inline bool
2334 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2335 {
2336 if (stmt == NULL)
2337 return false;
2338
2339 /* Labels start a new basic block only if the preceding statement
2340 wasn't a label of the same type. This prevents the creation of
2341 consecutive blocks that have nothing but a single label. */
2342 if (gimple_code (stmt) == GIMPLE_LABEL)
2343 {
2344 /* Nonlocal and computed GOTO targets always start a new block. */
2345 if (DECL_NONLOCAL (gimple_label_label (stmt))
2346 || FORCED_LABEL (gimple_label_label (stmt)))
2347 return true;
2348
2349 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2350 {
2351 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2352 return true;
2353
2354 cfg_stats.num_merged_labels++;
2355 return false;
2356 }
2357 else
2358 return true;
2359 }
2360
2361 return false;
2362 }
2363
2364
2365 /* Return true if T should end a basic block. */
2366
2367 bool
2368 stmt_ends_bb_p (gimple t)
2369 {
2370 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2371 }
2372
2373 /* Remove block annotations and other data structures. */
2374
2375 void
2376 delete_tree_cfg_annotations (void)
2377 {
2378 label_to_block_map = NULL;
2379 }
2380
2381
2382 /* Return the first statement in basic block BB. */
2383
2384 gimple
2385 first_stmt (basic_block bb)
2386 {
2387 gimple_stmt_iterator i = gsi_start_bb (bb);
2388 gimple stmt = NULL;
2389
2390 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2391 {
2392 gsi_next (&i);
2393 stmt = NULL;
2394 }
2395 return stmt;
2396 }
2397
2398 /* Return the first non-label statement in basic block BB. */
2399
2400 static gimple
2401 first_non_label_stmt (basic_block bb)
2402 {
2403 gimple_stmt_iterator i = gsi_start_bb (bb);
2404 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2405 gsi_next (&i);
2406 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2407 }
2408
2409 /* Return the last statement in basic block BB. */
2410
2411 gimple
2412 last_stmt (basic_block bb)
2413 {
2414 gimple_stmt_iterator i = gsi_last_bb (bb);
2415 gimple stmt = NULL;
2416
2417 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2418 {
2419 gsi_prev (&i);
2420 stmt = NULL;
2421 }
2422 return stmt;
2423 }
2424
2425 /* Return the last statement of an otherwise empty block. Return NULL
2426 if the block is totally empty, or if it contains more than one
2427 statement. */
2428
2429 gimple
2430 last_and_only_stmt (basic_block bb)
2431 {
2432 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2433 gimple last, prev;
2434
2435 if (gsi_end_p (i))
2436 return NULL;
2437
2438 last = gsi_stmt (i);
2439 gsi_prev_nondebug (&i);
2440 if (gsi_end_p (i))
2441 return last;
2442
2443 /* Empty statements should no longer appear in the instruction stream.
2444 Everything that might have appeared before should be deleted by
2445 remove_useless_stmts, and the optimizers should just gsi_remove
2446 instead of smashing with build_empty_stmt.
2447
2448 Thus the only thing that should appear here in a block containing
2449 one executable statement is a label. */
2450 prev = gsi_stmt (i);
2451 if (gimple_code (prev) == GIMPLE_LABEL)
2452 return last;
2453 else
2454 return NULL;
2455 }
2456
2457 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2458
2459 static void
2460 reinstall_phi_args (edge new_edge, edge old_edge)
2461 {
2462 edge_var_map_vector v;
2463 edge_var_map *vm;
2464 int i;
2465 gimple_stmt_iterator phis;
2466
2467 v = redirect_edge_var_map_vector (old_edge);
2468 if (!v)
2469 return;
2470
2471 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2472 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2473 i++, gsi_next (&phis))
2474 {
2475 gimple phi = gsi_stmt (phis);
2476 tree result = redirect_edge_var_map_result (vm);
2477 tree arg = redirect_edge_var_map_def (vm);
2478
2479 gcc_assert (result == gimple_phi_result (phi));
2480
2481 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2482 }
2483
2484 redirect_edge_var_map_clear (old_edge);
2485 }
2486
2487 /* Returns the basic block after which the new basic block created
2488 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2489 near its "logical" location. This is of most help to humans looking
2490 at debugging dumps. */
2491
2492 static basic_block
2493 split_edge_bb_loc (edge edge_in)
2494 {
2495 basic_block dest = edge_in->dest;
2496 basic_block dest_prev = dest->prev_bb;
2497
2498 if (dest_prev)
2499 {
2500 edge e = find_edge (dest_prev, dest);
2501 if (e && !(e->flags & EDGE_COMPLEX))
2502 return edge_in->src;
2503 }
2504 return dest_prev;
2505 }
2506
2507 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2508 Abort on abnormal edges. */
2509
2510 static basic_block
2511 gimple_split_edge (edge edge_in)
2512 {
2513 basic_block new_bb, after_bb, dest;
2514 edge new_edge, e;
2515
2516 /* Abnormal edges cannot be split. */
2517 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2518
2519 dest = edge_in->dest;
2520
2521 after_bb = split_edge_bb_loc (edge_in);
2522
2523 new_bb = create_empty_bb (after_bb);
2524 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2525 new_bb->count = edge_in->count;
2526 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2527 new_edge->probability = REG_BR_PROB_BASE;
2528 new_edge->count = edge_in->count;
2529
2530 e = redirect_edge_and_branch (edge_in, new_bb);
2531 gcc_assert (e == edge_in);
2532 reinstall_phi_args (new_edge, e);
2533
2534 return new_bb;
2535 }
2536
2537
2538 /* Verify properties of the address expression T with base object BASE. */
2539
2540 static tree
2541 verify_address (tree t, tree base)
2542 {
2543 bool old_constant;
2544 bool old_side_effects;
2545 bool new_constant;
2546 bool new_side_effects;
2547
2548 old_constant = TREE_CONSTANT (t);
2549 old_side_effects = TREE_SIDE_EFFECTS (t);
2550
2551 recompute_tree_invariant_for_addr_expr (t);
2552 new_side_effects = TREE_SIDE_EFFECTS (t);
2553 new_constant = TREE_CONSTANT (t);
2554
2555 if (old_constant != new_constant)
2556 {
2557 error ("constant not recomputed when ADDR_EXPR changed");
2558 return t;
2559 }
2560 if (old_side_effects != new_side_effects)
2561 {
2562 error ("side effects not recomputed when ADDR_EXPR changed");
2563 return t;
2564 }
2565
2566 if (!(TREE_CODE (base) == VAR_DECL
2567 || TREE_CODE (base) == PARM_DECL
2568 || TREE_CODE (base) == RESULT_DECL))
2569 return NULL_TREE;
2570
2571 if (DECL_GIMPLE_REG_P (base))
2572 {
2573 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2574 return base;
2575 }
2576
2577 return NULL_TREE;
2578 }
2579
2580 /* Callback for walk_tree, check that all elements with address taken are
2581 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2582 inside a PHI node. */
2583
2584 static tree
2585 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2586 {
2587 tree t = *tp, x;
2588
2589 if (TYPE_P (t))
2590 *walk_subtrees = 0;
2591
2592 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2593 #define CHECK_OP(N, MSG) \
2594 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2595 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2596
2597 switch (TREE_CODE (t))
2598 {
2599 case SSA_NAME:
2600 if (SSA_NAME_IN_FREE_LIST (t))
2601 {
2602 error ("SSA name in freelist but still referenced");
2603 return *tp;
2604 }
2605 break;
2606
2607 case INDIRECT_REF:
2608 error ("INDIRECT_REF in gimple IL");
2609 return t;
2610
2611 case MEM_REF:
2612 x = TREE_OPERAND (t, 0);
2613 if (!POINTER_TYPE_P (TREE_TYPE (x))
2614 || !is_gimple_mem_ref_addr (x))
2615 {
2616 error ("Invalid first operand of MEM_REF.");
2617 return x;
2618 }
2619 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2620 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2621 {
2622 error ("Invalid offset operand of MEM_REF.");
2623 return TREE_OPERAND (t, 1);
2624 }
2625 if (TREE_CODE (x) == ADDR_EXPR
2626 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2627 return x;
2628 *walk_subtrees = 0;
2629 break;
2630
2631 case ASSERT_EXPR:
2632 x = fold (ASSERT_EXPR_COND (t));
2633 if (x == boolean_false_node)
2634 {
2635 error ("ASSERT_EXPR with an always-false condition");
2636 return *tp;
2637 }
2638 break;
2639
2640 case MODIFY_EXPR:
2641 error ("MODIFY_EXPR not expected while having tuples.");
2642 return *tp;
2643
2644 case ADDR_EXPR:
2645 {
2646 tree tem;
2647
2648 gcc_assert (is_gimple_address (t));
2649
2650 /* Skip any references (they will be checked when we recurse down the
2651 tree) and ensure that any variable used as a prefix is marked
2652 addressable. */
2653 for (x = TREE_OPERAND (t, 0);
2654 handled_component_p (x);
2655 x = TREE_OPERAND (x, 0))
2656 ;
2657
2658 if ((tem = verify_address (t, x)))
2659 return tem;
2660
2661 if (!(TREE_CODE (x) == VAR_DECL
2662 || TREE_CODE (x) == PARM_DECL
2663 || TREE_CODE (x) == RESULT_DECL))
2664 return NULL;
2665
2666 if (!TREE_ADDRESSABLE (x))
2667 {
2668 error ("address taken, but ADDRESSABLE bit not set");
2669 return x;
2670 }
2671
2672 break;
2673 }
2674
2675 case COND_EXPR:
2676 x = COND_EXPR_COND (t);
2677 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2678 {
2679 error ("non-integral used in condition");
2680 return x;
2681 }
2682 if (!is_gimple_condexpr (x))
2683 {
2684 error ("invalid conditional operand");
2685 return x;
2686 }
2687 break;
2688
2689 case NON_LVALUE_EXPR:
2690 gcc_unreachable ();
2691
2692 CASE_CONVERT:
2693 case FIX_TRUNC_EXPR:
2694 case FLOAT_EXPR:
2695 case NEGATE_EXPR:
2696 case ABS_EXPR:
2697 case BIT_NOT_EXPR:
2698 case TRUTH_NOT_EXPR:
2699 CHECK_OP (0, "invalid operand to unary operator");
2700 break;
2701
2702 case REALPART_EXPR:
2703 case IMAGPART_EXPR:
2704 case COMPONENT_REF:
2705 case ARRAY_REF:
2706 case ARRAY_RANGE_REF:
2707 case BIT_FIELD_REF:
2708 case VIEW_CONVERT_EXPR:
2709 /* We have a nest of references. Verify that each of the operands
2710 that determine where to reference is either a constant or a variable,
2711 verify that the base is valid, and then show we've already checked
2712 the subtrees. */
2713 while (handled_component_p (t))
2714 {
2715 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2716 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2717 else if (TREE_CODE (t) == ARRAY_REF
2718 || TREE_CODE (t) == ARRAY_RANGE_REF)
2719 {
2720 CHECK_OP (1, "invalid array index");
2721 if (TREE_OPERAND (t, 2))
2722 CHECK_OP (2, "invalid array lower bound");
2723 if (TREE_OPERAND (t, 3))
2724 CHECK_OP (3, "invalid array stride");
2725 }
2726 else if (TREE_CODE (t) == BIT_FIELD_REF)
2727 {
2728 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2729 || !host_integerp (TREE_OPERAND (t, 2), 1))
2730 {
2731 error ("invalid position or size operand to BIT_FIELD_REF");
2732 return t;
2733 }
2734 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2735 && (TYPE_PRECISION (TREE_TYPE (t))
2736 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2737 {
2738 error ("integral result type precision does not match "
2739 "field size of BIT_FIELD_REF");
2740 return t;
2741 }
2742 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2743 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2744 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2745 {
2746 error ("mode precision of non-integral result does not "
2747 "match field size of BIT_FIELD_REF");
2748 return t;
2749 }
2750 }
2751
2752 t = TREE_OPERAND (t, 0);
2753 }
2754
2755 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2756 {
2757 error ("invalid reference prefix");
2758 return t;
2759 }
2760 *walk_subtrees = 0;
2761 break;
2762 case PLUS_EXPR:
2763 case MINUS_EXPR:
2764 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2765 POINTER_PLUS_EXPR. */
2766 if (POINTER_TYPE_P (TREE_TYPE (t)))
2767 {
2768 error ("invalid operand to plus/minus, type is a pointer");
2769 return t;
2770 }
2771 CHECK_OP (0, "invalid operand to binary operator");
2772 CHECK_OP (1, "invalid operand to binary operator");
2773 break;
2774
2775 case POINTER_PLUS_EXPR:
2776 /* Check to make sure the first operand is a pointer or reference type. */
2777 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2778 {
2779 error ("invalid operand to pointer plus, first operand is not a pointer");
2780 return t;
2781 }
2782 /* Check to make sure the second operand is an integer with type of
2783 sizetype. */
2784 if (!useless_type_conversion_p (sizetype,
2785 TREE_TYPE (TREE_OPERAND (t, 1))))
2786 {
2787 error ("invalid operand to pointer plus, second operand is not an "
2788 "integer with type of sizetype.");
2789 return t;
2790 }
2791 /* FALLTHROUGH */
2792 case LT_EXPR:
2793 case LE_EXPR:
2794 case GT_EXPR:
2795 case GE_EXPR:
2796 case EQ_EXPR:
2797 case NE_EXPR:
2798 case UNORDERED_EXPR:
2799 case ORDERED_EXPR:
2800 case UNLT_EXPR:
2801 case UNLE_EXPR:
2802 case UNGT_EXPR:
2803 case UNGE_EXPR:
2804 case UNEQ_EXPR:
2805 case LTGT_EXPR:
2806 case MULT_EXPR:
2807 case TRUNC_DIV_EXPR:
2808 case CEIL_DIV_EXPR:
2809 case FLOOR_DIV_EXPR:
2810 case ROUND_DIV_EXPR:
2811 case TRUNC_MOD_EXPR:
2812 case CEIL_MOD_EXPR:
2813 case FLOOR_MOD_EXPR:
2814 case ROUND_MOD_EXPR:
2815 case RDIV_EXPR:
2816 case EXACT_DIV_EXPR:
2817 case MIN_EXPR:
2818 case MAX_EXPR:
2819 case LSHIFT_EXPR:
2820 case RSHIFT_EXPR:
2821 case LROTATE_EXPR:
2822 case RROTATE_EXPR:
2823 case BIT_IOR_EXPR:
2824 case BIT_XOR_EXPR:
2825 case BIT_AND_EXPR:
2826 CHECK_OP (0, "invalid operand to binary operator");
2827 CHECK_OP (1, "invalid operand to binary operator");
2828 break;
2829
2830 case CONSTRUCTOR:
2831 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2832 *walk_subtrees = 0;
2833 break;
2834
2835 default:
2836 break;
2837 }
2838 return NULL;
2839
2840 #undef CHECK_OP
2841 }
2842
2843
2844 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2845 Returns true if there is an error, otherwise false. */
2846
2847 static bool
2848 verify_types_in_gimple_min_lval (tree expr)
2849 {
2850 tree op;
2851
2852 if (is_gimple_id (expr))
2853 return false;
2854
2855 if (TREE_CODE (expr) != MISALIGNED_INDIRECT_REF
2856 && TREE_CODE (expr) != TARGET_MEM_REF
2857 && TREE_CODE (expr) != MEM_REF)
2858 {
2859 error ("invalid expression for min lvalue");
2860 return true;
2861 }
2862
2863 /* TARGET_MEM_REFs are strange beasts. */
2864 if (TREE_CODE (expr) == TARGET_MEM_REF)
2865 return false;
2866
2867 op = TREE_OPERAND (expr, 0);
2868 if (!is_gimple_val (op))
2869 {
2870 error ("invalid operand in indirect reference");
2871 debug_generic_stmt (op);
2872 return true;
2873 }
2874 /* Memory references now generally can involve a value conversion. */
2875
2876 return false;
2877 }
2878
2879 /* Verify if EXPR is a valid GIMPLE reference expression. If
2880 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2881 if there is an error, otherwise false. */
2882
2883 static bool
2884 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2885 {
2886 while (handled_component_p (expr))
2887 {
2888 tree op = TREE_OPERAND (expr, 0);
2889
2890 if (TREE_CODE (expr) == ARRAY_REF
2891 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2892 {
2893 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2894 || (TREE_OPERAND (expr, 2)
2895 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2896 || (TREE_OPERAND (expr, 3)
2897 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2898 {
2899 error ("invalid operands to array reference");
2900 debug_generic_stmt (expr);
2901 return true;
2902 }
2903 }
2904
2905 /* Verify if the reference array element types are compatible. */
2906 if (TREE_CODE (expr) == ARRAY_REF
2907 && !useless_type_conversion_p (TREE_TYPE (expr),
2908 TREE_TYPE (TREE_TYPE (op))))
2909 {
2910 error ("type mismatch in array reference");
2911 debug_generic_stmt (TREE_TYPE (expr));
2912 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2913 return true;
2914 }
2915 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2916 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2917 TREE_TYPE (TREE_TYPE (op))))
2918 {
2919 error ("type mismatch in array range reference");
2920 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2921 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2922 return true;
2923 }
2924
2925 if ((TREE_CODE (expr) == REALPART_EXPR
2926 || TREE_CODE (expr) == IMAGPART_EXPR)
2927 && !useless_type_conversion_p (TREE_TYPE (expr),
2928 TREE_TYPE (TREE_TYPE (op))))
2929 {
2930 error ("type mismatch in real/imagpart reference");
2931 debug_generic_stmt (TREE_TYPE (expr));
2932 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2933 return true;
2934 }
2935
2936 if (TREE_CODE (expr) == COMPONENT_REF
2937 && !useless_type_conversion_p (TREE_TYPE (expr),
2938 TREE_TYPE (TREE_OPERAND (expr, 1))))
2939 {
2940 error ("type mismatch in component reference");
2941 debug_generic_stmt (TREE_TYPE (expr));
2942 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2943 return true;
2944 }
2945
2946 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2947 {
2948 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2949 that their operand is not an SSA name or an invariant when
2950 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2951 bug). Otherwise there is nothing to verify, gross mismatches at
2952 most invoke undefined behavior. */
2953 if (require_lvalue
2954 && (TREE_CODE (op) == SSA_NAME
2955 || is_gimple_min_invariant (op)))
2956 {
2957 error ("Conversion of an SSA_NAME on the left hand side.");
2958 debug_generic_stmt (expr);
2959 return true;
2960 }
2961 else if (TREE_CODE (op) == SSA_NAME
2962 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2963 {
2964 error ("Conversion of register to a different size.");
2965 debug_generic_stmt (expr);
2966 return true;
2967 }
2968 else if (!handled_component_p (op))
2969 return false;
2970 }
2971
2972 expr = op;
2973 }
2974
2975 if (TREE_CODE (expr) == MEM_REF)
2976 {
2977 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2978 {
2979 error ("Invalid address operand in MEM_REF.");
2980 debug_generic_stmt (expr);
2981 return true;
2982 }
2983 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2984 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2985 {
2986 error ("Invalid offset operand in MEM_REF.");
2987 debug_generic_stmt (expr);
2988 return true;
2989 }
2990 }
2991 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2992 {
2993 if (!TMR_OFFSET (expr)
2994 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2995 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2996 {
2997 error ("Invalid offset operand in TARGET_MEM_REF.");
2998 debug_generic_stmt (expr);
2999 return true;
3000 }
3001 }
3002
3003 return ((require_lvalue || !is_gimple_min_invariant (expr))
3004 && verify_types_in_gimple_min_lval (expr));
3005 }
3006
3007 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3008 list of pointer-to types that is trivially convertible to DEST. */
3009
3010 static bool
3011 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3012 {
3013 tree src;
3014
3015 if (!TYPE_POINTER_TO (src_obj))
3016 return true;
3017
3018 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3019 if (useless_type_conversion_p (dest, src))
3020 return true;
3021
3022 return false;
3023 }
3024
3025 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3026 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3027
3028 static bool
3029 valid_fixed_convert_types_p (tree type1, tree type2)
3030 {
3031 return (FIXED_POINT_TYPE_P (type1)
3032 && (INTEGRAL_TYPE_P (type2)
3033 || SCALAR_FLOAT_TYPE_P (type2)
3034 || FIXED_POINT_TYPE_P (type2)));
3035 }
3036
3037 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3038 is a problem, otherwise false. */
3039
3040 static bool
3041 verify_gimple_call (gimple stmt)
3042 {
3043 tree fn = gimple_call_fn (stmt);
3044 tree fntype;
3045 unsigned i;
3046
3047 if (TREE_CODE (fn) != OBJ_TYPE_REF
3048 && !is_gimple_val (fn))
3049 {
3050 error ("invalid function in gimple call");
3051 debug_generic_stmt (fn);
3052 return true;
3053 }
3054
3055 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3056 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3057 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3058 {
3059 error ("non-function in gimple call");
3060 return true;
3061 }
3062
3063 if (gimple_call_lhs (stmt)
3064 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3065 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3066 {
3067 error ("invalid LHS in gimple call");
3068 return true;
3069 }
3070
3071 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3072 {
3073 error ("LHS in noreturn call");
3074 return true;
3075 }
3076
3077 fntype = TREE_TYPE (TREE_TYPE (fn));
3078 if (gimple_call_lhs (stmt)
3079 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3080 TREE_TYPE (fntype))
3081 /* ??? At least C++ misses conversions at assignments from
3082 void * call results.
