tree-cfg.c (verify_expr): Verify that BIT_FIELD_REFs, IMAGPART_EXPRs and REALPART_EXP...
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
37 #include "except.h"
38 #include "cfgloop.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
43 #include "target.h"
44
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
47
48 /* Local declarations. */
49
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity = 20;
52
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
57
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
60
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
65
66 static struct pointer_map_t *edge_to_cases;
67
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
71
72 static bitmap touched_switch_bbs;
73
74 /* CFG statistics. */
75 struct cfg_stats_d
76 {
77 long num_merged_labels;
78 };
79
80 static struct cfg_stats_d cfg_stats;
81
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto;
84
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
87 {
88 location_t locus;
89 int discriminator;
90 };
91
92 /* Hashtable helpers. */
93
94 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
95 {
96 typedef locus_discrim_map value_type;
97 typedef locus_discrim_map compare_type;
98 static inline hashval_t hash (const value_type *);
99 static inline bool equal (const value_type *, const compare_type *);
100 };
101
102 /* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
104
105 inline hashval_t
106 locus_discrim_hasher::hash (const value_type *item)
107 {
108 return LOCATION_LINE (item->locus);
109 }
110
111 /* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
113
114 inline bool
115 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
116 {
117 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
118 }
119
120 static hash_table <locus_discrim_hasher> discriminator_per_locus;
121
122 /* Basic blocks and flowgraphs. */
123 static void make_blocks (gimple_seq);
124 static void factor_computed_gotos (void);
125
126 /* Edges. */
127 static void make_edges (void);
128 static void assign_discriminators (void);
129 static void make_cond_expr_edges (basic_block);
130 static void make_gimple_switch_edges (basic_block);
131 static void make_goto_expr_edges (basic_block);
132 static void make_gimple_asm_edges (basic_block);
133 static edge gimple_redirect_edge_and_branch (edge, basic_block);
134 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
135 static unsigned int split_critical_edges (void);
136
137 /* Various helpers. */
138 static inline bool stmt_starts_bb_p (gimple, gimple);
139 static int gimple_verify_flow_info (void);
140 static void gimple_make_forwarder_block (edge);
141 static gimple first_non_label_stmt (basic_block);
142 static bool verify_gimple_transaction (gimple);
143
144 /* Flowgraph optimization and cleanup. */
145 static void gimple_merge_blocks (basic_block, basic_block);
146 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
147 static void remove_bb (basic_block);
148 static edge find_taken_edge_computed_goto (basic_block, tree);
149 static edge find_taken_edge_cond_expr (basic_block, tree);
150 static edge find_taken_edge_switch_expr (basic_block, tree);
151 static tree find_case_label_for_value (gimple, tree);
152
153 void
154 init_empty_tree_cfg_for_function (struct function *fn)
155 {
156 /* Initialize the basic block array. */
157 init_flow (fn);
158 profile_status_for_function (fn) = PROFILE_ABSENT;
159 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
160 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
161 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn),
163 initial_cfg_capacity);
164
165 /* Build a mapping of labels to their associated blocks. */
166 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
168 initial_cfg_capacity);
169
170 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
172 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
174
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
179 }
180
181 void
182 init_empty_tree_cfg (void)
183 {
184 init_empty_tree_cfg_for_function (cfun);
185 }
186
187 /*---------------------------------------------------------------------------
188 Create basic blocks
189 ---------------------------------------------------------------------------*/
190
191 /* Entry point to the CFG builder for trees. SEQ is the sequence of
192 statements to be added to the flowgraph. */
193
194 static void
195 build_gimple_cfg (gimple_seq seq)
196 {
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
199
200 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
201
202 init_empty_tree_cfg ();
203
204 found_computed_goto = 0;
205 make_blocks (seq);
206
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto)
213 factor_computed_gotos ();
214
215 /* Make sure there is always at least one block, even if it's empty. */
216 if (n_basic_blocks == NUM_FIXED_BLOCKS)
217 create_empty_bb (ENTRY_BLOCK_PTR);
218
219 /* Adjust the size of the array. */
220 if (basic_block_info->length () < (size_t) n_basic_blocks)
221 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
222
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
225
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
230
231 /* Create the edges of the flowgraph. */
232 discriminator_per_locus.create (13);
233 make_edges ();
234 assign_discriminators ();
235 cleanup_dead_labels ();
236 discriminator_per_locus.dispose ();
237 }
238
239 static unsigned int
240 execute_build_cfg (void)
241 {
242 gimple_seq body = gimple_body (current_function_decl);
243
244 build_gimple_cfg (body);
245 gimple_set_body (current_function_decl, NULL);
246 if (dump_file && (dump_flags & TDF_DETAILS))
247 {
248 fprintf (dump_file, "Scope blocks:\n");
249 dump_scope_blocks (dump_file, dump_flags);
250 }
251 cleanup_tree_cfg ();
252 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
253 return 0;
254 }
255
256 struct gimple_opt_pass pass_build_cfg =
257 {
258 {
259 GIMPLE_PASS,
260 "cfg", /* name */
261 OPTGROUP_NONE, /* optinfo_flags */
262 NULL, /* gate */
263 execute_build_cfg, /* execute */
264 NULL, /* sub */
265 NULL, /* next */
266 0, /* static_pass_number */
267 TV_TREE_CFG, /* tv_id */
268 PROP_gimple_leh, /* properties_required */
269 PROP_cfg | PROP_loops, /* properties_provided */
270 0, /* properties_destroyed */
271 0, /* todo_flags_start */
272 TODO_verify_stmts /* todo_flags_finish */
273 }
274 };
275
276
277 /* Return true if T is a computed goto. */
278
279 static bool
280 computed_goto_p (gimple t)
281 {
282 return (gimple_code (t) == GIMPLE_GOTO
283 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
284 }
285
286
287 /* Search the CFG for any computed gotos. If found, factor them to a
288 common computed goto site. Also record the location of that site so
289 that we can un-factor the gotos after we have converted back to
290 normal form. */
291
292 static void
293 factor_computed_gotos (void)
294 {
295 basic_block bb;
296 tree factored_label_decl = NULL;
297 tree var = NULL;
298 gimple factored_computed_goto_label = NULL;
299 gimple factored_computed_goto = NULL;
300
301 /* We know there are one or more computed gotos in this function.
302 Examine the last statement in each basic block to see if the block
303 ends with a computed goto. */
304
305 FOR_EACH_BB (bb)
306 {
307 gimple_stmt_iterator gsi = gsi_last_bb (bb);
308 gimple last;
309
310 if (gsi_end_p (gsi))
311 continue;
312
313 last = gsi_stmt (gsi);
314
315 /* Ignore the computed goto we create when we factor the original
316 computed gotos. */
317 if (last == factored_computed_goto)
318 continue;
319
320 /* If the last statement is a computed goto, factor it. */
321 if (computed_goto_p (last))
322 {
323 gimple assignment;
324
325 /* The first time we find a computed goto we need to create
326 the factored goto block and the variable each original
327 computed goto will use for their goto destination. */
328 if (!factored_computed_goto)
329 {
330 basic_block new_bb = create_empty_bb (bb);
331 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
332
333 /* Create the destination of the factored goto. Each original
334 computed goto will put its desired destination into this
335 variable and jump to the label we create immediately
336 below. */
337 var = create_tmp_var (ptr_type_node, "gotovar");
338
339 /* Build a label for the new block which will contain the
340 factored computed goto. */
341 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
342 factored_computed_goto_label
343 = gimple_build_label (factored_label_decl);
344 gsi_insert_after (&new_gsi, factored_computed_goto_label,
345 GSI_NEW_STMT);
346
347 /* Build our new computed goto. */
348 factored_computed_goto = gimple_build_goto (var);
349 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
350 }
351
352 /* Copy the original computed goto's destination into VAR. */
353 assignment = gimple_build_assign (var, gimple_goto_dest (last));
354 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
355
356 /* And re-vector the computed goto to the new destination. */
357 gimple_goto_set_dest (last, factored_label_decl);
358 }
359 }
360 }
361
362
363 /* Build a flowgraph for the sequence of stmts SEQ. */
364
365 static void
366 make_blocks (gimple_seq seq)
367 {
368 gimple_stmt_iterator i = gsi_start (seq);
369 gimple stmt = NULL;
370 bool start_new_block = true;
371 bool first_stmt_of_seq = true;
372 basic_block bb = ENTRY_BLOCK_PTR;
373
374 while (!gsi_end_p (i))
375 {
376 gimple prev_stmt;
377
378 prev_stmt = stmt;
379 stmt = gsi_stmt (i);
380
381 /* If the statement starts a new basic block or if we have determined
382 in a previous pass that we need to create a new block for STMT, do
383 so now. */
384 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
385 {
386 if (!first_stmt_of_seq)
387 gsi_split_seq_before (&i, &seq);
388 bb = create_basic_block (seq, NULL, bb);
389 start_new_block = false;
390 }
391
392 /* Now add STMT to BB and create the subgraphs for special statement
393 codes. */
394 gimple_set_bb (stmt, bb);
395
396 if (computed_goto_p (stmt))
397 found_computed_goto = true;
398
399 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
400 next iteration. */
401 if (stmt_ends_bb_p (stmt))
402 {
403 /* If the stmt can make abnormal goto use a new temporary
404 for the assignment to the LHS. This makes sure the old value
405 of the LHS is available on the abnormal edge. Otherwise
406 we will end up with overlapping life-ranges for abnormal
407 SSA names. */
408 if (gimple_has_lhs (stmt)
409 && stmt_can_make_abnormal_goto (stmt)
410 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
411 {
412 tree lhs = gimple_get_lhs (stmt);
413 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
414 gimple s = gimple_build_assign (lhs, tmp);
415 gimple_set_location (s, gimple_location (stmt));
416 gimple_set_block (s, gimple_block (stmt));
417 gimple_set_lhs (stmt, tmp);
418 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
419 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
420 DECL_GIMPLE_REG_P (tmp) = 1;
421 gsi_insert_after (&i, s, GSI_SAME_STMT);
422 }
423 start_new_block = true;
424 }
425
426 gsi_next (&i);
427 first_stmt_of_seq = false;
428 }
429 }
430
431
432 /* Create and return a new empty basic block after bb AFTER. */
433
434 static basic_block
435 create_bb (void *h, void *e, basic_block after)
436 {
437 basic_block bb;
438
439 gcc_assert (!e);
440
441 /* Create and initialize a new basic block. Since alloc_block uses
442 GC allocation that clears memory to allocate a basic block, we do
443 not have to clear the newly allocated basic block here. */
444 bb = alloc_block ();
445
446 bb->index = last_basic_block;
447 bb->flags = BB_NEW;
448 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
449
450 /* Add the new block to the linked list of blocks. */
451 link_block (bb, after);
452
453 /* Grow the basic block array if needed. */
454 if ((size_t) last_basic_block == basic_block_info->length ())
455 {
456 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
457 vec_safe_grow_cleared (basic_block_info, new_size);
458 }
459
460 /* Add the newly created block to the array. */
461 SET_BASIC_BLOCK (last_basic_block, bb);
462
463 n_basic_blocks++;
464 last_basic_block++;
465
466 return bb;
467 }
468
469
470 /*---------------------------------------------------------------------------
471 Edge creation
472 ---------------------------------------------------------------------------*/
473
474 /* Fold COND_EXPR_COND of each COND_EXPR. */
475
476 void
477 fold_cond_expr_cond (void)
478 {
479 basic_block bb;
480
481 FOR_EACH_BB (bb)
482 {
483 gimple stmt = last_stmt (bb);
484
485 if (stmt && gimple_code (stmt) == GIMPLE_COND)
486 {
487 location_t loc = gimple_location (stmt);
488 tree cond;
489 bool zerop, onep;
490
491 fold_defer_overflow_warnings ();
492 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
493 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
494 if (cond)
495 {
496 zerop = integer_zerop (cond);
497 onep = integer_onep (cond);
498 }
499 else
500 zerop = onep = false;
501
502 fold_undefer_overflow_warnings (zerop || onep,
503 stmt,
504 WARN_STRICT_OVERFLOW_CONDITIONAL);
505 if (zerop)
506 gimple_cond_make_false (stmt);
507 else if (onep)
508 gimple_cond_make_true (stmt);
509 }
510 }
511 }
512
513 /* Join all the blocks in the flowgraph. */
514
515 static void
516 make_edges (void)
517 {
518 basic_block bb;
519 struct omp_region *cur_region = NULL;
520
521 /* Create an edge from entry to the first block with executable
522 statements in it. */
523 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
524
525 /* Traverse the basic block array placing edges. */
526 FOR_EACH_BB (bb)
527 {
528 gimple last = last_stmt (bb);
529 bool fallthru;
530
531 if (last)
532 {
533 enum gimple_code code = gimple_code (last);
534 switch (code)
535 {
536 case GIMPLE_GOTO:
537 make_goto_expr_edges (bb);
538 fallthru = false;
539 break;
540 case GIMPLE_RETURN:
541 make_edge (bb, EXIT_BLOCK_PTR, 0);
542 fallthru = false;
543 break;
544 case GIMPLE_COND:
545 make_cond_expr_edges (bb);
546 fallthru = false;
547 break;
548 case GIMPLE_SWITCH:
549 make_gimple_switch_edges (bb);
550 fallthru = false;
551 break;
552 case GIMPLE_RESX:
553 make_eh_edges (last);
554 fallthru = false;
555 break;
556 case GIMPLE_EH_DISPATCH:
557 fallthru = make_eh_dispatch_edges (last);
558 break;
559
560 case GIMPLE_CALL:
561 /* If this function receives a nonlocal goto, then we need to
562 make edges from this call site to all the nonlocal goto
563 handlers. */
564 if (stmt_can_make_abnormal_goto (last))
565 make_abnormal_goto_edges (bb, true);
566
567 /* If this statement has reachable exception handlers, then
568 create abnormal edges to them. */
569 make_eh_edges (last);
570
571 /* BUILTIN_RETURN is really a return statement. */
572 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
573 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
574 /* Some calls are known not to return. */
575 else
576 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
577 break;
578
579 case GIMPLE_ASSIGN:
580 /* A GIMPLE_ASSIGN may throw internally and thus be considered
581 control-altering. */
582 if (is_ctrl_altering_stmt (last))
583 make_eh_edges (last);
584 fallthru = true;
585 break;
586
587 case GIMPLE_ASM:
588 make_gimple_asm_edges (bb);
589 fallthru = true;
590 break;
591
592 case GIMPLE_OMP_PARALLEL:
593 case GIMPLE_OMP_TASK:
594 case GIMPLE_OMP_FOR:
595 case GIMPLE_OMP_SINGLE:
596 case GIMPLE_OMP_MASTER:
597 case GIMPLE_OMP_ORDERED:
598 case GIMPLE_OMP_CRITICAL:
599 case GIMPLE_OMP_SECTION:
600 cur_region = new_omp_region (bb, code, cur_region);
601 fallthru = true;
602 break;
603
604 case GIMPLE_OMP_SECTIONS:
605 cur_region = new_omp_region (bb, code, cur_region);
606 fallthru = true;
607 break;
608
609 case GIMPLE_OMP_SECTIONS_SWITCH:
610 fallthru = false;
611 break;
612
613 case GIMPLE_OMP_ATOMIC_LOAD:
614 case GIMPLE_OMP_ATOMIC_STORE:
615 fallthru = true;
616 break;
617
618 case GIMPLE_OMP_RETURN:
619 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
620 somewhere other than the next block. This will be
621 created later. */
622 cur_region->exit = bb;
623 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
624 cur_region = cur_region->outer;
625 break;
626
627 case GIMPLE_OMP_CONTINUE:
628 cur_region->cont = bb;
629 switch (cur_region->type)
630 {
631 case GIMPLE_OMP_FOR:
632 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
633 succs edges as abnormal to prevent splitting
634 them. */
635 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
636 /* Make the loopback edge. */
637 make_edge (bb, single_succ (cur_region->entry),
638 EDGE_ABNORMAL);
639
640 /* Create an edge from GIMPLE_OMP_FOR to exit, which
641 corresponds to the case that the body of the loop
642 is not executed at all. */
643 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
644 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
645 fallthru = false;
646 break;
647
648 case GIMPLE_OMP_SECTIONS:
649 /* Wire up the edges into and out of the nested sections. */
650 {
651 basic_block switch_bb = single_succ (cur_region->entry);
652
653 struct omp_region *i;
654 for (i = cur_region->inner; i ; i = i->next)
655 {
656 gcc_assert (i->type == GIMPLE_OMP_SECTION);
657 make_edge (switch_bb, i->entry, 0);
658 make_edge (i->exit, bb, EDGE_FALLTHRU);
659 }
660
661 /* Make the loopback edge to the block with
662 GIMPLE_OMP_SECTIONS_SWITCH. */
663 make_edge (bb, switch_bb, 0);
664
665 /* Make the edge from the switch to exit. */
666 make_edge (switch_bb, bb->next_bb, 0);
667 fallthru = false;
668 }
669 break;
670
671 default:
672 gcc_unreachable ();
673 }
674 break;
675
676 case GIMPLE_TRANSACTION:
677 {
678 tree abort_label = gimple_transaction_label (last);
679 if (abort_label)
680 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
681 fallthru = true;
682 }
683 break;
684
685 default:
686 gcc_assert (!stmt_ends_bb_p (last));
687 fallthru = true;
688 }
689 }
690 else
691 fallthru = true;
692
693 if (fallthru)
694 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
695 }
696
697 if (root_omp_region)
698 free_omp_regions ();
699
700 /* Fold COND_EXPR_COND of each COND_EXPR. */
701 fold_cond_expr_cond ();
702 }
703
704 /* Find the next available discriminator value for LOCUS. The
705 discriminator distinguishes among several basic blocks that
706 share a common locus, allowing for more accurate sample-based
707 profiling. */
708
709 static int
710 next_discriminator_for_locus (location_t locus)
711 {
712 struct locus_discrim_map item;
713 struct locus_discrim_map **slot;
714
715 item.locus = locus;
716 item.discriminator = 0;
717 slot = discriminator_per_locus.find_slot_with_hash (
718 &item, LOCATION_LINE (locus), INSERT);
719 gcc_assert (slot);
720 if (*slot == HTAB_EMPTY_ENTRY)
721 {
722 *slot = XNEW (struct locus_discrim_map);
723 gcc_assert (*slot);
724 (*slot)->locus = locus;
725 (*slot)->discriminator = 0;
726 }
727 (*slot)->discriminator++;
728 return (*slot)->discriminator;
729 }
730
731 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
732
733 static bool
734 same_line_p (location_t locus1, location_t locus2)
735 {
736 expanded_location from, to;
737
738 if (locus1 == locus2)
739 return true;
740
741 from = expand_location (locus1);
742 to = expand_location (locus2);
743
744 if (from.line != to.line)
745 return false;
746 if (from.file == to.file)
747 return true;
748 return (from.file != NULL
749 && to.file != NULL
750 && filename_cmp (from.file, to.file) == 0);
751 }
752
753 /* Assign discriminators to each basic block. */
754
755 static void
756 assign_discriminators (void)
757 {
758 basic_block bb;
759
760 FOR_EACH_BB (bb)
761 {
762 edge e;
763 edge_iterator ei;
764 gimple last = last_stmt (bb);
765 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
766
767 if (locus == UNKNOWN_LOCATION)
768 continue;
769
770 FOR_EACH_EDGE (e, ei, bb->succs)
771 {
772 gimple first = first_non_label_stmt (e->dest);
773 gimple last = last_stmt (e->dest);
774 if ((first && same_line_p (locus, gimple_location (first)))
775 || (last && same_line_p (locus, gimple_location (last))))
776 {
777 if (e->dest->discriminator != 0 && bb->discriminator == 0)
778 bb->discriminator = next_discriminator_for_locus (locus);
779 else
780 e->dest->discriminator = next_discriminator_for_locus (locus);
781 }
782 }
783 }
784 }
785
786 /* Create the edges for a GIMPLE_COND starting at block BB. */
787
788 static void
789 make_cond_expr_edges (basic_block bb)
790 {
791 gimple entry = last_stmt (bb);
792 gimple then_stmt, else_stmt;
793 basic_block then_bb, else_bb;
794 tree then_label, else_label;
795 edge e;
796
797 gcc_assert (entry);
798 gcc_assert (gimple_code (entry) == GIMPLE_COND);
799
800 /* Entry basic blocks for each component. */
801 then_label = gimple_cond_true_label (entry);
802 else_label = gimple_cond_false_label (entry);
803 then_bb = label_to_block (then_label);
804 else_bb = label_to_block (else_label);
805 then_stmt = first_stmt (then_bb);
806 else_stmt = first_stmt (else_bb);
807
808 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
809 e->goto_locus = gimple_location (then_stmt);
810 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
811 if (e)
812 e->goto_locus = gimple_location (else_stmt);
813
814 /* We do not need the labels anymore. */
815 gimple_cond_set_true_label (entry, NULL_TREE);
816 gimple_cond_set_false_label (entry, NULL_TREE);
817 }
818
819
820 /* Called for each element in the hash table (P) as we delete the
821 edge to cases hash table.
822
823 Clear all the TREE_CHAINs to prevent problems with copying of
824 SWITCH_EXPRs and structure sharing rules, then free the hash table
825 element. */
826
827 static bool
828 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
829 void *data ATTRIBUTE_UNUSED)
830 {
831 tree t, next;
832
833 for (t = (tree) *value; t; t = next)
834 {
835 next = CASE_CHAIN (t);
836 CASE_CHAIN (t) = NULL;
837 }
838
839 *value = NULL;
840 return true;
841 }
842
843 /* Start recording information mapping edges to case labels. */
844
845 void
846 start_recording_case_labels (void)
847 {
848 gcc_assert (edge_to_cases == NULL);
849 edge_to_cases = pointer_map_create ();
850 touched_switch_bbs = BITMAP_ALLOC (NULL);
851 }
852
853 /* Return nonzero if we are recording information for case labels. */
854
855 static bool
856 recording_case_labels_p (void)
857 {
858 return (edge_to_cases != NULL);
859 }
860
861 /* Stop recording information mapping edges to case labels and
862 remove any information we have recorded. */
863 void
864 end_recording_case_labels (void)
865 {
866 bitmap_iterator bi;
867 unsigned i;
868 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
869 pointer_map_destroy (edge_to_cases);
870 edge_to_cases = NULL;
871 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
872 {
873 basic_block bb = BASIC_BLOCK (i);
874 if (bb)
875 {
876 gimple stmt = last_stmt (bb);
877 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
878 group_case_labels_stmt (stmt);
879 }
880 }
881 BITMAP_FREE (touched_switch_bbs);
882 }
883
884 /* If we are inside a {start,end}_recording_cases block, then return
885 a chain of CASE_LABEL_EXPRs from T which reference E.
886
887 Otherwise return NULL. */
888
889 static tree
890 get_cases_for_edge (edge e, gimple t)
891 {
892 void **slot;
893 size_t i, n;
894
895 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
896 chains available. Return NULL so the caller can detect this case. */
897 if (!recording_case_labels_p ())
898 return NULL;
899
900 slot = pointer_map_contains (edge_to_cases, e);
901 if (slot)
902 return (tree) *slot;
903
904 /* If we did not find E in the hash table, then this must be the first
905 time we have been queried for information about E & T. Add all the
906 elements from T to the hash table then perform the query again. */
907
908 n = gimple_switch_num_labels (t);
909 for (i = 0; i < n; i++)
910 {
911 tree elt = gimple_switch_label (t, i);
912 tree lab = CASE_LABEL (elt);
913 basic_block label_bb = label_to_block (lab);
914 edge this_edge = find_edge (e->src, label_bb);
915
916 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
917 a new chain. */
918 slot = pointer_map_insert (edge_to_cases, this_edge);
919 CASE_CHAIN (elt) = (tree) *slot;
920 *slot = elt;
921 }
922
923 return (tree) *pointer_map_contains (edge_to_cases, e);
924 }
925
926 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
927
928 static void
929 make_gimple_switch_edges (basic_block bb)
930 {
931 gimple entry = last_stmt (bb);
932 size_t i, n;
933
934 n = gimple_switch_num_labels (entry);
935
936 for (i = 0; i < n; ++i)
937 {
938 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
939 basic_block label_bb = label_to_block (lab);
940 make_edge (bb, label_bb, 0);
941 }
942 }
943
944
945 /* Return the basic block holding label DEST. */
946
947 basic_block
948 label_to_block_fn (struct function *ifun, tree dest)
949 {
950 int uid = LABEL_DECL_UID (dest);
951
952 /* We would die hard when faced by an undefined label. Emit a label to
953 the very first basic block. This will hopefully make even the dataflow
954 and undefined variable warnings quite right. */
955 if (seen_error () && uid < 0)
956 {
957 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
958 gimple stmt;
959
960 stmt = gimple_build_label (dest);
961 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
962 uid = LABEL_DECL_UID (dest);
963 }
964 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
965 return NULL;
966 return (*ifun->cfg->x_label_to_block_map)[uid];
967 }
968
969 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
970 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
971
972 void
973 make_abnormal_goto_edges (basic_block bb, bool for_call)
974 {
975 basic_block target_bb;
976 gimple_stmt_iterator gsi;
977
978 FOR_EACH_BB (target_bb)
979 {
980 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
981 {
982 gimple label_stmt = gsi_stmt (gsi);
983 tree target;
984
985 if (gimple_code (label_stmt) != GIMPLE_LABEL)
986 break;
987
988 target = gimple_label_label (label_stmt);
989
990 /* Make an edge to every label block that has been marked as a
991 potential target for a computed goto or a non-local goto. */
992 if ((FORCED_LABEL (target) && !for_call)
993 || (DECL_NONLOCAL (target) && for_call))
994 {
995 make_edge (bb, target_bb, EDGE_ABNORMAL);
996 break;
997 }
998 }
999 if (!gsi_end_p (gsi))
1000 {
1001 /* Make an edge to every setjmp-like call. */
1002 gimple call_stmt = gsi_stmt (gsi);
1003 if (is_gimple_call (call_stmt)
1004 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 }
1007 }
1008 }
1009
1010 /* Create edges for a goto statement at block BB. */
1011
1012 static void
1013 make_goto_expr_edges (basic_block bb)
1014 {
1015 gimple_stmt_iterator last = gsi_last_bb (bb);
1016 gimple goto_t = gsi_stmt (last);
1017
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t))
1020 {
1021 tree dest = gimple_goto_dest (goto_t);
1022 basic_block label_bb = label_to_block (dest);
1023 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1024 e->goto_locus = gimple_location (goto_t);
1025 gsi_remove (&last, true);
1026 return;
1027 }
1028
1029 /* A computed GOTO creates abnormal edges. */
1030 make_abnormal_goto_edges (bb, false);
1031 }
1032
1033 /* Create edges for an asm statement with labels at block BB. */
1034
1035 static void
1036 make_gimple_asm_edges (basic_block bb)
1037 {
1038 gimple stmt = last_stmt (bb);
1039 int i, n = gimple_asm_nlabels (stmt);
1040
1041 for (i = 0; i < n; ++i)
1042 {
1043 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1044 basic_block label_bb = label_to_block (label);
1045 make_edge (bb, label_bb, 0);
1046 }
1047 }
1048
1049 /*---------------------------------------------------------------------------
1050 Flowgraph analysis
1051 ---------------------------------------------------------------------------*/
1052
1053 /* Cleanup useless labels in basic blocks. This is something we wish
1054 to do early because it allows us to group case labels before creating
1055 the edges for the CFG, and it speeds up block statement iterators in
1056 all passes later on.
1057 We rerun this pass after CFG is created, to get rid of the labels that
1058 are no longer referenced. After then we do not run it any more, since
1059 (almost) no new labels should be created. */
1060
1061 /* A map from basic block index to the leading label of that block. */
1062 static struct label_record
1063 {
1064 /* The label. */
1065 tree label;
1066
1067 /* True if the label is referenced from somewhere. */
1068 bool used;
1069 } *label_for_bb;
1070
1071 /* Given LABEL return the first label in the same basic block. */
1072
1073 static tree
1074 main_block_label (tree label)
1075 {
1076 basic_block bb = label_to_block (label);
1077 tree main_label = label_for_bb[bb->index].label;
1078
1079 /* label_to_block possibly inserted undefined label into the chain. */
1080 if (!main_label)
1081 {
1082 label_for_bb[bb->index].label = label;
1083 main_label = label;
1084 }
1085
1086 label_for_bb[bb->index].used = true;
1087 return main_label;
1088 }
1089
1090 /* Clean up redundant labels within the exception tree. */
1091
1092 static void
1093 cleanup_dead_labels_eh (void)
1094 {
1095 eh_landing_pad lp;
1096 eh_region r;
1097 tree lab;
1098 int i;
1099
1100 if (cfun->eh == NULL)
1101 return;
1102
1103 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1104 if (lp && lp->post_landing_pad)
1105 {
1106 lab = main_block_label (lp->post_landing_pad);
1107 if (lab != lp->post_landing_pad)
1108 {
1109 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1110 EH_LANDING_PAD_NR (lab) = lp->index;
1111 }
1112 }
1113
1114 FOR_ALL_EH_REGION (r)
1115 switch (r->type)
1116 {
1117 case ERT_CLEANUP:
1118 case ERT_MUST_NOT_THROW:
1119 break;
1120
1121 case ERT_TRY:
1122 {
1123 eh_catch c;
1124 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1125 {
1126 lab = c->label;
1127 if (lab)
1128 c->label = main_block_label (lab);
1129 }
1130 }
1131 break;
1132
1133 case ERT_ALLOWED_EXCEPTIONS:
1134 lab = r->u.allowed.label;
1135 if (lab)
1136 r->u.allowed.label = main_block_label (lab);
1137 break;
1138 }
1139 }
1140
1141
1142 /* Cleanup redundant labels. This is a three-step process:
1143 1) Find the leading label for each block.
