decl.c, [...]: Replace host_integerp (..., 1) with tree_fits_uhwi_p throughout.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "function.h"
31 #include "ggc.h"
32 #include "gimple-pretty-print.h"
33 #include "gimple.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "gimple-walk.h"
37 #include "gimple-ssa.h"
38 #include "cgraph.h"
39 #include "tree-cfg.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "tree-ssanames.h"
43 #include "tree-ssa-loop-manip.h"
44 #include "tree-ssa-loop-niter.h"
45 #include "tree-into-ssa.h"
46 #include "tree-dfa.h"
47 #include "tree-ssa.h"
48 #include "tree-dump.h"
49 #include "tree-pass.h"
50 #include "diagnostic-core.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "pointer-set.h"
56 #include "tree-inline.h"
57 #include "target.h"
58 #include "tree-ssa-live.h"
59 #include "omp-low.h"
60 #include "tree-cfgcleanup.h"
61
62 /* This file contains functions for building the Control Flow Graph (CFG)
63 for a function tree. */
64
65 /* Local declarations. */
66
67 /* Initial capacity for the basic block array. */
68 static const int initial_cfg_capacity = 20;
69
70 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
71 which use a particular edge. The CASE_LABEL_EXPRs are chained together
72 via their CASE_CHAIN field, which we clear after we're done with the
73 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
74
75 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
76 update the case vector in response to edge redirections.
77
78 Right now this table is set up and torn down at key points in the
79 compilation process. It would be nice if we could make the table
80 more persistent. The key is getting notification of changes to
81 the CFG (particularly edge removal, creation and redirection). */
82
83 static struct pointer_map_t *edge_to_cases;
84
85 /* If we record edge_to_cases, this bitmap will hold indexes
86 of basic blocks that end in a GIMPLE_SWITCH which we touched
87 due to edge manipulations. */
88
89 static bitmap touched_switch_bbs;
90
91 /* CFG statistics. */
92 struct cfg_stats_d
93 {
94 long num_merged_labels;
95 };
96
97 static struct cfg_stats_d cfg_stats;
98
99 /* Nonzero if we found a computed goto while building basic blocks. */
100 static bool found_computed_goto;
101
102 /* Hash table to store last discriminator assigned for each locus. */
103 struct locus_discrim_map
104 {
105 location_t locus;
106 int discriminator;
107 };
108
109 /* Hashtable helpers. */
110
111 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
112 {
113 typedef locus_discrim_map value_type;
114 typedef locus_discrim_map compare_type;
115 static inline hashval_t hash (const value_type *);
116 static inline bool equal (const value_type *, const compare_type *);
117 };
118
119 /* Trivial hash function for a location_t. ITEM is a pointer to
120 a hash table entry that maps a location_t to a discriminator. */
121
122 inline hashval_t
123 locus_discrim_hasher::hash (const value_type *item)
124 {
125 return LOCATION_LINE (item->locus);
126 }
127
128 /* Equality function for the locus-to-discriminator map. A and B
129 point to the two hash table entries to compare. */
130
131 inline bool
132 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
133 {
134 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
135 }
136
137 static hash_table <locus_discrim_hasher> discriminator_per_locus;
138
139 /* Basic blocks and flowgraphs. */
140 static void make_blocks (gimple_seq);
141 static void factor_computed_gotos (void);
142
143 /* Edges. */
144 static void make_edges (void);
145 static void assign_discriminators (void);
146 static void make_cond_expr_edges (basic_block);
147 static void make_gimple_switch_edges (basic_block);
148 static void make_goto_expr_edges (basic_block);
149 static void make_gimple_asm_edges (basic_block);
150 static edge gimple_redirect_edge_and_branch (edge, basic_block);
151 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
152 static unsigned int split_critical_edges (void);
153
154 /* Various helpers. */
155 static inline bool stmt_starts_bb_p (gimple, gimple);
156 static int gimple_verify_flow_info (void);
157 static void gimple_make_forwarder_block (edge);
158 static gimple first_non_label_stmt (basic_block);
159 static bool verify_gimple_transaction (gimple);
160
161 /* Flowgraph optimization and cleanup. */
162 static void gimple_merge_blocks (basic_block, basic_block);
163 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
164 static void remove_bb (basic_block);
165 static edge find_taken_edge_computed_goto (basic_block, tree);
166 static edge find_taken_edge_cond_expr (basic_block, tree);
167 static edge find_taken_edge_switch_expr (basic_block, tree);
168 static tree find_case_label_for_value (gimple, tree);
169
170 void
171 init_empty_tree_cfg_for_function (struct function *fn)
172 {
173 /* Initialize the basic block array. */
174 init_flow (fn);
175 profile_status_for_function (fn) = PROFILE_ABSENT;
176 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
177 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
178 vec_alloc (basic_block_info_for_function (fn), initial_cfg_capacity);
179 vec_safe_grow_cleared (basic_block_info_for_function (fn),
180 initial_cfg_capacity);
181
182 /* Build a mapping of labels to their associated blocks. */
183 vec_alloc (label_to_block_map_for_function (fn), initial_cfg_capacity);
184 vec_safe_grow_cleared (label_to_block_map_for_function (fn),
185 initial_cfg_capacity);
186
187 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
188 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
189 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
190 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
191
192 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
193 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
194 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
195 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
196 }
197
198 void
199 init_empty_tree_cfg (void)
200 {
201 init_empty_tree_cfg_for_function (cfun);
202 }
203
204 /*---------------------------------------------------------------------------
205 Create basic blocks
206 ---------------------------------------------------------------------------*/
207
208 /* Entry point to the CFG builder for trees. SEQ is the sequence of
209 statements to be added to the flowgraph. */
210
211 static void
212 build_gimple_cfg (gimple_seq seq)
213 {
214 /* Register specific gimple functions. */
215 gimple_register_cfg_hooks ();
216
217 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
218
219 init_empty_tree_cfg ();
220
221 found_computed_goto = 0;
222 make_blocks (seq);
223
224 /* Computed gotos are hell to deal with, especially if there are
225 lots of them with a large number of destinations. So we factor
226 them to a common computed goto location before we build the
227 edge list. After we convert back to normal form, we will un-factor
228 the computed gotos since factoring introduces an unwanted jump. */
229 if (found_computed_goto)
230 factor_computed_gotos ();
231
232 /* Make sure there is always at least one block, even if it's empty. */
233 if (n_basic_blocks == NUM_FIXED_BLOCKS)
234 create_empty_bb (ENTRY_BLOCK_PTR);
235
236 /* Adjust the size of the array. */
237 if (basic_block_info->length () < (size_t) n_basic_blocks)
238 vec_safe_grow_cleared (basic_block_info, n_basic_blocks);
239
240 /* To speed up statement iterator walks, we first purge dead labels. */
241 cleanup_dead_labels ();
242
243 /* Group case nodes to reduce the number of edges.
244 We do this after cleaning up dead labels because otherwise we miss
245 a lot of obvious case merging opportunities. */
246 group_case_labels ();
247
248 /* Create the edges of the flowgraph. */
249 discriminator_per_locus.create (13);
250 make_edges ();
251 assign_discriminators ();
252 cleanup_dead_labels ();
253 discriminator_per_locus.dispose ();
254 }
255
256
257 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
258 it and set loop->safelen to INT_MAX. We assume that the annotation
259 comes immediately before the condition. */
260
261 static void
262 replace_loop_annotate ()
263 {
264 struct loop *loop;
265 loop_iterator li;
266 basic_block bb;
267 gimple_stmt_iterator gsi;
268 gimple stmt;
269
270 FOR_EACH_LOOP (li, loop, 0)
271 {
272 gsi = gsi_last_bb (loop->header);
273 stmt = gsi_stmt (gsi);
274 if (stmt && gimple_code (stmt) == GIMPLE_COND)
275 {
276 gsi_prev_nondebug (&gsi);
277 if (gsi_end_p (gsi))
278 continue;
279 stmt = gsi_stmt (gsi);
280 if (gimple_code (stmt) != GIMPLE_CALL)
281 continue;
282 if (!gimple_call_internal_p (stmt)
283 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
284 continue;
285 if ((annot_expr_kind) tree_low_cst (gimple_call_arg (stmt, 1), 0)
286 != annot_expr_ivdep_kind)
287 continue;
288 stmt = gimple_build_assign (gimple_call_lhs (stmt),
289 gimple_call_arg (stmt, 0));
290 gsi_replace (&gsi, stmt, true);
291 loop->safelen = INT_MAX;
292 }
293 }
294
295 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
296 FOR_EACH_BB (bb)
297 {
298 gsi = gsi_last_bb (bb);
299 stmt = gsi_stmt (gsi);
300 if (stmt && gimple_code (stmt) == GIMPLE_COND)
301 gsi_prev_nondebug (&gsi);
302 if (gsi_end_p (gsi))
303 continue;
304 stmt = gsi_stmt (gsi);
305 if (gimple_code (stmt) != GIMPLE_CALL)
306 continue;
307 if (!gimple_call_internal_p (stmt)
308 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
309 continue;
310 if ((annot_expr_kind) tree_low_cst (gimple_call_arg (stmt, 1), 0)
311 != annot_expr_ivdep_kind)
312 continue;
313 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
314 "annotation");
315 stmt = gimple_build_assign (gimple_call_lhs (stmt),
316 gimple_call_arg (stmt, 0));
317 gsi_replace (&gsi, stmt, true);
318 }
319 }
320
321
322 static unsigned int
323 execute_build_cfg (void)
324 {
325 gimple_seq body = gimple_body (current_function_decl);
326
327 build_gimple_cfg (body);
328 gimple_set_body (current_function_decl, NULL);
329 if (dump_file && (dump_flags & TDF_DETAILS))
330 {
331 fprintf (dump_file, "Scope blocks:\n");
332 dump_scope_blocks (dump_file, dump_flags);
333 }
334 cleanup_tree_cfg ();
335 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
336 replace_loop_annotate ();
337 return 0;
338 }
339
340 namespace {
341
342 const pass_data pass_data_build_cfg =
343 {
344 GIMPLE_PASS, /* type */
345 "cfg", /* name */
346 OPTGROUP_NONE, /* optinfo_flags */
347 false, /* has_gate */
348 true, /* has_execute */
349 TV_TREE_CFG, /* tv_id */
350 PROP_gimple_leh, /* properties_required */
351 ( PROP_cfg | PROP_loops ), /* properties_provided */
352 0, /* properties_destroyed */
353 0, /* todo_flags_start */
354 TODO_verify_stmts, /* todo_flags_finish */
355 };
356
357 class pass_build_cfg : public gimple_opt_pass
358 {
359 public:
360 pass_build_cfg (gcc::context *ctxt)
361 : gimple_opt_pass (pass_data_build_cfg, ctxt)
362 {}
363
364 /* opt_pass methods: */
365 unsigned int execute () { return execute_build_cfg (); }
366
367 }; // class pass_build_cfg
368
369 } // anon namespace
370
371 gimple_opt_pass *
372 make_pass_build_cfg (gcc::context *ctxt)
373 {
374 return new pass_build_cfg (ctxt);
375 }
376
377
378 /* Return true if T is a computed goto. */
379
380 static bool
381 computed_goto_p (gimple t)
382 {
383 return (gimple_code (t) == GIMPLE_GOTO
384 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
385 }
386
387 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
388 the other edge points to a bb with just __builtin_unreachable ().
389 I.e. return true for C->M edge in:
390 <bb C>:
391 ...
392 if (something)
393 goto <bb N>;
394 else
395 goto <bb M>;
396 <bb N>:
397 __builtin_unreachable ();
398 <bb M>: */
399
400 bool
401 assert_unreachable_fallthru_edge_p (edge e)
402 {
403 basic_block pred_bb = e->src;
404 gimple last = last_stmt (pred_bb);
405 if (last && gimple_code (last) == GIMPLE_COND)
406 {
407 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
408 if (other_bb == e->dest)
409 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
410 if (EDGE_COUNT (other_bb->succs) == 0)
411 {
412 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
413 gimple stmt;
414
415 if (gsi_end_p (gsi))
416 return false;
417 stmt = gsi_stmt (gsi);
418 if (is_gimple_debug (stmt))
419 {
420 gsi_next_nondebug (&gsi);
421 if (gsi_end_p (gsi))
422 return false;
423 stmt = gsi_stmt (gsi);
424 }
425 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
426 }
427 }
428 return false;
429 }
430
431
432 /* Search the CFG for any computed gotos. If found, factor them to a
433 common computed goto site. Also record the location of that site so
434 that we can un-factor the gotos after we have converted back to
435 normal form. */
436
437 static void
438 factor_computed_gotos (void)
439 {
440 basic_block bb;
441 tree factored_label_decl = NULL;
442 tree var = NULL;
443 gimple factored_computed_goto_label = NULL;
444 gimple factored_computed_goto = NULL;
445
446 /* We know there are one or more computed gotos in this function.
447 Examine the last statement in each basic block to see if the block
448 ends with a computed goto. */
449
450 FOR_EACH_BB (bb)
451 {
452 gimple_stmt_iterator gsi = gsi_last_bb (bb);
453 gimple last;
454
455 if (gsi_end_p (gsi))
456 continue;
457
458 last = gsi_stmt (gsi);
459
460 /* Ignore the computed goto we create when we factor the original
461 computed gotos. */
462 if (last == factored_computed_goto)
463 continue;
464
465 /* If the last statement is a computed goto, factor it. */
466 if (computed_goto_p (last))
467 {
468 gimple assignment;
469
470 /* The first time we find a computed goto we need to create
471 the factored goto block and the variable each original
472 computed goto will use for their goto destination. */
473 if (!factored_computed_goto)
474 {
475 basic_block new_bb = create_empty_bb (bb);
476 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
477
478 /* Create the destination of the factored goto. Each original
479 computed goto will put its desired destination into this
480 variable and jump to the label we create immediately
481 below. */
482 var = create_tmp_var (ptr_type_node, "gotovar");
483
484 /* Build a label for the new block which will contain the
485 factored computed goto. */
486 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
487 factored_computed_goto_label
488 = gimple_build_label (factored_label_decl);
489 gsi_insert_after (&new_gsi, factored_computed_goto_label,
490 GSI_NEW_STMT);
491
492 /* Build our new computed goto. */
493 factored_computed_goto = gimple_build_goto (var);
494 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
495 }
496
497 /* Copy the original computed goto's destination into VAR. */
498 assignment = gimple_build_assign (var, gimple_goto_dest (last));
499 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
500
501 /* And re-vector the computed goto to the new destination. */
502 gimple_goto_set_dest (last, factored_label_decl);
503 }
504 }
505 }
506
507
508 /* Build a flowgraph for the sequence of stmts SEQ. */
509
510 static void
511 make_blocks (gimple_seq seq)
512 {
513 gimple_stmt_iterator i = gsi_start (seq);
514 gimple stmt = NULL;
515 bool start_new_block = true;
516 bool first_stmt_of_seq = true;
517 basic_block bb = ENTRY_BLOCK_PTR;
518
519 while (!gsi_end_p (i))
520 {
521 gimple prev_stmt;
522
523 prev_stmt = stmt;
524 stmt = gsi_stmt (i);
525
526 /* If the statement starts a new basic block or if we have determined
527 in a previous pass that we need to create a new block for STMT, do
528 so now. */
529 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
530 {
531 if (!first_stmt_of_seq)
532 gsi_split_seq_before (&i, &seq);
533 bb = create_basic_block (seq, NULL, bb);
534 start_new_block = false;
535 }
536
537 /* Now add STMT to BB and create the subgraphs for special statement
538 codes. */
539 gimple_set_bb (stmt, bb);
540
541 if (computed_goto_p (stmt))
542 found_computed_goto = true;
543
544 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
545 next iteration. */
546 if (stmt_ends_bb_p (stmt))
547 {
548 /* If the stmt can make abnormal goto use a new temporary
549 for the assignment to the LHS. This makes sure the old value
550 of the LHS is available on the abnormal edge. Otherwise
551 we will end up with overlapping life-ranges for abnormal
552 SSA names. */
553 if (gimple_has_lhs (stmt)
554 && stmt_can_make_abnormal_goto (stmt)
555 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
556 {
557 tree lhs = gimple_get_lhs (stmt);
558 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
559 gimple s = gimple_build_assign (lhs, tmp);
560 gimple_set_location (s, gimple_location (stmt));
561 gimple_set_block (s, gimple_block (stmt));
562 gimple_set_lhs (stmt, tmp);
563 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
564 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
565 DECL_GIMPLE_REG_P (tmp) = 1;
566 gsi_insert_after (&i, s, GSI_SAME_STMT);
567 }
568 start_new_block = true;
569 }
570
571 gsi_next (&i);
572 first_stmt_of_seq = false;
573 }
574 }
575
576
577 /* Create and return a new empty basic block after bb AFTER. */
578
579 static basic_block
580 create_bb (void *h, void *e, basic_block after)
581 {
582 basic_block bb;
583
584 gcc_assert (!e);
585
586 /* Create and initialize a new basic block. Since alloc_block uses
587 GC allocation that clears memory to allocate a basic block, we do
588 not have to clear the newly allocated basic block here. */
589 bb = alloc_block ();
590
591 bb->index = last_basic_block;
592 bb->flags = BB_NEW;
593 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
594
595 /* Add the new block to the linked list of blocks. */
596 link_block (bb, after);
597
598 /* Grow the basic block array if needed. */
599 if ((size_t) last_basic_block == basic_block_info->length ())
600 {
601 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
602 vec_safe_grow_cleared (basic_block_info, new_size);
603 }
604
605 /* Add the newly created block to the array. */
606 SET_BASIC_BLOCK (last_basic_block, bb);
607
608 n_basic_blocks++;
609 last_basic_block++;
610
611 return bb;
612 }
613
614
615 /*---------------------------------------------------------------------------
616 Edge creation
617 ---------------------------------------------------------------------------*/
618
619 /* Fold COND_EXPR_COND of each COND_EXPR. */
620
621 void
622 fold_cond_expr_cond (void)
623 {
624 basic_block bb;
625
626 FOR_EACH_BB (bb)
627 {
628 gimple stmt = last_stmt (bb);
629
630 if (stmt && gimple_code (stmt) == GIMPLE_COND)
631 {
632 location_t loc = gimple_location (stmt);
633 tree cond;
634 bool zerop, onep;
635
636 fold_defer_overflow_warnings ();
637 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
638 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
639 if (cond)
640 {
641 zerop = integer_zerop (cond);
642 onep = integer_onep (cond);
643 }
644 else
645 zerop = onep = false;
646
647 fold_undefer_overflow_warnings (zerop || onep,
648 stmt,
649 WARN_STRICT_OVERFLOW_CONDITIONAL);
650 if (zerop)
651 gimple_cond_make_false (stmt);
652 else if (onep)
653 gimple_cond_make_true (stmt);
654 }
655 }
656 }
657
658 /* Join all the blocks in the flowgraph. */
659
660 static void
661 make_edges (void)
662 {
663 basic_block bb;
664 struct omp_region *cur_region = NULL;
665
666 /* Create an edge from entry to the first block with executable
667 statements in it. */
668 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
669
670 /* Traverse the basic block array placing edges. */
671 FOR_EACH_BB (bb)
672 {
673 gimple last = last_stmt (bb);
674 bool fallthru;
675
676 if (last)
677 {
678 enum gimple_code code = gimple_code (last);
679 switch (code)
680 {
681 case GIMPLE_GOTO:
682 make_goto_expr_edges (bb);
683 fallthru = false;
684 break;
685 case GIMPLE_RETURN:
686 make_edge (bb, EXIT_BLOCK_PTR, 0);
687 fallthru = false;
688 break;
689 case GIMPLE_COND:
690 make_cond_expr_edges (bb);
691 fallthru = false;
692 break;
693 case GIMPLE_SWITCH:
694 make_gimple_switch_edges (bb);
695 fallthru = false;
696 break;
697 case GIMPLE_RESX:
698 make_eh_edges (last);
699 fallthru = false;
700 break;
701 case GIMPLE_EH_DISPATCH:
702 fallthru = make_eh_dispatch_edges (last);
703 break;
704
705 case GIMPLE_CALL:
706 /* If this function receives a nonlocal goto, then we need to
707 make edges from this call site to all the nonlocal goto
708 handlers. */
709 if (stmt_can_make_abnormal_goto (last))
710 make_abnormal_goto_edges (bb, true);
711
712 /* If this statement has reachable exception handlers, then
713 create abnormal edges to them. */
714 make_eh_edges (last);
715
716 /* BUILTIN_RETURN is really a return statement. */
717 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
718 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
719 /* Some calls are known not to return. */
720 else
721 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
722 break;
723
724 case GIMPLE_ASSIGN:
725 /* A GIMPLE_ASSIGN may throw internally and thus be considered
726 control-altering. */
727 if (is_ctrl_altering_stmt (last))
728 make_eh_edges (last);
729 fallthru = true;
730 break;
731
732 case GIMPLE_ASM:
733 make_gimple_asm_edges (bb);
734 fallthru = true;
735 break;
736
737 CASE_GIMPLE_OMP:
738 fallthru = make_gimple_omp_edges (bb, &cur_region);
739 break;
740
741 case GIMPLE_TRANSACTION:
742 {
743 tree abort_label = gimple_transaction_label (last);
744 if (abort_label)
745 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
746 fallthru = true;
747 }
748 break;
749
750 default:
751 gcc_assert (!stmt_ends_bb_p (last));
752 fallthru = true;
753 }
754 }
755 else
756 fallthru = true;
757
758 if (fallthru)
759 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
760 }
761
762 free_omp_regions ();
763
764 /* Fold COND_EXPR_COND of each COND_EXPR. */
765 fold_cond_expr_cond ();
766 }
767
768 /* Find the next available discriminator value for LOCUS. The
769 discriminator distinguishes among several basic blocks that
770 share a common locus, allowing for more accurate sample-based
771 profiling. */
772
773 static int
774 next_discriminator_for_locus (location_t locus)
775 {
776 struct locus_discrim_map item;
777 struct locus_discrim_map **slot;
778
779 item.locus = locus;
780 item.discriminator = 0;
781 slot = discriminator_per_locus.find_slot_with_hash (
782 &item, LOCATION_LINE (locus), INSERT);
783 gcc_assert (slot);
784 if (*slot == HTAB_EMPTY_ENTRY)
785 {
786 *slot = XNEW (struct locus_discrim_map);
787 gcc_assert (*slot);
788 (*slot)->locus = locus;
789 (*slot)->discriminator = 0;
790 }
791 (*slot)->discriminator++;
792 return (*slot)->discriminator;
793 }
794
795 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
796
797 static bool
798 same_line_p (location_t locus1, location_t locus2)
799 {
800 expanded_location from, to;
801
802 if (locus1 == locus2)
803 return true;
804
805 from = expand_location (locus1);
806 to = expand_location (locus2);
807
808 if (from.line != to.line)
809 return false;
810 if (from.file == to.file)
811 return true;
812 return (from.file != NULL
813 && to.file != NULL
814 && filename_cmp (from.file, to.file) == 0);
815 }
816
817 /* Assign discriminators to each basic block. */
818
819 static void
820 assign_discriminators (void)
821 {
822 basic_block bb;
823
824 FOR_EACH_BB (bb)
825 {
826 edge e;
827 edge_iterator ei;
828 gimple last = last_stmt (bb);
829 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
830
831 if (locus == UNKNOWN_LOCATION)
832 continue;
833
834 FOR_EACH_EDGE (e, ei, bb->succs)
835 {
836 gimple first = first_non_label_stmt (e->dest);
837 gimple last = last_stmt (e->dest);
838 if ((first && same_line_p (locus, gimple_location (first)))
839 || (last && same_line_p (locus, gimple_location (last))))
840 {
841 if (e->dest->discriminator != 0 && bb->discriminator == 0)
842 bb->discriminator = next_discriminator_for_locus (locus);
843 else
844 e->dest->discriminator = next_discriminator_for_locus (locus);
845 }
846 }
847 }
848 }
849
850 /* Create the edges for a GIMPLE_COND starting at block BB. */
851
852 static void
853 make_cond_expr_edges (basic_block bb)
854 {
855 gimple entry = last_stmt (bb);
856 gimple then_stmt, else_stmt;
857 basic_block then_bb, else_bb;
858 tree then_label, else_label;
859 edge e;
860
861 gcc_assert (entry);
862 gcc_assert (gimple_code (entry) == GIMPLE_COND);
863
864 /* Entry basic blocks for each component. */
865 then_label = gimple_cond_true_label (entry);
866 else_label = gimple_cond_false_label (entry);
867 then_bb = label_to_block (then_label);
868 else_bb = label_to_block (else_label);
869 then_stmt = first_stmt (then_bb);
870 else_stmt = first_stmt (else_bb);
871
872 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
873 e->goto_locus = gimple_location (then_stmt);
874 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
875 if (e)
876 e->goto_locus = gimple_location (else_stmt);
877
878 /* We do not need the labels anymore. */
879 gimple_cond_set_true_label (entry, NULL_TREE);
880 gimple_cond_set_false_label (entry, NULL_TREE);
881 }
882
883
884 /* Called for each element in the hash table (P) as we delete the
885 edge to cases hash table.
886
887 Clear all the TREE_CHAINs to prevent problems with copying of
888 SWITCH_EXPRs and structure sharing rules, then free the hash table
889 element. */
890
891 static bool
892 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
893 void *data ATTRIBUTE_UNUSED)
894 {
895 tree t, next;
896
897 for (t = (tree) *value; t; t = next)
898 {
899 next = CASE_CHAIN (t);
900 CASE_CHAIN (t) = NULL;
901 }
902
903 *value = NULL;
904 return true;
905 }
906
907 /* Start recording information mapping edges to case labels. */
908
909 void
910 start_recording_case_labels (void)
911 {
912 gcc_assert (edge_to_cases == NULL);
913 edge_to_cases = pointer_map_create ();
914 touched_switch_bbs = BITMAP_ALLOC (NULL);
915 }
916
917 /* Return nonzero if we are recording information for case labels. */
918
919 static bool
920 recording_case_labels_p (void)
921 {
922 return (edge_to_cases != NULL);
923 }
924
925 /* Stop recording information mapping edges to case labels and
926 remove any information we have recorded. */
927 void
928 end_recording_case_labels (void)
929 {
930 bitmap_iterator bi;
931 unsigned i;
932 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
933 pointer_map_destroy (edge_to_cases);
934 edge_to_cases = NULL;
935 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
936 {
937 basic_block bb = BASIC_BLOCK (i);
938 if (bb)
939 {
940 gimple stmt = last_stmt (bb);
941 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
942 group_case_labels_stmt (stmt);
943 }
944 }
945 BITMAP_FREE (touched_switch_bbs);
946 }
947
948 /* If we are inside a {start,end}_recording_cases block, then return
949 a chain of CASE_LABEL_EXPRs from T which reference E.
950
951 Otherwise return NULL. */
952
953 static tree
954 get_cases_for_edge (edge e, gimple t)
955 {
956 void **slot;
957 size_t i, n;
958
959 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
960 chains available. Return NULL so the caller can detect this case. */
961 if (!recording_case_labels_p ())
962 return NULL;
963
964 slot = pointer_map_contains (edge_to_cases, e);
965 if (slot)
966 return (tree) *slot;
967
968 /* If we did not find E in the hash table, then this must be the first
969 time we have been queried for information about E & T. Add all the
970 elements from T to the hash table then perform the query again. */
971
972 n = gimple_switch_num_labels (t);
973 for (i = 0; i < n; i++)
974 {
975 tree elt = gimple_switch_label (t, i);
976 tree lab = CASE_LABEL (elt);
977 basic_block label_bb = label_to_block (lab);
978 edge this_edge = find_edge (e->src, label_bb);
979
980 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
981 a new chain. */
982 slot = pointer_map_insert (edge_to_cases, this_edge);
983 CASE_CHAIN (elt) = (tree) *slot;
984 *slot = elt;
985 }
986
987 return (tree) *pointer_map_contains (edge_to_cases, e);
988 }
989
990 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
991
992 static void
993 make_gimple_switch_edges (basic_block bb)
994 {
995 gimple entry = last_stmt (bb);
996 size_t i, n;
997
998 n = gimple_switch_num_labels (entry);
999
1000 for (i = 0; i < n; ++i)
1001 {
1002 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1003 basic_block label_bb = label_to_block (lab);
1004 make_edge (bb, label_bb, 0);
1005 }
1006 }
1007
1008
1009 /* Return the basic block holding label DEST. */
1010
1011 basic_block
1012 label_to_block_fn (struct function *ifun, tree dest)
1013 {
1014 int uid = LABEL_DECL_UID (dest);
1015
1016 /* We would die hard when faced by an undefined label. Emit a label to
1017 the very first basic block. This will hopefully make even the dataflow
1018 and undefined variable warnings quite right. */
1019 if (seen_error () && uid < 0)
1020 {
1021 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
1022 gimple stmt;
1023
1024 stmt = gimple_build_label (dest);
1025 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1026 uid = LABEL_DECL_UID (dest);
1027 }
1028 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1029 return NULL;
1030 return (*ifun->cfg->x_label_to_block_map)[uid];
1031 }
1032
1033 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
1034 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
1035
1036 void
1037 make_abnormal_goto_edges (basic_block bb, bool for_call)
1038 {
1039 basic_block target_bb;
1040 gimple_stmt_iterator gsi;
1041
1042 FOR_EACH_BB (target_bb)
1043 {
1044 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1045 {
1046 gimple label_stmt = gsi_stmt (gsi);
1047 tree target;
1048
1049 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1050 break;
1051
1052 target = gimple_label_label (label_stmt);
1053
1054 /* Make an edge to every label block that has been marked as a
1055 potential target for a computed goto or a non-local goto. */
1056 if ((FORCED_LABEL (target) && !for_call)
1057 || (DECL_NONLOCAL (target) && for_call))
1058 {
1059 make_edge (bb, target_bb, EDGE_ABNORMAL);
1060 break;
1061 }
1062 }
1063 if (!gsi_end_p (gsi)
1064 && is_gimple_debug (gsi_stmt (gsi)))
1065 gsi_next_nondebug (&gsi);
1066 if (!gsi_end_p (gsi))
1067 {
1068 /* Make an edge to every setjmp-like call. */
1069 gimple call_stmt = gsi_stmt (gsi);
1070 if (is_gimple_call (call_stmt)
1071 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1072 make_edge (bb, target_bb, EDGE_ABNORMAL);
1073 }
1074 }
1075 }
1076
1077 /* Create edges for a goto statement at block BB. */
1078
1079 static void
1080 make_goto_expr_edges (basic_block bb)
1081 {
1082 gimple_stmt_iterator last = gsi_last_bb (bb);
1083 gimple goto_t = gsi_stmt (last);
1084
1085 /* A simple GOTO creates normal edges. */
1086 if (simple_goto_p (goto_t))
1087 {
1088 tree dest = gimple_goto_dest (goto_t);
1089 basic_block label_bb = label_to_block (dest);
1090 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1091 e->goto_locus = gimple_location (goto_t);
1092 gsi_remove (&last, true);
1093 return;
1094 }
1095
1096 /* A computed GOTO creates abnormal edges. */
1097 make_abnormal_goto_edges (bb, false);
1098 }
1099
1100 /* Create edges for an asm statement with labels at block BB. */
1101
1102 static void
1103 make_gimple_asm_edges (basic_block bb)
1104 {
1105 gimple stmt = last_stmt (bb);
1106 int i, n = gimple_asm_nlabels (stmt);
1107
1108 for (i = 0; i < n; ++i)
1109 {
1110 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1111 basic_block label_bb = label_to_block (label);
1112 make_edge (bb, label_bb, 0);
1113 }
1114 }
1115
1116 /*---------------------------------------------------------------------------
1117 Flowgraph analysis
1118 ---------------------------------------------------------------------------*/
1119
1120 /* Cleanup useless labels in basic blocks. This is something we wish
1121 to do early because it allows us to group case labels before creating
1122 the edges for the CFG, and it speeds up block statement iterators in
1123 all passes later on.