3083 ??? Java is completely off. Especially with functions
3084 returning java.lang.Object.
3085 For now simply allow arbitrary pointer type conversions. */
3086 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3087 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3088 {
3089 error ("invalid conversion in gimple call");
3090 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3091 debug_generic_stmt (TREE_TYPE (fntype));
3092 return true;
3093 }
3094
3095 if (gimple_call_chain (stmt)
3096 && !is_gimple_val (gimple_call_chain (stmt)))
3097 {
3098 error ("invalid static chain in gimple call");
3099 debug_generic_stmt (gimple_call_chain (stmt));
3100 return true;
3101 }
3102
3103 /* If there is a static chain argument, this should not be an indirect
3104 call, and the decl should have DECL_STATIC_CHAIN set. */
3105 if (gimple_call_chain (stmt))
3106 {
3107 if (TREE_CODE (fn) != ADDR_EXPR
3108 || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
3109 {
3110 error ("static chain in indirect gimple call");
3111 return true;
3112 }
3113 fn = TREE_OPERAND (fn, 0);
3114
3115 if (!DECL_STATIC_CHAIN (fn))
3116 {
3117 error ("static chain with function that doesn't use one");
3118 return true;
3119 }
3120 }
3121
3122 /* ??? The C frontend passes unpromoted arguments in case it
3123 didn't see a function declaration before the call. So for now
3124 leave the call arguments mostly unverified. Once we gimplify
3125 unit-at-a-time we have a chance to fix this. */
3126
3127 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3128 {
3129 tree arg = gimple_call_arg (stmt, i);
3130 if ((is_gimple_reg_type (TREE_TYPE (arg))
3131 && !is_gimple_val (arg))
3132 || (!is_gimple_reg_type (TREE_TYPE (arg))
3133 && !is_gimple_lvalue (arg)))
3134 {
3135 error ("invalid argument to gimple call");
3136 debug_generic_expr (arg);
3137 }
3138 }
3139
3140 return false;
3141 }
3142
3143 /* Verifies the gimple comparison with the result type TYPE and
3144 the operands OP0 and OP1. */
3145
3146 static bool
3147 verify_gimple_comparison (tree type, tree op0, tree op1)
3148 {
3149 tree op0_type = TREE_TYPE (op0);
3150 tree op1_type = TREE_TYPE (op1);
3151
3152 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3153 {
3154 error ("invalid operands in gimple comparison");
3155 return true;
3156 }
3157
3158 /* For comparisons we do not have the operations type as the
3159 effective type the comparison is carried out in. Instead
3160 we require that either the first operand is trivially
3161 convertible into the second, or the other way around.
3162 The resulting type of a comparison may be any integral type.
3163 Because we special-case pointers to void we allow
3164 comparisons of pointers with the same mode as well. */
3165 if ((!useless_type_conversion_p (op0_type, op1_type)
3166 && !useless_type_conversion_p (op1_type, op0_type)
3167 && (!POINTER_TYPE_P (op0_type)
3168 || !POINTER_TYPE_P (op1_type)
3169 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3170 || !INTEGRAL_TYPE_P (type))
3171 {
3172 error ("type mismatch in comparison expression");
3173 debug_generic_expr (type);
3174 debug_generic_expr (op0_type);
3175 debug_generic_expr (op1_type);
3176 return true;
3177 }
3178
3179 return false;
3180 }
3181
3182 /* Verify a gimple assignment statement STMT with an unary rhs.
3183 Returns true if anything is wrong. */
3184
3185 static bool
3186 verify_gimple_assign_unary (gimple stmt)
3187 {
3188 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3189 tree lhs = gimple_assign_lhs (stmt);
3190 tree lhs_type = TREE_TYPE (lhs);
3191 tree rhs1 = gimple_assign_rhs1 (stmt);
3192 tree rhs1_type = TREE_TYPE (rhs1);
3193
3194 if (!is_gimple_reg (lhs)
3195 && !(optimize == 0
3196 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3197 {
3198 error ("non-register as LHS of unary operation");
3199 return true;
3200 }
3201
3202 if (!is_gimple_val (rhs1))
3203 {
3204 error ("invalid operand in unary operation");
3205 return true;
3206 }
3207
3208 /* First handle conversions. */
3209 switch (rhs_code)
3210 {
3211 CASE_CONVERT:
3212 {
3213 /* Allow conversions between integral types and pointers only if
3214 there is no sign or zero extension involved.
3215 For targets were the precision of sizetype doesn't match that
3216 of pointers we need to allow arbitrary conversions from and
3217 to sizetype. */
3218 if ((POINTER_TYPE_P (lhs_type)
3219 && INTEGRAL_TYPE_P (rhs1_type)
3220 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3221 || rhs1_type == sizetype))
3222 || (POINTER_TYPE_P (rhs1_type)
3223 && INTEGRAL_TYPE_P (lhs_type)
3224 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3225 || lhs_type == sizetype)))
3226 return false;
3227
3228 /* Allow conversion from integer to offset type and vice versa. */
3229 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3230 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3231 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3232 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3233 return false;
3234
3235 /* Otherwise assert we are converting between types of the
3236 same kind. */
3237 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3238 {
3239 error ("invalid types in nop conversion");
3240 debug_generic_expr (lhs_type);
3241 debug_generic_expr (rhs1_type);
3242 return true;
3243 }
3244
3245 return false;
3246 }
3247
3248 case ADDR_SPACE_CONVERT_EXPR:
3249 {
3250 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3251 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3252 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3253 {
3254 error ("invalid types in address space conversion");
3255 debug_generic_expr (lhs_type);
3256 debug_generic_expr (rhs1_type);
3257 return true;
3258 }
3259
3260 return false;
3261 }
3262
3263 case FIXED_CONVERT_EXPR:
3264 {
3265 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3266 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3267 {
3268 error ("invalid types in fixed-point conversion");
3269 debug_generic_expr (lhs_type);
3270 debug_generic_expr (rhs1_type);
3271 return true;
3272 }
3273
3274 return false;
3275 }
3276
3277 case FLOAT_EXPR:
3278 {
3279 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3280 {
3281 error ("invalid types in conversion to floating point");
3282 debug_generic_expr (lhs_type);
3283 debug_generic_expr (rhs1_type);
3284 return true;
3285 }
3286
3287 return false;
3288 }
3289
3290 case FIX_TRUNC_EXPR:
3291 {
3292 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3293 {
3294 error ("invalid types in conversion to integer");
3295 debug_generic_expr (lhs_type);
3296 debug_generic_expr (rhs1_type);
3297 return true;
3298 }
3299
3300 return false;
3301 }
3302
3303 case VEC_UNPACK_HI_EXPR:
3304 case VEC_UNPACK_LO_EXPR:
3305 case REDUC_MAX_EXPR:
3306 case REDUC_MIN_EXPR:
3307 case REDUC_PLUS_EXPR:
3308 case VEC_UNPACK_FLOAT_HI_EXPR:
3309 case VEC_UNPACK_FLOAT_LO_EXPR:
3310 /* FIXME. */
3311 return false;
3312
3313 case TRUTH_NOT_EXPR:
3314 case NEGATE_EXPR:
3315 case ABS_EXPR:
3316 case BIT_NOT_EXPR:
3317 case PAREN_EXPR:
3318 case NON_LVALUE_EXPR:
3319 case CONJ_EXPR:
3320 break;
3321
3322 default:
3323 gcc_unreachable ();
3324 }
3325
3326 /* For the remaining codes assert there is no conversion involved. */
3327 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3328 {
3329 error ("non-trivial conversion in unary operation");
3330 debug_generic_expr (lhs_type);
3331 debug_generic_expr (rhs1_type);
3332 return true;
3333 }
3334
3335 return false;
3336 }
3337
3338 /* Verify a gimple assignment statement STMT with a binary rhs.
3339 Returns true if anything is wrong. */
3340
3341 static bool
3342 verify_gimple_assign_binary (gimple stmt)
3343 {
3344 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3345 tree lhs = gimple_assign_lhs (stmt);
3346 tree lhs_type = TREE_TYPE (lhs);
3347 tree rhs1 = gimple_assign_rhs1 (stmt);
3348 tree rhs1_type = TREE_TYPE (rhs1);
3349 tree rhs2 = gimple_assign_rhs2 (stmt);
3350 tree rhs2_type = TREE_TYPE (rhs2);
3351
3352 if (!is_gimple_reg (lhs)
3353 && !(optimize == 0
3354 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3355 {
3356 error ("non-register as LHS of binary operation");
3357 return true;
3358 }
3359
3360 if (!is_gimple_val (rhs1)
3361 || !is_gimple_val (rhs2))
3362 {
3363 error ("invalid operands in binary operation");
3364 return true;
3365 }
3366
3367 /* First handle operations that involve different types. */
3368 switch (rhs_code)
3369 {
3370 case COMPLEX_EXPR:
3371 {
3372 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3373 || !(INTEGRAL_TYPE_P (rhs1_type)
3374 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3375 || !(INTEGRAL_TYPE_P (rhs2_type)
3376 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3377 {
3378 error ("type mismatch in complex expression");
3379 debug_generic_expr (lhs_type);
3380 debug_generic_expr (rhs1_type);
3381 debug_generic_expr (rhs2_type);
3382 return true;
3383 }
3384
3385 return false;
3386 }
3387
3388 case LSHIFT_EXPR:
3389 case RSHIFT_EXPR:
3390 case LROTATE_EXPR:
3391 case RROTATE_EXPR:
3392 {
3393 /* Shifts and rotates are ok on integral types, fixed point
3394 types and integer vector types. */
3395 if ((!INTEGRAL_TYPE_P (rhs1_type)
3396 && !FIXED_POINT_TYPE_P (rhs1_type)
3397 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3398 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3399 || (!INTEGRAL_TYPE_P (rhs2_type)
3400 /* Vector shifts of vectors are also ok. */
3401 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3402 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3403 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3404 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3405 || !useless_type_conversion_p (lhs_type, rhs1_type))
3406 {
3407 error ("type mismatch in shift expression");
3408 debug_generic_expr (lhs_type);
3409 debug_generic_expr (rhs1_type);
3410 debug_generic_expr (rhs2_type);
3411 return true;
3412 }
3413
3414 return false;
3415 }
3416
3417 case VEC_LSHIFT_EXPR:
3418 case VEC_RSHIFT_EXPR:
3419 {
3420 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3421 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3422 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3423 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3424 || (!INTEGRAL_TYPE_P (rhs2_type)
3425 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3426 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3427 || !useless_type_conversion_p (lhs_type, rhs1_type))
3428 {
3429 error ("type mismatch in vector shift expression");
3430 debug_generic_expr (lhs_type);
3431 debug_generic_expr (rhs1_type);
3432 debug_generic_expr (rhs2_type);
3433 return true;
3434 }
3435 /* For shifting a vector of floating point components we
3436 only allow shifting by a constant multiple of the element size. */
3437 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
3438 && (TREE_CODE (rhs2) != INTEGER_CST
3439 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3440 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3441 {
3442 error ("non-element sized vector shift of floating point vector");
3443 return true;
3444 }
3445
3446 return false;
3447 }
3448
3449 case PLUS_EXPR:
3450 {
3451 /* We use regular PLUS_EXPR for vectors.
3452 ??? This just makes the checker happy and may not be what is
3453 intended. */
3454 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3455 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3456 {
3457 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3458 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3459 {
3460 error ("invalid non-vector operands to vector valued plus");
3461 return true;
3462 }
3463 lhs_type = TREE_TYPE (lhs_type);
3464 rhs1_type = TREE_TYPE (rhs1_type);
3465 rhs2_type = TREE_TYPE (rhs2_type);
3466 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3467 the pointer to 2nd place. */
3468 if (POINTER_TYPE_P (rhs2_type))
3469 {
3470 tree tem = rhs1_type;
3471 rhs1_type = rhs2_type;
3472 rhs2_type = tem;
3473 }
3474 goto do_pointer_plus_expr_check;
3475 }
3476 }
3477 /* Fallthru. */
3478 case MINUS_EXPR:
3479 {
3480 if (POINTER_TYPE_P (lhs_type)
3481 || POINTER_TYPE_P (rhs1_type)
3482 || POINTER_TYPE_P (rhs2_type))
3483 {
3484 error ("invalid (pointer) operands to plus/minus");
3485 return true;
3486 }
3487
3488 /* Continue with generic binary expression handling. */
3489 break;
3490 }
3491
3492 case POINTER_PLUS_EXPR:
3493 {
3494 do_pointer_plus_expr_check:
3495 if (!POINTER_TYPE_P (rhs1_type)
3496 || !useless_type_conversion_p (lhs_type, rhs1_type)
3497 || !useless_type_conversion_p (sizetype, rhs2_type))
3498 {
3499 error ("type mismatch in pointer plus expression");
3500 debug_generic_stmt (lhs_type);
3501 debug_generic_stmt (rhs1_type);
3502 debug_generic_stmt (rhs2_type);
3503 return true;
3504 }
3505
3506 return false;
3507 }
3508
3509 case TRUTH_ANDIF_EXPR:
3510 case TRUTH_ORIF_EXPR:
3511 gcc_unreachable ();
3512
3513 case TRUTH_AND_EXPR:
3514 case TRUTH_OR_EXPR:
3515 case TRUTH_XOR_EXPR:
3516 {
3517 /* We allow any kind of integral typed argument and result. */
3518 if (!INTEGRAL_TYPE_P (rhs1_type)
3519 || !INTEGRAL_TYPE_P (rhs2_type)
3520 || !INTEGRAL_TYPE_P (lhs_type))
3521 {
3522 error ("type mismatch in binary truth expression");
3523 debug_generic_expr (lhs_type);
3524 debug_generic_expr (rhs1_type);
3525 debug_generic_expr (rhs2_type);
3526 return true;
3527 }
3528
3529 return false;
3530 }
3531
3532 case LT_EXPR:
3533 case LE_EXPR:
3534 case GT_EXPR:
3535 case GE_EXPR:
3536 case EQ_EXPR:
3537 case NE_EXPR:
3538 case UNORDERED_EXPR:
3539 case ORDERED_EXPR:
3540 case UNLT_EXPR:
3541 case UNLE_EXPR:
3542 case UNGT_EXPR:
3543 case UNGE_EXPR:
3544 case UNEQ_EXPR:
3545 case LTGT_EXPR:
3546 /* Comparisons are also binary, but the result type is not
3547 connected to the operand types. */
3548 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3549
3550 case WIDEN_MULT_EXPR:
3551 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3552 return true;
3553 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3554 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3555
3556 case WIDEN_SUM_EXPR:
3557 case VEC_WIDEN_MULT_HI_EXPR:
3558 case VEC_WIDEN_MULT_LO_EXPR:
3559 case VEC_PACK_TRUNC_EXPR:
3560 case VEC_PACK_SAT_EXPR:
3561 case VEC_PACK_FIX_TRUNC_EXPR:
3562 case VEC_EXTRACT_EVEN_EXPR:
3563 case VEC_EXTRACT_ODD_EXPR:
3564 case VEC_INTERLEAVE_HIGH_EXPR:
3565 case VEC_INTERLEAVE_LOW_EXPR:
3566 /* FIXME. */
3567 return false;
3568
3569 case MULT_EXPR:
3570 case TRUNC_DIV_EXPR:
3571 case CEIL_DIV_EXPR:
3572 case FLOOR_DIV_EXPR:
3573 case ROUND_DIV_EXPR:
3574 case TRUNC_MOD_EXPR:
3575 case CEIL_MOD_EXPR:
3576 case FLOOR_MOD_EXPR:
3577 case ROUND_MOD_EXPR:
3578 case RDIV_EXPR:
3579 case EXACT_DIV_EXPR:
3580 case MIN_EXPR:
3581 case MAX_EXPR:
3582 case BIT_IOR_EXPR:
3583 case BIT_XOR_EXPR:
3584 case BIT_AND_EXPR:
3585 /* Continue with generic binary expression handling. */
3586 break;
3587
3588 default:
3589 gcc_unreachable ();
3590 }
3591
3592 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3593 || !useless_type_conversion_p (lhs_type, rhs2_type))
3594 {
3595 error ("type mismatch in binary expression");
3596 debug_generic_stmt (lhs_type);
3597 debug_generic_stmt (rhs1_type);
3598 debug_generic_stmt (rhs2_type);
3599 return true;
3600 }
3601
3602 return false;
3603 }
3604
3605 /* Verify a gimple assignment statement STMT with a ternary rhs.
