tree.h (int_const_binop): Remove notrunc argument.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
673 }
674 }
675 else
676 fallthru = true;
677
678 if (fallthru)
679 {
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
683 }
684 }
685
686 if (root_omp_region)
687 free_omp_regions ();
688
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
691 }
692
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
695
696 static unsigned int
697 locus_map_hash (const void *item)
698 {
699 return ((const struct locus_discrim_map *) item)->locus;
700 }
701
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
704
705 static int
706 locus_map_eq (const void *va, const void *vb)
707 {
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
711 }
712
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
717
718 static int
719 next_discriminator_for_locus (location_t locus)
720 {
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
723
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
731 {
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
736 }
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
739 }
740
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
745 {
746 expanded_location from, to;
747
748 if (locus1 == locus2)
749 return true;
750
751 from = expand_location (locus1);
752 to = expand_location (locus2);
753
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && filename_cmp (from.file, to.file) == 0);
761 }
762
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
765
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
768 {
769 gimple first_in_to_bb, last_in_to_bb;
770
771 if (locus == 0 || bb->discriminator != 0)
772 return;
773
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
779 }
780
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
782
783 static void
784 make_cond_expr_edges (basic_block bb)
785 {
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
792
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795
796 entry_locus = gimple_location (entry);
797
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
805
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
813 {
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
818 }
819
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
823 }
824
825
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
828
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
832
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
836 {
837 tree t, next;
838
839 for (t = (tree) *value; t; t = next)
840 {
841 next = CASE_CHAIN (t);
842 CASE_CHAIN (t) = NULL;
843 }
844
845 *value = NULL;
846 return false;
847 }
848
849 /* Start recording information mapping edges to case labels. */
850
851 void
852 start_recording_case_labels (void)
853 {
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
857 }
858
859 /* Return nonzero if we are recording information for case labels. */
860
861 static bool
862 recording_case_labels_p (void)
863 {
864 return (edge_to_cases != NULL);
865 }
866
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
871 {
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 {
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
881 {
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
885 }
886 }
887 BITMAP_FREE (touched_switch_bbs);
888 }
889
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
892
893 Otherwise return NULL. */
894
895 static tree
896 get_cases_for_edge (edge e, gimple t)
897 {
898 void **slot;
899 size_t i, n;
900
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
905
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
909
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
913
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
916 {
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
921
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 CASE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
927 }
928
929 return (tree) *pointer_map_contains (edge_to_cases, e);
930 }
931
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933
934 static void
935 make_gimple_switch_edges (basic_block bb)
936 {
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
940
941 entry_locus = gimple_location (entry);
942
943 n = gimple_switch_num_labels (entry);
944
945 for (i = 0; i < n; ++i)
946 {
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
951 }
952 }
953
954
955 /* Return the basic block holding label DEST. */
956
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
959 {
960 int uid = LABEL_DECL_UID (dest);
961
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
966 {
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
969
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
973 }
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
978 }
979
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 {
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
988
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 {
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
994
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
997
998 target = gimple_label_label (label_stmt);
999
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1004 {
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* Create edges for a goto statement at block BB. */
1012
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1015 {
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1018
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1021 {
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1031 }
1032
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1035 }
1036
1037 /* Create edges for an asm statement with labels at block BB. */
1038
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1041 {
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1045
1046 for (i = 0; i < n; ++i)
1047 {
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1052 }
1053 }
1054
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1058
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1066
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1069 {
1070 /* The label. */
1071 tree label;
1072
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1076
1077 /* Given LABEL return the first label in the same basic block. */
1078
1079 static tree
1080 main_block_label (tree label)
1081 {
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1084
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1087 {
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1090 }
1091
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1094 }
1095
1096 /* Clean up redundant labels within the exception tree. */
1097
1098 static void
1099 cleanup_dead_labels_eh (void)
1100 {
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1105
1106 if (cfun->eh == NULL)
1107 return;
1108
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1111 {
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1114 {
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1117 }
1118 }
1119
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1122 {
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1126
1127 case ERT_TRY:
1128 {
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 {
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1135 }
1136 }
1137 break;
1138
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1144 }
1145 }
1146
1147
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1152
1153 void
1154 cleanup_dead_labels (void)
1155 {
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1162 {
1163 gimple_stmt_iterator i;
1164
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 {
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1169
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1172
1173 label = gimple_label_label (stmt);
1174
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1178 {
1179 label_for_bb[bb->index].label = label;
1180 continue;
1181 }
1182
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 {
1189 label_for_bb[bb->index].label = label;
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1198 {
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1202
1203 switch (gimple_code (stmt))
1204 {
1205 case GIMPLE_COND:
1206 {
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1209
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1215 }
1216
1217 case GIMPLE_SWITCH:
1218 {
1219 size_t i, n = gimple_switch_num_labels (stmt);
1220
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1223 {
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1227 }
1228 break;
1229 }
1230
1231 case GIMPLE_ASM:
1232 {
1233 int i, n = gimple_asm_nlabels (stmt);
1234
1235 for (i = 0; i < n; ++i)
1236 {
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1240 }
1241 break;
1242 }
1243
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1248 {
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1251 }
1252 break;
1253
1254 default:
1255 break;
1256 }
1257 }
1258
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1261
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1266 {
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1269
1270 if (!label_for_this_bb)
1271 continue;
1272
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1276
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 {
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1281
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1284
1285 label = gimple_label_label (stmt);
1286
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1294 }
1295 }
1296
1297 free (label_for_bb);
1298 }
1299
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1306 {
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1312
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 {
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1322 }
1323 else
1324 has_default = false;
1325
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1332 {
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1335
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1338
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1342 {
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1347 }
1348
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1353
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1358 {
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1362 double_int_one);
1363
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1368 bhp1))
1369 {
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1376 }
1377 else
1378 break;
1379 }
1380 }
1381
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1385 {
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1390 }
1391
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1394 }
1395
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1399
1400 void
1401 group_case_labels (void)
1402 {
1403 basic_block bb;
1404
1405 FOR_EACH_BB (bb)
1406 {
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1410 }
1411 }
1412
1413 /* Checks whether we can merge block B into block A. */
1414
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 {
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1421
1422 if (!single_succ_p (a))
1423 return false;
1424
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1427
1428 if (single_succ (a) != b)
1429 return false;
1430
1431 if (!single_pred_p (b))
1432 return false;
1433
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1436
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1442
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1448
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 {
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1457
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1461 }
1462
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1466
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1474
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 {
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1490 }
1491
1492 return true;
1493 }
1494
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 {
1500 const ssa_use_operand_t *ptr;
1501
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1505
1506 return true;
1507 }
1508
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1515 {
1516 ssa_use_operand_t *ptr, *single_use = 0;
1517
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1520 {
1521 if (single_use)
1522 {
1523 single_use = NULL;
1524 break;
1525 }
1526 single_use = ptr;
1527 }
1528
1529 if (use_p)
1530 *use_p = single_use;
1531
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1534
1535 return !!single_use;
1536 }
1537
1538 /* Replaces all uses of NAME by VAL. */
1539
1540 void
1541 replace_uses_by (tree name, tree val)
1542 {
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1547
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 {
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 {
1552 replace_exp (use, val);
1553
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1555 {
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1558 {
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1564 }
1565 }
1566 }
1567
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1569 {
1570 size_t i;
1571
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1575
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1578 {
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1585 }
1586
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1589 }
1590 }
1591
1592 gcc_assert (has_zero_uses (name));
1593
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1596 {
1597 struct loop *loop;
1598 loop_iterator li;
1599
1600 FOR_EACH_LOOP (li, loop, 0)
1601 {
1602 substitute_in_loop_info (loop, name, val);
1603 }
1604 }
1605 }
1606
1607 /* Merge block B into block A. */
1608
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1611 {
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1614
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1622 {
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1628
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1637
1638 if (!may_replace_uses)
1639 {
1640 gcc_assert (is_gimple_reg (def));
1641
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1649 }
1650 else
1651 {
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1656 {
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1660
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1664
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1667 }
1668 else
1669 replace_uses_by (def, use);
1670
1671 remove_phi_node (&psi, true);
1672 }
1673 }
1674
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1677
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 {
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 {
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1689
1690 gsi_remove (&gsi, false);
1691
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1699 {
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1702 }
1703
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1706 {
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1709 }
1710 }
1711 else
1712 {
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1715 }
1716 }
1717
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1722
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1725 }
1726
1727
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1732
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1735 {
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1739
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1746
1747 return bb;
1748 }
1749
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1751
1752 void
1753 notice_special_calls (gimple call)
1754 {
1755 int flags = gimple_call_flags (call);
1756
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1761 }
1762
1763
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1766
1767 void
1768 clear_special_calls (void)
1769 {
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1772 }
1773
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1775
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1778 {
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1782
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1786 }
1787
1788
1789 /* Remove statements of basic block BB. */
1790
1791 static void
1792 remove_bb (basic_block bb)
1793 {
1794 gimple_stmt_iterator i;
1795
1796 if (dump_file)
1797 {
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1800 {
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1803 }
1804 }
1805
1806 if (current_loops)
1807 {
1808 struct loop *loop = bb->loop_father;
1809
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1815 }
1816
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1819 {
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1825 {
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1830 {
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1833
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1838 {
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1841 }
1842
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1847 }
1848 else
1849 {
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1856
1857 gsi_remove (&i, true);
1858 }
1859
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1864 }
1865 }
1866
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1869 }
1870
1871
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1875
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1878 {
1879 gimple stmt;
1880
1881 stmt = last_stmt (bb);
1882
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1885
1886 if (val == NULL)
1887 return NULL;
1888
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1891
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1894
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1897
1898 if (computed_goto_p (stmt))
1899 {
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1902
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1910 }
1911
1912 gcc_unreachable ();
1913 }
1914
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1918
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1921 {
1922 basic_block dest;
1923 edge e = NULL;
1924
1925 dest = label_to_block (val);
1926 if (dest)
1927 {
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1930 }
1931
1932 return e;
1933 }
1934
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1938
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1941 {
1942 edge true_edge, false_edge;
1943
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1945
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1948 }
1949
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1953
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1956 {
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1961
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1965
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1969 }
1970
1971
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1975
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1978 {
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1981
1982 for (low = 0, high = n; high - low > 1; )
1983 {
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1987
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1990
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1995
1996 if (CASE_HIGH (t) == NULL)
1997 {
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2001 }
2002 else
2003 {
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2007 }
2008 }
2009
2010 return default_case;
2011 }
2012
2013
2014 /* Dump a basic block on stderr. */
2015
2016 void
2017 gimple_debug_bb (basic_block bb)
2018 {
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2020 }
2021
2022
2023 /* Dump basic block with index N on stderr. */
2024
2025 basic_block
2026 gimple_debug_bb_n (int n)
2027 {
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2030 }
2031
2032
2033 /* Dump the CFG on stderr.