1124 We rerun this pass after CFG is created, to get rid of the labels that
1125 are no longer referenced. After then we do not run it any more, since
1126 (almost) no new labels should be created. */
1127
1128 /* A map from basic block index to the leading label of that block. */
1129 static struct label_record
1130 {
1131 /* The label. */
1132 tree label;
1133
1134 /* True if the label is referenced from somewhere. */
1135 bool used;
1136 } *label_for_bb;
1137
1138 /* Given LABEL return the first label in the same basic block. */
1139
1140 static tree
1141 main_block_label (tree label)
1142 {
1143 basic_block bb = label_to_block (label);
1144 tree main_label = label_for_bb[bb->index].label;
1145
1146 /* label_to_block possibly inserted undefined label into the chain. */
1147 if (!main_label)
1148 {
1149 label_for_bb[bb->index].label = label;
1150 main_label = label;
1151 }
1152
1153 label_for_bb[bb->index].used = true;
1154 return main_label;
1155 }
1156
1157 /* Clean up redundant labels within the exception tree. */
1158
1159 static void
1160 cleanup_dead_labels_eh (void)
1161 {
1162 eh_landing_pad lp;
1163 eh_region r;
1164 tree lab;
1165 int i;
1166
1167 if (cfun->eh == NULL)
1168 return;
1169
1170 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1171 if (lp && lp->post_landing_pad)
1172 {
1173 lab = main_block_label (lp->post_landing_pad);
1174 if (lab != lp->post_landing_pad)
1175 {
1176 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1177 EH_LANDING_PAD_NR (lab) = lp->index;
1178 }
1179 }
1180
1181 FOR_ALL_EH_REGION (r)
1182 switch (r->type)
1183 {
1184 case ERT_CLEANUP:
1185 case ERT_MUST_NOT_THROW:
1186 break;
1187
1188 case ERT_TRY:
1189 {
1190 eh_catch c;
1191 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1192 {
1193 lab = c->label;
1194 if (lab)
1195 c->label = main_block_label (lab);
1196 }
1197 }
1198 break;
1199
1200 case ERT_ALLOWED_EXCEPTIONS:
1201 lab = r->u.allowed.label;
1202 if (lab)
1203 r->u.allowed.label = main_block_label (lab);
1204 break;
1205 }
1206 }
1207
1208
1209 /* Cleanup redundant labels. This is a three-step process:
1210 1) Find the leading label for each block.
1211 2) Redirect all references to labels to the leading labels.
1212 3) Cleanup all useless labels. */
1213
1214 void
1215 cleanup_dead_labels (void)
1216 {
1217 basic_block bb;
1218 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1219
1220 /* Find a suitable label for each block. We use the first user-defined
1221 label if there is one, or otherwise just the first label we see. */
1222 FOR_EACH_BB (bb)
1223 {
1224 gimple_stmt_iterator i;
1225
1226 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1227 {
1228 tree label;
1229 gimple stmt = gsi_stmt (i);
1230
1231 if (gimple_code (stmt) != GIMPLE_LABEL)
1232 break;
1233
1234 label = gimple_label_label (stmt);
1235
1236 /* If we have not yet seen a label for the current block,
1237 remember this one and see if there are more labels. */
1238 if (!label_for_bb[bb->index].label)
1239 {
1240 label_for_bb[bb->index].label = label;
1241 continue;
1242 }
1243
1244 /* If we did see a label for the current block already, but it
1245 is an artificially created label, replace it if the current
1246 label is a user defined label. */
1247 if (!DECL_ARTIFICIAL (label)
1248 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1249 {
1250 label_for_bb[bb->index].label = label;
1251 break;
1252 }
1253 }
1254 }
1255
1256 /* Now redirect all jumps/branches to the selected label.
1257 First do so for each block ending in a control statement. */
1258 FOR_EACH_BB (bb)
1259 {
1260 gimple stmt = last_stmt (bb);
1261 tree label, new_label;
1262
1263 if (!stmt)
1264 continue;
1265
1266 switch (gimple_code (stmt))
1267 {
1268 case GIMPLE_COND:
1269 label = gimple_cond_true_label (stmt);
1270 if (label)
1271 {
1272 new_label = main_block_label (label);
1273 if (new_label != label)
1274 gimple_cond_set_true_label (stmt, new_label);
1275 }
1276
1277 label = gimple_cond_false_label (stmt);
1278 if (label)
1279 {
1280 new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_cond_set_false_label (stmt, new_label);
1283 }
1284 break;
1285
1286 case GIMPLE_SWITCH:
1287 {
1288 size_t i, n = gimple_switch_num_labels (stmt);
1289
1290 /* Replace all destination labels. */
1291 for (i = 0; i < n; ++i)
1292 {
1293 tree case_label = gimple_switch_label (stmt, i);
1294 label = CASE_LABEL (case_label);
1295 new_label = main_block_label (label);
1296 if (new_label != label)
1297 CASE_LABEL (case_label) = new_label;
1298 }
1299 break;
1300 }
1301
1302 case GIMPLE_ASM:
1303 {
1304 int i, n = gimple_asm_nlabels (stmt);
1305
1306 for (i = 0; i < n; ++i)
1307 {
1308 tree cons = gimple_asm_label_op (stmt, i);
1309 tree label = main_block_label (TREE_VALUE (cons));
1310 TREE_VALUE (cons) = label;
1311 }
1312 break;
1313 }
1314
1315 /* We have to handle gotos until they're removed, and we don't
1316 remove them until after we've created the CFG edges. */
1317 case GIMPLE_GOTO:
1318 if (!computed_goto_p (stmt))
1319 {
1320 label = gimple_goto_dest (stmt);
1321 new_label = main_block_label (label);
1322 if (new_label != label)
1323 gimple_goto_set_dest (stmt, new_label);
1324 }
1325 break;
1326
1327 case GIMPLE_TRANSACTION:
1328 {
1329 tree label = gimple_transaction_label (stmt);
1330 if (label)
1331 {
1332 tree new_label = main_block_label (label);
1333 if (new_label != label)
1334 gimple_transaction_set_label (stmt, new_label);
1335 }
1336 }
1337 break;
1338
1339 default:
1340 break;
1341 }
1342 }
1343
1344 /* Do the same for the exception region tree labels. */
1345 cleanup_dead_labels_eh ();
1346
1347 /* Finally, purge dead labels. All user-defined labels and labels that
1348 can be the target of non-local gotos and labels which have their
1349 address taken are preserved. */
1350 FOR_EACH_BB (bb)
1351 {
1352 gimple_stmt_iterator i;
1353 tree label_for_this_bb = label_for_bb[bb->index].label;
1354
1355 if (!label_for_this_bb)
1356 continue;
1357
1358 /* If the main label of the block is unused, we may still remove it. */
1359 if (!label_for_bb[bb->index].used)
1360 label_for_this_bb = NULL;
1361
1362 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1363 {
1364 tree label;
1365 gimple stmt = gsi_stmt (i);
1366
1367 if (gimple_code (stmt) != GIMPLE_LABEL)
1368 break;
1369
1370 label = gimple_label_label (stmt);
1371
1372 if (label == label_for_this_bb
1373 || !DECL_ARTIFICIAL (label)
1374 || DECL_NONLOCAL (label)
1375 || FORCED_LABEL (label))
1376 gsi_next (&i);
1377 else
1378 gsi_remove (&i, true);
1379 }
1380 }
1381
1382 free (label_for_bb);
1383 }
1384
1385 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1386 the ones jumping to the same label.
1387 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1388
1389 void
1390 group_case_labels_stmt (gimple stmt)
1391 {
1392 int old_size = gimple_switch_num_labels (stmt);
1393 int i, j, new_size = old_size;
1394 basic_block default_bb = NULL;
1395
1396 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1397
1398 /* Look for possible opportunities to merge cases. */
1399 i = 1;
1400 while (i < old_size)
1401 {
1402 tree base_case, base_high;
1403 basic_block base_bb;
1404
1405 base_case = gimple_switch_label (stmt, i);
1406
1407 gcc_assert (base_case);
1408 base_bb = label_to_block (CASE_LABEL (base_case));
1409
1410 /* Discard cases that have the same destination as the
1411 default case. */
1412 if (base_bb == default_bb)
1413 {
1414 gimple_switch_set_label (stmt, i, NULL_TREE);
1415 i++;
1416 new_size--;
1417 continue;
1418 }
1419
1420 base_high = CASE_HIGH (base_case)
1421 ? CASE_HIGH (base_case)
1422 : CASE_LOW (base_case);
1423 i++;
1424
1425 /* Try to merge case labels. Break out when we reach the end
1426 of the label vector or when we cannot merge the next case
1427 label with the current one. */
1428 while (i < old_size)
1429 {
1430 tree merge_case = gimple_switch_label (stmt, i);
1431 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1432 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1433
1434 /* Merge the cases if they jump to the same place,
1435 and their ranges are consecutive. */
1436 if (merge_bb == base_bb
1437 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1438 {
1439 base_high = CASE_HIGH (merge_case) ?
1440 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1441 CASE_HIGH (base_case) = base_high;
1442 gimple_switch_set_label (stmt, i, NULL_TREE);
1443 new_size--;
1444 i++;
1445 }
1446 else
1447 break;
1448 }
1449 }
1450
1451 /* Compress the case labels in the label vector, and adjust the
1452 length of the vector. */
1453 for (i = 0, j = 0; i < new_size; i++)
1454 {
1455 while (! gimple_switch_label (stmt, j))
1456 j++;
1457 gimple_switch_set_label (stmt, i,
1458 gimple_switch_label (stmt, j++));
1459 }
1460
1461 gcc_assert (new_size <= old_size);
1462 gimple_switch_set_num_labels (stmt, new_size);
1463 }
1464
1465 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1466 and scan the sorted vector of cases. Combine the ones jumping to the
1467 same label. */
1468
1469 void
1470 group_case_labels (void)
1471 {
1472 basic_block bb;
1473
1474 FOR_EACH_BB (bb)
1475 {
1476 gimple stmt = last_stmt (bb);
1477 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1478 group_case_labels_stmt (stmt);
1479 }
1480 }
1481
1482 /* Checks whether we can merge block B into block A. */
1483
1484 static bool
1485 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1486 {
1487 gimple stmt;
1488 gimple_stmt_iterator gsi;
1489
1490 if (!single_succ_p (a))
1491 return false;
1492
1493 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1494 return false;
1495
1496 if (single_succ (a) != b)
1497 return false;
1498
1499 if (!single_pred_p (b))
1500 return false;
1501
1502 if (b == EXIT_BLOCK_PTR)
1503 return false;
1504
1505 /* If A ends by a statement causing exceptions or something similar, we
1506 cannot merge the blocks. */
1507 stmt = last_stmt (a);
1508 if (stmt && stmt_ends_bb_p (stmt))
1509 return false;
1510
1511 /* Do not allow a block with only a non-local label to be merged. */
1512 if (stmt
1513 && gimple_code (stmt) == GIMPLE_LABEL
1514 && DECL_NONLOCAL (gimple_label_label (stmt)))
1515 return false;
1516
1517 /* Examine the labels at the beginning of B. */
1518 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1519 {
1520 tree lab;
1521 stmt = gsi_stmt (gsi);
1522 if (gimple_code (stmt) != GIMPLE_LABEL)
1523 break;
1524 lab = gimple_label_label (stmt);
1525
1526 /* Do not remove user forced labels or for -O0 any user labels. */
1527 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1528 return false;
1529 }
1530
1531 /* Protect the loop latches. */
1532 if (current_loops && b->loop_father->latch == b)
1533 return false;
1534
1535 /* It must be possible to eliminate all phi nodes in B. If ssa form
1536 is not up-to-date and a name-mapping is registered, we cannot eliminate
1537 any phis. Symbols marked for renaming are never a problem though. */
1538 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1539 {
1540 gimple phi = gsi_stmt (gsi);
1541 /* Technically only new names matter. */
1542 if (name_registered_for_update_p (PHI_RESULT (phi)))
1543 return false;
1544 }
1545
1546 /* When not optimizing, don't merge if we'd lose goto_locus. */
1547 if (!optimize
1548 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1549 {
1550 location_t goto_locus = single_succ_edge (a)->goto_locus;
1551 gimple_stmt_iterator prev, next;
1552 prev = gsi_last_nondebug_bb (a);
1553 next = gsi_after_labels (b);
1554 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1555 gsi_next_nondebug (&next);
1556 if ((gsi_end_p (prev)
1557 || gimple_location (gsi_stmt (prev)) != goto_locus)
1558 && (gsi_end_p (next)
1559 || gimple_location (gsi_stmt (next)) != goto_locus))
1560 return false;
1561 }
1562
1563 return true;
1564 }
1565
1566 /* Replaces all uses of NAME by VAL. */
1567
1568 void
1569 replace_uses_by (tree name, tree val)
1570 {
1571 imm_use_iterator imm_iter;
1572 use_operand_p use;
1573 gimple stmt;
1574 edge e;
1575
1576 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1577 {
1578 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1579 {
1580 replace_exp (use, val);
1581
1582 if (gimple_code (stmt) == GIMPLE_PHI)
1583 {
1584 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1585 if (e->flags & EDGE_ABNORMAL)
1586 {
1587 /* This can only occur for virtual operands, since
1588 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1589 would prevent replacement. */
1590 gcc_checking_assert (virtual_operand_p (name));
1591 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1592 }
1593 }
1594 }
1595
1596 if (gimple_code (stmt) != GIMPLE_PHI)
1597 {
1598 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1599 gimple orig_stmt = stmt;
1600 size_t i;
1601
1602 /* Mark the block if we changed the last stmt in it. */
1603 if (cfgcleanup_altered_bbs
1604 && stmt_ends_bb_p (stmt))
1605 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1606
1607 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1608 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1609 only change sth from non-invariant to invariant, and only
1610 when propagating constants. */
1611 if (is_gimple_min_invariant (val))
1612 for (i = 0; i < gimple_num_ops (stmt); i++)
1613 {
1614 tree op = gimple_op (stmt, i);
1615 /* Operands may be empty here. For example, the labels
1616 of a GIMPLE_COND are nulled out following the creation
1617 of the corresponding CFG edges. */
1618 if (op && TREE_CODE (op) == ADDR_EXPR)
1619 recompute_tree_invariant_for_addr_expr (op);
1620 }
1621
1622 if (fold_stmt (&gsi))
1623 stmt = gsi_stmt (gsi);
1624
1625 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1626 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1627
1628 update_stmt (stmt);
1629 }
1630 }
1631
1632 gcc_checking_assert (has_zero_uses (name));
1633
1634 /* Also update the trees stored in loop structures. */
1635 if (current_loops)
1636 {
1637 struct loop *loop;
1638 loop_iterator li;
1639
1640 FOR_EACH_LOOP (li, loop, 0)
1641 {
1642 substitute_in_loop_info (loop, name, val);
1643 }
1644 }
1645 }
1646
1647 /* Merge block B into block A. */
1648
1649 static void
1650 gimple_merge_blocks (basic_block a, basic_block b)
1651 {
1652 gimple_stmt_iterator last, gsi, psi;
1653
1654 if (dump_file)
1655 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1656
1657 /* Remove all single-valued PHI nodes from block B of the form
1658 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1659 gsi = gsi_last_bb (a);
1660 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1661 {
1662 gimple phi = gsi_stmt (psi);
1663 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1664 gimple copy;
1665 bool may_replace_uses = (virtual_operand_p (def)
1666 || may_propagate_copy (def, use));
1667
1668 /* In case we maintain loop closed ssa form, do not propagate arguments
1669 of loop exit phi nodes. */
1670 if (current_loops
1671 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1672 && !virtual_operand_p (def)
1673 && TREE_CODE (use) == SSA_NAME
1674 && a->loop_father != b->loop_father)
1675 may_replace_uses = false;
1676
1677 if (!may_replace_uses)
1678 {
1679 gcc_assert (!virtual_operand_p (def));
1680
1681 /* Note that just emitting the copies is fine -- there is no problem
1682 with ordering of phi nodes. This is because A is the single
1683 predecessor of B, therefore results of the phi nodes cannot
1684 appear as arguments of the phi nodes. */
1685 copy = gimple_build_assign (def, use);
1686 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1687 remove_phi_node (&psi, false);
1688 }
1689 else
1690 {
1691 /* If we deal with a PHI for virtual operands, we can simply
1692 propagate these without fussing with folding or updating
1693 the stmt. */
1694 if (virtual_operand_p (def))
1695 {
1696 imm_use_iterator iter;
1697 use_operand_p use_p;
1698 gimple stmt;
1699
1700 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1701 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1702 SET_USE (use_p, use);
1703
1704 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1705 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1706 }
1707 else
1708 replace_uses_by (def, use);
1709
1710 remove_phi_node (&psi, true);
1711 }
1712 }
1713
1714 /* Ensure that B follows A. */
1715 move_block_after (b, a);
1716
1717 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1718 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1719
1720 /* Remove labels from B and set gimple_bb to A for other statements. */
1721 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1722 {
1723 gimple stmt = gsi_stmt (gsi);
1724 if (gimple_code (stmt) == GIMPLE_LABEL)
1725 {
1726 tree label = gimple_label_label (stmt);
1727 int lp_nr;
1728
1729 gsi_remove (&gsi, false);
1730
1731 /* Now that we can thread computed gotos, we might have
1732 a situation where we have a forced label in block B
1733 However, the label at the start of block B might still be
1734 used in other ways (think about the runtime checking for
1735 Fortran assigned gotos). So we can not just delete the
1736 label. Instead we move the label to the start of block A. */
1737 if (FORCED_LABEL (label))
1738 {
1739 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1740 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1741 }
1742 /* Other user labels keep around in a form of a debug stmt. */
1743 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1744 {
1745 gimple dbg = gimple_build_debug_bind (label,
1746 integer_zero_node,
1747 stmt);
1748 gimple_debug_bind_reset_value (dbg);
1749 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1750 }
1751
1752 lp_nr = EH_LANDING_PAD_NR (label);
1753 if (lp_nr)
1754 {
1755 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1756 lp->post_landing_pad = NULL;
1757 }
1758 }
1759 else
1760 {
1761 gimple_set_bb (stmt, a);
1762 gsi_next (&gsi);
1763 }
1764 }
1765
1766 /* Merge the sequences. */
1767 last = gsi_last_bb (a);
1768 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1769 set_bb_seq (b, NULL);
1770
1771 if (cfgcleanup_altered_bbs)
1772 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1773 }
1774
1775
1776 /* Return the one of two successors of BB that is not reachable by a
1777 complex edge, if there is one. Else, return BB. We use
1778 this in optimizations that use post-dominators for their heuristics,
1779 to catch the cases in C++ where function calls are involved. */
1780
1781 basic_block
1782 single_noncomplex_succ (basic_block bb)
1783 {
1784 edge e0, e1;
1785 if (EDGE_COUNT (bb->succs) != 2)
1786 return bb;
1787
1788 e0 = EDGE_SUCC (bb, 0);
1789 e1 = EDGE_SUCC (bb, 1);
1790 if (e0->flags & EDGE_COMPLEX)
1791 return e1->dest;
1792 if (e1->flags & EDGE_COMPLEX)
1793 return e0->dest;
1794
1795 return bb;
1796 }
1797
1798 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1799
1800 void
1801 notice_special_calls (gimple call)
1802 {
1803 int flags = gimple_call_flags (call);
1804
1805 if (flags & ECF_MAY_BE_ALLOCA)
1806 cfun->calls_alloca = true;
1807 if (flags & ECF_RETURNS_TWICE)
1808 cfun->calls_setjmp = true;
1809 }
1810
1811
1812 /* Clear flags set by notice_special_calls. Used by dead code removal
1813 to update the flags. */
1814
1815 void
1816 clear_special_calls (void)
1817 {
1818 cfun->calls_alloca = false;
1819 cfun->calls_setjmp = false;
1820 }
1821
1822 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1823
1824 static void
1825 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1826 {
1827 /* Since this block is no longer reachable, we can just delete all
1828 of its PHI nodes. */
1829 remove_phi_nodes (bb);
1830
1831 /* Remove edges to BB's successors. */
1832 while (EDGE_COUNT (bb->succs) > 0)
1833 remove_edge (EDGE_SUCC (bb, 0));
1834 }
1835
1836
1837 /* Remove statements of basic block BB. */
1838
1839 static void
1840 remove_bb (basic_block bb)
1841 {
1842 gimple_stmt_iterator i;
1843
1844 if (dump_file)
1845 {
1846 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1847 if (dump_flags & TDF_DETAILS)
1848 {
1849 dump_bb (dump_file, bb, 0, dump_flags);
1850 fprintf (dump_file, "\n");
1851 }
1852 }
1853
1854 if (current_loops)
1855 {
1856 struct loop *loop = bb->loop_father;
1857
1858 /* If a loop gets removed, clean up the information associated
1859 with it. */
1860 if (loop->latch == bb
1861 || loop->header == bb)
1862 free_numbers_of_iterations_estimates_loop (loop);
1863 }
1864
1865 /* Remove all the instructions in the block. */
1866 if (bb_seq (bb) != NULL)
1867 {
1868 /* Walk backwards so as to get a chance to substitute all
1869 released DEFs into debug stmts. See
1870 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1871 details. */
1872 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1873 {
1874 gimple stmt = gsi_stmt (i);
1875 if (gimple_code (stmt) == GIMPLE_LABEL
1876 && (FORCED_LABEL (gimple_label_label (stmt))
1877 || DECL_NONLOCAL (gimple_label_label (stmt))))
1878 {
1879 basic_block new_bb;
1880 gimple_stmt_iterator new_gsi;
1881
1882 /* A non-reachable non-local label may still be referenced.
1883 But it no longer needs to carry the extra semantics of
1884 non-locality. */
1885 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1886 {
1887 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1888 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1889 }
1890
1891 new_bb = bb->prev_bb;
1892 new_gsi = gsi_start_bb (new_bb);
1893 gsi_remove (&i, false);
1894 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1895 }
1896 else
1897 {
1898 /* Release SSA definitions if we are in SSA. Note that we
1899 may be called when not in SSA. For example,
1900 final_cleanup calls this function via
1901 cleanup_tree_cfg. */
1902 if (gimple_in_ssa_p (cfun))
1903 release_defs (stmt);
1904
1905 gsi_remove (&i, true);
1906 }
1907
1908 if (gsi_end_p (i))
1909 i = gsi_last_bb (bb);
1910 else
1911 gsi_prev (&i);
1912 }
1913 }
1914
1915 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1916 bb->il.gimple.seq = NULL;
1917 bb->il.gimple.phi_nodes = NULL;
1918 }
1919
1920
1921 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1922 predicate VAL, return the edge that will be taken out of the block.
1923 If VAL does not match a unique edge, NULL is returned. */
1924
1925 edge
1926 find_taken_edge (basic_block bb, tree val)
1927 {
1928 gimple stmt;
1929
1930 stmt = last_stmt (bb);
1931
1932 gcc_assert (stmt);
1933 gcc_assert (is_ctrl_stmt (stmt));
1934
1935 if (val == NULL)
1936 return NULL;
1937
1938 if (!is_gimple_min_invariant (val))
1939 return NULL;
1940
1941 if (gimple_code (stmt) == GIMPLE_COND)
1942 return find_taken_edge_cond_expr (bb, val);
1943
1944 if (gimple_code (stmt) == GIMPLE_SWITCH)
1945 return find_taken_edge_switch_expr (bb, val);
1946
1947 if (computed_goto_p (stmt))
1948 {
1949 /* Only optimize if the argument is a label, if the argument is
1950 not a label then we can not construct a proper CFG.
1951
1952 It may be the case that we only need to allow the LABEL_REF to
1953 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1954 appear inside a LABEL_EXPR just to be safe. */
1955 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1956 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1957 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1958 return NULL;
1959 }
1960
1961 gcc_unreachable ();
1962 }
1963
1964 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1965 statement, determine which of the outgoing edges will be taken out of the
1966 block. Return NULL if either edge may be taken. */
1967
1968 static edge
1969 find_taken_edge_computed_goto (basic_block bb, tree val)
1970 {
1971 basic_block dest;
1972 edge e = NULL;
1973
1974 dest = label_to_block (val);
1975 if (dest)
1976 {
1977 e = find_edge (bb, dest);
1978 gcc_assert (e != NULL);
1979 }
1980
1981 return e;
1982 }
1983
1984 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1985 statement, determine which of the two edges will be taken out of the
1986 block. Return NULL if either edge may be taken. */
1987
1988 static edge
1989 find_taken_edge_cond_expr (basic_block bb, tree val)
1990 {
1991 edge true_edge, false_edge;
1992
1993 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1994
1995 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1996 return (integer_zerop (val) ? false_edge : true_edge);
1997 }
1998
1999 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2000 statement, determine which edge will be taken out of the block. Return
2001 NULL if any edge may be taken. */
2002
2003 static edge
2004 find_taken_edge_switch_expr (basic_block bb, tree val)
2005 {
2006 basic_block dest_bb;
2007 edge e;
2008 gimple switch_stmt;
2009 tree taken_case;
2010
2011 switch_stmt = last_stmt (bb);
2012 taken_case = find_case_label_for_value (switch_stmt, val);
2013 dest_bb = label_to_block (CASE_LABEL (taken_case));
2014
2015 e = find_edge (bb, dest_bb);
2016 gcc_assert (e);
2017 return e;
2018 }
2019
2020
2021 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2022 We can make optimal use here of the fact that the case labels are
2023 sorted: We can do a binary search for a case matching VAL. */
2024
2025 static tree
2026 find_case_label_for_value (gimple switch_stmt, tree val)
2027 {
2028 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2029 tree default_case = gimple_switch_default_label (switch_stmt);
2030
2031 for (low = 0, high = n; high - low > 1; )
2032 {
2033 size_t i = (high + low) / 2;
2034 tree t = gimple_switch_label (switch_stmt, i);
2035 int cmp;
2036
2037 /* Cache the result of comparing CASE_LOW and val. */
2038 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2039
2040 if (cmp > 0)
2041 high = i;
2042 else
2043 low = i;
2044
2045 if (CASE_HIGH (t) == NULL)
2046 {
2047 /* A singe-valued case label. */
2048 if (cmp == 0)
2049 return t;
2050 }
2051 else
2052 {
2053 /* A case range. We can only handle integer ranges. */
2054 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2055 return t;
2056 }
2057 }
2058
2059 return default_case;
2060 }
2061
2062
2063 /* Dump a basic block on stderr. */
2064
2065 void
2066 gimple_debug_bb (basic_block bb)
2067 {
2068 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2069 }
2070
2071
2072 /* Dump basic block with index N on stderr. */
2073
2074 basic_block
2075 gimple_debug_bb_n (int n)
2076 {
2077 gimple_debug_bb (BASIC_BLOCK (n));
2078 return BASIC_BLOCK (n);
2079 }
2080
2081
2082 /* Dump the CFG on stderr.
2083
2084 FLAGS are the same used by the tree dumping functions
2085 (see TDF_* in dumpfile.h). */
2086
2087 void
2088 gimple_debug_cfg (int flags)
2089 {
2090 gimple_dump_cfg (stderr, flags);
2091 }
2092
2093
2094 /* Dump the program showing basic block boundaries on the given FILE.
2095
2096 FLAGS are the same used by the tree dumping functions (see TDF_* in
2097 tree.h). */
2098
2099 void
2100 gimple_dump_cfg (FILE *file, int flags)
2101 {
2102 if (flags & TDF_DETAILS)
2103 {
2104 dump_function_header (file, current_function_decl, flags);
2105 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2106 n_basic_blocks, n_edges, last_basic_block);
2107
2108 brief_dump_cfg (file, flags | TDF_COMMENT);
2109 fprintf (file, "\n");
2110 }
2111
2112 if (flags & TDF_STATS)
2113 dump_cfg_stats (file);
2114
2115 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2116 }
2117
2118
2119 /* Dump CFG statistics on FILE. */
2120
2121 void
2122 dump_cfg_stats (FILE *file)
2123 {
2124 static long max_num_merged_labels = 0;
2125 unsigned long size, total = 0;
2126 long num_edges;
2127 basic_block bb;
2128 const char * const fmt_str = "%-30s%-13s%12s\n";
2129 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2130 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2131 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2132 const char *funcname = current_function_name ();
2133
2134 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2135
2136 fprintf (file, "---------------------------------------------------------\n");
2137 fprintf (file, fmt_str, "", " Number of ", "Memory");
2138 fprintf (file, fmt_str, "", " instances ", "used ");
2139 fprintf (file, "---------------------------------------------------------\n");
2140
2141 size = n_basic_blocks * sizeof (struct basic_block_def);
2142 total += size;
2143 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2144 SCALE (size), LABEL (size));
2145
2146 num_edges = 0;
2147 FOR_EACH_BB (bb)
2148 num_edges += EDGE_COUNT (bb->succs);
2149 size = num_edges * sizeof (struct edge_def);
2150 total += size;
2151 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2152
2153 fprintf (file, "---------------------------------------------------------\n");
2154 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2155 LABEL (total));
2156 fprintf (file, "---------------------------------------------------------\n");
2157 fprintf (file, "\n");
2158
2159 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2160 max_num_merged_labels = cfg_stats.num_merged_labels;
2161
2162 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2163 cfg_stats.num_merged_labels, max_num_merged_labels);
2164
2165 fprintf (file, "\n");
2166 }
2167
2168
2169 /* Dump CFG statistics on stderr. Keep extern so that it's always
2170 linked in the final executable. */
2171
2172 DEBUG_FUNCTION void
2173 debug_cfg_stats (void)
2174 {
2175 dump_cfg_stats (stderr);
2176 }
2177
2178 /*---------------------------------------------------------------------------
2179 Miscellaneous helpers
2180 ---------------------------------------------------------------------------*/
2181
2182 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2183 flow. Transfers of control flow associated with EH are excluded. */
2184
2185 static bool
2186 call_can_make_abnormal_goto (gimple t)
2187 {
2188 /* If the function has no non-local labels, then a call cannot make an
2189 abnormal transfer of control. */
2190 if (!cfun->has_nonlocal_label
2191 && !cfun->calls_setjmp)
2192 return false;
2193
2194 /* Likewise if the call has no side effects. */
2195 if (!gimple_has_side_effects (t))
2196 return false;
2197
2198 /* Likewise if the called function is leaf. */
2199 if (gimple_call_flags (t) & ECF_LEAF)
2200 return false;
2201
2202 return true;
2203 }
2204
2205
2206 /* Return true if T can make an abnormal transfer of control flow.