3606 Returns true if anything is wrong. */
3607
3608 static bool
3609 verify_gimple_assign_ternary (gimple stmt)
3610 {
3611 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3612 tree lhs = gimple_assign_lhs (stmt);
3613 tree lhs_type = TREE_TYPE (lhs);
3614 tree rhs1 = gimple_assign_rhs1 (stmt);
3615 tree rhs1_type = TREE_TYPE (rhs1);
3616 tree rhs2 = gimple_assign_rhs2 (stmt);
3617 tree rhs2_type = TREE_TYPE (rhs2);
3618 tree rhs3 = gimple_assign_rhs3 (stmt);
3619 tree rhs3_type = TREE_TYPE (rhs3);
3620
3621 if (!is_gimple_reg (lhs)
3622 && !(optimize == 0
3623 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3624 {
3625 error ("non-register as LHS of ternary operation");
3626 return true;
3627 }
3628
3629 if (!is_gimple_val (rhs1)
3630 || !is_gimple_val (rhs2)
3631 || !is_gimple_val (rhs3))
3632 {
3633 error ("invalid operands in ternary operation");
3634 return true;
3635 }
3636
3637 /* First handle operations that involve different types. */
3638 switch (rhs_code)
3639 {
3640 case WIDEN_MULT_PLUS_EXPR:
3641 case WIDEN_MULT_MINUS_EXPR:
3642 if ((!INTEGRAL_TYPE_P (rhs1_type)
3643 && !FIXED_POINT_TYPE_P (rhs1_type))
3644 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3645 || !useless_type_conversion_p (lhs_type, rhs3_type)
3646 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3647 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3648 {
3649 error ("type mismatch in widening multiply-accumulate expression");
3650 debug_generic_expr (lhs_type);
3651 debug_generic_expr (rhs1_type);
3652 debug_generic_expr (rhs2_type);
3653 debug_generic_expr (rhs3_type);
3654 return true;
3655 }
3656 break;
3657
3658 default:
3659 gcc_unreachable ();
3660 }
3661 return false;
3662 }
3663
3664 /* Verify a gimple assignment statement STMT with a single rhs.
3665 Returns true if anything is wrong. */
3666
3667 static bool
3668 verify_gimple_assign_single (gimple stmt)
3669 {
3670 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3671 tree lhs = gimple_assign_lhs (stmt);
3672 tree lhs_type = TREE_TYPE (lhs);
3673 tree rhs1 = gimple_assign_rhs1 (stmt);
3674 tree rhs1_type = TREE_TYPE (rhs1);
3675 bool res = false;
3676
3677 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3678 {
3679 error ("non-trivial conversion at assignment");
3680 debug_generic_expr (lhs_type);
3681 debug_generic_expr (rhs1_type);
3682 return true;
3683 }
3684
3685 if (handled_component_p (lhs))
3686 res |= verify_types_in_gimple_reference (lhs, true);
3687
3688 /* Special codes we cannot handle via their class. */
3689 switch (rhs_code)
3690 {
3691 case ADDR_EXPR:
3692 {
3693 tree op = TREE_OPERAND (rhs1, 0);
3694 if (!is_gimple_addressable (op))
3695 {
3696 error ("invalid operand in unary expression");
3697 return true;
3698 }
3699
3700 if (!types_compatible_p (TREE_TYPE (op), TREE_TYPE (TREE_TYPE (rhs1)))
3701 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3702 TREE_TYPE (op)))
3703 {
3704 error ("type mismatch in address expression");
3705 debug_generic_stmt (TREE_TYPE (rhs1));
3706 debug_generic_stmt (TREE_TYPE (op));
3707 return true;
3708 }
3709
3710 return verify_types_in_gimple_reference (op, true);
3711 }
3712
3713 /* tcc_reference */
3714 case INDIRECT_REF:
3715 error ("INDIRECT_REF in gimple IL");
3716 return true;
3717
3718 case COMPONENT_REF:
3719 case BIT_FIELD_REF:
3720 case MISALIGNED_INDIRECT_REF:
3721 case ARRAY_REF:
3722 case ARRAY_RANGE_REF:
3723 case VIEW_CONVERT_EXPR:
3724 case REALPART_EXPR:
3725 case IMAGPART_EXPR:
3726 case TARGET_MEM_REF:
3727 case MEM_REF:
3728 if (!is_gimple_reg (lhs)
3729 && is_gimple_reg_type (TREE_TYPE (lhs)))
3730 {
3731 error ("invalid rhs for gimple memory store");
3732 debug_generic_stmt (lhs);
3733 debug_generic_stmt (rhs1);
3734 return true;
3735 }
3736 return res || verify_types_in_gimple_reference (rhs1, false);
3737
3738 /* tcc_constant */
3739 case SSA_NAME:
3740 case INTEGER_CST:
3741 case REAL_CST:
3742 case FIXED_CST:
3743 case COMPLEX_CST:
3744 case VECTOR_CST:
3745 case STRING_CST:
3746 return res;
3747
3748 /* tcc_declaration */
3749 case CONST_DECL:
3750 return res;
3751 case VAR_DECL:
3752 case PARM_DECL:
3753 if (!is_gimple_reg (lhs)
3754 && !is_gimple_reg (rhs1)
3755 && is_gimple_reg_type (TREE_TYPE (lhs)))
3756 {
3757 error ("invalid rhs for gimple memory store");
3758 debug_generic_stmt (lhs);
3759 debug_generic_stmt (rhs1);
3760 return true;
3761 }
3762 return res;
3763
3764 case COND_EXPR:
3765 if (!is_gimple_reg (lhs)
3766 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3767 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3768 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3769 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3770 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3771 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3772 {
3773 error ("invalid COND_EXPR in gimple assignment");
3774 debug_generic_stmt (rhs1);
3775 return true;
3776 }
3777 return res;
3778
3779 case CONSTRUCTOR:
3780 case OBJ_TYPE_REF:
3781 case ASSERT_EXPR:
3782 case WITH_SIZE_EXPR:
3783 case POLYNOMIAL_CHREC:
3784 case DOT_PROD_EXPR:
3785 case VEC_COND_EXPR:
3786 case REALIGN_LOAD_EXPR:
3787 /* FIXME. */
3788 return res;
3789
3790 default:;
3791 }
3792
3793 return res;
3794 }
3795
3796 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3797 is a problem, otherwise false. */
3798
3799 static bool
3800 verify_gimple_assign (gimple stmt)
3801 {
3802 switch (gimple_assign_rhs_class (stmt))
3803 {
3804 case GIMPLE_SINGLE_RHS:
3805 return verify_gimple_assign_single (stmt);
3806
3807 case GIMPLE_UNARY_RHS:
3808 return verify_gimple_assign_unary (stmt);
3809
3810 case GIMPLE_BINARY_RHS:
3811 return verify_gimple_assign_binary (stmt);
3812
3813 case GIMPLE_TERNARY_RHS:
3814 return verify_gimple_assign_ternary (stmt);
3815
3816 default:
3817 gcc_unreachable ();
3818 }
3819 }
3820
3821 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3822 is a problem, otherwise false. */
3823
3824 static bool
3825 verify_gimple_return (gimple stmt)
3826 {
3827 tree op = gimple_return_retval (stmt);
3828 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3829
3830 /* We cannot test for present return values as we do not fix up missing
3831 return values from the original source. */
3832 if (op == NULL)
3833 return false;
3834
3835 if (!is_gimple_val (op)
3836 && TREE_CODE (op) != RESULT_DECL)
3837 {
3838 error ("invalid operand in return statement");
3839 debug_generic_stmt (op);
3840 return true;
3841 }
3842
3843 if ((TREE_CODE (op) == RESULT_DECL
3844 && DECL_BY_REFERENCE (op))
3845 || (TREE_CODE (op) == SSA_NAME
3846 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3847 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3848 op = TREE_TYPE (op);
3849
3850 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3851 {
3852 error ("invalid conversion in return statement");
3853 debug_generic_stmt (restype);
3854 debug_generic_stmt (TREE_TYPE (op));
3855 return true;
3856 }
3857
3858 return false;
3859 }
3860
3861
3862 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3863 is a problem, otherwise false. */
3864
3865 static bool
3866 verify_gimple_goto (gimple stmt)
3867 {
3868 tree dest = gimple_goto_dest (stmt);
3869
3870 /* ??? We have two canonical forms of direct goto destinations, a
3871 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3872 if (TREE_CODE (dest) != LABEL_DECL
3873 && (!is_gimple_val (dest)
3874 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3875 {
3876 error ("goto destination is neither a label nor a pointer");
3877 return true;
3878 }
3879
3880 return false;
3881 }
3882
3883 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3884 is a problem, otherwise false. */
3885
3886 static bool
3887 verify_gimple_switch (gimple stmt)
3888 {
3889 if (!is_gimple_val (gimple_switch_index (stmt)))
3890 {
3891 error ("invalid operand to switch statement");
3892 debug_generic_stmt (gimple_switch_index (stmt));
3893 return true;
3894 }
3895
3896 return false;
3897 }
3898
3899
3900 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3901 and false otherwise. */
3902
3903 static bool
3904 verify_gimple_phi (gimple stmt)
3905 {
3906 tree type = TREE_TYPE (gimple_phi_result (stmt));
3907 unsigned i;
3908
3909 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3910 {
3911 error ("Invalid PHI result");
3912 return true;
3913 }
3914
3915 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3916 {
3917 tree arg = gimple_phi_arg_def (stmt, i);
3918 if ((is_gimple_reg (gimple_phi_result (stmt))
3919 && !is_gimple_val (arg))
3920 || (!is_gimple_reg (gimple_phi_result (stmt))
3921 && !is_gimple_addressable (arg)))
3922 {
3923 error ("Invalid PHI argument");
3924 debug_generic_stmt (arg);
3925 return true;
3926 }
3927 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3928 {
3929 error ("Incompatible types in PHI argument %u", i);
3930 debug_generic_stmt (type);
3931 debug_generic_stmt (TREE_TYPE (arg));
3932 return true;
3933 }
3934 }
3935
3936 return false;
3937 }
3938
3939
3940 /* Verify a gimple debug statement STMT.
3941 Returns true if anything is wrong. */
3942
3943 static bool
3944 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3945 {
3946 /* There isn't much that could be wrong in a gimple debug stmt. A
3947 gimple debug bind stmt, for example, maps a tree, that's usually
3948 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3949 component or member of an aggregate type, to another tree, that
3950 can be an arbitrary expression. These stmts expand into debug
3951 insns, and are converted to debug notes by var-tracking.c. */
3952 return false;
3953 }
3954
3955
3956 /* Verify the GIMPLE statement STMT. Returns true if there is an
3957 error, otherwise false. */
3958
3959 static bool
3960 verify_types_in_gimple_stmt (gimple stmt)
3961 {
3962 switch (gimple_code (stmt))
3963 {
3964 case GIMPLE_ASSIGN:
3965 return verify_gimple_assign (stmt);
3966
3967 case GIMPLE_LABEL:
3968 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3969
3970 case GIMPLE_CALL:
3971 return verify_gimple_call (stmt);
3972
3973 case GIMPLE_COND:
3974 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3975 {
3976 error ("invalid comparison code in gimple cond");
3977 return true;
3978 }
3979 if (!(!gimple_cond_true_label (stmt)
3980 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3981 || !(!gimple_cond_false_label (stmt)
3982 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3983 {
3984 error ("invalid labels in gimple cond");
3985 return true;
3986 }
3987
3988 return verify_gimple_comparison (boolean_type_node,
3989 gimple_cond_lhs (stmt),
3990 gimple_cond_rhs (stmt));
3991
3992 case GIMPLE_GOTO:
3993 return verify_gimple_goto (stmt);
3994
3995 case GIMPLE_SWITCH:
3996 return verify_gimple_switch (stmt);
3997
3998 case GIMPLE_RETURN:
3999 return verify_gimple_return (stmt);
4000
4001 case GIMPLE_ASM:
4002 return false;
4003
4004 case GIMPLE_PHI:
4005 return verify_gimple_phi (stmt);
4006
4007 /* Tuples that do not have tree operands. */
4008 case GIMPLE_NOP:
4009 case GIMPLE_PREDICT:
4010 case GIMPLE_RESX:
4011 case GIMPLE_EH_DISPATCH:
4012 case GIMPLE_EH_MUST_NOT_THROW:
4013 return false;
4014
4015 CASE_GIMPLE_OMP:
4016 /* OpenMP directives are validated by the FE and never operated
4017 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4018 non-gimple expressions when the main index variable has had
4019 its address taken. This does not affect the loop itself
4020 because the header of an GIMPLE_OMP_FOR is merely used to determine
4021 how to setup the parallel iteration. */
4022 return false;
4023
4024 case GIMPLE_DEBUG:
4025 return verify_gimple_debug (stmt);
4026
4027 default:
4028 gcc_unreachable ();
4029 }
4030 }
4031
4032 /* Verify the GIMPLE statements inside the sequence STMTS. */
4033
4034 static bool
4035 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4036 {
4037 gimple_stmt_iterator ittr;
4038 bool err = false;
4039
4040 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4041 {
4042 gimple stmt = gsi_stmt (ittr);
4043
4044 switch (gimple_code (stmt))
4045 {
4046 case GIMPLE_BIND:
4047 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4048 break;
4049
4050 case GIMPLE_TRY:
4051 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4052 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4053 break;
4054
4055 case GIMPLE_EH_FILTER:
4056 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4057 break;
4058
4059 case GIMPLE_CATCH:
4060 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4061 break;
4062
4063 default:
4064 {
4065 bool err2 = verify_types_in_gimple_stmt (stmt);
4066 if (err2)
4067 debug_gimple_stmt (stmt);
4068 err |= err2;
4069 }
4070 }
4071 }
4072
4073 return err;
4074 }
4075
4076
4077 /* Verify the GIMPLE statements inside the statement list STMTS. */
4078
4079 void
4080 verify_types_in_gimple_seq (gimple_seq stmts)
4081 {
4082 if (verify_types_in_gimple_seq_2 (stmts))
4083 internal_error ("verify_gimple failed");
4084 }
4085
4086
4087 /* Verify STMT, return true if STMT is not in GIMPLE form.