2034
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2037
2038 void
2039 gimple_debug_cfg (int flags)
2040 {
2041 gimple_dump_cfg (stderr, flags);
2042 }
2043
2044
2045 /* Dump the program showing basic block boundaries on the given FILE.
2046
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2049
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2052 {
2053 if (flags & TDF_DETAILS)
2054 {
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2057
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2062
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2065 }
2066
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2069
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2071 }
2072
2073
2074 /* Dump CFG statistics on FILE. */
2075
2076 void
2077 dump_cfg_stats (FILE *file)
2078 {
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2089
2090
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2092
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2097
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2102
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2109
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2115
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2118
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2121
2122 fprintf (file, "\n");
2123 }
2124
2125
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2128
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2131 {
2132 dump_cfg_stats (stderr);
2133 }
2134
2135
2136 /* Dump the flowgraph to a .vcg FILE. */
2137
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2140 {
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2146
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2154 {
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2157
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2162
2163 fprintf (file, " }\n");
2164 }
2165 fputc ('\n', file);
2166
2167 FOR_EACH_BB (bb)
2168 {
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2175
2176 if (first)
2177 {
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2181 }
2182 else
2183 head_name = "no-statement";
2184
2185 if (last)
2186 {
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2190 }
2191 else
2192 end_name = "no-statement";
2193
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2197
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2199 {
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2204
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2209
2210 fprintf (file, " }\n");
2211 }
2212
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2215 }
2216
2217 fputs ("}\n\n", file);
2218 }
2219
2220
2221
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2225
2226 /* Return true if T represents a stmt that always transfers control. */
2227
2228 bool
2229 is_ctrl_stmt (gimple t)
2230 {
2231 switch (gimple_code (t))
2232 {
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2241 }
2242 }
2243
2244
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2247
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2250 {
2251 gcc_assert (t);
2252
2253 switch (gimple_code (t))
2254 {
2255 case GIMPLE_CALL:
2256 {
2257 int flags = gimple_call_flags (t);
2258
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2264
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2268
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2272 }
2273 break;
2274
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2280
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2285
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2289
2290 default:
2291 break;
2292 }
2293
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2296 }
2297
2298
2299 /* Return true if T is a simple local goto. */
2300
2301 bool
2302 simple_goto_p (gimple t)
2303 {
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2306 }
2307
2308
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2311
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2314 {
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2321 }
2322
2323
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2330
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2333 {
2334 if (stmt == NULL)
2335 return false;
2336
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2341 {
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2346
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2348 {
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2351
2352 cfg_stats.num_merged_labels++;
2353 return false;
2354 }
2355 else
2356 return true;
2357 }
2358
2359 return false;
2360 }
2361
2362
2363 /* Return true if T should end a basic block. */
2364
2365 bool
2366 stmt_ends_bb_p (gimple t)
2367 {
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2369 }
2370
2371 /* Remove block annotations and other data structures. */
2372
2373 void
2374 delete_tree_cfg_annotations (void)
2375 {
2376 label_to_block_map = NULL;
2377 }
2378
2379
2380 /* Return the first statement in basic block BB. */
2381
2382 gimple
2383 first_stmt (basic_block bb)
2384 {
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2387
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2389 {
2390 gsi_next (&i);
2391 stmt = NULL;
2392 }
2393 return stmt;
2394 }
2395
2396 /* Return the first non-label statement in basic block BB. */
2397
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2400 {
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2405 }
2406
2407 /* Return the last statement in basic block BB. */
2408
2409 gimple
2410 last_stmt (basic_block bb)
2411 {
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2414
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2416 {
2417 gsi_prev (&i);
2418 stmt = NULL;
2419 }
2420 return stmt;
2421 }
2422
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2426
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2429 {
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2432
2433 if (gsi_end_p (i))
2434 return NULL;
2435
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2440
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2445
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2453 }
2454
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2456
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2459 {
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2464
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2468
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2472 {
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2476
2477 gcc_assert (result == gimple_phi_result (phi));
2478
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2480 }
2481
2482 redirect_edge_var_map_clear (old_edge);
2483 }
2484
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2489
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2492 {
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2495
2496 if (dest_prev)
2497 {
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2501 }
2502 return dest_prev;
2503 }
2504
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2507
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2510 {
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2513
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2516
2517 dest = edge_in->dest;
2518
2519 after_bb = split_edge_bb_loc (edge_in);
2520
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2527
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2531
2532 return new_bb;
2533 }
2534
2535
2536 /* Verify properties of the address expression T with base object BASE. */
2537
2538 static tree
2539 verify_address (tree t, tree base)
2540 {
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2545
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2548
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2552
2553 if (old_constant != new_constant)
2554 {
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558 if (old_side_effects != new_side_effects)
2559 {
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2562 }
2563
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2568
2569 if (DECL_GIMPLE_REG_P (base))
2570 {
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2573 }
2574
2575 return NULL_TREE;
2576 }
2577
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2581
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2584 {
2585 tree t = *tp, x;
2586
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2589
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594
2595 switch (TREE_CODE (t))
2596 {
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2599 {
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2602 }
2603 break;
2604
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2608
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2613 {
2614 error ("invalid first operand of MEM_REF");
2615 return x;
2616 }
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2619 {
2620 error ("invalid offset operand of MEM_REF");
2621 return TREE_OPERAND (t, 1);
2622 }
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2628
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2632 {
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2635 }
2636 break;
2637
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples");
2640 return *tp;
2641
2642 case ADDR_EXPR:
2643 {
2644 tree tem;
2645
2646 gcc_assert (is_gimple_address (t));
2647
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2654 ;
2655
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2658
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2663
2664 if (!TREE_ADDRESSABLE (x))
2665 {
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2668 }
2669
2670 break;
2671 }
2672
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2676 {
2677 error ("non-integral used in condition");
2678 return x;
2679 }
2680 if (!is_gimple_condexpr (x))
2681 {
2682 error ("invalid conditional operand");
2683 return x;
2684 }
2685 break;
2686
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2689
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2699
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2712 {
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2717 {
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2723 }
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2725 {
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2728 {
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2731 }
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2735 {
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2739 }
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2743 {
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2747 }
2748 }
2749
2750 t = TREE_OPERAND (t, 0);
2751 }
2752
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2754 {
2755 error ("invalid reference prefix");
2756 return t;
2757 }