2207 Transfers of control flow associated with EH are excluded. */
2208
2209 bool
2210 stmt_can_make_abnormal_goto (gimple t)
2211 {
2212 if (computed_goto_p (t))
2213 return true;
2214 if (is_gimple_call (t))
2215 return call_can_make_abnormal_goto (t);
2216 return false;
2217 }
2218
2219
2220 /* Return true if T represents a stmt that always transfers control. */
2221
2222 bool
2223 is_ctrl_stmt (gimple t)
2224 {
2225 switch (gimple_code (t))
2226 {
2227 case GIMPLE_COND:
2228 case GIMPLE_SWITCH:
2229 case GIMPLE_GOTO:
2230 case GIMPLE_RETURN:
2231 case GIMPLE_RESX:
2232 return true;
2233 default:
2234 return false;
2235 }
2236 }
2237
2238
2239 /* Return true if T is a statement that may alter the flow of control
2240 (e.g., a call to a non-returning function). */
2241
2242 bool
2243 is_ctrl_altering_stmt (gimple t)
2244 {
2245 gcc_assert (t);
2246
2247 switch (gimple_code (t))
2248 {
2249 case GIMPLE_CALL:
2250 {
2251 int flags = gimple_call_flags (t);
2252
2253 /* A call alters control flow if it can make an abnormal goto. */
2254 if (call_can_make_abnormal_goto (t))
2255 return true;
2256
2257 /* A call also alters control flow if it does not return. */
2258 if (flags & ECF_NORETURN)
2259 return true;
2260
2261 /* TM ending statements have backedges out of the transaction.
2262 Return true so we split the basic block containing them.
2263 Note that the TM_BUILTIN test is merely an optimization. */
2264 if ((flags & ECF_TM_BUILTIN)
2265 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2266 return true;
2267
2268 /* BUILT_IN_RETURN call is same as return statement. */
2269 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2270 return true;
2271 }
2272 break;
2273
2274 case GIMPLE_EH_DISPATCH:
2275 /* EH_DISPATCH branches to the individual catch handlers at
2276 this level of a try or allowed-exceptions region. It can
2277 fallthru to the next statement as well. */
2278 return true;
2279
2280 case GIMPLE_ASM:
2281 if (gimple_asm_nlabels (t) > 0)
2282 return true;
2283 break;
2284
2285 CASE_GIMPLE_OMP:
2286 /* OpenMP directives alter control flow. */
2287 return true;
2288
2289 case GIMPLE_TRANSACTION:
2290 /* A transaction start alters control flow. */
2291 return true;
2292
2293 default:
2294 break;
2295 }
2296
2297 /* If a statement can throw, it alters control flow. */
2298 return stmt_can_throw_internal (t);
2299 }
2300
2301
2302 /* Return true if T is a simple local goto. */
2303
2304 bool
2305 simple_goto_p (gimple t)
2306 {
2307 return (gimple_code (t) == GIMPLE_GOTO
2308 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2309 }
2310
2311
2312 /* Return true if STMT should start a new basic block. PREV_STMT is
2313 the statement preceding STMT. It is used when STMT is a label or a
2314 case label. Labels should only start a new basic block if their
2315 previous statement wasn't a label. Otherwise, sequence of labels
2316 would generate unnecessary basic blocks that only contain a single
2317 label. */
2318
2319 static inline bool
2320 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2321 {
2322 if (stmt == NULL)
2323 return false;
2324
2325 /* Labels start a new basic block only if the preceding statement
2326 wasn't a label of the same type. This prevents the creation of
2327 consecutive blocks that have nothing but a single label. */
2328 if (gimple_code (stmt) == GIMPLE_LABEL)
2329 {
2330 /* Nonlocal and computed GOTO targets always start a new block. */
2331 if (DECL_NONLOCAL (gimple_label_label (stmt))
2332 || FORCED_LABEL (gimple_label_label (stmt)))
2333 return true;
2334
2335 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2336 {
2337 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2338 return true;
2339
2340 cfg_stats.num_merged_labels++;
2341 return false;
2342 }
2343 else
2344 return true;
2345 }
2346 else if (gimple_code (stmt) == GIMPLE_CALL
2347 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2348 /* setjmp acts similar to a nonlocal GOTO target and thus should
2349 start a new block. */
2350 return true;
2351
2352 return false;
2353 }
2354
2355
2356 /* Return true if T should end a basic block. */
2357
2358 bool
2359 stmt_ends_bb_p (gimple t)
2360 {
2361 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2362 }
2363
2364 /* Remove block annotations and other data structures. */
2365
2366 void
2367 delete_tree_cfg_annotations (void)
2368 {
2369 vec_free (label_to_block_map);
2370 }
2371
2372
2373 /* Return the first statement in basic block BB. */
2374
2375 gimple
2376 first_stmt (basic_block bb)
2377 {
2378 gimple_stmt_iterator i = gsi_start_bb (bb);
2379 gimple stmt = NULL;
2380
2381 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2382 {
2383 gsi_next (&i);
2384 stmt = NULL;
2385 }
2386 return stmt;
2387 }
2388
2389 /* Return the first non-label statement in basic block BB. */
2390
2391 static gimple
2392 first_non_label_stmt (basic_block bb)
2393 {
2394 gimple_stmt_iterator i = gsi_start_bb (bb);
2395 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2396 gsi_next (&i);
2397 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2398 }
2399
2400 /* Return the last statement in basic block BB. */
2401
2402 gimple
2403 last_stmt (basic_block bb)
2404 {
2405 gimple_stmt_iterator i = gsi_last_bb (bb);
2406 gimple stmt = NULL;
2407
2408 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2409 {
2410 gsi_prev (&i);
2411 stmt = NULL;
2412 }
2413 return stmt;
2414 }
2415
2416 /* Return the last statement of an otherwise empty block. Return NULL
2417 if the block is totally empty, or if it contains more than one
2418 statement. */
2419
2420 gimple
2421 last_and_only_stmt (basic_block bb)
2422 {
2423 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2424 gimple last, prev;
2425
2426 if (gsi_end_p (i))
2427 return NULL;
2428
2429 last = gsi_stmt (i);
2430 gsi_prev_nondebug (&i);
2431 if (gsi_end_p (i))
2432 return last;
2433
2434 /* Empty statements should no longer appear in the instruction stream.
2435 Everything that might have appeared before should be deleted by
2436 remove_useless_stmts, and the optimizers should just gsi_remove
2437 instead of smashing with build_empty_stmt.
2438
2439 Thus the only thing that should appear here in a block containing
2440 one executable statement is a label. */
2441 prev = gsi_stmt (i);
2442 if (gimple_code (prev) == GIMPLE_LABEL)
2443 return last;
2444 else
2445 return NULL;
2446 }
2447
2448 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2449
2450 static void
2451 reinstall_phi_args (edge new_edge, edge old_edge)
2452 {
2453 edge_var_map_vector *v;
2454 edge_var_map *vm;
2455 int i;
2456 gimple_stmt_iterator phis;
2457
2458 v = redirect_edge_var_map_vector (old_edge);
2459 if (!v)
2460 return;
2461
2462 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2463 v->iterate (i, &vm) && !gsi_end_p (phis);
2464 i++, gsi_next (&phis))
2465 {
2466 gimple phi = gsi_stmt (phis);
2467 tree result = redirect_edge_var_map_result (vm);
2468 tree arg = redirect_edge_var_map_def (vm);
2469
2470 gcc_assert (result == gimple_phi_result (phi));
2471
2472 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2473 }
2474
2475 redirect_edge_var_map_clear (old_edge);
2476 }
2477
2478 /* Returns the basic block after which the new basic block created
2479 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2480 near its "logical" location. This is of most help to humans looking
2481 at debugging dumps. */
2482
2483 static basic_block
2484 split_edge_bb_loc (edge edge_in)
2485 {
2486 basic_block dest = edge_in->dest;
2487 basic_block dest_prev = dest->prev_bb;
2488
2489 if (dest_prev)
2490 {
2491 edge e = find_edge (dest_prev, dest);
2492 if (e && !(e->flags & EDGE_COMPLEX))
2493 return edge_in->src;
2494 }
2495 return dest_prev;
2496 }
2497
2498 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2499 Abort on abnormal edges. */
2500
2501 static basic_block
2502 gimple_split_edge (edge edge_in)
2503 {
2504 basic_block new_bb, after_bb, dest;
2505 edge new_edge, e;
2506
2507 /* Abnormal edges cannot be split. */
2508 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2509
2510 dest = edge_in->dest;
2511
2512 after_bb = split_edge_bb_loc (edge_in);
2513
2514 new_bb = create_empty_bb (after_bb);
2515 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2516 new_bb->count = edge_in->count;
2517 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2518 new_edge->probability = REG_BR_PROB_BASE;
2519 new_edge->count = edge_in->count;
2520
2521 e = redirect_edge_and_branch (edge_in, new_bb);
2522 gcc_assert (e == edge_in);
2523 reinstall_phi_args (new_edge, e);
2524
2525 return new_bb;
2526 }
2527
2528
2529 /* Verify properties of the address expression T with base object BASE. */
2530
2531 static tree
2532 verify_address (tree t, tree base)
2533 {
2534 bool old_constant;
2535 bool old_side_effects;
2536 bool new_constant;
2537 bool new_side_effects;
2538
2539 old_constant = TREE_CONSTANT (t);
2540 old_side_effects = TREE_SIDE_EFFECTS (t);
2541
2542 recompute_tree_invariant_for_addr_expr (t);
2543 new_side_effects = TREE_SIDE_EFFECTS (t);
2544 new_constant = TREE_CONSTANT (t);
2545
2546 if (old_constant != new_constant)
2547 {
2548 error ("constant not recomputed when ADDR_EXPR changed");
2549 return t;
2550 }
2551 if (old_side_effects != new_side_effects)
2552 {
2553 error ("side effects not recomputed when ADDR_EXPR changed");
2554 return t;
2555 }
2556
2557 if (!(TREE_CODE (base) == VAR_DECL
2558 || TREE_CODE (base) == PARM_DECL
2559 || TREE_CODE (base) == RESULT_DECL))
2560 return NULL_TREE;
2561
2562 if (DECL_GIMPLE_REG_P (base))
2563 {
2564 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2565 return base;
2566 }
2567
2568 return NULL_TREE;
2569 }
2570
2571 /* Callback for walk_tree, check that all elements with address taken are
2572 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2573 inside a PHI node. */
2574
2575 static tree
2576 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2577 {
2578 tree t = *tp, x;
2579
2580 if (TYPE_P (t))
2581 *walk_subtrees = 0;
2582
2583 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2584 #define CHECK_OP(N, MSG) \
2585 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2586 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2587
2588 switch (TREE_CODE (t))
2589 {
2590 case SSA_NAME:
2591 if (SSA_NAME_IN_FREE_LIST (t))
2592 {
2593 error ("SSA name in freelist but still referenced");
2594 return *tp;
2595 }
2596 break;
2597
2598 case INDIRECT_REF:
2599 error ("INDIRECT_REF in gimple IL");
2600 return t;
2601
2602 case MEM_REF:
2603 x = TREE_OPERAND (t, 0);
2604 if (!POINTER_TYPE_P (TREE_TYPE (x))
2605 || !is_gimple_mem_ref_addr (x))
2606 {
2607 error ("invalid first operand of MEM_REF");
2608 return x;
2609 }
2610 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2611 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2612 {
2613 error ("invalid offset operand of MEM_REF");
2614 return TREE_OPERAND (t, 1);
2615 }
2616 if (TREE_CODE (x) == ADDR_EXPR
2617 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2618 return x;
2619 *walk_subtrees = 0;
2620 break;
2621
2622 case ASSERT_EXPR:
2623 x = fold (ASSERT_EXPR_COND (t));
2624 if (x == boolean_false_node)
2625 {
2626 error ("ASSERT_EXPR with an always-false condition");
2627 return *tp;
2628 }
2629 break;
2630
2631 case MODIFY_EXPR:
2632 error ("MODIFY_EXPR not expected while having tuples");
2633 return *tp;
2634
2635 case ADDR_EXPR:
2636 {
2637 tree tem;
2638
2639 gcc_assert (is_gimple_address (t));
2640
2641 /* Skip any references (they will be checked when we recurse down the
2642 tree) and ensure that any variable used as a prefix is marked
2643 addressable. */
2644 for (x = TREE_OPERAND (t, 0);
2645 handled_component_p (x);
2646 x = TREE_OPERAND (x, 0))
2647 ;
2648
2649 if ((tem = verify_address (t, x)))
2650 return tem;
2651
2652 if (!(TREE_CODE (x) == VAR_DECL
2653 || TREE_CODE (x) == PARM_DECL
2654 || TREE_CODE (x) == RESULT_DECL))
2655 return NULL;
2656
2657 if (!TREE_ADDRESSABLE (x))
2658 {
2659 error ("address taken, but ADDRESSABLE bit not set");
2660 return x;
2661 }
2662
2663 break;
2664 }
2665
2666 case COND_EXPR:
2667 x = COND_EXPR_COND (t);
2668 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2669 {
2670 error ("non-integral used in condition");
2671 return x;
2672 }
2673 if (!is_gimple_condexpr (x))
2674 {
2675 error ("invalid conditional operand");
2676 return x;
2677 }
2678 break;
2679
2680 case NON_LVALUE_EXPR:
2681 case TRUTH_NOT_EXPR:
2682 gcc_unreachable ();
2683
2684 CASE_CONVERT:
2685 case FIX_TRUNC_EXPR:
2686 case FLOAT_EXPR:
2687 case NEGATE_EXPR:
2688 case ABS_EXPR:
2689 case BIT_NOT_EXPR:
2690 CHECK_OP (0, "invalid operand to unary operator");
2691 break;
2692
2693 case REALPART_EXPR:
2694 case IMAGPART_EXPR:
2695 case BIT_FIELD_REF:
2696 if (!is_gimple_reg_type (TREE_TYPE (t)))
2697 {
2698 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2699 return t;
2700 }
2701
2702 if (TREE_CODE (t) == BIT_FIELD_REF)
2703 {
2704 if (!tree_fits_uhwi_p (TREE_OPERAND (t, 1))
2705 || !tree_fits_uhwi_p (TREE_OPERAND (t, 2)))
2706 {
2707 error ("invalid position or size operand to BIT_FIELD_REF");
2708 return t;
2709 }
2710 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2711 && (TYPE_PRECISION (TREE_TYPE (t))
2712 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2713 {
2714 error ("integral result type precision does not match "
2715 "field size of BIT_FIELD_REF");
2716 return t;
2717 }
2718 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2719 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2720 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2721 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2722 {
2723 error ("mode precision of non-integral result does not "
2724 "match field size of BIT_FIELD_REF");
2725 return t;
2726 }
2727 }
2728 t = TREE_OPERAND (t, 0);
2729
2730 /* Fall-through. */
2731 case COMPONENT_REF:
2732 case ARRAY_REF:
2733 case ARRAY_RANGE_REF:
2734 case VIEW_CONVERT_EXPR:
2735 /* We have a nest of references. Verify that each of the operands
2736 that determine where to reference is either a constant or a variable,
2737 verify that the base is valid, and then show we've already checked
2738 the subtrees. */
2739 while (handled_component_p (t))
2740 {
2741 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2742 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2743 else if (TREE_CODE (t) == ARRAY_REF
2744 || TREE_CODE (t) == ARRAY_RANGE_REF)
2745 {
2746 CHECK_OP (1, "invalid array index");
2747 if (TREE_OPERAND (t, 2))
2748 CHECK_OP (2, "invalid array lower bound");
2749 if (TREE_OPERAND (t, 3))
2750 CHECK_OP (3, "invalid array stride");
2751 }
2752 else if (TREE_CODE (t) == BIT_FIELD_REF
2753 || TREE_CODE (t) == REALPART_EXPR
2754 || TREE_CODE (t) == IMAGPART_EXPR)
2755 {
2756 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2757 "REALPART_EXPR");
2758 return t;
2759 }
2760
2761 t = TREE_OPERAND (t, 0);
2762 }
2763
2764 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2765 {
2766 error ("invalid reference prefix");
2767 return t;
2768 }
2769 *walk_subtrees = 0;
2770 break;
2771 case PLUS_EXPR:
2772 case MINUS_EXPR:
2773 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2774 POINTER_PLUS_EXPR. */
2775 if (POINTER_TYPE_P (TREE_TYPE (t)))
2776 {
2777 error ("invalid operand to plus/minus, type is a pointer");
2778 return t;
2779 }
2780 CHECK_OP (0, "invalid operand to binary operator");
2781 CHECK_OP (1, "invalid operand to binary operator");
2782 break;
2783
2784 case POINTER_PLUS_EXPR:
2785 /* Check to make sure the first operand is a pointer or reference type. */
2786 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2787 {
2788 error ("invalid operand to pointer plus, first operand is not a pointer");
2789 return t;
2790 }
2791 /* Check to make sure the second operand is a ptrofftype. */
2792 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2793 {
2794 error ("invalid operand to pointer plus, second operand is not an "
2795 "integer type of appropriate width");
2796 return t;
2797 }
2798 /* FALLTHROUGH */
2799 case LT_EXPR:
2800 case LE_EXPR:
2801 case GT_EXPR:
2802 case GE_EXPR:
2803 case EQ_EXPR:
2804 case NE_EXPR:
2805 case UNORDERED_EXPR:
2806 case ORDERED_EXPR:
2807 case UNLT_EXPR:
2808 case UNLE_EXPR:
2809 case UNGT_EXPR:
2810 case UNGE_EXPR:
2811 case UNEQ_EXPR:
2812 case LTGT_EXPR:
2813 case MULT_EXPR:
2814 case TRUNC_DIV_EXPR:
2815 case CEIL_DIV_EXPR:
2816 case FLOOR_DIV_EXPR:
2817 case ROUND_DIV_EXPR:
2818 case TRUNC_MOD_EXPR:
2819 case CEIL_MOD_EXPR:
2820 case FLOOR_MOD_EXPR:
2821 case ROUND_MOD_EXPR:
2822 case RDIV_EXPR:
2823 case EXACT_DIV_EXPR:
2824 case MIN_EXPR:
2825 case MAX_EXPR:
2826 case LSHIFT_EXPR:
2827 case RSHIFT_EXPR:
2828 case LROTATE_EXPR:
2829 case RROTATE_EXPR:
2830 case BIT_IOR_EXPR:
2831 case BIT_XOR_EXPR:
2832 case BIT_AND_EXPR:
2833 CHECK_OP (0, "invalid operand to binary operator");
2834 CHECK_OP (1, "invalid operand to binary operator");
2835 break;
2836
2837 case CONSTRUCTOR:
2838 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2839 *walk_subtrees = 0;
2840 break;
2841
2842 case CASE_LABEL_EXPR:
2843 if (CASE_CHAIN (t))
2844 {
2845 error ("invalid CASE_CHAIN");
2846 return t;
2847 }
2848 break;
2849
2850 default:
2851 break;
2852 }
2853 return NULL;
2854
2855 #undef CHECK_OP
2856 }
2857
2858
2859 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2860 Returns true if there is an error, otherwise false. */
2861
2862 static bool
2863 verify_types_in_gimple_min_lval (tree expr)
2864 {
2865 tree op;
2866
2867 if (is_gimple_id (expr))
2868 return false;
2869
2870 if (TREE_CODE (expr) != TARGET_MEM_REF
2871 && TREE_CODE (expr) != MEM_REF)
2872 {
2873 error ("invalid expression for min lvalue");
2874 return true;
2875 }
2876
2877 /* TARGET_MEM_REFs are strange beasts. */
2878 if (TREE_CODE (expr) == TARGET_MEM_REF)
2879 return false;
2880
2881 op = TREE_OPERAND (expr, 0);
2882 if (!is_gimple_val (op))
2883 {
2884 error ("invalid operand in indirect reference");
2885 debug_generic_stmt (op);
2886 return true;
2887 }
2888 /* Memory references now generally can involve a value conversion. */
2889
2890 return false;
2891 }
2892
2893 /* Verify if EXPR is a valid GIMPLE reference expression. If
2894 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2895 if there is an error, otherwise false. */
2896
2897 static bool
2898 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2899 {
2900 while (handled_component_p (expr))
2901 {
2902 tree op = TREE_OPERAND (expr, 0);
2903
2904 if (TREE_CODE (expr) == ARRAY_REF
2905 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2906 {
2907 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2908 || (TREE_OPERAND (expr, 2)
2909 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2910 || (TREE_OPERAND (expr, 3)
2911 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2912 {
2913 error ("invalid operands to array reference");
2914 debug_generic_stmt (expr);
2915 return true;
2916 }
2917 }
2918
2919 /* Verify if the reference array element types are compatible. */
2920 if (TREE_CODE (expr) == ARRAY_REF
2921 && !useless_type_conversion_p (TREE_TYPE (expr),
2922 TREE_TYPE (TREE_TYPE (op))))
2923 {
2924 error ("type mismatch in array reference");
2925 debug_generic_stmt (TREE_TYPE (expr));
2926 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2927 return true;
2928 }
2929 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2930 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2931 TREE_TYPE (TREE_TYPE (op))))
2932 {
2933 error ("type mismatch in array range reference");
2934 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2935 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2936 return true;
2937 }
2938
2939 if ((TREE_CODE (expr) == REALPART_EXPR
2940 || TREE_CODE (expr) == IMAGPART_EXPR)
2941 && !useless_type_conversion_p (TREE_TYPE (expr),
2942 TREE_TYPE (TREE_TYPE (op))))
2943 {
2944 error ("type mismatch in real/imagpart reference");
2945 debug_generic_stmt (TREE_TYPE (expr));
2946 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2947 return true;
2948 }
2949
2950 if (TREE_CODE (expr) == COMPONENT_REF
2951 && !useless_type_conversion_p (TREE_TYPE (expr),
2952 TREE_TYPE (TREE_OPERAND (expr, 1))))
2953 {
2954 error ("type mismatch in component reference");
2955 debug_generic_stmt (TREE_TYPE (expr));
2956 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2957 return true;
2958 }
2959
2960 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2961 {
2962 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2963 that their operand is not an SSA name or an invariant when
2964 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2965 bug). Otherwise there is nothing to verify, gross mismatches at
2966 most invoke undefined behavior. */
2967 if (require_lvalue
2968 && (TREE_CODE (op) == SSA_NAME
2969 || is_gimple_min_invariant (op)))
2970 {
2971 error ("conversion of an SSA_NAME on the left hand side");
2972 debug_generic_stmt (expr);
2973 return true;
2974 }
2975 else if (TREE_CODE (op) == SSA_NAME
2976 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2977 {
2978 error ("conversion of register to a different size");
2979 debug_generic_stmt (expr);
2980 return true;
2981 }
2982 else if (!handled_component_p (op))
2983 return false;
2984 }
2985
2986 expr = op;
2987 }
2988
2989 if (TREE_CODE (expr) == MEM_REF)
2990 {
2991 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2992 {
2993 error ("invalid address operand in MEM_REF");
2994 debug_generic_stmt (expr);
2995 return true;
2996 }
2997 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2998 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2999 {
3000 error ("invalid offset operand in MEM_REF");
3001 debug_generic_stmt (expr);
3002 return true;
3003 }
3004 }
3005 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3006 {
3007 if (!TMR_BASE (expr)
3008 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3009 {
3010 error ("invalid address operand in TARGET_MEM_REF");
3011 return true;
3012 }
3013 if (!TMR_OFFSET (expr)
3014 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3015 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3016 {
3017 error ("invalid offset operand in TARGET_MEM_REF");
3018 debug_generic_stmt (expr);
3019 return true;
3020 }
3021 }
3022
3023 return ((require_lvalue || !is_gimple_min_invariant (expr))
3024 && verify_types_in_gimple_min_lval (expr));
3025 }
3026
3027 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3028 list of pointer-to types that is trivially convertible to DEST. */
3029
3030 static bool
3031 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3032 {
3033 tree src;
3034
3035 if (!TYPE_POINTER_TO (src_obj))
3036 return true;
3037
3038 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3039 if (useless_type_conversion_p (dest, src))
3040 return true;
3041
3042 return false;
3043 }
3044
3045 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3046 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3047
3048 static bool
3049 valid_fixed_convert_types_p (tree type1, tree type2)
3050 {
3051 return (FIXED_POINT_TYPE_P (type1)
3052 && (INTEGRAL_TYPE_P (type2)
3053 || SCALAR_FLOAT_TYPE_P (type2)
3054 || FIXED_POINT_TYPE_P (type2)));
3055 }
3056
3057 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3058 is a problem, otherwise false. */
3059
3060 static bool
3061 verify_gimple_call (gimple stmt)
3062 {
3063 tree fn = gimple_call_fn (stmt);
3064 tree fntype, fndecl;
3065 unsigned i;
3066
3067 if (gimple_call_internal_p (stmt))
3068 {
3069 if (fn)
3070 {
3071 error ("gimple call has two targets");
3072 debug_generic_stmt (fn);
3073 return true;
3074 }
3075 }
3076 else
3077 {
3078 if (!fn)
3079 {
3080 error ("gimple call has no target");
3081 return true;
3082 }
3083 }
3084
3085 if (fn && !is_gimple_call_addr (fn))
3086 {
3087 error ("invalid function in gimple call");
3088 debug_generic_stmt (fn);
3089 return true;
3090 }
3091
3092 if (fn
3093 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3094 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3095 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3096 {
3097 error ("non-function in gimple call");
3098 return true;
3099 }
3100
3101 fndecl = gimple_call_fndecl (stmt);
3102 if (fndecl
3103 && TREE_CODE (fndecl) == FUNCTION_DECL
3104 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3105 && !DECL_PURE_P (fndecl)
3106 && !TREE_READONLY (fndecl))
3107 {
3108 error ("invalid pure const state for function");
3109 return true;
3110 }
3111
3112 if (gimple_call_lhs (stmt)
3113 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3114 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3115 {
3116 error ("invalid LHS in gimple call");
3117 return true;
3118 }
3119
3120 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3121 {
3122 error ("LHS in noreturn call");
3123 return true;
3124 }
3125
3126 fntype = gimple_call_fntype (stmt);
3127 if (fntype
3128 && gimple_call_lhs (stmt)
3129 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3130 TREE_TYPE (fntype))
3131 /* ??? At least C++ misses conversions at assignments from
3132 void * call results.
3133 ??? Java is completely off. Especially with functions
3134 returning java.lang.Object.
3135 For now simply allow arbitrary pointer type conversions. */
3136 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3137 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3138 {
3139 error ("invalid conversion in gimple call");
3140 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3141 debug_generic_stmt (TREE_TYPE (fntype));
3142 return true;
3143 }
3144
3145 if (gimple_call_chain (stmt)
3146 && !is_gimple_val (gimple_call_chain (stmt)))
3147 {
3148 error ("invalid static chain in gimple call");
3149 debug_generic_stmt (gimple_call_chain (stmt));
3150 return true;
3151 }
3152
3153 /* If there is a static chain argument, this should not be an indirect
3154 call, and the decl should have DECL_STATIC_CHAIN set. */
3155 if (gimple_call_chain (stmt))
3156 {
3157 if (!gimple_call_fndecl (stmt))
3158 {
3159 error ("static chain in indirect gimple call");
3160 return true;
3161 }
3162 fn = TREE_OPERAND (fn, 0);
3163
3164 if (!DECL_STATIC_CHAIN (fn))
3165 {
3166 error ("static chain with function that doesn%'t use one");
3167 return true;
3168 }
3169 }
3170
3171 /* ??? The C frontend passes unpromoted arguments in case it
3172 didn't see a function declaration before the call. So for now
3173 leave the call arguments mostly unverified. Once we gimplify
3174 unit-at-a-time we have a chance to fix this. */
3175
3176 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3177 {
3178 tree arg = gimple_call_arg (stmt, i);
3179 if ((is_gimple_reg_type (TREE_TYPE (arg))
3180 && !is_gimple_val (arg))
3181 || (!is_gimple_reg_type (TREE_TYPE (arg))
3182 && !is_gimple_lvalue (arg)))
3183 {
3184 error ("invalid argument to gimple call");
3185 debug_generic_expr (arg);
3186 return true;
3187 }
3188 }
3189
3190 return false;
3191 }
3192
3193 /* Verifies the gimple comparison with the result type TYPE and
3194 the operands OP0 and OP1. */
3195
3196 static bool
3197 verify_gimple_comparison (tree type, tree op0, tree op1)
3198 {
3199 tree op0_type = TREE_TYPE (op0);
3200 tree op1_type = TREE_TYPE (op1);
3201
3202 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3203 {
3204 error ("invalid operands in gimple comparison");
3205 return true;
3206 }
3207
3208 /* For comparisons we do not have the operations type as the
3209 effective type the comparison is carried out in. Instead
3210 we require that either the first operand is trivially
3211 convertible into the second, or the other way around.