4088 TODO: Implement type checking. */
4089
4090 static bool
4091 verify_stmt (gimple_stmt_iterator *gsi)
4092 {
4093 tree addr;
4094 struct walk_stmt_info wi;
4095 bool last_in_block = gsi_one_before_end_p (*gsi);
4096 gimple stmt = gsi_stmt (*gsi);
4097 int lp_nr;
4098
4099 if (is_gimple_omp (stmt))
4100 {
4101 /* OpenMP directives are validated by the FE and never operated
4102 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4103 non-gimple expressions when the main index variable has had
4104 its address taken. This does not affect the loop itself
4105 because the header of an GIMPLE_OMP_FOR is merely used to determine
4106 how to setup the parallel iteration. */
4107 return false;
4108 }
4109
4110 /* FIXME. The C frontend passes unpromoted arguments in case it
4111 didn't see a function declaration before the call. */
4112 if (is_gimple_call (stmt))
4113 {
4114 tree decl;
4115
4116 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4117 {
4118 error ("invalid function in call statement");
4119 return true;
4120 }
4121
4122 decl = gimple_call_fndecl (stmt);
4123 if (decl
4124 && TREE_CODE (decl) == FUNCTION_DECL
4125 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4126 && (!DECL_PURE_P (decl))
4127 && (!TREE_READONLY (decl)))
4128 {
4129 error ("invalid pure const state for function");
4130 return true;
4131 }
4132 }
4133
4134 if (is_gimple_debug (stmt))
4135 return false;
4136
4137 memset (&wi, 0, sizeof (wi));
4138 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4139 if (addr)
4140 {
4141 debug_generic_expr (addr);
4142 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4143 debug_gimple_stmt (stmt);
4144 return true;
4145 }
4146
4147 /* If the statement is marked as part of an EH region, then it is
4148 expected that the statement could throw. Verify that when we
4149 have optimizations that simplify statements such that we prove
4150 that they cannot throw, that we update other data structures
4151 to match. */
4152 lp_nr = lookup_stmt_eh_lp (stmt);
4153 if (lp_nr != 0)
4154 {
4155 if (!stmt_could_throw_p (stmt))
4156 {
4157 error ("statement marked for throw, but doesn%'t");
4158 goto fail;
4159 }
4160 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4161 {
4162 error ("statement marked for throw in middle of block");
4163 goto fail;
4164 }
4165 }
4166
4167 return false;
4168
4169 fail:
4170 debug_gimple_stmt (stmt);
4171 return true;
4172 }
4173
4174
4175 /* Return true when the T can be shared. */
4176
4177 bool
4178 tree_node_can_be_shared (tree t)
4179 {
4180 if (IS_TYPE_OR_DECL_P (t)
4181 || is_gimple_min_invariant (t)
4182 || TREE_CODE (t) == SSA_NAME
4183 || t == error_mark_node
4184 || TREE_CODE (t) == IDENTIFIER_NODE)
4185 return true;
4186
4187 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4188 return true;
4189
4190 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4191 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4192 || TREE_CODE (t) == COMPONENT_REF
4193 || TREE_CODE (t) == REALPART_EXPR
4194 || TREE_CODE (t) == IMAGPART_EXPR)
4195 t = TREE_OPERAND (t, 0);
4196
4197 if (DECL_P (t))
4198 return true;
4199
4200 return false;
4201 }
4202
4203
4204 /* Called via walk_gimple_stmt. Verify tree sharing. */
4205
4206 static tree
4207 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4208 {
4209 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4210 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4211
4212 if (tree_node_can_be_shared (*tp))
4213 {
4214 *walk_subtrees = false;
4215 return NULL;
4216 }
4217
4218 if (pointer_set_insert (visited, *tp))
4219 return *tp;
4220
4221 return NULL;
4222 }
4223
4224
4225 static bool eh_error_found;
4226 static int
4227 verify_eh_throw_stmt_node (void **slot, void *data)
4228 {
4229 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4230 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4231
4232 if (!pointer_set_contains (visited, node->stmt))
4233 {
4234 error ("Dead STMT in EH table");
4235 debug_gimple_stmt (node->stmt);
4236 eh_error_found = true;
4237 }
4238 return 1;
4239 }
4240
4241
4242 /* Verify the GIMPLE statements in every basic block. */
4243
4244 DEBUG_FUNCTION void
4245 verify_stmts (void)
4246 {
4247 basic_block bb;
4248 gimple_stmt_iterator gsi;
4249 bool err = false;
4250 struct pointer_set_t *visited, *visited_stmts;
4251 tree addr;
4252 struct walk_stmt_info wi;
4253
4254 timevar_push (TV_TREE_STMT_VERIFY);
4255 visited = pointer_set_create ();
4256 visited_stmts = pointer_set_create ();
4257
4258 memset (&wi, 0, sizeof (wi));
4259 wi.info = (void *) visited;
4260
4261 FOR_EACH_BB (bb)
4262 {
4263 gimple phi;
4264 size_t i;
4265
4266 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4267 {
4268 phi = gsi_stmt (gsi);
4269 pointer_set_insert (visited_stmts, phi);
4270 if (gimple_bb (phi) != bb)
4271 {
4272 error ("gimple_bb (phi) is set to a wrong basic block");
4273 err |= true;
4274 }
4275
4276 for (i = 0; i < gimple_phi_num_args (phi); i++)
4277 {
4278 tree t = gimple_phi_arg_def (phi, i);
4279 tree addr;
4280
4281 if (!t)
4282 {
4283 error ("missing PHI def");
4284 debug_gimple_stmt (phi);
4285 err |= true;
4286 continue;
4287 }
4288 /* Addressable variables do have SSA_NAMEs but they
4289 are not considered gimple values. */
4290 else if (TREE_CODE (t) != SSA_NAME
4291 && TREE_CODE (t) != FUNCTION_DECL
4292 && !is_gimple_min_invariant (t))
4293 {
4294 error ("PHI argument is not a GIMPLE value");
4295 debug_gimple_stmt (phi);
4296 debug_generic_expr (t);
4297 err |= true;
4298 }
4299
4300 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4301 if (addr)
4302 {
4303 error ("incorrect sharing of tree nodes");
4304 debug_gimple_stmt (phi);
4305 debug_generic_expr (addr);
4306 err |= true;
4307 }
4308 }
4309
4310 #ifdef ENABLE_TYPES_CHECKING
4311 if (verify_gimple_phi (phi))
4312 {
4313 debug_gimple_stmt (phi);
4314 err |= true;
4315 }
4316 #endif
4317 }
4318
4319 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4320 {
4321 gimple stmt = gsi_stmt (gsi);
4322
4323 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4324 || gimple_code (stmt) == GIMPLE_BIND)
4325 {
4326 error ("invalid GIMPLE statement");
4327 debug_gimple_stmt (stmt);
4328 err |= true;
4329 }
4330
4331 pointer_set_insert (visited_stmts, stmt);
4332
4333 if (gimple_bb (stmt) != bb)
4334 {
4335 error ("gimple_bb (stmt) is set to a wrong basic block");
4336 debug_gimple_stmt (stmt);
4337 err |= true;
4338 }
4339
4340 if (gimple_code (stmt) == GIMPLE_LABEL)
4341 {
4342 tree decl = gimple_label_label (stmt);
4343 int uid = LABEL_DECL_UID (decl);
4344
4345 if (uid == -1
4346 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4347 {
4348 error ("incorrect entry in label_to_block_map");
4349 err |= true;
4350 }
4351
4352 uid = EH_LANDING_PAD_NR (decl);
4353 if (uid)
4354 {
4355 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4356 if (decl != lp->post_landing_pad)
4357 {
4358 error ("incorrect setting of landing pad number");
4359 err |= true;
4360 }
4361 }
4362 }
4363
4364 err |= verify_stmt (&gsi);
4365
4366 #ifdef ENABLE_TYPES_CHECKING
4367 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4368 {
4369 debug_gimple_stmt (stmt);
4370 err |= true;
4371 }
4372 #endif
4373 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4374 if (addr)
4375 {
4376 error ("incorrect sharing of tree nodes");
4377 debug_gimple_stmt (stmt);
4378 debug_generic_expr (addr);
4379 err |= true;
4380 }
4381 gsi_next (&gsi);
4382 }
4383 }
4384
4385 eh_error_found = false;
4386 if (get_eh_throw_stmt_table (cfun))
4387 htab_traverse (get_eh_throw_stmt_table (cfun),
4388 verify_eh_throw_stmt_node,
4389 visited_stmts);
4390
4391 if (err | eh_error_found)
4392 internal_error ("verify_stmts failed");
4393
4394 pointer_set_destroy (visited);
4395 pointer_set_destroy (visited_stmts);
4396 verify_histograms ();
4397 timevar_pop (TV_TREE_STMT_VERIFY);
4398 }
4399
4400
4401 /* Verifies that the flow information is OK. */
4402
4403 static int
4404 gimple_verify_flow_info (void)
4405 {
4406 int err = 0;
4407 basic_block bb;
4408 gimple_stmt_iterator gsi;
4409 gimple stmt;
4410 edge e;
4411 edge_iterator ei;
4412
4413 if (ENTRY_BLOCK_PTR->il.gimple)
4414 {
4415 error ("ENTRY_BLOCK has IL associated with it");
4416 err = 1;
4417 }
4418
4419 if (EXIT_BLOCK_PTR->il.gimple)
4420 {
4421 error ("EXIT_BLOCK has IL associated with it");
4422 err = 1;
4423 }
4424
4425 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4426 if (e->flags & EDGE_FALLTHRU)
4427 {
4428 error ("fallthru to exit from bb %d", e->src->index);
4429 err = 1;
4430 }
4431
4432 FOR_EACH_BB (bb)
4433 {
4434 bool found_ctrl_stmt = false;
4435
4436 stmt = NULL;
4437
4438 /* Skip labels on the start of basic block. */
4439 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4440 {
4441 tree label;
4442 gimple prev_stmt = stmt;
4443
4444 stmt = gsi_stmt (gsi);
4445
4446 if (gimple_code (stmt) != GIMPLE_LABEL)
4447 break;
4448
4449 label = gimple_label_label (stmt);
4450 if (prev_stmt && DECL_NONLOCAL (label))
4451 {
4452 error ("nonlocal label ");
4453 print_generic_expr (stderr, label, 0);
4454 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4455 bb->index);
4456 err = 1;
4457 }
4458
4459 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4460 {
4461 error ("EH landing pad label ");
4462 print_generic_expr (stderr, label, 0);
4463 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4464 bb->index);
4465 err = 1;
4466 }
4467
4468 if (label_to_block (label) != bb)
4469 {
4470 error ("label ");
4471 print_generic_expr (stderr, label, 0);
4472 fprintf (stderr, " to block does not match in bb %d",
4473 bb->index);
4474 err = 1;
4475 }
4476
4477 if (decl_function_context (label) != current_function_decl)
4478 {
4479 error ("label ");
4480 print_generic_expr (stderr, label, 0);
4481 fprintf (stderr, " has incorrect context in bb %d",
4482 bb->index);
4483 err = 1;
4484 }
4485 }
4486
4487 /* Verify that body of basic block BB is free of control flow. */
4488 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4489 {
4490 gimple stmt = gsi_stmt (gsi);
4491
4492 if (found_ctrl_stmt)
4493 {
4494 error ("control flow in the middle of basic block %d",
4495 bb->index);
4496 err = 1;
4497 }
4498
4499 if (stmt_ends_bb_p (stmt))
4500 found_ctrl_stmt = true;
4501
4502 if (gimple_code (stmt) == GIMPLE_LABEL)
4503 {
4504 error ("label ");
4505 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4506 fprintf (stderr, " in the middle of basic block %d", bb->index);
4507 err = 1;
4508 }
4509 }
4510
4511 gsi = gsi_last_bb (bb);
4512 if (gsi_end_p (gsi))
4513 continue;
4514
4515 stmt = gsi_stmt (gsi);
4516
4517 if (gimple_code (stmt) == GIMPLE_LABEL)
4518 continue;
4519
4520 err |= verify_eh_edges (stmt);
4521
4522 if (is_ctrl_stmt (stmt))
4523 {
4524 FOR_EACH_EDGE (e, ei, bb->succs)
4525 if (e->flags & EDGE_FALLTHRU)
4526 {
4527 error ("fallthru edge after a control statement in bb %d",
4528 bb->index);
4529 err = 1;
4530 }
4531 }
4532
4533 if (gimple_code (stmt) != GIMPLE_COND)
4534 {
4535 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4536 after anything else but if statement. */
4537 FOR_EACH_EDGE (e, ei, bb->succs)
4538 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4539 {
4540 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4541 bb->index);
4542 err = 1;
4543 }
4544 }
4545
4546 switch (gimple_code (stmt))
4547 {
4548 case GIMPLE_COND:
4549 {
4550 edge true_edge;
4551 edge false_edge;
4552
4553 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4554
4555 if (!true_edge
4556 || !false_edge
4557 || !(true_edge->flags & EDGE_TRUE_VALUE)
4558 || !(false_edge->flags & EDGE_FALSE_VALUE)
4559 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4560 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4561 || EDGE_COUNT (bb->succs) >= 3)
4562 {
4563 error ("wrong outgoing edge flags at end of bb %d",
4564 bb->index);
4565 err = 1;
4566 }
4567 }
4568 break;
4569
4570 case GIMPLE_GOTO:
4571 if (simple_goto_p (stmt))
4572 {
4573 error ("explicit goto at end of bb %d", bb->index);
4574 err = 1;
4575 }
4576 else
4577 {
4578 /* FIXME. We should double check that the labels in the
4579 destination blocks have their address taken. */
4580 FOR_EACH_EDGE (e, ei, bb->succs)
4581 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4582 | EDGE_FALSE_VALUE))
4583 || !(e->flags & EDGE_ABNORMAL))
4584 {
4585 error ("wrong outgoing edge flags at end of bb %d",
4586 bb->index);
4587 err = 1;
4588 }
4589 }
4590 break;
4591
4592 case GIMPLE_CALL:
4593 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4594 break;
4595 /* ... fallthru ... */
4596 case GIMPLE_RETURN:
4597 if (!single_succ_p (bb)
4598 || (single_succ_edge (bb)->flags
4599 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4600 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4601 {
4602 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4603 err = 1;
4604 }
4605 if (single_succ (bb) != EXIT_BLOCK_PTR)
4606 {
4607 error ("return edge does not point to exit in bb %d",
4608 bb->index);
4609 err = 1;
4610 }
4611 break;
4612
4613 case GIMPLE_SWITCH:
4614 {
4615 tree prev;
4616 edge e;
4617 size_t i, n;
4618
4619 n = gimple_switch_num_labels (stmt);
4620
4621 /* Mark all the destination basic blocks. */
4622 for (i = 0; i < n; ++i)
4623 {
4624 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4625 basic_block label_bb = label_to_block (lab);
4626 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4627 label_bb->aux = (void *)1;
4628 }
4629
4630 /* Verify that the case labels are sorted. */
4631 prev = gimple_switch_label (stmt, 0);
4632 for (i = 1; i < n; ++i)
4633 {
4634 tree c = gimple_switch_label (stmt, i);
4635 if (!CASE_LOW (c))
4636 {
4637 error ("found default case not at the start of "
4638 "case vector");
4639 err = 1;
4640 continue;
4641 }
4642 if (CASE_LOW (prev)
4643 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4644 {
4645 error ("case labels not sorted: ");
4646 print_generic_expr (stderr, prev, 0);
4647 fprintf (stderr," is greater than ");
4648 print_generic_expr (stderr, c, 0);
4649 fprintf (stderr," but comes before it.\n");
4650 err = 1;
4651 }
4652 prev = c;
4653 }
4654 /* VRP will remove the default case if it can prove it will
4655 never be executed. So do not verify there always exists
4656 a default case here. */
4657
4658 FOR_EACH_EDGE (e, ei, bb->succs)
4659 {
4660 if (!e->dest->aux)
4661 {
4662 error ("extra outgoing edge %d->%d",
4663 bb->index, e->dest->index);
4664 err = 1;
4665 }
4666
4667 e->dest->aux = (void *)2;
4668 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4669 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4670 {
4671 error ("wrong outgoing edge flags at end of bb %d",
4672 bb->index);
4673 err = 1;
4674 }
4675 }
4676
4677 /* Check that we have all of them. */
4678 for (i = 0; i < n; ++i)
4679 {
4680 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4681 basic_block label_bb = label_to_block (lab);
4682
4683 if (label_bb->aux != (void *)2)
4684 {
4685 error ("missing edge %i->%i", bb->index, label_bb->index);
4686 err = 1;
4687 }
4688 }
4689
4690 FOR_EACH_EDGE (e, ei, bb->succs)
4691 e->dest->aux = (void *)0;
4692 }
4693 break;
4694
4695 case GIMPLE_EH_DISPATCH:
4696 err |= verify_eh_dispatch_edge (stmt);
4697 break;
4698
4699 default:
4700 break;
4701 }
4702 }
4703
4704 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4705 verify_dominators (CDI_DOMINATORS);
4706
4707 return err;
4708 }
4709
4710
4711 /* Updates phi nodes after creating a forwarder block joined
4712 by edge FALLTHRU. */
4713
4714 static void
4715 gimple_make_forwarder_block (edge fallthru)
4716 {
4717 edge e;
4718 edge_iterator ei;
4719 basic_block dummy, bb;
4720 tree var;
4721 gimple_stmt_iterator gsi;
4722
4723 dummy = fallthru->src;
4724 bb = fallthru->dest;
4725
4726 if (single_pred_p (bb))
4727 return;
4728
4729 /* If we redirected a branch we must create new PHI nodes at the
4730 start of BB. */
4731 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4732 {
4733 gimple phi, new_phi;
4734
4735 phi = gsi_stmt (gsi);
4736 var = gimple_phi_result (phi);
4737 new_phi = create_phi_node (var, bb);
4738 SSA_NAME_DEF_STMT (var) = new_phi;
4739 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4740 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4741 UNKNOWN_LOCATION);
4742 }
4743
4744 /* Add the arguments we have stored on edges. */
4745 FOR_EACH_EDGE (e, ei, bb->preds)
4746 {
4747 if (e == fallthru)
4748 continue;
4749
4750 flush_pending_stmts (e);
4751 }
4752 }
4753
4754
4755 /* Return a non-special label in the head of basic block BLOCK.
4756 Create one if it doesn't exist. */
4757
4758 tree
4759 gimple_block_label (basic_block bb)
4760 {
4761 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4762 bool first = true;
4763 tree label;
4764 gimple stmt;
4765
4766 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4767 {
4768 stmt = gsi_stmt (i);
4769 if (gimple_code (stmt) != GIMPLE_LABEL)
4770 break;
4771 label = gimple_label_label (stmt);
4772 if (!DECL_NONLOCAL (label))
4773 {
4774 if (!first)
4775 gsi_move_before (&i, &s);
4776 return label;
4777 }
4778 }
4779
4780 label = create_artificial_label (UNKNOWN_LOCATION);
4781 stmt = gimple_build_label (label);
4782 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4783 return label;
4784 }
4785
4786
4787 /* Attempt to perform edge redirection by replacing a possibly complex
4788 jump instruction by a goto or by removing the jump completely.
4789 This can apply only if all edges now point to the same block. The
4790 parameters and return values are equivalent to
4791 redirect_edge_and_branch. */
4792
4793 static edge
4794 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4795 {
4796 basic_block src = e->src;
4797 gimple_stmt_iterator i;
4798 gimple stmt;
4799
4800 /* We can replace or remove a complex jump only when we have exactly
4801 two edges. */
4802 if (EDGE_COUNT (src->succs) != 2
4803 /* Verify that all targets will be TARGET. Specifically, the
4804 edge that is not E must also go to TARGET. */
4805 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4806 return NULL;
4807
4808 i = gsi_last_bb (src);
4809 if (gsi_end_p (i))
4810 return NULL;
4811
4812 stmt = gsi_stmt (i);
4813
4814 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4815 {
4816 gsi_remove (&i, true);
4817 e = ssa_redirect_edge (e, target);
4818 e->flags = EDGE_FALLTHRU;
4819 return e;
4820 }
4821
4822 return NULL;
4823 }
4824
4825
4826 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4827 edge representing the redirected branch. */
4828
4829 static edge
4830 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4831 {
4832 basic_block bb = e->src;
4833 gimple_stmt_iterator gsi;
4834 edge ret;
4835 gimple stmt;
4836
4837 if (e->flags & EDGE_ABNORMAL)
4838 return NULL;
4839
4840 if (e->dest == dest)
4841 return NULL;
4842
4843 if (e->flags & EDGE_EH)
4844 return redirect_eh_edge (e, dest);
4845
4846 if (e->src != ENTRY_BLOCK_PTR)
4847 {
4848 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4849 if (ret)
4850 return ret;
4851 }
4852
4853 gsi = gsi_last_bb (bb);
4854 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4855
4856 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4857 {
4858 case GIMPLE_COND:
4859 /* For COND_EXPR, we only need to redirect the edge. */
4860 break;
4861
4862 case GIMPLE_GOTO:
4863 /* No non-abnormal edges should lead from a non-simple goto, and
4864 simple ones should be represented implicitly. */
4865 gcc_unreachable ();
4866
4867 case GIMPLE_SWITCH:
4868 {
4869 tree label = gimple_block_label (dest);
4870 tree cases = get_cases_for_edge (e, stmt);
4871
4872 /* If we have a list of cases associated with E, then use it
4873 as it's a lot faster than walking the entire case vector. */
4874 if (cases)
4875 {
4876 edge e2 = find_edge (e->src, dest);
4877 tree last, first;
4878
4879 first = cases;
4880 while (cases)
4881 {
4882 last = cases;
4883 CASE_LABEL (cases) = label;
4884 cases = TREE_CHAIN (cases);
4885 }
4886
4887 /* If there was already an edge in the CFG, then we need
4888 to move all the cases associated with E to E2. */
4889 if (e2)
4890 {
4891 tree cases2 = get_cases_for_edge (e2, stmt);
4892
4893 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4894 TREE_CHAIN (cases2) = first;
4895 }
4896 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4897 }
4898 else
4899 {
4900 size_t i, n = gimple_switch_num_labels (stmt);
4901
4902 for (i = 0; i < n; i++)
4903 {
4904 tree elt = gimple_switch_label (stmt, i);
4905 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4906 CASE_LABEL (elt) = label;
4907 }
4908 }
4909 }
4910 break;
4911
4912 case GIMPLE_ASM:
4913 {
4914 int i, n = gimple_asm_nlabels (stmt);
4915 tree label = NULL;
4916
4917 for (i = 0; i < n; ++i)
4918 {
4919 tree cons = gimple_asm_label_op (stmt, i);
4920 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4921 {
4922 if (!label)
4923 label = gimple_block_label (dest);
4924 TREE_VALUE (cons) = label;
4925 }
4926 }
4927
4928 /* If we didn't find any label matching the former edge in the
4929 asm labels, we must be redirecting the fallthrough
4930 edge. */
4931 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4932 }
4933 break;
4934
4935 case GIMPLE_RETURN:
4936 gsi_remove (&gsi, true);
4937 e->flags |= EDGE_FALLTHRU;
4938 break;
4939
4940 case GIMPLE_OMP_RETURN:
4941 case GIMPLE_OMP_CONTINUE:
4942 case GIMPLE_OMP_SECTIONS_SWITCH:
4943 case GIMPLE_OMP_FOR:
4944 /* The edges from OMP constructs can be simply redirected. */
4945 break;
4946
4947 case GIMPLE_EH_DISPATCH:
4948 if (!(e->flags & EDGE_FALLTHRU))
4949 redirect_eh_dispatch_edge (stmt, e, dest);
4950 break;
4951
4952 default:
4953 /* Otherwise it must be a fallthru edge, and we don't need to
4954 do anything besides redirecting it. */
4955 gcc_assert (e->flags & EDGE_FALLTHRU);
4956 break;
4957 }
4958
4959 /* Update/insert PHI nodes as necessary. */
4960
4961 /* Now update the edges in the CFG. */
4962 e = ssa_redirect_edge (e, dest);
4963
4964 return e;
4965 }
4966
4967 /* Returns true if it is possible to remove edge E by redirecting
4968 it to the destination of the other edge from E->src. */
4969
4970 static bool
4971 gimple_can_remove_branch_p (const_edge e)
4972 {
4973 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4974 return false;
4975
4976 return true;
4977 }
4978
4979 /* Simple wrapper, as we can always redirect fallthru edges. */
4980
4981 static basic_block
4982 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4983 {
4984 e = gimple_redirect_edge_and_branch (e, dest);
4985 gcc_assert (e);
4986
4987 return NULL;
4988 }
4989
4990
4991 /* Splits basic block BB after statement STMT (but at least after the
4992 labels). If STMT is NULL, BB is split just after the labels. */
4993
4994 static basic_block
4995 gimple_split_block (basic_block bb, void *stmt)
4996 {
4997 gimple_stmt_iterator gsi;
4998 gimple_stmt_iterator gsi_tgt;
4999 gimple act;
5000 gimple_seq list;
5001 basic_block new_bb;
5002 edge e;
5003 edge_iterator ei;
5004
5005 new_bb = create_empty_bb (bb);
5006
5007 /* Redirect the outgoing edges. */
5008 new_bb->succs = bb->succs;
5009 bb->succs = NULL;
5010 FOR_EACH_EDGE (e, ei, new_bb->succs)
5011 e->src = new_bb;
5012
5013 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5014 stmt = NULL;
5015
5016 /* Move everything from GSI to the new basic block. */
5017 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5018 {
5019 act = gsi_stmt (gsi);
5020 if (gimple_code (act) == GIMPLE_LABEL)
5021 continue;
5022
5023 if (!stmt)
5024 break;
5025
5026 if (stmt == act)
5027 {
5028 gsi_next (&gsi);
5029 break;
5030 }
5031 }
5032
5033 if (gsi_end_p (gsi))
5034 return new_bb;
5035
5036 /* Split the statement list - avoid re-creating new containers as this
5037 brings ugly quadratic memory consumption in the inliner.