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2765 {
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2768 }
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2772
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2776 {
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2779 }
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2784 {
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype");
2787 return t;
2788 }
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2827
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2832
2833 default:
2834 break;
2835 }
2836 return NULL;
2837
2838 #undef CHECK_OP
2839 }
2840
2841
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2844
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2847 {
2848 tree op;
2849
2850 if (is_gimple_id (expr))
2851 return false;
2852
2853 if (TREE_CODE (expr) != TARGET_MEM_REF
2854 && TREE_CODE (expr) != MEM_REF)
2855 {
2856 error ("invalid expression for min lvalue");
2857 return true;
2858 }
2859
2860 /* TARGET_MEM_REFs are strange beasts. */
2861 if (TREE_CODE (expr) == TARGET_MEM_REF)
2862 return false;
2863
2864 op = TREE_OPERAND (expr, 0);
2865 if (!is_gimple_val (op))
2866 {
2867 error ("invalid operand in indirect reference");
2868 debug_generic_stmt (op);
2869 return true;
2870 }
2871 /* Memory references now generally can involve a value conversion. */
2872
2873 return false;
2874 }
2875
2876 /* Verify if EXPR is a valid GIMPLE reference expression. If
2877 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2878 if there is an error, otherwise false. */
2879
2880 static bool
2881 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2882 {
2883 while (handled_component_p (expr))
2884 {
2885 tree op = TREE_OPERAND (expr, 0);
2886
2887 if (TREE_CODE (expr) == ARRAY_REF
2888 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2889 {
2890 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2891 || (TREE_OPERAND (expr, 2)
2892 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2893 || (TREE_OPERAND (expr, 3)
2894 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2895 {
2896 error ("invalid operands to array reference");
2897 debug_generic_stmt (expr);
2898 return true;
2899 }
2900 }
2901
2902 /* Verify if the reference array element types are compatible. */
2903 if (TREE_CODE (expr) == ARRAY_REF
2904 && !useless_type_conversion_p (TREE_TYPE (expr),
2905 TREE_TYPE (TREE_TYPE (op))))
2906 {
2907 error ("type mismatch in array reference");
2908 debug_generic_stmt (TREE_TYPE (expr));
2909 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2910 return true;
2911 }
2912 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2913 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2914 TREE_TYPE (TREE_TYPE (op))))
2915 {
2916 error ("type mismatch in array range reference");
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2919 return true;
2920 }
2921
2922 if ((TREE_CODE (expr) == REALPART_EXPR
2923 || TREE_CODE (expr) == IMAGPART_EXPR)
2924 && !useless_type_conversion_p (TREE_TYPE (expr),
2925 TREE_TYPE (TREE_TYPE (op))))
2926 {
2927 error ("type mismatch in real/imagpart reference");
2928 debug_generic_stmt (TREE_TYPE (expr));
2929 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2930 return true;
2931 }
2932
2933 if (TREE_CODE (expr) == COMPONENT_REF
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_OPERAND (expr, 1))))
2936 {
2937 error ("type mismatch in component reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2940 return true;
2941 }
2942
2943 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2944 {
2945 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2946 that their operand is not an SSA name or an invariant when
2947 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2948 bug). Otherwise there is nothing to verify, gross mismatches at
2949 most invoke undefined behavior. */
2950 if (require_lvalue
2951 && (TREE_CODE (op) == SSA_NAME
2952 || is_gimple_min_invariant (op)))
2953 {
2954 error ("conversion of an SSA_NAME on the left hand side");
2955 debug_generic_stmt (expr);
2956 return true;
2957 }
2958 else if (TREE_CODE (op) == SSA_NAME
2959 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2960 {
2961 error ("conversion of register to a different size");
2962 debug_generic_stmt (expr);
2963 return true;
2964 }
2965 else if (!handled_component_p (op))
2966 return false;
2967 }
2968
2969 expr = op;
2970 }
2971
2972 if (TREE_CODE (expr) == MEM_REF)
2973 {
2974 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2975 {
2976 error ("invalid address operand in MEM_REF");
2977 debug_generic_stmt (expr);
2978 return true;
2979 }
2980 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2981 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2982 {
2983 error ("invalid offset operand in MEM_REF");
2984 debug_generic_stmt (expr);
2985 return true;
2986 }
2987 }
2988 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2989 {
2990 if (!TMR_BASE (expr)
2991 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2992 {
2993 error ("invalid address operand in TARGET_MEM_REF");
2994 return true;
2995 }
2996 if (!TMR_OFFSET (expr)
2997 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2998 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2999 {
3000 error ("invalid offset operand in TARGET_MEM_REF");
3001 debug_generic_stmt (expr);
3002 return true;
3003 }
3004 }
3005
3006 return ((require_lvalue || !is_gimple_min_invariant (expr))
3007 && verify_types_in_gimple_min_lval (expr));
3008 }
3009
3010 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3011 list of pointer-to types that is trivially convertible to DEST. */
3012
3013 static bool
3014 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3015 {
3016 tree src;
3017
3018 if (!TYPE_POINTER_TO (src_obj))
3019 return true;
3020
3021 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3022 if (useless_type_conversion_p (dest, src))
3023 return true;
3024
3025 return false;
3026 }
3027
3028 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3029 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3030
3031 static bool
3032 valid_fixed_convert_types_p (tree type1, tree type2)
3033 {
3034 return (FIXED_POINT_TYPE_P (type1)
3035 && (INTEGRAL_TYPE_P (type2)
3036 || SCALAR_FLOAT_TYPE_P (type2)
3037 || FIXED_POINT_TYPE_P (type2)));
3038 }
3039
3040 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3041 is a problem, otherwise false. */
3042
3043 static bool
3044 verify_gimple_call (gimple stmt)
3045 {
3046 tree fn = gimple_call_fn (stmt);
3047 tree fntype, fndecl;
3048 unsigned i;
3049
3050 if (gimple_call_internal_p (stmt))
3051 {
3052 if (fn)
3053 {
3054 error ("gimple call has two targets");
3055 debug_generic_stmt (fn);
3056 return true;
3057 }
3058 }
3059 else
3060 {
3061 if (!fn)
3062 {
3063 error ("gimple call has no target");
3064 return true;
3065 }
3066 }
3067
3068 if (fn && !is_gimple_call_addr (fn))
3069 {
3070 error ("invalid function in gimple call");
3071 debug_generic_stmt (fn);
3072 return true;
3073 }
3074
3075 if (fn
3076 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3077 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3078 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3079 {
3080 error ("non-function in gimple call");
3081 return true;
3082 }
3083
3084 fndecl = gimple_call_fndecl (stmt);
3085 if (fndecl
3086 && TREE_CODE (fndecl) == FUNCTION_DECL
3087 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3088 && !DECL_PURE_P (fndecl)
3089 && !TREE_READONLY (fndecl))
3090 {
3091 error ("invalid pure const state for function");
3092 return true;
3093 }
3094
3095 if (gimple_call_lhs (stmt)
3096 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3097 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3098 {
3099 error ("invalid LHS in gimple call");
3100 return true;
3101 }
3102
3103 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3104 {
3105 error ("LHS in noreturn call");
3106 return true;
3107 }
3108
3109 fntype = gimple_call_fntype (stmt);
3110 if (fntype
3111 && gimple_call_lhs (stmt)
3112 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3113 TREE_TYPE (fntype))
3114 /* ??? At least C++ misses conversions at assignments from
3115 void * call results.
3116 ??? Java is completely off. Especially with functions
3117 returning java.lang.Object.
3118 For now simply allow arbitrary pointer type conversions. */
3119 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3120 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3121 {
3122 error ("invalid conversion in gimple call");
3123 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3124 debug_generic_stmt (TREE_TYPE (fntype));
3125 return true;
3126 }
3127
3128 if (gimple_call_chain (stmt)
3129 && !is_gimple_val (gimple_call_chain (stmt)))
3130 {
3131 error ("invalid static chain in gimple call");
3132 debug_generic_stmt (gimple_call_chain (stmt));
3133 return true;
3134 }
3135
3136 /* If there is a static chain argument, this should not be an indirect
3137 call, and the decl should have DECL_STATIC_CHAIN set. */
3138 if (gimple_call_chain (stmt))
3139 {
3140 if (!gimple_call_fndecl (stmt))
3141 {
3142 error ("static chain in indirect gimple call");
3143 return true;
3144 }
3145 fn = TREE_OPERAND (fn, 0);
3146
3147 if (!DECL_STATIC_CHAIN (fn))
3148 {
3149 error ("static chain with function that doesn%'t use one");
3150 return true;
3151 }
3152 }
3153
3154 /* ??? The C frontend passes unpromoted arguments in case it
3155 didn't see a function declaration before the call. So for now
3156 leave the call arguments mostly unverified. Once we gimplify
3157 unit-at-a-time we have a chance to fix this. */
3158
3159 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3160 {
3161 tree arg = gimple_call_arg (stmt, i);
3162 if ((is_gimple_reg_type (TREE_TYPE (arg))
3163 && !is_gimple_val (arg))
3164 || (!is_gimple_reg_type (TREE_TYPE (arg))
3165 && !is_gimple_lvalue (arg)))
3166 {
3167 error ("invalid argument to gimple call");
3168 debug_generic_expr (arg);
3169 return true;
3170 }
3171 }
3172
3173 return false;
3174 }
3175
3176 /* Verifies the gimple comparison with the result type TYPE and
3177 the operands OP0 and OP1. */
3178
3179 static bool
3180 verify_gimple_comparison (tree type, tree op0, tree op1)
3181 {
3182 tree op0_type = TREE_TYPE (op0);
3183 tree op1_type = TREE_TYPE (op1);
3184
3185 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3186 {
3187 error ("invalid operands in gimple comparison");
3188 return true;
3189 }
3190
3191 /* For comparisons we do not have the operations type as the
3192 effective type the comparison is carried out in. Instead
3193 we require that either the first operand is trivially
3194 convertible into the second, or the other way around.