1144 2) Redirect all references to labels to the leading labels.
1145 3) Cleanup all useless labels. */
1146
1147 void
1148 cleanup_dead_labels (void)
1149 {
1150 basic_block bb;
1151 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1152
1153 /* Find a suitable label for each block. We use the first user-defined
1154 label if there is one, or otherwise just the first label we see. */
1155 FOR_EACH_BB (bb)
1156 {
1157 gimple_stmt_iterator i;
1158
1159 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1160 {
1161 tree label;
1162 gimple stmt = gsi_stmt (i);
1163
1164 if (gimple_code (stmt) != GIMPLE_LABEL)
1165 break;
1166
1167 label = gimple_label_label (stmt);
1168
1169 /* If we have not yet seen a label for the current block,
1170 remember this one and see if there are more labels. */
1171 if (!label_for_bb[bb->index].label)
1172 {
1173 label_for_bb[bb->index].label = label;
1174 continue;
1175 }
1176
1177 /* If we did see a label for the current block already, but it
1178 is an artificially created label, replace it if the current
1179 label is a user defined label. */
1180 if (!DECL_ARTIFICIAL (label)
1181 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1182 {
1183 label_for_bb[bb->index].label = label;
1184 break;
1185 }
1186 }
1187 }
1188
1189 /* Now redirect all jumps/branches to the selected label.
1190 First do so for each block ending in a control statement. */
1191 FOR_EACH_BB (bb)
1192 {
1193 gimple stmt = last_stmt (bb);
1194 tree label, new_label;
1195
1196 if (!stmt)
1197 continue;
1198
1199 switch (gimple_code (stmt))
1200 {
1201 case GIMPLE_COND:
1202 label = gimple_cond_true_label (stmt);
1203 if (label)
1204 {
1205 new_label = main_block_label (label);
1206 if (new_label != label)
1207 gimple_cond_set_true_label (stmt, new_label);
1208 }
1209
1210 label = gimple_cond_false_label (stmt);
1211 if (label)
1212 {
1213 new_label = main_block_label (label);
1214 if (new_label != label)
1215 gimple_cond_set_false_label (stmt, new_label);
1216 }
1217 break;
1218
1219 case GIMPLE_SWITCH:
1220 {
1221 size_t i, n = gimple_switch_num_labels (stmt);
1222
1223 /* Replace all destination labels. */
1224 for (i = 0; i < n; ++i)
1225 {
1226 tree case_label = gimple_switch_label (stmt, i);
1227 label = CASE_LABEL (case_label);
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 CASE_LABEL (case_label) = new_label;
1231 }
1232 break;
1233 }
1234
1235 case GIMPLE_ASM:
1236 {
1237 int i, n = gimple_asm_nlabels (stmt);
1238
1239 for (i = 0; i < n; ++i)
1240 {
1241 tree cons = gimple_asm_label_op (stmt, i);
1242 tree label = main_block_label (TREE_VALUE (cons));
1243 TREE_VALUE (cons) = label;
1244 }
1245 break;
1246 }
1247
1248 /* We have to handle gotos until they're removed, and we don't
1249 remove them until after we've created the CFG edges. */
1250 case GIMPLE_GOTO:
1251 if (!computed_goto_p (stmt))
1252 {
1253 label = gimple_goto_dest (stmt);
1254 new_label = main_block_label (label);
1255 if (new_label != label)
1256 gimple_goto_set_dest (stmt, new_label);
1257 }
1258 break;
1259
1260 case GIMPLE_TRANSACTION:
1261 {
1262 tree label = gimple_transaction_label (stmt);
1263 if (label)
1264 {
1265 tree new_label = main_block_label (label);
1266 if (new_label != label)
1267 gimple_transaction_set_label (stmt, new_label);
1268 }
1269 }
1270 break;
1271
1272 default:
1273 break;
1274 }
1275 }
1276
1277 /* Do the same for the exception region tree labels. */
1278 cleanup_dead_labels_eh ();
1279
1280 /* Finally, purge dead labels. All user-defined labels and labels that
1281 can be the target of non-local gotos and labels which have their
1282 address taken are preserved. */
1283 FOR_EACH_BB (bb)
1284 {
1285 gimple_stmt_iterator i;
1286 tree label_for_this_bb = label_for_bb[bb->index].label;
1287
1288 if (!label_for_this_bb)
1289 continue;
1290
1291 /* If the main label of the block is unused, we may still remove it. */
1292 if (!label_for_bb[bb->index].used)
1293 label_for_this_bb = NULL;
1294
1295 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1296 {
1297 tree label;
1298 gimple stmt = gsi_stmt (i);
1299
1300 if (gimple_code (stmt) != GIMPLE_LABEL)
1301 break;
1302
1303 label = gimple_label_label (stmt);
1304
1305 if (label == label_for_this_bb
1306 || !DECL_ARTIFICIAL (label)
1307 || DECL_NONLOCAL (label)
1308 || FORCED_LABEL (label))
1309 gsi_next (&i);
1310 else
1311 gsi_remove (&i, true);
1312 }
1313 }
1314
1315 free (label_for_bb);
1316 }
1317
1318 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1319 the ones jumping to the same label.
1320 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1321
1322 void
1323 group_case_labels_stmt (gimple stmt)
1324 {
1325 int old_size = gimple_switch_num_labels (stmt);
1326 int i, j, new_size = old_size;
1327 basic_block default_bb = NULL;
1328
1329 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1330
1331 /* Look for possible opportunities to merge cases. */
1332 i = 1;
1333 while (i < old_size)
1334 {
1335 tree base_case, base_high;
1336 basic_block base_bb;
1337
1338 base_case = gimple_switch_label (stmt, i);
1339
1340 gcc_assert (base_case);
1341 base_bb = label_to_block (CASE_LABEL (base_case));
1342
1343 /* Discard cases that have the same destination as the
1344 default case. */
1345 if (base_bb == default_bb)
1346 {
1347 gimple_switch_set_label (stmt, i, NULL_TREE);
1348 i++;
1349 new_size--;
1350 continue;
1351 }
1352
1353 base_high = CASE_HIGH (base_case)
1354 ? CASE_HIGH (base_case)
1355 : CASE_LOW (base_case);
1356 i++;
1357
1358 /* Try to merge case labels. Break out when we reach the end
1359 of the label vector or when we cannot merge the next case
1360 label with the current one. */
1361 while (i < old_size)
1362 {
1363 tree merge_case = gimple_switch_label (stmt, i);
1364 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1365 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1366
1367 /* Merge the cases if they jump to the same place,
1368 and their ranges are consecutive. */
1369 if (merge_bb == base_bb
1370 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1371 {
1372 base_high = CASE_HIGH (merge_case) ?
1373 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1374 CASE_HIGH (base_case) = base_high;
1375 gimple_switch_set_label (stmt, i, NULL_TREE);
1376 new_size--;
1377 i++;
1378 }
1379 else
1380 break;
1381 }
1382 }
1383
1384 /* Compress the case labels in the label vector, and adjust the
1385 length of the vector. */
1386 for (i = 0, j = 0; i < new_size; i++)
1387 {
1388 while (! gimple_switch_label (stmt, j))
1389 j++;
1390 gimple_switch_set_label (stmt, i,
1391 gimple_switch_label (stmt, j++));
1392 }
1393
1394 gcc_assert (new_size <= old_size);
1395 gimple_switch_set_num_labels (stmt, new_size);
1396 }
1397
1398 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1399 and scan the sorted vector of cases. Combine the ones jumping to the
1400 same label. */
1401
1402 void
1403 group_case_labels (void)
1404 {
1405 basic_block bb;
1406
1407 FOR_EACH_BB (bb)
1408 {
1409 gimple stmt = last_stmt (bb);
1410 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1411 group_case_labels_stmt (stmt);
1412 }
1413 }
1414
1415 /* Checks whether we can merge block B into block A. */
1416
1417 static bool
1418 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1419 {
1420 gimple stmt;
1421 gimple_stmt_iterator gsi;
1422
1423 if (!single_succ_p (a))
1424 return false;
1425
1426 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1427 return false;
1428
1429 if (single_succ (a) != b)
1430 return false;
1431
1432 if (!single_pred_p (b))
1433 return false;
1434
1435 if (b == EXIT_BLOCK_PTR)
1436 return false;
1437
1438 /* If A ends by a statement causing exceptions or something similar, we
1439 cannot merge the blocks. */
1440 stmt = last_stmt (a);
1441 if (stmt && stmt_ends_bb_p (stmt))
1442 return false;
1443
1444 /* Do not allow a block with only a non-local label to be merged. */
1445 if (stmt
1446 && gimple_code (stmt) == GIMPLE_LABEL
1447 && DECL_NONLOCAL (gimple_label_label (stmt)))
1448 return false;
1449
1450 /* Examine the labels at the beginning of B. */
1451 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1452 {
1453 tree lab;
1454 stmt = gsi_stmt (gsi);
1455 if (gimple_code (stmt) != GIMPLE_LABEL)
1456 break;
1457 lab = gimple_label_label (stmt);
1458
1459 /* Do not remove user forced labels or for -O0 any user labels. */
1460 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1461 return false;
1462 }
1463
1464 /* Protect the loop latches. */
1465 if (current_loops && b->loop_father->latch == b)
1466 return false;
1467
1468 /* It must be possible to eliminate all phi nodes in B. If ssa form
1469 is not up-to-date and a name-mapping is registered, we cannot eliminate
1470 any phis. Symbols marked for renaming are never a problem though. */
1471 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1472 {
1473 gimple phi = gsi_stmt (gsi);
1474 /* Technically only new names matter. */
1475 if (name_registered_for_update_p (PHI_RESULT (phi)))
1476 return false;
1477 }
1478
1479 /* When not optimizing, don't merge if we'd lose goto_locus. */
1480 if (!optimize
1481 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1482 {
1483 location_t goto_locus = single_succ_edge (a)->goto_locus;
1484 gimple_stmt_iterator prev, next;
1485 prev = gsi_last_nondebug_bb (a);
1486 next = gsi_after_labels (b);
1487 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1488 gsi_next_nondebug (&next);
1489 if ((gsi_end_p (prev)
1490 || gimple_location (gsi_stmt (prev)) != goto_locus)
1491 && (gsi_end_p (next)
1492 || gimple_location (gsi_stmt (next)) != goto_locus))
1493 return false;
1494 }
1495
1496 return true;
1497 }
1498
1499 /* Return true if the var whose chain of uses starts at PTR has no
1500 nondebug uses. */
1501 bool
1502 has_zero_uses_1 (const ssa_use_operand_t *head)
1503 {
1504 const ssa_use_operand_t *ptr;
1505
1506 for (ptr = head->next; ptr != head; ptr = ptr->next)
1507 if (!is_gimple_debug (USE_STMT (ptr)))
1508 return false;
1509
1510 return true;
1511 }
1512
1513 /* Return true if the var whose chain of uses starts at PTR has a
1514 single nondebug use. Set USE_P and STMT to that single nondebug
1515 use, if so, or to NULL otherwise. */
1516 bool
1517 single_imm_use_1 (const ssa_use_operand_t *head,
1518 use_operand_p *use_p, gimple *stmt)
1519 {
1520 ssa_use_operand_t *ptr, *single_use = 0;
1521
1522 for (ptr = head->next; ptr != head; ptr = ptr->next)
1523 if (!is_gimple_debug (USE_STMT (ptr)))
1524 {
1525 if (single_use)
1526 {
1527 single_use = NULL;
1528 break;
1529 }
1530 single_use = ptr;
1531 }
1532
1533 if (use_p)
1534 *use_p = single_use;
1535
1536 if (stmt)
1537 *stmt = single_use ? single_use->loc.stmt : NULL;
1538
1539 return !!single_use;
1540 }
1541
1542 /* Replaces all uses of NAME by VAL. */
1543
1544 void
1545 replace_uses_by (tree name, tree val)
1546 {
1547 imm_use_iterator imm_iter;
1548 use_operand_p use;
1549 gimple stmt;
1550 edge e;
1551
1552 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1553 {
1554 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1555 {
1556 replace_exp (use, val);
1557
1558 if (gimple_code (stmt) == GIMPLE_PHI)
1559 {
1560 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1561 if (e->flags & EDGE_ABNORMAL)
1562 {
1563 /* This can only occur for virtual operands, since
1564 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1565 would prevent replacement. */
1566 gcc_checking_assert (virtual_operand_p (name));
1567 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1568 }
1569 }
1570 }
1571
1572 if (gimple_code (stmt) != GIMPLE_PHI)
1573 {
1574 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1575 gimple orig_stmt = stmt;
1576 size_t i;
1577
1578 /* Mark the block if we changed the last stmt in it. */
1579 if (cfgcleanup_altered_bbs
1580 && stmt_ends_bb_p (stmt))
1581 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1582
1583 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1584 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1585 only change sth from non-invariant to invariant, and only
1586 when propagating constants. */
1587 if (is_gimple_min_invariant (val))
1588 for (i = 0; i < gimple_num_ops (stmt); i++)
1589 {
1590 tree op = gimple_op (stmt, i);
1591 /* Operands may be empty here. For example, the labels
1592 of a GIMPLE_COND are nulled out following the creation
1593 of the corresponding CFG edges. */
1594 if (op && TREE_CODE (op) == ADDR_EXPR)
1595 recompute_tree_invariant_for_addr_expr (op);
1596 }
1597
1598 if (fold_stmt (&gsi))
1599 stmt = gsi_stmt (gsi);
1600
1601 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1602 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1603
1604 update_stmt (stmt);
1605 }
1606 }
1607
1608 gcc_checking_assert (has_zero_uses (name));
1609
1610 /* Also update the trees stored in loop structures. */
1611 if (current_loops)
1612 {
1613 struct loop *loop;
1614 loop_iterator li;
1615
1616 FOR_EACH_LOOP (li, loop, 0)
1617 {
1618 substitute_in_loop_info (loop, name, val);
1619 }
1620 }
1621 }
1622
1623 /* Merge block B into block A. */
1624
1625 static void
1626 gimple_merge_blocks (basic_block a, basic_block b)
1627 {
1628 gimple_stmt_iterator last, gsi, psi;
1629
1630 if (dump_file)
1631 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1632
1633 /* Remove all single-valued PHI nodes from block B of the form
1634 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1635 gsi = gsi_last_bb (a);
1636 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1637 {
1638 gimple phi = gsi_stmt (psi);
1639 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1640 gimple copy;
1641 bool may_replace_uses = (virtual_operand_p (def)
1642 || may_propagate_copy (def, use));
1643
1644 /* In case we maintain loop closed ssa form, do not propagate arguments
1645 of loop exit phi nodes. */
1646 if (current_loops
1647 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1648 && !virtual_operand_p (def)
1649 && TREE_CODE (use) == SSA_NAME
1650 && a->loop_father != b->loop_father)
1651 may_replace_uses = false;
1652
1653 if (!may_replace_uses)
1654 {
1655 gcc_assert (!virtual_operand_p (def));
1656
1657 /* Note that just emitting the copies is fine -- there is no problem
1658 with ordering of phi nodes. This is because A is the single
1659 predecessor of B, therefore results of the phi nodes cannot
1660 appear as arguments of the phi nodes. */
1661 copy = gimple_build_assign (def, use);
1662 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1663 remove_phi_node (&psi, false);
1664 }
1665 else
1666 {
1667 /* If we deal with a PHI for virtual operands, we can simply
1668 propagate these without fussing with folding or updating
1669 the stmt. */
1670 if (virtual_operand_p (def))
1671 {
1672 imm_use_iterator iter;
1673 use_operand_p use_p;
1674 gimple stmt;
1675
1676 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1677 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1678 SET_USE (use_p, use);
1679
1680 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1681 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1682 }
1683 else
1684 replace_uses_by (def, use);
1685
1686 remove_phi_node (&psi, true);
1687 }
1688 }
1689
1690 /* Ensure that B follows A. */
1691 move_block_after (b, a);
1692
1693 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1694 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1695
1696 /* Remove labels from B and set gimple_bb to A for other statements. */
1697 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1698 {
1699 gimple stmt = gsi_stmt (gsi);
1700 if (gimple_code (stmt) == GIMPLE_LABEL)
1701 {
1702 tree label = gimple_label_label (stmt);
1703 int lp_nr;
1704
1705 gsi_remove (&gsi, false);
1706
1707 /* Now that we can thread computed gotos, we might have
1708 a situation where we have a forced label in block B
1709 However, the label at the start of block B might still be
1710 used in other ways (think about the runtime checking for
1711 Fortran assigned gotos). So we can not just delete the
1712 label. Instead we move the label to the start of block A. */
1713 if (FORCED_LABEL (label))
1714 {
1715 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1716 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1717 }
1718 /* Other user labels keep around in a form of a debug stmt. */
1719 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1720 {
1721 gimple dbg = gimple_build_debug_bind (label,
1722 integer_zero_node,
1723 stmt);
1724 gimple_debug_bind_reset_value (dbg);
1725 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1726 }
1727
1728 lp_nr = EH_LANDING_PAD_NR (label);
1729 if (lp_nr)
1730 {
1731 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1732 lp->post_landing_pad = NULL;
1733 }
1734 }
1735 else
1736 {
1737 gimple_set_bb (stmt, a);
1738 gsi_next (&gsi);
1739 }
1740 }
1741
1742 /* Merge the sequences. */
1743 last = gsi_last_bb (a);
1744 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1745 set_bb_seq (b, NULL);
1746
1747 if (cfgcleanup_altered_bbs)
1748 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1749 }
1750
1751
1752 /* Return the one of two successors of BB that is not reachable by a
1753 complex edge, if there is one. Else, return BB. We use
1754 this in optimizations that use post-dominators for their heuristics,
1755 to catch the cases in C++ where function calls are involved. */
1756
1757 basic_block
1758 single_noncomplex_succ (basic_block bb)
1759 {
1760 edge e0, e1;
1761 if (EDGE_COUNT (bb->succs) != 2)
1762 return bb;
1763
1764 e0 = EDGE_SUCC (bb, 0);
1765 e1 = EDGE_SUCC (bb, 1);
1766 if (e0->flags & EDGE_COMPLEX)
1767 return e1->dest;
1768 if (e1->flags & EDGE_COMPLEX)
1769 return e0->dest;
1770
1771 return bb;
1772 }
1773
1774 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1775
1776 void
1777 notice_special_calls (gimple call)
1778 {
1779 int flags = gimple_call_flags (call);
1780
1781 if (flags & ECF_MAY_BE_ALLOCA)
1782 cfun->calls_alloca = true;
1783 if (flags & ECF_RETURNS_TWICE)
1784 cfun->calls_setjmp = true;
1785 }
1786
1787
1788 /* Clear flags set by notice_special_calls. Used by dead code removal
1789 to update the flags. */
1790
1791 void
1792 clear_special_calls (void)
1793 {
1794 cfun->calls_alloca = false;
1795 cfun->calls_setjmp = false;
1796 }
1797
1798 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1799
1800 static void
1801 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1802 {
1803 /* Since this block is no longer reachable, we can just delete all
1804 of its PHI nodes. */
1805 remove_phi_nodes (bb);
1806
1807 /* Remove edges to BB's successors. */
1808 while (EDGE_COUNT (bb->succs) > 0)
1809 remove_edge (EDGE_SUCC (bb, 0));
1810 }
1811
1812
1813 /* Remove statements of basic block BB. */
1814
1815 static void
1816 remove_bb (basic_block bb)
1817 {
1818 gimple_stmt_iterator i;
1819
1820 if (dump_file)
1821 {
1822 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1823 if (dump_flags & TDF_DETAILS)
1824 {
1825 dump_bb (dump_file, bb, 0, dump_flags);
1826 fprintf (dump_file, "\n");
1827 }
1828 }
1829
1830 if (current_loops)
1831 {
1832 struct loop *loop = bb->loop_father;
1833
1834 /* If a loop gets removed, clean up the information associated
1835 with it. */
1836 if (loop->latch == bb
1837 || loop->header == bb)
1838 free_numbers_of_iterations_estimates_loop (loop);
1839 }
1840
1841 /* Remove all the instructions in the block. */
1842 if (bb_seq (bb) != NULL)
1843 {
1844 /* Walk backwards so as to get a chance to substitute all
1845 released DEFs into debug stmts. See
1846 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1847 details. */
1848 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1849 {
1850 gimple stmt = gsi_stmt (i);
1851 if (gimple_code (stmt) == GIMPLE_LABEL
1852 && (FORCED_LABEL (gimple_label_label (stmt))
1853 || DECL_NONLOCAL (gimple_label_label (stmt))))
1854 {
1855 basic_block new_bb;
1856 gimple_stmt_iterator new_gsi;
1857
1858 /* A non-reachable non-local label may still be referenced.
1859 But it no longer needs to carry the extra semantics of
1860 non-locality. */
1861 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1862 {
1863 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1864 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1865 }
1866
1867 new_bb = bb->prev_bb;
1868 new_gsi = gsi_start_bb (new_bb);
1869 gsi_remove (&i, false);
1870 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1871 }
1872 else
1873 {
1874 /* Release SSA definitions if we are in SSA. Note that we
1875 may be called when not in SSA. For example,
1876 final_cleanup calls this function via
1877 cleanup_tree_cfg. */
1878 if (gimple_in_ssa_p (cfun))
1879 release_defs (stmt);
1880
1881 gsi_remove (&i, true);
1882 }
1883
1884 if (gsi_end_p (i))
1885 i = gsi_last_bb (bb);
1886 else
1887 gsi_prev (&i);
1888 }
1889 }
1890
1891 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1892 bb->il.gimple.seq = NULL;
1893 bb->il.gimple.phi_nodes = NULL;
1894 }
1895
1896
1897 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1898 predicate VAL, return the edge that will be taken out of the block.
1899 If VAL does not match a unique edge, NULL is returned. */
1900
1901 edge
1902 find_taken_edge (basic_block bb, tree val)
1903 {
1904 gimple stmt;
1905
1906 stmt = last_stmt (bb);
1907
1908 gcc_assert (stmt);
1909 gcc_assert (is_ctrl_stmt (stmt));
1910
1911 if (val == NULL)
1912 return NULL;
1913
1914 if (!is_gimple_min_invariant (val))
1915 return NULL;
1916
1917 if (gimple_code (stmt) == GIMPLE_COND)
1918 return find_taken_edge_cond_expr (bb, val);
1919
1920 if (gimple_code (stmt) == GIMPLE_SWITCH)
1921 return find_taken_edge_switch_expr (bb, val);
1922
1923 if (computed_goto_p (stmt))
1924 {
1925 /* Only optimize if the argument is a label, if the argument is
1926 not a label then we can not construct a proper CFG.
1927
1928 It may be the case that we only need to allow the LABEL_REF to
1929 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1930 appear inside a LABEL_EXPR just to be safe. */
1931 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1932 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1933 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1934 return NULL;
1935 }
1936
1937 gcc_unreachable ();
1938 }
1939
1940 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1941 statement, determine which of the outgoing edges will be taken out of the
1942 block. Return NULL if either edge may be taken. */
1943
1944 static edge
1945 find_taken_edge_computed_goto (basic_block bb, tree val)
1946 {
1947 basic_block dest;
1948 edge e = NULL;
1949
1950 dest = label_to_block (val);
1951 if (dest)
1952 {
1953 e = find_edge (bb, dest);
1954 gcc_assert (e != NULL);
1955 }
1956
1957 return e;
1958 }
1959
1960 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1961 statement, determine which of the two edges will be taken out of the
1962 block. Return NULL if either edge may be taken. */
1963
1964 static edge
1965 find_taken_edge_cond_expr (basic_block bb, tree val)
1966 {
1967 edge true_edge, false_edge;
1968
1969 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1970
1971 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1972 return (integer_zerop (val) ? false_edge : true_edge);
1973 }
1974
1975 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1976 statement, determine which edge will be taken out of the block. Return
1977 NULL if any edge may be taken. */
1978
1979 static edge
1980 find_taken_edge_switch_expr (basic_block bb, tree val)
1981 {
1982 basic_block dest_bb;
1983 edge e;
1984 gimple switch_stmt;
1985 tree taken_case;
1986
1987 switch_stmt = last_stmt (bb);
1988 taken_case = find_case_label_for_value (switch_stmt, val);
1989 dest_bb = label_to_block (CASE_LABEL (taken_case));
1990
1991 e = find_edge (bb, dest_bb);
1992 gcc_assert (e);
1993 return e;
1994 }
1995
1996
1997 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1998 We can make optimal use here of the fact that the case labels are
1999 sorted: We can do a binary search for a case matching VAL. */
2000
2001 static tree
2002 find_case_label_for_value (gimple switch_stmt, tree val)
2003 {
2004 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2005 tree default_case = gimple_switch_default_label (switch_stmt);
2006
2007 for (low = 0, high = n; high - low > 1; )
2008 {
2009 size_t i = (high + low) / 2;
2010 tree t = gimple_switch_label (switch_stmt, i);
2011 int cmp;
2012
2013 /* Cache the result of comparing CASE_LOW and val. */
2014 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2015
2016 if (cmp > 0)
2017 high = i;
2018 else
2019 low = i;
2020
2021 if (CASE_HIGH (t) == NULL)
2022 {
2023 /* A singe-valued case label. */
2024 if (cmp == 0)
2025 return t;
2026 }
2027 else
2028 {
2029 /* A case range. We can only handle integer ranges. */
2030 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2031 return t;
2032 }
2033 }
2034
2035 return default_case;
2036 }
2037
2038
2039 /* Dump a basic block on stderr. */
2040
2041 void
2042 gimple_debug_bb (basic_block bb)
2043 {
2044 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2045 }
2046
2047
2048 /* Dump basic block with index N on stderr. */
2049
2050 basic_block
2051 gimple_debug_bb_n (int n)
2052 {
2053 gimple_debug_bb (BASIC_BLOCK (n));
2054 return BASIC_BLOCK (n);
2055 }
2056
2057
2058 /* Dump the CFG on stderr.
2059
2060 FLAGS are the same used by the tree dumping functions
2061 (see TDF_* in dumpfile.h). */
2062
2063 void
2064 gimple_debug_cfg (int flags)
2065 {
2066 gimple_dump_cfg (stderr, flags);
2067 }
2068
2069
2070 /* Dump the program showing basic block boundaries on the given FILE.
2071
2072 FLAGS are the same used by the tree dumping functions (see TDF_* in
2073 tree.h). */
2074
2075 void
2076 gimple_dump_cfg (FILE *file, int flags)
2077 {
2078 if (flags & TDF_DETAILS)
2079 {
2080 dump_function_header (file, current_function_decl, flags);
2081 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2082 n_basic_blocks, n_edges, last_basic_block);
2083
2084 brief_dump_cfg (file, flags | TDF_COMMENT);
2085 fprintf (file, "\n");
2086 }
2087
2088 if (flags & TDF_STATS)
2089 dump_cfg_stats (file);
2090
2091 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2092 }
2093
2094
2095 /* Dump CFG statistics on FILE. */
2096
2097 void
2098 dump_cfg_stats (FILE *file)
2099 {
2100 static long max_num_merged_labels = 0;
2101 unsigned long size, total = 0;
2102 long num_edges;
2103 basic_block bb;
2104 const char * const fmt_str = "%-30s%-13s%12s\n";
2105 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2106 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2107 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2108 const char *funcname = current_function_name ();
2109
2110 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2111
2112 fprintf (file, "---------------------------------------------------------\n");
2113 fprintf (file, fmt_str, "", " Number of ", "Memory");
2114 fprintf (file, fmt_str, "", " instances ", "used ");
2115 fprintf (file, "---------------------------------------------------------\n");
2116
2117 size = n_basic_blocks * sizeof (struct basic_block_def);
2118 total += size;
2119 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2120 SCALE (size), LABEL (size));
2121
2122 num_edges = 0;
2123 FOR_EACH_BB (bb)
2124 num_edges += EDGE_COUNT (bb->succs);
2125 size = num_edges * sizeof (struct edge_def);
2126 total += size;
2127 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2128
2129 fprintf (file, "---------------------------------------------------------\n");
2130 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2131 LABEL (total));
2132 fprintf (file, "---------------------------------------------------------\n");
2133 fprintf (file, "\n");
2134
2135 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2136 max_num_merged_labels = cfg_stats.num_merged_labels;
2137
2138 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2139 cfg_stats.num_merged_labels, max_num_merged_labels);
2140
2141 fprintf (file, "\n");
2142 }
2143
2144
2145 /* Dump CFG statistics on stderr. Keep extern so that it's always
2146 linked in the final executable. */
2147
2148 DEBUG_FUNCTION void
2149 debug_cfg_stats (void)
2150 {
2151 dump_cfg_stats (stderr);
2152 }
2153
2154 /*---------------------------------------------------------------------------
2155 Miscellaneous helpers
2156 ---------------------------------------------------------------------------*/
2157
2158 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2159 flow. Transfers of control flow associated with EH are excluded. */
2160
2161 static bool
2162 call_can_make_abnormal_goto (gimple t)
2163 {
2164 /* If the function has no non-local labels, then a call cannot make an
2165 abnormal transfer of control. */
2166 if (!cfun->has_nonlocal_label
2167 && !cfun->calls_setjmp)
2168 return false;
2169
2170 /* Likewise if the call has no side effects. */
2171 if (!gimple_has_side_effects (t))
2172 return false;
2173
2174 /* Likewise if the called function is leaf. */
2175 if (gimple_call_flags (t) & ECF_LEAF)
2176 return false;
2177
2178 return true;
2179 }
2180
2181
2182 /* Return true if T can make an abnormal transfer of control flow.