5038 (We are still quadratic since we need to update stmt BB pointers,
5039 sadly.) */
5040 list = gsi_split_seq_before (&gsi);
5041 set_bb_seq (new_bb, list);
5042 for (gsi_tgt = gsi_start (list);
5043 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5044 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5045
5046 return new_bb;
5047 }
5048
5049
5050 /* Moves basic block BB after block AFTER. */
5051
5052 static bool
5053 gimple_move_block_after (basic_block bb, basic_block after)
5054 {
5055 if (bb->prev_bb == after)
5056 return true;
5057
5058 unlink_block (bb);
5059 link_block (bb, after);
5060
5061 return true;
5062 }
5063
5064
5065 /* Return true if basic_block can be duplicated. */
5066
5067 static bool
5068 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5069 {
5070 return true;
5071 }
5072
5073 /* Create a duplicate of the basic block BB. NOTE: This does not
5074 preserve SSA form. */
5075
5076 static basic_block
5077 gimple_duplicate_bb (basic_block bb)
5078 {
5079 basic_block new_bb;
5080 gimple_stmt_iterator gsi, gsi_tgt;
5081 gimple_seq phis = phi_nodes (bb);
5082 gimple phi, stmt, copy;
5083
5084 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5085
5086 /* Copy the PHI nodes. We ignore PHI node arguments here because
5087 the incoming edges have not been setup yet. */
5088 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5089 {
5090 phi = gsi_stmt (gsi);
5091 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5092 create_new_def_for (gimple_phi_result (copy), copy,
5093 gimple_phi_result_ptr (copy));
5094 }
5095
5096 gsi_tgt = gsi_start_bb (new_bb);
5097 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5098 {
5099 def_operand_p def_p;
5100 ssa_op_iter op_iter;
5101
5102 stmt = gsi_stmt (gsi);
5103 if (gimple_code (stmt) == GIMPLE_LABEL)
5104 continue;
5105
5106 /* Create a new copy of STMT and duplicate STMT's virtual
5107 operands. */
5108 copy = gimple_copy (stmt);
5109 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5110
5111 maybe_duplicate_eh_stmt (copy, stmt);
5112 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5113
5114 /* Create new names for all the definitions created by COPY and
5115 add replacement mappings for each new name. */
5116 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5117 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5118 }
5119
5120 return new_bb;
5121 }
5122
5123 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5124
5125 static void
5126 add_phi_args_after_copy_edge (edge e_copy)
5127 {
5128 basic_block bb, bb_copy = e_copy->src, dest;
5129 edge e;
5130 edge_iterator ei;
5131 gimple phi, phi_copy;
5132 tree def;
5133 gimple_stmt_iterator psi, psi_copy;
5134
5135 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5136 return;
5137
5138 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5139
5140 if (e_copy->dest->flags & BB_DUPLICATED)
5141 dest = get_bb_original (e_copy->dest);
5142 else
5143 dest = e_copy->dest;
5144
5145 e = find_edge (bb, dest);
5146 if (!e)
5147 {
5148 /* During loop unrolling the target of the latch edge is copied.
5149 In this case we are not looking for edge to dest, but to
5150 duplicated block whose original was dest. */
5151 FOR_EACH_EDGE (e, ei, bb->succs)
5152 {
5153 if ((e->dest->flags & BB_DUPLICATED)
5154 && get_bb_original (e->dest) == dest)
5155 break;
5156 }
5157
5158 gcc_assert (e != NULL);
5159 }
5160
5161 for (psi = gsi_start_phis (e->dest),
5162 psi_copy = gsi_start_phis (e_copy->dest);
5163 !gsi_end_p (psi);
5164 gsi_next (&psi), gsi_next (&psi_copy))
5165 {
5166 phi = gsi_stmt (psi);
5167 phi_copy = gsi_stmt (psi_copy);
5168 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5169 add_phi_arg (phi_copy, def, e_copy,
5170 gimple_phi_arg_location_from_edge (phi, e));
5171 }
5172 }
5173
5174
5175 /* Basic block BB_COPY was created by code duplication. Add phi node
5176 arguments for edges going out of BB_COPY. The blocks that were
5177 duplicated have BB_DUPLICATED set. */
5178
5179 void
5180 add_phi_args_after_copy_bb (basic_block bb_copy)
5181 {
5182 edge e_copy;
5183 edge_iterator ei;
5184
5185 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5186 {
5187 add_phi_args_after_copy_edge (e_copy);
5188 }
5189 }
5190
5191 /* Blocks in REGION_COPY array of length N_REGION were created by
5192 duplication of basic blocks. Add phi node arguments for edges
5193 going from these blocks. If E_COPY is not NULL, also add
5194 phi node arguments for its destination.*/
5195
5196 void
5197 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5198 edge e_copy)
5199 {
5200 unsigned i;
5201
5202 for (i = 0; i < n_region; i++)
5203 region_copy[i]->flags |= BB_DUPLICATED;
5204
5205 for (i = 0; i < n_region; i++)
5206 add_phi_args_after_copy_bb (region_copy[i]);
5207 if (e_copy)
5208 add_phi_args_after_copy_edge (e_copy);
5209
5210 for (i = 0; i < n_region; i++)
5211 region_copy[i]->flags &= ~BB_DUPLICATED;
5212 }
5213
5214 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5215 important exit edge EXIT. By important we mean that no SSA name defined
5216 inside region is live over the other exit edges of the region. All entry
5217 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5218 to the duplicate of the region. SSA form, dominance and loop information
5219 is updated. The new basic blocks are stored to REGION_COPY in the same
5220 order as they had in REGION, provided that REGION_COPY is not NULL.
5221 The function returns false if it is unable to copy the region,
5222 true otherwise. */
5223
5224 bool
5225 gimple_duplicate_sese_region (edge entry, edge exit,
5226 basic_block *region, unsigned n_region,
5227 basic_block *region_copy)
5228 {
5229 unsigned i;
5230 bool free_region_copy = false, copying_header = false;
5231 struct loop *loop = entry->dest->loop_father;
5232 edge exit_copy;
5233 VEC (basic_block, heap) *doms;
5234 edge redirected;
5235 int total_freq = 0, entry_freq = 0;
5236 gcov_type total_count = 0, entry_count = 0;
5237
5238 if (!can_copy_bbs_p (region, n_region))
5239 return false;
5240
5241 /* Some sanity checking. Note that we do not check for all possible
5242 missuses of the functions. I.e. if you ask to copy something weird,
5243 it will work, but the state of structures probably will not be
5244 correct. */
5245 for (i = 0; i < n_region; i++)
5246 {
5247 /* We do not handle subloops, i.e. all the blocks must belong to the
5248 same loop. */
5249 if (region[i]->loop_father != loop)
5250 return false;
5251
5252 if (region[i] != entry->dest
5253 && region[i] == loop->header)
5254 return false;
5255 }
5256
5257 set_loop_copy (loop, loop);
5258
5259 /* In case the function is used for loop header copying (which is the primary
5260 use), ensure that EXIT and its copy will be new latch and entry edges. */
5261 if (loop->header == entry->dest)
5262 {
5263 copying_header = true;
5264 set_loop_copy (loop, loop_outer (loop));
5265
5266 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5267 return false;
5268
5269 for (i = 0; i < n_region; i++)
5270 if (region[i] != exit->src
5271 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5272 return false;
5273 }
5274
5275 if (!region_copy)
5276 {
5277 region_copy = XNEWVEC (basic_block, n_region);
5278 free_region_copy = true;
5279 }
5280
5281 gcc_assert (!need_ssa_update_p (cfun));
5282
5283 /* Record blocks outside the region that are dominated by something
5284 inside. */
5285 doms = NULL;
5286 initialize_original_copy_tables ();
5287
5288 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5289
5290 if (entry->dest->count)
5291 {
5292 total_count = entry->dest->count;
5293 entry_count = entry->count;
5294 /* Fix up corner cases, to avoid division by zero or creation of negative
5295 frequencies. */
5296 if (entry_count > total_count)
5297 entry_count = total_count;
5298 }
5299 else
5300 {
5301 total_freq = entry->dest->frequency;
5302 entry_freq = EDGE_FREQUENCY (entry);
5303 /* Fix up corner cases, to avoid division by zero or creation of negative
5304 frequencies. */
5305 if (total_freq == 0)
5306 total_freq = 1;
5307 else if (entry_freq > total_freq)
5308 entry_freq = total_freq;
5309 }
5310
5311 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5312 split_edge_bb_loc (entry));
5313 if (total_count)
5314 {
5315 scale_bbs_frequencies_gcov_type (region, n_region,
5316 total_count - entry_count,
5317 total_count);
5318 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5319 total_count);
5320 }
5321 else
5322 {
5323 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5324 total_freq);
5325 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5326 }
5327
5328 if (copying_header)
5329 {
5330 loop->header = exit->dest;
5331 loop->latch = exit->src;
5332 }
5333
5334 /* Redirect the entry and add the phi node arguments. */
5335 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5336 gcc_assert (redirected != NULL);
5337 flush_pending_stmts (entry);
5338
5339 /* Concerning updating of dominators: We must recount dominators
5340 for entry block and its copy. Anything that is outside of the
5341 region, but was dominated by something inside needs recounting as
5342 well. */
5343 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5344 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5345 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5346 VEC_free (basic_block, heap, doms);
5347
5348 /* Add the other PHI node arguments. */
5349 add_phi_args_after_copy (region_copy, n_region, NULL);
5350
5351 /* Update the SSA web. */
5352 update_ssa (TODO_update_ssa);
5353
5354 if (free_region_copy)
5355 free (region_copy);
5356
5357 free_original_copy_tables ();
5358 return true;
5359 }
5360
5361 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5362 are stored to REGION_COPY in the same order in that they appear
5363 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5364 the region, EXIT an exit from it. The condition guarding EXIT
5365 is moved to ENTRY. Returns true if duplication succeeds, false
5366 otherwise.