3212 Because we special-case pointers to void we allow
3213 comparisons of pointers with the same mode as well. */
3214 if (!useless_type_conversion_p (op0_type, op1_type)
3215 && !useless_type_conversion_p (op1_type, op0_type)
3216 && (!POINTER_TYPE_P (op0_type)
3217 || !POINTER_TYPE_P (op1_type)
3218 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3219 {
3220 error ("mismatching comparison operand types");
3221 debug_generic_expr (op0_type);
3222 debug_generic_expr (op1_type);
3223 return true;
3224 }
3225
3226 /* The resulting type of a comparison may be an effective boolean type. */
3227 if (INTEGRAL_TYPE_P (type)
3228 && (TREE_CODE (type) == BOOLEAN_TYPE
3229 || TYPE_PRECISION (type) == 1))
3230 {
3231 if (TREE_CODE (op0_type) == VECTOR_TYPE
3232 || TREE_CODE (op1_type) == VECTOR_TYPE)
3233 {
3234 error ("vector comparison returning a boolean");
3235 debug_generic_expr (op0_type);
3236 debug_generic_expr (op1_type);
3237 return true;
3238 }
3239 }
3240 /* Or an integer vector type with the same size and element count
3241 as the comparison operand types. */
3242 else if (TREE_CODE (type) == VECTOR_TYPE
3243 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3244 {
3245 if (TREE_CODE (op0_type) != VECTOR_TYPE
3246 || TREE_CODE (op1_type) != VECTOR_TYPE)
3247 {
3248 error ("non-vector operands in vector comparison");
3249 debug_generic_expr (op0_type);
3250 debug_generic_expr (op1_type);
3251 return true;
3252 }
3253
3254 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3255 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3256 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3257 /* The result of a vector comparison is of signed
3258 integral type. */
3259 || TYPE_UNSIGNED (TREE_TYPE (type)))
3260 {
3261 error ("invalid vector comparison resulting type");
3262 debug_generic_expr (type);
3263 return true;
3264 }
3265 }
3266 else
3267 {
3268 error ("bogus comparison result type");
3269 debug_generic_expr (type);
3270 return true;
3271 }
3272
3273 return false;
3274 }
3275
3276 /* Verify a gimple assignment statement STMT with an unary rhs.
3277 Returns true if anything is wrong. */
3278
3279 static bool
3280 verify_gimple_assign_unary (gimple stmt)
3281 {
3282 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3283 tree lhs = gimple_assign_lhs (stmt);
3284 tree lhs_type = TREE_TYPE (lhs);
3285 tree rhs1 = gimple_assign_rhs1 (stmt);
3286 tree rhs1_type = TREE_TYPE (rhs1);
3287
3288 if (!is_gimple_reg (lhs))
3289 {
3290 error ("non-register as LHS of unary operation");
3291 return true;
3292 }
3293
3294 if (!is_gimple_val (rhs1))
3295 {
3296 error ("invalid operand in unary operation");
3297 return true;
3298 }
3299
3300 /* First handle conversions. */
3301 switch (rhs_code)
3302 {
3303 CASE_CONVERT:
3304 {
3305 /* Allow conversions from pointer type to integral type only if
3306 there is no sign or zero extension involved.
3307 For targets were the precision of ptrofftype doesn't match that
3308 of pointers we need to allow arbitrary conversions to ptrofftype. */
3309 if ((POINTER_TYPE_P (lhs_type)
3310 && INTEGRAL_TYPE_P (rhs1_type))
3311 || (POINTER_TYPE_P (rhs1_type)
3312 && INTEGRAL_TYPE_P (lhs_type)
3313 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3314 || ptrofftype_p (sizetype))))
3315 return false;
3316
3317 /* Allow conversion from integral to offset type and vice versa. */
3318 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3319 && INTEGRAL_TYPE_P (rhs1_type))
3320 || (INTEGRAL_TYPE_P (lhs_type)
3321 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3322 return false;
3323
3324 /* Otherwise assert we are converting between types of the
3325 same kind. */
3326 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3327 {
3328 error ("invalid types in nop conversion");
3329 debug_generic_expr (lhs_type);
3330 debug_generic_expr (rhs1_type);
3331 return true;
3332 }
3333
3334 return false;
3335 }
3336
3337 case ADDR_SPACE_CONVERT_EXPR:
3338 {
3339 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3340 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3341 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3342 {
3343 error ("invalid types in address space conversion");
3344 debug_generic_expr (lhs_type);
3345 debug_generic_expr (rhs1_type);
3346 return true;
3347 }
3348
3349 return false;
3350 }
3351
3352 case FIXED_CONVERT_EXPR:
3353 {
3354 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3355 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3356 {
3357 error ("invalid types in fixed-point conversion");
3358 debug_generic_expr (lhs_type);
3359 debug_generic_expr (rhs1_type);
3360 return true;
3361 }
3362
3363 return false;
3364 }
3365
3366 case FLOAT_EXPR:
3367 {
3368 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3369 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3370 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3371 {
3372 error ("invalid types in conversion to floating point");
3373 debug_generic_expr (lhs_type);
3374 debug_generic_expr (rhs1_type);
3375 return true;
3376 }
3377
3378 return false;
3379 }
3380
3381 case FIX_TRUNC_EXPR:
3382 {
3383 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3384 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3385 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3386 {
3387 error ("invalid types in conversion to integer");
3388 debug_generic_expr (lhs_type);
3389 debug_generic_expr (rhs1_type);
3390 return true;
3391 }
3392
3393 return false;
3394 }
3395
3396 case VEC_UNPACK_HI_EXPR:
3397 case VEC_UNPACK_LO_EXPR:
3398 case REDUC_MAX_EXPR:
3399 case REDUC_MIN_EXPR:
3400 case REDUC_PLUS_EXPR:
3401 case VEC_UNPACK_FLOAT_HI_EXPR:
3402 case VEC_UNPACK_FLOAT_LO_EXPR:
3403 /* FIXME. */
3404 return false;
3405
3406 case NEGATE_EXPR:
3407 case ABS_EXPR:
3408 case BIT_NOT_EXPR:
3409 case PAREN_EXPR:
3410 case NON_LVALUE_EXPR:
3411 case CONJ_EXPR:
3412 break;
3413
3414 default:
3415 gcc_unreachable ();
3416 }
3417
3418 /* For the remaining codes assert there is no conversion involved. */
3419 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3420 {
3421 error ("non-trivial conversion in unary operation");
3422 debug_generic_expr (lhs_type);
3423 debug_generic_expr (rhs1_type);
3424 return true;
3425 }
3426
3427 return false;
3428 }
3429
3430 /* Verify a gimple assignment statement STMT with a binary rhs.
3431 Returns true if anything is wrong. */
3432
3433 static bool
3434 verify_gimple_assign_binary (gimple stmt)
3435 {
3436 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3437 tree lhs = gimple_assign_lhs (stmt);
3438 tree lhs_type = TREE_TYPE (lhs);
3439 tree rhs1 = gimple_assign_rhs1 (stmt);
3440 tree rhs1_type = TREE_TYPE (rhs1);
3441 tree rhs2 = gimple_assign_rhs2 (stmt);
3442 tree rhs2_type = TREE_TYPE (rhs2);
3443
3444 if (!is_gimple_reg (lhs))
3445 {
3446 error ("non-register as LHS of binary operation");
3447 return true;
3448 }
3449
3450 if (!is_gimple_val (rhs1)
3451 || !is_gimple_val (rhs2))
3452 {
3453 error ("invalid operands in binary operation");
3454 return true;
3455 }
3456
3457 /* First handle operations that involve different types. */
3458 switch (rhs_code)
3459 {
3460 case COMPLEX_EXPR:
3461 {
3462 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3463 || !(INTEGRAL_TYPE_P (rhs1_type)
3464 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3465 || !(INTEGRAL_TYPE_P (rhs2_type)
3466 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3467 {
3468 error ("type mismatch in complex expression");
3469 debug_generic_expr (lhs_type);
3470 debug_generic_expr (rhs1_type);
3471 debug_generic_expr (rhs2_type);
3472 return true;
3473 }
3474
3475 return false;
3476 }
3477
3478 case LSHIFT_EXPR:
3479 case RSHIFT_EXPR:
3480 case LROTATE_EXPR:
3481 case RROTATE_EXPR:
3482 {
3483 /* Shifts and rotates are ok on integral types, fixed point
3484 types and integer vector types. */
3485 if ((!INTEGRAL_TYPE_P (rhs1_type)
3486 && !FIXED_POINT_TYPE_P (rhs1_type)
3487 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3488 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3489 || (!INTEGRAL_TYPE_P (rhs2_type)
3490 /* Vector shifts of vectors are also ok. */
3491 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3492 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3493 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3494 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3495 || !useless_type_conversion_p (lhs_type, rhs1_type))
3496 {
3497 error ("type mismatch in shift expression");
3498 debug_generic_expr (lhs_type);
3499 debug_generic_expr (rhs1_type);
3500 debug_generic_expr (rhs2_type);
3501 return true;
3502 }
3503
3504 return false;
3505 }
3506
3507 case VEC_LSHIFT_EXPR:
3508 case VEC_RSHIFT_EXPR:
3509 {
3510 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3511 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3512 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3513 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3514 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3515 || (!INTEGRAL_TYPE_P (rhs2_type)
3516 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3517 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3518 || !useless_type_conversion_p (lhs_type, rhs1_type))
3519 {
3520 error ("type mismatch in vector shift expression");
3521 debug_generic_expr (lhs_type);
3522 debug_generic_expr (rhs1_type);
3523 debug_generic_expr (rhs2_type);
3524 return true;
3525 }
3526 /* For shifting a vector of non-integral components we
3527 only allow shifting by a constant multiple of the element size. */
3528 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3529 && (TREE_CODE (rhs2) != INTEGER_CST
3530 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3531 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3532 {
3533 error ("non-element sized vector shift of floating point vector");
3534 return true;
3535 }
3536
3537 return false;
3538 }
3539
3540 case WIDEN_LSHIFT_EXPR:
3541 {
3542 if (!INTEGRAL_TYPE_P (lhs_type)
3543 || !INTEGRAL_TYPE_P (rhs1_type)
3544 || TREE_CODE (rhs2) != INTEGER_CST
3545 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3546 {
3547 error ("type mismatch in widening vector shift expression");
3548 debug_generic_expr (lhs_type);
3549 debug_generic_expr (rhs1_type);
3550 debug_generic_expr (rhs2_type);
3551 return true;
3552 }
3553
3554 return false;
3555 }
3556
3557 case VEC_WIDEN_LSHIFT_HI_EXPR:
3558 case VEC_WIDEN_LSHIFT_LO_EXPR:
3559 {
3560 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3561 || TREE_CODE (lhs_type) != VECTOR_TYPE
3562 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3563 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3564 || TREE_CODE (rhs2) != INTEGER_CST
3565 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3566 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3567 {
3568 error ("type mismatch in widening vector shift expression");
3569 debug_generic_expr (lhs_type);
3570 debug_generic_expr (rhs1_type);
3571 debug_generic_expr (rhs2_type);
3572 return true;
3573 }
3574
3575 return false;
3576 }
3577
3578 case PLUS_EXPR:
3579 case MINUS_EXPR:
3580 {
3581 tree lhs_etype = lhs_type;
3582 tree rhs1_etype = rhs1_type;
3583 tree rhs2_etype = rhs2_type;
3584 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3585 {
3586 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3587 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3588 {
3589 error ("invalid non-vector operands to vector valued plus");
3590 return true;
3591 }
3592 lhs_etype = TREE_TYPE (lhs_type);
3593 rhs1_etype = TREE_TYPE (rhs1_type);
3594 rhs2_etype = TREE_TYPE (rhs2_type);
3595 }
3596 if (POINTER_TYPE_P (lhs_etype)
3597 || POINTER_TYPE_P (rhs1_etype)
3598 || POINTER_TYPE_P (rhs2_etype))
3599 {
3600 error ("invalid (pointer) operands to plus/minus");
3601 return true;
3602 }
3603
3604 /* Continue with generic binary expression handling. */
3605 break;
3606 }
3607
3608 case POINTER_PLUS_EXPR:
3609 {
3610 if (!POINTER_TYPE_P (rhs1_type)
3611 || !useless_type_conversion_p (lhs_type, rhs1_type)
3612 || !ptrofftype_p (rhs2_type))
3613 {
3614 error ("type mismatch in pointer plus expression");
3615 debug_generic_stmt (lhs_type);
3616 debug_generic_stmt (rhs1_type);
3617 debug_generic_stmt (rhs2_type);
3618 return true;
3619 }
3620
3621 return false;
3622 }
3623
3624 case TRUTH_ANDIF_EXPR:
3625 case TRUTH_ORIF_EXPR:
3626 case TRUTH_AND_EXPR:
3627 case TRUTH_OR_EXPR:
3628 case TRUTH_XOR_EXPR:
3629
3630 gcc_unreachable ();
3631
3632 case LT_EXPR:
3633 case LE_EXPR:
3634 case GT_EXPR:
3635 case GE_EXPR:
3636 case EQ_EXPR:
3637 case NE_EXPR:
3638 case UNORDERED_EXPR:
3639 case ORDERED_EXPR:
3640 case UNLT_EXPR:
3641 case UNLE_EXPR:
3642 case UNGT_EXPR:
3643 case UNGE_EXPR:
3644 case UNEQ_EXPR:
3645 case LTGT_EXPR:
3646 /* Comparisons are also binary, but the result type is not
3647 connected to the operand types. */
3648 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3649
3650 case WIDEN_MULT_EXPR:
3651 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3652 return true;
3653 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3654 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3655
3656 case WIDEN_SUM_EXPR:
3657 case VEC_WIDEN_MULT_HI_EXPR:
3658 case VEC_WIDEN_MULT_LO_EXPR:
3659 case VEC_WIDEN_MULT_EVEN_EXPR:
3660 case VEC_WIDEN_MULT_ODD_EXPR:
3661 case VEC_PACK_TRUNC_EXPR:
3662 case VEC_PACK_SAT_EXPR:
3663 case VEC_PACK_FIX_TRUNC_EXPR:
3664 /* FIXME. */
3665 return false;
3666
3667 case MULT_EXPR:
3668 case MULT_HIGHPART_EXPR:
3669 case TRUNC_DIV_EXPR:
3670 case CEIL_DIV_EXPR:
3671 case FLOOR_DIV_EXPR:
3672 case ROUND_DIV_EXPR:
3673 case TRUNC_MOD_EXPR:
3674 case CEIL_MOD_EXPR:
3675 case FLOOR_MOD_EXPR:
3676 case ROUND_MOD_EXPR:
3677 case RDIV_EXPR:
3678 case EXACT_DIV_EXPR:
3679 case MIN_EXPR:
3680 case MAX_EXPR:
3681 case BIT_IOR_EXPR:
3682 case BIT_XOR_EXPR:
3683 case BIT_AND_EXPR:
3684 /* Continue with generic binary expression handling. */
3685 break;
3686
3687 default:
3688 gcc_unreachable ();
3689 }
3690
3691 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3692 || !useless_type_conversion_p (lhs_type, rhs2_type))
3693 {
3694 error ("type mismatch in binary expression");
3695 debug_generic_stmt (lhs_type);
3696 debug_generic_stmt (rhs1_type);
3697 debug_generic_stmt (rhs2_type);
3698 return true;
3699 }
3700
3701 return false;
3702 }
3703
3704 /* Verify a gimple assignment statement STMT with a ternary rhs.
3705 Returns true if anything is wrong. */
3706
3707 static bool
3708 verify_gimple_assign_ternary (gimple stmt)
3709 {
3710 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3711 tree lhs = gimple_assign_lhs (stmt);
3712 tree lhs_type = TREE_TYPE (lhs);
3713 tree rhs1 = gimple_assign_rhs1 (stmt);
3714 tree rhs1_type = TREE_TYPE (rhs1);
3715 tree rhs2 = gimple_assign_rhs2 (stmt);
3716 tree rhs2_type = TREE_TYPE (rhs2);
3717 tree rhs3 = gimple_assign_rhs3 (stmt);
3718 tree rhs3_type = TREE_TYPE (rhs3);
3719
3720 if (!is_gimple_reg (lhs))
3721 {
3722 error ("non-register as LHS of ternary operation");
3723 return true;
3724 }
3725
3726 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3727 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3728 || !is_gimple_val (rhs2)
3729 || !is_gimple_val (rhs3))
3730 {
3731 error ("invalid operands in ternary operation");
3732 return true;
3733 }
3734
3735 /* First handle operations that involve different types. */
3736 switch (rhs_code)
3737 {
3738 case WIDEN_MULT_PLUS_EXPR:
3739 case WIDEN_MULT_MINUS_EXPR:
3740 if ((!INTEGRAL_TYPE_P (rhs1_type)
3741 && !FIXED_POINT_TYPE_P (rhs1_type))
3742 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3743 || !useless_type_conversion_p (lhs_type, rhs3_type)
3744 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3745 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3746 {
3747 error ("type mismatch in widening multiply-accumulate expression");
3748 debug_generic_expr (lhs_type);
3749 debug_generic_expr (rhs1_type);
3750 debug_generic_expr (rhs2_type);
3751 debug_generic_expr (rhs3_type);
3752 return true;
3753 }
3754 break;
3755
3756 case FMA_EXPR:
3757 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3758 || !useless_type_conversion_p (lhs_type, rhs2_type)
3759 || !useless_type_conversion_p (lhs_type, rhs3_type))
3760 {
3761 error ("type mismatch in fused multiply-add expression");
3762 debug_generic_expr (lhs_type);
3763 debug_generic_expr (rhs1_type);
3764 debug_generic_expr (rhs2_type);
3765 debug_generic_expr (rhs3_type);
3766 return true;
3767 }
3768 break;
3769
3770 case COND_EXPR:
3771 case VEC_COND_EXPR:
3772 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3773 || !useless_type_conversion_p (lhs_type, rhs3_type))
3774 {
3775 error ("type mismatch in conditional expression");
3776 debug_generic_expr (lhs_type);
3777 debug_generic_expr (rhs2_type);
3778 debug_generic_expr (rhs3_type);
3779 return true;
3780 }
3781 break;
3782
3783 case VEC_PERM_EXPR:
3784 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3785 || !useless_type_conversion_p (lhs_type, rhs2_type))
3786 {
3787 error ("type mismatch in vector permute expression");
3788 debug_generic_expr (lhs_type);
3789 debug_generic_expr (rhs1_type);
3790 debug_generic_expr (rhs2_type);
3791 debug_generic_expr (rhs3_type);
3792 return true;
3793 }
3794
3795 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3796 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3797 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3798 {
3799 error ("vector types expected in vector permute expression");
3800 debug_generic_expr (lhs_type);
3801 debug_generic_expr (rhs1_type);
3802 debug_generic_expr (rhs2_type);
3803 debug_generic_expr (rhs3_type);
3804 return true;
3805 }
3806
3807 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3808 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3809 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3810 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3811 != TYPE_VECTOR_SUBPARTS (lhs_type))
3812 {
3813 error ("vectors with different element number found "
3814 "in vector permute expression");
3815 debug_generic_expr (lhs_type);
3816 debug_generic_expr (rhs1_type);
3817 debug_generic_expr (rhs2_type);
3818 debug_generic_expr (rhs3_type);
3819 return true;
3820 }
3821
3822 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3823 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3824 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3825 {
3826 error ("invalid mask type in vector permute expression");
3827 debug_generic_expr (lhs_type);
3828 debug_generic_expr (rhs1_type);
3829 debug_generic_expr (rhs2_type);
3830 debug_generic_expr (rhs3_type);
3831 return true;
3832 }
3833
3834 return false;
3835
3836 case DOT_PROD_EXPR:
3837 case REALIGN_LOAD_EXPR:
3838 /* FIXME. */
3839 return false;
3840
3841 default:
3842 gcc_unreachable ();
3843 }
3844 return false;
3845 }
3846
3847 /* Verify a gimple assignment statement STMT with a single rhs.
3848 Returns true if anything is wrong. */
3849
3850 static bool
3851 verify_gimple_assign_single (gimple stmt)
3852 {
3853 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3854 tree lhs = gimple_assign_lhs (stmt);
3855 tree lhs_type = TREE_TYPE (lhs);
3856 tree rhs1 = gimple_assign_rhs1 (stmt);
3857 tree rhs1_type = TREE_TYPE (rhs1);
3858 bool res = false;
3859
3860 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3861 {
3862 error ("non-trivial conversion at assignment");
3863 debug_generic_expr (lhs_type);
3864 debug_generic_expr (rhs1_type);
3865 return true;
3866 }
3867
3868 if (gimple_clobber_p (stmt)
3869 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3870 {
3871 error ("non-decl/MEM_REF LHS in clobber statement");
3872 debug_generic_expr (lhs);
3873 return true;
3874 }
3875
3876 if (handled_component_p (lhs))
3877 res |= verify_types_in_gimple_reference (lhs, true);
3878
3879 /* Special codes we cannot handle via their class. */
3880 switch (rhs_code)
3881 {
3882 case ADDR_EXPR:
3883 {
3884 tree op = TREE_OPERAND (rhs1, 0);
3885 if (!is_gimple_addressable (op))
3886 {
3887 error ("invalid operand in unary expression");
3888 return true;
3889 }
3890
3891 /* Technically there is no longer a need for matching types, but
3892 gimple hygiene asks for this check. In LTO we can end up
3893 combining incompatible units and thus end up with addresses
3894 of globals that change their type to a common one. */
3895 if (!in_lto_p
3896 && !types_compatible_p (TREE_TYPE (op),
3897 TREE_TYPE (TREE_TYPE (rhs1)))
3898 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3899 TREE_TYPE (op)))
3900 {
3901 error ("type mismatch in address expression");
3902 debug_generic_stmt (TREE_TYPE (rhs1));
3903 debug_generic_stmt (TREE_TYPE (op));
3904 return true;
3905 }
3906
3907 return verify_types_in_gimple_reference (op, true);
3908 }
3909
3910 /* tcc_reference */
3911 case INDIRECT_REF:
3912 error ("INDIRECT_REF in gimple IL");
3913 return true;
3914
3915 case COMPONENT_REF:
3916 case BIT_FIELD_REF:
3917 case ARRAY_REF:
3918 case ARRAY_RANGE_REF:
3919 case VIEW_CONVERT_EXPR:
3920 case REALPART_EXPR:
3921 case IMAGPART_EXPR:
3922 case TARGET_MEM_REF:
3923 case MEM_REF:
3924 if (!is_gimple_reg (lhs)
3925 && is_gimple_reg_type (TREE_TYPE (lhs)))
3926 {
3927 error ("invalid rhs for gimple memory store");
3928 debug_generic_stmt (lhs);
3929 debug_generic_stmt (rhs1);
3930 return true;
3931 }
3932 return res || verify_types_in_gimple_reference (rhs1, false);
3933
3934 /* tcc_constant */
3935 case SSA_NAME:
3936 case INTEGER_CST:
3937 case REAL_CST:
3938 case FIXED_CST:
3939 case COMPLEX_CST:
3940 case VECTOR_CST:
3941 case STRING_CST:
3942 return res;
3943
3944 /* tcc_declaration */
3945 case CONST_DECL:
3946 return res;
3947 case VAR_DECL:
3948 case PARM_DECL:
3949 if (!is_gimple_reg (lhs)
3950 && !is_gimple_reg (rhs1)
3951 && is_gimple_reg_type (TREE_TYPE (lhs)))
3952 {
3953 error ("invalid rhs for gimple memory store");
3954 debug_generic_stmt (lhs);
3955 debug_generic_stmt (rhs1);
3956 return true;
3957 }
3958 return res;
3959
3960 case CONSTRUCTOR:
3961 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3962 {
3963 unsigned int i;
3964 tree elt_i, elt_v, elt_t = NULL_TREE;
3965
3966 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3967 return res;
3968 /* For vector CONSTRUCTORs we require that either it is empty
3969 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3970 (then the element count must be correct to cover the whole
3971 outer vector and index must be NULL on all elements, or it is
3972 a CONSTRUCTOR of scalar elements, where we as an exception allow
3973 smaller number of elements (assuming zero filling) and
3974 consecutive indexes as compared to NULL indexes (such
3975 CONSTRUCTORs can appear in the IL from FEs). */
3976 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
3977 {
3978 if (elt_t == NULL_TREE)
3979 {
3980 elt_t = TREE_TYPE (elt_v);
3981 if (TREE_CODE (elt_t) == VECTOR_TYPE)
3982 {
3983 tree elt_t = TREE_TYPE (elt_v);
3984 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
3985 TREE_TYPE (elt_t)))
3986 {
3987 error ("incorrect type of vector CONSTRUCTOR"
3988 " elements");
3989 debug_generic_stmt (rhs1);
3990 return true;
3991 }
3992 else if (CONSTRUCTOR_NELTS (rhs1)
3993 * TYPE_VECTOR_SUBPARTS (elt_t)
3994 != TYPE_VECTOR_SUBPARTS (rhs1_type))
3995 {
3996 error ("incorrect number of vector CONSTRUCTOR"
3997 " elements");
3998 debug_generic_stmt (rhs1);
3999 return true;
4000 }
4001 }
4002 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4003 elt_t))
4004 {
4005 error ("incorrect type of vector CONSTRUCTOR elements");
4006 debug_generic_stmt (rhs1);
4007 return true;
4008 }
4009 else if (CONSTRUCTOR_NELTS (rhs1)
4010 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4011 {
4012 error ("incorrect number of vector CONSTRUCTOR elements");
4013 debug_generic_stmt (rhs1);
4014 return true;
4015 }
4016 }
4017 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4018 {
4019 error ("incorrect type of vector CONSTRUCTOR elements");
4020 debug_generic_stmt (rhs1);
4021 return true;
4022 }
4023 if (elt_i != NULL_TREE
4024 && (TREE_CODE (elt_t) == VECTOR_TYPE
4025 || TREE_CODE (elt_i) != INTEGER_CST
4026 || compare_tree_int (elt_i, i) != 0))
4027 {
4028 error ("vector CONSTRUCTOR with non-NULL element index");
4029 debug_generic_stmt (rhs1);
4030 return true;
4031 }
4032 }
4033 }
4034 return res;
4035 case OBJ_TYPE_REF:
4036 case ASSERT_EXPR:
4037 case WITH_SIZE_EXPR:
4038 /* FIXME. */
4039 return res;
4040
4041 default:;
4042 }
4043
4044 return res;
4045 }
4046
4047 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4048 is a problem, otherwise false. */
4049
4050 static bool
4051 verify_gimple_assign (gimple stmt)
4052 {
4053 switch (gimple_assign_rhs_class (stmt))
4054 {
4055 case GIMPLE_SINGLE_RHS:
4056 return verify_gimple_assign_single (stmt);
4057
4058 case GIMPLE_UNARY_RHS:
4059 return verify_gimple_assign_unary (stmt);
4060
4061 case GIMPLE_BINARY_RHS:
4062 return verify_gimple_assign_binary (stmt);
4063
4064 case GIMPLE_TERNARY_RHS:
4065 return verify_gimple_assign_ternary (stmt);
4066
4067 default:
4068 gcc_unreachable ();
4069 }
4070 }
4071
4072 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4073 is a problem, otherwise false. */
4074
4075 static bool
4076 verify_gimple_return (gimple stmt)
4077 {
4078 tree op = gimple_return_retval (stmt);
4079 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4080
4081 /* We cannot test for present return values as we do not fix up missing
4082 return values from the original source. */
4083 if (op == NULL)
4084 return false;
4085
4086 if (!is_gimple_val (op)
4087 && TREE_CODE (op) != RESULT_DECL)
4088 {
4089 error ("invalid operand in return statement");
4090 debug_generic_stmt (op);
4091 return true;
4092 }
4093
4094 if ((TREE_CODE (op) == RESULT_DECL
4095 && DECL_BY_REFERENCE (op))
4096 || (TREE_CODE (op) == SSA_NAME
4097 && SSA_NAME_VAR (op)
4098 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4099 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4100 op = TREE_TYPE (op);
4101
4102 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4103 {
4104 error ("invalid conversion in return statement");
4105 debug_generic_stmt (restype);
4106 debug_generic_stmt (TREE_TYPE (op));
4107 return true;
4108 }
4109
4110 return false;
4111 }
4112
4113
4114 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4115 is a problem, otherwise false. */
4116
4117 static bool
4118 verify_gimple_goto (gimple stmt)
4119 {
4120 tree dest = gimple_goto_dest (stmt);
4121
4122 /* ??? We have two canonical forms of direct goto destinations, a
4123 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4124 if (TREE_CODE (dest) != LABEL_DECL
4125 && (!is_gimple_val (dest)
4126 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4127 {
4128 error ("goto destination is neither a label nor a pointer");
4129 return true;
4130 }
4131
4132 return false;
4133 }
4134
4135 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4136 is a problem, otherwise false. */
4137
4138 static bool
4139 verify_gimple_switch (gimple stmt)
4140 {
4141 unsigned int i, n;
4142 tree elt, prev_upper_bound = NULL_TREE;
4143 tree index_type, elt_type = NULL_TREE;
4144
4145 if (!is_gimple_val (gimple_switch_index (stmt)))
4146 {
4147 error ("invalid operand to switch statement");
4148 debug_generic_stmt (gimple_switch_index (stmt));
4149 return true;
4150 }
4151
4152 index_type = TREE_TYPE (gimple_switch_index (stmt));
4153 if (! INTEGRAL_TYPE_P (index_type))
4154 {
4155 error ("non-integral type switch statement");
4156 debug_generic_expr (index_type);
4157 return true;
4158 }
4159
4160 elt = gimple_switch_label (stmt, 0);
4161 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4162 {
4163 error ("invalid default case label in switch statement");
4164 debug_generic_expr (elt);
4165 return true;
4166 }
4167
4168 n = gimple_switch_num_labels (stmt);
4169 for (i = 1; i < n; i++)
4170 {
4171 elt = gimple_switch_label (stmt, i);
4172
4173 if (! CASE_LOW (elt))
4174 {
4175 error ("invalid case label in switch statement");
4176 debug_generic_expr (elt);
4177 return true;
4178 }
4179 if (CASE_HIGH (elt)
4180 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4181 {
4182 error ("invalid case range in switch statement");
4183 debug_generic_expr (elt);
4184 return true;
4185 }
4186
4187 if (elt_type)
4188 {
4189 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4190 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4191 {
4192 error ("type mismatch for case label in switch statement");
4193 debug_generic_expr (elt);
4194 return true;
4195 }
4196 }
4197 else
4198 {
4199 elt_type = TREE_TYPE (CASE_LOW (elt));
4200 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4201 {
4202 error ("type precision mismatch in switch statement");
4203 return true;
4204 }
4205 }
4206
4207 if (prev_upper_bound)
4208 {
4209 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4210 {
4211 error ("case labels not sorted in switch statement");
4212 return true;
4213 }
4214 }
4215
4216 prev_upper_bound = CASE_HIGH (elt);
4217 if (! prev_upper_bound)
4218 prev_upper_bound = CASE_LOW (elt);
4219 }
4220
4221 return false;
4222 }
4223
4224 /* Verify a gimple debug statement STMT.