2183 Transfers of control flow associated with EH are excluded. */
2184
2185 bool
2186 stmt_can_make_abnormal_goto (gimple t)
2187 {
2188 if (computed_goto_p (t))
2189 return true;
2190 if (is_gimple_call (t))
2191 return call_can_make_abnormal_goto (t);
2192 return false;
2193 }
2194
2195
2196 /* Return true if T represents a stmt that always transfers control. */
2197
2198 bool
2199 is_ctrl_stmt (gimple t)
2200 {
2201 switch (gimple_code (t))
2202 {
2203 case GIMPLE_COND:
2204 case GIMPLE_SWITCH:
2205 case GIMPLE_GOTO:
2206 case GIMPLE_RETURN:
2207 case GIMPLE_RESX:
2208 return true;
2209 default:
2210 return false;
2211 }
2212 }
2213
2214
2215 /* Return true if T is a statement that may alter the flow of control
2216 (e.g., a call to a non-returning function). */
2217
2218 bool
2219 is_ctrl_altering_stmt (gimple t)
2220 {
2221 gcc_assert (t);
2222
2223 switch (gimple_code (t))
2224 {
2225 case GIMPLE_CALL:
2226 {
2227 int flags = gimple_call_flags (t);
2228
2229 /* A call alters control flow if it can make an abnormal goto. */
2230 if (call_can_make_abnormal_goto (t))
2231 return true;
2232
2233 /* A call also alters control flow if it does not return. */
2234 if (flags & ECF_NORETURN)
2235 return true;
2236
2237 /* TM ending statements have backedges out of the transaction.
2238 Return true so we split the basic block containing them.
2239 Note that the TM_BUILTIN test is merely an optimization. */
2240 if ((flags & ECF_TM_BUILTIN)
2241 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2242 return true;
2243
2244 /* BUILT_IN_RETURN call is same as return statement. */
2245 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2246 return true;
2247 }
2248 break;
2249
2250 case GIMPLE_EH_DISPATCH:
2251 /* EH_DISPATCH branches to the individual catch handlers at
2252 this level of a try or allowed-exceptions region. It can
2253 fallthru to the next statement as well. */
2254 return true;
2255
2256 case GIMPLE_ASM:
2257 if (gimple_asm_nlabels (t) > 0)
2258 return true;
2259 break;
2260
2261 CASE_GIMPLE_OMP:
2262 /* OpenMP directives alter control flow. */
2263 return true;
2264
2265 case GIMPLE_TRANSACTION:
2266 /* A transaction start alters control flow. */
2267 return true;
2268
2269 default:
2270 break;
2271 }
2272
2273 /* If a statement can throw, it alters control flow. */
2274 return stmt_can_throw_internal (t);
2275 }
2276
2277
2278 /* Return true if T is a simple local goto. */
2279
2280 bool
2281 simple_goto_p (gimple t)
2282 {
2283 return (gimple_code (t) == GIMPLE_GOTO
2284 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2285 }
2286
2287
2288 /* Return true if STMT should start a new basic block. PREV_STMT is
2289 the statement preceding STMT. It is used when STMT is a label or a
2290 case label. Labels should only start a new basic block if their
2291 previous statement wasn't a label. Otherwise, sequence of labels
2292 would generate unnecessary basic blocks that only contain a single
2293 label. */
2294
2295 static inline bool
2296 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2297 {
2298 if (stmt == NULL)
2299 return false;
2300
2301 /* Labels start a new basic block only if the preceding statement
2302 wasn't a label of the same type. This prevents the creation of
2303 consecutive blocks that have nothing but a single label. */
2304 if (gimple_code (stmt) == GIMPLE_LABEL)
2305 {
2306 /* Nonlocal and computed GOTO targets always start a new block. */
2307 if (DECL_NONLOCAL (gimple_label_label (stmt))
2308 || FORCED_LABEL (gimple_label_label (stmt)))
2309 return true;
2310
2311 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2312 {
2313 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2314 return true;
2315
2316 cfg_stats.num_merged_labels++;
2317 return false;
2318 }
2319 else
2320 return true;
2321 }
2322 else if (gimple_code (stmt) == GIMPLE_CALL
2323 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2324 /* setjmp acts similar to a nonlocal GOTO target and thus should
2325 start a new block. */
2326 return true;
2327
2328 return false;
2329 }
2330
2331
2332 /* Return true if T should end a basic block. */
2333
2334 bool
2335 stmt_ends_bb_p (gimple t)
2336 {
2337 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2338 }
2339
2340 /* Remove block annotations and other data structures. */
2341
2342 void
2343 delete_tree_cfg_annotations (void)
2344 {
2345 vec_free (label_to_block_map);
2346 }
2347
2348
2349 /* Return the first statement in basic block BB. */
2350
2351 gimple
2352 first_stmt (basic_block bb)
2353 {
2354 gimple_stmt_iterator i = gsi_start_bb (bb);
2355 gimple stmt = NULL;
2356
2357 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2358 {
2359 gsi_next (&i);
2360 stmt = NULL;
2361 }
2362 return stmt;
2363 }
2364
2365 /* Return the first non-label statement in basic block BB. */
2366
2367 static gimple
2368 first_non_label_stmt (basic_block bb)
2369 {
2370 gimple_stmt_iterator i = gsi_start_bb (bb);
2371 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2372 gsi_next (&i);
2373 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2374 }
2375
2376 /* Return the last statement in basic block BB. */
2377
2378 gimple
2379 last_stmt (basic_block bb)
2380 {
2381 gimple_stmt_iterator i = gsi_last_bb (bb);
2382 gimple stmt = NULL;
2383
2384 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2385 {
2386 gsi_prev (&i);
2387 stmt = NULL;
2388 }
2389 return stmt;
2390 }
2391
2392 /* Return the last statement of an otherwise empty block. Return NULL
2393 if the block is totally empty, or if it contains more than one
2394 statement. */
2395
2396 gimple
2397 last_and_only_stmt (basic_block bb)
2398 {
2399 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2400 gimple last, prev;
2401
2402 if (gsi_end_p (i))
2403 return NULL;
2404
2405 last = gsi_stmt (i);
2406 gsi_prev_nondebug (&i);
2407 if (gsi_end_p (i))
2408 return last;
2409
2410 /* Empty statements should no longer appear in the instruction stream.
2411 Everything that might have appeared before should be deleted by
2412 remove_useless_stmts, and the optimizers should just gsi_remove
2413 instead of smashing with build_empty_stmt.
2414
2415 Thus the only thing that should appear here in a block containing
2416 one executable statement is a label. */
2417 prev = gsi_stmt (i);
2418 if (gimple_code (prev) == GIMPLE_LABEL)
2419 return last;
2420 else
2421 return NULL;
2422 }
2423
2424 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2425
2426 static void
2427 reinstall_phi_args (edge new_edge, edge old_edge)
2428 {
2429 edge_var_map_vector *v;
2430 edge_var_map *vm;
2431 int i;
2432 gimple_stmt_iterator phis;
2433
2434 v = redirect_edge_var_map_vector (old_edge);
2435 if (!v)
2436 return;
2437
2438 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2439 v->iterate (i, &vm) && !gsi_end_p (phis);
2440 i++, gsi_next (&phis))
2441 {
2442 gimple phi = gsi_stmt (phis);
2443 tree result = redirect_edge_var_map_result (vm);
2444 tree arg = redirect_edge_var_map_def (vm);
2445
2446 gcc_assert (result == gimple_phi_result (phi));
2447
2448 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2449 }
2450
2451 redirect_edge_var_map_clear (old_edge);
2452 }
2453
2454 /* Returns the basic block after which the new basic block created
2455 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2456 near its "logical" location. This is of most help to humans looking
2457 at debugging dumps. */
2458
2459 static basic_block
2460 split_edge_bb_loc (edge edge_in)
2461 {
2462 basic_block dest = edge_in->dest;
2463 basic_block dest_prev = dest->prev_bb;
2464
2465 if (dest_prev)
2466 {
2467 edge e = find_edge (dest_prev, dest);
2468 if (e && !(e->flags & EDGE_COMPLEX))
2469 return edge_in->src;
2470 }
2471 return dest_prev;
2472 }
2473
2474 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2475 Abort on abnormal edges. */
2476
2477 static basic_block
2478 gimple_split_edge (edge edge_in)
2479 {
2480 basic_block new_bb, after_bb, dest;
2481 edge new_edge, e;
2482
2483 /* Abnormal edges cannot be split. */
2484 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2485
2486 dest = edge_in->dest;
2487
2488 after_bb = split_edge_bb_loc (edge_in);
2489
2490 new_bb = create_empty_bb (after_bb);
2491 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2492 new_bb->count = edge_in->count;
2493 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2494 new_edge->probability = REG_BR_PROB_BASE;
2495 new_edge->count = edge_in->count;
2496
2497 e = redirect_edge_and_branch (edge_in, new_bb);
2498 gcc_assert (e == edge_in);
2499 reinstall_phi_args (new_edge, e);
2500
2501 return new_bb;
2502 }
2503
2504
2505 /* Verify properties of the address expression T with base object BASE. */
2506
2507 static tree
2508 verify_address (tree t, tree base)
2509 {
2510 bool old_constant;
2511 bool old_side_effects;
2512 bool new_constant;
2513 bool new_side_effects;
2514
2515 old_constant = TREE_CONSTANT (t);
2516 old_side_effects = TREE_SIDE_EFFECTS (t);
2517
2518 recompute_tree_invariant_for_addr_expr (t);
2519 new_side_effects = TREE_SIDE_EFFECTS (t);
2520 new_constant = TREE_CONSTANT (t);
2521
2522 if (old_constant != new_constant)
2523 {
2524 error ("constant not recomputed when ADDR_EXPR changed");
2525 return t;
2526 }
2527 if (old_side_effects != new_side_effects)
2528 {
2529 error ("side effects not recomputed when ADDR_EXPR changed");
2530 return t;
2531 }
2532
2533 if (!(TREE_CODE (base) == VAR_DECL
2534 || TREE_CODE (base) == PARM_DECL
2535 || TREE_CODE (base) == RESULT_DECL))
2536 return NULL_TREE;
2537
2538 if (DECL_GIMPLE_REG_P (base))
2539 {
2540 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2541 return base;
2542 }
2543
2544 return NULL_TREE;
2545 }
2546
2547 /* Callback for walk_tree, check that all elements with address taken are
2548 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2549 inside a PHI node. */
2550
2551 static tree
2552 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2553 {
2554 tree t = *tp, x;
2555
2556 if (TYPE_P (t))
2557 *walk_subtrees = 0;
2558
2559 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2560 #define CHECK_OP(N, MSG) \
2561 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2562 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2563
2564 switch (TREE_CODE (t))
2565 {
2566 case SSA_NAME:
2567 if (SSA_NAME_IN_FREE_LIST (t))
2568 {
2569 error ("SSA name in freelist but still referenced");
2570 return *tp;
2571 }
2572 break;
2573
2574 case INDIRECT_REF:
2575 error ("INDIRECT_REF in gimple IL");
2576 return t;
2577
2578 case MEM_REF:
2579 x = TREE_OPERAND (t, 0);
2580 if (!POINTER_TYPE_P (TREE_TYPE (x))
2581 || !is_gimple_mem_ref_addr (x))
2582 {
2583 error ("invalid first operand of MEM_REF");
2584 return x;
2585 }
2586 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2587 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2588 {
2589 error ("invalid offset operand of MEM_REF");
2590 return TREE_OPERAND (t, 1);
2591 }
2592 if (TREE_CODE (x) == ADDR_EXPR
2593 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2594 return x;
2595 *walk_subtrees = 0;
2596 break;
2597
2598 case ASSERT_EXPR:
2599 x = fold (ASSERT_EXPR_COND (t));
2600 if (x == boolean_false_node)
2601 {
2602 error ("ASSERT_EXPR with an always-false condition");
2603 return *tp;
2604 }
2605 break;
2606
2607 case MODIFY_EXPR:
2608 error ("MODIFY_EXPR not expected while having tuples");
2609 return *tp;
2610
2611 case ADDR_EXPR:
2612 {
2613 tree tem;
2614
2615 gcc_assert (is_gimple_address (t));
2616
2617 /* Skip any references (they will be checked when we recurse down the
2618 tree) and ensure that any variable used as a prefix is marked
2619 addressable. */
2620 for (x = TREE_OPERAND (t, 0);
2621 handled_component_p (x);
2622 x = TREE_OPERAND (x, 0))
2623 ;
2624
2625 if ((tem = verify_address (t, x)))
2626 return tem;
2627
2628 if (!(TREE_CODE (x) == VAR_DECL
2629 || TREE_CODE (x) == PARM_DECL
2630 || TREE_CODE (x) == RESULT_DECL))
2631 return NULL;
2632
2633 if (!TREE_ADDRESSABLE (x))
2634 {
2635 error ("address taken, but ADDRESSABLE bit not set");
2636 return x;
2637 }
2638
2639 break;
2640 }
2641
2642 case COND_EXPR:
2643 x = COND_EXPR_COND (t);
2644 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2645 {
2646 error ("non-integral used in condition");
2647 return x;
2648 }
2649 if (!is_gimple_condexpr (x))
2650 {
2651 error ("invalid conditional operand");
2652 return x;
2653 }
2654 break;
2655
2656 case NON_LVALUE_EXPR:
2657 case TRUTH_NOT_EXPR:
2658 gcc_unreachable ();
2659
2660 CASE_CONVERT:
2661 case FIX_TRUNC_EXPR:
2662 case FLOAT_EXPR:
2663 case NEGATE_EXPR:
2664 case ABS_EXPR:
2665 case BIT_NOT_EXPR:
2666 CHECK_OP (0, "invalid operand to unary operator");
2667 break;
2668
2669 case REALPART_EXPR:
2670 case IMAGPART_EXPR:
2671 case BIT_FIELD_REF:
2672 if (!is_gimple_reg_type (TREE_TYPE (t)))
2673 {
2674 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2675 return t;
2676 }
2677
2678 /* Fall-through. */
2679 case COMPONENT_REF:
2680 case ARRAY_REF:
2681 case ARRAY_RANGE_REF:
2682 case VIEW_CONVERT_EXPR:
2683 /* We have a nest of references. Verify that each of the operands
2684 that determine where to reference is either a constant or a variable,
2685 verify that the base is valid, and then show we've already checked
2686 the subtrees. */
2687 while (handled_component_p (t))
2688 {
2689 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2690 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2691 else if (TREE_CODE (t) == ARRAY_REF
2692 || TREE_CODE (t) == ARRAY_RANGE_REF)
2693 {
2694 CHECK_OP (1, "invalid array index");
2695 if (TREE_OPERAND (t, 2))
2696 CHECK_OP (2, "invalid array lower bound");
2697 if (TREE_OPERAND (t, 3))
2698 CHECK_OP (3, "invalid array stride");
2699 }
2700 else if (TREE_CODE (t) == BIT_FIELD_REF)
2701 {
2702 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2703 || !host_integerp (TREE_OPERAND (t, 2), 1))
2704 {
2705 error ("invalid position or size operand to BIT_FIELD_REF");
2706 return t;
2707 }
2708 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2709 && (TYPE_PRECISION (TREE_TYPE (t))
2710 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2711 {
2712 error ("integral result type precision does not match "
2713 "field size of BIT_FIELD_REF");
2714 return t;
2715 }
2716 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2717 && !AGGREGATE_TYPE_P (TREE_TYPE (t))
2718 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2719 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2720 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2721 {
2722 error ("mode precision of non-integral result does not "
2723 "match field size of BIT_FIELD_REF");
2724 return t;
2725 }
2726 }
2727
2728 t = TREE_OPERAND (t, 0);
2729 }
2730
2731 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2732 {
2733 error ("invalid reference prefix");
2734 return t;
2735 }
2736 *walk_subtrees = 0;
2737 break;
2738 case PLUS_EXPR:
2739 case MINUS_EXPR:
2740 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2741 POINTER_PLUS_EXPR. */
2742 if (POINTER_TYPE_P (TREE_TYPE (t)))
2743 {
2744 error ("invalid operand to plus/minus, type is a pointer");
2745 return t;
2746 }
2747 CHECK_OP (0, "invalid operand to binary operator");
2748 CHECK_OP (1, "invalid operand to binary operator");
2749 break;
2750
2751 case POINTER_PLUS_EXPR:
2752 /* Check to make sure the first operand is a pointer or reference type. */
2753 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2754 {
2755 error ("invalid operand to pointer plus, first operand is not a pointer");
2756 return t;
2757 }
2758 /* Check to make sure the second operand is a ptrofftype. */
2759 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2760 {
2761 error ("invalid operand to pointer plus, second operand is not an "
2762 "integer type of appropriate width");
2763 return t;
2764 }
2765 /* FALLTHROUGH */
2766 case LT_EXPR:
2767 case LE_EXPR:
2768 case GT_EXPR:
2769 case GE_EXPR:
2770 case EQ_EXPR:
2771 case NE_EXPR:
2772 case UNORDERED_EXPR:
2773 case ORDERED_EXPR:
2774 case UNLT_EXPR:
2775 case UNLE_EXPR:
2776 case UNGT_EXPR:
2777 case UNGE_EXPR:
2778 case UNEQ_EXPR:
2779 case LTGT_EXPR:
2780 case MULT_EXPR:
2781 case TRUNC_DIV_EXPR:
2782 case CEIL_DIV_EXPR:
2783 case FLOOR_DIV_EXPR:
2784 case ROUND_DIV_EXPR:
2785 case TRUNC_MOD_EXPR:
2786 case CEIL_MOD_EXPR:
2787 case FLOOR_MOD_EXPR:
2788 case ROUND_MOD_EXPR:
2789 case RDIV_EXPR:
2790 case EXACT_DIV_EXPR:
2791 case MIN_EXPR:
2792 case MAX_EXPR:
2793 case LSHIFT_EXPR:
2794 case RSHIFT_EXPR:
2795 case LROTATE_EXPR:
2796 case RROTATE_EXPR:
2797 case BIT_IOR_EXPR:
2798 case BIT_XOR_EXPR:
2799 case BIT_AND_EXPR:
2800 CHECK_OP (0, "invalid operand to binary operator");
2801 CHECK_OP (1, "invalid operand to binary operator");
2802 break;
2803
2804 case CONSTRUCTOR:
2805 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2806 *walk_subtrees = 0;
2807 break;
2808
2809 case CASE_LABEL_EXPR:
2810 if (CASE_CHAIN (t))
2811 {
2812 error ("invalid CASE_CHAIN");
2813 return t;
2814 }
2815 break;
2816
2817 default:
2818 break;
2819 }
2820 return NULL;
2821
2822 #undef CHECK_OP
2823 }
2824
2825
2826 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2827 Returns true if there is an error, otherwise false. */
2828
2829 static bool
2830 verify_types_in_gimple_min_lval (tree expr)
2831 {
2832 tree op;
2833
2834 if (is_gimple_id (expr))
2835 return false;
2836
2837 if (TREE_CODE (expr) != TARGET_MEM_REF
2838 && TREE_CODE (expr) != MEM_REF)
2839 {
2840 error ("invalid expression for min lvalue");
2841 return true;
2842 }
2843
2844 /* TARGET_MEM_REFs are strange beasts. */
2845 if (TREE_CODE (expr) == TARGET_MEM_REF)
2846 return false;
2847
2848 op = TREE_OPERAND (expr, 0);
2849 if (!is_gimple_val (op))
2850 {
2851 error ("invalid operand in indirect reference");
2852 debug_generic_stmt (op);
2853 return true;
2854 }
2855 /* Memory references now generally can involve a value conversion. */
2856
2857 return false;
2858 }
2859
2860 /* Verify if EXPR is a valid GIMPLE reference expression. If
2861 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2862 if there is an error, otherwise false. */
2863
2864 static bool
2865 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2866 {
2867 while (handled_component_p (expr))
2868 {
2869 tree op = TREE_OPERAND (expr, 0);
2870
2871 if (TREE_CODE (expr) == ARRAY_REF
2872 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2873 {
2874 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2875 || (TREE_OPERAND (expr, 2)
2876 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2877 || (TREE_OPERAND (expr, 3)
2878 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2879 {
2880 error ("invalid operands to array reference");
2881 debug_generic_stmt (expr);
2882 return true;
2883 }
2884 }
2885
2886 /* Verify if the reference array element types are compatible. */
2887 if (TREE_CODE (expr) == ARRAY_REF
2888 && !useless_type_conversion_p (TREE_TYPE (expr),
2889 TREE_TYPE (TREE_TYPE (op))))
2890 {
2891 error ("type mismatch in array reference");
2892 debug_generic_stmt (TREE_TYPE (expr));
2893 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2894 return true;
2895 }
2896 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2897 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2898 TREE_TYPE (TREE_TYPE (op))))
2899 {
2900 error ("type mismatch in array range reference");
2901 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2902 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2903 return true;
2904 }
2905
2906 if ((TREE_CODE (expr) == REALPART_EXPR
2907 || TREE_CODE (expr) == IMAGPART_EXPR)
2908 && !useless_type_conversion_p (TREE_TYPE (expr),
2909 TREE_TYPE (TREE_TYPE (op))))
2910 {
2911 error ("type mismatch in real/imagpart reference");
2912 debug_generic_stmt (TREE_TYPE (expr));
2913 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2914 return true;
2915 }
2916
2917 if (TREE_CODE (expr) == COMPONENT_REF
2918 && !useless_type_conversion_p (TREE_TYPE (expr),
2919 TREE_TYPE (TREE_OPERAND (expr, 1))))
2920 {
2921 error ("type mismatch in component reference");
2922 debug_generic_stmt (TREE_TYPE (expr));
2923 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2924 return true;
2925 }
2926
2927 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2928 {
2929 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2930 that their operand is not an SSA name or an invariant when
2931 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2932 bug). Otherwise there is nothing to verify, gross mismatches at
2933 most invoke undefined behavior. */
2934 if (require_lvalue
2935 && (TREE_CODE (op) == SSA_NAME
2936 || is_gimple_min_invariant (op)))
2937 {
2938 error ("conversion of an SSA_NAME on the left hand side");
2939 debug_generic_stmt (expr);
2940 return true;
2941 }
2942 else if (TREE_CODE (op) == SSA_NAME
2943 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2944 {
2945 error ("conversion of register to a different size");
2946 debug_generic_stmt (expr);
2947 return true;
2948 }
2949 else if (!handled_component_p (op))
2950 return false;
2951 }
2952
2953 expr = op;
2954 }
2955
2956 if (TREE_CODE (expr) == MEM_REF)
2957 {
2958 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2959 {
2960 error ("invalid address operand in MEM_REF");
2961 debug_generic_stmt (expr);
2962 return true;
2963 }
2964 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2965 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2966 {
2967 error ("invalid offset operand in MEM_REF");
2968 debug_generic_stmt (expr);
2969 return true;
2970 }
2971 }
2972 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2973 {
2974 if (!TMR_BASE (expr)
2975 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2976 {
2977 error ("invalid address operand in TARGET_MEM_REF");
2978 return true;
2979 }
2980 if (!TMR_OFFSET (expr)
2981 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2982 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2983 {
2984 error ("invalid offset operand in TARGET_MEM_REF");
2985 debug_generic_stmt (expr);
2986 return true;
2987 }
2988 }
2989
2990 return ((require_lvalue || !is_gimple_min_invariant (expr))
2991 && verify_types_in_gimple_min_lval (expr));
2992 }
2993
2994 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
2995 list of pointer-to types that is trivially convertible to DEST. */
2996
2997 static bool
2998 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
2999 {
3000 tree src;
3001
3002 if (!TYPE_POINTER_TO (src_obj))
3003 return true;
3004
3005 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3006 if (useless_type_conversion_p (dest, src))
3007 return true;
3008
3009 return false;
3010 }
3011
3012 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3013 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3014
3015 static bool
3016 valid_fixed_convert_types_p (tree type1, tree type2)
3017 {
3018 return (FIXED_POINT_TYPE_P (type1)
3019 && (INTEGRAL_TYPE_P (type2)
3020 || SCALAR_FLOAT_TYPE_P (type2)
3021 || FIXED_POINT_TYPE_P (type2)));
3022 }
3023
3024 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3025 is a problem, otherwise false. */
3026
3027 static bool
3028 verify_gimple_call (gimple stmt)
3029 {
3030 tree fn = gimple_call_fn (stmt);
3031 tree fntype, fndecl;
3032 unsigned i;
3033
3034 if (gimple_call_internal_p (stmt))
3035 {
3036 if (fn)
3037 {
3038 error ("gimple call has two targets");
3039 debug_generic_stmt (fn);
3040 return true;
3041 }
3042 }
3043 else
3044 {
3045 if (!fn)
3046 {
3047 error ("gimple call has no target");
3048 return true;
3049 }
3050 }
3051
3052 if (fn && !is_gimple_call_addr (fn))
3053 {
3054 error ("invalid function in gimple call");
3055 debug_generic_stmt (fn);
3056 return true;
3057 }
3058
3059 if (fn
3060 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3061 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3062 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3063 {
3064 error ("non-function in gimple call");
3065 return true;
3066 }
3067
3068 fndecl = gimple_call_fndecl (stmt);
3069 if (fndecl
3070 && TREE_CODE (fndecl) == FUNCTION_DECL
3071 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3072 && !DECL_PURE_P (fndecl)
3073 && !TREE_READONLY (fndecl))
3074 {
3075 error ("invalid pure const state for function");
3076 return true;
3077 }
3078
3079 if (gimple_call_lhs (stmt)
3080 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3081 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3082 {
3083 error ("invalid LHS in gimple call");
3084 return true;
3085 }
3086
3087 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3088 {
3089 error ("LHS in noreturn call");
3090 return true;
3091 }
3092
3093 fntype = gimple_call_fntype (stmt);
3094 if (fntype
3095 && gimple_call_lhs (stmt)
3096 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3097 TREE_TYPE (fntype))
3098 /* ??? At least C++ misses conversions at assignments from
3099 void * call results.
3100 ??? Java is completely off. Especially with functions
3101 returning java.lang.Object.
3102 For now simply allow arbitrary pointer type conversions. */
3103 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3104 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3105 {
3106 error ("invalid conversion in gimple call");
3107 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3108 debug_generic_stmt (TREE_TYPE (fntype));
3109 return true;
3110 }
3111
3112 if (gimple_call_chain (stmt)
3113 && !is_gimple_val (gimple_call_chain (stmt)))
3114 {
3115 error ("invalid static chain in gimple call");
3116 debug_generic_stmt (gimple_call_chain (stmt));
3117 return true;
3118 }
3119
3120 /* If there is a static chain argument, this should not be an indirect
3121 call, and the decl should have DECL_STATIC_CHAIN set. */
3122 if (gimple_call_chain (stmt))
3123 {
3124 if (!gimple_call_fndecl (stmt))
3125 {
3126 error ("static chain in indirect gimple call");
3127 return true;
3128 }
3129 fn = TREE_OPERAND (fn, 0);
3130
3131 if (!DECL_STATIC_CHAIN (fn))
3132 {
3133 error ("static chain with function that doesn%'t use one");
3134 return true;
3135 }
3136 }
3137
3138 /* ??? The C frontend passes unpromoted arguments in case it
3139 didn't see a function declaration before the call. So for now
3140 leave the call arguments mostly unverified. Once we gimplify
3141 unit-at-a-time we have a chance to fix this. */
3142
3143 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3144 {
3145 tree arg = gimple_call_arg (stmt, i);
3146 if ((is_gimple_reg_type (TREE_TYPE (arg))
3147 && !is_gimple_val (arg))
3148 || (!is_gimple_reg_type (TREE_TYPE (arg))
3149 && !is_gimple_lvalue (arg)))
3150 {
3151 error ("invalid argument to gimple call");
3152 debug_generic_expr (arg);
3153 return true;
3154 }
3155 }
3156
3157 return false;
3158 }
3159
3160 /* Verifies the gimple comparison with the result type TYPE and
3161 the operands OP0 and OP1. */
3162
3163 static bool
3164 verify_gimple_comparison (tree type, tree op0, tree op1)
3165 {
3166 tree op0_type = TREE_TYPE (op0);
3167 tree op1_type = TREE_TYPE (op1);
3168
3169 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3170 {
3171 error ("invalid operands in gimple comparison");
3172 return true;
3173 }
3174
3175 /* For comparisons we do not have the operations type as the
3176 effective type the comparison is carried out in. Instead
3177 we require that either the first operand is trivially
3178 convertible into the second, or the other way around.