5367
5368 For example,
5369
5370 some_code;
5371 if (cond)
5372 A;
5373 else
5374 B;
5375
5376 is transformed to
5377
5378 if (cond)
5379 {
5380 some_code;
5381 A;
5382 }
5383 else
5384 {
5385 some_code;
5386 B;
5387 }
5388 */
5389
5390 bool
5391 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5392 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5393 basic_block *region_copy ATTRIBUTE_UNUSED)
5394 {
5395 unsigned i;
5396 bool free_region_copy = false;
5397 struct loop *loop = exit->dest->loop_father;
5398 struct loop *orig_loop = entry->dest->loop_father;
5399 basic_block switch_bb, entry_bb, nentry_bb;
5400 VEC (basic_block, heap) *doms;
5401 int total_freq = 0, exit_freq = 0;
5402 gcov_type total_count = 0, exit_count = 0;
5403 edge exits[2], nexits[2], e;
5404 gimple_stmt_iterator gsi,gsi1;
5405 gimple cond_stmt;
5406 edge sorig, snew;
5407 basic_block exit_bb;
5408 basic_block iters_bb;
5409 tree new_rhs;
5410 gimple_stmt_iterator psi;
5411 gimple phi;
5412 tree def;
5413
5414 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5415 exits[0] = exit;
5416 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5417
5418 if (!can_copy_bbs_p (region, n_region))
5419 return false;
5420
5421 initialize_original_copy_tables ();
5422 set_loop_copy (orig_loop, loop);
5423 duplicate_subloops (orig_loop, loop);
5424
5425 if (!region_copy)
5426 {
5427 region_copy = XNEWVEC (basic_block, n_region);
5428 free_region_copy = true;
5429 }
5430
5431 gcc_assert (!need_ssa_update_p (cfun));
5432
5433 /* Record blocks outside the region that are dominated by something
5434 inside. */
5435 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5436
5437 if (exit->src->count)
5438 {
5439 total_count = exit->src->count;
5440 exit_count = exit->count;
5441 /* Fix up corner cases, to avoid division by zero or creation of negative
5442 frequencies. */
5443 if (exit_count > total_count)
5444 exit_count = total_count;
5445 }
5446 else
5447 {
5448 total_freq = exit->src->frequency;
5449 exit_freq = EDGE_FREQUENCY (exit);
5450 /* Fix up corner cases, to avoid division by zero or creation of negative
5451 frequencies. */
5452 if (total_freq == 0)
5453 total_freq = 1;
5454 if (exit_freq > total_freq)
5455 exit_freq = total_freq;
5456 }
5457
5458 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5459 split_edge_bb_loc (exit));
5460 if (total_count)
5461 {
5462 scale_bbs_frequencies_gcov_type (region, n_region,
5463 total_count - exit_count,
5464 total_count);
5465 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5466 total_count);
5467 }
5468 else
5469 {
5470 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5471 total_freq);
5472 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5473 }
5474
5475 /* Create the switch block, and put the exit condition to it. */
5476 entry_bb = entry->dest;
5477 nentry_bb = get_bb_copy (entry_bb);
5478 if (!last_stmt (entry->src)
5479 || !stmt_ends_bb_p (last_stmt (entry->src)))
5480 switch_bb = entry->src;
5481 else
5482 switch_bb = split_edge (entry);
5483 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5484
5485 gsi = gsi_last_bb (switch_bb);
5486 cond_stmt = last_stmt (exit->src);
5487 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5488 cond_stmt = gimple_copy (cond_stmt);
5489
5490 /* If the block consisting of the exit condition has the latch as
5491 successor, then the body of the loop is executed before
5492 the exit condition is tested. In such case, moving the
5493 condition to the entry, causes that the loop will iterate
5494 one less iteration (which is the wanted outcome, since we
5495 peel out the last iteration). If the body is executed after
5496 the condition, moving the condition to the entry requires
5497 decrementing one iteration. */
5498 if (exits[1]->dest == orig_loop->latch)
5499 new_rhs = gimple_cond_rhs (cond_stmt);
5500 else
5501 {
5502 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5503 gimple_cond_rhs (cond_stmt),
5504 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5505
5506 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5507 {
5508 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5509 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5510 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5511 break;
5512
5513 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5514 NULL_TREE,false,GSI_CONTINUE_LINKING);
5515 }
5516 }
5517 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5518 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5519 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5520
5521 sorig = single_succ_edge (switch_bb);
5522 sorig->flags = exits[1]->flags;
5523 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5524
5525 /* Register the new edge from SWITCH_BB in loop exit lists. */
5526 rescan_loop_exit (snew, true, false);
5527
5528 /* Add the PHI node arguments. */
5529 add_phi_args_after_copy (region_copy, n_region, snew);
5530
5531 /* Get rid of now superfluous conditions and associated edges (and phi node
5532 arguments). */
5533 exit_bb = exit->dest;
5534
5535 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5536 PENDING_STMT (e) = NULL;
5537
5538 /* The latch of ORIG_LOOP was copied, and so was the backedge
5539 to the original header. We redirect this backedge to EXIT_BB. */
5540 for (i = 0; i < n_region; i++)
5541 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5542 {
5543 gcc_assert (single_succ_edge (region_copy[i]));
5544 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5545 PENDING_STMT (e) = NULL;
5546 for (psi = gsi_start_phis (exit_bb);
5547 !gsi_end_p (psi);
5548 gsi_next (&psi))
5549 {
5550 phi = gsi_stmt (psi);
5551 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5552 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5553 }
5554 }
5555 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5556 PENDING_STMT (e) = NULL;
5557
5558 /* Anything that is outside of the region, but was dominated by something
5559 inside needs to update dominance info. */
5560 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5561 VEC_free (basic_block, heap, doms);
5562 /* Update the SSA web. */
5563 update_ssa (TODO_update_ssa);
5564
5565 if (free_region_copy)
5566 free (region_copy);
5567
5568 free_original_copy_tables ();
5569 return true;
5570 }
5571
5572 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5573 adding blocks when the dominator traversal reaches EXIT. This
5574 function silently assumes that ENTRY strictly dominates EXIT. */
5575
5576 void
5577 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5578 VEC(basic_block,heap) **bbs_p)
5579 {
5580 basic_block son;
5581
5582 for (son = first_dom_son (CDI_DOMINATORS, entry);
5583 son;
5584 son = next_dom_son (CDI_DOMINATORS, son))
5585 {
5586 VEC_safe_push (basic_block, heap, *bbs_p, son);
5587 if (son != exit)
5588 gather_blocks_in_sese_region (son, exit, bbs_p);
5589 }
5590 }
5591
5592 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5593 The duplicates are recorded in VARS_MAP. */
5594
5595 static void
5596 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5597 tree to_context)
5598 {
5599 tree t = *tp, new_t;
5600 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5601 void **loc;
5602
5603 if (DECL_CONTEXT (t) == to_context)
5604 return;
5605
5606 loc = pointer_map_contains (vars_map, t);
5607
5608 if (!loc)
5609 {
5610 loc = pointer_map_insert (vars_map, t);
5611
5612 if (SSA_VAR_P (t))
5613 {
5614 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5615 add_local_decl (f, new_t);
5616 }
5617 else
5618 {
5619 gcc_assert (TREE_CODE (t) == CONST_DECL);
5620 new_t = copy_node (t);
5621 }
5622 DECL_CONTEXT (new_t) = to_context;
5623
5624 *loc = new_t;
5625 }
5626 else
5627 new_t = (tree) *loc;
5628
5629 *tp = new_t;
5630 }
5631
5632
5633 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5634 VARS_MAP maps old ssa names and var_decls to the new ones. */
5635
5636 static tree
5637 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5638 tree to_context)
5639 {
5640 void **loc;
5641 tree new_name, decl = SSA_NAME_VAR (name);
5642
5643 gcc_assert (is_gimple_reg (name));
5644
5645 loc = pointer_map_contains (vars_map, name);
5646
5647 if (!loc)
5648 {
5649 replace_by_duplicate_decl (&decl, vars_map, to_context);
5650
5651 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5652 if (gimple_in_ssa_p (cfun))
5653 add_referenced_var (decl);
5654
5655 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5656 if (SSA_NAME_IS_DEFAULT_DEF (name))
5657 set_default_def (decl, new_name);
5658 pop_cfun ();
5659
5660 loc = pointer_map_insert (vars_map, name);
5661 *loc = new_name;
5662 }
5663 else
5664 new_name = (tree) *loc;
5665
5666 return new_name;
5667 }
5668
5669 struct move_stmt_d
5670 {
5671 tree orig_block;
5672 tree new_block;
5673 tree from_context;
5674 tree to_context;
5675 struct pointer_map_t *vars_map;
5676 htab_t new_label_map;
5677 struct pointer_map_t *eh_map;
5678 bool remap_decls_p;
5679 };
5680
5681 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5682 contained in *TP if it has been ORIG_BLOCK previously and change the
5683 DECL_CONTEXT of every local variable referenced in *TP. */
5684
5685 static tree
5686 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5687 {
5688 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5689 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5690 tree t = *tp;
5691
5692 if (EXPR_P (t))
5693 /* We should never have TREE_BLOCK set on non-statements. */
5694 gcc_assert (!TREE_BLOCK (t));
5695
5696 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5697 {
5698 if (TREE_CODE (t) == SSA_NAME)
5699 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5700 else if (TREE_CODE (t) == LABEL_DECL)
5701 {
5702 if (p->new_label_map)
5703 {
5704 struct tree_map in, *out;
5705 in.base.from = t;
5706 out = (struct tree_map *)
5707 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5708 if (out)
5709 *tp = t = out->to;
5710 }
5711
5712 DECL_CONTEXT (t) = p->to_context;
5713 }
5714 else if (p->remap_decls_p)
5715 {
5716 /* Replace T with its duplicate. T should no longer appear in the
5717 parent function, so this looks wasteful; however, it may appear
5718 in referenced_vars, and more importantly, as virtual operands of
5719 statements, and in alias lists of other variables. It would be
5720 quite difficult to expunge it from all those places. ??? It might
5721 suffice to do this for addressable variables. */
5722 if ((TREE_CODE (t) == VAR_DECL
5723 && !is_global_var (t))
5724 || TREE_CODE (t) == CONST_DECL)
5725 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5726
5727 if (SSA_VAR_P (t)
5728 && gimple_in_ssa_p (cfun))
5729 {
5730 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5731 add_referenced_var (*tp);
5732 pop_cfun ();
5733 }
5734 }
5735 *walk_subtrees = 0;
5736 }
5737 else if (TYPE_P (t))
5738 *walk_subtrees = 0;
5739
5740 return NULL_TREE;
5741 }
5742
5743 /* Helper for move_stmt_r. Given an EH region number for the source
5744 function, map that to the duplicate EH regio number in the dest. */
5745
5746 static int
5747 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5748 {
5749 eh_region old_r, new_r;
5750 void **slot;
5751
5752 old_r = get_eh_region_from_number (old_nr);
5753 slot = pointer_map_contains (p->eh_map, old_r);
5754 new_r = (eh_region) *slot;
5755
5756 return new_r->index;
5757 }
5758
5759 /* Similar, but operate on INTEGER_CSTs. */
5760
5761 static tree
5762 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5763 {
5764 int old_nr, new_nr;
5765
5766 old_nr = tree_low_cst (old_t_nr, 0);
5767 new_nr = move_stmt_eh_region_nr (old_nr, p);
5768
5769 return build_int_cst (NULL, new_nr);
5770 }
5771
5772 /* Like move_stmt_op, but for gimple statements.
5773
5774 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5775 contained in the current statement in *GSI_P and change the
5776 DECL_CONTEXT of every local variable referenced in the current
5777 statement. */
5778
5779 static tree
5780 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5781 struct walk_stmt_info *wi)
5782 {
5783 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5784 gimple stmt = gsi_stmt (*gsi_p);
5785 tree block = gimple_block (stmt);
5786
5787 if (p->orig_block == NULL_TREE
5788 || block == p->orig_block
5789 || block == NULL_TREE)
5790 gimple_set_block (stmt, p->new_block);
5791 #ifdef ENABLE_CHECKING
5792 else if (block != p->new_block)
5793 {
5794 while (block && block != p->orig_block)
5795 block = BLOCK_SUPERCONTEXT (block);
5796 gcc_assert (block);
5797 }
5798 #endif
5799
5800 switch (gimple_code (stmt))
5801 {
5802 case GIMPLE_CALL:
5803 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5804 {
5805 tree r, fndecl = gimple_call_fndecl (stmt);
5806 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5807 switch (DECL_FUNCTION_CODE (fndecl))
5808 {
5809 case BUILT_IN_EH_COPY_VALUES:
5810 r = gimple_call_arg (stmt, 1);
5811 r = move_stmt_eh_region_tree_nr (r, p);
5812 gimple_call_set_arg (stmt, 1, r);
5813 /* FALLTHRU */
5814
5815 case BUILT_IN_EH_POINTER:
5816 case BUILT_IN_EH_FILTER:
5817 r = gimple_call_arg (stmt, 0);
5818 r = move_stmt_eh_region_tree_nr (r, p);
5819 gimple_call_set_arg (stmt, 0, r);
5820 break;
5821
5822 default:
5823 break;
5824 }
5825 }
5826 break;
5827
5828 case GIMPLE_RESX:
5829 {
5830 int r = gimple_resx_region (stmt);
5831 r = move_stmt_eh_region_nr (r, p);
5832 gimple_resx_set_region (stmt, r);
5833 }
5834 break;
5835
5836 case GIMPLE_EH_DISPATCH:
5837 {
5838 int r = gimple_eh_dispatch_region (stmt);
5839 r = move_stmt_eh_region_nr (r, p);
5840 gimple_eh_dispatch_set_region (stmt, r);
5841 }
5842 break;
5843
5844 case GIMPLE_OMP_RETURN:
5845 case GIMPLE_OMP_CONTINUE:
5846 break;
5847 default:
5848 if (is_gimple_omp (stmt))
5849 {
5850 /* Do not remap variables inside OMP directives. Variables
5851 referenced in clauses and directive header belong to the
5852 parent function and should not be moved into the child
5853 function. */
5854 bool save_remap_decls_p = p->remap_decls_p;
5855 p->remap_decls_p = false;
5856 *handled_ops_p = true;
5857
5858 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5859 move_stmt_op, wi);
5860
5861 p->remap_decls_p = save_remap_decls_p;
5862 }
5863 break;
5864 }
5865
5866 return NULL_TREE;
5867 }
5868
5869 /* Move basic block BB from function CFUN to function DEST_FN. The
5870 block is moved out of the original linked list and placed after
5871 block AFTER in the new list. Also, the block is removed from the
5872 original array of blocks and placed in DEST_FN's array of blocks.
5873 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5874 updated to reflect the moved edges.
5875
5876 The local variables are remapped to new instances, VARS_MAP is used
5877 to record the mapping. */
5878
5879 static void
5880 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5881 basic_block after, bool update_edge_count_p,
5882 struct move_stmt_d *d)
5883 {
5884 struct control_flow_graph *cfg;
5885 edge_iterator ei;
5886 edge e;
5887 gimple_stmt_iterator si;
5888 unsigned old_len, new_len;
5889
5890 /* Remove BB from dominance structures. */
5891 delete_from_dominance_info (CDI_DOMINATORS, bb);
5892 if (current_loops)
5893 remove_bb_from_loops (bb);
5894
5895 /* Link BB to the new linked list. */
5896 move_block_after (bb, after);
5897
5898 /* Update the edge count in the corresponding flowgraphs. */
5899 if (update_edge_count_p)
5900 FOR_EACH_EDGE (e, ei, bb->succs)
5901 {
5902 cfun->cfg->x_n_edges--;
5903 dest_cfun->cfg->x_n_edges++;
5904 }
5905
5906 /* Remove BB from the original basic block array. */
5907 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5908 cfun->cfg->x_n_basic_blocks--;
5909
5910 /* Grow DEST_CFUN's basic block array if needed. */
5911 cfg = dest_cfun->cfg;
5912 cfg->x_n_basic_blocks++;
5913 if (bb->index >= cfg->x_last_basic_block)
5914 cfg->x_last_basic_block = bb->index + 1;
5915
5916 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5917 if ((unsigned) cfg->x_last_basic_block >= old_len)
5918 {
5919 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5920 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5921 new_len);
5922 }
5923
5924 VEC_replace (basic_block, cfg->x_basic_block_info,
5925 bb->index, bb);
5926
5927 /* Remap the variables in phi nodes. */
5928 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5929 {
5930 gimple phi = gsi_stmt (si);
5931 use_operand_p use;
5932 tree op = PHI_RESULT (phi);
5933 ssa_op_iter oi;
5934
5935 if (!is_gimple_reg (op))
5936 {
5937 /* Remove the phi nodes for virtual operands (alias analysis will be
5938 run for the new function, anyway). */
5939 remove_phi_node (&si, true);
5940 continue;
5941 }
5942
5943 SET_PHI_RESULT (phi,
5944 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5945 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5946 {
5947 op = USE_FROM_PTR (use);
5948 if (TREE_CODE (op) == SSA_NAME)
5949 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5950 }
5951
5952 gsi_next (&si);
5953 }
5954
5955 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5956 {
5957 gimple stmt = gsi_stmt (si);
5958 struct walk_stmt_info wi;
5959
5960 memset (&wi, 0, sizeof (wi));
5961 wi.info = d;
5962 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5963
5964 if (gimple_code (stmt) == GIMPLE_LABEL)
5965 {
5966 tree label = gimple_label_label (stmt);
5967 int uid = LABEL_DECL_UID (label);
5968
5969 gcc_assert (uid > -1);
5970
5971 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5972 if (old_len <= (unsigned) uid)
5973 {
5974 new_len = 3 * uid / 2 + 1;
5975 VEC_safe_grow_cleared (basic_block, gc,
5976 cfg->x_label_to_block_map, new_len);
5977 }
5978
5979 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5980 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5981
5982 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5983
5984 if (uid >= dest_cfun->cfg->last_label_uid)
5985 dest_cfun->cfg->last_label_uid = uid + 1;
5986 }
5987
5988 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5989 remove_stmt_from_eh_lp_fn (cfun, stmt);
5990
5991 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5992 gimple_remove_stmt_histograms (cfun, stmt);
5993
5994 /* We cannot leave any operands allocated from the operand caches of
5995 the current function. */
5996 free_stmt_operands (stmt);
5997 push_cfun (dest_cfun);
5998 update_stmt (stmt);
5999 pop_cfun ();
6000 }
6001
6002 FOR_EACH_EDGE (e, ei, bb->succs)
6003 if (e->goto_locus)
6004 {
6005 tree block = e->goto_block;
6006 if (d->orig_block == NULL_TREE
6007 || block == d->orig_block)
6008 e->goto_block = d->new_block;
6009 #ifdef ENABLE_CHECKING
6010 else if (block != d->new_block)
6011 {
6012 while (block && block != d->orig_block)
6013 block = BLOCK_SUPERCONTEXT (block);
6014 gcc_assert (block);
6015 }
6016 #endif
6017 }
6018 }
6019
6020 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6021 the outermost EH region. Use REGION as the incoming base EH region. */
6022
6023 static eh_region
6024 find_outermost_region_in_block (struct function *src_cfun,
6025 basic_block bb, eh_region region)
6026 {
6027 gimple_stmt_iterator si;
6028
6029 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6030 {
6031 gimple stmt = gsi_stmt (si);
6032 eh_region stmt_region;
6033 int lp_nr;
6034
6035 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6036 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6037 if (stmt_region)
6038 {
6039 if (region == NULL)
6040 region = stmt_region;
6041 else if (stmt_region != region)
6042 {
6043 region = eh_region_outermost (src_cfun, stmt_region, region);
6044 gcc_assert (region != NULL);
6045 }
6046 }
6047 }
6048
6049 return region;
6050 }
6051
6052 static tree
6053 new_label_mapper (tree decl, void *data)
6054 {
6055 htab_t hash = (htab_t) data;
6056 struct tree_map *m;
6057 void **slot;
6058
6059 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6060
6061 m = XNEW (struct tree_map);
6062 m->hash = DECL_UID (decl);
6063 m->base.from = decl;
6064 m->to = create_artificial_label (UNKNOWN_LOCATION);
6065 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6066 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6067 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6068
6069 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6070 gcc_assert (*slot == NULL);
6071
6072 *slot = m;
6073
6074 return m->to;
6075 }
6076
6077 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6078 subblocks. */
6079
6080 static void
6081 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6082 tree to_context)
6083 {
6084 tree *tp, t;
6085
6086 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6087 {
6088 t = *tp;
6089 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6090 continue;
6091 replace_by_duplicate_decl (&t, vars_map, to_context);
6092 if (t != *tp)
6093 {
6094 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6095 {
6096 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6097 DECL_HAS_VALUE_EXPR_P (t) = 1;
6098 }
6099 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6100 *tp = t;
6101 }
6102 }
6103
6104 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6105 replace_block_vars_by_duplicates (block, vars_map, to_context);
6106 }
6107
6108 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6109 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6110 single basic block in the original CFG and the new basic block is
6111 returned. DEST_CFUN must not have a CFG yet.
6112
6113 Note that the region need not be a pure SESE region. Blocks inside
6114 the region may contain calls to abort/exit. The only restriction
6115 is that ENTRY_BB should be the only entry point and it must
6116 dominate EXIT_BB.
6117
6118 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6119 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6120 to the new function.
6121
6122 All local variables referenced in the region are assumed to be in
6123 the corresponding BLOCK_VARS and unexpanded variable lists
6124 associated with DEST_CFUN. */
6125
6126 basic_block
6127 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6128 basic_block exit_bb, tree orig_block)
6129 {
6130 VEC(basic_block,heap) *bbs, *dom_bbs;
6131 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6132 basic_block after, bb, *entry_pred, *exit_succ, abb;
6133 struct function *saved_cfun = cfun;
6134 int *entry_flag, *exit_flag;
6135 unsigned *entry_prob, *exit_prob;
6136 unsigned i, num_entry_edges, num_exit_edges;
6137 edge e;
6138 edge_iterator ei;
6139 htab_t new_label_map;
6140 struct pointer_map_t *vars_map, *eh_map;
6141 struct loop *loop = entry_bb->loop_father;
6142 struct move_stmt_d d;
6143
6144 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6145 region. */
6146 gcc_assert (entry_bb != exit_bb
6147 && (!exit_bb
6148 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6149
6150 /* Collect all the blocks in the region. Manually add ENTRY_BB
6151 because it won't be added by dfs_enumerate_from. */
6152 bbs = NULL;
6153 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6154 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6155
6156 /* The blocks that used to be dominated by something in BBS will now be
6157 dominated by the new block. */
6158 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6159 VEC_address (basic_block, bbs),
6160 VEC_length (basic_block, bbs));
6161
6162 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6163 the predecessor edges to ENTRY_BB and the successor edges to
6164 EXIT_BB so that we can re-attach them to the new basic block that
6165 will replace the region. */
6166 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6167 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6168 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6169 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6170 i = 0;
6171 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6172 {
6173 entry_prob[i] = e->probability;
6174 entry_flag[i] = e->flags;
6175 entry_pred[i++] = e->src;
6176 remove_edge (e);
6177 }
6178
6179 if (exit_bb)
6180 {
6181 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6182 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6183 sizeof (basic_block));
6184 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6185 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6186 i = 0;
6187 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6188 {
6189 exit_prob[i] = e->probability;
6190 exit_flag[i] = e->flags;
6191 exit_succ[i++] = e->dest;
6192 remove_edge (e);
6193 }
6194 }
6195 else
6196 {
6197 num_exit_edges = 0;
6198 exit_succ = NULL;
6199 exit_flag = NULL;
6200 exit_prob = NULL;
6201 }
6202
6203 /* Switch context to the child function to initialize DEST_FN's CFG. */
6204 gcc_assert (dest_cfun->cfg == NULL);
6205 push_cfun (dest_cfun);
6206
6207 init_empty_tree_cfg ();
6208
6209 /* Initialize EH information for the new function. */
6210 eh_map = NULL;
6211 new_label_map = NULL;
6212 if (saved_cfun->eh)
6213 {
6214 eh_region region = NULL;
6215
6216 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6217 region = find_outermost_region_in_block (saved_cfun, bb, region);
6218
6219 init_eh_for_function ();
6220 if (region != NULL)
6221 {
6222 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6223 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6224 new_label_mapper, new_label_map);
6225 }
6226 }
6227
6228 pop_cfun ();
6229
6230 /* Move blocks from BBS into DEST_CFUN. */
6231 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6232 after = dest_cfun->cfg->x_entry_block_ptr;
6233 vars_map = pointer_map_create ();
6234
6235 memset (&d, 0, sizeof (d));
6236 d.orig_block = orig_block;
6237 d.new_block = DECL_INITIAL (dest_cfun->decl);
6238 d.from_context = cfun->decl;
6239 d.to_context = dest_cfun->decl;
6240 d.vars_map = vars_map;
6241 d.new_label_map = new_label_map;
6242 d.eh_map = eh_map;
6243 d.remap_decls_p = true;
6244
6245 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6246 {
6247 /* No need to update edge counts on the last block. It has
6248 already been updated earlier when we detached the region from
6249 the original CFG. */
6250 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6251 after = bb;
6252 }
6253
6254 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6255 if (orig_block)
6256 {
6257 tree block;
6258 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6259 == NULL_TREE);
6260 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6261 = BLOCK_SUBBLOCKS (orig_block);
6262 for (block = BLOCK_SUBBLOCKS (orig_block);
6263 block; block = BLOCK_CHAIN (block))
6264 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6265 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6266 }
6267
6268 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6269 vars_map, dest_cfun->decl);
6270
6271 if (new_label_map)
6272 htab_delete (new_label_map);
6273 if (eh_map)
6274 pointer_map_destroy (eh_map);
6275 pointer_map_destroy (vars_map);
6276
6277 /* Rewire the entry and exit blocks. The successor to the entry
6278 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6279 the child function. Similarly, the predecessor of DEST_FN's
6280 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6281 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6282 various CFG manipulation function get to the right CFG.