4225 Returns true if anything is wrong. */
4226
4227 static bool
4228 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4229 {
4230 /* There isn't much that could be wrong in a gimple debug stmt. A
4231 gimple debug bind stmt, for example, maps a tree, that's usually
4232 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4233 component or member of an aggregate type, to another tree, that
4234 can be an arbitrary expression. These stmts expand into debug
4235 insns, and are converted to debug notes by var-tracking.c. */
4236 return false;
4237 }
4238
4239 /* Verify a gimple label statement STMT.
4240 Returns true if anything is wrong. */
4241
4242 static bool
4243 verify_gimple_label (gimple stmt)
4244 {
4245 tree decl = gimple_label_label (stmt);
4246 int uid;
4247 bool err = false;
4248
4249 if (TREE_CODE (decl) != LABEL_DECL)
4250 return true;
4251 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4252 && DECL_CONTEXT (decl) != current_function_decl)
4253 {
4254 error ("label's context is not the current function decl");
4255 err |= true;
4256 }
4257
4258 uid = LABEL_DECL_UID (decl);
4259 if (cfun->cfg
4260 && (uid == -1 || (*label_to_block_map)[uid] != gimple_bb (stmt)))
4261 {
4262 error ("incorrect entry in label_to_block_map");
4263 err |= true;
4264 }
4265
4266 uid = EH_LANDING_PAD_NR (decl);
4267 if (uid)
4268 {
4269 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4270 if (decl != lp->post_landing_pad)
4271 {
4272 error ("incorrect setting of landing pad number");
4273 err |= true;
4274 }
4275 }
4276
4277 return err;
4278 }
4279
4280 /* Verify the GIMPLE statement STMT. Returns true if there is an
4281 error, otherwise false. */
4282
4283 static bool
4284 verify_gimple_stmt (gimple stmt)
4285 {
4286 switch (gimple_code (stmt))
4287 {
4288 case GIMPLE_ASSIGN:
4289 return verify_gimple_assign (stmt);
4290
4291 case GIMPLE_LABEL:
4292 return verify_gimple_label (stmt);
4293
4294 case GIMPLE_CALL:
4295 return verify_gimple_call (stmt);
4296
4297 case GIMPLE_COND:
4298 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4299 {
4300 error ("invalid comparison code in gimple cond");
4301 return true;
4302 }
4303 if (!(!gimple_cond_true_label (stmt)
4304 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4305 || !(!gimple_cond_false_label (stmt)
4306 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4307 {
4308 error ("invalid labels in gimple cond");
4309 return true;
4310 }
4311
4312 return verify_gimple_comparison (boolean_type_node,
4313 gimple_cond_lhs (stmt),
4314 gimple_cond_rhs (stmt));
4315
4316 case GIMPLE_GOTO:
4317 return verify_gimple_goto (stmt);
4318
4319 case GIMPLE_SWITCH:
4320 return verify_gimple_switch (stmt);
4321
4322 case GIMPLE_RETURN:
4323 return verify_gimple_return (stmt);
4324
4325 case GIMPLE_ASM:
4326 return false;
4327
4328 case GIMPLE_TRANSACTION:
4329 return verify_gimple_transaction (stmt);
4330
4331 /* Tuples that do not have tree operands. */
4332 case GIMPLE_NOP:
4333 case GIMPLE_PREDICT:
4334 case GIMPLE_RESX:
4335 case GIMPLE_EH_DISPATCH:
4336 case GIMPLE_EH_MUST_NOT_THROW:
4337 return false;
4338
4339 CASE_GIMPLE_OMP:
4340 /* OpenMP directives are validated by the FE and never operated
4341 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4342 non-gimple expressions when the main index variable has had
4343 its address taken. This does not affect the loop itself
4344 because the header of an GIMPLE_OMP_FOR is merely used to determine
4345 how to setup the parallel iteration. */
4346 return false;
4347
4348 case GIMPLE_DEBUG:
4349 return verify_gimple_debug (stmt);
4350
4351 default:
4352 gcc_unreachable ();
4353 }
4354 }
4355
4356 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4357 and false otherwise. */
4358
4359 static bool
4360 verify_gimple_phi (gimple phi)
4361 {
4362 bool err = false;
4363 unsigned i;
4364 tree phi_result = gimple_phi_result (phi);
4365 bool virtual_p;
4366
4367 if (!phi_result)
4368 {
4369 error ("invalid PHI result");
4370 return true;
4371 }
4372
4373 virtual_p = virtual_operand_p (phi_result);
4374 if (TREE_CODE (phi_result) != SSA_NAME
4375 || (virtual_p
4376 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4377 {
4378 error ("invalid PHI result");
4379 err = true;
4380 }
4381
4382 for (i = 0; i < gimple_phi_num_args (phi); i++)
4383 {
4384 tree t = gimple_phi_arg_def (phi, i);
4385
4386 if (!t)
4387 {
4388 error ("missing PHI def");
4389 err |= true;
4390 continue;
4391 }
4392 /* Addressable variables do have SSA_NAMEs but they
4393 are not considered gimple values. */
4394 else if ((TREE_CODE (t) == SSA_NAME
4395 && virtual_p != virtual_operand_p (t))
4396 || (virtual_p
4397 && (TREE_CODE (t) != SSA_NAME
4398 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4399 || (!virtual_p
4400 && !is_gimple_val (t)))
4401 {
4402 error ("invalid PHI argument");
4403 debug_generic_expr (t);
4404 err |= true;
4405 }
4406 #ifdef ENABLE_TYPES_CHECKING
4407 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4408 {
4409 error ("incompatible types in PHI argument %u", i);
4410 debug_generic_stmt (TREE_TYPE (phi_result));
4411 debug_generic_stmt (TREE_TYPE (t));
4412 err |= true;
4413 }
4414 #endif
4415 }
4416
4417 return err;
4418 }
4419
4420 /* Verify the GIMPLE statements inside the sequence STMTS. */
4421
4422 static bool
4423 verify_gimple_in_seq_2 (gimple_seq stmts)
4424 {
4425 gimple_stmt_iterator ittr;
4426 bool err = false;
4427
4428 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4429 {
4430 gimple stmt = gsi_stmt (ittr);
4431
4432 switch (gimple_code (stmt))
4433 {
4434 case GIMPLE_BIND:
4435 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4436 break;
4437
4438 case GIMPLE_TRY:
4439 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4440 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4441 break;
4442
4443 case GIMPLE_EH_FILTER:
4444 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4445 break;
4446
4447 case GIMPLE_EH_ELSE:
4448 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4449 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4450 break;
4451
4452 case GIMPLE_CATCH:
4453 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4454 break;
4455
4456 case GIMPLE_TRANSACTION:
4457 err |= verify_gimple_transaction (stmt);
4458 break;
4459
4460 default:
4461 {
4462 bool err2 = verify_gimple_stmt (stmt);
4463 if (err2)
4464 debug_gimple_stmt (stmt);
4465 err |= err2;
4466 }
4467 }
4468 }
4469
4470 return err;
4471 }
4472
4473 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4474 is a problem, otherwise false. */
4475
4476 static bool
4477 verify_gimple_transaction (gimple stmt)
4478 {
4479 tree lab = gimple_transaction_label (stmt);
4480 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4481 return true;
4482 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4483 }
4484
4485
4486 /* Verify the GIMPLE statements inside the statement list STMTS. */
4487
4488 DEBUG_FUNCTION void
4489 verify_gimple_in_seq (gimple_seq stmts)
4490 {
4491 timevar_push (TV_TREE_STMT_VERIFY);
4492 if (verify_gimple_in_seq_2 (stmts))
4493 internal_error ("verify_gimple failed");
4494 timevar_pop (TV_TREE_STMT_VERIFY);
4495 }
4496
4497 /* Return true when the T can be shared. */
4498
4499 static bool
4500 tree_node_can_be_shared (tree t)
4501 {
4502 if (IS_TYPE_OR_DECL_P (t)
4503 || is_gimple_min_invariant (t)
4504 || TREE_CODE (t) == SSA_NAME
4505 || t == error_mark_node
4506 || TREE_CODE (t) == IDENTIFIER_NODE)
4507 return true;
4508
4509 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4510 return true;
4511
4512 if (DECL_P (t))
4513 return true;
4514
4515 return false;
4516 }
4517
4518 /* Called via walk_tree. Verify tree sharing. */
4519
4520 static tree
4521 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4522 {
4523 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4524
4525 if (tree_node_can_be_shared (*tp))
4526 {
4527 *walk_subtrees = false;
4528 return NULL;
4529 }
4530
4531 if (pointer_set_insert (visited, *tp))
4532 return *tp;
4533
4534 return NULL;
4535 }
4536
4537 /* Called via walk_gimple_stmt. Verify tree sharing. */
4538
4539 static tree
4540 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4541 {
4542 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4543 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4544 }
4545
4546 static bool eh_error_found;
4547 static int
4548 verify_eh_throw_stmt_node (void **slot, void *data)
4549 {
4550 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4551 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4552
4553 if (!pointer_set_contains (visited, node->stmt))
4554 {
4555 error ("dead STMT in EH table");
4556 debug_gimple_stmt (node->stmt);
4557 eh_error_found = true;
4558 }
4559 return 1;
4560 }
4561
4562 /* Verify if the location LOCs block is in BLOCKS. */
4563
4564 static bool
4565 verify_location (pointer_set_t *blocks, location_t loc)
4566 {
4567 tree block = LOCATION_BLOCK (loc);
4568 if (block != NULL_TREE
4569 && !pointer_set_contains (blocks, block))
4570 {
4571 error ("location references block not in block tree");
4572 return true;
4573 }
4574 if (block != NULL_TREE)
4575 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4576 return false;
4577 }
4578
4579 /* Called via walk_tree. Verify that expressions have no blocks. */
4580
4581 static tree
4582 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4583 {
4584 if (!EXPR_P (*tp))
4585 {
4586 *walk_subtrees = false;
4587 return NULL;
4588 }
4589
4590 location_t loc = EXPR_LOCATION (*tp);
4591 if (LOCATION_BLOCK (loc) != NULL)
4592 return *tp;
4593
4594 return NULL;
4595 }
4596
4597 /* Called via walk_tree. Verify locations of expressions. */
4598
4599 static tree
4600 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4601 {
4602 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4603
4604 if (TREE_CODE (*tp) == VAR_DECL
4605 && DECL_HAS_DEBUG_EXPR_P (*tp))
4606 {
4607 tree t = DECL_DEBUG_EXPR (*tp);
4608 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4609 if (addr)
4610 return addr;
4611 }
4612 if ((TREE_CODE (*tp) == VAR_DECL
4613 || TREE_CODE (*tp) == PARM_DECL
4614 || TREE_CODE (*tp) == RESULT_DECL)
4615 && DECL_HAS_VALUE_EXPR_P (*tp))
4616 {
4617 tree t = DECL_VALUE_EXPR (*tp);
4618 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4619 if (addr)
4620 return addr;
4621 }
4622
4623 if (!EXPR_P (*tp))
4624 {
4625 *walk_subtrees = false;
4626 return NULL;
4627 }
4628
4629 location_t loc = EXPR_LOCATION (*tp);
4630 if (verify_location (blocks, loc))
4631 return *tp;
4632
4633 return NULL;
4634 }
4635
4636 /* Called via walk_gimple_op. Verify locations of expressions. */
4637
4638 static tree
4639 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4640 {
4641 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4642 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4643 }
4644
4645 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4646
4647 static void
4648 collect_subblocks (pointer_set_t *blocks, tree block)
4649 {
4650 tree t;
4651 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4652 {
4653 pointer_set_insert (blocks, t);
4654 collect_subblocks (blocks, t);
4655 }
4656 }
4657
4658 /* Verify the GIMPLE statements in the CFG of FN. */
4659
4660 DEBUG_FUNCTION void
4661 verify_gimple_in_cfg (struct function *fn)
4662 {
4663 basic_block bb;
4664 bool err = false;
4665 struct pointer_set_t *visited, *visited_stmts, *blocks;
4666
4667 timevar_push (TV_TREE_STMT_VERIFY);
4668 visited = pointer_set_create ();
4669 visited_stmts = pointer_set_create ();
4670
4671 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4672 blocks = pointer_set_create ();
4673 if (DECL_INITIAL (fn->decl))
4674 {
4675 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4676 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4677 }
4678
4679 FOR_EACH_BB_FN (bb, fn)
4680 {
4681 gimple_stmt_iterator gsi;
4682
4683 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4684 {
4685 gimple phi = gsi_stmt (gsi);
4686 bool err2 = false;
4687 unsigned i;
4688
4689 pointer_set_insert (visited_stmts, phi);
4690
4691 if (gimple_bb (phi) != bb)
4692 {
4693 error ("gimple_bb (phi) is set to a wrong basic block");
4694 err2 = true;
4695 }
4696
4697 err2 |= verify_gimple_phi (phi);
4698
4699 /* Only PHI arguments have locations. */
4700 if (gimple_location (phi) != UNKNOWN_LOCATION)
4701 {
4702 error ("PHI node with location");
4703 err2 = true;
4704 }
4705
4706 for (i = 0; i < gimple_phi_num_args (phi); i++)
4707 {
4708 tree arg = gimple_phi_arg_def (phi, i);
4709 tree addr = walk_tree (&arg, verify_node_sharing_1,
4710 visited, NULL);
4711 if (addr)
4712 {
4713 error ("incorrect sharing of tree nodes");
4714 debug_generic_expr (addr);
4715 err2 |= true;
4716 }
4717 location_t loc = gimple_phi_arg_location (phi, i);
4718 if (virtual_operand_p (gimple_phi_result (phi))
4719 && loc != UNKNOWN_LOCATION)
4720 {
4721 error ("virtual PHI with argument locations");
4722 err2 = true;
4723 }
4724 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4725 if (addr)
4726 {
4727 debug_generic_expr (addr);
4728 err2 = true;
4729 }
4730 err2 |= verify_location (blocks, loc);
4731 }
4732
4733 if (err2)
4734 debug_gimple_stmt (phi);
4735 err |= err2;
4736 }
4737
4738 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4739 {
4740 gimple stmt = gsi_stmt (gsi);
4741 bool err2 = false;
4742 struct walk_stmt_info wi;
4743 tree addr;
4744 int lp_nr;
4745
4746 pointer_set_insert (visited_stmts, stmt);
4747
4748 if (gimple_bb (stmt) != bb)
4749 {
4750 error ("gimple_bb (stmt) is set to a wrong basic block");
4751 err2 = true;
4752 }
4753
4754 err2 |= verify_gimple_stmt (stmt);
4755 err2 |= verify_location (blocks, gimple_location (stmt));
4756
4757 memset (&wi, 0, sizeof (wi));
4758 wi.info = (void *) visited;
4759 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4760 if (addr)
4761 {
4762 error ("incorrect sharing of tree nodes");
4763 debug_generic_expr (addr);
4764 err2 |= true;
4765 }
4766
4767 memset (&wi, 0, sizeof (wi));
4768 wi.info = (void *) blocks;
4769 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4770 if (addr)
4771 {
4772 debug_generic_expr (addr);
4773 err2 |= true;
4774 }
4775
4776 /* ??? Instead of not checking these stmts at all the walker
4777 should know its context via wi. */
4778 if (!is_gimple_debug (stmt)
4779 && !is_gimple_omp (stmt))
4780 {
4781 memset (&wi, 0, sizeof (wi));
4782 addr = walk_gimple_op (stmt, verify_expr, &wi);
4783 if (addr)
4784 {
4785 debug_generic_expr (addr);
4786 inform (gimple_location (stmt), "in statement");
4787 err2 |= true;
4788 }
4789 }
4790
4791 /* If the statement is marked as part of an EH region, then it is
4792 expected that the statement could throw. Verify that when we
4793 have optimizations that simplify statements such that we prove
4794 that they cannot throw, that we update other data structures
4795 to match. */
4796 lp_nr = lookup_stmt_eh_lp (stmt);
4797 if (lp_nr != 0)
4798 {
4799 if (!stmt_could_throw_p (stmt))
4800 {
4801 error ("statement marked for throw, but doesn%'t");
4802 err2 |= true;
4803 }
4804 else if (lp_nr > 0
4805 && !gsi_one_before_end_p (gsi)
4806 && stmt_can_throw_internal (stmt))
4807 {
4808 error ("statement marked for throw in middle of block");
4809 err2 |= true;
4810 }
4811 }
4812
4813 if (err2)
4814 debug_gimple_stmt (stmt);
4815 err |= err2;
4816 }
4817 }
4818
4819 eh_error_found = false;
4820 if (get_eh_throw_stmt_table (cfun))
4821 htab_traverse (get_eh_throw_stmt_table (cfun),
4822 verify_eh_throw_stmt_node,
4823 visited_stmts);
4824
4825 if (err || eh_error_found)
4826 internal_error ("verify_gimple failed");
4827
4828 pointer_set_destroy (visited);
4829 pointer_set_destroy (visited_stmts);
4830 pointer_set_destroy (blocks);
4831 verify_histograms ();
4832 timevar_pop (TV_TREE_STMT_VERIFY);
4833 }
4834
4835
4836 /* Verifies that the flow information is OK. */
4837
4838 static int
4839 gimple_verify_flow_info (void)
4840 {
4841 int err = 0;
4842 basic_block bb;
4843 gimple_stmt_iterator gsi;
4844 gimple stmt;
4845 edge e;
4846 edge_iterator ei;
4847
4848 if (ENTRY_BLOCK_PTR->il.gimple.seq || ENTRY_BLOCK_PTR->il.gimple.phi_nodes)
4849 {
4850 error ("ENTRY_BLOCK has IL associated with it");
4851 err = 1;
4852 }
4853
4854 if (EXIT_BLOCK_PTR->il.gimple.seq || EXIT_BLOCK_PTR->il.gimple.phi_nodes)
4855 {
4856 error ("EXIT_BLOCK has IL associated with it");
4857 err = 1;
4858 }
4859
4860 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4861 if (e->flags & EDGE_FALLTHRU)
4862 {
4863 error ("fallthru to exit from bb %d", e->src->index);
4864 err = 1;
4865 }
4866
4867 FOR_EACH_BB (bb)
4868 {
4869 bool found_ctrl_stmt = false;
4870
4871 stmt = NULL;
4872
4873 /* Skip labels on the start of basic block. */
4874 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4875 {
4876 tree label;
4877 gimple prev_stmt = stmt;
4878
4879 stmt = gsi_stmt (gsi);
4880
4881 if (gimple_code (stmt) != GIMPLE_LABEL)
4882 break;
4883
4884 label = gimple_label_label (stmt);
4885 if (prev_stmt && DECL_NONLOCAL (label))
4886 {
4887 error ("nonlocal label ");
4888 print_generic_expr (stderr, label, 0);
4889 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4890 bb->index);
4891 err = 1;
4892 }
4893
4894 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4895 {
4896 error ("EH landing pad label ");
4897 print_generic_expr (stderr, label, 0);
4898 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4899 bb->index);
4900 err = 1;
4901 }
4902
4903 if (label_to_block (label) != bb)
4904 {
4905 error ("label ");
4906 print_generic_expr (stderr, label, 0);
4907 fprintf (stderr, " to block does not match in bb %d",
4908 bb->index);
4909 err = 1;
4910 }
4911
4912 if (decl_function_context (label) != current_function_decl)
4913 {
4914 error ("label ");
4915 print_generic_expr (stderr, label, 0);
4916 fprintf (stderr, " has incorrect context in bb %d",
4917 bb->index);
4918 err = 1;
4919 }
4920 }
4921
4922 /* Verify that body of basic block BB is free of control flow. */
4923 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4924 {
4925 gimple stmt = gsi_stmt (gsi);
4926
4927 if (found_ctrl_stmt)
4928 {
4929 error ("control flow in the middle of basic block %d",
4930 bb->index);
4931 err = 1;
4932 }
4933
4934 if (stmt_ends_bb_p (stmt))
4935 found_ctrl_stmt = true;
4936
4937 if (gimple_code (stmt) == GIMPLE_LABEL)
4938 {
4939 error ("label ");
4940 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4941 fprintf (stderr, " in the middle of basic block %d", bb->index);
4942 err = 1;
4943 }
4944 }
4945
4946 gsi = gsi_last_bb (bb);
4947 if (gsi_end_p (gsi))
4948 continue;
4949
4950 stmt = gsi_stmt (gsi);
4951
4952 if (gimple_code (stmt) == GIMPLE_LABEL)
4953 continue;
4954
4955 err |= verify_eh_edges (stmt);
4956
4957 if (is_ctrl_stmt (stmt))
4958 {
4959 FOR_EACH_EDGE (e, ei, bb->succs)
4960 if (e->flags & EDGE_FALLTHRU)
4961 {
4962 error ("fallthru edge after a control statement in bb %d",
4963 bb->index);
4964 err = 1;
4965 }
4966 }
4967
4968 if (gimple_code (stmt) != GIMPLE_COND)
4969 {
4970 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4971 after anything else but if statement. */
4972 FOR_EACH_EDGE (e, ei, bb->succs)
4973 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4974 {
4975 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4976 bb->index);
4977 err = 1;
4978 }
4979 }
4980
4981 switch (gimple_code (stmt))
4982 {
4983 case GIMPLE_COND:
4984 {
4985 edge true_edge;
4986 edge false_edge;
4987
4988 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4989
4990 if (!true_edge
4991 || !false_edge
4992 || !(true_edge->flags & EDGE_TRUE_VALUE)
4993 || !(false_edge->flags & EDGE_FALSE_VALUE)
4994 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4995 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4996 || EDGE_COUNT (bb->succs) >= 3)
4997 {
4998 error ("wrong outgoing edge flags at end of bb %d",
4999 bb->index);
5000 err = 1;
5001 }
5002 }
5003 break;
5004
5005 case GIMPLE_GOTO:
5006 if (simple_goto_p (stmt))
5007 {
5008 error ("explicit goto at end of bb %d", bb->index);
5009 err = 1;
5010 }
5011 else
5012 {
5013 /* FIXME. We should double check that the labels in the
5014 destination blocks have their address taken. */
5015 FOR_EACH_EDGE (e, ei, bb->succs)
5016 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5017 | EDGE_FALSE_VALUE))
5018 || !(e->flags & EDGE_ABNORMAL))
5019 {
5020 error ("wrong outgoing edge flags at end of bb %d",
5021 bb->index);
5022 err = 1;
5023 }
5024 }
5025 break;
5026
5027 case GIMPLE_CALL:
5028 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5029 break;
5030 /* ... fallthru ... */
5031 case GIMPLE_RETURN:
5032 if (!single_succ_p (bb)
5033 || (single_succ_edge (bb)->flags
5034 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5035 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5036 {
5037 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5038 err = 1;
5039 }
5040 if (single_succ (bb) != EXIT_BLOCK_PTR)
5041 {
5042 error ("return edge does not point to exit in bb %d",
5043 bb->index);
5044 err = 1;
5045 }
5046 break;
5047
5048 case GIMPLE_SWITCH:
5049 {
5050 tree prev;
5051 edge e;
5052 size_t i, n;
5053
5054 n = gimple_switch_num_labels (stmt);
5055
5056 /* Mark all the destination basic blocks. */
5057 for (i = 0; i < n; ++i)
5058 {
5059 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5060 basic_block label_bb = label_to_block (lab);
5061 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5062 label_bb->aux = (void *)1;
5063 }
5064
5065 /* Verify that the case labels are sorted. */
5066 prev = gimple_switch_label (stmt, 0);
5067 for (i = 1; i < n; ++i)
5068 {
5069 tree c = gimple_switch_label (stmt, i);
5070 if (!CASE_LOW (c))
5071 {
5072 error ("found default case not at the start of "
5073 "case vector");
5074 err = 1;
5075 continue;
5076 }
5077 if (CASE_LOW (prev)
5078 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5079 {
5080 error ("case labels not sorted: ");
5081 print_generic_expr (stderr, prev, 0);
5082 fprintf (stderr," is greater than ");
5083 print_generic_expr (stderr, c, 0);
5084 fprintf (stderr," but comes before it.\n");
5085 err = 1;
5086 }
5087 prev = c;
5088 }
5089 /* VRP will remove the default case if it can prove it will
5090 never be executed. So do not verify there always exists
5091 a default case here. */
5092
5093 FOR_EACH_EDGE (e, ei, bb->succs)
5094 {
5095 if (!e->dest->aux)
5096 {
5097 error ("extra outgoing edge %d->%d",
5098 bb->index, e->dest->index);
5099 err = 1;
5100 }
5101
5102 e->dest->aux = (void *)2;
5103 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5104 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5105 {
5106 error ("wrong outgoing edge flags at end of bb %d",
5107 bb->index);
5108 err = 1;
5109 }
5110 }
5111
5112 /* Check that we have all of them. */
5113 for (i = 0; i < n; ++i)
5114 {
5115 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5116 basic_block label_bb = label_to_block (lab);
5117
5118 if (label_bb->aux != (void *)2)
5119 {
5120 error ("missing edge %i->%i", bb->index, label_bb->index);
5121 err = 1;
5122 }
5123 }
5124
5125 FOR_EACH_EDGE (e, ei, bb->succs)
5126 e->dest->aux = (void *)0;
5127 }
5128 break;
5129
5130 case GIMPLE_EH_DISPATCH:
5131 err |= verify_eh_dispatch_edge (stmt);
5132 break;
5133
5134 default:
5135 break;
5136 }
5137 }
5138
5139 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5140 verify_dominators (CDI_DOMINATORS);
5141
5142 return err;
5143 }
5144
5145
5146 /* Updates phi nodes after creating a forwarder block joined
5147 by edge FALLTHRU. */
5148
5149 static void
5150 gimple_make_forwarder_block (edge fallthru)
5151 {
5152 edge e;
5153 edge_iterator ei;
5154 basic_block dummy, bb;
5155 tree var;
5156 gimple_stmt_iterator gsi;
5157
5158 dummy = fallthru->src;
5159 bb = fallthru->dest;
5160
5161 if (single_pred_p (bb))
5162 return;
5163
5164 /* If we redirected a branch we must create new PHI nodes at the
5165 start of BB. */
5166 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5167 {
5168 gimple phi, new_phi;
5169
5170 phi = gsi_stmt (gsi);
5171 var = gimple_phi_result (phi);
5172 new_phi = create_phi_node (var, bb);
5173 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5174 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5175 UNKNOWN_LOCATION);
5176 }
5177
5178 /* Add the arguments we have stored on edges. */
5179 FOR_EACH_EDGE (e, ei, bb->preds)
5180 {
5181 if (e == fallthru)
5182 continue;
5183
5184 flush_pending_stmts (e);
5185 }
5186 }
5187
5188
5189 /* Return a non-special label in the head of basic block BLOCK.
5190 Create one if it doesn't exist. */
5191
5192 tree
5193 gimple_block_label (basic_block bb)
5194 {
5195 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5196 bool first = true;
5197 tree label;
5198 gimple stmt;
5199
5200 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5201 {
5202 stmt = gsi_stmt (i);
5203 if (gimple_code (stmt) != GIMPLE_LABEL)
5204 break;
5205 label = gimple_label_label (stmt);
5206 if (!DECL_NONLOCAL (label))
5207 {
5208 if (!first)
5209 gsi_move_before (&i, &s);
5210 return label;
5211 }
5212 }
5213
5214 label = create_artificial_label (UNKNOWN_LOCATION);
5215 stmt = gimple_build_label (label);
5216 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5217 return label;
5218 }
5219
5220
5221 /* Attempt to perform edge redirection by replacing a possibly complex
5222 jump instruction by a goto or by removing the jump completely.