3179 Because we special-case pointers to void we allow
3180 comparisons of pointers with the same mode as well. */
3181 if (!useless_type_conversion_p (op0_type, op1_type)
3182 && !useless_type_conversion_p (op1_type, op0_type)
3183 && (!POINTER_TYPE_P (op0_type)
3184 || !POINTER_TYPE_P (op1_type)
3185 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3186 {
3187 error ("mismatching comparison operand types");
3188 debug_generic_expr (op0_type);
3189 debug_generic_expr (op1_type);
3190 return true;
3191 }
3192
3193 /* The resulting type of a comparison may be an effective boolean type. */
3194 if (INTEGRAL_TYPE_P (type)
3195 && (TREE_CODE (type) == BOOLEAN_TYPE
3196 || TYPE_PRECISION (type) == 1))
3197 {
3198 if (TREE_CODE (op0_type) == VECTOR_TYPE
3199 || TREE_CODE (op1_type) == VECTOR_TYPE)
3200 {
3201 error ("vector comparison returning a boolean");
3202 debug_generic_expr (op0_type);
3203 debug_generic_expr (op1_type);
3204 return true;
3205 }
3206 }
3207 /* Or an integer vector type with the same size and element count
3208 as the comparison operand types. */
3209 else if (TREE_CODE (type) == VECTOR_TYPE
3210 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3211 {
3212 if (TREE_CODE (op0_type) != VECTOR_TYPE
3213 || TREE_CODE (op1_type) != VECTOR_TYPE)
3214 {
3215 error ("non-vector operands in vector comparison");
3216 debug_generic_expr (op0_type);
3217 debug_generic_expr (op1_type);
3218 return true;
3219 }
3220
3221 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3222 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3223 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3224 /* The result of a vector comparison is of signed
3225 integral type. */
3226 || TYPE_UNSIGNED (TREE_TYPE (type)))
3227 {
3228 error ("invalid vector comparison resulting type");
3229 debug_generic_expr (type);
3230 return true;
3231 }
3232 }
3233 else
3234 {
3235 error ("bogus comparison result type");
3236 debug_generic_expr (type);
3237 return true;
3238 }
3239
3240 return false;
3241 }
3242
3243 /* Verify a gimple assignment statement STMT with an unary rhs.
3244 Returns true if anything is wrong. */
3245
3246 static bool
3247 verify_gimple_assign_unary (gimple stmt)
3248 {
3249 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3250 tree lhs = gimple_assign_lhs (stmt);
3251 tree lhs_type = TREE_TYPE (lhs);
3252 tree rhs1 = gimple_assign_rhs1 (stmt);
3253 tree rhs1_type = TREE_TYPE (rhs1);
3254
3255 if (!is_gimple_reg (lhs))
3256 {
3257 error ("non-register as LHS of unary operation");
3258 return true;
3259 }
3260
3261 if (!is_gimple_val (rhs1))
3262 {
3263 error ("invalid operand in unary operation");
3264 return true;
3265 }
3266
3267 /* First handle conversions. */
3268 switch (rhs_code)
3269 {
3270 CASE_CONVERT:
3271 {
3272 /* Allow conversions from pointer type to integral type only if
3273 there is no sign or zero extension involved.
3274 For targets were the precision of ptrofftype doesn't match that
3275 of pointers we need to allow arbitrary conversions to ptrofftype. */
3276 if ((POINTER_TYPE_P (lhs_type)
3277 && INTEGRAL_TYPE_P (rhs1_type))
3278 || (POINTER_TYPE_P (rhs1_type)
3279 && INTEGRAL_TYPE_P (lhs_type)
3280 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3281 || ptrofftype_p (sizetype))))
3282 return false;
3283
3284 /* Allow conversion from integral to offset type and vice versa. */
3285 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3286 && INTEGRAL_TYPE_P (rhs1_type))
3287 || (INTEGRAL_TYPE_P (lhs_type)
3288 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3289 return false;
3290
3291 /* Otherwise assert we are converting between types of the
3292 same kind. */
3293 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3294 {
3295 error ("invalid types in nop conversion");
3296 debug_generic_expr (lhs_type);
3297 debug_generic_expr (rhs1_type);
3298 return true;
3299 }
3300
3301 return false;
3302 }
3303
3304 case ADDR_SPACE_CONVERT_EXPR:
3305 {
3306 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3307 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3308 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3309 {
3310 error ("invalid types in address space conversion");
3311 debug_generic_expr (lhs_type);
3312 debug_generic_expr (rhs1_type);
3313 return true;
3314 }
3315
3316 return false;
3317 }
3318
3319 case FIXED_CONVERT_EXPR:
3320 {
3321 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3322 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3323 {
3324 error ("invalid types in fixed-point conversion");
3325 debug_generic_expr (lhs_type);
3326 debug_generic_expr (rhs1_type);
3327 return true;
3328 }
3329
3330 return false;
3331 }
3332
3333 case FLOAT_EXPR:
3334 {
3335 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3336 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3337 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3338 {
3339 error ("invalid types in conversion to floating point");
3340 debug_generic_expr (lhs_type);
3341 debug_generic_expr (rhs1_type);
3342 return true;
3343 }
3344
3345 return false;
3346 }
3347
3348 case FIX_TRUNC_EXPR:
3349 {
3350 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3351 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3352 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3353 {
3354 error ("invalid types in conversion to integer");
3355 debug_generic_expr (lhs_type);
3356 debug_generic_expr (rhs1_type);
3357 return true;
3358 }
3359
3360 return false;
3361 }
3362
3363 case VEC_UNPACK_HI_EXPR:
3364 case VEC_UNPACK_LO_EXPR:
3365 case REDUC_MAX_EXPR:
3366 case REDUC_MIN_EXPR:
3367 case REDUC_PLUS_EXPR:
3368 case VEC_UNPACK_FLOAT_HI_EXPR:
3369 case VEC_UNPACK_FLOAT_LO_EXPR:
3370 /* FIXME. */
3371 return false;
3372
3373 case NEGATE_EXPR:
3374 case ABS_EXPR:
3375 case BIT_NOT_EXPR:
3376 case PAREN_EXPR:
3377 case NON_LVALUE_EXPR:
3378 case CONJ_EXPR:
3379 break;
3380
3381 default:
3382 gcc_unreachable ();
3383 }
3384
3385 /* For the remaining codes assert there is no conversion involved. */
3386 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3387 {
3388 error ("non-trivial conversion in unary operation");
3389 debug_generic_expr (lhs_type);
3390 debug_generic_expr (rhs1_type);
3391 return true;
3392 }
3393
3394 return false;
3395 }
3396
3397 /* Verify a gimple assignment statement STMT with a binary rhs.
3398 Returns true if anything is wrong. */
3399
3400 static bool
3401 verify_gimple_assign_binary (gimple stmt)
3402 {
3403 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3404 tree lhs = gimple_assign_lhs (stmt);
3405 tree lhs_type = TREE_TYPE (lhs);
3406 tree rhs1 = gimple_assign_rhs1 (stmt);
3407 tree rhs1_type = TREE_TYPE (rhs1);
3408 tree rhs2 = gimple_assign_rhs2 (stmt);
3409 tree rhs2_type = TREE_TYPE (rhs2);
3410
3411 if (!is_gimple_reg (lhs))
3412 {
3413 error ("non-register as LHS of binary operation");
3414 return true;
3415 }
3416
3417 if (!is_gimple_val (rhs1)
3418 || !is_gimple_val (rhs2))
3419 {
3420 error ("invalid operands in binary operation");
3421 return true;
3422 }
3423
3424 /* First handle operations that involve different types. */
3425 switch (rhs_code)
3426 {
3427 case COMPLEX_EXPR:
3428 {
3429 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3430 || !(INTEGRAL_TYPE_P (rhs1_type)
3431 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3432 || !(INTEGRAL_TYPE_P (rhs2_type)
3433 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3434 {
3435 error ("type mismatch in complex expression");
3436 debug_generic_expr (lhs_type);
3437 debug_generic_expr (rhs1_type);
3438 debug_generic_expr (rhs2_type);
3439 return true;
3440 }
3441
3442 return false;
3443 }
3444
3445 case LSHIFT_EXPR:
3446 case RSHIFT_EXPR:
3447 case LROTATE_EXPR:
3448 case RROTATE_EXPR:
3449 {
3450 /* Shifts and rotates are ok on integral types, fixed point
3451 types and integer vector types. */
3452 if ((!INTEGRAL_TYPE_P (rhs1_type)
3453 && !FIXED_POINT_TYPE_P (rhs1_type)
3454 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3455 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3456 || (!INTEGRAL_TYPE_P (rhs2_type)
3457 /* Vector shifts of vectors are also ok. */
3458 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3459 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3460 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3461 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3462 || !useless_type_conversion_p (lhs_type, rhs1_type))
3463 {
3464 error ("type mismatch in shift expression");
3465 debug_generic_expr (lhs_type);
3466 debug_generic_expr (rhs1_type);
3467 debug_generic_expr (rhs2_type);
3468 return true;
3469 }
3470
3471 return false;
3472 }
3473
3474 case VEC_LSHIFT_EXPR:
3475 case VEC_RSHIFT_EXPR:
3476 {
3477 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3478 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3479 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3480 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3481 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3482 || (!INTEGRAL_TYPE_P (rhs2_type)
3483 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3484 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3485 || !useless_type_conversion_p (lhs_type, rhs1_type))
3486 {
3487 error ("type mismatch in vector shift expression");
3488 debug_generic_expr (lhs_type);
3489 debug_generic_expr (rhs1_type);
3490 debug_generic_expr (rhs2_type);
3491 return true;
3492 }
3493 /* For shifting a vector of non-integral components we
3494 only allow shifting by a constant multiple of the element size. */
3495 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3496 && (TREE_CODE (rhs2) != INTEGER_CST
3497 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3498 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3499 {
3500 error ("non-element sized vector shift of floating point vector");
3501 return true;
3502 }
3503
3504 return false;
3505 }
3506
3507 case WIDEN_LSHIFT_EXPR:
3508 {
3509 if (!INTEGRAL_TYPE_P (lhs_type)
3510 || !INTEGRAL_TYPE_P (rhs1_type)
3511 || TREE_CODE (rhs2) != INTEGER_CST
3512 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3513 {
3514 error ("type mismatch in widening vector shift expression");
3515 debug_generic_expr (lhs_type);
3516 debug_generic_expr (rhs1_type);
3517 debug_generic_expr (rhs2_type);
3518 return true;
3519 }
3520
3521 return false;
3522 }
3523
3524 case VEC_WIDEN_LSHIFT_HI_EXPR:
3525 case VEC_WIDEN_LSHIFT_LO_EXPR:
3526 {
3527 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3528 || TREE_CODE (lhs_type) != VECTOR_TYPE
3529 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3530 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3531 || TREE_CODE (rhs2) != INTEGER_CST
3532 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3533 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3534 {
3535 error ("type mismatch in widening vector shift expression");
3536 debug_generic_expr (lhs_type);
3537 debug_generic_expr (rhs1_type);
3538 debug_generic_expr (rhs2_type);
3539 return true;
3540 }
3541
3542 return false;
3543 }
3544
3545 case PLUS_EXPR:
3546 case MINUS_EXPR:
3547 {
3548 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3549 ??? This just makes the checker happy and may not be what is
3550 intended. */
3551 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3552 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3553 {
3554 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3555 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3556 {
3557 error ("invalid non-vector operands to vector valued plus");
3558 return true;
3559 }
3560 lhs_type = TREE_TYPE (lhs_type);
3561 rhs1_type = TREE_TYPE (rhs1_type);
3562 rhs2_type = TREE_TYPE (rhs2_type);
3563 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3564 the pointer to 2nd place. */
3565 if (POINTER_TYPE_P (rhs2_type))
3566 {
3567 tree tem = rhs1_type;
3568 rhs1_type = rhs2_type;
3569 rhs2_type = tem;
3570 }
3571 goto do_pointer_plus_expr_check;
3572 }
3573 if (POINTER_TYPE_P (lhs_type)
3574 || POINTER_TYPE_P (rhs1_type)
3575 || POINTER_TYPE_P (rhs2_type))
3576 {
3577 error ("invalid (pointer) operands to plus/minus");
3578 return true;
3579 }
3580
3581 /* Continue with generic binary expression handling. */
3582 break;
3583 }
3584
3585 case POINTER_PLUS_EXPR:
3586 {
3587 do_pointer_plus_expr_check:
3588 if (!POINTER_TYPE_P (rhs1_type)
3589 || !useless_type_conversion_p (lhs_type, rhs1_type)
3590 || !ptrofftype_p (rhs2_type))
3591 {
3592 error ("type mismatch in pointer plus expression");
3593 debug_generic_stmt (lhs_type);
3594 debug_generic_stmt (rhs1_type);
3595 debug_generic_stmt (rhs2_type);
3596 return true;
3597 }
3598
3599 return false;
3600 }
3601
3602 case TRUTH_ANDIF_EXPR:
3603 case TRUTH_ORIF_EXPR:
3604 case TRUTH_AND_EXPR:
3605 case TRUTH_OR_EXPR:
3606 case TRUTH_XOR_EXPR:
3607
3608 gcc_unreachable ();
3609
3610 case LT_EXPR:
3611 case LE_EXPR:
3612 case GT_EXPR:
3613 case GE_EXPR:
3614 case EQ_EXPR:
3615 case NE_EXPR:
3616 case UNORDERED_EXPR:
3617 case ORDERED_EXPR:
3618 case UNLT_EXPR:
3619 case UNLE_EXPR:
3620 case UNGT_EXPR:
3621 case UNGE_EXPR:
3622 case UNEQ_EXPR:
3623 case LTGT_EXPR:
3624 /* Comparisons are also binary, but the result type is not
3625 connected to the operand types. */
3626 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3627
3628 case WIDEN_MULT_EXPR:
3629 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3630 return true;
3631 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3632 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3633
3634 case WIDEN_SUM_EXPR:
3635 case VEC_WIDEN_MULT_HI_EXPR:
3636 case VEC_WIDEN_MULT_LO_EXPR:
3637 case VEC_WIDEN_MULT_EVEN_EXPR:
3638 case VEC_WIDEN_MULT_ODD_EXPR:
3639 case VEC_PACK_TRUNC_EXPR:
3640 case VEC_PACK_SAT_EXPR:
3641 case VEC_PACK_FIX_TRUNC_EXPR:
3642 /* FIXME. */
3643 return false;
3644
3645 case MULT_EXPR:
3646 case MULT_HIGHPART_EXPR:
3647 case TRUNC_DIV_EXPR:
3648 case CEIL_DIV_EXPR:
3649 case FLOOR_DIV_EXPR:
3650 case ROUND_DIV_EXPR:
3651 case TRUNC_MOD_EXPR:
3652 case CEIL_MOD_EXPR:
3653 case FLOOR_MOD_EXPR:
3654 case ROUND_MOD_EXPR:
3655 case RDIV_EXPR:
3656 case EXACT_DIV_EXPR:
3657 case MIN_EXPR:
3658 case MAX_EXPR:
3659 case BIT_IOR_EXPR:
3660 case BIT_XOR_EXPR:
3661 case BIT_AND_EXPR:
3662 /* Continue with generic binary expression handling. */
3663 break;
3664
3665 default:
3666 gcc_unreachable ();
3667 }
3668
3669 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3670 || !useless_type_conversion_p (lhs_type, rhs2_type))
3671 {
3672 error ("type mismatch in binary expression");
3673 debug_generic_stmt (lhs_type);
3674 debug_generic_stmt (rhs1_type);
3675 debug_generic_stmt (rhs2_type);
3676 return true;
3677 }
3678
3679 return false;
3680 }
3681
3682 /* Verify a gimple assignment statement STMT with a ternary rhs.
3683 Returns true if anything is wrong. */
3684
3685 static bool
3686 verify_gimple_assign_ternary (gimple stmt)
3687 {
3688 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3689 tree lhs = gimple_assign_lhs (stmt);
3690 tree lhs_type = TREE_TYPE (lhs);
3691 tree rhs1 = gimple_assign_rhs1 (stmt);
3692 tree rhs1_type = TREE_TYPE (rhs1);
3693 tree rhs2 = gimple_assign_rhs2 (stmt);
3694 tree rhs2_type = TREE_TYPE (rhs2);
3695 tree rhs3 = gimple_assign_rhs3 (stmt);
3696 tree rhs3_type = TREE_TYPE (rhs3);
3697
3698 if (!is_gimple_reg (lhs))
3699 {
3700 error ("non-register as LHS of ternary operation");
3701 return true;
3702 }
3703
3704 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3705 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3706 || !is_gimple_val (rhs2)
3707 || !is_gimple_val (rhs3))
3708 {
3709 error ("invalid operands in ternary operation");
3710 return true;
3711 }
3712
3713 /* First handle operations that involve different types. */
3714 switch (rhs_code)
3715 {
3716 case WIDEN_MULT_PLUS_EXPR:
3717 case WIDEN_MULT_MINUS_EXPR:
3718 if ((!INTEGRAL_TYPE_P (rhs1_type)
3719 && !FIXED_POINT_TYPE_P (rhs1_type))
3720 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3721 || !useless_type_conversion_p (lhs_type, rhs3_type)
3722 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3723 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3724 {
3725 error ("type mismatch in widening multiply-accumulate expression");
3726 debug_generic_expr (lhs_type);
3727 debug_generic_expr (rhs1_type);
3728 debug_generic_expr (rhs2_type);
3729 debug_generic_expr (rhs3_type);
3730 return true;
3731 }
3732 break;
3733
3734 case FMA_EXPR:
3735 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3736 || !useless_type_conversion_p (lhs_type, rhs2_type)
3737 || !useless_type_conversion_p (lhs_type, rhs3_type))
3738 {
3739 error ("type mismatch in fused multiply-add expression");
3740 debug_generic_expr (lhs_type);
3741 debug_generic_expr (rhs1_type);
3742 debug_generic_expr (rhs2_type);
3743 debug_generic_expr (rhs3_type);
3744 return true;
3745 }
3746 break;
3747
3748 case COND_EXPR:
3749 case VEC_COND_EXPR:
3750 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3751 || !useless_type_conversion_p (lhs_type, rhs3_type))
3752 {
3753 error ("type mismatch in conditional expression");
3754 debug_generic_expr (lhs_type);
3755 debug_generic_expr (rhs2_type);
3756 debug_generic_expr (rhs3_type);
3757 return true;
3758 }
3759 break;
3760
3761 case VEC_PERM_EXPR:
3762 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3763 || !useless_type_conversion_p (lhs_type, rhs2_type))
3764 {
3765 error ("type mismatch in vector permute expression");
3766 debug_generic_expr (lhs_type);
3767 debug_generic_expr (rhs1_type);
3768 debug_generic_expr (rhs2_type);
3769 debug_generic_expr (rhs3_type);
3770 return true;
3771 }
3772
3773 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3774 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3775 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3776 {
3777 error ("vector types expected in vector permute expression");
3778 debug_generic_expr (lhs_type);
3779 debug_generic_expr (rhs1_type);
3780 debug_generic_expr (rhs2_type);
3781 debug_generic_expr (rhs3_type);
3782 return true;
3783 }
3784
3785 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3786 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3787 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3788 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3789 != TYPE_VECTOR_SUBPARTS (lhs_type))
3790 {
3791 error ("vectors with different element number found "
3792 "in vector permute expression");
3793 debug_generic_expr (lhs_type);
3794 debug_generic_expr (rhs1_type);
3795 debug_generic_expr (rhs2_type);
3796 debug_generic_expr (rhs3_type);
3797 return true;
3798 }
3799
3800 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3801 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3802 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3803 {
3804 error ("invalid mask type in vector permute expression");
3805 debug_generic_expr (lhs_type);
3806 debug_generic_expr (rhs1_type);
3807 debug_generic_expr (rhs2_type);
3808 debug_generic_expr (rhs3_type);
3809 return true;
3810 }
3811
3812 return false;
3813
3814 case DOT_PROD_EXPR:
3815 case REALIGN_LOAD_EXPR:
3816 /* FIXME. */
3817 return false;
3818
3819 default:
3820 gcc_unreachable ();
3821 }
3822 return false;
3823 }
3824
3825 /* Verify a gimple assignment statement STMT with a single rhs.
3826 Returns true if anything is wrong. */
3827
3828 static bool
3829 verify_gimple_assign_single (gimple stmt)
3830 {
3831 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3832 tree lhs = gimple_assign_lhs (stmt);
3833 tree lhs_type = TREE_TYPE (lhs);
3834 tree rhs1 = gimple_assign_rhs1 (stmt);
3835 tree rhs1_type = TREE_TYPE (rhs1);
3836 bool res = false;
3837
3838 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3839 {
3840 error ("non-trivial conversion at assignment");
3841 debug_generic_expr (lhs_type);
3842 debug_generic_expr (rhs1_type);
3843 return true;
3844 }
3845
3846 if (gimple_clobber_p (stmt)
3847 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3848 {
3849 error ("non-decl/MEM_REF LHS in clobber statement");
3850 debug_generic_expr (lhs);
3851 return true;
3852 }
3853
3854 if (handled_component_p (lhs))
3855 res |= verify_types_in_gimple_reference (lhs, true);
3856
3857 /* Special codes we cannot handle via their class. */
3858 switch (rhs_code)
3859 {
3860 case ADDR_EXPR:
3861 {
3862 tree op = TREE_OPERAND (rhs1, 0);
3863 if (!is_gimple_addressable (op))
3864 {
3865 error ("invalid operand in unary expression");
3866 return true;
3867 }
3868
3869 /* Technically there is no longer a need for matching types, but
3870 gimple hygiene asks for this check. In LTO we can end up
3871 combining incompatible units and thus end up with addresses
3872 of globals that change their type to a common one. */
3873 if (!in_lto_p
3874 && !types_compatible_p (TREE_TYPE (op),
3875 TREE_TYPE (TREE_TYPE (rhs1)))
3876 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3877 TREE_TYPE (op)))
3878 {
3879 error ("type mismatch in address expression");
3880 debug_generic_stmt (TREE_TYPE (rhs1));
3881 debug_generic_stmt (TREE_TYPE (op));
3882 return true;
3883 }
3884
3885 return verify_types_in_gimple_reference (op, true);
3886 }
3887
3888 /* tcc_reference */
3889 case INDIRECT_REF:
3890 error ("INDIRECT_REF in gimple IL");
3891 return true;
3892
3893 case COMPONENT_REF:
3894 case BIT_FIELD_REF:
3895 case ARRAY_REF:
3896 case ARRAY_RANGE_REF:
3897 case VIEW_CONVERT_EXPR:
3898 case REALPART_EXPR:
3899 case IMAGPART_EXPR:
3900 case TARGET_MEM_REF:
3901 case MEM_REF:
3902 if (!is_gimple_reg (lhs)
3903 && is_gimple_reg_type (TREE_TYPE (lhs)))
3904 {
3905 error ("invalid rhs for gimple memory store");
3906 debug_generic_stmt (lhs);
3907 debug_generic_stmt (rhs1);
3908 return true;
3909 }
3910 return res || verify_types_in_gimple_reference (rhs1, false);
3911
3912 /* tcc_constant */
3913 case SSA_NAME:
3914 case INTEGER_CST:
3915 case REAL_CST:
3916 case FIXED_CST:
3917 case COMPLEX_CST:
3918 case VECTOR_CST:
3919 case STRING_CST:
3920 return res;
3921
3922 /* tcc_declaration */
3923 case CONST_DECL:
3924 return res;
3925 case VAR_DECL:
3926 case PARM_DECL:
3927 if (!is_gimple_reg (lhs)
3928 && !is_gimple_reg (rhs1)
3929 && is_gimple_reg_type (TREE_TYPE (lhs)))
3930 {
3931 error ("invalid rhs for gimple memory store");
3932 debug_generic_stmt (lhs);
3933 debug_generic_stmt (rhs1);
3934 return true;
3935 }
3936 return res;
3937
3938 case CONSTRUCTOR:
3939 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3940 {
3941 unsigned int i;
3942 tree elt_i, elt_v, elt_t = NULL_TREE;
3943
3944 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3945 return res;
3946 /* For vector CONSTRUCTORs we require that either it is empty
3947 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3948 (then the element count must be correct to cover the whole
3949 outer vector and index must be NULL on all elements, or it is
3950 a CONSTRUCTOR of scalar elements, where we as an exception allow
3951 smaller number of elements (assuming zero filling) and
3952 consecutive indexes as compared to NULL indexes (such
3953 CONSTRUCTORs can appear in the IL from FEs). */
3954 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3955 {
3956 if (elt_t == NULL_TREE)
3957 {
3958 elt_t = TREE_TYPE (elt_v);
3959 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3960 {
3961 tree elt_t = TREE_TYPE (elt_v);
3962 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3963 TREE_TYPE (elt_t)))
3964 {
3965 error ("incorrect type of vector CONSTRUCTOR"
3966 " elements");
3967 debug_generic_stmt (rhs1);
3968 return true;
3969 }
3970 else if (CONSTRUCTOR_NELTS (rhs1)
3971 * TYPE_VECTOR_SUBPARTS (elt_t)
3972 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3973 {
3974 error ("incorrect number of vector CONSTRUCTOR"
3975 " elements");
3976 debug_generic_stmt (rhs1);
3977 return true;
3978 }
3979 }
3980 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3981 elt_t))
3982 {
3983 error ("incorrect type of vector CONSTRUCTOR elements");
3984 debug_generic_stmt (rhs1);
3985 return true;
3986 }
3987 else if (CONSTRUCTOR_NELTS (rhs1)
3988 > TYPE_VECTOR_SUBPARTS (rhs1_type))
3989 {
3990 error ("incorrect number of vector CONSTRUCTOR elements");
3991 debug_generic_stmt (rhs1);
3992 return true;
3993 }
3994 }
3995 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
3996 {
3997 error ("incorrect type of vector CONSTRUCTOR elements");
3998 debug_generic_stmt (rhs1);
3999 return true;
4000 }
4001 if (elt_i != NULL_TREE
4002 && (TREE_CODE (elt_t) == VECTOR_TYPE
4003 || TREE_CODE (elt_i) != INTEGER_CST
4004 || compare_tree_int (elt_i, i) != 0))
4005 {
4006 error ("vector CONSTRUCTOR with non-NULL element index");
4007 debug_generic_stmt (rhs1);
4008 return true;
4009 }
4010 }
4011 }
4012 return res;
4013 case OBJ_TYPE_REF:
4014 case ASSERT_EXPR:
4015 case WITH_SIZE_EXPR:
4016 /* FIXME. */
4017 return res;
4018
4019 default:;
4020 }
4021
4022 return res;
4023 }
4024
4025 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4026 is a problem, otherwise false. */
4027
4028 static bool
4029 verify_gimple_assign (gimple stmt)
4030 {
4031 switch (gimple_assign_rhs_class (stmt))
4032 {
4033 case GIMPLE_SINGLE_RHS:
4034 return verify_gimple_assign_single (stmt);
4035
4036 case GIMPLE_UNARY_RHS:
4037 return verify_gimple_assign_unary (stmt);
4038
4039 case GIMPLE_BINARY_RHS:
4040 return verify_gimple_assign_binary (stmt);
4041
4042 case GIMPLE_TERNARY_RHS:
4043 return verify_gimple_assign_ternary (stmt);
4044
4045 default:
4046 gcc_unreachable ();
4047 }
4048 }
4049
4050 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4051 is a problem, otherwise false. */
4052
4053 static bool
4054 verify_gimple_return (gimple stmt)
4055 {
4056 tree op = gimple_return_retval (stmt);
4057 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4058
4059 /* We cannot test for present return values as we do not fix up missing
4060 return values from the original source. */
4061 if (op == NULL)
4062 return false;
4063
4064 if (!is_gimple_val (op)
4065 && TREE_CODE (op) != RESULT_DECL)
4066 {
4067 error ("invalid operand in return statement");
4068 debug_generic_stmt (op);
4069 return true;
4070 }
4071
4072 if ((TREE_CODE (op) == RESULT_DECL
4073 && DECL_BY_REFERENCE (op))
4074 || (TREE_CODE (op) == SSA_NAME
4075 && SSA_NAME_VAR (op)
4076 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4077 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4078 op = TREE_TYPE (op);
4079
4080 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4081 {
4082 error ("invalid conversion in return statement");
4083 debug_generic_stmt (restype);
4084 debug_generic_stmt (TREE_TYPE (op));
4085 return true;
4086 }
4087
4088 return false;
4089 }
4090
4091
4092 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4093 is a problem, otherwise false. */
4094
4095 static bool
4096 verify_gimple_goto (gimple stmt)
4097 {
4098 tree dest = gimple_goto_dest (stmt);
4099
4100 /* ??? We have two canonical forms of direct goto destinations, a
4101 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4102 if (TREE_CODE (dest) != LABEL_DECL
4103 && (!is_gimple_val (dest)
4104 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4105 {
4106 error ("goto destination is neither a label nor a pointer");
4107 return true;
4108 }
4109
4110 return false;
4111 }
4112
4113 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4114 is a problem, otherwise false. */
4115
4116 static bool
4117 verify_gimple_switch (gimple stmt)
4118 {
4119 unsigned int i, n;
4120 tree elt, prev_upper_bound = NULL_TREE;
4121 tree index_type, elt_type = NULL_TREE;
4122
4123 if (!is_gimple_val (gimple_switch_index (stmt)))
4124 {
4125 error ("invalid operand to switch statement");
4126 debug_generic_stmt (gimple_switch_index (stmt));
4127 return true;
4128 }
4129
4130 index_type = TREE_TYPE (gimple_switch_index (stmt));
4131 if (! INTEGRAL_TYPE_P (index_type))
4132 {
4133 error ("non-integral type switch statement");
4134 debug_generic_expr (index_type);
4135 return true;
4136 }
4137
4138 elt = gimple_switch_label (stmt, 0);
4139 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4140 {
4141 error ("invalid default case label in switch statement");
4142 debug_generic_expr (elt);
4143 return true;
4144 }
4145
4146 n = gimple_switch_num_labels (stmt);
4147 for (i = 1; i < n; i++)
4148 {
4149 elt = gimple_switch_label (stmt, i);
4150
4151 if (! CASE_LOW (elt))
4152 {
4153 error ("invalid case label in switch statement");
4154 debug_generic_expr (elt);
4155 return true;
4156 }
4157 if (CASE_HIGH (elt)
4158 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4159 {
4160 error ("invalid case range in switch statement");
4161 debug_generic_expr (elt);
4162 return true;
4163 }
4164
4165 if (elt_type)
4166 {
4167 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4168 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4169 {
4170 error ("type mismatch for case label in switch statement");
4171 debug_generic_expr (elt);
4172 return true;
4173 }
4174 }
4175 else
4176 {
4177 elt_type = TREE_TYPE (CASE_LOW (elt));
4178 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4179 {
4180 error ("type precision mismatch in switch statement");
4181 return true;
4182 }
4183 }
4184
4185 if (prev_upper_bound)
4186 {
4187 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4188 {
4189 error ("case labels not sorted in switch statement");
4190 return true;
4191 }
4192 }
4193
4194 prev_upper_bound = CASE_HIGH (elt);
4195 if (! prev_upper_bound)
4196 prev_upper_bound = CASE_LOW (elt);
4197 }
4198
4199 return false;
4200 }
4201
4202 /* Verify a gimple debug statement STMT.