3195 The resulting type of a comparison may be any integral type.
3196 Because we special-case pointers to void we allow
3197 comparisons of pointers with the same mode as well. */
3198 if ((!useless_type_conversion_p (op0_type, op1_type)
3199 && !useless_type_conversion_p (op1_type, op0_type)
3200 && (!POINTER_TYPE_P (op0_type)
3201 || !POINTER_TYPE_P (op1_type)
3202 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3203 || !INTEGRAL_TYPE_P (type))
3204 {
3205 error ("type mismatch in comparison expression");
3206 debug_generic_expr (type);
3207 debug_generic_expr (op0_type);
3208 debug_generic_expr (op1_type);
3209 return true;
3210 }
3211
3212 return false;
3213 }
3214
3215 /* Verify a gimple assignment statement STMT with an unary rhs.
3216 Returns true if anything is wrong. */
3217
3218 static bool
3219 verify_gimple_assign_unary (gimple stmt)
3220 {
3221 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3222 tree lhs = gimple_assign_lhs (stmt);
3223 tree lhs_type = TREE_TYPE (lhs);
3224 tree rhs1 = gimple_assign_rhs1 (stmt);
3225 tree rhs1_type = TREE_TYPE (rhs1);
3226
3227 if (!is_gimple_reg (lhs))
3228 {
3229 error ("non-register as LHS of unary operation");
3230 return true;
3231 }
3232
3233 if (!is_gimple_val (rhs1))
3234 {
3235 error ("invalid operand in unary operation");
3236 return true;
3237 }
3238
3239 /* First handle conversions. */
3240 switch (rhs_code)
3241 {
3242 CASE_CONVERT:
3243 {
3244 /* Allow conversions between integral types and pointers only if
3245 there is no sign or zero extension involved.
3246 For targets were the precision of sizetype doesn't match that
3247 of pointers we need to allow arbitrary conversions from and
3248 to sizetype. */
3249 if ((POINTER_TYPE_P (lhs_type)
3250 && INTEGRAL_TYPE_P (rhs1_type)
3251 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3252 || rhs1_type == sizetype))
3253 || (POINTER_TYPE_P (rhs1_type)
3254 && INTEGRAL_TYPE_P (lhs_type)
3255 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3256 || lhs_type == sizetype)))
3257 return false;
3258
3259 /* Allow conversion from integer to offset type and vice versa. */
3260 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3261 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3262 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3263 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3264 return false;
3265
3266 /* Otherwise assert we are converting between types of the
3267 same kind. */
3268 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3269 {
3270 error ("invalid types in nop conversion");
3271 debug_generic_expr (lhs_type);
3272 debug_generic_expr (rhs1_type);
3273 return true;
3274 }
3275
3276 return false;
3277 }
3278
3279 case ADDR_SPACE_CONVERT_EXPR:
3280 {
3281 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3282 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3283 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3284 {
3285 error ("invalid types in address space conversion");
3286 debug_generic_expr (lhs_type);
3287 debug_generic_expr (rhs1_type);
3288 return true;
3289 }
3290
3291 return false;
3292 }
3293
3294 case FIXED_CONVERT_EXPR:
3295 {
3296 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3297 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3298 {
3299 error ("invalid types in fixed-point conversion");
3300 debug_generic_expr (lhs_type);
3301 debug_generic_expr (rhs1_type);
3302 return true;
3303 }
3304
3305 return false;
3306 }
3307
3308 case FLOAT_EXPR:
3309 {
3310 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3311 {
3312 error ("invalid types in conversion to floating point");
3313 debug_generic_expr (lhs_type);
3314 debug_generic_expr (rhs1_type);
3315 return true;
3316 }
3317
3318 return false;
3319 }
3320
3321 case FIX_TRUNC_EXPR:
3322 {
3323 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3324 {
3325 error ("invalid types in conversion to integer");
3326 debug_generic_expr (lhs_type);
3327 debug_generic_expr (rhs1_type);
3328 return true;
3329 }
3330
3331 return false;
3332 }
3333
3334 case VEC_UNPACK_HI_EXPR:
3335 case VEC_UNPACK_LO_EXPR:
3336 case REDUC_MAX_EXPR:
3337 case REDUC_MIN_EXPR:
3338 case REDUC_PLUS_EXPR:
3339 case VEC_UNPACK_FLOAT_HI_EXPR:
3340 case VEC_UNPACK_FLOAT_LO_EXPR:
3341 /* FIXME. */
3342 return false;
3343
3344 case TRUTH_NOT_EXPR:
3345 case NEGATE_EXPR:
3346 case ABS_EXPR:
3347 case BIT_NOT_EXPR:
3348 case PAREN_EXPR:
3349 case NON_LVALUE_EXPR:
3350 case CONJ_EXPR:
3351 break;
3352
3353 default:
3354 gcc_unreachable ();
3355 }
3356
3357 /* For the remaining codes assert there is no conversion involved. */
3358 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3359 {
3360 error ("non-trivial conversion in unary operation");
3361 debug_generic_expr (lhs_type);
3362 debug_generic_expr (rhs1_type);
3363 return true;
3364 }
3365
3366 return false;
3367 }
3368
3369 /* Verify a gimple assignment statement STMT with a binary rhs.
3370 Returns true if anything is wrong. */
3371
3372 static bool
3373 verify_gimple_assign_binary (gimple stmt)
3374 {
3375 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3376 tree lhs = gimple_assign_lhs (stmt);
3377 tree lhs_type = TREE_TYPE (lhs);
3378 tree rhs1 = gimple_assign_rhs1 (stmt);
3379 tree rhs1_type = TREE_TYPE (rhs1);
3380 tree rhs2 = gimple_assign_rhs2 (stmt);
3381 tree rhs2_type = TREE_TYPE (rhs2);
3382
3383 if (!is_gimple_reg (lhs))
3384 {
3385 error ("non-register as LHS of binary operation");
3386 return true;
3387 }
3388
3389 if (!is_gimple_val (rhs1)
3390 || !is_gimple_val (rhs2))
3391 {
3392 error ("invalid operands in binary operation");
3393 return true;
3394 }
3395
3396 /* First handle operations that involve different types. */
3397 switch (rhs_code)
3398 {
3399 case COMPLEX_EXPR:
3400 {
3401 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3402 || !(INTEGRAL_TYPE_P (rhs1_type)
3403 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3404 || !(INTEGRAL_TYPE_P (rhs2_type)
3405 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3406 {
3407 error ("type mismatch in complex expression");
3408 debug_generic_expr (lhs_type);
3409 debug_generic_expr (rhs1_type);
3410 debug_generic_expr (rhs2_type);
3411 return true;
3412 }
3413
3414 return false;
3415 }
3416
3417 case LSHIFT_EXPR:
3418 case RSHIFT_EXPR:
3419 case LROTATE_EXPR:
3420 case RROTATE_EXPR:
3421 {
3422 /* Shifts and rotates are ok on integral types, fixed point
3423 types and integer vector types. */
3424 if ((!INTEGRAL_TYPE_P (rhs1_type)
3425 && !FIXED_POINT_TYPE_P (rhs1_type)
3426 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3427 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3428 || (!INTEGRAL_TYPE_P (rhs2_type)
3429 /* Vector shifts of vectors are also ok. */
3430 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3431 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3432 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3433 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3434 || !useless_type_conversion_p (lhs_type, rhs1_type))
3435 {
3436 error ("type mismatch in shift expression");
3437 debug_generic_expr (lhs_type);
3438 debug_generic_expr (rhs1_type);
3439 debug_generic_expr (rhs2_type);
3440 return true;
3441 }
3442
3443 return false;
3444 }
3445
3446 case VEC_LSHIFT_EXPR:
3447 case VEC_RSHIFT_EXPR:
3448 {
3449 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3450 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3451 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3452 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3453 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3454 || (!INTEGRAL_TYPE_P (rhs2_type)