5223 This can apply only if all edges now point to the same block. The
5224 parameters and return values are equivalent to
5225 redirect_edge_and_branch. */
5226
5227 static edge
5228 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5229 {
5230 basic_block src = e->src;
5231 gimple_stmt_iterator i;
5232 gimple stmt;
5233
5234 /* We can replace or remove a complex jump only when we have exactly
5235 two edges. */
5236 if (EDGE_COUNT (src->succs) != 2
5237 /* Verify that all targets will be TARGET. Specifically, the
5238 edge that is not E must also go to TARGET. */
5239 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5240 return NULL;
5241
5242 i = gsi_last_bb (src);
5243 if (gsi_end_p (i))
5244 return NULL;
5245
5246 stmt = gsi_stmt (i);
5247
5248 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5249 {
5250 gsi_remove (&i, true);
5251 e = ssa_redirect_edge (e, target);
5252 e->flags = EDGE_FALLTHRU;
5253 return e;
5254 }
5255
5256 return NULL;
5257 }
5258
5259
5260 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5261 edge representing the redirected branch. */
5262
5263 static edge
5264 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5265 {
5266 basic_block bb = e->src;
5267 gimple_stmt_iterator gsi;
5268 edge ret;
5269 gimple stmt;
5270
5271 if (e->flags & EDGE_ABNORMAL)
5272 return NULL;
5273
5274 if (e->dest == dest)
5275 return NULL;
5276
5277 if (e->flags & EDGE_EH)
5278 return redirect_eh_edge (e, dest);
5279
5280 if (e->src != ENTRY_BLOCK_PTR)
5281 {
5282 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5283 if (ret)
5284 return ret;
5285 }
5286
5287 gsi = gsi_last_bb (bb);
5288 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5289
5290 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5291 {
5292 case GIMPLE_COND:
5293 /* For COND_EXPR, we only need to redirect the edge. */
5294 break;
5295
5296 case GIMPLE_GOTO:
5297 /* No non-abnormal edges should lead from a non-simple goto, and
5298 simple ones should be represented implicitly. */
5299 gcc_unreachable ();
5300
5301 case GIMPLE_SWITCH:
5302 {
5303 tree label = gimple_block_label (dest);
5304 tree cases = get_cases_for_edge (e, stmt);
5305
5306 /* If we have a list of cases associated with E, then use it
5307 as it's a lot faster than walking the entire case vector. */
5308 if (cases)
5309 {
5310 edge e2 = find_edge (e->src, dest);
5311 tree last, first;
5312
5313 first = cases;
5314 while (cases)
5315 {
5316 last = cases;
5317 CASE_LABEL (cases) = label;
5318 cases = CASE_CHAIN (cases);
5319 }
5320
5321 /* If there was already an edge in the CFG, then we need
5322 to move all the cases associated with E to E2. */
5323 if (e2)
5324 {
5325 tree cases2 = get_cases_for_edge (e2, stmt);
5326
5327 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5328 CASE_CHAIN (cases2) = first;
5329 }
5330 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5331 }
5332 else
5333 {
5334 size_t i, n = gimple_switch_num_labels (stmt);
5335
5336 for (i = 0; i < n; i++)
5337 {
5338 tree elt = gimple_switch_label (stmt, i);
5339 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5340 CASE_LABEL (elt) = label;
5341 }
5342 }
5343 }
5344 break;
5345
5346 case GIMPLE_ASM:
5347 {
5348 int i, n = gimple_asm_nlabels (stmt);
5349 tree label = NULL;
5350
5351 for (i = 0; i < n; ++i)
5352 {
5353 tree cons = gimple_asm_label_op (stmt, i);
5354 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5355 {
5356 if (!label)
5357 label = gimple_block_label (dest);
5358 TREE_VALUE (cons) = label;
5359 }
5360 }
5361
5362 /* If we didn't find any label matching the former edge in the
5363 asm labels, we must be redirecting the fallthrough
5364 edge. */
5365 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5366 }
5367 break;
5368
5369 case GIMPLE_RETURN:
5370 gsi_remove (&gsi, true);
5371 e->flags |= EDGE_FALLTHRU;
5372 break;
5373
5374 case GIMPLE_OMP_RETURN:
5375 case GIMPLE_OMP_CONTINUE:
5376 case GIMPLE_OMP_SECTIONS_SWITCH:
5377 case GIMPLE_OMP_FOR:
5378 /* The edges from OMP constructs can be simply redirected. */
5379 break;
5380
5381 case GIMPLE_EH_DISPATCH:
5382 if (!(e->flags & EDGE_FALLTHRU))
5383 redirect_eh_dispatch_edge (stmt, e, dest);
5384 break;
5385
5386 case GIMPLE_TRANSACTION:
5387 /* The ABORT edge has a stored label associated with it, otherwise
5388 the edges are simply redirectable. */
5389 if (e->flags == 0)
5390 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5391 break;
5392
5393 default:
5394 /* Otherwise it must be a fallthru edge, and we don't need to
5395 do anything besides redirecting it. */
5396 gcc_assert (e->flags & EDGE_FALLTHRU);
5397 break;
5398 }
5399
5400 /* Update/insert PHI nodes as necessary. */
5401
5402 /* Now update the edges in the CFG. */
5403 e = ssa_redirect_edge (e, dest);
5404
5405 return e;
5406 }
5407
5408 /* Returns true if it is possible to remove edge E by redirecting
5409 it to the destination of the other edge from E->src. */
5410
5411 static bool
5412 gimple_can_remove_branch_p (const_edge e)
5413 {
5414 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5415 return false;
5416
5417 return true;
5418 }
5419
5420 /* Simple wrapper, as we can always redirect fallthru edges. */
5421
5422 static basic_block
5423 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5424 {
5425 e = gimple_redirect_edge_and_branch (e, dest);
5426 gcc_assert (e);
5427
5428 return NULL;
5429 }
5430
5431
5432 /* Splits basic block BB after statement STMT (but at least after the
5433 labels). If STMT is NULL, BB is split just after the labels. */
5434
5435 static basic_block
5436 gimple_split_block (basic_block bb, void *stmt)
5437 {
5438 gimple_stmt_iterator gsi;
5439 gimple_stmt_iterator gsi_tgt;
5440 gimple act;
5441 gimple_seq list;
5442 basic_block new_bb;
5443 edge e;
5444 edge_iterator ei;
5445
5446 new_bb = create_empty_bb (bb);
5447
5448 /* Redirect the outgoing edges. */
5449 new_bb->succs = bb->succs;
5450 bb->succs = NULL;
5451 FOR_EACH_EDGE (e, ei, new_bb->succs)
5452 e->src = new_bb;
5453
5454 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5455 stmt = NULL;
5456
5457 /* Move everything from GSI to the new basic block. */
5458 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5459 {
5460 act = gsi_stmt (gsi);
5461 if (gimple_code (act) == GIMPLE_LABEL)
5462 continue;
5463
5464 if (!stmt)
5465 break;
5466
5467 if (stmt == act)
5468 {
5469 gsi_next (&gsi);
5470 break;
5471 }
5472 }
5473
5474 if (gsi_end_p (gsi))
5475 return new_bb;
5476
5477 /* Split the statement list - avoid re-creating new containers as this
5478 brings ugly quadratic memory consumption in the inliner.
5479 (We are still quadratic since we need to update stmt BB pointers,
5480 sadly.) */
5481 gsi_split_seq_before (&gsi, &list);
5482 set_bb_seq (new_bb, list);
5483 for (gsi_tgt = gsi_start (list);
5484 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5485 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5486
5487 return new_bb;
5488 }
5489
5490
5491 /* Moves basic block BB after block AFTER. */
5492
5493 static bool
5494 gimple_move_block_after (basic_block bb, basic_block after)
5495 {
5496 if (bb->prev_bb == after)
5497 return true;
5498
5499 unlink_block (bb);
5500 link_block (bb, after);
5501
5502 return true;
5503 }
5504
5505
5506 /* Return TRUE if block BB has no executable statements, otherwise return
5507 FALSE. */
5508
5509 static bool
5510 gimple_empty_block_p (basic_block bb)
5511 {
5512 /* BB must have no executable statements. */
5513 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5514 if (phi_nodes (bb))
5515 return false;
5516 if (gsi_end_p (gsi))
5517 return true;
5518 if (is_gimple_debug (gsi_stmt (gsi)))
5519 gsi_next_nondebug (&gsi);
5520 return gsi_end_p (gsi);
5521 }
5522
5523
5524 /* Split a basic block if it ends with a conditional branch and if the
5525 other part of the block is not empty. */
5526
5527 static basic_block
5528 gimple_split_block_before_cond_jump (basic_block bb)
5529 {
5530 gimple last, split_point;
5531 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5532 if (gsi_end_p (gsi))
5533 return NULL;
5534 last = gsi_stmt (gsi);
5535 if (gimple_code (last) != GIMPLE_COND
5536 && gimple_code (last) != GIMPLE_SWITCH)
5537 return NULL;
5538 gsi_prev_nondebug (&gsi);
5539 split_point = gsi_stmt (gsi);
5540 return split_block (bb, split_point)->dest;
5541 }
5542
5543
5544 /* Return true if basic_block can be duplicated. */
5545
5546 static bool
5547 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5548 {
5549 return true;
5550 }
5551
5552 /* Create a duplicate of the basic block BB. NOTE: This does not
5553 preserve SSA form. */
5554
5555 static basic_block
5556 gimple_duplicate_bb (basic_block bb)
5557 {
5558 basic_block new_bb;
5559 gimple_stmt_iterator gsi, gsi_tgt;
5560 gimple_seq phis = phi_nodes (bb);
5561 gimple phi, stmt, copy;
5562
5563 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5564
5565 /* Copy the PHI nodes. We ignore PHI node arguments here because
5566 the incoming edges have not been setup yet. */
5567 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5568 {
5569 phi = gsi_stmt (gsi);
5570 copy = create_phi_node (NULL_TREE, new_bb);
5571 create_new_def_for (gimple_phi_result (phi), copy,
5572 gimple_phi_result_ptr (copy));
5573 gimple_set_uid (copy, gimple_uid (phi));
5574 }
5575
5576 gsi_tgt = gsi_start_bb (new_bb);
5577 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5578 {
5579 def_operand_p def_p;
5580 ssa_op_iter op_iter;
5581 tree lhs;
5582
5583 stmt = gsi_stmt (gsi);
5584 if (gimple_code (stmt) == GIMPLE_LABEL)
5585 continue;
5586
5587 /* Don't duplicate label debug stmts. */
5588 if (gimple_debug_bind_p (stmt)
5589 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5590 == LABEL_DECL)
5591 continue;
5592
5593 /* Create a new copy of STMT and duplicate STMT's virtual
5594 operands. */
5595 copy = gimple_copy (stmt);
5596 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5597
5598 maybe_duplicate_eh_stmt (copy, stmt);
5599 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5600
5601 /* When copying around a stmt writing into a local non-user
5602 aggregate, make sure it won't share stack slot with other
5603 vars. */
5604 lhs = gimple_get_lhs (stmt);
5605 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5606 {
5607 tree base = get_base_address (lhs);
5608 if (base
5609 && (TREE_CODE (base) == VAR_DECL
5610 || TREE_CODE (base) == RESULT_DECL)
5611 && DECL_IGNORED_P (base)
5612 && !TREE_STATIC (base)
5613 && !DECL_EXTERNAL (base)
5614 && (TREE_CODE (base) != VAR_DECL
5615 || !DECL_HAS_VALUE_EXPR_P (base)))
5616 DECL_NONSHAREABLE (base) = 1;
5617 }
5618
5619 /* Create new names for all the definitions created by COPY and
5620 add replacement mappings for each new name. */
5621 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5622 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5623 }
5624
5625 return new_bb;
5626 }
5627
5628 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5629
5630 static void
5631 add_phi_args_after_copy_edge (edge e_copy)
5632 {
5633 basic_block bb, bb_copy = e_copy->src, dest;
5634 edge e;
5635 edge_iterator ei;
5636 gimple phi, phi_copy;
5637 tree def;
5638 gimple_stmt_iterator psi, psi_copy;
5639
5640 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5641 return;
5642
5643 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5644
5645 if (e_copy->dest->flags & BB_DUPLICATED)
5646 dest = get_bb_original (e_copy->dest);
5647 else
5648 dest = e_copy->dest;
5649
5650 e = find_edge (bb, dest);
5651 if (!e)
5652 {
5653 /* During loop unrolling the target of the latch edge is copied.
5654 In this case we are not looking for edge to dest, but to
5655 duplicated block whose original was dest. */
5656 FOR_EACH_EDGE (e, ei, bb->succs)
5657 {
5658 if ((e->dest->flags & BB_DUPLICATED)
5659 && get_bb_original (e->dest) == dest)
5660 break;
5661 }
5662
5663 gcc_assert (e != NULL);
5664 }
5665
5666 for (psi = gsi_start_phis (e->dest),
5667 psi_copy = gsi_start_phis (e_copy->dest);
5668 !gsi_end_p (psi);
5669 gsi_next (&psi), gsi_next (&psi_copy))
5670 {
5671 phi = gsi_stmt (psi);
5672 phi_copy = gsi_stmt (psi_copy);
5673 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5674 add_phi_arg (phi_copy, def, e_copy,
5675 gimple_phi_arg_location_from_edge (phi, e));
5676 }
5677 }
5678
5679
5680 /* Basic block BB_COPY was created by code duplication. Add phi node
5681 arguments for edges going out of BB_COPY. The blocks that were
5682 duplicated have BB_DUPLICATED set. */
5683
5684 void
5685 add_phi_args_after_copy_bb (basic_block bb_copy)
5686 {
5687 edge e_copy;
5688 edge_iterator ei;
5689
5690 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5691 {
5692 add_phi_args_after_copy_edge (e_copy);
5693 }
5694 }
5695
5696 /* Blocks in REGION_COPY array of length N_REGION were created by
5697 duplication of basic blocks. Add phi node arguments for edges
5698 going from these blocks. If E_COPY is not NULL, also add
5699 phi node arguments for its destination.*/
5700
5701 void
5702 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5703 edge e_copy)
5704 {
5705 unsigned i;
5706
5707 for (i = 0; i < n_region; i++)
5708 region_copy[i]->flags |= BB_DUPLICATED;
5709
5710 for (i = 0; i < n_region; i++)
5711 add_phi_args_after_copy_bb (region_copy[i]);
5712 if (e_copy)
5713 add_phi_args_after_copy_edge (e_copy);
5714
5715 for (i = 0; i < n_region; i++)
5716 region_copy[i]->flags &= ~BB_DUPLICATED;
5717 }
5718
5719 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5720 important exit edge EXIT. By important we mean that no SSA name defined
5721 inside region is live over the other exit edges of the region. All entry
5722 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5723 to the duplicate of the region. Dominance and loop information is
5724 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5725 UPDATE_DOMINANCE is false then we assume that the caller will update the
5726 dominance information after calling this function. The new basic
5727 blocks are stored to REGION_COPY in the same order as they had in REGION,
5728 provided that REGION_COPY is not NULL.
5729 The function returns false if it is unable to copy the region,
5730 true otherwise. */
5731
5732 bool
5733 gimple_duplicate_sese_region (edge entry, edge exit,
5734 basic_block *region, unsigned n_region,
5735 basic_block *region_copy,
5736 bool update_dominance)
5737 {
5738 unsigned i;
5739 bool free_region_copy = false, copying_header = false;
5740 struct loop *loop = entry->dest->loop_father;
5741 edge exit_copy;
5742 vec<basic_block> doms;
5743 edge redirected;
5744 int total_freq = 0, entry_freq = 0;
5745 gcov_type total_count = 0, entry_count = 0;
5746
5747 if (!can_copy_bbs_p (region, n_region))
5748 return false;
5749
5750 /* Some sanity checking. Note that we do not check for all possible
5751 missuses of the functions. I.e. if you ask to copy something weird,
5752 it will work, but the state of structures probably will not be
5753 correct. */
5754 for (i = 0; i < n_region; i++)
5755 {
5756 /* We do not handle subloops, i.e. all the blocks must belong to the
5757 same loop. */
5758 if (region[i]->loop_father != loop)
5759 return false;
5760
5761 if (region[i] != entry->dest
5762 && region[i] == loop->header)
5763 return false;
5764 }
5765
5766 set_loop_copy (loop, loop);
5767
5768 /* In case the function is used for loop header copying (which is the primary
5769 use), ensure that EXIT and its copy will be new latch and entry edges. */
5770 if (loop->header == entry->dest)
5771 {
5772 copying_header = true;
5773 set_loop_copy (loop, loop_outer (loop));
5774
5775 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5776 return false;
5777
5778 for (i = 0; i < n_region; i++)
5779 if (region[i] != exit->src
5780 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5781 return false;
5782 }
5783
5784 if (!region_copy)
5785 {
5786 region_copy = XNEWVEC (basic_block, n_region);
5787 free_region_copy = true;
5788 }
5789
5790 initialize_original_copy_tables ();
5791
5792 /* Record blocks outside the region that are dominated by something
5793 inside. */
5794 if (update_dominance)
5795 {
5796 doms.create (0);
5797 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5798 }
5799
5800 if (entry->dest->count)
5801 {
5802 total_count = entry->dest->count;
5803 entry_count = entry->count;
5804 /* Fix up corner cases, to avoid division by zero or creation of negative
5805 frequencies. */
5806 if (entry_count > total_count)
5807 entry_count = total_count;
5808 }
5809 else
5810 {
5811 total_freq = entry->dest->frequency;
5812 entry_freq = EDGE_FREQUENCY (entry);
5813 /* Fix up corner cases, to avoid division by zero or creation of negative
5814 frequencies. */
5815 if (total_freq == 0)
5816 total_freq = 1;
5817 else if (entry_freq > total_freq)
5818 entry_freq = total_freq;
5819 }
5820
5821 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5822 split_edge_bb_loc (entry), update_dominance);
5823 if (total_count)
5824 {
5825 scale_bbs_frequencies_gcov_type (region, n_region,
5826 total_count - entry_count,
5827 total_count);
5828 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5829 total_count);
5830 }
5831 else
5832 {
5833 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5834 total_freq);
5835 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5836 }
5837
5838 if (copying_header)
5839 {
5840 loop->header = exit->dest;
5841 loop->latch = exit->src;
5842 }
5843
5844 /* Redirect the entry and add the phi node arguments. */
5845 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5846 gcc_assert (redirected != NULL);
5847 flush_pending_stmts (entry);
5848
5849 /* Concerning updating of dominators: We must recount dominators
5850 for entry block and its copy. Anything that is outside of the
5851 region, but was dominated by something inside needs recounting as
5852 well. */
5853 if (update_dominance)
5854 {
5855 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5856 doms.safe_push (get_bb_original (entry->dest));
5857 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5858 doms.release ();
5859 }
5860
5861 /* Add the other PHI node arguments. */
5862 add_phi_args_after_copy (region_copy, n_region, NULL);
5863
5864 if (free_region_copy)
5865 free (region_copy);
5866
5867 free_original_copy_tables ();
5868 return true;
5869 }
5870
5871 /* Checks if BB is part of the region defined by N_REGION BBS. */
5872 static bool
5873 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5874 {
5875 unsigned int n;
5876
5877 for (n = 0; n < n_region; n++)
5878 {
5879 if (bb == bbs[n])
5880 return true;
5881 }
5882 return false;
5883 }
5884
5885 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5886 are stored to REGION_COPY in the same order in that they appear
5887 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5888 the region, EXIT an exit from it. The condition guarding EXIT
5889 is moved to ENTRY. Returns true if duplication succeeds, false
5890 otherwise.
5891
5892 For example,
5893
5894 some_code;
5895 if (cond)
5896 A;
5897 else
5898 B;
5899
5900 is transformed to
5901
5902 if (cond)
5903 {
5904 some_code;
5905 A;
5906 }
5907 else
5908 {
5909 some_code;
5910 B;
5911 }
5912 */
5913
5914 bool
5915 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5916 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5917 basic_block *region_copy ATTRIBUTE_UNUSED)
5918 {
5919 unsigned i;
5920 bool free_region_copy = false;
5921 struct loop *loop = exit->dest->loop_father;
5922 struct loop *orig_loop = entry->dest->loop_father;
5923 basic_block switch_bb, entry_bb, nentry_bb;
5924 vec<basic_block> doms;
5925 int total_freq = 0, exit_freq = 0;
5926 gcov_type total_count = 0, exit_count = 0;
5927 edge exits[2], nexits[2], e;
5928 gimple_stmt_iterator gsi;
5929 gimple cond_stmt;
5930 edge sorig, snew;
5931 basic_block exit_bb;
5932 gimple_stmt_iterator psi;
5933 gimple phi;
5934 tree def;
5935 struct loop *target, *aloop, *cloop;
5936
5937 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5938 exits[0] = exit;
5939 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5940
5941 if (!can_copy_bbs_p (region, n_region))
5942 return false;
5943
5944 initialize_original_copy_tables ();
5945 set_loop_copy (orig_loop, loop);
5946
5947 target= loop;
5948 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5949 {
5950 if (bb_part_of_region_p (aloop->header, region, n_region))
5951 {
5952 cloop = duplicate_loop (aloop, target);
5953 duplicate_subloops (aloop, cloop);
5954 }
5955 }
5956
5957 if (!region_copy)
5958 {
5959 region_copy = XNEWVEC (basic_block, n_region);
5960 free_region_copy = true;
5961 }
5962
5963 gcc_assert (!need_ssa_update_p (cfun));
5964
5965 /* Record blocks outside the region that are dominated by something
5966 inside. */
5967 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5968
5969 if (exit->src->count)
5970 {
5971 total_count = exit->src->count;
5972 exit_count = exit->count;
5973 /* Fix up corner cases, to avoid division by zero or creation of negative
5974 frequencies. */
5975 if (exit_count > total_count)
5976 exit_count = total_count;
5977 }
5978 else
5979 {
5980 total_freq = exit->src->frequency;
5981 exit_freq = EDGE_FREQUENCY (exit);
5982 /* Fix up corner cases, to avoid division by zero or creation of negative
5983 frequencies. */
5984 if (total_freq == 0)
5985 total_freq = 1;
5986 if (exit_freq > total_freq)
5987 exit_freq = total_freq;
5988 }
5989
5990 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5991 split_edge_bb_loc (exit), true);
5992 if (total_count)
5993 {
5994 scale_bbs_frequencies_gcov_type (region, n_region,
5995 total_count - exit_count,
5996 total_count);
5997 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5998 total_count);
5999 }
6000 else
6001 {
6002 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6003 total_freq);
6004 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6005 }
6006
6007 /* Create the switch block, and put the exit condition to it. */
6008 entry_bb = entry->dest;
6009 nentry_bb = get_bb_copy (entry_bb);
6010 if (!last_stmt (entry->src)
6011 || !stmt_ends_bb_p (last_stmt (entry->src)))
6012 switch_bb = entry->src;
6013 else
6014 switch_bb = split_edge (entry);
6015 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6016
6017 gsi = gsi_last_bb (switch_bb);
6018 cond_stmt = last_stmt (exit->src);
6019 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6020 cond_stmt = gimple_copy (cond_stmt);
6021
6022 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6023
6024 sorig = single_succ_edge (switch_bb);
6025 sorig->flags = exits[1]->flags;
6026 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6027
6028 /* Register the new edge from SWITCH_BB in loop exit lists. */
6029 rescan_loop_exit (snew, true, false);
6030
6031 /* Add the PHI node arguments. */
6032 add_phi_args_after_copy (region_copy, n_region, snew);
6033
6034 /* Get rid of now superfluous conditions and associated edges (and phi node
6035 arguments). */
6036 exit_bb = exit->dest;
6037
6038 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6039 PENDING_STMT (e) = NULL;
6040
6041 /* The latch of ORIG_LOOP was copied, and so was the backedge
6042 to the original header. We redirect this backedge to EXIT_BB. */
6043 for (i = 0; i < n_region; i++)
6044 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6045 {
6046 gcc_assert (single_succ_edge (region_copy[i]));
6047 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6048 PENDING_STMT (e) = NULL;
6049 for (psi = gsi_start_phis (exit_bb);
6050 !gsi_end_p (psi);
6051 gsi_next (&psi))
6052 {
6053 phi = gsi_stmt (psi);
6054 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6055 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6056 }
6057 }
6058 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6059 PENDING_STMT (e) = NULL;
6060
6061 /* Anything that is outside of the region, but was dominated by something
6062 inside needs to update dominance info. */
6063 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6064 doms.release ();
6065 /* Update the SSA web. */
6066 update_ssa (TODO_update_ssa);
6067
6068 if (free_region_copy)
6069 free (region_copy);
6070
6071 free_original_copy_tables ();
6072 return true;
6073 }
6074
6075 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6076 adding blocks when the dominator traversal reaches EXIT. This
6077 function silently assumes that ENTRY strictly dominates EXIT. */
6078
6079 void
6080 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6081 vec<basic_block> *bbs_p)
6082 {
6083 basic_block son;
6084
6085 for (son = first_dom_son (CDI_DOMINATORS, entry);
6086 son;
6087 son = next_dom_son (CDI_DOMINATORS, son))
6088 {
6089 bbs_p->safe_push (son);
6090 if (son != exit)
6091 gather_blocks_in_sese_region (son, exit, bbs_p);
6092 }
6093 }
6094
6095 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6096 The duplicates are recorded in VARS_MAP. */
6097
6098 static void
6099 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6100 tree to_context)
6101 {
6102 tree t = *tp, new_t;
6103 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6104 void **loc;
6105
6106 if (DECL_CONTEXT (t) == to_context)
6107 return;
6108
6109 loc = pointer_map_contains (vars_map, t);
6110
6111 if (!loc)
6112 {
6113 loc = pointer_map_insert (vars_map, t);
6114
6115 if (SSA_VAR_P (t))
6116 {
6117 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6118 add_local_decl (f, new_t);
6119 }
6120 else
6121 {
6122 gcc_assert (TREE_CODE (t) == CONST_DECL);
6123 new_t = copy_node (t);
6124 }
6125 DECL_CONTEXT (new_t) = to_context;
6126
6127 *loc = new_t;
6128 }
6129 else
6130 new_t = (tree) *loc;
6131
6132 *tp = new_t;
6133 }
6134
6135
6136 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6137 VARS_MAP maps old ssa names and var_decls to the new ones. */
6138
6139 static tree
6140 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6141 tree to_context)
6142 {
6143 void **loc;
6144 tree new_name;
6145
6146 gcc_assert (!virtual_operand_p (name));
6147
6148 loc = pointer_map_contains (vars_map, name);
6149
6150 if (!loc)
6151 {
6152 tree decl = SSA_NAME_VAR (name);
6153 if (decl)
6154 {
6155 replace_by_duplicate_decl (&decl, vars_map, to_context);
6156 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6157 decl, SSA_NAME_DEF_STMT (name));
6158 if (SSA_NAME_IS_DEFAULT_DEF (name))
6159 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6160 decl, new_name);
6161 }
6162 else
6163 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6164 name, SSA_NAME_DEF_STMT (name));
6165
6166 loc = pointer_map_insert (vars_map, name);
6167 *loc = new_name;
6168 }
6169 else
6170 new_name = (tree) *loc;
6171
6172 return new_name;
6173 }
6174
6175 struct move_stmt_d
6176 {
6177 tree orig_block;
6178 tree new_block;
6179 tree from_context;
6180 tree to_context;
6181 struct pointer_map_t *vars_map;
6182 htab_t new_label_map;
6183 struct pointer_map_t *eh_map;
6184 bool remap_decls_p;
6185 };
6186
6187 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6188 contained in *TP if it has been ORIG_BLOCK previously and change the
6189 DECL_CONTEXT of every local variable referenced in *TP. */
6190
6191 static tree
6192 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6193 {
6194 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6195 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6196 tree t = *tp;
6197
6198 if (EXPR_P (t))
6199 {
6200 tree block = TREE_BLOCK (t);
6201 if (block == p->orig_block
6202 || (p->orig_block == NULL_TREE
6203 && block != NULL_TREE))
6204 TREE_SET_BLOCK (t, p->new_block);
6205 #ifdef ENABLE_CHECKING
6206 else if (block != NULL_TREE)
6207 {
6208 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6209 block = BLOCK_SUPERCONTEXT (block);
6210 gcc_assert (block == p->orig_block);
6211 }
6212 #endif
6213 }
6214 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6215 {
6216 if (TREE_CODE (t) == SSA_NAME)
6217 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6218 else if (TREE_CODE (t) == LABEL_DECL)
6219 {
6220 if (p->new_label_map)
6221 {
6222 struct tree_map in, *out;
6223 in.base.from = t;
6224 out = (struct tree_map *)
6225 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6226 if (out)
6227 *tp = t = out->to;
6228 }
6229
6230 DECL_CONTEXT (t) = p->to_context;
6231 }
6232 else if (p->remap_decls_p)
6233 {
6234 /* Replace T with its duplicate. T should no longer appear in the
6235 parent function, so this looks wasteful; however, it may appear
6236 in referenced_vars, and more importantly, as virtual operands of
6237 statements, and in alias lists of other variables. It would be
6238 quite difficult to expunge it from all those places. ??? It might
6239 suffice to do this for addressable variables. */
6240 if ((TREE_CODE (t) == VAR_DECL
6241 && !is_global_var (t))
6242 || TREE_CODE (t) == CONST_DECL)
6243 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6244 }
6245 *walk_subtrees = 0;
6246 }
6247 else if (TYPE_P (t))
6248 *walk_subtrees = 0;
6249
6250 return NULL_TREE;
6251 }
6252
6253 /* Helper for move_stmt_r. Given an EH region number for the source
6254 function, map that to the duplicate EH regio number in the dest. */
6255
6256 static int
6257 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6258 {
6259 eh_region old_r, new_r;
6260 void **slot;
6261
6262 old_r = get_eh_region_from_number (old_nr);
6263 slot = pointer_map_contains (p->eh_map, old_r);
6264 new_r = (eh_region) *slot;
6265
6266 return new_r->index;
6267 }
6268
6269 /* Similar, but operate on INTEGER_CSTs. */
6270
6271 static tree
6272 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6273 {
6274 int old_nr, new_nr;
6275
6276 old_nr = tree_low_cst (old_t_nr, 0);
6277 new_nr = move_stmt_eh_region_nr (old_nr, p);
6278
6279 return build_int_cst (integer_type_node, new_nr);
6280 }
6281
6282 /* Like move_stmt_op, but for gimple statements.
6283
6284 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6285 contained in the current statement in *GSI_P and change the
6286 DECL_CONTEXT of every local variable referenced in the current
6287 statement. */
6288
6289 static tree
6290 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6291 struct walk_stmt_info *wi)
6292 {
6293 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6294 gimple stmt = gsi_stmt (*gsi_p);
6295 tree block = gimple_block (stmt);
6296
6297 if (block == p->orig_block
6298 || (p->orig_block == NULL_TREE
6299 && block != NULL_TREE))
6300 gimple_set_block (stmt, p->new_block);
6301
6302 switch (gimple_code (stmt))
6303 {
6304 case GIMPLE_CALL:
6305 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6306 {
6307 tree r, fndecl = gimple_call_fndecl (stmt);
6308 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6309 switch (DECL_FUNCTION_CODE (fndecl))
6310 {
6311 case BUILT_IN_EH_COPY_VALUES:
6312 r = gimple_call_arg (stmt, 1);
6313 r = move_stmt_eh_region_tree_nr (r, p);
6314 gimple_call_set_arg (stmt, 1, r);
6315 /* FALLTHRU */
6316
6317 case BUILT_IN_EH_POINTER:
6318 case BUILT_IN_EH_FILTER:
6319 r = gimple_call_arg (stmt, 0);
6320 r = move_stmt_eh_region_tree_nr (r, p);
6321 gimple_call_set_arg (stmt, 0, r);
6322 break;
6323
6324 default:
6325 break;
6326 }
6327 }
6328 break;
6329
6330 case GIMPLE_RESX:
6331 {
6332 int r = gimple_resx_region (stmt);
6333 r = move_stmt_eh_region_nr (r, p);
6334 gimple_resx_set_region (stmt, r);
6335 }
6336 break;
6337
6338 case GIMPLE_EH_DISPATCH:
6339 {
6340 int r = gimple_eh_dispatch_region (stmt);
6341 r = move_stmt_eh_region_nr (r, p);
6342 gimple_eh_dispatch_set_region (stmt, r);
6343 }
6344 break;
6345
6346 case GIMPLE_OMP_RETURN:
6347 case GIMPLE_OMP_CONTINUE:
6348 break;
6349 default:
6350 if (is_gimple_omp (stmt))
6351 {
6352 /* Do not remap variables inside OMP directives. Variables
6353 referenced in clauses and directive header belong to the
6354 parent function and should not be moved into the child
6355 function. */
6356 bool save_remap_decls_p = p->remap_decls_p;
6357 p->remap_decls_p = false;
6358 *handled_ops_p = true;
6359
6360 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6361 move_stmt_op, wi);
6362
6363 p->remap_decls_p = save_remap_decls_p;
6364 }
6365 break;
6366 }
6367
6368 return NULL_TREE;
6369 }
6370
6371 /* Move basic block BB from function CFUN to function DEST_FN. The
6372 block is moved out of the original linked list and placed after
6373 block AFTER in the new list. Also, the block is removed from the
6374 original array of blocks and placed in DEST_FN's array of blocks.
6375 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6376 updated to reflect the moved edges.