4203 Returns true if anything is wrong. */
4204
4205 static bool
4206 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4207 {
4208 /* There isn't much that could be wrong in a gimple debug stmt. A
4209 gimple debug bind stmt, for example, maps a tree, that's usually
4210 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4211 component or member of an aggregate type, to another tree, that
4212 can be an arbitrary expression. These stmts expand into debug
4213 insns, and are converted to debug notes by var-tracking.c. */
4214 return false;
4215 }
4216
4217 /* Verify a gimple label statement STMT.
4218 Returns true if anything is wrong. */
4219
4220 static bool
4221 verify_gimple_label (gimple stmt)
4222 {
4223 tree decl = gimple_label_label (stmt);
4224 int uid;
4225 bool err = false;
4226
4227 if (TREE_CODE (decl) != LABEL_DECL)
4228 return true;
4229
4230 uid = LABEL_DECL_UID (decl);
4231 if (cfun->cfg
4232 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4233 {
4234 error ("incorrect entry in label_to_block_map");
4235 err |= true;
4236 }
4237
4238 uid = EH_LANDING_PAD_NR (decl);
4239 if (uid)
4240 {
4241 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4242 if (decl != lp->post_landing_pad)
4243 {
4244 error ("incorrect setting of landing pad number");
4245 err |= true;
4246 }
4247 }
4248
4249 return err;
4250 }
4251
4252 /* Verify the GIMPLE statement STMT. Returns true if there is an
4253 error, otherwise false. */
4254
4255 static bool
4256 verify_gimple_stmt (gimple stmt)
4257 {
4258 switch (gimple_code (stmt))
4259 {
4260 case GIMPLE_ASSIGN:
4261 return verify_gimple_assign (stmt);
4262
4263 case GIMPLE_LABEL:
4264 return verify_gimple_label (stmt);
4265
4266 case GIMPLE_CALL:
4267 return verify_gimple_call (stmt);
4268
4269 case GIMPLE_COND:
4270 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4271 {
4272 error ("invalid comparison code in gimple cond");
4273 return true;
4274 }
4275 if (!(!gimple_cond_true_label (stmt)
4276 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4277 || !(!gimple_cond_false_label (stmt)
4278 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4279 {
4280 error ("invalid labels in gimple cond");
4281 return true;
4282 }
4283
4284 return verify_gimple_comparison (boolean_type_node,
4285 gimple_cond_lhs (stmt),
4286 gimple_cond_rhs (stmt));
4287
4288 case GIMPLE_GOTO:
4289 return verify_gimple_goto (stmt);
4290
4291 case GIMPLE_SWITCH:
4292 return verify_gimple_switch (stmt);
4293
4294 case GIMPLE_RETURN:
4295 return verify_gimple_return (stmt);
4296
4297 case GIMPLE_ASM:
4298 return false;
4299
4300 case GIMPLE_TRANSACTION:
4301 return verify_gimple_transaction (stmt);
4302
4303 /* Tuples that do not have tree operands. */
4304 case GIMPLE_NOP:
4305 case GIMPLE_PREDICT:
4306 case GIMPLE_RESX:
4307 case GIMPLE_EH_DISPATCH:
4308 case GIMPLE_EH_MUST_NOT_THROW:
4309 return false;
4310
4311 CASE_GIMPLE_OMP:
4312 /* OpenMP directives are validated by the FE and never operated
4313 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4314 non-gimple expressions when the main index variable has had
4315 its address taken. This does not affect the loop itself
4316 because the header of an GIMPLE_OMP_FOR is merely used to determine
4317 how to setup the parallel iteration. */
4318 return false;
4319
4320 case GIMPLE_DEBUG:
4321 return verify_gimple_debug (stmt);
4322
4323 default:
4324 gcc_unreachable ();
4325 }
4326 }
4327
4328 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4329 and false otherwise. */
4330
4331 static bool
4332 verify_gimple_phi (gimple phi)
4333 {
4334 bool err = false;
4335 unsigned i;
4336 tree phi_result = gimple_phi_result (phi);
4337 bool virtual_p;
4338
4339 if (!phi_result)
4340 {
4341 error ("invalid PHI result");
4342 return true;
4343 }
4344
4345 virtual_p = virtual_operand_p (phi_result);
4346 if (TREE_CODE (phi_result) != SSA_NAME
4347 || (virtual_p
4348 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4349 {
4350 error ("invalid PHI result");
4351 err = true;
4352 }
4353
4354 for (i = 0; i < gimple_phi_num_args (phi); i++)
4355 {
4356 tree t = gimple_phi_arg_def (phi, i);
4357
4358 if (!t)
4359 {
4360 error ("missing PHI def");
4361 err |= true;
4362 continue;
4363 }
4364 /* Addressable variables do have SSA_NAMEs but they
4365 are not considered gimple values. */
4366 else if ((TREE_CODE (t) == SSA_NAME
4367 && virtual_p != virtual_operand_p (t))
4368 || (virtual_p
4369 && (TREE_CODE (t) != SSA_NAME
4370 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4371 || (!virtual_p
4372 && !is_gimple_val (t)))
4373 {
4374 error ("invalid PHI argument");
4375 debug_generic_expr (t);
4376 err |= true;
4377 }
4378 #ifdef ENABLE_TYPES_CHECKING
4379 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4380 {
4381 error ("incompatible types in PHI argument %u", i);
4382 debug_generic_stmt (TREE_TYPE (phi_result));
4383 debug_generic_stmt (TREE_TYPE (t));
4384 err |= true;
4385 }
4386 #endif
4387 }
4388
4389 return err;
4390 }
4391
4392 /* Verify the GIMPLE statements inside the sequence STMTS. */
4393
4394 static bool
4395 verify_gimple_in_seq_2 (gimple_seq stmts)
4396 {
4397 gimple_stmt_iterator ittr;
4398 bool err = false;
4399
4400 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4401 {
4402 gimple stmt = gsi_stmt (ittr);
4403
4404 switch (gimple_code (stmt))
4405 {
4406 case GIMPLE_BIND:
4407 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4408 break;
4409
4410 case GIMPLE_TRY:
4411 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4412 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4413 break;
4414
4415 case GIMPLE_EH_FILTER:
4416 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4417 break;
4418
4419 case GIMPLE_EH_ELSE:
4420 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4421 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4422 break;
4423
4424 case GIMPLE_CATCH:
4425 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4426 break;
4427
4428 case GIMPLE_TRANSACTION:
4429 err |= verify_gimple_transaction (stmt);
4430 break;
4431
4432 default:
4433 {
4434 bool err2 = verify_gimple_stmt (stmt);
4435 if (err2)
4436 debug_gimple_stmt (stmt);
4437 err |= err2;
4438 }
4439 }
4440 }
4441
4442 return err;
4443 }
4444
4445 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4446 is a problem, otherwise false. */
4447
4448 static bool
4449 verify_gimple_transaction (gimple stmt)
4450 {
4451 tree lab = gimple_transaction_label (stmt);
4452 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4453 return true;
4454 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4455 }
4456
4457
4458 /* Verify the GIMPLE statements inside the statement list STMTS. */
4459
4460 DEBUG_FUNCTION void
4461 verify_gimple_in_seq (gimple_seq stmts)
4462 {
4463 timevar_push (TV_TREE_STMT_VERIFY);
4464 if (verify_gimple_in_seq_2 (stmts))
4465 internal_error ("verify_gimple failed");
4466 timevar_pop (TV_TREE_STMT_VERIFY);
4467 }
4468
4469 /* Return true when the T can be shared. */
4470
4471 bool
4472 tree_node_can_be_shared (tree t)
4473 {
4474 if (IS_TYPE_OR_DECL_P (t)
4475 || is_gimple_min_invariant (t)
4476 || TREE_CODE (t) == SSA_NAME
4477 || t == error_mark_node
4478 || TREE_CODE (t) == IDENTIFIER_NODE)
4479 return true;
4480
4481 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4482 return true;
4483
4484 if (DECL_P (t))
4485 return true;
4486
4487 return false;
4488 }
4489
4490 /* Called via walk_tree. Verify tree sharing. */
4491
4492 static tree
4493 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4494 {
4495 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4496
4497 if (tree_node_can_be_shared (*tp))
4498 {
4499 *walk_subtrees = false;
4500 return NULL;
4501 }
4502
4503 if (pointer_set_insert (visited, *tp))
4504 return *tp;
4505
4506 return NULL;
4507 }
4508
4509 /* Called via walk_gimple_stmt. Verify tree sharing. */
4510
4511 static tree
4512 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4513 {
4514 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4515 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4516 }
4517
4518 static bool eh_error_found;
4519 static int
4520 verify_eh_throw_stmt_node (void **slot, void *data)
4521 {
4522 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4523 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4524
4525 if (!pointer_set_contains (visited, node->stmt))
4526 {
4527 error ("dead STMT in EH table");
4528 debug_gimple_stmt (node->stmt);
4529 eh_error_found = true;
4530 }
4531 return 1;
4532 }
4533
4534 /* Verify if the location LOCs block is in BLOCKS. */
4535
4536 static bool
4537 verify_location (pointer_set_t *blocks, location_t loc)
4538 {
4539 tree block = LOCATION_BLOCK (loc);
4540 if (block != NULL_TREE
4541 && !pointer_set_contains (blocks, block))
4542 {
4543 error ("location references block not in block tree");
4544 return true;
4545 }
4546 if (block != NULL_TREE)
4547 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4548 return false;
4549 }
4550
4551 /* Called via walk_tree. Verify that expressions have no blocks. */
4552
4553 static tree
4554 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4555 {
4556 if (!EXPR_P (*tp))
4557 {
4558 *walk_subtrees = false;
4559 return NULL;
4560 }
4561
4562 location_t loc = EXPR_LOCATION (*tp);
4563 if (LOCATION_BLOCK (loc) != NULL)
4564 return *tp;
4565
4566 return NULL;
4567 }
4568
4569 /* Called via walk_tree. Verify locations of expressions. */
4570
4571 static tree
4572 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4573 {
4574 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4575
4576 if (TREE_CODE (*tp) == VAR_DECL
4577 && DECL_HAS_DEBUG_EXPR_P (*tp))
4578 {
4579 tree t = DECL_DEBUG_EXPR (*tp);
4580 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4581 if (addr)
4582 return addr;
4583 }
4584 if ((TREE_CODE (*tp) == VAR_DECL
4585 || TREE_CODE (*tp) == PARM_DECL
4586 || TREE_CODE (*tp) == RESULT_DECL)
4587 && DECL_HAS_VALUE_EXPR_P (*tp))
4588 {
4589 tree t = DECL_VALUE_EXPR (*tp);
4590 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4591 if (addr)
4592 return addr;
4593 }
4594
4595 if (!EXPR_P (*tp))
4596 {
4597 *walk_subtrees = false;
4598 return NULL;
4599 }
4600
4601 location_t loc = EXPR_LOCATION (*tp);
4602 if (verify_location (blocks, loc))
4603 return *tp;
4604
4605 return NULL;
4606 }
4607
4608 /* Called via walk_gimple_op. Verify locations of expressions. */
4609
4610 static tree
4611 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4612 {
4613 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4614 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4615 }
4616
4617 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4618
4619 static void
4620 collect_subblocks (pointer_set_t *blocks, tree block)
4621 {
4622 tree t;
4623 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4624 {
4625 pointer_set_insert (blocks, t);
4626 collect_subblocks (blocks, t);
4627 }
4628 }
4629
4630 /* Verify the GIMPLE statements in the CFG of FN. */
4631
4632 DEBUG_FUNCTION void
4633 verify_gimple_in_cfg (struct function *fn)
4634 {
4635 basic_block bb;
4636 bool err = false;
4637 struct pointer_set_t *visited, *visited_stmts, *blocks;
4638
4639 timevar_push (TV_TREE_STMT_VERIFY);
4640 visited = pointer_set_create ();
4641 visited_stmts = pointer_set_create ();
4642
4643 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4644 blocks = pointer_set_create ();
4645 if (DECL_INITIAL (fn->decl))
4646 {
4647 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4648 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4649 }
4650
4651 FOR_EACH_BB_FN (bb, fn)
4652 {
4653 gimple_stmt_iterator gsi;
4654
4655 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4656 {
4657 gimple phi = gsi_stmt (gsi);
4658 bool err2 = false;
4659 unsigned i;
4660
4661 pointer_set_insert (visited_stmts, phi);
4662
4663 if (gimple_bb (phi) != bb)
4664 {
4665 error ("gimple_bb (phi) is set to a wrong basic block");
4666 err2 = true;
4667 }
4668
4669 err2 |= verify_gimple_phi (phi);
4670
4671 /* Only PHI arguments have locations. */
4672 if (gimple_location (phi) != UNKNOWN_LOCATION)
4673 {
4674 error ("PHI node with location");
4675 err2 = true;
4676 }
4677
4678 for (i = 0; i < gimple_phi_num_args (phi); i++)
4679 {
4680 tree arg = gimple_phi_arg_def (phi, i);
4681 tree addr = walk_tree (&arg, verify_node_sharing_1,
4682 visited, NULL);
4683 if (addr)
4684 {
4685 error ("incorrect sharing of tree nodes");
4686 debug_generic_expr (addr);
4687 err2 |= true;
4688 }
4689 location_t loc = gimple_phi_arg_location (phi, i);
4690 if (virtual_operand_p (gimple_phi_result (phi))
4691 && loc != UNKNOWN_LOCATION)
4692 {
4693 error ("virtual PHI with argument locations");
4694 err2 = true;
4695 }
4696 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4697 if (addr)
4698 {
4699 debug_generic_expr (addr);
4700 err2 = true;
4701 }
4702 err2 |= verify_location (blocks, loc);
4703 }
4704
4705 if (err2)
4706 debug_gimple_stmt (phi);
4707 err |= err2;
4708 }
4709
4710 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4711 {
4712 gimple stmt = gsi_stmt (gsi);
4713 bool err2 = false;
4714 struct walk_stmt_info wi;
4715 tree addr;
4716 int lp_nr;
4717
4718 pointer_set_insert (visited_stmts, stmt);
4719
4720 if (gimple_bb (stmt) != bb)
4721 {
4722 error ("gimple_bb (stmt) is set to a wrong basic block");
4723 err2 = true;
4724 }
4725
4726 err2 |= verify_gimple_stmt (stmt);
4727 err2 |= verify_location (blocks, gimple_location (stmt));
4728
4729 memset (&wi, 0, sizeof (wi));
4730 wi.info = (void *) visited;
4731 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4732 if (addr)
4733 {
4734 error ("incorrect sharing of tree nodes");
4735 debug_generic_expr (addr);
4736 err2 |= true;
4737 }
4738
4739 memset (&wi, 0, sizeof (wi));
4740 wi.info = (void *) blocks;
4741 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4742 if (addr)
4743 {
4744 debug_generic_expr (addr);
4745 err2 |= true;
4746 }
4747
4748 /* ??? Instead of not checking these stmts at all the walker
4749 should know its context via wi. */
4750 if (!is_gimple_debug (stmt)
4751 && !is_gimple_omp (stmt))
4752 {
4753 memset (&wi, 0, sizeof (wi));
4754 addr = walk_gimple_op (stmt, verify_expr, &wi);
4755 if (addr)
4756 {
4757 debug_generic_expr (addr);
4758 inform (gimple_location (stmt), "in statement");
4759 err2 |= true;
4760 }
4761 }
4762
4763 /* If the statement is marked as part of an EH region, then it is
4764 expected that the statement could throw. Verify that when we
4765 have optimizations that simplify statements such that we prove
4766 that they cannot throw, that we update other data structures
4767 to match. */
4768 lp_nr = lookup_stmt_eh_lp (stmt);
4769 if (lp_nr != 0)
4770 {
4771 if (!stmt_could_throw_p (stmt))
4772 {
4773 error ("statement marked for throw, but doesn%'t");
4774 err2 |= true;
4775 }
4776 else if (lp_nr > 0
4777 && !gsi_one_before_end_p (gsi)
4778 && stmt_can_throw_internal (stmt))
4779 {
4780 error ("statement marked for throw in middle of block");
4781 err2 |= true;
4782 }
4783 }
4784
4785 if (err2)
4786 debug_gimple_stmt (stmt);
4787 err |= err2;
4788 }
4789 }
4790
4791 eh_error_found = false;
4792 if (get_eh_throw_stmt_table (cfun))
4793 htab_traverse (get_eh_throw_stmt_table (cfun),
4794 verify_eh_throw_stmt_node,
4795 visited_stmts);
4796
4797 if (err || eh_error_found)
4798 internal_error ("verify_gimple failed");
4799
4800 pointer_set_destroy (visited);
4801 pointer_set_destroy (visited_stmts);
4802 pointer_set_destroy (blocks);
4803 verify_histograms ();
4804 timevar_pop (TV_TREE_STMT_VERIFY);
4805 }
4806
4807
4808 /* Verifies that the flow information is OK. */
4809
4810 static int
4811 gimple_verify_flow_info (void)
4812 {
4813 int err = 0;
4814 basic_block bb;
4815 gimple_stmt_iterator gsi;
4816 gimple stmt;
4817 edge e;
4818 edge_iterator ei;
4819
4820 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4821 {
4822 error ("ENTRY_BLOCK has IL associated with it");
4823 err = 1;
4824 }
4825
4826 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4827 {
4828 error ("EXIT_BLOCK has IL associated with it");
4829 err = 1;
4830 }
4831
4832 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4833 if (e->flags & EDGE_FALLTHRU)
4834 {
4835 error ("fallthru to exit from bb %d", e->src->index);
4836 err = 1;
4837 }
4838
4839 FOR_EACH_BB (bb)
4840 {
4841 bool found_ctrl_stmt = false;
4842
4843 stmt = NULL;
4844
4845 /* Skip labels on the start of basic block. */
4846 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4847 {
4848 tree label;
4849 gimple prev_stmt = stmt;
4850
4851 stmt = gsi_stmt (gsi);
4852
4853 if (gimple_code (stmt) != GIMPLE_LABEL)
4854 break;
4855
4856 label = gimple_label_label (stmt);
4857 if (prev_stmt && DECL_NONLOCAL (label))
4858 {
4859 error ("nonlocal label ");
4860 print_generic_expr (stderr, label, 0);
4861 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4862 bb->index);
4863 err = 1;
4864 }
4865
4866 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4867 {
4868 error ("EH landing pad label ");
4869 print_generic_expr (stderr, label, 0);
4870 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4871 bb->index);
4872 err = 1;
4873 }
4874
4875 if (label_to_block (label) != bb)
4876 {
4877 error ("label ");
4878 print_generic_expr (stderr, label, 0);
4879 fprintf (stderr, " to block does not match in bb %d",
4880 bb->index);
4881 err = 1;
4882 }
4883
4884 if (decl_function_context (label) != current_function_decl)
4885 {
4886 error ("label ");
4887 print_generic_expr (stderr, label, 0);
4888 fprintf (stderr, " has incorrect context in bb %d",
4889 bb->index);
4890 err = 1;
4891 }
4892 }
4893
4894 /* Verify that body of basic block BB is free of control flow. */
4895 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4896 {
4897 gimple stmt = gsi_stmt (gsi);
4898
4899 if (found_ctrl_stmt)
4900 {
4901 error ("control flow in the middle of basic block %d",
4902 bb->index);
4903 err = 1;
4904 }
4905
4906 if (stmt_ends_bb_p (stmt))
4907 found_ctrl_stmt = true;
4908
4909 if (gimple_code (stmt) == GIMPLE_LABEL)
4910 {
4911 error ("label ");
4912 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4913 fprintf (stderr, " in the middle of basic block %d", bb->index);
4914 err = 1;
4915 }
4916 }
4917
4918 gsi = gsi_last_bb (bb);
4919 if (gsi_end_p (gsi))
4920 continue;
4921
4922 stmt = gsi_stmt (gsi);
4923
4924 if (gimple_code (stmt) == GIMPLE_LABEL)
4925 continue;
4926
4927 err |= verify_eh_edges (stmt);
4928
4929 if (is_ctrl_stmt (stmt))
4930 {
4931 FOR_EACH_EDGE (e, ei, bb->succs)
4932 if (e->flags & EDGE_FALLTHRU)
4933 {
4934 error ("fallthru edge after a control statement in bb %d",
4935 bb->index);
4936 err = 1;
4937 }
4938 }
4939
4940 if (gimple_code (stmt) != GIMPLE_COND)
4941 {
4942 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4943 after anything else but if statement. */
4944 FOR_EACH_EDGE (e, ei, bb->succs)
4945 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4946 {
4947 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4948 bb->index);
4949 err = 1;
4950 }
4951 }
4952
4953 switch (gimple_code (stmt))
4954 {
4955 case GIMPLE_COND:
4956 {
4957 edge true_edge;
4958 edge false_edge;
4959
4960 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4961
4962 if (!true_edge
4963 || !false_edge
4964 || !(true_edge->flags & EDGE_TRUE_VALUE)
4965 || !(false_edge->flags & EDGE_FALSE_VALUE)
4966 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4967 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4968 || EDGE_COUNT (bb->succs) >= 3)
4969 {
4970 error ("wrong outgoing edge flags at end of bb %d",
4971 bb->index);
4972 err = 1;
4973 }
4974 }
4975 break;
4976
4977 case GIMPLE_GOTO:
4978 if (simple_goto_p (stmt))
4979 {
4980 error ("explicit goto at end of bb %d", bb->index);
4981 err = 1;
4982 }
4983 else
4984 {
4985 /* FIXME. We should double check that the labels in the
4986 destination blocks have their address taken. */
4987 FOR_EACH_EDGE (e, ei, bb->succs)
4988 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4989 | EDGE_FALSE_VALUE))
4990 || !(e->flags & EDGE_ABNORMAL))
4991 {
4992 error ("wrong outgoing edge flags at end of bb %d",
4993 bb->index);
4994 err = 1;
4995 }
4996 }
4997 break;
4998
4999 case GIMPLE_CALL:
5000 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5001 break;
5002 /* ... fallthru ... */
5003 case GIMPLE_RETURN:
5004 if (!single_succ_p (bb)
5005 || (single_succ_edge (bb)->flags
5006 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5007 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5008 {
5009 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5010 err = 1;
5011 }
5012 if (single_succ (bb) != EXIT_BLOCK_PTR)
5013 {
5014 error ("return edge does not point to exit in bb %d",
5015 bb->index);
5016 err = 1;
5017 }
5018 break;
5019
5020 case GIMPLE_SWITCH:
5021 {
5022 tree prev;
5023 edge e;
5024 size_t i, n;
5025
5026 n = gimple_switch_num_labels (stmt);
5027
5028 /* Mark all the destination basic blocks. */
5029 for (i = 0; i < n; ++i)
5030 {
5031 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5032 basic_block label_bb = label_to_block (lab);
5033 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5034 label_bb->aux = (void *)1;
5035 }
5036
5037 /* Verify that the case labels are sorted. */
5038 prev = gimple_switch_label (stmt, 0);
5039 for (i = 1; i < n; ++i)
5040 {
5041 tree c = gimple_switch_label (stmt, i);
5042 if (!CASE_LOW (c))
5043 {
5044 error ("found default case not at the start of "
5045 "case vector");
5046 err = 1;
5047 continue;
5048 }
5049 if (CASE_LOW (prev)
5050 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5051 {
5052 error ("case labels not sorted: ");
5053 print_generic_expr (stderr, prev, 0);
5054 fprintf (stderr," is greater than ");
5055 print_generic_expr (stderr, c, 0);
5056 fprintf (stderr," but comes before it.\n");
5057 err = 1;
5058 }
5059 prev = c;
5060 }
5061 /* VRP will remove the default case if it can prove it will
5062 never be executed. So do not verify there always exists
5063 a default case here. */
5064
5065 FOR_EACH_EDGE (e, ei, bb->succs)
5066 {
5067 if (!e->dest->aux)
5068 {
5069 error ("extra outgoing edge %d->%d",
5070 bb->index, e->dest->index);
5071 err = 1;
5072 }
5073
5074 e->dest->aux = (void *)2;
5075 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5076 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5077 {
5078 error ("wrong outgoing edge flags at end of bb %d",
5079 bb->index);
5080 err = 1;
5081 }
5082 }
5083
5084 /* Check that we have all of them. */
5085 for (i = 0; i < n; ++i)
5086 {
5087 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5088 basic_block label_bb = label_to_block (lab);
5089
5090 if (label_bb->aux != (void *)2)
5091 {
5092 error ("missing edge %i->%i", bb->index, label_bb->index);
5093 err = 1;
5094 }
5095 }
5096
5097 FOR_EACH_EDGE (e, ei, bb->succs)
5098 e->dest->aux = (void *)0;
5099 }
5100 break;
5101
5102 case GIMPLE_EH_DISPATCH:
5103 err |= verify_eh_dispatch_edge (stmt);
5104 break;
5105
5106 default:
5107 break;
5108 }
5109 }
5110
5111 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5112 verify_dominators (CDI_DOMINATORS);
5113
5114 return err;
5115 }
5116
5117
5118 /* Updates phi nodes after creating a forwarder block joined
5119 by edge FALLTHRU. */
5120
5121 static void
5122 gimple_make_forwarder_block (edge fallthru)
5123 {
5124 edge e;
5125 edge_iterator ei;
5126 basic_block dummy, bb;
5127 tree var;
5128 gimple_stmt_iterator gsi;
5129
5130 dummy = fallthru->src;
5131 bb = fallthru->dest;
5132
5133 if (single_pred_p (bb))
5134 return;
5135
5136 /* If we redirected a branch we must create new PHI nodes at the
5137 start of BB. */
5138 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5139 {
5140 gimple phi, new_phi;
5141
5142 phi = gsi_stmt (gsi);
5143 var = gimple_phi_result (phi);
5144 new_phi = create_phi_node (var, bb);
5145 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5146 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5147 UNKNOWN_LOCATION);
5148 }
5149
5150 /* Add the arguments we have stored on edges. */
5151 FOR_EACH_EDGE (e, ei, bb->preds)
5152 {
5153 if (e == fallthru)
5154 continue;
5155
5156 flush_pending_stmts (e);
5157 }
5158 }
5159
5160
5161 /* Return a non-special label in the head of basic block BLOCK.
5162 Create one if it doesn't exist. */
5163
5164 tree
5165 gimple_block_label (basic_block bb)
5166 {
5167 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5168 bool first = true;
5169 tree label;
5170 gimple stmt;
5171
5172 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5173 {
5174 stmt = gsi_stmt (i);
5175 if (gimple_code (stmt) != GIMPLE_LABEL)
5176 break;
5177 label = gimple_label_label (stmt);
5178 if (!DECL_NONLOCAL (label))
5179 {
5180 if (!first)
5181 gsi_move_before (&i, &s);
5182 return label;
5183 }
5184 }
5185
5186 label = create_artificial_label (UNKNOWN_LOCATION);
5187 stmt = gimple_build_label (label);
5188 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5189 return label;
5190 }
5191
5192
5193 /* Attempt to perform edge redirection by replacing a possibly complex
5194 jump instruction by a goto or by removing the jump completely.