3455 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3456 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3457 || !useless_type_conversion_p (lhs_type, rhs1_type))
3458 {
3459 error ("type mismatch in vector shift expression");
3460 debug_generic_expr (lhs_type);
3461 debug_generic_expr (rhs1_type);
3462 debug_generic_expr (rhs2_type);
3463 return true;
3464 }
3465 /* For shifting a vector of non-integral components we
3466 only allow shifting by a constant multiple of the element size. */
3467 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3468 && (TREE_CODE (rhs2) != INTEGER_CST
3469 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3470 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3471 {
3472 error ("non-element sized vector shift of floating point vector");
3473 return true;
3474 }
3475
3476 return false;
3477 }
3478
3479 case PLUS_EXPR:
3480 case MINUS_EXPR:
3481 {
3482 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3483 ??? This just makes the checker happy and may not be what is
3484 intended. */
3485 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3486 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3487 {
3488 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3489 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3490 {
3491 error ("invalid non-vector operands to vector valued plus");
3492 return true;
3493 }
3494 lhs_type = TREE_TYPE (lhs_type);
3495 rhs1_type = TREE_TYPE (rhs1_type);
3496 rhs2_type = TREE_TYPE (rhs2_type);
3497 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3498 the pointer to 2nd place. */
3499 if (POINTER_TYPE_P (rhs2_type))
3500 {
3501 tree tem = rhs1_type;
3502 rhs1_type = rhs2_type;
3503 rhs2_type = tem;
3504 }
3505 goto do_pointer_plus_expr_check;
3506 }
3507 if (POINTER_TYPE_P (lhs_type)
3508 || POINTER_TYPE_P (rhs1_type)
3509 || POINTER_TYPE_P (rhs2_type))
3510 {
3511 error ("invalid (pointer) operands to plus/minus");
3512 return true;
3513 }
3514
3515 /* Continue with generic binary expression handling. */
3516 break;
3517 }
3518
3519 case POINTER_PLUS_EXPR:
3520 {
3521 do_pointer_plus_expr_check:
3522 if (!POINTER_TYPE_P (rhs1_type)
3523 || !useless_type_conversion_p (lhs_type, rhs1_type)
3524 || !useless_type_conversion_p (sizetype, rhs2_type))
3525 {
3526 error ("type mismatch in pointer plus expression");
3527 debug_generic_stmt (lhs_type);
3528 debug_generic_stmt (rhs1_type);
3529 debug_generic_stmt (rhs2_type);
3530 return true;
3531 }
3532
3533 return false;
3534 }
3535
3536 case TRUTH_ANDIF_EXPR:
3537 case TRUTH_ORIF_EXPR:
3538 gcc_unreachable ();
3539
3540 case TRUTH_AND_EXPR:
3541 case TRUTH_OR_EXPR:
3542 case TRUTH_XOR_EXPR:
3543 {
3544 /* We allow any kind of integral typed argument and result. */
3545 if (!INTEGRAL_TYPE_P (rhs1_type)
3546 || !INTEGRAL_TYPE_P (rhs2_type)
3547 || !INTEGRAL_TYPE_P (lhs_type))
3548 {
3549 error ("type mismatch in binary truth expression");
3550 debug_generic_expr (lhs_type);
3551 debug_generic_expr (rhs1_type);
3552 debug_generic_expr (rhs2_type);
3553 return true;
3554 }
3555
3556 return false;
3557 }
3558
3559 case LT_EXPR:
3560 case LE_EXPR:
3561 case GT_EXPR:
3562 case GE_EXPR:
3563 case EQ_EXPR:
3564 case NE_EXPR:
3565 case UNORDERED_EXPR:
3566 case ORDERED_EXPR:
3567 case UNLT_EXPR:
3568 case UNLE_EXPR:
3569 case UNGT_EXPR:
3570 case UNGE_EXPR:
3571 case UNEQ_EXPR:
3572 case LTGT_EXPR:
3573 /* Comparisons are also binary, but the result type is not
3574 connected to the operand types. */
3575 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3576
3577 case WIDEN_MULT_EXPR:
3578 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3579 return true;
3580 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3581 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3582
3583 case WIDEN_SUM_EXPR:
3584 case VEC_WIDEN_MULT_HI_EXPR:
3585 case VEC_WIDEN_MULT_LO_EXPR:
3586 case VEC_PACK_TRUNC_EXPR:
3587 case VEC_PACK_SAT_EXPR:
3588 case VEC_PACK_FIX_TRUNC_EXPR:
3589 case VEC_EXTRACT_EVEN_EXPR:
3590 case VEC_EXTRACT_ODD_EXPR:
3591 case VEC_INTERLEAVE_HIGH_EXPR:
3592 case VEC_INTERLEAVE_LOW_EXPR:
3593 /* FIXME. */
3594 return false;
3595
3596 case MULT_EXPR:
3597 case TRUNC_DIV_EXPR:
3598 case CEIL_DIV_EXPR:
3599 case FLOOR_DIV_EXPR:
3600 case ROUND_DIV_EXPR:
3601 case TRUNC_MOD_EXPR:
3602 case CEIL_MOD_EXPR:
3603 case FLOOR_MOD_EXPR:
3604 case ROUND_MOD_EXPR:
3605 case RDIV_EXPR:
3606 case EXACT_DIV_EXPR:
3607 case MIN_EXPR:
3608 case MAX_EXPR:
3609 case BIT_IOR_EXPR:
3610 case BIT_XOR_EXPR:
3611 case BIT_AND_EXPR:
3612 /* Continue with generic binary expression handling. */
3613 break;
3614
3615 default:
3616 gcc_unreachable ();
3617 }
3618
3619 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3620 || !useless_type_conversion_p (lhs_type, rhs2_type))
3621 {
3622 error ("type mismatch in binary expression");
3623 debug_generic_stmt (lhs_type);
3624 debug_generic_stmt (rhs1_type);
3625 debug_generic_stmt (rhs2_type);
3626 return true;
3627 }
3628
3629 return false;
3630 }
3631
3632 /* Verify a gimple assignment statement STMT with a ternary rhs.
3633 Returns true if anything is wrong. */
3634
3635 static bool
3636 verify_gimple_assign_ternary (gimple stmt)
3637 {
3638 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3639 tree lhs = gimple_assign_lhs (stmt);
3640 tree lhs_type = TREE_TYPE (lhs);
3641 tree rhs1 = gimple_assign_rhs1 (stmt);
3642 tree rhs1_type = TREE_TYPE (rhs1);
3643 tree rhs2 = gimple_assign_rhs2 (stmt);
3644 tree rhs2_type = TREE_TYPE (rhs2);
3645 tree rhs3 = gimple_assign_rhs3 (stmt);
3646 tree rhs3_type = TREE_TYPE (rhs3);
3647
3648 if (!is_gimple_reg (lhs))
3649 {
3650 error ("non-register as LHS of ternary operation");
3651 return true;
3652 }
3653
3654 if (!is_gimple_val (rhs1)
3655 || !is_gimple_val (rhs2)
3656 || !is_gimple_val (rhs3))
3657 {
3658 error ("invalid operands in ternary operation");
3659 return true;
3660 }
3661
3662 /* First handle operations that involve different types. */
3663 switch (rhs_code)
3664 {
3665 case WIDEN_MULT_PLUS_EXPR:
3666 case WIDEN_MULT_MINUS_EXPR:
3667 if ((!INTEGRAL_TYPE_P (rhs1_type)
3668 && !FIXED_POINT_TYPE_P (rhs1_type))
3669 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3670 || !useless_type_conversion_p (lhs_type, rhs3_type)
3671 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3672 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3673 {
3674 error ("type mismatch in widening multiply-accumulate expression");
3675 debug_generic_expr (lhs_type);
3676 debug_generic_expr (rhs1_type);
3677 debug_generic_expr (rhs2_type);
3678 debug_generic_expr (rhs3_type);
3679 return true;
3680 }
3681 break;
3682
3683 case FMA_EXPR:
3684 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3685 || !useless_type_conversion_p (lhs_type, rhs2_type)
3686 || !useless_type_conversion_p (lhs_type, rhs3_type))
3687 {
3688 error ("type mismatch in fused multiply-add expression");
3689 debug_generic_expr (lhs_type);
3690 debug_generic_expr (rhs1_type);
3691 debug_generic_expr (rhs2_type);
3692 debug_generic_expr (rhs3_type);
3693 return true;
3694 }
3695 break;
3696
3697 case DOT_PROD_EXPR:
3698 case REALIGN_LOAD_EXPR:
3699 /* FIXME. */
3700 return false;
3701
3702 default:
3703 gcc_unreachable ();
3704 }
3705 return false;
3706 }
3707
3708 /* Verify a gimple assignment statement STMT with a single rhs.