6377
6378 The local variables are remapped to new instances, VARS_MAP is used
6379 to record the mapping. */
6380
6381 static void
6382 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6383 basic_block after, bool update_edge_count_p,
6384 struct move_stmt_d *d)
6385 {
6386 struct control_flow_graph *cfg;
6387 edge_iterator ei;
6388 edge e;
6389 gimple_stmt_iterator si;
6390 unsigned old_len, new_len;
6391
6392 /* Remove BB from dominance structures. */
6393 delete_from_dominance_info (CDI_DOMINATORS, bb);
6394
6395 /* Move BB from its current loop to the copy in the new function. */
6396 if (current_loops)
6397 {
6398 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6399 if (new_loop)
6400 bb->loop_father = new_loop;
6401 }
6402
6403 /* Link BB to the new linked list. */
6404 move_block_after (bb, after);
6405
6406 /* Update the edge count in the corresponding flowgraphs. */
6407 if (update_edge_count_p)
6408 FOR_EACH_EDGE (e, ei, bb->succs)
6409 {
6410 cfun->cfg->x_n_edges--;
6411 dest_cfun->cfg->x_n_edges++;
6412 }
6413
6414 /* Remove BB from the original basic block array. */
6415 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6416 cfun->cfg->x_n_basic_blocks--;
6417
6418 /* Grow DEST_CFUN's basic block array if needed. */
6419 cfg = dest_cfun->cfg;
6420 cfg->x_n_basic_blocks++;
6421 if (bb->index >= cfg->x_last_basic_block)
6422 cfg->x_last_basic_block = bb->index + 1;
6423
6424 old_len = vec_safe_length (cfg->x_basic_block_info);
6425 if ((unsigned) cfg->x_last_basic_block >= old_len)
6426 {
6427 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6428 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6429 }
6430
6431 (*cfg->x_basic_block_info)[bb->index] = bb;
6432
6433 /* Remap the variables in phi nodes. */
6434 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6435 {
6436 gimple phi = gsi_stmt (si);
6437 use_operand_p use;
6438 tree op = PHI_RESULT (phi);
6439 ssa_op_iter oi;
6440 unsigned i;
6441
6442 if (virtual_operand_p (op))
6443 {
6444 /* Remove the phi nodes for virtual operands (alias analysis will be
6445 run for the new function, anyway). */
6446 remove_phi_node (&si, true);
6447 continue;
6448 }
6449
6450 SET_PHI_RESULT (phi,
6451 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6452 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6453 {
6454 op = USE_FROM_PTR (use);
6455 if (TREE_CODE (op) == SSA_NAME)
6456 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6457 }
6458
6459 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6460 {
6461 location_t locus = gimple_phi_arg_location (phi, i);
6462 tree block = LOCATION_BLOCK (locus);
6463
6464 if (locus == UNKNOWN_LOCATION)
6465 continue;
6466 if (d->orig_block == NULL_TREE || block == d->orig_block)
6467 {
6468 if (d->new_block == NULL_TREE)
6469 locus = LOCATION_LOCUS (locus);
6470 else
6471 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6472 gimple_phi_arg_set_location (phi, i, locus);
6473 }
6474 }
6475
6476 gsi_next (&si);
6477 }
6478
6479 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6480 {
6481 gimple stmt = gsi_stmt (si);
6482 struct walk_stmt_info wi;
6483
6484 memset (&wi, 0, sizeof (wi));
6485 wi.info = d;
6486 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6487
6488 if (gimple_code (stmt) == GIMPLE_LABEL)
6489 {
6490 tree label = gimple_label_label (stmt);
6491 int uid = LABEL_DECL_UID (label);
6492
6493 gcc_assert (uid > -1);
6494
6495 old_len = vec_safe_length (cfg->x_label_to_block_map);
6496 if (old_len <= (unsigned) uid)
6497 {
6498 new_len = 3 * uid / 2 + 1;
6499 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6500 }
6501
6502 (*cfg->x_label_to_block_map)[uid] = bb;
6503 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6504
6505 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6506
6507 if (uid >= dest_cfun->cfg->last_label_uid)
6508 dest_cfun->cfg->last_label_uid = uid + 1;
6509 }
6510
6511 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6512 remove_stmt_from_eh_lp_fn (cfun, stmt);
6513
6514 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6515 gimple_remove_stmt_histograms (cfun, stmt);
6516
6517 /* We cannot leave any operands allocated from the operand caches of
6518 the current function. */
6519 free_stmt_operands (stmt);
6520 push_cfun (dest_cfun);
6521 update_stmt (stmt);
6522 pop_cfun ();
6523 }
6524
6525 FOR_EACH_EDGE (e, ei, bb->succs)
6526 if (e->goto_locus != UNKNOWN_LOCATION)
6527 {
6528 tree block = LOCATION_BLOCK (e->goto_locus);
6529 if (d->orig_block == NULL_TREE
6530 || block == d->orig_block)
6531 e->goto_locus = d->new_block ?
6532 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6533 LOCATION_LOCUS (e->goto_locus);
6534 }
6535 }
6536
6537 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6538 the outermost EH region. Use REGION as the incoming base EH region. */
6539
6540 static eh_region
6541 find_outermost_region_in_block (struct function *src_cfun,
6542 basic_block bb, eh_region region)
6543 {
6544 gimple_stmt_iterator si;
6545
6546 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6547 {
6548 gimple stmt = gsi_stmt (si);
6549 eh_region stmt_region;
6550 int lp_nr;
6551
6552 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6553 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6554 if (stmt_region)
6555 {
6556 if (region == NULL)
6557 region = stmt_region;
6558 else if (stmt_region != region)
6559 {
6560 region = eh_region_outermost (src_cfun, stmt_region, region);
6561 gcc_assert (region != NULL);
6562 }
6563 }
6564 }
6565
6566 return region;
6567 }
6568
6569 static tree
6570 new_label_mapper (tree decl, void *data)
6571 {
6572 htab_t hash = (htab_t) data;
6573 struct tree_map *m;
6574 void **slot;
6575
6576 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6577
6578 m = XNEW (struct tree_map);
6579 m->hash = DECL_UID (decl);
6580 m->base.from = decl;
6581 m->to = create_artificial_label (UNKNOWN_LOCATION);
6582 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6583 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6584 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6585
6586 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6587 gcc_assert (*slot == NULL);
6588
6589 *slot = m;
6590
6591 return m->to;
6592 }
6593
6594 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6595 subblocks. */
6596
6597 static void
6598 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6599 tree to_context)
6600 {
6601 tree *tp, t;
6602
6603 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6604 {
6605 t = *tp;
6606 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6607 continue;
6608 replace_by_duplicate_decl (&t, vars_map, to_context);
6609 if (t != *tp)
6610 {
6611 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6612 {
6613 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6614 DECL_HAS_VALUE_EXPR_P (t) = 1;
6615 }
6616 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6617 *tp = t;
6618 }
6619 }
6620
6621 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6622 replace_block_vars_by_duplicates (block, vars_map, to_context);
6623 }
6624
6625 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6626 from FN1 to FN2. */
6627
6628 static void
6629 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6630 struct loop *loop)
6631 {
6632 /* Discard it from the old loop array. */
6633 (*get_loops (fn1))[loop->num] = NULL;
6634
6635 /* Place it in the new loop array, assigning it a new number. */
6636 loop->num = number_of_loops (fn2);
6637 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6638
6639 /* Recurse to children. */
6640 for (loop = loop->inner; loop; loop = loop->next)
6641 fixup_loop_arrays_after_move (fn1, fn2, loop);
6642 }
6643
6644 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6645 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6646 single basic block in the original CFG and the new basic block is
6647 returned. DEST_CFUN must not have a CFG yet.
6648
6649 Note that the region need not be a pure SESE region. Blocks inside
6650 the region may contain calls to abort/exit. The only restriction
6651 is that ENTRY_BB should be the only entry point and it must
6652 dominate EXIT_BB.
6653
6654 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6655 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6656 to the new function.
6657
6658 All local variables referenced in the region are assumed to be in
6659 the corresponding BLOCK_VARS and unexpanded variable lists
6660 associated with DEST_CFUN. */
6661
6662 basic_block
6663 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6664 basic_block exit_bb, tree orig_block)
6665 {
6666 vec<basic_block> bbs, dom_bbs;
6667 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6668 basic_block after, bb, *entry_pred, *exit_succ, abb;
6669 struct function *saved_cfun = cfun;
6670 int *entry_flag, *exit_flag;
6671 unsigned *entry_prob, *exit_prob;
6672 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6673 edge e;
6674 edge_iterator ei;
6675 htab_t new_label_map;
6676 struct pointer_map_t *vars_map, *eh_map;
6677 struct loop *loop = entry_bb->loop_father;
6678 struct loop *loop0 = get_loop (saved_cfun, 0);
6679 struct move_stmt_d d;
6680
6681 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6682 region. */
6683 gcc_assert (entry_bb != exit_bb
6684 && (!exit_bb
6685 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6686
6687 /* Collect all the blocks in the region. Manually add ENTRY_BB
6688 because it won't be added by dfs_enumerate_from. */
6689 bbs.create (0);
6690 bbs.safe_push (entry_bb);
6691 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6692
6693 /* The blocks that used to be dominated by something in BBS will now be
6694 dominated by the new block. */
6695 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6696 bbs.address (),
6697 bbs.length ());
6698
6699 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6700 the predecessor edges to ENTRY_BB and the successor edges to
6701 EXIT_BB so that we can re-attach them to the new basic block that
6702 will replace the region. */
6703 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6704 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6705 entry_flag = XNEWVEC (int, num_entry_edges);
6706 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6707 i = 0;
6708 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6709 {
6710 entry_prob[i] = e->probability;
6711 entry_flag[i] = e->flags;
6712 entry_pred[i++] = e->src;
6713 remove_edge (e);
6714 }
6715
6716 if (exit_bb)
6717 {
6718 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6719 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6720 exit_flag = XNEWVEC (int, num_exit_edges);
6721 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6722 i = 0;
6723 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6724 {
6725 exit_prob[i] = e->probability;
6726 exit_flag[i] = e->flags;
6727 exit_succ[i++] = e->dest;
6728 remove_edge (e);
6729 }
6730 }
6731 else
6732 {
6733 num_exit_edges = 0;
6734 exit_succ = NULL;
6735 exit_flag = NULL;
6736 exit_prob = NULL;
6737 }
6738
6739 /* Switch context to the child function to initialize DEST_FN's CFG. */
6740 gcc_assert (dest_cfun->cfg == NULL);
6741 push_cfun (dest_cfun);
6742
6743 init_empty_tree_cfg ();
6744
6745 /* Initialize EH information for the new function. */
6746 eh_map = NULL;
6747 new_label_map = NULL;
6748 if (saved_cfun->eh)
6749 {
6750 eh_region region = NULL;
6751
6752 FOR_EACH_VEC_ELT (bbs, i, bb)
6753 region = find_outermost_region_in_block (saved_cfun, bb, region);
6754
6755 init_eh_for_function ();
6756 if (region != NULL)
6757 {
6758 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6759 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6760 new_label_mapper, new_label_map);
6761 }
6762 }
6763
6764 /* Initialize an empty loop tree. */
6765 struct loops *loops = ggc_alloc_cleared_loops ();
6766 init_loops_structure (dest_cfun, loops, 1);
6767 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6768 set_loops_for_fn (dest_cfun, loops);
6769
6770 /* Move the outlined loop tree part. */
6771 num_nodes = bbs.length ();
6772 FOR_EACH_VEC_ELT (bbs, i, bb)
6773 {
6774 if (bb->loop_father->header == bb)
6775 {
6776 struct loop *this_loop = bb->loop_father;
6777 struct loop *outer = loop_outer (this_loop);
6778 if (outer == loop
6779 /* If the SESE region contains some bbs ending with
6780 a noreturn call, those are considered to belong
6781 to the outermost loop in saved_cfun, rather than
6782 the entry_bb's loop_father. */
6783 || outer == loop0)
6784 {
6785 if (outer != loop)
6786 num_nodes -= this_loop->num_nodes;
6787 flow_loop_tree_node_remove (bb->loop_father);
6788 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6789 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6790 }
6791 }
6792 else if (bb->loop_father == loop0 && loop0 != loop)
6793 num_nodes--;
6794
6795 /* Remove loop exits from the outlined region. */
6796 if (loops_for_fn (saved_cfun)->exits)
6797 FOR_EACH_EDGE (e, ei, bb->succs)
6798 {
6799 void **slot = htab_find_slot_with_hash
6800 (loops_for_fn (saved_cfun)->exits, e,
6801 htab_hash_pointer (e), NO_INSERT);
6802 if (slot)
6803 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6804 }
6805 }
6806
6807
6808 /* Adjust the number of blocks in the tree root of the outlined part. */
6809 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6810
6811 /* Setup a mapping to be used by move_block_to_fn. */
6812 loop->aux = current_loops->tree_root;
6813 loop0->aux = current_loops->tree_root;
6814
6815 pop_cfun ();
6816
6817 /* Move blocks from BBS into DEST_CFUN. */
6818 gcc_assert (bbs.length () >= 2);
6819 after = dest_cfun->cfg->x_entry_block_ptr;
6820 vars_map = pointer_map_create ();
6821
6822 memset (&d, 0, sizeof (d));
6823 d.orig_block = orig_block;
6824 d.new_block = DECL_INITIAL (dest_cfun->decl);
6825 d.from_context = cfun->decl;
6826 d.to_context = dest_cfun->decl;
6827 d.vars_map = vars_map;
6828 d.new_label_map = new_label_map;
6829 d.eh_map = eh_map;
6830 d.remap_decls_p = true;
6831
6832 FOR_EACH_VEC_ELT (bbs, i, bb)
6833 {
6834 /* No need to update edge counts on the last block. It has
6835 already been updated earlier when we detached the region from
6836 the original CFG. */
6837 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6838 after = bb;
6839 }
6840
6841 loop->aux = NULL;
6842 loop0->aux = NULL;
6843 /* Loop sizes are no longer correct, fix them up. */
6844 loop->num_nodes -= num_nodes;
6845 for (struct loop *outer = loop_outer (loop);
6846 outer; outer = loop_outer (outer))
6847 outer->num_nodes -= num_nodes;
6848 loop0->num_nodes -= bbs.length () - num_nodes;
6849
6850 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6851 {
6852 struct loop *aloop;
6853 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6854 if (aloop != NULL)
6855 {
6856 if (aloop->simduid)
6857 {
6858 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6859 d.to_context);
6860 dest_cfun->has_simduid_loops = true;
6861 }
6862 if (aloop->force_vect)
6863 dest_cfun->has_force_vect_loops = true;
6864 }
6865 }
6866
6867 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6868 if (orig_block)
6869 {
6870 tree block;
6871 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6872 == NULL_TREE);
6873 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6874 = BLOCK_SUBBLOCKS (orig_block);
6875 for (block = BLOCK_SUBBLOCKS (orig_block);
6876 block; block = BLOCK_CHAIN (block))
6877 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6878 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6879 }
6880
6881 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6882 vars_map, dest_cfun->decl);
6883
6884 if (new_label_map)
6885 htab_delete (new_label_map);
6886 if (eh_map)
6887 pointer_map_destroy (eh_map);
6888 pointer_map_destroy (vars_map);
6889
6890 /* Rewire the entry and exit blocks. The successor to the entry
6891 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6892 the child function. Similarly, the predecessor of DEST_FN's
6893 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6894 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6895 various CFG manipulation function get to the right CFG.
6896
6897 FIXME, this is silly. The CFG ought to become a parameter to
6898 these helpers. */
6899 push_cfun (dest_cfun);
6900 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6901 if (exit_bb)
6902 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6903 pop_cfun ();
6904
6905 /* Back in the original function, the SESE region has disappeared,
6906 create a new basic block in its place. */
6907 bb = create_empty_bb (entry_pred[0]);
6908 if (current_loops)
6909 add_bb_to_loop (bb, loop);
6910 for (i = 0; i < num_entry_edges; i++)
6911 {
6912 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6913 e->probability = entry_prob[i];
6914 }
6915
6916 for (i = 0; i < num_exit_edges; i++)
6917 {
6918 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6919 e->probability = exit_prob[i];
6920 }
6921
6922 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6923 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6924 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6925 dom_bbs.release ();
6926
6927 if (exit_bb)
6928 {
6929 free (exit_prob);
6930 free (exit_flag);
6931 free (exit_succ);
6932 }
6933 free (entry_prob);
6934 free (entry_flag);
6935 free (entry_pred);
6936 bbs.release ();
6937
6938 return bb;
6939 }
6940
6941
6942 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6943 */
6944
6945 void
6946 dump_function_to_file (tree fndecl, FILE *file, int flags)
6947 {
6948 tree arg, var, old_current_fndecl = current_function_decl;
6949 struct function *dsf;
6950 bool ignore_topmost_bind = false, any_var = false;
6951 basic_block bb;
6952 tree chain;
6953 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6954 && decl_is_tm_clone (fndecl));
6955 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6956
6957 current_function_decl = fndecl;
6958 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6959
6960 arg = DECL_ARGUMENTS (fndecl);
6961 while (arg)
6962 {
6963 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6964 fprintf (file, " ");
6965 print_generic_expr (file, arg, dump_flags);
6966 if (flags & TDF_VERBOSE)
6967 print_node (file, "", arg, 4);
6968 if (DECL_CHAIN (arg))
6969 fprintf (file, ", ");
6970 arg = DECL_CHAIN (arg);
6971 }
6972 fprintf (file, ")\n");
6973
6974 if (flags & TDF_VERBOSE)
6975 print_node (file, "", fndecl, 2);
6976
6977 dsf = DECL_STRUCT_FUNCTION (fndecl);
6978 if (dsf && (flags & TDF_EH))
6979 dump_eh_tree (file, dsf);
6980
6981 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
6982 {
6983 dump_node (fndecl, TDF_SLIM | flags, file);
6984 current_function_decl = old_current_fndecl;
6985 return;
6986 }
6987
6988 /* When GIMPLE is lowered, the variables are no longer available in
6989 BIND_EXPRs, so display them separately. */
6990 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
6991 {
6992 unsigned ix;
6993 ignore_topmost_bind = true;
6994
6995 fprintf (file, "{\n");
6996 if (!vec_safe_is_empty (fun->local_decls))
6997 FOR_EACH_LOCAL_DECL (fun, ix, var)
6998 {
6999 print_generic_decl (file, var, flags);
7000 if (flags & TDF_VERBOSE)
7001 print_node (file, "", var, 4);
7002 fprintf (file, "\n");
7003
7004 any_var = true;
7005 }
7006 if (gimple_in_ssa_p (cfun))
7007 for (ix = 1; ix < num_ssa_names; ++ix)
7008 {
7009 tree name = ssa_name (ix);
7010 if (name && !SSA_NAME_VAR (name))
7011 {
7012 fprintf (file, " ");
7013 print_generic_expr (file, TREE_TYPE (name), flags);
7014 fprintf (file, " ");
7015 print_generic_expr (file, name, flags);
7016 fprintf (file, ";\n");
7017
7018 any_var = true;
7019 }
7020 }
7021 }
7022
7023 if (fun && fun->decl == fndecl
7024 && fun->cfg
7025 && basic_block_info_for_function (fun))
7026 {
7027 /* If the CFG has been built, emit a CFG-based dump. */
7028 if (!ignore_topmost_bind)
7029 fprintf (file, "{\n");
7030
7031 if (any_var && n_basic_blocks_for_function (fun))
7032 fprintf (file, "\n");
7033
7034 FOR_EACH_BB_FN (bb, fun)
7035 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7036
7037 fprintf (file, "}\n");
7038 }
7039 else if (DECL_SAVED_TREE (fndecl) == NULL)
7040 {
7041 /* The function is now in GIMPLE form but the CFG has not been
7042 built yet. Emit the single sequence of GIMPLE statements
7043 that make up its body. */
7044 gimple_seq body = gimple_body (fndecl);
7045
7046 if (gimple_seq_first_stmt (body)
7047 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7048 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7049 print_gimple_seq (file, body, 0, flags);
7050 else
7051 {
7052 if (!ignore_topmost_bind)
7053 fprintf (file, "{\n");
7054
7055 if (any_var)
7056 fprintf (file, "\n");
7057
7058 print_gimple_seq (file, body, 2, flags);
7059 fprintf (file, "}\n");
7060 }
7061 }
7062 else
7063 {
7064 int indent;
7065
7066 /* Make a tree based dump. */
7067 chain = DECL_SAVED_TREE (fndecl);
7068 if (chain && TREE_CODE (chain) == BIND_EXPR)
7069 {
7070 if (ignore_topmost_bind)
7071 {
7072 chain = BIND_EXPR_BODY (chain);
7073 indent = 2;
7074 }
7075 else
7076 indent = 0;
7077 }
7078 else
7079 {
7080 if (!ignore_topmost_bind)
7081 fprintf (file, "{\n");
7082 indent = 2;
7083 }
7084
7085 if (any_var)
7086 fprintf (file, "\n");
7087
7088 print_generic_stmt_indented (file, chain, flags, indent);
7089 if (ignore_topmost_bind)
7090 fprintf (file, "}\n");
7091 }
7092
7093 if (flags & TDF_ENUMERATE_LOCALS)
7094 dump_enumerated_decls (file, flags);
7095 fprintf (file, "\n\n");
7096
7097 current_function_decl = old_current_fndecl;
7098 }
7099
7100 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7101
7102 DEBUG_FUNCTION void
7103 debug_function (tree fn, int flags)
7104 {
7105 dump_function_to_file (fn, stderr, flags);
7106 }
7107
7108
7109 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7110
7111 static void
7112 print_pred_bbs (FILE *file, basic_block bb)
7113 {
7114 edge e;
7115 edge_iterator ei;
7116
7117 FOR_EACH_EDGE (e, ei, bb->preds)
7118 fprintf (file, "bb_%d ", e->src->index);
7119 }
7120
7121
7122 /* Print on FILE the indexes for the successors of basic_block BB. */
7123
7124 static void
7125 print_succ_bbs (FILE *file, basic_block bb)
7126 {
7127 edge e;
7128 edge_iterator ei;
7129
7130 FOR_EACH_EDGE (e, ei, bb->succs)
7131 fprintf (file, "bb_%d ", e->dest->index);
7132 }
7133
7134 /* Print to FILE the basic block BB following the VERBOSITY level. */
7135
7136 void
7137 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7138 {
7139 char *s_indent = (char *) alloca ((size_t) indent + 1);
7140 memset ((void *) s_indent, ' ', (size_t) indent);
7141 s_indent[indent] = '\0';
7142
7143 /* Print basic_block's header. */
7144 if (verbosity >= 2)
7145 {
7146 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7147 print_pred_bbs (file, bb);
7148 fprintf (file, "}, succs = {");
7149 print_succ_bbs (file, bb);
7150 fprintf (file, "})\n");
7151 }
7152
7153 /* Print basic_block's body. */
7154 if (verbosity >= 3)
7155 {
7156 fprintf (file, "%s {\n", s_indent);
7157 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7158 fprintf (file, "%s }\n", s_indent);
7159 }
7160 }
7161
7162 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7163
7164 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7165 VERBOSITY level this outputs the contents of the loop, or just its
7166 structure. */
7167
7168 static void
7169 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7170 {
7171 char *s_indent;
7172 basic_block bb;
7173
7174 if (loop == NULL)
7175 return;
7176
7177 s_indent = (char *) alloca ((size_t) indent + 1);
7178 memset ((void *) s_indent, ' ', (size_t) indent);
7179 s_indent[indent] = '\0';
7180
7181 /* Print loop's header. */
7182 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7183 if (loop->header)
7184 fprintf (file, "header = %d", loop->header->index);
7185 else
7186 {
7187 fprintf (file, "deleted)\n");
7188 return;
7189 }
7190 if (loop->latch)
7191 fprintf (file, ", latch = %d", loop->latch->index);
7192 else
7193 fprintf (file, ", multiple latches");
7194 fprintf (file, ", niter = ");
7195 print_generic_expr (file, loop->nb_iterations, 0);
7196
7197 if (loop->any_upper_bound)
7198 {
7199 fprintf (file, ", upper_bound = ");
7200 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7201 }
7202
7203 if (loop->any_estimate)
7204 {
7205 fprintf (file, ", estimate = ");
7206 dump_double_int (file, loop->nb_iterations_estimate, true);
7207 }
7208 fprintf (file, ")\n");
7209
7210 /* Print loop's body. */
7211 if (verbosity >= 1)
7212 {
7213 fprintf (file, "%s{\n", s_indent);
7214 FOR_EACH_BB (bb)
7215 if (bb->loop_father == loop)
7216 print_loops_bb (file, bb, indent, verbosity);
7217
7218 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7219 fprintf (file, "%s}\n", s_indent);
7220 }
7221 }
7222
7223 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7224 spaces. Following VERBOSITY level this outputs the contents of the
7225 loop, or just its structure. */
7226
7227 static void
7228 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7229 int verbosity)
7230 {
7231 if (loop == NULL)
7232 return;
7233
7234 print_loop (file, loop, indent, verbosity);
7235 print_loop_and_siblings (file, loop->next, indent, verbosity);
7236 }
7237
7238 /* Follow a CFG edge from the entry point of the program, and on entry
7239 of a loop, pretty print the loop structure on FILE. */
7240
7241 void
7242 print_loops (FILE *file, int verbosity)
7243 {
7244 basic_block bb;
7245
7246 bb = ENTRY_BLOCK_PTR;
7247 if (bb && bb->loop_father)
7248 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7249 }
7250
7251 /* Dump a loop. */
7252
7253 DEBUG_FUNCTION void
7254 debug (struct loop &ref)
7255 {
7256 print_loop (stderr, &ref, 0, /*verbosity*/0);
7257 }
7258
7259 DEBUG_FUNCTION void
7260 debug (struct loop *ptr)
7261 {
7262 if (ptr)
7263 debug (*ptr);
7264 else
7265 fprintf (stderr, "<nil>\n");
7266 }
7267
7268 /* Dump a loop verbosely. */
7269
7270 DEBUG_FUNCTION void
7271 debug_verbose (struct loop &ref)
7272 {
7273 print_loop (stderr, &ref, 0, /*verbosity*/3);
7274 }
7275
7276 DEBUG_FUNCTION void
7277 debug_verbose (struct loop *ptr)
7278 {
7279 if (ptr)
7280 debug (*ptr);
7281 else
7282 fprintf (stderr, "<nil>\n");
7283 }
7284
7285
7286 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7287
7288 DEBUG_FUNCTION void
7289 debug_loops (int verbosity)
7290 {
7291 print_loops (stderr, verbosity);
7292 }
7293
7294 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7295
7296 DEBUG_FUNCTION void
7297 debug_loop (struct loop *loop, int verbosity)
7298 {
7299 print_loop (stderr, loop, 0, verbosity);
7300 }
7301
7302 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7303 level. */
7304
7305 DEBUG_FUNCTION void
7306 debug_loop_num (unsigned num, int verbosity)
7307 {
7308 debug_loop (get_loop (cfun, num), verbosity);
7309 }
7310
7311 /* Return true if BB ends with a call, possibly followed by some
7312 instructions that must stay with the call. Return false,
7313 otherwise. */
7314
7315 static bool
7316 gimple_block_ends_with_call_p (basic_block bb)
7317 {
7318 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7319 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7320 }
7321
7322
7323 /* Return true if BB ends with a conditional branch. Return false,
7324 otherwise. */
7325
7326 static bool
7327 gimple_block_ends_with_condjump_p (const_basic_block bb)
7328 {
7329 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7330 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7331 }
7332
7333
7334 /* Return true if we need to add fake edge to exit at statement T.
7335 Helper function for gimple_flow_call_edges_add. */
7336
7337 static bool
7338 need_fake_edge_p (gimple t)
7339 {
7340 tree fndecl = NULL_TREE;
7341 int call_flags = 0;
7342
7343 /* NORETURN and LONGJMP calls already have an edge to exit.
7344 CONST and PURE calls do not need one.
7345 We don't currently check for CONST and PURE here, although
7346 it would be a good idea, because those attributes are
7347 figured out from the RTL in mark_constant_function, and
7348 the counter incrementation code from -fprofile-arcs
7349 leads to different results from -fbranch-probabilities. */
7350 if (is_gimple_call (t))
7351 {
7352 fndecl = gimple_call_fndecl (t);
7353 call_flags = gimple_call_flags (t);
7354 }
7355
7356 if (is_gimple_call (t)
7357 && fndecl
7358 && DECL_BUILT_IN (fndecl)
7359 && (call_flags & ECF_NOTHROW)
7360 && !(call_flags & ECF_RETURNS_TWICE)
7361 /* fork() doesn't really return twice, but the effect of
7362 wrapping it in __gcov_fork() which calls __gcov_flush()
7363 and clears the counters before forking has the same
7364 effect as returning twice. Force a fake edge. */
7365 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7366 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7367 return false;
7368
7369 if (is_gimple_call (t))
7370 {
7371 edge_iterator ei;
7372 edge e;
7373 basic_block bb;
7374
7375 if (!(call_flags & ECF_NORETURN))
7376 return true;
7377
7378 bb = gimple_bb (t);
7379 FOR_EACH_EDGE (e, ei, bb->succs)
7380 if ((e->flags & EDGE_FAKE) == 0)
7381 return true;
7382 }
7383
7384 if (gimple_code (t) == GIMPLE_ASM
7385 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7386 return true;
7387
7388 return false;
7389 }
7390
7391
7392 /* Add fake edges to the function exit for any non constant and non
7393 noreturn calls (or noreturn calls with EH/abnormal edges),
7394 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7395 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7396 that were split.
7397
7398 The goal is to expose cases in which entering a basic block does
7399 not imply that all subsequent instructions must be executed. */
7400
7401 static int
7402 gimple_flow_call_edges_add (sbitmap blocks)
7403 {
7404 int i;
7405 int blocks_split = 0;
7406 int last_bb = last_basic_block;
7407 bool check_last_block = false;
7408
7409 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7410 return 0;
7411
7412 if (! blocks)
7413 check_last_block = true;
7414 else
7415 check_last_block = bitmap_bit_p (blocks, EXIT_BLOCK_PTR->prev_bb->index);
7416
7417 /* In the last basic block, before epilogue generation, there will be
7418 a fallthru edge to EXIT. Special care is required if the last insn
7419 of the last basic block is a call because make_edge folds duplicate
7420 edges, which would result in the fallthru edge also being marked
7421 fake, which would result in the fallthru edge being removed by
7422 remove_fake_edges, which would result in an invalid CFG.
7423
7424 Moreover, we can't elide the outgoing fake edge, since the block
7425 profiler needs to take this into account in order to solve the minimal
7426 spanning tree in the case that the call doesn't return.