5195 This can apply only if all edges now point to the same block. The
5196 parameters and return values are equivalent to
5197 redirect_edge_and_branch. */
5198
5199 static edge
5200 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5201 {
5202 basic_block src = e->src;
5203 gimple_stmt_iterator i;
5204 gimple stmt;
5205
5206 /* We can replace or remove a complex jump only when we have exactly
5207 two edges. */
5208 if (EDGE_COUNT (src->succs) != 2
5209 /* Verify that all targets will be TARGET. Specifically, the
5210 edge that is not E must also go to TARGET. */
5211 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5212 return NULL;
5213
5214 i = gsi_last_bb (src);
5215 if (gsi_end_p (i))
5216 return NULL;
5217
5218 stmt = gsi_stmt (i);
5219
5220 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5221 {
5222 gsi_remove (&i, true);
5223 e = ssa_redirect_edge (e, target);
5224 e->flags = EDGE_FALLTHRU;
5225 return e;
5226 }
5227
5228 return NULL;
5229 }
5230
5231
5232 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5233 edge representing the redirected branch. */
5234
5235 static edge
5236 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5237 {
5238 basic_block bb = e->src;
5239 gimple_stmt_iterator gsi;
5240 edge ret;
5241 gimple stmt;
5242
5243 if (e->flags & EDGE_ABNORMAL)
5244 return NULL;
5245
5246 if (e->dest == dest)
5247 return NULL;
5248
5249 if (e->flags & EDGE_EH)
5250 return redirect_eh_edge (e, dest);
5251
5252 if (e->src != ENTRY_BLOCK_PTR)
5253 {
5254 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5255 if (ret)
5256 return ret;
5257 }
5258
5259 gsi = gsi_last_bb (bb);
5260 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5261
5262 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5263 {
5264 case GIMPLE_COND:
5265 /* For COND_EXPR, we only need to redirect the edge. */
5266 break;
5267
5268 case GIMPLE_GOTO:
5269 /* No non-abnormal edges should lead from a non-simple goto, and
5270 simple ones should be represented implicitly. */
5271 gcc_unreachable ();
5272
5273 case GIMPLE_SWITCH:
5274 {
5275 tree label = gimple_block_label (dest);
5276 tree cases = get_cases_for_edge (e, stmt);
5277
5278 /* If we have a list of cases associated with E, then use it
5279 as it's a lot faster than walking the entire case vector. */
5280 if (cases)
5281 {
5282 edge e2 = find_edge (e->src, dest);
5283 tree last, first;
5284
5285 first = cases;
5286 while (cases)
5287 {
5288 last = cases;
5289 CASE_LABEL (cases) = label;
5290 cases = CASE_CHAIN (cases);
5291 }
5292
5293 /* If there was already an edge in the CFG, then we need
5294 to move all the cases associated with E to E2. */
5295 if (e2)
5296 {
5297 tree cases2 = get_cases_for_edge (e2, stmt);
5298
5299 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5300 CASE_CHAIN (cases2) = first;
5301 }
5302 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5303 }
5304 else
5305 {
5306 size_t i, n = gimple_switch_num_labels (stmt);
5307
5308 for (i = 0; i < n; i++)
5309 {
5310 tree elt = gimple_switch_label (stmt, i);
5311 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5312 CASE_LABEL (elt) = label;
5313 }
5314 }
5315 }
5316 break;
5317
5318 case GIMPLE_ASM:
5319 {
5320 int i, n = gimple_asm_nlabels (stmt);
5321 tree label = NULL;
5322
5323 for (i = 0; i < n; ++i)
5324 {
5325 tree cons = gimple_asm_label_op (stmt, i);
5326 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5327 {
5328 if (!label)
5329 label = gimple_block_label (dest);
5330 TREE_VALUE (cons) = label;
5331 }
5332 }
5333
5334 /* If we didn't find any label matching the former edge in the
5335 asm labels, we must be redirecting the fallthrough
5336 edge. */
5337 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5338 }
5339 break;
5340
5341 case GIMPLE_RETURN:
5342 gsi_remove (&gsi, true);
5343 e->flags |= EDGE_FALLTHRU;
5344 break;
5345
5346 case GIMPLE_OMP_RETURN:
5347 case GIMPLE_OMP_CONTINUE:
5348 case GIMPLE_OMP_SECTIONS_SWITCH:
5349 case GIMPLE_OMP_FOR:
5350 /* The edges from OMP constructs can be simply redirected. */
5351 break;
5352
5353 case GIMPLE_EH_DISPATCH:
5354 if (!(e->flags & EDGE_FALLTHRU))
5355 redirect_eh_dispatch_edge (stmt, e, dest);
5356 break;
5357
5358 case GIMPLE_TRANSACTION:
5359 /* The ABORT edge has a stored label associated with it, otherwise
5360 the edges are simply redirectable. */
5361 if (e->flags == 0)
5362 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5363 break;
5364
5365 default:
5366 /* Otherwise it must be a fallthru edge, and we don't need to
5367 do anything besides redirecting it. */
5368 gcc_assert (e->flags & EDGE_FALLTHRU);
5369 break;
5370 }
5371
5372 /* Update/insert PHI nodes as necessary. */
5373
5374 /* Now update the edges in the CFG. */
5375 e = ssa_redirect_edge (e, dest);
5376
5377 return e;
5378 }
5379
5380 /* Returns true if it is possible to remove edge E by redirecting
5381 it to the destination of the other edge from E->src. */
5382
5383 static bool
5384 gimple_can_remove_branch_p (const_edge e)
5385 {
5386 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5387 return false;
5388
5389 return true;
5390 }
5391
5392 /* Simple wrapper, as we can always redirect fallthru edges. */
5393
5394 static basic_block
5395 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5396 {
5397 e = gimple_redirect_edge_and_branch (e, dest);
5398 gcc_assert (e);
5399
5400 return NULL;
5401 }
5402
5403
5404 /* Splits basic block BB after statement STMT (but at least after the
5405 labels). If STMT is NULL, BB is split just after the labels. */
5406
5407 static basic_block
5408 gimple_split_block (basic_block bb, void *stmt)
5409 {
5410 gimple_stmt_iterator gsi;
5411 gimple_stmt_iterator gsi_tgt;
5412 gimple act;
5413 gimple_seq list;
5414 basic_block new_bb;
5415 edge e;
5416 edge_iterator ei;
5417
5418 new_bb = create_empty_bb (bb);
5419
5420 /* Redirect the outgoing edges. */
5421 new_bb->succs = bb->succs;
5422 bb->succs = NULL;
5423 FOR_EACH_EDGE (e, ei, new_bb->succs)
5424 e->src = new_bb;
5425
5426 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5427 stmt = NULL;
5428
5429 /* Move everything from GSI to the new basic block. */
5430 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5431 {
5432 act = gsi_stmt (gsi);
5433 if (gimple_code (act) == GIMPLE_LABEL)
5434 continue;
5435
5436 if (!stmt)
5437 break;
5438
5439 if (stmt == act)
5440 {
5441 gsi_next (&gsi);
5442 break;
5443 }
5444 }
5445
5446 if (gsi_end_p (gsi))
5447 return new_bb;
5448
5449 /* Split the statement list - avoid re-creating new containers as this
5450 brings ugly quadratic memory consumption in the inliner.
5451 (We are still quadratic since we need to update stmt BB pointers,
5452 sadly.) */
5453 gsi_split_seq_before (&gsi, &list);
5454 set_bb_seq (new_bb, list);
5455 for (gsi_tgt = gsi_start (list);
5456 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5457 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5458
5459 return new_bb;
5460 }
5461
5462
5463 /* Moves basic block BB after block AFTER. */
5464
5465 static bool
5466 gimple_move_block_after (basic_block bb, basic_block after)
5467 {
5468 if (bb->prev_bb == after)
5469 return true;
5470
5471 unlink_block (bb);
5472 link_block (bb, after);
5473
5474 return true;
5475 }
5476
5477
5478 /* Return TRUE if block BB has no executable statements, otherwise return
5479 FALSE. */
5480
5481 bool
5482 gimple_empty_block_p (basic_block bb)
5483 {
5484 /* BB must have no executable statements. */
5485 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5486 if (phi_nodes (bb))
5487 return false;
5488 if (gsi_end_p (gsi))
5489 return true;
5490 if (is_gimple_debug (gsi_stmt (gsi)))
5491 gsi_next_nondebug (&gsi);
5492 return gsi_end_p (gsi);
5493 }
5494
5495
5496 /* Split a basic block if it ends with a conditional branch and if the
5497 other part of the block is not empty. */
5498
5499 static basic_block
5500 gimple_split_block_before_cond_jump (basic_block bb)
5501 {
5502 gimple last, split_point;
5503 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5504 if (gsi_end_p (gsi))
5505 return NULL;
5506 last = gsi_stmt (gsi);
5507 if (gimple_code (last) != GIMPLE_COND
5508 && gimple_code (last) != GIMPLE_SWITCH)
5509 return NULL;
5510 gsi_prev_nondebug (&gsi);
5511 split_point = gsi_stmt (gsi);
5512 return split_block (bb, split_point)->dest;
5513 }
5514
5515
5516 /* Return true if basic_block can be duplicated. */
5517
5518 static bool
5519 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5520 {
5521 return true;
5522 }
5523
5524 /* Create a duplicate of the basic block BB. NOTE: This does not
5525 preserve SSA form. */
5526
5527 static basic_block
5528 gimple_duplicate_bb (basic_block bb)
5529 {
5530 basic_block new_bb;
5531 gimple_stmt_iterator gsi, gsi_tgt;
5532 gimple_seq phis = phi_nodes (bb);
5533 gimple phi, stmt, copy;
5534
5535 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5536
5537 /* Copy the PHI nodes. We ignore PHI node arguments here because
5538 the incoming edges have not been setup yet. */
5539 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5540 {
5541 phi = gsi_stmt (gsi);
5542 copy = create_phi_node (NULL_TREE, new_bb);
5543 create_new_def_for (gimple_phi_result (phi), copy,
5544 gimple_phi_result_ptr (copy));
5545 }
5546
5547 gsi_tgt = gsi_start_bb (new_bb);
5548 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5549 {
5550 def_operand_p def_p;
5551 ssa_op_iter op_iter;
5552 tree lhs;
5553
5554 stmt = gsi_stmt (gsi);
5555 if (gimple_code (stmt) == GIMPLE_LABEL)
5556 continue;
5557
5558 /* Don't duplicate label debug stmts. */
5559 if (gimple_debug_bind_p (stmt)
5560 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5561 == LABEL_DECL)
5562 continue;
5563
5564 /* Create a new copy of STMT and duplicate STMT's virtual
5565 operands. */
5566 copy = gimple_copy (stmt);
5567 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5568
5569 maybe_duplicate_eh_stmt (copy, stmt);
5570 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5571
5572 /* When copying around a stmt writing into a local non-user
5573 aggregate, make sure it won't share stack slot with other
5574 vars. */
5575 lhs = gimple_get_lhs (stmt);
5576 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5577 {
5578 tree base = get_base_address (lhs);
5579 if (base
5580 && (TREE_CODE (base) == VAR_DECL
5581 || TREE_CODE (base) == RESULT_DECL)
5582 && DECL_IGNORED_P (base)
5583 && !TREE_STATIC (base)
5584 && !DECL_EXTERNAL (base)
5585 && (TREE_CODE (base) != VAR_DECL
5586 || !DECL_HAS_VALUE_EXPR_P (base)))
5587 DECL_NONSHAREABLE (base) = 1;
5588 }
5589
5590 /* Create new names for all the definitions created by COPY and
5591 add replacement mappings for each new name. */
5592 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5593 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5594 }
5595
5596 return new_bb;
5597 }
5598
5599 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5600
5601 static void
5602 add_phi_args_after_copy_edge (edge e_copy)
5603 {
5604 basic_block bb, bb_copy = e_copy->src, dest;
5605 edge e;
5606 edge_iterator ei;
5607 gimple phi, phi_copy;
5608 tree def;
5609 gimple_stmt_iterator psi, psi_copy;
5610
5611 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5612 return;
5613
5614 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5615
5616 if (e_copy->dest->flags & BB_DUPLICATED)
5617 dest = get_bb_original (e_copy->dest);
5618 else
5619 dest = e_copy->dest;
5620
5621 e = find_edge (bb, dest);
5622 if (!e)
5623 {
5624 /* During loop unrolling the target of the latch edge is copied.
5625 In this case we are not looking for edge to dest, but to
5626 duplicated block whose original was dest. */
5627 FOR_EACH_EDGE (e, ei, bb->succs)
5628 {
5629 if ((e->dest->flags & BB_DUPLICATED)
5630 && get_bb_original (e->dest) == dest)
5631 break;
5632 }
5633
5634 gcc_assert (e != NULL);
5635 }
5636
5637 for (psi = gsi_start_phis (e->dest),
5638 psi_copy = gsi_start_phis (e_copy->dest);
5639 !gsi_end_p (psi);
5640 gsi_next (&psi), gsi_next (&psi_copy))
5641 {
5642 phi = gsi_stmt (psi);
5643 phi_copy = gsi_stmt (psi_copy);
5644 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5645 add_phi_arg (phi_copy, def, e_copy,
5646 gimple_phi_arg_location_from_edge (phi, e));
5647 }
5648 }
5649
5650
5651 /* Basic block BB_COPY was created by code duplication. Add phi node
5652 arguments for edges going out of BB_COPY. The blocks that were
5653 duplicated have BB_DUPLICATED set. */
5654
5655 void
5656 add_phi_args_after_copy_bb (basic_block bb_copy)
5657 {
5658 edge e_copy;
5659 edge_iterator ei;
5660
5661 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5662 {
5663 add_phi_args_after_copy_edge (e_copy);
5664 }
5665 }
5666
5667 /* Blocks in REGION_COPY array of length N_REGION were created by
5668 duplication of basic blocks. Add phi node arguments for edges
5669 going from these blocks. If E_COPY is not NULL, also add
5670 phi node arguments for its destination.*/
5671
5672 void
5673 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5674 edge e_copy)
5675 {
5676 unsigned i;
5677
5678 for (i = 0; i < n_region; i++)
5679 region_copy[i]->flags |= BB_DUPLICATED;
5680
5681 for (i = 0; i < n_region; i++)
5682 add_phi_args_after_copy_bb (region_copy[i]);
5683 if (e_copy)
5684 add_phi_args_after_copy_edge (e_copy);
5685
5686 for (i = 0; i < n_region; i++)
5687 region_copy[i]->flags &= ~BB_DUPLICATED;
5688 }
5689
5690 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5691 important exit edge EXIT. By important we mean that no SSA name defined
5692 inside region is live over the other exit edges of the region. All entry
5693 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5694 to the duplicate of the region. Dominance and loop information is
5695 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5696 UPDATE_DOMINANCE is false then we assume that the caller will update the
5697 dominance information after calling this function. The new basic
5698 blocks are stored to REGION_COPY in the same order as they had in REGION,
5699 provided that REGION_COPY is not NULL.
5700 The function returns false if it is unable to copy the region,
5701 true otherwise. */
5702
5703 bool
5704 gimple_duplicate_sese_region (edge entry, edge exit,
5705 basic_block *region, unsigned n_region,
5706 basic_block *region_copy,
5707 bool update_dominance)
5708 {
5709 unsigned i;
5710 bool free_region_copy = false, copying_header = false;
5711 struct loop *loop = entry->dest->loop_father;
5712 edge exit_copy;
5713 vec<basic_block> doms;
5714 edge redirected;
5715 int total_freq = 0, entry_freq = 0;
5716 gcov_type total_count = 0, entry_count = 0;
5717
5718 if (!can_copy_bbs_p (region, n_region))
5719 return false;
5720
5721 /* Some sanity checking. Note that we do not check for all possible
5722 missuses of the functions. I.e. if you ask to copy something weird,
5723 it will work, but the state of structures probably will not be
5724 correct. */
5725 for (i = 0; i < n_region; i++)
5726 {
5727 /* We do not handle subloops, i.e. all the blocks must belong to the
5728 same loop. */
5729 if (region[i]->loop_father != loop)
5730 return false;
5731
5732 if (region[i] != entry->dest
5733 && region[i] == loop->header)
5734 return false;
5735 }
5736
5737 set_loop_copy (loop, loop);
5738
5739 /* In case the function is used for loop header copying (which is the primary
5740 use), ensure that EXIT and its copy will be new latch and entry edges. */
5741 if (loop->header == entry->dest)
5742 {
5743 copying_header = true;
5744 set_loop_copy (loop, loop_outer (loop));
5745
5746 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5747 return false;
5748
5749 for (i = 0; i < n_region; i++)
5750 if (region[i] != exit->src
5751 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5752 return false;
5753 }
5754
5755 if (!region_copy)
5756 {
5757 region_copy = XNEWVEC (basic_block, n_region);
5758 free_region_copy = true;
5759 }
5760
5761 initialize_original_copy_tables ();
5762
5763 /* Record blocks outside the region that are dominated by something
5764 inside. */
5765 if (update_dominance)
5766 {
5767 doms.create (0);
5768 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5769 }
5770
5771 if (entry->dest->count)
5772 {
5773 total_count = entry->dest->count;
5774 entry_count = entry->count;
5775 /* Fix up corner cases, to avoid division by zero or creation of negative
5776 frequencies. */
5777 if (entry_count > total_count)
5778 entry_count = total_count;
5779 }
5780 else
5781 {
5782 total_freq = entry->dest->frequency;
5783 entry_freq = EDGE_FREQUENCY (entry);
5784 /* Fix up corner cases, to avoid division by zero or creation of negative
5785 frequencies. */
5786 if (total_freq == 0)
5787 total_freq = 1;
5788 else if (entry_freq > total_freq)
5789 entry_freq = total_freq;
5790 }
5791
5792 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5793 split_edge_bb_loc (entry), update_dominance);
5794 if (total_count)
5795 {
5796 scale_bbs_frequencies_gcov_type (region, n_region,
5797 total_count - entry_count,
5798 total_count);
5799 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5800 total_count);
5801 }
5802 else
5803 {
5804 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5805 total_freq);
5806 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5807 }
5808
5809 if (copying_header)
5810 {
5811 loop->header = exit->dest;
5812 loop->latch = exit->src;
5813 }
5814
5815 /* Redirect the entry and add the phi node arguments. */
5816 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5817 gcc_assert (redirected != NULL);
5818 flush_pending_stmts (entry);
5819
5820 /* Concerning updating of dominators: We must recount dominators
5821 for entry block and its copy. Anything that is outside of the
5822 region, but was dominated by something inside needs recounting as
5823 well. */
5824 if (update_dominance)
5825 {
5826 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5827 doms.safe_push (get_bb_original (entry->dest));
5828 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5829 doms.release ();
5830 }
5831
5832 /* Add the other PHI node arguments. */
5833 add_phi_args_after_copy (region_copy, n_region, NULL);
5834
5835 if (free_region_copy)
5836 free (region_copy);
5837
5838 free_original_copy_tables ();
5839 return true;
5840 }
5841
5842 /* Checks if BB is part of the region defined by N_REGION BBS. */
5843 static bool
5844 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5845 {
5846 unsigned int n;
5847
5848 for (n = 0; n < n_region; n++)
5849 {
5850 if (bb == bbs[n])
5851 return true;
5852 }
5853 return false;
5854 }
5855
5856 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5857 are stored to REGION_COPY in the same order in that they appear
5858 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5859 the region, EXIT an exit from it. The condition guarding EXIT
5860 is moved to ENTRY. Returns true if duplication succeeds, false
5861 otherwise.
5862
5863 For example,
5864
5865 some_code;
5866 if (cond)
5867 A;
5868 else
5869 B;
5870
5871 is transformed to
5872
5873 if (cond)
5874 {
5875 some_code;
5876 A;
5877 }
5878 else
5879 {
5880 some_code;
5881 B;
5882 }
5883 */
5884
5885 bool
5886 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5887 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5888 basic_block *region_copy ATTRIBUTE_UNUSED)
5889 {
5890 unsigned i;
5891 bool free_region_copy = false;
5892 struct loop *loop = exit->dest->loop_father;
5893 struct loop *orig_loop = entry->dest->loop_father;
5894 basic_block switch_bb, entry_bb, nentry_bb;
5895 vec<basic_block> doms;
5896 int total_freq = 0, exit_freq = 0;
5897 gcov_type total_count = 0, exit_count = 0;
5898 edge exits[2], nexits[2], e;
5899 gimple_stmt_iterator gsi;
5900 gimple cond_stmt;
5901 edge sorig, snew;
5902 basic_block exit_bb;
5903 gimple_stmt_iterator psi;
5904 gimple phi;
5905 tree def;
5906 struct loop *target, *aloop, *cloop;
5907
5908 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5909 exits[0] = exit;
5910 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5911
5912 if (!can_copy_bbs_p (region, n_region))
5913 return false;
5914
5915 initialize_original_copy_tables ();
5916 set_loop_copy (orig_loop, loop);
5917
5918 target= loop;
5919 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5920 {
5921 if (bb_part_of_region_p (aloop->header, region, n_region))
5922 {
5923 cloop = duplicate_loop (aloop, target);
5924 duplicate_subloops (aloop, cloop);
5925 }
5926 }
5927
5928 if (!region_copy)
5929 {
5930 region_copy = XNEWVEC (basic_block, n_region);
5931 free_region_copy = true;
5932 }
5933
5934 gcc_assert (!need_ssa_update_p (cfun));
5935
5936 /* Record blocks outside the region that are dominated by something
5937 inside. */
5938 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5939
5940 if (exit->src->count)
5941 {
5942 total_count = exit->src->count;
5943 exit_count = exit->count;
5944 /* Fix up corner cases, to avoid division by zero or creation of negative
5945 frequencies. */
5946 if (exit_count > total_count)
5947 exit_count = total_count;
5948 }
5949 else
5950 {
5951 total_freq = exit->src->frequency;
5952 exit_freq = EDGE_FREQUENCY (exit);
5953 /* Fix up corner cases, to avoid division by zero or creation of negative
5954 frequencies. */
5955 if (total_freq == 0)
5956 total_freq = 1;
5957 if (exit_freq > total_freq)
5958 exit_freq = total_freq;
5959 }
5960
5961 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5962 split_edge_bb_loc (exit), true);
5963 if (total_count)
5964 {
5965 scale_bbs_frequencies_gcov_type (region, n_region,
5966 total_count - exit_count,
5967 total_count);
5968 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5969 total_count);
5970 }
5971 else
5972 {
5973 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5974 total_freq);
5975 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5976 }
5977
5978 /* Create the switch block, and put the exit condition to it. */
5979 entry_bb = entry->dest;
5980 nentry_bb = get_bb_copy (entry_bb);
5981 if (!last_stmt (entry->src)
5982 || !stmt_ends_bb_p (last_stmt (entry->src)))
5983 switch_bb = entry->src;
5984 else
5985 switch_bb = split_edge (entry);
5986 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5987
5988 gsi = gsi_last_bb (switch_bb);
5989 cond_stmt = last_stmt (exit->src);
5990 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5991 cond_stmt = gimple_copy (cond_stmt);
5992
5993 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5994
5995 sorig = single_succ_edge (switch_bb);
5996 sorig->flags = exits[1]->flags;
5997 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5998
5999 /* Register the new edge from SWITCH_BB in loop exit lists. */
6000 rescan_loop_exit (snew, true, false);
6001
6002 /* Add the PHI node arguments. */
6003 add_phi_args_after_copy (region_copy, n_region, snew);
6004
6005 /* Get rid of now superfluous conditions and associated edges (and phi node
6006 arguments). */
6007 exit_bb = exit->dest;
6008
6009 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6010 PENDING_STMT (e) = NULL;
6011
6012 /* The latch of ORIG_LOOP was copied, and so was the backedge
6013 to the original header. We redirect this backedge to EXIT_BB. */
6014 for (i = 0; i < n_region; i++)
6015 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6016 {
6017 gcc_assert (single_succ_edge (region_copy[i]));
6018 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6019 PENDING_STMT (e) = NULL;
6020 for (psi = gsi_start_phis (exit_bb);
6021 !gsi_end_p (psi);
6022 gsi_next (&psi))
6023 {
6024 phi = gsi_stmt (psi);
6025 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6026 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6027 }
6028 }
6029 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6030 PENDING_STMT (e) = NULL;
6031
6032 /* Anything that is outside of the region, but was dominated by something
6033 inside needs to update dominance info. */
6034 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6035 doms.release ();
6036 /* Update the SSA web. */
6037 update_ssa (TODO_update_ssa);
6038
6039 if (free_region_copy)
6040 free (region_copy);
6041
6042 free_original_copy_tables ();
6043 return true;
6044 }
6045
6046 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6047 adding blocks when the dominator traversal reaches EXIT. This
6048 function silently assumes that ENTRY strictly dominates EXIT. */
6049
6050 void
6051 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6052 vec<basic_block> *bbs_p)
6053 {
6054 basic_block son;
6055
6056 for (son = first_dom_son (CDI_DOMINATORS, entry);
6057 son;
6058 son = next_dom_son (CDI_DOMINATORS, son))
6059 {
6060 bbs_p->safe_push (son);
6061 if (son != exit)
6062 gather_blocks_in_sese_region (son, exit, bbs_p);
6063 }
6064 }
6065
6066 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6067 The duplicates are recorded in VARS_MAP. */
6068
6069 static void
6070 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6071 tree to_context)
6072 {
6073 tree t = *tp, new_t;
6074 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6075 void **loc;
6076
6077 if (DECL_CONTEXT (t) == to_context)
6078 return;
6079
6080 loc = pointer_map_contains (vars_map, t);
6081
6082 if (!loc)
6083 {
6084 loc = pointer_map_insert (vars_map, t);
6085
6086 if (SSA_VAR_P (t))
6087 {
6088 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6089 add_local_decl (f, new_t);
6090 }
6091 else
6092 {
6093 gcc_assert (TREE_CODE (t) == CONST_DECL);
6094 new_t = copy_node (t);
6095 }
6096 DECL_CONTEXT (new_t) = to_context;
6097
6098 *loc = new_t;
6099 }
6100 else
6101 new_t = (tree) *loc;
6102
6103 *tp = new_t;
6104 }
6105
6106
6107 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6108 VARS_MAP maps old ssa names and var_decls to the new ones. */
6109
6110 static tree
6111 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6112 tree to_context)
6113 {
6114 void **loc;
6115 tree new_name;
6116
6117 gcc_assert (!virtual_operand_p (name));
6118
6119 loc = pointer_map_contains (vars_map, name);
6120
6121 if (!loc)
6122 {
6123 tree decl = SSA_NAME_VAR (name);
6124 if (decl)
6125 {
6126 replace_by_duplicate_decl (&decl, vars_map, to_context);
6127 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6128 decl, SSA_NAME_DEF_STMT (name));
6129 if (SSA_NAME_IS_DEFAULT_DEF (name))
6130 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6131 decl, new_name);
6132 }
6133 else
6134 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6135 name, SSA_NAME_DEF_STMT (name));
6136
6137 loc = pointer_map_insert (vars_map, name);
6138 *loc = new_name;
6139 }
6140 else
6141 new_name = (tree) *loc;
6142
6143 return new_name;
6144 }
6145
6146 struct move_stmt_d
6147 {
6148 tree orig_block;
6149 tree new_block;
6150 tree from_context;
6151 tree to_context;
6152 struct pointer_map_t *vars_map;
6153 htab_t new_label_map;
6154 struct pointer_map_t *eh_map;
6155 bool remap_decls_p;
6156 };
6157
6158 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6159 contained in *TP if it has been ORIG_BLOCK previously and change the
6160 DECL_CONTEXT of every local variable referenced in *TP. */
6161
6162 static tree
6163 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6164 {
6165 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6166 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6167 tree t = *tp;
6168
6169 if (EXPR_P (t))
6170 {
6171 tree block = TREE_BLOCK (t);
6172 if (block == p->orig_block
6173 || (p->orig_block == NULL_TREE
6174 && block != NULL_TREE))
6175 TREE_SET_BLOCK (t, p->new_block);
6176 #ifdef ENABLE_CHECKING
6177 else if (block != NULL_TREE)
6178 {
6179 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6180 block = BLOCK_SUPERCONTEXT (block);
6181 gcc_assert (block == p->orig_block);
6182 }
6183 #endif
6184 }
6185 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6186 {
6187 if (TREE_CODE (t) == SSA_NAME)
6188 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6189 else if (TREE_CODE (t) == LABEL_DECL)
6190 {
6191 if (p->new_label_map)
6192 {
6193 struct tree_map in, *out;
6194 in.base.from = t;
6195 out = (struct tree_map *)
6196 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6197 if (out)
6198 *tp = t = out->to;
6199 }
6200
6201 DECL_CONTEXT (t) = p->to_context;
6202 }
6203 else if (p->remap_decls_p)
6204 {
6205 /* Replace T with its duplicate. T should no longer appear in the
6206 parent function, so this looks wasteful; however, it may appear
6207 in referenced_vars, and more importantly, as virtual operands of
6208 statements, and in alias lists of other variables. It would be
6209 quite difficult to expunge it from all those places. ??? It might
6210 suffice to do this for addressable variables. */
6211 if ((TREE_CODE (t) == VAR_DECL
6212 && !is_global_var (t))
6213 || TREE_CODE (t) == CONST_DECL)
6214 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6215 }
6216 *walk_subtrees = 0;
6217 }
6218 else if (TYPE_P (t))
6219 *walk_subtrees = 0;
6220
6221 return NULL_TREE;
6222 }
6223
6224 /* Helper for move_stmt_r. Given an EH region number for the source
6225 function, map that to the duplicate EH regio number in the dest. */
6226
6227 static int
6228 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6229 {
6230 eh_region old_r, new_r;
6231 void **slot;
6232
6233 old_r = get_eh_region_from_number (old_nr);
6234 slot = pointer_map_contains (p->eh_map, old_r);
6235 new_r = (eh_region) *slot;
6236
6237 return new_r->index;
6238 }
6239
6240 /* Similar, but operate on INTEGER_CSTs. */
6241
6242 static tree
6243 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6244 {
6245 int old_nr, new_nr;
6246
6247 old_nr = tree_low_cst (old_t_nr, 0);
6248 new_nr = move_stmt_eh_region_nr (old_nr, p);
6249
6250 return build_int_cst (integer_type_node, new_nr);
6251 }
6252
6253 /* Like move_stmt_op, but for gimple statements.