3709 Returns true if anything is wrong. */
3710
3711 static bool
3712 verify_gimple_assign_single (gimple stmt)
3713 {
3714 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3715 tree lhs = gimple_assign_lhs (stmt);
3716 tree lhs_type = TREE_TYPE (lhs);
3717 tree rhs1 = gimple_assign_rhs1 (stmt);
3718 tree rhs1_type = TREE_TYPE (rhs1);
3719 bool res = false;
3720
3721 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3722 {
3723 error ("non-trivial conversion at assignment");
3724 debug_generic_expr (lhs_type);
3725 debug_generic_expr (rhs1_type);
3726 return true;
3727 }
3728
3729 if (handled_component_p (lhs))
3730 res |= verify_types_in_gimple_reference (lhs, true);
3731
3732 /* Special codes we cannot handle via their class. */
3733 switch (rhs_code)
3734 {
3735 case ADDR_EXPR:
3736 {
3737 tree op = TREE_OPERAND (rhs1, 0);
3738 if (!is_gimple_addressable (op))
3739 {
3740 error ("invalid operand in unary expression");
3741 return true;
3742 }
3743
3744 /* Technically there is no longer a need for matching types, but
3745 gimple hygiene asks for this check. In LTO we can end up
3746 combining incompatible units and thus end up with addresses
3747 of globals that change their type to a common one. */
3748 if (!in_lto_p
3749 && !types_compatible_p (TREE_TYPE (op),
3750 TREE_TYPE (TREE_TYPE (rhs1)))
3751 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3752 TREE_TYPE (op)))
3753 {
3754 error ("type mismatch in address expression");
3755 debug_generic_stmt (TREE_TYPE (rhs1));
3756 debug_generic_stmt (TREE_TYPE (op));
3757 return true;
3758 }
3759
3760 return verify_types_in_gimple_reference (op, true);
3761 }
3762
3763 /* tcc_reference */
3764 case INDIRECT_REF:
3765 error ("INDIRECT_REF in gimple IL");
3766 return true;
3767
3768 case COMPONENT_REF:
3769 case BIT_FIELD_REF:
3770 case ARRAY_REF:
3771 case ARRAY_RANGE_REF:
3772 case VIEW_CONVERT_EXPR:
3773 case REALPART_EXPR:
3774 case IMAGPART_EXPR:
3775 case TARGET_MEM_REF:
3776 case MEM_REF:
3777 if (!is_gimple_reg (lhs)
3778 && is_gimple_reg_type (TREE_TYPE (lhs)))
3779 {
3780 error ("invalid rhs for gimple memory store");
3781 debug_generic_stmt (lhs);
3782 debug_generic_stmt (rhs1);
3783 return true;
3784 }
3785 return res || verify_types_in_gimple_reference (rhs1, false);
3786
3787 /* tcc_constant */
3788 case SSA_NAME:
3789 case INTEGER_CST:
3790 case REAL_CST:
3791 case FIXED_CST:
3792 case COMPLEX_CST:
3793 case VECTOR_CST:
3794 case STRING_CST:
3795 return res;
3796
3797 /* tcc_declaration */
3798 case CONST_DECL:
3799 return res;
3800 case VAR_DECL:
3801 case PARM_DECL:
3802 if (!is_gimple_reg (lhs)
3803 && !is_gimple_reg (rhs1)
3804 && is_gimple_reg_type (TREE_TYPE (lhs)))
3805 {
3806 error ("invalid rhs for gimple memory store");
3807 debug_generic_stmt (lhs);
3808 debug_generic_stmt (rhs1);
3809 return true;
3810 }
3811 return res;
3812
3813 case COND_EXPR:
3814 if (!is_gimple_reg (lhs)
3815 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3816 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3817 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3818 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3819 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3820 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3821 {
3822 error ("invalid COND_EXPR in gimple assignment");
3823 debug_generic_stmt (rhs1);
3824 return true;
3825 }
3826 return res;
3827
3828 case CONSTRUCTOR:
3829 case OBJ_TYPE_REF:
3830 case ASSERT_EXPR:
3831 case WITH_SIZE_EXPR:
3832 case VEC_COND_EXPR:
3833 /* FIXME. */
3834 return res;
3835
3836 default:;
3837 }
3838
3839 return res;
3840 }
3841
3842 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3843 is a problem, otherwise false. */
3844
3845 static bool
3846 verify_gimple_assign (gimple stmt)
3847 {
3848 switch (gimple_assign_rhs_class (stmt))
3849 {
3850 case GIMPLE_SINGLE_RHS:
3851 return verify_gimple_assign_single (stmt);
3852
3853 case GIMPLE_UNARY_RHS:
3854 return verify_gimple_assign_unary (stmt);
3855
3856 case GIMPLE_BINARY_RHS:
3857 return verify_gimple_assign_binary (stmt);
3858
3859 case GIMPLE_TERNARY_RHS:
3860 return verify_gimple_assign_ternary (stmt);
3861
3862 default:
3863 gcc_unreachable ();
3864 }
3865 }
3866
3867 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3868 is a problem, otherwise false. */
3869
3870 static bool
3871 verify_gimple_return (gimple stmt)
3872 {
3873 tree op = gimple_return_retval (stmt);
3874 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3875
3876 /* We cannot test for present return values as we do not fix up missing
3877 return values from the original source. */
3878 if (op == NULL)
3879 return false;
3880
3881 if (!is_gimple_val (op)
3882 && TREE_CODE (op) != RESULT_DECL)
3883 {
3884 error ("invalid operand in return statement");
3885 debug_generic_stmt (op);
3886 return true;
3887 }
3888
3889 if ((TREE_CODE (op) == RESULT_DECL
3890 && DECL_BY_REFERENCE (op))
3891 || (TREE_CODE (op) == SSA_NAME
3892 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3893 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3894 op = TREE_TYPE (op);
3895
3896 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3897 {
3898 error ("invalid conversion in return statement");
3899 debug_generic_stmt (restype);
3900 debug_generic_stmt (TREE_TYPE (op));
3901 return true;
3902 }
3903
3904 return false;
3905 }
3906
3907
3908 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3909 is a problem, otherwise false. */
3910
3911 static bool
3912 verify_gimple_goto (gimple stmt)
3913 {
3914 tree dest = gimple_goto_dest (stmt);
3915
3916 /* ??? We have two canonical forms of direct goto destinations, a
3917 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3918 if (TREE_CODE (dest) != LABEL_DECL
3919 && (!is_gimple_val (dest)
3920 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3921 {
3922 error ("goto destination is neither a label nor a pointer");
3923 return true;
3924 }
3925
3926 return false;
3927 }
3928
3929 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3930 is a problem, otherwise false. */
3931
3932 static bool
3933 verify_gimple_switch (gimple stmt)
3934 {
3935 if (!is_gimple_val (gimple_switch_index (stmt)))
3936 {
3937 error ("invalid operand to switch statement");
3938 debug_generic_stmt (gimple_switch_index (stmt));
3939 return true;
3940 }
3941
3942 return false;
3943 }
3944
3945
3946 /* Verify a gimple debug statement STMT.
3947 Returns true if anything is wrong. */
3948
3949 static bool
3950 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3951 {
3952 /* There isn't much that could be wrong in a gimple debug stmt. A
3953 gimple debug bind stmt, for example, maps a tree, that's usually
3954 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3955 component or member of an aggregate type, to another tree, that
3956 can be an arbitrary expression. These stmts expand into debug
3957 insns, and are converted to debug notes by var-tracking.c. */
3958 return false;
3959 }
3960
3961 /* Verify a gimple label statement STMT.
3962 Returns true if anything is wrong. */
3963
3964 static bool
3965 verify_gimple_label (gimple stmt)
3966 {
3967 tree decl = gimple_label_label (stmt);
3968 int uid;
3969 bool err = false;
3970
3971 if (TREE_CODE (decl) != LABEL_DECL)
3972 return true;
3973
3974 uid = LABEL_DECL_UID (decl);
3975 if (cfun->cfg
3976 && (uid == -1
3977 || VEC_index (basic_block,
3978 label_to_block_map, uid) != gimple_bb (stmt)))
3979 {
3980 error ("incorrect entry in label_to_block_map");
3981 err |= true;
3982 }
3983
3984 uid = EH_LANDING_PAD_NR (decl);
3985 if (uid)
3986 {
3987 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
3988 if (decl != lp->post_landing_pad)
3989 {
3990 error ("incorrect setting of landing pad number");
3991 err |= true;
3992 }
3993 }
3994
3995 return err;
3996 }
3997
3998 /* Verify the GIMPLE statement STMT. Returns true if there is an
3999 error, otherwise false. */
4000
4001 static bool
4002 verify_gimple_stmt (gimple stmt)
4003 {
4004 switch (gimple_code (stmt))
4005 {
4006 case GIMPLE_ASSIGN:
4007 return verify_gimple_assign (stmt);
4008
4009 case GIMPLE_LABEL:
4010 return verify_gimple_label (stmt);
4011
4012 case GIMPLE_CALL:
4013 return verify_gimple_call (stmt);
4014
4015 case GIMPLE_COND:
4016 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4017 {
4018 error ("invalid comparison code in gimple cond");
4019 return true;
4020 }
4021 if (!(!gimple_cond_true_label (stmt)
4022 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4023 || !(!gimple_cond_false_label (stmt)
4024 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4025 {