7427
7428 Handle this by adding a dummy instruction in a new last basic block. */
7429 if (check_last_block)
7430 {
7431 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
7432 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7433 gimple t = NULL;
7434
7435 if (!gsi_end_p (gsi))
7436 t = gsi_stmt (gsi);
7437
7438 if (t && need_fake_edge_p (t))
7439 {
7440 edge e;
7441
7442 e = find_edge (bb, EXIT_BLOCK_PTR);
7443 if (e)
7444 {
7445 gsi_insert_on_edge (e, gimple_build_nop ());
7446 gsi_commit_edge_inserts ();
7447 }
7448 }
7449 }
7450
7451 /* Now add fake edges to the function exit for any non constant
7452 calls since there is no way that we can determine if they will
7453 return or not... */
7454 for (i = 0; i < last_bb; i++)
7455 {
7456 basic_block bb = BASIC_BLOCK (i);
7457 gimple_stmt_iterator gsi;
7458 gimple stmt, last_stmt;
7459
7460 if (!bb)
7461 continue;
7462
7463 if (blocks && !bitmap_bit_p (blocks, i))
7464 continue;
7465
7466 gsi = gsi_last_nondebug_bb (bb);
7467 if (!gsi_end_p (gsi))
7468 {
7469 last_stmt = gsi_stmt (gsi);
7470 do
7471 {
7472 stmt = gsi_stmt (gsi);
7473 if (need_fake_edge_p (stmt))
7474 {
7475 edge e;
7476
7477 /* The handling above of the final block before the
7478 epilogue should be enough to verify that there is
7479 no edge to the exit block in CFG already.
7480 Calling make_edge in such case would cause us to
7481 mark that edge as fake and remove it later. */
7482 #ifdef ENABLE_CHECKING
7483 if (stmt == last_stmt)
7484 {
7485 e = find_edge (bb, EXIT_BLOCK_PTR);
7486 gcc_assert (e == NULL);
7487 }
7488 #endif
7489
7490 /* Note that the following may create a new basic block
7491 and renumber the existing basic blocks. */
7492 if (stmt != last_stmt)
7493 {
7494 e = split_block (bb, stmt);
7495 if (e)
7496 blocks_split++;
7497 }
7498 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7499 }
7500 gsi_prev (&gsi);
7501 }
7502 while (!gsi_end_p (gsi));
7503 }
7504 }
7505
7506 if (blocks_split)
7507 verify_flow_info ();
7508
7509 return blocks_split;
7510 }
7511
7512 /* Removes edge E and all the blocks dominated by it, and updates dominance
7513 information. The IL in E->src needs to be updated separately.
7514 If dominance info is not available, only the edge E is removed.*/
7515
7516 void
7517 remove_edge_and_dominated_blocks (edge e)
7518 {
7519 vec<basic_block> bbs_to_remove = vNULL;
7520 vec<basic_block> bbs_to_fix_dom = vNULL;
7521 bitmap df, df_idom;
7522 edge f;
7523 edge_iterator ei;
7524 bool none_removed = false;
7525 unsigned i;
7526 basic_block bb, dbb;
7527 bitmap_iterator bi;
7528
7529 if (!dom_info_available_p (CDI_DOMINATORS))
7530 {
7531 remove_edge (e);
7532 return;
7533 }
7534
7535 /* No updating is needed for edges to exit. */
7536 if (e->dest == EXIT_BLOCK_PTR)
7537 {
7538 if (cfgcleanup_altered_bbs)
7539 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7540 remove_edge (e);
7541 return;
7542 }
7543
7544 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7545 that is not dominated by E->dest, then this set is empty. Otherwise,
7546 all the basic blocks dominated by E->dest are removed.
7547
7548 Also, to DF_IDOM we store the immediate dominators of the blocks in
7549 the dominance frontier of E (i.e., of the successors of the
7550 removed blocks, if there are any, and of E->dest otherwise). */
7551 FOR_EACH_EDGE (f, ei, e->dest->preds)
7552 {
7553 if (f == e)
7554 continue;
7555
7556 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7557 {
7558 none_removed = true;
7559 break;
7560 }
7561 }
7562
7563 df = BITMAP_ALLOC (NULL);
7564 df_idom = BITMAP_ALLOC (NULL);
7565
7566 if (none_removed)
7567 bitmap_set_bit (df_idom,
7568 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7569 else
7570 {
7571 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7572 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7573 {
7574 FOR_EACH_EDGE (f, ei, bb->succs)
7575 {
7576 if (f->dest != EXIT_BLOCK_PTR)
7577 bitmap_set_bit (df, f->dest->index);
7578 }
7579 }
7580 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7581 bitmap_clear_bit (df, bb->index);
7582
7583 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7584 {
7585 bb = BASIC_BLOCK (i);
7586 bitmap_set_bit (df_idom,
7587 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7588 }
7589 }
7590
7591 if (cfgcleanup_altered_bbs)
7592 {
7593 /* Record the set of the altered basic blocks. */
7594 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7595 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7596 }
7597
7598 /* Remove E and the cancelled blocks. */
7599 if (none_removed)
7600 remove_edge (e);
7601 else
7602 {
7603 /* Walk backwards so as to get a chance to substitute all
7604 released DEFs into debug stmts. See
7605 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7606 details. */
7607 for (i = bbs_to_remove.length (); i-- > 0; )
7608 delete_basic_block (bbs_to_remove[i]);
7609 }
7610
7611 /* Update the dominance information. The immediate dominator may change only
7612 for blocks whose immediate dominator belongs to DF_IDOM:
7613
7614 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7615 removal. Let Z the arbitrary block such that idom(Z) = Y and
7616 Z dominates X after the removal. Before removal, there exists a path P
7617 from Y to X that avoids Z. Let F be the last edge on P that is
7618 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7619 dominates W, and because of P, Z does not dominate W), and W belongs to
7620 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7621 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7622 {
7623 bb = BASIC_BLOCK (i);
7624 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7625 dbb;
7626 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7627 bbs_to_fix_dom.safe_push (dbb);
7628 }
7629
7630 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7631
7632 BITMAP_FREE (df);
7633 BITMAP_FREE (df_idom);
7634 bbs_to_remove.release ();
7635 bbs_to_fix_dom.release ();
7636 }
7637
7638 /* Purge dead EH edges from basic block BB. */
7639
7640 bool
7641 gimple_purge_dead_eh_edges (basic_block bb)
7642 {
7643 bool changed = false;
7644 edge e;
7645 edge_iterator ei;
7646 gimple stmt = last_stmt (bb);
7647
7648 if (stmt && stmt_can_throw_internal (stmt))
7649 return false;
7650
7651 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7652 {
7653 if (e->flags & EDGE_EH)
7654 {
7655 remove_edge_and_dominated_blocks (e);
7656 changed = true;
7657 }
7658 else
7659 ei_next (&ei);
7660 }
7661
7662 return changed;
7663 }
7664
7665 /* Purge dead EH edges from basic block listed in BLOCKS. */
7666
7667 bool
7668 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7669 {
7670 bool changed = false;
7671 unsigned i;
7672 bitmap_iterator bi;
7673
7674 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7675 {
7676 basic_block bb = BASIC_BLOCK (i);
7677
7678 /* Earlier gimple_purge_dead_eh_edges could have removed
7679 this basic block already. */
7680 gcc_assert (bb || changed);
7681 if (bb != NULL)
7682 changed |= gimple_purge_dead_eh_edges (bb);
7683 }
7684
7685 return changed;
7686 }
7687
7688 /* Purge dead abnormal call edges from basic block BB. */
7689
7690 bool
7691 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7692 {
7693 bool changed = false;
7694 edge e;
7695 edge_iterator ei;
7696 gimple stmt = last_stmt (bb);
7697
7698 if (!cfun->has_nonlocal_label
7699 && !cfun->calls_setjmp)
7700 return false;
7701
7702 if (stmt && stmt_can_make_abnormal_goto (stmt))
7703 return false;
7704
7705 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7706 {
7707 if (e->flags & EDGE_ABNORMAL)
7708 {
7709 if (e->flags & EDGE_FALLTHRU)
7710 e->flags &= ~EDGE_ABNORMAL;
7711 else
7712 remove_edge_and_dominated_blocks (e);
7713 changed = true;
7714 }
7715 else
7716 ei_next (&ei);
7717 }
7718
7719 return changed;
7720 }
7721
7722 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7723
7724 bool
7725 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7726 {
7727 bool changed = false;
7728 unsigned i;
7729 bitmap_iterator bi;
7730
7731 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7732 {
7733 basic_block bb = BASIC_BLOCK (i);
7734
7735 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7736 this basic block already. */
7737 gcc_assert (bb || changed);
7738 if (bb != NULL)
7739 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7740 }
7741
7742 return changed;
7743 }
7744
7745 /* This function is called whenever a new edge is created or
7746 redirected. */
7747
7748 static void
7749 gimple_execute_on_growing_pred (edge e)
7750 {
7751 basic_block bb = e->dest;
7752
7753 if (!gimple_seq_empty_p (phi_nodes (bb)))
7754 reserve_phi_args_for_new_edge (bb);
7755 }
7756
7757 /* This function is called immediately before edge E is removed from
7758 the edge vector E->dest->preds. */
7759
7760 static void
7761 gimple_execute_on_shrinking_pred (edge e)
7762 {
7763 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7764 remove_phi_args (e);
7765 }
7766
7767 /*---------------------------------------------------------------------------
7768 Helper functions for Loop versioning
7769 ---------------------------------------------------------------------------*/
7770
7771 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7772 of 'first'. Both of them are dominated by 'new_head' basic block. When
7773 'new_head' was created by 'second's incoming edge it received phi arguments
7774 on the edge by split_edge(). Later, additional edge 'e' was created to
7775 connect 'new_head' and 'first'. Now this routine adds phi args on this
7776 additional edge 'e' that new_head to second edge received as part of edge
7777 splitting. */
7778
7779 static void
7780 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7781 basic_block new_head, edge e)
7782 {
7783 gimple phi1, phi2;
7784 gimple_stmt_iterator psi1, psi2;
7785 tree def;
7786 edge e2 = find_edge (new_head, second);
7787
7788 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7789 edge, we should always have an edge from NEW_HEAD to SECOND. */
7790 gcc_assert (e2 != NULL);
7791
7792 /* Browse all 'second' basic block phi nodes and add phi args to
7793 edge 'e' for 'first' head. PHI args are always in correct order. */
7794
7795 for (psi2 = gsi_start_phis (second),
7796 psi1 = gsi_start_phis (first);
7797 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7798 gsi_next (&psi2), gsi_next (&psi1))
7799 {
7800 phi1 = gsi_stmt (psi1);
7801 phi2 = gsi_stmt (psi2);
7802 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7803 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7804 }
7805 }
7806
7807
7808 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7809 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7810 the destination of the ELSE part. */
7811
7812 static void
7813 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7814 basic_block second_head ATTRIBUTE_UNUSED,
7815 basic_block cond_bb, void *cond_e)
7816 {
7817 gimple_stmt_iterator gsi;
7818 gimple new_cond_expr;
7819 tree cond_expr = (tree) cond_e;
7820 edge e0;
7821
7822 /* Build new conditional expr */
7823 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7824 NULL_TREE, NULL_TREE);
7825
7826 /* Add new cond in cond_bb. */
7827 gsi = gsi_last_bb (cond_bb);
7828 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7829
7830 /* Adjust edges appropriately to connect new head with first head
7831 as well as second head. */
7832 e0 = single_succ_edge (cond_bb);
7833 e0->flags &= ~EDGE_FALLTHRU;
7834 e0->flags |= EDGE_FALSE_VALUE;
7835 }
7836
7837
7838 /* Do book-keeping of basic block BB for the profile consistency checker.
7839 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7840 then do post-pass accounting. Store the counting in RECORD. */
7841 static void
7842 gimple_account_profile_record (basic_block bb, int after_pass,
7843 struct profile_record *record)
7844 {
7845 gimple_stmt_iterator i;
7846 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7847 {
7848 record->size[after_pass]
7849 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7850 if (profile_status == PROFILE_READ)
7851 record->time[after_pass]
7852 += estimate_num_insns (gsi_stmt (i),
7853 &eni_time_weights) * bb->count;
7854 else if (profile_status == PROFILE_GUESSED)
7855 record->time[after_pass]
7856 += estimate_num_insns (gsi_stmt (i),
7857 &eni_time_weights) * bb->frequency;
7858 }
7859 }
7860
7861 struct cfg_hooks gimple_cfg_hooks = {
7862 "gimple",
7863 gimple_verify_flow_info,
7864 gimple_dump_bb, /* dump_bb */
7865 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7866 create_bb, /* create_basic_block */
7867 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7868 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7869 gimple_can_remove_branch_p, /* can_remove_branch_p */
7870 remove_bb, /* delete_basic_block */
7871 gimple_split_block, /* split_block */
7872 gimple_move_block_after, /* move_block_after */
7873 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7874 gimple_merge_blocks, /* merge_blocks */
7875 gimple_predict_edge, /* predict_edge */
7876 gimple_predicted_by_p, /* predicted_by_p */
7877 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7878 gimple_duplicate_bb, /* duplicate_block */
7879 gimple_split_edge, /* split_edge */
7880 gimple_make_forwarder_block, /* make_forward_block */
7881 NULL, /* tidy_fallthru_edge */
7882 NULL, /* force_nonfallthru */
7883 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7884 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7885 gimple_flow_call_edges_add, /* flow_call_edges_add */
7886 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7887 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7888 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7889 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7890 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7891 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7892 flush_pending_stmts, /* flush_pending_stmts */
7893 gimple_empty_block_p, /* block_empty_p */
7894 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7895 gimple_account_profile_record,
7896 };
7897
7898
7899 /* Split all critical edges. */
7900
7901 static unsigned int
7902 split_critical_edges (void)
7903 {
7904 basic_block bb;
7905 edge e;
7906 edge_iterator ei;
7907
7908 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7909 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7910 mappings around the calls to split_edge. */
7911 start_recording_case_labels ();
7912 FOR_ALL_BB (bb)
7913 {
7914 FOR_EACH_EDGE (e, ei, bb->succs)
7915 {
7916 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7917 split_edge (e);
7918 /* PRE inserts statements to edges and expects that
7919 since split_critical_edges was done beforehand, committing edge
7920 insertions will not split more edges. In addition to critical
7921 edges we must split edges that have multiple successors and
7922 end by control flow statements, such as RESX.
7923 Go ahead and split them too. This matches the logic in
7924 gimple_find_edge_insert_loc. */
7925 else if ((!single_pred_p (e->dest)
7926 || !gimple_seq_empty_p (phi_nodes (e->dest))
7927 || e->dest == EXIT_BLOCK_PTR)
7928 && e->src != ENTRY_BLOCK_PTR
7929 && !(e->flags & EDGE_ABNORMAL))
7930 {
7931 gimple_stmt_iterator gsi;
7932
7933 gsi = gsi_last_bb (e->src);
7934 if (!gsi_end_p (gsi)
7935 && stmt_ends_bb_p (gsi_stmt (gsi))
7936 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7937 && !gimple_call_builtin_p (gsi_stmt (gsi),
7938 BUILT_IN_RETURN)))
7939 split_edge (e);
7940 }
7941 }
7942 }
7943 end_recording_case_labels ();
7944 return 0;
7945 }
7946
7947 namespace {
7948
7949 const pass_data pass_data_split_crit_edges =
7950 {
7951 GIMPLE_PASS, /* type */
7952 "crited", /* name */
7953 OPTGROUP_NONE, /* optinfo_flags */
7954 false, /* has_gate */
7955 true, /* has_execute */
7956 TV_TREE_SPLIT_EDGES, /* tv_id */
7957 PROP_cfg, /* properties_required */
7958 PROP_no_crit_edges, /* properties_provided */
7959 0, /* properties_destroyed */
7960 0, /* todo_flags_start */
7961 TODO_verify_flow, /* todo_flags_finish */
7962 };
7963
7964 class pass_split_crit_edges : public gimple_opt_pass
7965 {
7966 public:
7967 pass_split_crit_edges (gcc::context *ctxt)
7968 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
7969 {}
7970
7971 /* opt_pass methods: */
7972 unsigned int execute () { return split_critical_edges (); }
7973
7974 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
7975 }; // class pass_split_crit_edges
7976
7977 } // anon namespace
7978
7979 gimple_opt_pass *
7980 make_pass_split_crit_edges (gcc::context *ctxt)
7981 {
7982 return new pass_split_crit_edges (ctxt);
7983 }
7984
7985
7986 /* Build a ternary operation and gimplify it. Emit code before GSI.
7987 Return the gimple_val holding the result. */
7988
7989 tree
7990 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7991 tree type, tree a, tree b, tree c)
7992 {
7993 tree ret;
7994 location_t loc = gimple_location (gsi_stmt (*gsi));
7995
7996 ret = fold_build3_loc (loc, code, type, a, b, c);
7997 STRIP_NOPS (ret);
7998
7999 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8000 GSI_SAME_STMT);
8001 }
8002
8003 /* Build a binary operation and gimplify it. Emit code before GSI.
8004 Return the gimple_val holding the result. */
8005
8006 tree
8007 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8008 tree type, tree a, tree b)
8009 {
8010 tree ret;
8011
8012 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8013 STRIP_NOPS (ret);
8014
8015 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8016 GSI_SAME_STMT);
8017 }
8018
8019 /* Build a unary operation and gimplify it. Emit code before GSI.
8020 Return the gimple_val holding the result. */
8021
8022 tree
8023 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8024 tree a)
8025 {
8026 tree ret;
8027
8028 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8029 STRIP_NOPS (ret);
8030
8031 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8032 GSI_SAME_STMT);
8033 }
8034
8035
8036 \f
8037 /* Emit return warnings. */
8038
8039 static unsigned int
8040 execute_warn_function_return (void)
8041 {
8042 source_location location;
8043 gimple last;
8044 edge e;
8045 edge_iterator ei;
8046
8047 if (!targetm.warn_func_return (cfun->decl))
8048 return 0;
8049
8050 /* If we have a path to EXIT, then we do return. */
8051 if (TREE_THIS_VOLATILE (cfun->decl)
8052 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
8053 {
8054 location = UNKNOWN_LOCATION;
8055 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8056 {
8057 last = last_stmt (e->src);
8058 if ((gimple_code (last) == GIMPLE_RETURN
8059 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8060 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8061 break;
8062 }
8063 if (location == UNKNOWN_LOCATION)
8064 location = cfun->function_end_locus;
8065 warning_at (location, 0, "%<noreturn%> function does return");
8066 }
8067
8068 /* If we see "return;" in some basic block, then we do reach the end
8069 without returning a value. */
8070 else if (warn_return_type
8071 && !TREE_NO_WARNING (cfun->decl)
8072 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
8073 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8074 {
8075 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
8076 {
8077 gimple last = last_stmt (e->src);
8078 if (gimple_code (last) == GIMPLE_RETURN
8079 && gimple_return_retval (last) == NULL
8080 && !gimple_no_warning_p (last))
8081 {
8082 location = gimple_location (last);
8083 if (location == UNKNOWN_LOCATION)
8084 location = cfun->function_end_locus;
8085 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8086 TREE_NO_WARNING (cfun->decl) = 1;
8087 break;
8088 }
8089 }
8090 }
8091 return 0;
8092 }
8093
8094
8095 /* Given a basic block B which ends with a conditional and has
8096 precisely two successors, determine which of the edges is taken if
8097 the conditional is true and which is taken if the conditional is
8098 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8099
8100 void
8101 extract_true_false_edges_from_block (basic_block b,
8102 edge *true_edge,
8103 edge *false_edge)
8104 {
8105 edge e = EDGE_SUCC (b, 0);
8106
8107 if (e->flags & EDGE_TRUE_VALUE)
8108 {
8109 *true_edge = e;
8110 *false_edge = EDGE_SUCC (b, 1);
8111 }
8112 else
8113 {
8114 *false_edge = e;
8115 *true_edge = EDGE_SUCC (b, 1);
8116 }
8117 }
8118
8119 namespace {
8120
8121 const pass_data pass_data_warn_function_return =
8122 {
8123 GIMPLE_PASS, /* type */
8124 "*warn_function_return", /* name */
8125 OPTGROUP_NONE, /* optinfo_flags */
8126 false, /* has_gate */
8127 true, /* has_execute */
8128 TV_NONE, /* tv_id */
8129 PROP_cfg, /* properties_required */
8130 0, /* properties_provided */
8131 0, /* properties_destroyed */
8132 0, /* todo_flags_start */
8133 0, /* todo_flags_finish */
8134 };
8135
8136 class pass_warn_function_return : public gimple_opt_pass
8137 {
8138 public:
8139 pass_warn_function_return (gcc::context *ctxt)
8140 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8141 {}
8142
8143 /* opt_pass methods: */
8144 unsigned int execute () { return execute_warn_function_return (); }
8145
8146 }; // class pass_warn_function_return
8147
8148 } // anon namespace
8149
8150 gimple_opt_pass *
8151 make_pass_warn_function_return (gcc::context *ctxt)
8152 {
8153 return new pass_warn_function_return (ctxt);
8154 }
8155
8156 /* Walk a gimplified function and warn for functions whose return value is
8157 ignored and attribute((warn_unused_result)) is set. This is done before
8158 inlining, so we don't have to worry about that. */
8159
8160 static void
8161 do_warn_unused_result (gimple_seq seq)
8162 {
8163 tree fdecl, ftype;
8164 gimple_stmt_iterator i;
8165
8166 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8167 {
8168 gimple g = gsi_stmt (i);
8169
8170 switch (gimple_code (g))
8171 {
8172 case GIMPLE_BIND:
8173 do_warn_unused_result (gimple_bind_body (g));
8174 break;
8175 case GIMPLE_TRY:
8176 do_warn_unused_result (gimple_try_eval (g));
8177 do_warn_unused_result (gimple_try_cleanup (g));
8178 break;
8179 case GIMPLE_CATCH:
8180 do_warn_unused_result (gimple_catch_handler (g));
8181 break;
8182 case GIMPLE_EH_FILTER:
8183 do_warn_unused_result (gimple_eh_filter_failure (g));
8184 break;
8185
8186 case GIMPLE_CALL:
8187 if (gimple_call_lhs (g))
8188 break;
8189 if (gimple_call_internal_p (g))
8190 break;
8191
8192 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8193 LHS. All calls whose value is ignored should be
8194 represented like this. Look for the attribute. */
8195 fdecl = gimple_call_fndecl (g);
8196 ftype = gimple_call_fntype (g);
8197
8198 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8199 {
8200 location_t loc = gimple_location (g);
8201
8202 if (fdecl)
8203 warning_at (loc, OPT_Wunused_result,
8204 "ignoring return value of %qD, "
8205 "declared with attribute warn_unused_result",
8206 fdecl);
8207 else
8208 warning_at (loc, OPT_Wunused_result,
8209 "ignoring return value of function "
8210 "declared with attribute warn_unused_result");
8211 }
8212 break;
8213
8214 default:
8215 /* Not a container, not a call, or a call whose value is used. */
8216 break;
8217 }
8218 }
8219 }
8220
8221 static unsigned int
8222 run_warn_unused_result (void)
8223 {
8224 do_warn_unused_result (gimple_body (current_function_decl));
8225 return 0;
8226 }
8227
8228 static bool
8229 gate_warn_unused_result (void)
8230 {
8231 return flag_warn_unused_result;
8232 }
8233
8234 namespace {
8235
8236 const pass_data pass_data_warn_unused_result =
8237 {
8238 GIMPLE_PASS, /* type */
8239 "*warn_unused_result", /* name */
8240 OPTGROUP_NONE, /* optinfo_flags */
8241 true, /* has_gate */
8242 true, /* has_execute */
8243 TV_NONE, /* tv_id */
8244 PROP_gimple_any, /* properties_required */
8245 0, /* properties_provided */
8246 0, /* properties_destroyed */
8247 0, /* todo_flags_start */
8248 0, /* todo_flags_finish */
8249 };
8250
8251 class pass_warn_unused_result : public gimple_opt_pass
8252 {
8253 public:
8254 pass_warn_unused_result (gcc::context *ctxt)
8255 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8256 {}
8257
8258 /* opt_pass methods: */
8259 bool gate () { return gate_warn_unused_result (); }
8260 unsigned int execute () { return run_warn_unused_result (); }
8261
8262 }; // class pass_warn_unused_result
8263
8264 } // anon namespace
8265
8266 gimple_opt_pass *
8267 make_pass_warn_unused_result (gcc::context *ctxt)
8268 {
8269 return new pass_warn_unused_result (ctxt);
8270 }
8271
8272 /* IPA passes, compilation of earlier functions or inlining
8273 might have changed some properties, such as marked functions nothrow,
8274 pure, const or noreturn.
8275 Remove redundant edges and basic blocks, and create new ones if necessary.
8276
8277 This pass can't be executed as stand alone pass from pass manager, because
8278 in between inlining and this fixup the verify_flow_info would fail. */
8279
8280 unsigned int
8281 execute_fixup_cfg (void)
8282 {
8283 basic_block bb;
8284 gimple_stmt_iterator gsi;
8285 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8286 gcov_type count_scale;
8287 edge e;
8288 edge_iterator ei;
8289
8290 count_scale
8291 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8292 ENTRY_BLOCK_PTR->count);
8293
8294 ENTRY_BLOCK_PTR->count = cgraph_get_node (current_function_decl)->count;
8295 EXIT_BLOCK_PTR->count = apply_scale (EXIT_BLOCK_PTR->count,
8296 count_scale);
8297
8298 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
8299 e->count = apply_scale (e->count, count_scale);
8300
8301 FOR_EACH_BB (bb)
8302 {
8303 bb->count = apply_scale (bb->count, count_scale);
8304 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8305 {
8306 gimple stmt = gsi_stmt (gsi);
8307 tree decl = is_gimple_call (stmt)
8308 ? gimple_call_fndecl (stmt)
8309 : NULL;
8310 if (decl)
8311 {
8312 int flags = gimple_call_flags (stmt);
8313 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8314 {
8315 if (gimple_purge_dead_abnormal_call_edges (bb))
8316 todo |= TODO_cleanup_cfg;
8317
8318 if (gimple_in_ssa_p (cfun))
8319 {
8320 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8321 update_stmt (stmt);
8322 }
8323 }
8324
8325 if (flags & ECF_NORETURN
8326 && fixup_noreturn_call (stmt))
8327 todo |= TODO_cleanup_cfg;
8328 }
8329
8330 if (maybe_clean_eh_stmt (stmt)
8331 && gimple_purge_dead_eh_edges (bb))
8332 todo |= TODO_cleanup_cfg;
8333 }
8334
8335 FOR_EACH_EDGE (e, ei, bb->succs)
8336 e->count = apply_scale (e->count, count_scale);
8337
8338 /* If we have a basic block with no successors that does not
8339 end with a control statement or a noreturn call end it with
8340 a call to __builtin_unreachable. This situation can occur
8341 when inlining a noreturn call that does in fact return. */
8342 if (EDGE_COUNT (bb->succs) == 0)
8343 {
8344 gimple stmt = last_stmt (bb);
8345 if (!stmt
8346 || (!is_ctrl_stmt (stmt)
8347 && (!is_gimple_call (stmt)
8348 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8349 {
8350 stmt = gimple_build_call
8351 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8352 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8353 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8354 }
8355 }
8356 }
8357 if (count_scale != REG_BR_PROB_BASE)
8358 compute_function_frequency ();
8359
8360 /* We just processed all calls. */
8361 if (cfun->gimple_df)
8362 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8363
8364 /* Dump a textual representation of the flowgraph. */
8365 if (dump_file)
8366 gimple_dump_cfg (dump_file, dump_flags);
8367
8368 if (current_loops
8369 && (todo & TODO_cleanup_cfg))
8370 loops_state_set (LOOPS_NEED_FIXUP);
8371
8372 return todo;
8373 }
8374
8375 namespace {
8376
8377 const pass_data pass_data_fixup_cfg =
8378 {
8379 GIMPLE_PASS, /* type */
8380 "*free_cfg_annotations", /* name */
8381 OPTGROUP_NONE, /* optinfo_flags */
8382 false, /* has_gate */
8383 true, /* has_execute */
8384 TV_NONE, /* tv_id */
8385 PROP_cfg, /* properties_required */
8386 0, /* properties_provided */
8387 0, /* properties_destroyed */
8388 0, /* todo_flags_start */
8389 0, /* todo_flags_finish */
8390 };
8391
8392 class pass_fixup_cfg : public gimple_opt_pass
8393 {
8394 public:
8395 pass_fixup_cfg (gcc::context *ctxt)
8396 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8397 {}
8398
8399 /* opt_pass methods: */
8400 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8401 unsigned int execute () { return execute_fixup_cfg (); }
8402
8403 }; // class pass_fixup_cfg
8404
8405 } // anon namespace
8406
8407 gimple_opt_pass *
8408 make_pass_fixup_cfg (gcc::context *ctxt)
8409 {
8410 return new pass_fixup_cfg (ctxt);
8411 }
8412
8413 /* Garbage collection support for edge_def. */
8414
8415 extern void gt_ggc_mx (tree&);
8416 extern void gt_ggc_mx (gimple&);
8417 extern void gt_ggc_mx (rtx&);
8418 extern void gt_ggc_mx (basic_block&);
8419
8420 void
8421 gt_ggc_mx (edge_def *e)
8422 {
8423 tree block = LOCATION_BLOCK (e->goto_locus);
8424 gt_ggc_mx (e->src);
8425 gt_ggc_mx (e->dest);
8426 if (current_ir_type () == IR_GIMPLE)
8427 gt_ggc_mx (e->insns.g);
8428 else
8429 gt_ggc_mx (e->insns.r);
8430 gt_ggc_mx (block);
8431 }
8432
8433 /* PCH support for edge_def. */
8434
8435 extern void gt_pch_nx (tree&);
8436 extern void gt_pch_nx (gimple&);
8437 extern void gt_pch_nx (rtx&);
8438 extern void gt_pch_nx (basic_block&);
8439
8440 void
8441 gt_pch_nx (edge_def *e)
8442 {
8443 tree block = LOCATION_BLOCK (e->goto_locus);
8444 gt_pch_nx (e->src);
8445 gt_pch_nx (e->dest);
8446 if (current_ir_type () == IR_GIMPLE)
8447 gt_pch_nx (e->insns.g);
8448 else
8449 gt_pch_nx (e->insns.r);
8450 gt_pch_nx (block);
8451 }
8452
8453 void
8454 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8455 {
8456 tree block = LOCATION_BLOCK (e->goto_locus);
8457 op (&(e->src), cookie);
8458 op (&(e->dest), cookie);
8459 if (current_ir_type () == IR_GIMPLE)
8460 op (&(e->insns.g), cookie);
8461 else
8462 op (&(e->insns.r), cookie);
8463 op (&(block), cookie);
8464 }