6283
6284 FIXME, this is silly. The CFG ought to become a parameter to
6285 these helpers. */
6286 push_cfun (dest_cfun);
6287 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6288 if (exit_bb)
6289 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6290 pop_cfun ();
6291
6292 /* Back in the original function, the SESE region has disappeared,
6293 create a new basic block in its place. */
6294 bb = create_empty_bb (entry_pred[0]);
6295 if (current_loops)
6296 add_bb_to_loop (bb, loop);
6297 for (i = 0; i < num_entry_edges; i++)
6298 {
6299 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6300 e->probability = entry_prob[i];
6301 }
6302
6303 for (i = 0; i < num_exit_edges; i++)
6304 {
6305 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6306 e->probability = exit_prob[i];
6307 }
6308
6309 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6310 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6311 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6312 VEC_free (basic_block, heap, dom_bbs);
6313
6314 if (exit_bb)
6315 {
6316 free (exit_prob);
6317 free (exit_flag);
6318 free (exit_succ);
6319 }
6320 free (entry_prob);
6321 free (entry_flag);
6322 free (entry_pred);
6323 VEC_free (basic_block, heap, bbs);
6324
6325 return bb;
6326 }
6327
6328
6329 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6330 */
6331
6332 void
6333 dump_function_to_file (tree fn, FILE *file, int flags)
6334 {
6335 tree arg, var;
6336 struct function *dsf;
6337 bool ignore_topmost_bind = false, any_var = false;
6338 basic_block bb;
6339 tree chain;
6340
6341 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6342
6343 arg = DECL_ARGUMENTS (fn);
6344 while (arg)
6345 {
6346 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6347 fprintf (file, " ");
6348 print_generic_expr (file, arg, dump_flags);
6349 if (flags & TDF_VERBOSE)
6350 print_node (file, "", arg, 4);
6351 if (DECL_CHAIN (arg))
6352 fprintf (file, ", ");
6353 arg = DECL_CHAIN (arg);
6354 }
6355 fprintf (file, ")\n");
6356
6357 if (flags & TDF_VERBOSE)
6358 print_node (file, "", fn, 2);
6359
6360 dsf = DECL_STRUCT_FUNCTION (fn);
6361 if (dsf && (flags & TDF_EH))
6362 dump_eh_tree (file, dsf);
6363
6364 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6365 {
6366 dump_node (fn, TDF_SLIM | flags, file);
6367 return;
6368 }
6369
6370 /* Switch CFUN to point to FN. */
6371 push_cfun (DECL_STRUCT_FUNCTION (fn));
6372
6373 /* When GIMPLE is lowered, the variables are no longer available in
6374 BIND_EXPRs, so display them separately. */
6375 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6376 {
6377 unsigned ix;
6378 ignore_topmost_bind = true;
6379
6380 fprintf (file, "{\n");
6381 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6382 {
6383 print_generic_decl (file, var, flags);
6384 if (flags & TDF_VERBOSE)
6385 print_node (file, "", var, 4);
6386 fprintf (file, "\n");
6387
6388 any_var = true;
6389 }
6390 }
6391
6392 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6393 {
6394 /* If the CFG has been built, emit a CFG-based dump. */
6395 check_bb_profile (ENTRY_BLOCK_PTR, file);
6396 if (!ignore_topmost_bind)
6397 fprintf (file, "{\n");
6398
6399 if (any_var && n_basic_blocks)
6400 fprintf (file, "\n");
6401
6402 FOR_EACH_BB (bb)
6403 gimple_dump_bb (bb, file, 2, flags);
6404
6405 fprintf (file, "}\n");
6406 check_bb_profile (EXIT_BLOCK_PTR, file);
6407 }
6408 else if (DECL_SAVED_TREE (fn) == NULL)
6409 {
6410 /* The function is now in GIMPLE form but the CFG has not been
6411 built yet. Emit the single sequence of GIMPLE statements
6412 that make up its body. */
6413 gimple_seq body = gimple_body (fn);
6414
6415 if (gimple_seq_first_stmt (body)
6416 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6417 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6418 print_gimple_seq (file, body, 0, flags);
6419 else
6420 {
6421 if (!ignore_topmost_bind)
6422 fprintf (file, "{\n");
6423
6424 if (any_var)
6425 fprintf (file, "\n");
6426
6427 print_gimple_seq (file, body, 2, flags);
6428 fprintf (file, "}\n");
6429 }
6430 }
6431 else
6432 {
6433 int indent;
6434
6435 /* Make a tree based dump. */
6436 chain = DECL_SAVED_TREE (fn);
6437
6438 if (chain && TREE_CODE (chain) == BIND_EXPR)
6439 {
6440 if (ignore_topmost_bind)
6441 {
6442 chain = BIND_EXPR_BODY (chain);
6443 indent = 2;
6444 }
6445 else
6446 indent = 0;
6447 }
6448 else
6449 {
6450 if (!ignore_topmost_bind)
6451 fprintf (file, "{\n");
6452 indent = 2;
6453 }
6454
6455 if (any_var)
6456 fprintf (file, "\n");
6457
6458 print_generic_stmt_indented (file, chain, flags, indent);
6459 if (ignore_topmost_bind)
6460 fprintf (file, "}\n");
6461 }
6462
6463 if (flags & TDF_ENUMERATE_LOCALS)
6464 dump_enumerated_decls (file, flags);
6465 fprintf (file, "\n\n");
6466
6467 /* Restore CFUN. */
6468 pop_cfun ();
6469 }
6470
6471
6472 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6473
6474 DEBUG_FUNCTION void
6475 debug_function (tree fn, int flags)
6476 {
6477 dump_function_to_file (fn, stderr, flags);
6478 }
6479
6480
6481 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6482
6483 static void
6484 print_pred_bbs (FILE *file, basic_block bb)
6485 {
6486 edge e;
6487 edge_iterator ei;
6488
6489 FOR_EACH_EDGE (e, ei, bb->preds)
6490 fprintf (file, "bb_%d ", e->src->index);
6491 }
6492
6493
6494 /* Print on FILE the indexes for the successors of basic_block BB. */
6495
6496 static void
6497 print_succ_bbs (FILE *file, basic_block bb)
6498 {
6499 edge e;
6500 edge_iterator ei;
6501
6502 FOR_EACH_EDGE (e, ei, bb->succs)
6503 fprintf (file, "bb_%d ", e->dest->index);
6504 }
6505
6506 /* Print to FILE the basic block BB following the VERBOSITY level. */
6507
6508 void
6509 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6510 {
6511 char *s_indent = (char *) alloca ((size_t) indent + 1);
6512 memset ((void *) s_indent, ' ', (size_t) indent);
6513 s_indent[indent] = '\0';
6514
6515 /* Print basic_block's header. */
6516 if (verbosity >= 2)
6517 {
6518 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6519 print_pred_bbs (file, bb);
6520 fprintf (file, "}, succs = {");
6521 print_succ_bbs (file, bb);
6522 fprintf (file, "})\n");
6523 }
6524
6525 /* Print basic_block's body. */
6526 if (verbosity >= 3)
6527 {
6528 fprintf (file, "%s {\n", s_indent);
6529 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6530 fprintf (file, "%s }\n", s_indent);
6531 }
6532 }
6533
6534 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6535
6536 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6537 VERBOSITY level this outputs the contents of the loop, or just its
6538 structure. */
6539
6540 static void
6541 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6542 {
6543 char *s_indent;
6544 basic_block bb;
6545
6546 if (loop == NULL)
6547 return;
6548
6549 s_indent = (char *) alloca ((size_t) indent + 1);
6550 memset ((void *) s_indent, ' ', (size_t) indent);
6551 s_indent[indent] = '\0';
6552
6553 /* Print loop's header. */
6554 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6555 loop->num, loop->header->index, loop->latch->index);
6556 fprintf (file, ", niter = ");
6557 print_generic_expr (file, loop->nb_iterations, 0);
6558
6559 if (loop->any_upper_bound)
6560 {
6561 fprintf (file, ", upper_bound = ");
6562 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6563 }
6564
6565 if (loop->any_estimate)
6566 {
6567 fprintf (file, ", estimate = ");
6568 dump_double_int (file, loop->nb_iterations_estimate, true);
6569 }
6570 fprintf (file, ")\n");
6571
6572 /* Print loop's body. */
6573 if (verbosity >= 1)
6574 {
6575 fprintf (file, "%s{\n", s_indent);
6576 FOR_EACH_BB (bb)
6577 if (bb->loop_father == loop)
6578 print_loops_bb (file, bb, indent, verbosity);
6579
6580 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6581 fprintf (file, "%s}\n", s_indent);
6582 }
6583 }
6584
6585 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6586 spaces. Following VERBOSITY level this outputs the contents of the
6587 loop, or just its structure. */
6588
6589 static void
6590 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6591 {
6592 if (loop == NULL)
6593 return;
6594
6595 print_loop (file, loop, indent, verbosity);
6596 print_loop_and_siblings (file, loop->next, indent, verbosity);
6597 }
6598
6599 /* Follow a CFG edge from the entry point of the program, and on entry
6600 of a loop, pretty print the loop structure on FILE. */
6601
6602 void
6603 print_loops (FILE *file, int verbosity)
6604 {
6605 basic_block bb;
6606
6607 bb = ENTRY_BLOCK_PTR;
6608 if (bb && bb->loop_father)
6609 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6610 }
6611
6612
6613 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6614
6615 DEBUG_FUNCTION void
6616 debug_loops (int verbosity)
6617 {
6618 print_loops (stderr, verbosity);
6619 }
6620
6621 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6622
6623 DEBUG_FUNCTION void
6624 debug_loop (struct loop *loop, int verbosity)
6625 {
6626 print_loop (stderr, loop, 0, verbosity);
6627 }
6628
6629 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6630 level. */
6631
6632 DEBUG_FUNCTION void
6633 debug_loop_num (unsigned num, int verbosity)
6634 {
6635 debug_loop (get_loop (num), verbosity);
6636 }
6637
6638 /* Return true if BB ends with a call, possibly followed by some
6639 instructions that must stay with the call. Return false,
6640 otherwise. */
6641
6642 static bool
6643 gimple_block_ends_with_call_p (basic_block bb)
6644 {
6645 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6646 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6647 }
6648
6649
6650 /* Return true if BB ends with a conditional branch. Return false,
6651 otherwise. */
6652
6653 static bool
6654 gimple_block_ends_with_condjump_p (const_basic_block bb)
6655 {
6656 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6657 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6658 }
6659
6660
6661 /* Return true if we need to add fake edge to exit at statement T.
6662 Helper function for gimple_flow_call_edges_add. */
6663
6664 static bool
6665 need_fake_edge_p (gimple t)
6666 {
6667 tree fndecl = NULL_TREE;
6668 int call_flags = 0;
6669
6670 /* NORETURN and LONGJMP calls already have an edge to exit.
6671 CONST and PURE calls do not need one.
6672 We don't currently check for CONST and PURE here, although
6673 it would be a good idea, because those attributes are
6674 figured out from the RTL in mark_constant_function, and
6675 the counter incrementation code from -fprofile-arcs
6676 leads to different results from -fbranch-probabilities. */
6677 if (is_gimple_call (t))
6678 {
6679 fndecl = gimple_call_fndecl (t);
6680 call_flags = gimple_call_flags (t);
6681 }
6682
6683 if (is_gimple_call (t)
6684 && fndecl
6685 && DECL_BUILT_IN (fndecl)
6686 && (call_flags & ECF_NOTHROW)
6687 && !(call_flags & ECF_RETURNS_TWICE)
6688 /* fork() doesn't really return twice, but the effect of
6689 wrapping it in __gcov_fork() which calls __gcov_flush()
6690 and clears the counters before forking has the same
6691 effect as returning twice. Force a fake edge. */
6692 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6693 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6694 return false;
6695
6696 if (is_gimple_call (t)
6697 && !(call_flags & ECF_NORETURN))
6698 return true;
6699
6700 if (gimple_code (t) == GIMPLE_ASM
6701 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6702 return true;
6703
6704 return false;
6705 }
6706
6707
6708 /* Add fake edges to the function exit for any non constant and non
6709 noreturn calls, volatile inline assembly in the bitmap of blocks
6710 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6711 the number of blocks that were split.
6712
6713 The goal is to expose cases in which entering a basic block does
6714 not imply that all subsequent instructions must be executed. */
6715
6716 static int
6717 gimple_flow_call_edges_add (sbitmap blocks)
6718 {
6719 int i;
6720 int blocks_split = 0;
6721 int last_bb = last_basic_block;
6722 bool check_last_block = false;
6723
6724 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6725 return 0;
6726
6727 if (! blocks)
6728 check_last_block = true;
6729 else
6730 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6731
6732 /* In the last basic block, before epilogue generation, there will be
6733 a fallthru edge to EXIT. Special care is required if the last insn
6734 of the last basic block is a call because make_edge folds duplicate
6735 edges, which would result in the fallthru edge also being marked
6736 fake, which would result in the fallthru edge being removed by
6737 remove_fake_edges, which would result in an invalid CFG.
6738
6739 Moreover, we can't elide the outgoing fake edge, since the block
6740 profiler needs to take this into account in order to solve the minimal
6741 spanning tree in the case that the call doesn't return.
6742
6743 Handle this by adding a dummy instruction in a new last basic block. */
6744 if (check_last_block)
6745 {
6746 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6747 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6748 gimple t = NULL;
6749
6750 if (!gsi_end_p (gsi))
6751 t = gsi_stmt (gsi);
6752
6753 if (t && need_fake_edge_p (t))
6754 {
6755 edge e;
6756
6757 e = find_edge (bb, EXIT_BLOCK_PTR);
6758 if (e)
6759 {
6760 gsi_insert_on_edge (e, gimple_build_nop ());
6761 gsi_commit_edge_inserts ();
6762 }
6763 }
6764 }
6765
6766 /* Now add fake edges to the function exit for any non constant
6767 calls since there is no way that we can determine if they will
6768 return or not... */
6769 for (i = 0; i < last_bb; i++)
6770 {
6771 basic_block bb = BASIC_BLOCK (i);
6772 gimple_stmt_iterator gsi;
6773 gimple stmt, last_stmt;
6774
6775 if (!bb)
6776 continue;
6777
6778 if (blocks && !TEST_BIT (blocks, i))
6779 continue;
6780
6781 gsi = gsi_last_bb (bb);
6782 if (!gsi_end_p (gsi))
6783 {
6784 last_stmt = gsi_stmt (gsi);
6785 do
6786 {
6787 stmt = gsi_stmt (gsi);
6788 if (need_fake_edge_p (stmt))
6789 {
6790 edge e;
6791
6792 /* The handling above of the final block before the
6793 epilogue should be enough to verify that there is
6794 no edge to the exit block in CFG already.
6795 Calling make_edge in such case would cause us to
6796 mark that edge as fake and remove it later. */
6797 #ifdef ENABLE_CHECKING
6798 if (stmt == last_stmt)
6799 {
6800 e = find_edge (bb, EXIT_BLOCK_PTR);
6801 gcc_assert (e == NULL);
6802 }
6803 #endif
6804
6805 /* Note that the following may create a new basic block
6806 and renumber the existing basic blocks. */
6807 if (stmt != last_stmt)
6808 {
6809 e = split_block (bb, stmt);
6810 if (e)
6811 blocks_split++;
6812 }
6813 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6814 }
6815 gsi_prev (&gsi);
6816 }
6817 while (!gsi_end_p (gsi));
6818 }
6819 }
6820
6821 if (blocks_split)
6822 verify_flow_info ();
6823
6824 return blocks_split;
6825 }
6826
6827 /* Purge dead abnormal call edges from basic block BB. */
6828
6829 bool
6830 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6831 {
6832 bool changed = gimple_purge_dead_eh_edges (bb);
6833
6834 if (cfun->has_nonlocal_label)
6835 {
6836 gimple stmt = last_stmt (bb);
6837 edge_iterator ei;
6838 edge e;
6839
6840 if (!(stmt && stmt_can_make_abnormal_goto (stmt)))
6841 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6842 {
6843 if (e->flags & EDGE_ABNORMAL)
6844 {
6845 remove_edge (e);
6846 changed = true;
6847 }
6848 else
6849 ei_next (&ei);
6850 }
6851
6852 /* See gimple_purge_dead_eh_edges below. */
6853 if (changed)
6854 free_dominance_info (CDI_DOMINATORS);
6855 }
6856
6857 return changed;
6858 }
6859
6860 /* Removes edge E and all the blocks dominated by it, and updates dominance
6861 information. The IL in E->src needs to be updated separately.