4026 error ("invalid labels in gimple cond");
4027 return true;
4028 }
4029
4030 return verify_gimple_comparison (boolean_type_node,
4031 gimple_cond_lhs (stmt),
4032 gimple_cond_rhs (stmt));
4033
4034 case GIMPLE_GOTO:
4035 return verify_gimple_goto (stmt);
4036
4037 case GIMPLE_SWITCH:
4038 return verify_gimple_switch (stmt);
4039
4040 case GIMPLE_RETURN:
4041 return verify_gimple_return (stmt);
4042
4043 case GIMPLE_ASM:
4044 return false;
4045
4046 /* Tuples that do not have tree operands. */
4047 case GIMPLE_NOP:
4048 case GIMPLE_PREDICT:
4049 case GIMPLE_RESX:
4050 case GIMPLE_EH_DISPATCH:
4051 case GIMPLE_EH_MUST_NOT_THROW:
4052 return false;
4053
4054 CASE_GIMPLE_OMP:
4055 /* OpenMP directives are validated by the FE and never operated
4056 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4057 non-gimple expressions when the main index variable has had
4058 its address taken. This does not affect the loop itself
4059 because the header of an GIMPLE_OMP_FOR is merely used to determine
4060 how to setup the parallel iteration. */
4061 return false;
4062
4063 case GIMPLE_DEBUG:
4064 return verify_gimple_debug (stmt);
4065
4066 default:
4067 gcc_unreachable ();
4068 }
4069 }
4070
4071 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4072 and false otherwise. */
4073
4074 static bool
4075 verify_gimple_phi (gimple phi)
4076 {
4077 bool err = false;
4078 unsigned i;
4079 tree phi_result = gimple_phi_result (phi);
4080 bool virtual_p;
4081
4082 if (!phi_result)
4083 {
4084 error ("invalid PHI result");
4085 return true;
4086 }
4087
4088 virtual_p = !is_gimple_reg (phi_result);
4089 if (TREE_CODE (phi_result) != SSA_NAME
4090 || (virtual_p
4091 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4092 {
4093 error ("invalid PHI result");
4094 err = true;
4095 }
4096
4097 for (i = 0; i < gimple_phi_num_args (phi); i++)
4098 {
4099 tree t = gimple_phi_arg_def (phi, i);
4100
4101 if (!t)
4102 {
4103 error ("missing PHI def");
4104 err |= true;
4105 continue;
4106 }
4107 /* Addressable variables do have SSA_NAMEs but they
4108 are not considered gimple values. */
4109 else if ((TREE_CODE (t) == SSA_NAME
4110 && virtual_p != !is_gimple_reg (t))
4111 || (virtual_p
4112 && (TREE_CODE (t) != SSA_NAME
4113 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4114 || (!virtual_p
4115 && !is_gimple_val (t)))
4116 {
4117 error ("invalid PHI argument");
4118 debug_generic_expr (t);
4119 err |= true;
4120 }
4121 #ifdef ENABLE_TYPES_CHECKING
4122 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4123 {
4124 error ("incompatible types in PHI argument %u", i);
4125 debug_generic_stmt (TREE_TYPE (phi_result));
4126 debug_generic_stmt (TREE_TYPE (t));
4127 err |= true;
4128 }
4129 #endif
4130 }
4131
4132 return err;
4133 }
4134
4135 /* Verify the GIMPLE statements inside the sequence STMTS. */
4136
4137 static bool
4138 verify_gimple_in_seq_2 (gimple_seq stmts)
4139 {
4140 gimple_stmt_iterator ittr;
4141 bool err = false;
4142
4143 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4144 {
4145 gimple stmt = gsi_stmt (ittr);
4146
4147 switch (gimple_code (stmt))
4148 {
4149 case GIMPLE_BIND:
4150 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4151 break;
4152
4153 case GIMPLE_TRY:
4154 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4155 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4156 break;
4157
4158 case GIMPLE_EH_FILTER:
4159 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4160 break;
4161
4162 case GIMPLE_CATCH:
4163 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4164 break;
4165
4166 default:
4167 {
4168 bool err2 = verify_gimple_stmt (stmt);
4169 if (err2)
4170 debug_gimple_stmt (stmt);
4171 err |= err2;
4172 }
4173 }
4174 }
4175
4176 return err;
4177 }
4178
4179
4180 /* Verify the GIMPLE statements inside the statement list STMTS. */
4181
4182 DEBUG_FUNCTION void
4183 verify_gimple_in_seq (gimple_seq stmts)
4184 {
4185 timevar_push (TV_TREE_STMT_VERIFY);
4186 if (verify_gimple_in_seq_2 (stmts))
4187 internal_error ("verify_gimple failed");
4188 timevar_pop (TV_TREE_STMT_VERIFY);
4189 }
4190
4191 /* Return true when the T can be shared. */
4192
4193 bool
4194 tree_node_can_be_shared (tree t)
4195 {
4196 if (IS_TYPE_OR_DECL_P (t)
4197 || is_gimple_min_invariant (t)
4198 || TREE_CODE (t) == SSA_NAME
4199 || t == error_mark_node
4200 || TREE_CODE (t) == IDENTIFIER_NODE)
4201 return true;
4202
4203 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4204 return true;
4205
4206 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4207 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4208 || TREE_CODE (t) == COMPONENT_REF
4209 || TREE_CODE (t) == REALPART_EXPR
4210 || TREE_CODE (t) == IMAGPART_EXPR)
4211 t = TREE_OPERAND (t, 0);
4212
4213 if (DECL_P (t))
4214 return true;
4215
4216 return false;
4217 }
4218
4219 /* Called via walk_gimple_stmt. Verify tree sharing. */
4220
4221 static tree
4222 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4223 {
4224 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4225 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4226
4227 if (tree_node_can_be_shared (*tp))
4228 {
4229 *walk_subtrees = false;
4230 return NULL;
4231 }
4232
4233 if (pointer_set_insert (visited, *tp))
4234 return *tp;
4235
4236 return NULL;
4237 }
4238
4239 static bool eh_error_found;
4240 static int
4241 verify_eh_throw_stmt_node (void **slot, void *data)
4242 {
4243 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4244 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4245
4246 if (!pointer_set_contains (visited, node->stmt))
4247 {
4248 error ("dead STMT in EH table");
4249 debug_gimple_stmt (node->stmt);
4250 eh_error_found = true;
4251 }
4252 return 1;
4253 }
4254
4255 /* Verify the GIMPLE statements in the CFG of FN. */
4256
4257 DEBUG_FUNCTION void
4258 verify_gimple_in_cfg (struct function *fn)
4259 {
4260 basic_block bb;
4261 bool err = false;
4262 struct pointer_set_t *visited, *visited_stmts;
4263
4264 timevar_push (TV_TREE_STMT_VERIFY);
4265 visited = pointer_set_create ();
4266 visited_stmts = pointer_set_create ();
4267
4268 FOR_EACH_BB_FN (bb, fn)
4269 {
4270 gimple_stmt_iterator gsi;
4271
4272 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4273 {
4274 gimple phi = gsi_stmt (gsi);
4275 bool err2 = false;
4276 unsigned i;
4277
4278 pointer_set_insert (visited_stmts, phi);
4279
4280 if (gimple_bb (phi) != bb)
4281 {
4282 error ("gimple_bb (phi) is set to a wrong basic block");
4283 err2 = true;
4284 }
4285
4286 err2 |= verify_gimple_phi (phi);
4287
4288 for (i = 0; i < gimple_phi_num_args (phi); i++)
4289 {
4290 tree arg = gimple_phi_arg_def (phi, i);
4291 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4292 if (addr)
4293 {
4294 error ("incorrect sharing of tree nodes");
4295 debug_generic_expr (addr);
4296 err2 |= true;
4297 }
4298 }
4299
4300 if (err2)
4301 debug_gimple_stmt (phi);
4302 err |= err2;
4303 }
4304
4305 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4306 {
4307 gimple stmt = gsi_stmt (gsi);
4308 bool err2 = false;
4309 struct walk_stmt_info wi;
4310 tree addr;
4311 int lp_nr;
4312
4313 pointer_set_insert (visited_stmts, stmt);
4314
4315 if (gimple_bb (stmt) != bb)
4316 {
4317 error ("gimple_bb (stmt) is set to a wrong basic block");
4318 err2 = true;
4319 }
4320
4321 err2 |= verify_gimple_stmt (stmt);
4322
4323 memset (&wi, 0, sizeof (wi));
4324 wi.info = (void *) visited;
4325 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4326 if (addr)
4327 {
4328 error ("incorrect sharing of tree nodes");
4329 debug_generic_expr (addr);
4330 err2 |= true;
4331 }
4332
4333 /* ??? Instead of not checking these stmts at all the walker
4334 should know its context via wi. */
4335 if (!is_gimple_debug (stmt)
4336 && !is_gimple_omp (stmt))
4337 {
4338 memset (&wi, 0, sizeof (wi));
4339 addr = walk_gimple_op (stmt, verify_expr, &wi);
4340 if (addr)
4341 {
4342 debug_generic_expr (addr);
4343 inform (gimple_location (stmt), "in statement");
4344 err2 |= true;
4345 }
4346 }
4347
4348 /* If the statement is marked as part of an EH region, then it is
4349 expected that the statement could throw. Verify that when we
4350 have optimizations that simplify statements such that we prove
4351 that they cannot throw, that we update other data structures
4352 to match. */
4353 lp_nr = lookup_stmt_eh_lp (stmt);
4354 if (lp_nr != 0)
4355 {
4356 if (!stmt_could_throw_p (stmt))
4357 {
4358 error ("statement marked for throw, but doesn%'t");
4359 err2 |= true;
4360 }
4361 else if (lp_nr > 0
4362 && !gsi_one_before_end_p (gsi)