6254
6255 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6256 contained in the current statement in *GSI_P and change the
6257 DECL_CONTEXT of every local variable referenced in the current
6258 statement. */
6259
6260 static tree
6261 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6262 struct walk_stmt_info *wi)
6263 {
6264 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6265 gimple stmt = gsi_stmt (*gsi_p);
6266 tree block = gimple_block (stmt);
6267
6268 if (block == p->orig_block
6269 || (p->orig_block == NULL_TREE
6270 && block != NULL_TREE))
6271 gimple_set_block (stmt, p->new_block);
6272
6273 switch (gimple_code (stmt))
6274 {
6275 case GIMPLE_CALL:
6276 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6277 {
6278 tree r, fndecl = gimple_call_fndecl (stmt);
6279 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6280 switch (DECL_FUNCTION_CODE (fndecl))
6281 {
6282 case BUILT_IN_EH_COPY_VALUES:
6283 r = gimple_call_arg (stmt, 1);
6284 r = move_stmt_eh_region_tree_nr (r, p);
6285 gimple_call_set_arg (stmt, 1, r);
6286 /* FALLTHRU */
6287
6288 case BUILT_IN_EH_POINTER:
6289 case BUILT_IN_EH_FILTER:
6290 r = gimple_call_arg (stmt, 0);
6291 r = move_stmt_eh_region_tree_nr (r, p);
6292 gimple_call_set_arg (stmt, 0, r);
6293 break;
6294
6295 default:
6296 break;
6297 }
6298 }
6299 break;
6300
6301 case GIMPLE_RESX:
6302 {
6303 int r = gimple_resx_region (stmt);
6304 r = move_stmt_eh_region_nr (r, p);
6305 gimple_resx_set_region (stmt, r);
6306 }
6307 break;
6308
6309 case GIMPLE_EH_DISPATCH:
6310 {
6311 int r = gimple_eh_dispatch_region (stmt);
6312 r = move_stmt_eh_region_nr (r, p);
6313 gimple_eh_dispatch_set_region (stmt, r);
6314 }
6315 break;
6316
6317 case GIMPLE_OMP_RETURN:
6318 case GIMPLE_OMP_CONTINUE:
6319 break;
6320 default:
6321 if (is_gimple_omp (stmt))
6322 {
6323 /* Do not remap variables inside OMP directives. Variables
6324 referenced in clauses and directive header belong to the
6325 parent function and should not be moved into the child
6326 function. */
6327 bool save_remap_decls_p = p->remap_decls_p;
6328 p->remap_decls_p = false;
6329 *handled_ops_p = true;
6330
6331 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6332 move_stmt_op, wi);
6333
6334 p->remap_decls_p = save_remap_decls_p;
6335 }
6336 break;
6337 }
6338
6339 return NULL_TREE;
6340 }
6341
6342 /* Move basic block BB from function CFUN to function DEST_FN. The
6343 block is moved out of the original linked list and placed after
6344 block AFTER in the new list. Also, the block is removed from the
6345 original array of blocks and placed in DEST_FN's array of blocks.
6346 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6347 updated to reflect the moved edges.
6348
6349 The local variables are remapped to new instances, VARS_MAP is used
6350 to record the mapping. */
6351
6352 static void
6353 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6354 basic_block after, bool update_edge_count_p,
6355 struct move_stmt_d *d)
6356 {
6357 struct control_flow_graph *cfg;
6358 edge_iterator ei;
6359 edge e;
6360 gimple_stmt_iterator si;
6361 unsigned old_len, new_len;
6362
6363 /* Remove BB from dominance structures. */
6364 delete_from_dominance_info (CDI_DOMINATORS, bb);
6365
6366 /* Move BB from its current loop to the copy in the new function. */
6367 if (current_loops)
6368 {
6369 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6370 if (new_loop)
6371 bb->loop_father = new_loop;
6372 }
6373
6374 /* Link BB to the new linked list. */
6375 move_block_after (bb, after);
6376
6377 /* Update the edge count in the corresponding flowgraphs. */
6378 if (update_edge_count_p)
6379 FOR_EACH_EDGE (e, ei, bb->succs)
6380 {
6381 cfun->cfg->x_n_edges--;
6382 dest_cfun->cfg->x_n_edges++;
6383 }
6384
6385 /* Remove BB from the original basic block array. */
6386 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6387 cfun->cfg->x_n_basic_blocks--;
6388
6389 /* Grow DEST_CFUN's basic block array if needed. */
6390 cfg = dest_cfun->cfg;
6391 cfg->x_n_basic_blocks++;
6392 if (bb->index >= cfg->x_last_basic_block)
6393 cfg->x_last_basic_block = bb->index + 1;
6394
6395 old_len = vec_safe_length (cfg->x_basic_block_info);
6396 if ((unsigned) cfg->x_last_basic_block >= old_len)
6397 {
6398 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6399 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6400 }
6401
6402 (*cfg->x_basic_block_info)[bb->index] = bb;
6403
6404 /* Remap the variables in phi nodes. */
6405 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6406 {
6407 gimple phi = gsi_stmt (si);
6408 use_operand_p use;
6409 tree op = PHI_RESULT (phi);
6410 ssa_op_iter oi;
6411 unsigned i;
6412
6413 if (virtual_operand_p (op))
6414 {
6415 /* Remove the phi nodes for virtual operands (alias analysis will be
6416 run for the new function, anyway). */
6417 remove_phi_node (&si, true);
6418 continue;
6419 }
6420
6421 SET_PHI_RESULT (phi,
6422 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6423 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6424 {
6425 op = USE_FROM_PTR (use);
6426 if (TREE_CODE (op) == SSA_NAME)
6427 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6428 }
6429
6430 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6431 {
6432 location_t locus = gimple_phi_arg_location (phi, i);
6433 tree block = LOCATION_BLOCK (locus);
6434
6435 if (locus == UNKNOWN_LOCATION)
6436 continue;
6437 if (d->orig_block == NULL_TREE || block == d->orig_block)
6438 {
6439 if (d->new_block == NULL_TREE)
6440 locus = LOCATION_LOCUS (locus);
6441 else
6442 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6443 gimple_phi_arg_set_location (phi, i, locus);
6444 }
6445 }
6446
6447 gsi_next (&si);
6448 }
6449
6450 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6451 {
6452 gimple stmt = gsi_stmt (si);
6453 struct walk_stmt_info wi;
6454
6455 memset (&wi, 0, sizeof (wi));
6456 wi.info = d;
6457 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6458
6459 if (gimple_code (stmt) == GIMPLE_LABEL)
6460 {
6461 tree label = gimple_label_label (stmt);
6462 int uid = LABEL_DECL_UID (label);
6463
6464 gcc_assert (uid > -1);
6465
6466 old_len = vec_safe_length (cfg->x_label_to_block_map);
6467 if (old_len <= (unsigned) uid)
6468 {
6469 new_len = 3 * uid / 2 + 1;
6470 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6471 }
6472
6473 (*cfg->x_label_to_block_map)[uid] = bb;
6474 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6475
6476 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6477
6478 if (uid >= dest_cfun->cfg->last_label_uid)
6479 dest_cfun->cfg->last_label_uid = uid + 1;
6480 }
6481
6482 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6483 remove_stmt_from_eh_lp_fn (cfun, stmt);
6484
6485 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6486 gimple_remove_stmt_histograms (cfun, stmt);
6487
6488 /* We cannot leave any operands allocated from the operand caches of
6489 the current function. */
6490 free_stmt_operands (stmt);
6491 push_cfun (dest_cfun);
6492 update_stmt (stmt);
6493 pop_cfun ();
6494 }
6495
6496 FOR_EACH_EDGE (e, ei, bb->succs)
6497 if (e->goto_locus != UNKNOWN_LOCATION)
6498 {
6499 tree block = LOCATION_BLOCK (e->goto_locus);
6500 if (d->orig_block == NULL_TREE
6501 || block == d->orig_block)
6502 e->goto_locus = d->new_block ?
6503 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6504 LOCATION_LOCUS (e->goto_locus);
6505 }
6506 }
6507
6508 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6509 the outermost EH region. Use REGION as the incoming base EH region. */
6510
6511 static eh_region
6512 find_outermost_region_in_block (struct function *src_cfun,
6513 basic_block bb, eh_region region)
6514 {
6515 gimple_stmt_iterator si;
6516
6517 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6518 {
6519 gimple stmt = gsi_stmt (si);
6520 eh_region stmt_region;
6521 int lp_nr;
6522
6523 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6524 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6525 if (stmt_region)
6526 {
6527 if (region == NULL)
6528 region = stmt_region;
6529 else if (stmt_region != region)
6530 {
6531 region = eh_region_outermost (src_cfun, stmt_region, region);
6532 gcc_assert (region != NULL);
6533 }
6534 }
6535 }
6536
6537 return region;
6538 }
6539
6540 static tree
6541 new_label_mapper (tree decl, void *data)
6542 {
6543 htab_t hash = (htab_t) data;
6544 struct tree_map *m;
6545 void **slot;
6546
6547 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6548
6549 m = XNEW (struct tree_map);
6550 m->hash = DECL_UID (decl);
6551 m->base.from = decl;
6552 m->to = create_artificial_label (UNKNOWN_LOCATION);
6553 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6554 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6555 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6556
6557 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6558 gcc_assert (*slot == NULL);
6559
6560 *slot = m;
6561
6562 return m->to;
6563 }
6564
6565 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6566 subblocks. */
6567
6568 static void
6569 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6570 tree to_context)
6571 {
6572 tree *tp, t;
6573
6574 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6575 {
6576 t = *tp;
6577 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6578 continue;
6579 replace_by_duplicate_decl (&t, vars_map, to_context);
6580 if (t != *tp)
6581 {
6582 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6583 {
6584 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6585 DECL_HAS_VALUE_EXPR_P (t) = 1;
6586 }
6587 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6588 *tp = t;
6589 }
6590 }
6591
6592 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6593 replace_block_vars_by_duplicates (block, vars_map, to_context);
6594 }
6595
6596 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6597 from FN1 to FN2. */
6598
6599 static void
6600 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6601 struct loop *loop)
6602 {
6603 /* Discard it from the old loop array. */
6604 (*get_loops (fn1))[loop->num] = NULL;
6605
6606 /* Place it in the new loop array, assigning it a new number. */
6607 loop->num = number_of_loops (fn2);
6608 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6609
6610 /* Recurse to children. */
6611 for (loop = loop->inner; loop; loop = loop->next)
6612 fixup_loop_arrays_after_move (fn1, fn2, loop);
6613 }
6614
6615 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6616 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6617 single basic block in the original CFG and the new basic block is
6618 returned. DEST_CFUN must not have a CFG yet.
6619
6620 Note that the region need not be a pure SESE region. Blocks inside
6621 the region may contain calls to abort/exit. The only restriction
6622 is that ENTRY_BB should be the only entry point and it must
6623 dominate EXIT_BB.
6624
6625 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6626 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6627 to the new function.
6628
6629 All local variables referenced in the region are assumed to be in
6630 the corresponding BLOCK_VARS and unexpanded variable lists
6631 associated with DEST_CFUN. */
6632
6633 basic_block
6634 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6635 basic_block exit_bb, tree orig_block)
6636 {
6637 vec<basic_block> bbs, dom_bbs;
6638 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6639 basic_block after, bb, *entry_pred, *exit_succ, abb;
6640 struct function *saved_cfun = cfun;
6641 int *entry_flag, *exit_flag;
6642 unsigned *entry_prob, *exit_prob;
6643 unsigned i, num_entry_edges, num_exit_edges;
6644 edge e;
6645 edge_iterator ei;
6646 htab_t new_label_map;
6647 struct pointer_map_t *vars_map, *eh_map;
6648 struct loop *loop = entry_bb->loop_father;
6649 struct move_stmt_d d;
6650
6651 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6652 region. */
6653 gcc_assert (entry_bb != exit_bb
6654 && (!exit_bb
6655 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6656
6657 /* Collect all the blocks in the region. Manually add ENTRY_BB
6658 because it won't be added by dfs_enumerate_from. */
6659 bbs.create (0);
6660 bbs.safe_push (entry_bb);
6661 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6662
6663 /* The blocks that used to be dominated by something in BBS will now be
6664 dominated by the new block. */
6665 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6666 bbs.address (),
6667 bbs.length ());
6668
6669 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6670 the predecessor edges to ENTRY_BB and the successor edges to
6671 EXIT_BB so that we can re-attach them to the new basic block that
6672 will replace the region. */
6673 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6674 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6675 entry_flag = XNEWVEC (int, num_entry_edges);
6676 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6677 i = 0;
6678 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6679 {
6680 entry_prob[i] = e->probability;
6681 entry_flag[i] = e->flags;
6682 entry_pred[i++] = e->src;
6683 remove_edge (e);
6684 }
6685
6686 if (exit_bb)
6687 {
6688 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6689 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6690 exit_flag = XNEWVEC (int, num_exit_edges);
6691 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6692 i = 0;
6693 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6694 {
6695 exit_prob[i] = e->probability;
6696 exit_flag[i] = e->flags;
6697 exit_succ[i++] = e->dest;
6698 remove_edge (e);
6699 }
6700 }
6701 else
6702 {
6703 num_exit_edges = 0;
6704 exit_succ = NULL;
6705 exit_flag = NULL;
6706 exit_prob = NULL;
6707 }
6708
6709 /* Switch context to the child function to initialize DEST_FN's CFG. */
6710 gcc_assert (dest_cfun->cfg == NULL);
6711 push_cfun (dest_cfun);
6712
6713 init_empty_tree_cfg ();
6714
6715 /* Initialize EH information for the new function. */
6716 eh_map = NULL;
6717 new_label_map = NULL;
6718 if (saved_cfun->eh)
6719 {
6720 eh_region region = NULL;
6721
6722 FOR_EACH_VEC_ELT (bbs, i, bb)
6723 region = find_outermost_region_in_block (saved_cfun, bb, region);
6724
6725 init_eh_for_function ();
6726 if (region != NULL)
6727 {
6728 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6729 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6730 new_label_mapper, new_label_map);
6731 }
6732 }
6733
6734 /* Initialize an empty loop tree. */
6735 struct loops *loops = ggc_alloc_cleared_loops ();
6736 init_loops_structure (dest_cfun, loops, 1);
6737 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6738 set_loops_for_fn (dest_cfun, loops);
6739
6740 /* Move the outlined loop tree part. */
6741 FOR_EACH_VEC_ELT (bbs, i, bb)
6742 {
6743 if (bb->loop_father->header == bb
6744 && loop_outer (bb->loop_father) == loop)
6745 {
6746 struct loop *loop = bb->loop_father;
6747 flow_loop_tree_node_remove (bb->loop_father);
6748 flow_loop_tree_node_add (get_loop (dest_cfun, 0), loop);
6749 fixup_loop_arrays_after_move (saved_cfun, cfun, loop);
6750 }
6751
6752 /* Remove loop exits from the outlined region. */
6753 if (loops_for_fn (saved_cfun)->exits)
6754 FOR_EACH_EDGE (e, ei, bb->succs)
6755 {
6756 void **slot = htab_find_slot_with_hash
6757 (loops_for_fn (saved_cfun)->exits, e,
6758 htab_hash_pointer (e), NO_INSERT);
6759 if (slot)
6760 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6761 }
6762 }
6763
6764
6765 /* Adjust the number of blocks in the tree root of the outlined part. */
6766 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6767
6768 /* Setup a mapping to be used by move_block_to_fn. */
6769 loop->aux = current_loops->tree_root;
6770
6771 pop_cfun ();
6772
6773 /* Move blocks from BBS into DEST_CFUN. */
6774 gcc_assert (bbs.length () >= 2);
6775 after = dest_cfun->cfg->x_entry_block_ptr;
6776 vars_map = pointer_map_create ();
6777
6778 memset (&d, 0, sizeof (d));
6779 d.orig_block = orig_block;
6780 d.new_block = DECL_INITIAL (dest_cfun->decl);
6781 d.from_context = cfun->decl;
6782 d.to_context = dest_cfun->decl;
6783 d.vars_map = vars_map;
6784 d.new_label_map = new_label_map;
6785 d.eh_map = eh_map;
6786 d.remap_decls_p = true;
6787
6788 FOR_EACH_VEC_ELT (bbs, i, bb)
6789 {
6790 /* No need to update edge counts on the last block. It has
6791 already been updated earlier when we detached the region from
6792 the original CFG. */
6793 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6794 after = bb;
6795 }
6796
6797 loop->aux = NULL;
6798 /* Loop sizes are no longer correct, fix them up. */
6799 loop->num_nodes -= bbs.length ();
6800 for (struct loop *outer = loop_outer (loop);
6801 outer; outer = loop_outer (outer))
6802 outer->num_nodes -= bbs.length ();
6803
6804 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6805 if (orig_block)
6806 {
6807 tree block;
6808 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6809 == NULL_TREE);
6810 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6811 = BLOCK_SUBBLOCKS (orig_block);
6812 for (block = BLOCK_SUBBLOCKS (orig_block);
6813 block; block = BLOCK_CHAIN (block))
6814 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6815 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6816 }
6817
6818 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6819 vars_map, dest_cfun->decl);
6820
6821 if (new_label_map)
6822 htab_delete (new_label_map);
6823 if (eh_map)
6824 pointer_map_destroy (eh_map);
6825 pointer_map_destroy (vars_map);
6826
6827 /* Rewire the entry and exit blocks. The successor to the entry
6828 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6829 the child function. Similarly, the predecessor of DEST_FN's
6830 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6831 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6832 various CFG manipulation function get to the right CFG.
6833
6834 FIXME, this is silly. The CFG ought to become a parameter to
6835 these helpers. */
6836 push_cfun (dest_cfun);
6837 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6838 if (exit_bb)
6839 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6840 pop_cfun ();
6841
6842 /* Back in the original function, the SESE region has disappeared,
6843 create a new basic block in its place. */
6844 bb = create_empty_bb (entry_pred[0]);
6845 if (current_loops)
6846 add_bb_to_loop (bb, loop);
6847 for (i = 0; i < num_entry_edges; i++)
6848 {
6849 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6850 e->probability = entry_prob[i];
6851 }
6852
6853 for (i = 0; i < num_exit_edges; i++)
6854 {
6855 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6856 e->probability = exit_prob[i];
6857 }
6858
6859 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6860 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6861 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6862 dom_bbs.release ();
6863
6864 if (exit_bb)
6865 {
6866 free (exit_prob);
6867 free (exit_flag);
6868 free (exit_succ);
6869 }
6870 free (entry_prob);
6871 free (entry_flag);
6872 free (entry_pred);
6873 bbs.release ();
6874
6875 return bb;
6876 }
6877
6878
6879 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6880 */
6881
6882 void
6883 dump_function_to_file (tree fndecl, FILE *file, int flags)
6884 {
6885 tree arg, var, old_current_fndecl = current_function_decl;
6886 struct function *dsf;
6887 bool ignore_topmost_bind = false, any_var = false;
6888 basic_block bb;
6889 tree chain;
6890 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6891 && decl_is_tm_clone (fndecl));
6892 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6893
6894 current_function_decl = fndecl;
6895 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6896
6897 arg = DECL_ARGUMENTS (fndecl);
6898 while (arg)
6899 {
6900 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6901 fprintf (file, " ");
6902 print_generic_expr (file, arg, dump_flags);
6903 if (flags & TDF_VERBOSE)
6904 print_node (file, "", arg, 4);
6905 if (DECL_CHAIN (arg))
6906 fprintf (file, ", ");
6907 arg = DECL_CHAIN (arg);
6908 }
6909 fprintf (file, ")\n");
6910
6911 if (flags & TDF_VERBOSE)
6912 print_node (file, "", fndecl, 2);
6913
6914 dsf = DECL_STRUCT_FUNCTION (fndecl);
6915 if (dsf && (flags & TDF_EH))
6916 dump_eh_tree (file, dsf);
6917
6918 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6919 {
6920 dump_node (fndecl, TDF_SLIM | flags, file);
6921 current_function_decl = old_current_fndecl;
6922 return;
6923 }
6924
6925 /* When GIMPLE is lowered, the variables are no longer available in
6926 BIND_EXPRs, so display them separately. */
6927 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6928 {
6929 unsigned ix;
6930 ignore_topmost_bind = true;
6931
6932 fprintf (file, "{\n");
6933 if (!vec_safe_is_empty (fun->local_decls))
6934 FOR_EACH_LOCAL_DECL (fun, ix, var)
6935 {
6936 print_generic_decl (file, var, flags);
6937 if (flags & TDF_VERBOSE)
6938 print_node (file, "", var, 4);
6939 fprintf (file, "\n");
6940
6941 any_var = true;
6942 }
6943 if (gimple_in_ssa_p (cfun))
6944 for (ix = 1; ix < num_ssa_names; ++ix)
6945 {
6946 tree name = ssa_name (ix);
6947 if (name && !SSA_NAME_VAR (name))
6948 {
6949 fprintf (file, " ");
6950 print_generic_expr (file, TREE_TYPE (name), flags);
6951 fprintf (file, " ");
6952 print_generic_expr (file, name, flags);
6953 fprintf (file, ";\n");
6954
6955 any_var = true;
6956 }
6957 }
6958 }
6959
6960 if (fun && fun->decl == fndecl
6961 && fun->cfg
6962 && basic_block_info_for_function (fun))
6963 {
6964 /* If the CFG has been built, emit a CFG-based dump. */
6965 if (!ignore_topmost_bind)
6966 fprintf (file, "{\n");
6967
6968 if (any_var && n_basic_blocks_for_function (fun))
6969 fprintf (file, "\n");
6970
6971 FOR_EACH_BB_FN (bb, fun)
6972 dump_bb (file, bb, 2, flags | TDF_COMMENT);
6973
6974 fprintf (file, "}\n");
6975 }
6976 else if (DECL_SAVED_TREE (fndecl) == NULL)
6977 {
6978 /* The function is now in GIMPLE form but the CFG has not been
6979 built yet. Emit the single sequence of GIMPLE statements
6980 that make up its body. */
6981 gimple_seq body = gimple_body (fndecl);
6982
6983 if (gimple_seq_first_stmt (body)
6984 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6985 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6986 print_gimple_seq (file, body, 0, flags);
6987 else
6988 {
6989 if (!ignore_topmost_bind)
6990 fprintf (file, "{\n");
6991
6992 if (any_var)
6993 fprintf (file, "\n");
6994
6995 print_gimple_seq (file, body, 2, flags);
6996 fprintf (file, "}\n");
6997 }
6998 }
6999 else
7000 {
7001 int indent;
7002
7003 /* Make a tree based dump. */
7004 chain = DECL_SAVED_TREE (fndecl);
7005 if (chain && TREE_CODE (chain) == BIND_EXPR)
7006 {
7007 if (ignore_topmost_bind)
7008 {
7009 chain = BIND_EXPR_BODY (chain);
7010 indent = 2;
7011 }
7012 else
7013 indent = 0;
7014 }
7015 else
7016 {
7017 if (!ignore_topmost_bind)
7018 fprintf (file, "{\n");
7019 indent = 2;
7020 }
7021
7022 if (any_var)
7023 fprintf (file, "\n");
7024
7025 print_generic_stmt_indented (file, chain, flags, indent);
7026 if (ignore_topmost_bind)
7027 fprintf (file, "}\n");
7028 }
7029
7030 if (flags & TDF_ENUMERATE_LOCALS)
7031 dump_enumerated_decls (file, flags);
7032 fprintf (file, "\n\n");
7033
7034 current_function_decl = old_current_fndecl;
7035 }
7036
7037 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7038
7039 DEBUG_FUNCTION void
7040 debug_function (tree fn, int flags)
7041 {
7042 dump_function_to_file (fn, stderr, flags);
7043 }
7044
7045
7046 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7047
7048 static void
7049 print_pred_bbs (FILE *file, basic_block bb)
7050 {
7051 edge e;
7052 edge_iterator ei;
7053
7054 FOR_EACH_EDGE (e, ei, bb->preds)
7055 fprintf (file, "bb_%d ", e->src->index);
7056 }
7057
7058
7059 /* Print on FILE the indexes for the successors of basic_block BB. */
7060
7061 static void
7062 print_succ_bbs (FILE *file, basic_block bb)
7063 {
7064 edge e;
7065 edge_iterator ei;
7066
7067 FOR_EACH_EDGE (e, ei, bb->succs)
7068 fprintf (file, "bb_%d ", e->dest->index);
7069 }
7070
7071 /* Print to FILE the basic block BB following the VERBOSITY level. */
7072
7073 void
7074 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7075 {
7076 char *s_indent = (char *) alloca ((size_t) indent + 1);
7077 memset ((void *) s_indent, ' ', (size_t) indent);
7078 s_indent[indent] = '\0';
7079
7080 /* Print basic_block's header. */
7081 if (verbosity >= 2)
7082 {
7083 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7084 print_pred_bbs (file, bb);
7085 fprintf (file, "}, succs = {");
7086 print_succ_bbs (file, bb);
7087 fprintf (file, "})\n");
7088 }
7089
7090 /* Print basic_block's body. */
7091 if (verbosity >= 3)
7092 {
7093 fprintf (file, "%s {\n", s_indent);
7094 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7095 fprintf (file, "%s }\n", s_indent);
7096 }
7097 }
7098
7099 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7100
7101 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7102 VERBOSITY level this outputs the contents of the loop, or just its
7103 structure. */
7104
7105 static void
7106 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7107 {
7108 char *s_indent;
7109 basic_block bb;
7110
7111 if (loop == NULL)
7112 return;
7113
7114 s_indent = (char *) alloca ((size_t) indent + 1);
7115 memset ((void *) s_indent, ' ', (size_t) indent);
7116 s_indent[indent] = '\0';
7117
7118 /* Print loop's header. */
7119 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7120 if (loop->header)
7121 fprintf (file, "header = %d", loop->header->index);
7122 else
7123 {
7124 fprintf (file, "deleted)\n");
7125 return;
7126 }
7127 if (loop->latch)
7128 fprintf (file, ", latch = %d", loop->latch->index);
7129 else
7130 fprintf (file, ", multiple latches");
7131 fprintf (file, ", niter = ");
7132 print_generic_expr (file, loop->nb_iterations, 0);
7133
7134 if (loop->any_upper_bound)
7135 {
7136 fprintf (file, ", upper_bound = ");
7137 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7138 }
7139
7140 if (loop->any_estimate)
7141 {
7142 fprintf (file, ", estimate = ");
7143 dump_double_int (file, loop->nb_iterations_estimate, true);
7144 }
7145 fprintf (file, ")\n");
7146
7147 /* Print loop's body. */
7148 if (verbosity >= 1)
7149 {
7150 fprintf (file, "%s{\n", s_indent);
7151 FOR_EACH_BB (bb)
7152 if (bb->loop_father == loop)
7153 print_loops_bb (file, bb, indent, verbosity);
7154
7155 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7156 fprintf (file, "%s}\n", s_indent);
7157 }
7158 }
7159
7160 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7161 spaces. Following VERBOSITY level this outputs the contents of the
7162 loop, or just its structure. */
7163
7164 static void
7165 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7166 int verbosity)
7167 {
7168 if (loop == NULL)
7169 return;
7170
7171 print_loop (file, loop, indent, verbosity);
7172 print_loop_and_siblings (file, loop->next, indent, verbosity);
7173 }
7174
7175 /* Follow a CFG edge from the entry point of the program, and on entry
7176 of a loop, pretty print the loop structure on FILE. */
7177
7178 void
7179 print_loops (FILE *file, int verbosity)
7180 {
7181 basic_block bb;
7182
7183 bb = ENTRY_BLOCK_PTR;
7184 if (bb && bb->loop_father)
7185 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7186 }
7187
7188 /* Dump a loop. */
7189
7190 DEBUG_FUNCTION void
7191 debug (struct loop &ref)
7192 {
7193 print_loop (stderr, &ref, 0, /*verbosity*/0);
7194 }
7195
7196 DEBUG_FUNCTION void
7197 debug (struct loop *ptr)
7198 {
7199 if (ptr)
7200 debug (*ptr);
7201 else
7202 fprintf (stderr, "<nil>\n");
7203 }
7204
7205 /* Dump a loop verbosely. */
7206
7207 DEBUG_FUNCTION void
7208 debug_verbose (struct loop &ref)
7209 {
7210 print_loop (stderr, &ref, 0, /*verbosity*/3);
7211 }
7212
7213 DEBUG_FUNCTION void
7214 debug_verbose (struct loop *ptr)
7215 {
7216 if (ptr)
7217 debug (*ptr);
7218 else
7219 fprintf (stderr, "<nil>\n");
7220 }
7221
7222
7223 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7224
7225 DEBUG_FUNCTION void
7226 debug_loops (int verbosity)
7227 {
7228 print_loops (stderr, verbosity);
7229 }
7230
7231 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7232
7233 DEBUG_FUNCTION void
7234 debug_loop (struct loop *loop, int verbosity)
7235 {
7236 print_loop (stderr, loop, 0, verbosity);
7237 }
7238
7239 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7240 level. */
7241
7242 DEBUG_FUNCTION void
7243 debug_loop_num (unsigned num, int verbosity)
7244 {
7245 debug_loop (get_loop (cfun, num), verbosity);
7246 }
7247
7248 /* Return true if BB ends with a call, possibly followed by some
7249 instructions that must stay with the call. Return false,
7250 otherwise. */
7251
7252 static bool
7253 gimple_block_ends_with_call_p (basic_block bb)
7254 {
7255 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7256 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7257 }
7258
7259
7260 /* Return true if BB ends with a conditional branch. Return false,
7261 otherwise. */
7262
7263 static bool
7264 gimple_block_ends_with_condjump_p (const_basic_block bb)
7265 {
7266 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7267 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7268 }
7269
7270
7271 /* Return true if we need to add fake edge to exit at statement T.