6862 If dominance info is not available, only the edge E is removed.*/
6863
6864 void
6865 remove_edge_and_dominated_blocks (edge e)
6866 {
6867 VEC (basic_block, heap) *bbs_to_remove = NULL;
6868 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6869 bitmap df, df_idom;
6870 edge f;
6871 edge_iterator ei;
6872 bool none_removed = false;
6873 unsigned i;
6874 basic_block bb, dbb;
6875 bitmap_iterator bi;
6876
6877 if (!dom_info_available_p (CDI_DOMINATORS))
6878 {
6879 remove_edge (e);
6880 return;
6881 }
6882
6883 /* No updating is needed for edges to exit. */
6884 if (e->dest == EXIT_BLOCK_PTR)
6885 {
6886 if (cfgcleanup_altered_bbs)
6887 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6888 remove_edge (e);
6889 return;
6890 }
6891
6892 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6893 that is not dominated by E->dest, then this set is empty. Otherwise,
6894 all the basic blocks dominated by E->dest are removed.
6895
6896 Also, to DF_IDOM we store the immediate dominators of the blocks in
6897 the dominance frontier of E (i.e., of the successors of the
6898 removed blocks, if there are any, and of E->dest otherwise). */
6899 FOR_EACH_EDGE (f, ei, e->dest->preds)
6900 {
6901 if (f == e)
6902 continue;
6903
6904 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6905 {
6906 none_removed = true;
6907 break;
6908 }
6909 }
6910
6911 df = BITMAP_ALLOC (NULL);
6912 df_idom = BITMAP_ALLOC (NULL);
6913
6914 if (none_removed)
6915 bitmap_set_bit (df_idom,
6916 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6917 else
6918 {
6919 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6920 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6921 {
6922 FOR_EACH_EDGE (f, ei, bb->succs)
6923 {
6924 if (f->dest != EXIT_BLOCK_PTR)
6925 bitmap_set_bit (df, f->dest->index);
6926 }
6927 }
6928 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6929 bitmap_clear_bit (df, bb->index);
6930
6931 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6932 {
6933 bb = BASIC_BLOCK (i);
6934 bitmap_set_bit (df_idom,
6935 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6936 }
6937 }
6938
6939 if (cfgcleanup_altered_bbs)
6940 {
6941 /* Record the set of the altered basic blocks. */
6942 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6943 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6944 }
6945
6946 /* Remove E and the cancelled blocks. */
6947 if (none_removed)
6948 remove_edge (e);
6949 else
6950 {
6951 /* Walk backwards so as to get a chance to substitute all
6952 released DEFs into debug stmts. See
6953 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6954 details. */
6955 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6956 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6957 }
6958
6959 /* Update the dominance information. The immediate dominator may change only
6960 for blocks whose immediate dominator belongs to DF_IDOM:
6961
6962 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6963 removal. Let Z the arbitrary block such that idom(Z) = Y and
6964 Z dominates X after the removal. Before removal, there exists a path P
6965 from Y to X that avoids Z. Let F be the last edge on P that is
6966 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6967 dominates W, and because of P, Z does not dominate W), and W belongs to
6968 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6969 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6970 {
6971 bb = BASIC_BLOCK (i);
6972 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6973 dbb;
6974 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6975 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6976 }
6977
6978 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6979
6980 BITMAP_FREE (df);
6981 BITMAP_FREE (df_idom);
6982 VEC_free (basic_block, heap, bbs_to_remove);
6983 VEC_free (basic_block, heap, bbs_to_fix_dom);
6984 }
6985
6986 /* Purge dead EH edges from basic block BB. */
6987
6988 bool
6989 gimple_purge_dead_eh_edges (basic_block bb)
6990 {
6991 bool changed = false;
6992 edge e;
6993 edge_iterator ei;
6994 gimple stmt = last_stmt (bb);
6995
6996 if (stmt && stmt_can_throw_internal (stmt))
6997 return false;
6998
6999 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7000 {
7001 if (e->flags & EDGE_EH)
7002 {
7003 remove_edge_and_dominated_blocks (e);
7004 changed = true;
7005 }
7006 else
7007 ei_next (&ei);
7008 }
7009
7010 return changed;
7011 }
7012
7013 bool
7014 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7015 {
7016 bool changed = false;
7017 unsigned i;
7018 bitmap_iterator bi;
7019
7020 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7021 {
7022 basic_block bb = BASIC_BLOCK (i);
7023
7024 /* Earlier gimple_purge_dead_eh_edges could have removed
7025 this basic block already. */
7026 gcc_assert (bb || changed);
7027 if (bb != NULL)
7028 changed |= gimple_purge_dead_eh_edges (bb);
7029 }
7030
7031 return changed;
7032 }
7033
7034 /* This function is called whenever a new edge is created or
7035 redirected. */
7036
7037 static void
7038 gimple_execute_on_growing_pred (edge e)
7039 {
7040 basic_block bb = e->dest;
7041
7042 if (!gimple_seq_empty_p (phi_nodes (bb)))
7043 reserve_phi_args_for_new_edge (bb);
7044 }
7045
7046 /* This function is called immediately before edge E is removed from
7047 the edge vector E->dest->preds. */
7048
7049 static void
7050 gimple_execute_on_shrinking_pred (edge e)
7051 {
7052 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7053 remove_phi_args (e);
7054 }
7055
7056 /*---------------------------------------------------------------------------
7057 Helper functions for Loop versioning
7058 ---------------------------------------------------------------------------*/
7059
7060 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7061 of 'first'. Both of them are dominated by 'new_head' basic block. When
7062 'new_head' was created by 'second's incoming edge it received phi arguments
7063 on the edge by split_edge(). Later, additional edge 'e' was created to
7064 connect 'new_head' and 'first'. Now this routine adds phi args on this
7065 additional edge 'e' that new_head to second edge received as part of edge
7066 splitting. */
7067
7068 static void
7069 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7070 basic_block new_head, edge e)
7071 {
7072 gimple phi1, phi2;
7073 gimple_stmt_iterator psi1, psi2;
7074 tree def;
7075 edge e2 = find_edge (new_head, second);
7076
7077 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7078 edge, we should always have an edge from NEW_HEAD to SECOND. */
7079 gcc_assert (e2 != NULL);
7080
7081 /* Browse all 'second' basic block phi nodes and add phi args to
7082 edge 'e' for 'first' head. PHI args are always in correct order. */
7083
7084 for (psi2 = gsi_start_phis (second),
7085 psi1 = gsi_start_phis (first);
7086 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7087 gsi_next (&psi2), gsi_next (&psi1))
7088 {
7089 phi1 = gsi_stmt (psi1);
7090 phi2 = gsi_stmt (psi2);
7091 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7092 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7093 }
7094 }
7095
7096
7097 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7098 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7099 the destination of the ELSE part. */
7100
7101 static void
7102 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7103 basic_block second_head ATTRIBUTE_UNUSED,
7104 basic_block cond_bb, void *cond_e)
7105 {
7106 gimple_stmt_iterator gsi;
7107 gimple new_cond_expr;
7108 tree cond_expr = (tree) cond_e;
7109 edge e0;
7110
7111 /* Build new conditional expr */
7112 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7113 NULL_TREE, NULL_TREE);
7114
7115 /* Add new cond in cond_bb. */
7116 gsi = gsi_last_bb (cond_bb);
7117 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7118
7119 /* Adjust edges appropriately to connect new head with first head
7120 as well as second head. */
7121 e0 = single_succ_edge (cond_bb);
7122 e0->flags &= ~EDGE_FALLTHRU;
7123 e0->flags |= EDGE_FALSE_VALUE;
7124 }
7125
7126 struct cfg_hooks gimple_cfg_hooks = {
7127 "gimple",
7128 gimple_verify_flow_info,
7129 gimple_dump_bb, /* dump_bb */
7130 create_bb, /* create_basic_block */
7131 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7132 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7133 gimple_can_remove_branch_p, /* can_remove_branch_p */
7134 remove_bb, /* delete_basic_block */
7135 gimple_split_block, /* split_block */
7136 gimple_move_block_after, /* move_block_after */
7137 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7138 gimple_merge_blocks, /* merge_blocks */
7139 gimple_predict_edge, /* predict_edge */
7140 gimple_predicted_by_p, /* predicted_by_p */
7141 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7142 gimple_duplicate_bb, /* duplicate_block */
7143 gimple_split_edge, /* split_edge */
7144 gimple_make_forwarder_block, /* make_forward_block */
7145 NULL, /* tidy_fallthru_edge */
7146 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7147 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7148 gimple_flow_call_edges_add, /* flow_call_edges_add */
7149 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7150 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7151 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7152 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7153 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7154 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7155 flush_pending_stmts /* flush_pending_stmts */
7156 };
7157
7158
7159 /* Split all critical edges. */
7160
7161 static unsigned int
7162 split_critical_edges (void)
7163 {
7164 basic_block bb;
7165 edge e;
7166 edge_iterator ei;
7167
7168 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7169 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7170 mappings around the calls to split_edge. */
7171 start_recording_case_labels ();
7172 FOR_ALL_BB (bb)
7173 {
7174 FOR_EACH_EDGE (e, ei, bb->succs)
7175 {
7176 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7177 split_edge (e);
7178 /* PRE inserts statements to edges and expects that
7179 since split_critical_edges was done beforehand, committing edge
7180 insertions will not split more edges. In addition to critical
7181 edges we must split edges that have multiple successors and
7182 end by control flow statements, such as RESX.
7183 Go ahead and split them too. This matches the logic in
7184 gimple_find_edge_insert_loc. */
7185 else if ((!single_pred_p (e->dest)
7186 || !gimple_seq_empty_p (phi_nodes (e->dest))
7187 || e->dest == EXIT_BLOCK_PTR)
7188 && e->src != ENTRY_BLOCK_PTR
7189 && !(e->flags & EDGE_ABNORMAL))
7190 {
7191 gimple_stmt_iterator gsi;
7192
7193 gsi = gsi_last_bb (e->src);
7194 if (!gsi_end_p (gsi)
7195 && stmt_ends_bb_p (gsi_stmt (gsi))
7196 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7197 && !gimple_call_builtin_p (gsi_stmt (gsi),
7198 BUILT_IN_RETURN)))
7199 split_edge (e);
7200 }
7201 }
7202 }
7203 end_recording_case_labels ();
7204 return 0;
7205 }
7206
7207 struct gimple_opt_pass pass_split_crit_edges =
7208 {
7209 {
7210 GIMPLE_PASS,
7211 "crited", /* name */
7212 NULL, /* gate */
7213 split_critical_edges, /* execute */
7214 NULL, /* sub */
7215 NULL, /* next */
7216 0, /* static_pass_number */
7217 TV_TREE_SPLIT_EDGES, /* tv_id */
7218 PROP_cfg, /* properties required */
7219 PROP_no_crit_edges, /* properties_provided */
7220 0, /* properties_destroyed */
7221 0, /* todo_flags_start */
7222 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7223 }
7224 };
7225
7226
7227 /* Build a ternary operation and gimplify it. Emit code before GSI.
7228 Return the gimple_val holding the result. */
7229
7230 tree
7231 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7232 tree type, tree a, tree b, tree c)
7233 {
7234 tree ret;
7235 location_t loc = gimple_location (gsi_stmt (*gsi));
7236
7237 ret = fold_build3_loc (loc, code, type, a, b, c);
7238 STRIP_NOPS (ret);
7239
7240 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7241 GSI_SAME_STMT);
7242 }
7243
7244 /* Build a binary operation and gimplify it. Emit code before GSI.
7245 Return the gimple_val holding the result. */
7246
7247 tree
7248 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7249 tree type, tree a, tree b)
7250 {
7251 tree ret;
7252
7253 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7254 STRIP_NOPS (ret);
7255
7256 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7257 GSI_SAME_STMT);
7258 }
7259
7260 /* Build a unary operation and gimplify it. Emit code before GSI.
7261 Return the gimple_val holding the result. */
7262
7263 tree
7264 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7265 tree a)
7266 {
7267 tree ret;
7268
7269 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7270 STRIP_NOPS (ret);
7271
7272 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7273 GSI_SAME_STMT);
7274 }
7275
7276
7277 \f
7278 /* Emit return warnings. */
7279
7280 static unsigned int
7281 execute_warn_function_return (void)
7282 {
7283 source_location location;
7284 gimple last;
7285 edge e;
7286 edge_iterator ei;
7287
7288 /* If we have a path to EXIT, then we do return. */
7289 if (TREE_THIS_VOLATILE (cfun->decl)
7290 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7291 {
7292 location = UNKNOWN_LOCATION;
7293 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7294 {
7295 last = last_stmt (e->src);
7296 if ((gimple_code (last) == GIMPLE_RETURN
7297 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7298 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7299 break;
7300 }
7301 if (location == UNKNOWN_LOCATION)
7302 location = cfun->function_end_locus;
7303 warning_at (location, 0, "%<noreturn%> function does return");
7304 }
7305
7306 /* If we see "return;" in some basic block, then we do reach the end
7307 without returning a value. */
7308 else if (warn_return_type
7309 && !TREE_NO_WARNING (cfun->decl)
7310 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7311 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7312 {
7313 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7314 {
7315 gimple last = last_stmt (e->src);
7316 if (gimple_code (last) == GIMPLE_RETURN
7317 && gimple_return_retval (last) == NULL
7318 && !gimple_no_warning_p (last))
7319 {
7320 location = gimple_location (last);
7321 if (location == UNKNOWN_LOCATION)
7322 location = cfun->function_end_locus;
7323 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7324 TREE_NO_WARNING (cfun->decl) = 1;
7325 break;
7326 }
7327 }
7328 }
7329 return 0;
7330 }
7331
7332
7333 /* Given a basic block B which ends with a conditional and has
7334 precisely two successors, determine which of the edges is taken if
7335 the conditional is true and which is taken if the conditional is
7336 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7337
7338 void
7339 extract_true_false_edges_from_block (basic_block b,
7340 edge *true_edge,
7341 edge *false_edge)
7342 {
7343 edge e = EDGE_SUCC (b, 0);
7344
7345 if (e->flags & EDGE_TRUE_VALUE)
7346 {
7347 *true_edge = e;
7348 *false_edge = EDGE_SUCC (b, 1);
7349 }
7350 else
7351 {
7352 *false_edge = e;
7353 *true_edge = EDGE_SUCC (b, 1);
7354 }
7355 }
7356
7357 struct gimple_opt_pass pass_warn_function_return =
7358 {
7359 {
7360 GIMPLE_PASS,
7361 "*warn_function_return", /* name */
7362 NULL, /* gate */
7363 execute_warn_function_return, /* execute */
7364 NULL, /* sub */
7365 NULL, /* next */
7366 0, /* static_pass_number */
7367 TV_NONE, /* tv_id */
7368 PROP_cfg, /* properties_required */
7369 0, /* properties_provided */
7370 0, /* properties_destroyed */
7371 0, /* todo_flags_start */
7372 0 /* todo_flags_finish */
7373 }
7374 };
7375
7376 /* Emit noreturn warnings. */
7377
7378 static unsigned int
7379 execute_warn_function_noreturn (void)
7380 {
7381 if (!TREE_THIS_VOLATILE (current_function_decl)
7382 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7383 warn_function_noreturn (current_function_decl);
7384 return 0;
7385 }
7386
7387 static bool
7388 gate_warn_function_noreturn (void)
7389 {
7390 return warn_suggest_attribute_noreturn;
7391 }
7392
7393 struct gimple_opt_pass pass_warn_function_noreturn =
7394 {
7395 {
7396 GIMPLE_PASS,
7397 "*warn_function_noreturn", /* name */
7398 gate_warn_function_noreturn, /* gate */
7399 execute_warn_function_noreturn, /* execute */
7400 NULL, /* sub */
7401 NULL, /* next */
7402 0, /* static_pass_number */
7403 TV_NONE, /* tv_id */
7404 PROP_cfg, /* properties_required */
7405 0, /* properties_provided */
7406 0, /* properties_destroyed */
7407 0, /* todo_flags_start */
7408 0 /* todo_flags_finish */
7409 }
7410 };
7411
7412
7413 /* Walk a gimplified function and warn for functions whose return value is
7414 ignored and attribute((warn_unused_result)) is set. This is done before
7415 inlining, so we don't have to worry about that. */
7416
7417 static void
7418 do_warn_unused_result (gimple_seq seq)
7419 {
7420 tree fdecl, ftype;
7421 gimple_stmt_iterator i;
7422
7423 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7424 {
7425 gimple g = gsi_stmt (i);
7426
7427 switch (gimple_code (g))
7428 {
7429 case GIMPLE_BIND:
7430 do_warn_unused_result (gimple_bind_body (g));
7431 break;
7432 case GIMPLE_TRY:
7433 do_warn_unused_result (gimple_try_eval (g));
7434 do_warn_unused_result (gimple_try_cleanup (g));
7435 break;
7436 case GIMPLE_CATCH:
7437 do_warn_unused_result (gimple_catch_handler (g));
7438 break;
7439 case GIMPLE_EH_FILTER:
7440 do_warn_unused_result (gimple_eh_filter_failure (g));
7441 break;
7442
7443 case GIMPLE_CALL:
7444 if (gimple_call_lhs (g))
7445 break;
7446
7447 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7448 LHS. All calls whose value is ignored should be
7449 represented like this. Look for the attribute. */
7450 fdecl = gimple_call_fndecl (g);
7451 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7452
7453 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7454 {
7455 location_t loc = gimple_location (g);
7456
7457 if (fdecl)
7458 warning_at (loc, OPT_Wunused_result,
7459 "ignoring return value of %qD, "
7460 "declared with attribute warn_unused_result",
7461 fdecl);
7462 else
7463 warning_at (loc, OPT_Wunused_result,
7464 "ignoring return value of function "
7465 "declared with attribute warn_unused_result");
7466 }
7467 break;
7468
7469 default:
7470 /* Not a container, not a call, or a call whose value is used. */
7471 break;
7472 }
7473 }
7474 }
7475
7476 static unsigned int
7477 run_warn_unused_result (void)
7478 {
7479 do_warn_unused_result (gimple_body (current_function_decl));
7480 return 0;
7481 }
7482
7483 static bool
7484 gate_warn_unused_result (void)
7485 {
7486 return flag_warn_unused_result;
7487 }
7488
7489 struct gimple_opt_pass pass_warn_unused_result =
7490 {
7491 {
7492 GIMPLE_PASS,
7493 "*warn_unused_result", /* name */
7494 gate_warn_unused_result, /* gate */
7495 run_warn_unused_result, /* execute */
7496 NULL, /* sub */
7497 NULL, /* next */
7498 0, /* static_pass_number */
7499 TV_NONE, /* tv_id */
7500 PROP_gimple_any, /* properties_required */
7501 0, /* properties_provided */
7502 0, /* properties_destroyed */
7503 0, /* todo_flags_start */
7504 0, /* todo_flags_finish */
7505 }
7506 };
7507