7272 Helper function for gimple_flow_call_edges_add. */
7273
7274 static bool
7275 need_fake_edge_p (gimple t)
7276 {
7277 tree fndecl = NULL_TREE;
7278 int call_flags = 0;
7279
7280 /* NORETURN and LONGJMP calls already have an edge to exit.
7281 CONST and PURE calls do not need one.
7282 We don't currently check for CONST and PURE here, although
7283 it would be a good idea, because those attributes are
7284 figured out from the RTL in mark_constant_function, and
7285 the counter incrementation code from -fprofile-arcs
7286 leads to different results from -fbranch-probabilities. */
7287 if (is_gimple_call (t))
7288 {
7289 fndecl = gimple_call_fndecl (t);
7290 call_flags = gimple_call_flags (t);
7291 }
7292
7293 if (is_gimple_call (t)
7294 && fndecl
7295 && DECL_BUILT_IN (fndecl)
7296 && (call_flags & ECF_NOTHROW)
7297 && !(call_flags & ECF_RETURNS_TWICE)
7298 /* fork() doesn't really return twice, but the effect of
7299 wrapping it in __gcov_fork() which calls __gcov_flush()
7300 and clears the counters before forking has the same
7301 effect as returning twice. Force a fake edge. */
7302 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7303 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7304 return false;
7305
7306 if (is_gimple_call (t))
7307 {
7308 edge_iterator ei;
7309 edge e;
7310 basic_block bb;
7311
7312 if (!(call_flags & ECF_NORETURN))
7313 return true;
7314
7315 bb = gimple_bb (t);
7316 FOR_EACH_EDGE (e, ei, bb->succs)
7317 if ((e->flags & EDGE_FAKE) == 0)
7318 return true;
7319 }
7320
7321 if (gimple_code (t) == GIMPLE_ASM
7322 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7323 return true;
7324
7325 return false;
7326 }
7327
7328
7329 /* Add fake edges to the function exit for any non constant and non
7330 noreturn calls (or noreturn calls with EH/abnormal edges),
7331 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7332 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7333 that were split.
7334
7335 The goal is to expose cases in which entering a basic block does
7336 not imply that all subsequent instructions must be executed. */
7337
7338 static int
7339 gimple_flow_call_edges_add (sbitmap blocks)
7340 {
7341 int i;
7342 int blocks_split = 0;
7343 int last_bb = last_basic_block;
7344 bool check_last_block = false;
7345
7346 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7347 return 0;
7348
7349 if (! blocks)
7350 check_last_block = true;
7351 else
7352 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7353
7354 /* In the last basic block, before epilogue generation, there will be
7355 a fallthru edge to EXIT. Special care is required if the last insn
7356 of the last basic block is a call because make_edge folds duplicate
7357 edges, which would result in the fallthru edge also being marked
7358 fake, which would result in the fallthru edge being removed by
7359 remove_fake_edges, which would result in an invalid CFG.
7360
7361 Moreover, we can't elide the outgoing fake edge, since the block
7362 profiler needs to take this into account in order to solve the minimal
7363 spanning tree in the case that the call doesn't return.
7364
7365 Handle this by adding a dummy instruction in a new last basic block. */
7366 if (check_last_block)
7367 {
7368 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7369 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7370 gimple t = NULL;
7371
7372 if (!gsi_end_p (gsi))
7373 t = gsi_stmt (gsi);
7374
7375 if (t && need_fake_edge_p (t))
7376 {
7377 edge e;
7378
7379 e = find_edge (bb, EXIT_BLOCK_PTR);
7380 if (e)
7381 {
7382 gsi_insert_on_edge (e, gimple_build_nop ());
7383 gsi_commit_edge_inserts ();
7384 }
7385 }
7386 }
7387
7388 /* Now add fake edges to the function exit for any non constant
7389 calls since there is no way that we can determine if they will
7390 return or not... */
7391 for (i = 0; i < last_bb; i++)
7392 {
7393 basic_block bb = BASIC_BLOCK (i);
7394 gimple_stmt_iterator gsi;
7395 gimple stmt, last_stmt;
7396
7397 if (!bb)
7398 continue;
7399
7400 if (blocks && !bitmap_bit_p (blocks, i))
7401 continue;
7402
7403 gsi = gsi_last_nondebug_bb (bb);
7404 if (!gsi_end_p (gsi))
7405 {
7406 last_stmt = gsi_stmt (gsi);
7407 do
7408 {
7409 stmt = gsi_stmt (gsi);
7410 if (need_fake_edge_p (stmt))
7411 {
7412 edge e;
7413
7414 /* The handling above of the final block before the
7415 epilogue should be enough to verify that there is
7416 no edge to the exit block in CFG already.
7417 Calling make_edge in such case would cause us to
7418 mark that edge as fake and remove it later. */
7419 #ifdef ENABLE_CHECKING
7420 if (stmt == last_stmt)
7421 {
7422 e = find_edge (bb, EXIT_BLOCK_PTR);
7423 gcc_assert (e == NULL);
7424 }
7425 #endif
7426
7427 /* Note that the following may create a new basic block
7428 and renumber the existing basic blocks. */
7429 if (stmt != last_stmt)
7430 {
7431 e = split_block (bb, stmt);
7432 if (e)
7433 blocks_split++;
7434 }
7435 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7436 }
7437 gsi_prev (&gsi);
7438 }
7439 while (!gsi_end_p (gsi));
7440 }
7441 }
7442
7443 if (blocks_split)
7444 verify_flow_info ();
7445
7446 return blocks_split;
7447 }
7448
7449 /* Removes edge E and all the blocks dominated by it, and updates dominance
7450 information. The IL in E->src needs to be updated separately.
7451 If dominance info is not available, only the edge E is removed.*/
7452
7453 void
7454 remove_edge_and_dominated_blocks (edge e)
7455 {
7456 vec<basic_block> bbs_to_remove = vNULL;
7457 vec<basic_block> bbs_to_fix_dom = vNULL;
7458 bitmap df, df_idom;
7459 edge f;
7460 edge_iterator ei;
7461 bool none_removed = false;
7462 unsigned i;
7463 basic_block bb, dbb;
7464 bitmap_iterator bi;
7465
7466 if (!dom_info_available_p (CDI_DOMINATORS))
7467 {
7468 remove_edge (e);
7469 return;
7470 }
7471
7472 /* No updating is needed for edges to exit. */
7473 if (e->dest == EXIT_BLOCK_PTR)
7474 {
7475 if (cfgcleanup_altered_bbs)
7476 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7477 remove_edge (e);
7478 return;
7479 }
7480
7481 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7482 that is not dominated by E->dest, then this set is empty. Otherwise,
7483 all the basic blocks dominated by E->dest are removed.
7484
7485 Also, to DF_IDOM we store the immediate dominators of the blocks in
7486 the dominance frontier of E (i.e., of the successors of the
7487 removed blocks, if there are any, and of E->dest otherwise). */
7488 FOR_EACH_EDGE (f, ei, e->dest->preds)
7489 {
7490 if (f == e)
7491 continue;
7492
7493 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7494 {
7495 none_removed = true;
7496 break;
7497 }
7498 }
7499
7500 df = BITMAP_ALLOC (NULL);
7501 df_idom = BITMAP_ALLOC (NULL);
7502
7503 if (none_removed)
7504 bitmap_set_bit (df_idom,
7505 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7506 else
7507 {
7508 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7509 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7510 {
7511 FOR_EACH_EDGE (f, ei, bb->succs)
7512 {
7513 if (f->dest != EXIT_BLOCK_PTR)
7514 bitmap_set_bit (df, f->dest->index);
7515 }
7516 }
7517 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7518 bitmap_clear_bit (df, bb->index);
7519
7520 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7521 {
7522 bb = BASIC_BLOCK (i);
7523 bitmap_set_bit (df_idom,
7524 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7525 }
7526 }
7527
7528 if (cfgcleanup_altered_bbs)
7529 {
7530 /* Record the set of the altered basic blocks. */
7531 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7532 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7533 }
7534
7535 /* Remove E and the cancelled blocks. */
7536 if (none_removed)
7537 remove_edge (e);
7538 else
7539 {
7540 /* Walk backwards so as to get a chance to substitute all
7541 released DEFs into debug stmts. See
7542 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7543 details. */
7544 for (i = bbs_to_remove.length (); i-- > 0; )
7545 delete_basic_block (bbs_to_remove[i]);
7546 }
7547
7548 /* Update the dominance information. The immediate dominator may change only
7549 for blocks whose immediate dominator belongs to DF_IDOM:
7550
7551 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7552 removal. Let Z the arbitrary block such that idom(Z) = Y and
7553 Z dominates X after the removal. Before removal, there exists a path P
7554 from Y to X that avoids Z. Let F be the last edge on P that is
7555 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7556 dominates W, and because of P, Z does not dominate W), and W belongs to
7557 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7558 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7559 {
7560 bb = BASIC_BLOCK (i);
7561 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7562 dbb;
7563 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7564 bbs_to_fix_dom.safe_push (dbb);
7565 }
7566
7567 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7568
7569 BITMAP_FREE (df);
7570 BITMAP_FREE (df_idom);
7571 bbs_to_remove.release ();
7572 bbs_to_fix_dom.release ();
7573 }
7574
7575 /* Purge dead EH edges from basic block BB. */
7576
7577 bool
7578 gimple_purge_dead_eh_edges (basic_block bb)
7579 {
7580 bool changed = false;
7581 edge e;
7582 edge_iterator ei;
7583 gimple stmt = last_stmt (bb);
7584
7585 if (stmt && stmt_can_throw_internal (stmt))
7586 return false;
7587
7588 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7589 {
7590 if (e->flags & EDGE_EH)
7591 {
7592 remove_edge_and_dominated_blocks (e);
7593 changed = true;
7594 }
7595 else
7596 ei_next (&ei);
7597 }
7598
7599 return changed;
7600 }
7601
7602 /* Purge dead EH edges from basic block listed in BLOCKS. */
7603
7604 bool
7605 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7606 {
7607 bool changed = false;
7608 unsigned i;
7609 bitmap_iterator bi;
7610
7611 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7612 {
7613 basic_block bb = BASIC_BLOCK (i);
7614
7615 /* Earlier gimple_purge_dead_eh_edges could have removed
7616 this basic block already. */
7617 gcc_assert (bb || changed);
7618 if (bb != NULL)
7619 changed |= gimple_purge_dead_eh_edges (bb);
7620 }
7621
7622 return changed;
7623 }
7624
7625 /* Purge dead abnormal call edges from basic block BB. */
7626
7627 bool
7628 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7629 {
7630 bool changed = false;
7631 edge e;
7632 edge_iterator ei;
7633 gimple stmt = last_stmt (bb);
7634
7635 if (!cfun->has_nonlocal_label
7636 && !cfun->calls_setjmp)
7637 return false;
7638
7639 if (stmt && stmt_can_make_abnormal_goto (stmt))
7640 return false;
7641
7642 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7643 {
7644 if (e->flags & EDGE_ABNORMAL)
7645 {
7646 if (e->flags & EDGE_FALLTHRU)
7647 e->flags &= ~EDGE_ABNORMAL;
7648 else
7649 remove_edge_and_dominated_blocks (e);
7650 changed = true;
7651 }
7652 else
7653 ei_next (&ei);
7654 }
7655
7656 return changed;
7657 }
7658
7659 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7660
7661 bool
7662 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7663 {
7664 bool changed = false;
7665 unsigned i;
7666 bitmap_iterator bi;
7667
7668 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7669 {
7670 basic_block bb = BASIC_BLOCK (i);
7671
7672 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7673 this basic block already. */
7674 gcc_assert (bb || changed);
7675 if (bb != NULL)
7676 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7677 }
7678
7679 return changed;
7680 }
7681
7682 /* This function is called whenever a new edge is created or
7683 redirected. */
7684
7685 static void
7686 gimple_execute_on_growing_pred (edge e)
7687 {
7688 basic_block bb = e->dest;
7689
7690 if (!gimple_seq_empty_p (phi_nodes (bb)))
7691 reserve_phi_args_for_new_edge (bb);
7692 }
7693
7694 /* This function is called immediately before edge E is removed from
7695 the edge vector E->dest->preds. */
7696
7697 static void
7698 gimple_execute_on_shrinking_pred (edge e)
7699 {
7700 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7701 remove_phi_args (e);
7702 }
7703
7704 /*---------------------------------------------------------------------------
7705 Helper functions for Loop versioning
7706 ---------------------------------------------------------------------------*/
7707
7708 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7709 of 'first'. Both of them are dominated by 'new_head' basic block. When
7710 'new_head' was created by 'second's incoming edge it received phi arguments
7711 on the edge by split_edge(). Later, additional edge 'e' was created to
7712 connect 'new_head' and 'first'. Now this routine adds phi args on this
7713 additional edge 'e' that new_head to second edge received as part of edge
7714 splitting. */
7715
7716 static void
7717 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7718 basic_block new_head, edge e)
7719 {
7720 gimple phi1, phi2;
7721 gimple_stmt_iterator psi1, psi2;
7722 tree def;
7723 edge e2 = find_edge (new_head, second);
7724
7725 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7726 edge, we should always have an edge from NEW_HEAD to SECOND. */
7727 gcc_assert (e2 != NULL);
7728
7729 /* Browse all 'second' basic block phi nodes and add phi args to
7730 edge 'e' for 'first' head. PHI args are always in correct order. */
7731
7732 for (psi2 = gsi_start_phis (second),
7733 psi1 = gsi_start_phis (first);
7734 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7735 gsi_next (&psi2), gsi_next (&psi1))
7736 {
7737 phi1 = gsi_stmt (psi1);
7738 phi2 = gsi_stmt (psi2);
7739 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7740 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7741 }
7742 }
7743
7744
7745 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7746 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7747 the destination of the ELSE part. */
7748
7749 static void
7750 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7751 basic_block second_head ATTRIBUTE_UNUSED,
7752 basic_block cond_bb, void *cond_e)
7753 {
7754 gimple_stmt_iterator gsi;
7755 gimple new_cond_expr;
7756 tree cond_expr = (tree) cond_e;
7757 edge e0;
7758
7759 /* Build new conditional expr */
7760 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7761 NULL_TREE, NULL_TREE);
7762
7763 /* Add new cond in cond_bb. */
7764 gsi = gsi_last_bb (cond_bb);
7765 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7766
7767 /* Adjust edges appropriately to connect new head with first head
7768 as well as second head. */
7769 e0 = single_succ_edge (cond_bb);
7770 e0->flags &= ~EDGE_FALLTHRU;
7771 e0->flags |= EDGE_FALSE_VALUE;
7772 }
7773
7774
7775 /* Do book-keeping of basic block BB for the profile consistency checker.
7776 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7777 then do post-pass accounting. Store the counting in RECORD. */
7778 static void
7779 gimple_account_profile_record (basic_block bb, int after_pass,
7780 struct profile_record *record)
7781 {
7782 gimple_stmt_iterator i;
7783 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7784 {
7785 record->size[after_pass]
7786 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7787 if (profile_status == PROFILE_READ)
7788 record->time[after_pass]
7789 += estimate_num_insns (gsi_stmt (i),
7790 &eni_time_weights) * bb->count;
7791 else if (profile_status == PROFILE_GUESSED)
7792 record->time[after_pass]
7793 += estimate_num_insns (gsi_stmt (i),
7794 &eni_time_weights) * bb->frequency;
7795 }
7796 }
7797
7798 struct cfg_hooks gimple_cfg_hooks = {
7799 "gimple",
7800 gimple_verify_flow_info,
7801 gimple_dump_bb, /* dump_bb */
7802 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7803 create_bb, /* create_basic_block */
7804 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7805 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7806 gimple_can_remove_branch_p, /* can_remove_branch_p */
7807 remove_bb, /* delete_basic_block */
7808 gimple_split_block, /* split_block */
7809 gimple_move_block_after, /* move_block_after */
7810 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7811 gimple_merge_blocks, /* merge_blocks */
7812 gimple_predict_edge, /* predict_edge */
7813 gimple_predicted_by_p, /* predicted_by_p */
7814 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7815 gimple_duplicate_bb, /* duplicate_block */
7816 gimple_split_edge, /* split_edge */
7817 gimple_make_forwarder_block, /* make_forward_block */
7818 NULL, /* tidy_fallthru_edge */
7819 NULL, /* force_nonfallthru */
7820 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7821 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7822 gimple_flow_call_edges_add, /* flow_call_edges_add */
7823 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7824 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7825 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7826 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7827 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7828 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7829 flush_pending_stmts, /* flush_pending_stmts */
7830 gimple_empty_block_p, /* block_empty_p */
7831 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7832 gimple_account_profile_record,
7833 };
7834
7835
7836 /* Split all critical edges. */
7837
7838 static unsigned int
7839 split_critical_edges (void)
7840 {
7841 basic_block bb;
7842 edge e;
7843 edge_iterator ei;
7844
7845 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7846 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7847 mappings around the calls to split_edge. */
7848 start_recording_case_labels ();
7849 FOR_ALL_BB (bb)
7850 {
7851 FOR_EACH_EDGE (e, ei, bb->succs)
7852 {
7853 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7854 split_edge (e);
7855 /* PRE inserts statements to edges and expects that
7856 since split_critical_edges was done beforehand, committing edge
7857 insertions will not split more edges. In addition to critical
7858 edges we must split edges that have multiple successors and
7859 end by control flow statements, such as RESX.
7860 Go ahead and split them too. This matches the logic in
7861 gimple_find_edge_insert_loc. */
7862 else if ((!single_pred_p (e->dest)
7863 || !gimple_seq_empty_p (phi_nodes (e->dest))
7864 || e->dest == EXIT_BLOCK_PTR)
7865 && e->src != ENTRY_BLOCK_PTR
7866 && !(e->flags & EDGE_ABNORMAL))
7867 {
7868 gimple_stmt_iterator gsi;
7869
7870 gsi = gsi_last_bb (e->src);
7871 if (!gsi_end_p (gsi)
7872 && stmt_ends_bb_p (gsi_stmt (gsi))
7873 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7874 && !gimple_call_builtin_p (gsi_stmt (gsi),
7875 BUILT_IN_RETURN)))
7876 split_edge (e);
7877 }
7878 }
7879 }
7880 end_recording_case_labels ();
7881 return 0;
7882 }
7883
7884 struct gimple_opt_pass pass_split_crit_edges =
7885 {
7886 {
7887 GIMPLE_PASS,
7888 "crited", /* name */
7889 OPTGROUP_NONE, /* optinfo_flags */
7890 NULL, /* gate */
7891 split_critical_edges, /* execute */
7892 NULL, /* sub */
7893 NULL, /* next */
7894 0, /* static_pass_number */
7895 TV_TREE_SPLIT_EDGES, /* tv_id */
7896 PROP_cfg, /* properties required */
7897 PROP_no_crit_edges, /* properties_provided */
7898 0, /* properties_destroyed */
7899 0, /* todo_flags_start */
7900 TODO_verify_flow /* todo_flags_finish */
7901 }
7902 };
7903
7904
7905 /* Build a ternary operation and gimplify it. Emit code before GSI.
7906 Return the gimple_val holding the result. */
7907
7908 tree
7909 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7910 tree type, tree a, tree b, tree c)
7911 {
7912 tree ret;
7913 location_t loc = gimple_location (gsi_stmt (*gsi));
7914
7915 ret = fold_build3_loc (loc, code, type, a, b, c);
7916 STRIP_NOPS (ret);
7917
7918 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7919 GSI_SAME_STMT);
7920 }
7921
7922 /* Build a binary operation and gimplify it. Emit code before GSI.
7923 Return the gimple_val holding the result. */
7924
7925 tree
7926 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7927 tree type, tree a, tree b)
7928 {
7929 tree ret;
7930
7931 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7932 STRIP_NOPS (ret);
7933
7934 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7935 GSI_SAME_STMT);
7936 }
7937
7938 /* Build a unary operation and gimplify it. Emit code before GSI.
7939 Return the gimple_val holding the result. */
7940
7941 tree
7942 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7943 tree a)
7944 {
7945 tree ret;
7946
7947 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7948 STRIP_NOPS (ret);
7949
7950 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7951 GSI_SAME_STMT);
7952 }
7953
7954
7955 \f
7956 /* Emit return warnings. */
7957
7958 static unsigned int
7959 execute_warn_function_return (void)
7960 {
7961 source_location location;
7962 gimple last;
7963 edge e;
7964 edge_iterator ei;
7965
7966 if (!targetm.warn_func_return (cfun->decl))
7967 return 0;
7968
7969 /* If we have a path to EXIT, then we do return. */
7970 if (TREE_THIS_VOLATILE (cfun->decl)
7971 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7972 {
7973 location = UNKNOWN_LOCATION;
7974 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7975 {
7976 last = last_stmt (e->src);
7977 if ((gimple_code (last) == GIMPLE_RETURN
7978 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7979 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7980 break;
7981 }
7982 if (location == UNKNOWN_LOCATION)
7983 location = cfun->function_end_locus;
7984 warning_at (location, 0, "%<noreturn%> function does return");
7985 }
7986
7987 /* If we see "return;" in some basic block, then we do reach the end
7988 without returning a value. */
7989 else if (warn_return_type
7990 && !TREE_NO_WARNING (cfun->decl)
7991 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7992 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7993 {
7994 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7995 {
7996 gimple last = last_stmt (e->src);
7997 if (gimple_code (last) == GIMPLE_RETURN
7998 && gimple_return_retval (last) == NULL
7999 && !gimple_no_warning_p (last))
8000 {
8001 location = gimple_location (last);
8002 if (location == UNKNOWN_LOCATION)
8003 location = cfun->function_end_locus;
8004 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8005 TREE_NO_WARNING (cfun->decl) = 1;
8006 break;
8007 }
8008 }
8009 }
8010 return 0;
8011 }
8012
8013
8014 /* Given a basic block B which ends with a conditional and has
8015 precisely two successors, determine which of the edges is taken if
8016 the conditional is true and which is taken if the conditional is
8017 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8018
8019 void
8020 extract_true_false_edges_from_block (basic_block b,
8021 edge *true_edge,
8022 edge *false_edge)
8023 {
8024 edge e = EDGE_SUCC (b, 0);
8025
8026 if (e->flags & EDGE_TRUE_VALUE)
8027 {
8028 *true_edge = e;
8029 *false_edge = EDGE_SUCC (b, 1);
8030 }
8031 else
8032 {
8033 *false_edge = e;
8034 *true_edge = EDGE_SUCC (b, 1);
8035 }
8036 }
8037
8038 struct gimple_opt_pass pass_warn_function_return =
8039 {
8040 {
8041 GIMPLE_PASS,
8042 "*warn_function_return", /* name */
8043 OPTGROUP_NONE, /* optinfo_flags */
8044 NULL, /* gate */
8045 execute_warn_function_return, /* execute */
8046 NULL, /* sub */
8047 NULL, /* next */
8048 0, /* static_pass_number */
8049 TV_NONE, /* tv_id */
8050 PROP_cfg, /* properties_required */
8051 0, /* properties_provided */
8052 0, /* properties_destroyed */
8053 0, /* todo_flags_start */
8054 0 /* todo_flags_finish */
8055 }
8056 };
8057
8058 /* Emit noreturn warnings. */
8059
8060 static unsigned int
8061 execute_warn_function_noreturn (void)
8062 {
8063 if (!TREE_THIS_VOLATILE (current_function_decl)
8064 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
8065 warn_function_noreturn (current_function_decl);
8066 return 0;
8067 }
8068
8069 static bool
8070 gate_warn_function_noreturn (void)
8071 {
8072 return warn_suggest_attribute_noreturn;
8073 }
8074
8075 struct gimple_opt_pass pass_warn_function_noreturn =
8076 {
8077 {
8078 GIMPLE_PASS,
8079 "*warn_function_noreturn", /* name */
8080 OPTGROUP_NONE, /* optinfo_flags */
8081 gate_warn_function_noreturn, /* gate */
8082 execute_warn_function_noreturn, /* execute */
8083 NULL, /* sub */
8084 NULL, /* next */
8085 0, /* static_pass_number */
8086 TV_NONE, /* tv_id */
8087 PROP_cfg, /* properties_required */
8088 0, /* properties_provided */
8089 0, /* properties_destroyed */
8090 0, /* todo_flags_start */
8091 0 /* todo_flags_finish */
8092 }
8093 };
8094
8095
8096 /* Walk a gimplified function and warn for functions whose return value is
8097 ignored and attribute((warn_unused_result)) is set. This is done before
8098 inlining, so we don't have to worry about that. */
8099
8100 static void
8101 do_warn_unused_result (gimple_seq seq)
8102 {
8103 tree fdecl, ftype;
8104 gimple_stmt_iterator i;
8105
8106 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8107 {
8108 gimple g = gsi_stmt (i);
8109
8110 switch (gimple_code (g))
8111 {
8112 case GIMPLE_BIND:
8113 do_warn_unused_result (gimple_bind_body (g));
8114 break;
8115 case GIMPLE_TRY:
8116 do_warn_unused_result (gimple_try_eval (g));
8117 do_warn_unused_result (gimple_try_cleanup (g));
8118 break;
8119 case GIMPLE_CATCH:
8120 do_warn_unused_result (gimple_catch_handler (g));
8121 break;
8122 case GIMPLE_EH_FILTER:
8123 do_warn_unused_result (gimple_eh_filter_failure (g));
8124 break;
8125
8126 case GIMPLE_CALL:
8127 if (gimple_call_lhs (g))
8128 break;
8129 if (gimple_call_internal_p (g))
8130 break;
8131
8132 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8133 LHS. All calls whose value is ignored should be
8134 represented like this. Look for the attribute. */
8135 fdecl = gimple_call_fndecl (g);
8136 ftype = gimple_call_fntype (g);
8137
8138 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8139 {
8140 location_t loc = gimple_location (g);
8141
8142 if (fdecl)
8143 warning_at (loc, OPT_Wunused_result,
8144 "ignoring return value of %qD, "
8145 "declared with attribute warn_unused_result",
8146 fdecl);
8147 else
8148 warning_at (loc, OPT_Wunused_result,
8149 "ignoring return value of function "
8150 "declared with attribute warn_unused_result");
8151 }
8152 break;
8153
8154 default:
8155 /* Not a container, not a call, or a call whose value is used. */
8156 break;
8157 }
8158 }
8159 }
8160
8161 static unsigned int
8162 run_warn_unused_result (void)
8163 {
8164 do_warn_unused_result (gimple_body (current_function_decl));
8165 return 0;
8166 }
8167
8168 static bool
8169 gate_warn_unused_result (void)
8170 {
8171 return flag_warn_unused_result;
8172 }
8173
8174 struct gimple_opt_pass pass_warn_unused_result =
8175 {
8176 {
8177 GIMPLE_PASS,
8178 "*warn_unused_result", /* name */
8179 OPTGROUP_NONE, /* optinfo_flags */
8180 gate_warn_unused_result, /* gate */
8181 run_warn_unused_result, /* execute */
8182 NULL, /* sub */
8183 NULL, /* next */
8184 0, /* static_pass_number */
8185 TV_NONE, /* tv_id */
8186 PROP_gimple_any, /* properties_required */
8187 0, /* properties_provided */
8188 0, /* properties_destroyed */
8189 0, /* todo_flags_start */
8190 0, /* todo_flags_finish */
8191 }
8192 };
8193
8194
8195 /* Garbage collection support for edge_def. */
8196
8197 extern void gt_ggc_mx (tree&);
8198 extern void gt_ggc_mx (gimple&);
8199 extern void gt_ggc_mx (rtx&);
8200 extern void gt_ggc_mx (basic_block&);
8201
8202 void
8203 gt_ggc_mx (edge_def *e)
8204 {
8205 tree block = LOCATION_BLOCK (e->goto_locus);
8206 gt_ggc_mx (e->src);
8207 gt_ggc_mx (e->dest);
8208 if (current_ir_type () == IR_GIMPLE)
8209 gt_ggc_mx (e->insns.g);
8210 else
8211 gt_ggc_mx (e->insns.r);
8212 gt_ggc_mx (block);
8213 }
8214
8215 /* PCH support for edge_def. */
8216
8217 extern void gt_pch_nx (tree&);
8218 extern void gt_pch_nx (gimple&);
8219 extern void gt_pch_nx (rtx&);
8220 extern void gt_pch_nx (basic_block&);
8221
8222 void
8223 gt_pch_nx (edge_def *e)
8224 {
8225 tree block = LOCATION_BLOCK (e->goto_locus);
8226 gt_pch_nx (e->src);
8227 gt_pch_nx (e->dest);
8228 if (current_ir_type () == IR_GIMPLE)
8229 gt_pch_nx (e->insns.g);
8230 else
8231 gt_pch_nx (e->insns.r);
8232 gt_pch_nx (block);
8233 }
8234
8235 void
8236 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8237 {
8238 tree block = LOCATION_BLOCK (e->goto_locus);
8239 op (&(e->src), cookie);
8240 op (&(e->dest), cookie);
8241 if (current_ir_type () == IR_GIMPLE)
8242 op (&(e->insns.g), cookie);
8243 else
8244 op (&(e->insns.r), cookie);
8245 op (&(block), cookie);
8246 }