4363 && stmt_can_throw_internal (stmt))
4364 {
4365 error ("statement marked for throw in middle of block");
4366 err2 |= true;
4367 }
4368 }
4369
4370 if (err2)
4371 debug_gimple_stmt (stmt);
4372 err |= err2;
4373 }
4374 }
4375
4376 eh_error_found = false;
4377 if (get_eh_throw_stmt_table (cfun))
4378 htab_traverse (get_eh_throw_stmt_table (cfun),
4379 verify_eh_throw_stmt_node,
4380 visited_stmts);
4381
4382 if (err || eh_error_found)
4383 internal_error ("verify_gimple failed");
4384
4385 pointer_set_destroy (visited);
4386 pointer_set_destroy (visited_stmts);
4387 verify_histograms ();
4388 timevar_pop (TV_TREE_STMT_VERIFY);
4389 }
4390
4391
4392 /* Verifies that the flow information is OK. */
4393
4394 static int
4395 gimple_verify_flow_info (void)
4396 {
4397 int err = 0;
4398 basic_block bb;
4399 gimple_stmt_iterator gsi;
4400 gimple stmt;
4401 edge e;
4402 edge_iterator ei;
4403
4404 if (ENTRY_BLOCK_PTR->il.gimple)
4405 {
4406 error ("ENTRY_BLOCK has IL associated with it");
4407 err = 1;
4408 }
4409
4410 if (EXIT_BLOCK_PTR->il.gimple)
4411 {
4412 error ("EXIT_BLOCK has IL associated with it");
4413 err = 1;
4414 }
4415
4416 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4417 if (e->flags & EDGE_FALLTHRU)
4418 {
4419 error ("fallthru to exit from bb %d", e->src->index);
4420 err = 1;
4421 }
4422
4423 FOR_EACH_BB (bb)
4424 {
4425 bool found_ctrl_stmt = false;
4426
4427 stmt = NULL;
4428
4429 /* Skip labels on the start of basic block. */
4430 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4431 {
4432 tree label;
4433 gimple prev_stmt = stmt;
4434
4435 stmt = gsi_stmt (gsi);
4436
4437 if (gimple_code (stmt) != GIMPLE_LABEL)
4438 break;
4439
4440 label = gimple_label_label (stmt);
4441 if (prev_stmt && DECL_NONLOCAL (label))
4442 {
4443 error ("nonlocal label ");
4444 print_generic_expr (stderr, label, 0);
4445 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4446 bb->index);
4447 err = 1;
4448 }
4449
4450 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4451 {
4452 error ("EH landing pad label ");
4453 print_generic_expr (stderr, label, 0);
4454 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4455 bb->index);
4456 err = 1;
4457 }
4458
4459 if (label_to_block (label) != bb)
4460 {
4461 error ("label ");
4462 print_generic_expr (stderr, label, 0);
4463 fprintf (stderr, " to block does not match in bb %d",
4464 bb->index);
4465 err = 1;
4466 }
4467
4468 if (decl_function_context (label) != current_function_decl)
4469 {
4470 error ("label ");
4471 print_generic_expr (stderr, label, 0);
4472 fprintf (stderr, " has incorrect context in bb %d",
4473 bb->index);
4474 err = 1;
4475 }
4476 }
4477
4478 /* Verify that body of basic block BB is free of control flow. */
4479 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4480 {
4481 gimple stmt = gsi_stmt (gsi);
4482
4483 if (found_ctrl_stmt)
4484 {
4485 error ("control flow in the middle of basic block %d",
4486 bb->index);
4487 err = 1;
4488 }
4489
4490 if (stmt_ends_bb_p (stmt))
4491 found_ctrl_stmt = true;
4492
4493 if (gimple_code (stmt) == GIMPLE_LABEL)
4494 {
4495 error ("label ");
4496 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4497 fprintf (stderr, " in the middle of basic block %d", bb->index);
4498 err = 1;
4499 }
4500 }
4501
4502 gsi = gsi_last_bb (bb);
4503 if (gsi_end_p (gsi))
4504 continue;
4505
4506 stmt = gsi_stmt (gsi);
4507
4508 if (gimple_code (stmt) == GIMPLE_LABEL)
4509 continue;
4510
4511 err |= verify_eh_edges (stmt);
4512
4513 if (is_ctrl_stmt (stmt))
4514 {
4515 FOR_EACH_EDGE (e, ei, bb->succs)
4516 if (e->flags & EDGE_FALLTHRU)
4517 {
4518 error ("fallthru edge after a control statement in bb %d",
4519 bb->index);
4520 err = 1;
4521 }
4522 }
4523
4524 if (gimple_code (stmt) != GIMPLE_COND)
4525 {
4526 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4527 after anything else but if statement. */
4528 FOR_EACH_EDGE (e, ei, bb->succs)
4529 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4530 {
4531 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4532 bb->index);
4533 err = 1;
4534 }
4535 }
4536
4537 switch (gimple_code (stmt))
4538 {
4539 case GIMPLE_COND:
4540 {
4541 edge true_edge;
4542 edge false_edge;
4543
4544 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4545
4546 if (!true_edge
4547 || !false_edge
4548 || !(true_edge->flags & EDGE_TRUE_VALUE)
4549 || !(false_edge->flags & EDGE_FALSE_VALUE)
4550 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4551 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4552 || EDGE_COUNT (bb->succs) >= 3)
4553 {
4554 error ("wrong outgoing edge flags at end of bb %d",
4555 bb->index);
4556 err = 1;
4557 }
4558 }
4559 break;
4560
4561 case GIMPLE_GOTO:
4562 if (simple_goto_p (stmt))
4563 {
4564 error ("explicit goto at end of bb %d", bb->index);
4565 err = 1;
4566 }
4567 else
4568 {
4569 /* FIXME. We should double check that the labels in the
4570 destination blocks have their address taken. */
4571 FOR_EACH_EDGE (e, ei, bb->succs)
4572 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4573 | EDGE_FALSE_VALUE))
4574 || !(e->flags & EDGE_ABNORMAL))
4575 {
4576 error ("wrong outgoing edge flags at end of bb %d",
4577 bb->index);
4578 err = 1;
4579 }
4580 }
4581 break;
4582
4583 case GIMPLE_CALL:
4584 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4585 break;
4586 /* ... fallthru ... */
4587 case GIMPLE_RETURN:
4588 if (!single_succ_p (bb)
4589 || (single_succ_edge (bb)->flags
4590 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4591 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4592 {
4593 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4594 err = 1;
4595 }
4596 if (single_succ (bb) != EXIT_BLOCK_PTR)
4597 {
4598 error ("return edge does not point to exit in bb %d",
4599 bb->index);
4600 err = 1;
4601 }
4602 break;
4603
4604 case GIMPLE_SWITCH:
4605 {
4606 tree prev;
4607 edge e;
4608 size_t i, n;
4609
4610 n = gimple_switch_num_labels (stmt);
4611
4612 /* Mark all the destination basic blocks. */
4613 for (i = 0; i < n; ++i)
4614 {
4615 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4616 basic_block label_bb = label_to_block (lab);
4617 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4618 label_bb->aux = (void *)1;
4619 }
4620
4621 /* Verify that the case labels are sorted. */
4622 prev = gimple_switch_label (stmt, 0);
4623 for (i = 1; i < n; ++i)
4624 {
4625 tree c = gimple_switch_label (stmt, i);
4626 if (!CASE_LOW (c))
4627 {
4628 error ("found default case not at the start of "
4629 "case vector");
4630 err = 1;
4631 continue;
4632 }
4633 if (CASE_LOW (prev)
4634 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4635 {
4636 error ("case labels not sorted: ");
4637 print_generic_expr (stderr, prev, 0);
4638 fprintf (stderr," is greater than ");
4639 print_generic_expr (stderr, c, 0);
4640 fprintf (stderr," but comes before it.\n");
4641 err = 1;
4642 }
4643 prev = c;
4644 }
4645 /* VRP will remove the default case if it can prove it will
4646 never be executed. So do not verify there always exists
4647 a default case here. */
4648
4649 FOR_EACH_EDGE (e, ei, bb->succs)
4650 {
4651 if (!e->dest->aux)
4652 {
4653 error ("extra outgoing edge %d->%d",
4654 bb->index, e->dest->index);
4655 err = 1;
4656 }
4657
4658 e->dest->aux = (void *)2;
4659 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4660 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4661 {
4662 error ("wrong outgoing edge flags at end of bb %d",
4663 bb->index);
4664 err = 1;
4665 }
4666 }
4667
4668 /* Check that we have all of them. */
4669 for (i = 0; i < n; ++i)
4670 {
4671 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4672 basic_block label_bb = label_to_block (lab);
4673
4674 if (label_bb->aux != (void *)2)
4675 {
4676 error ("missing edge %i->%i", bb->index, label_bb->index);
4677 err = 1;
4678 }
4679 }
4680
4681 FOR_EACH_EDGE (e, ei, bb->succs)
4682 e->dest->aux = (void *)0;
4683 }
4684 break;
4685
4686 case GIMPLE_EH_DISPATCH:
4687 err |= verify_eh_dispatch_edge (stmt);
4688 break;
4689
4690 default:
4691 break;
4692 }
4693 }
4694
4695 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4696 verify_dominators (CDI_DOMINATORS);
4697
4698 return err;
4699 }
4700
4701
4702 /* Updates phi nodes after creating a forwarder block joined
4703 by edge FALLTHRU. */
4704
4705 static void
4706 gimple_make_forwarder_block (edge fallthru)
4707 {
4708 edge e;
4709 edge_iterator ei;
4710 basic_block dummy, bb;
4711 tree var;
4712 gimple_stmt_iterator gsi;
4713
4714 dummy = fallthru->src;
4715 bb = fallthru->dest;
4716
4717 if (single_pred_p (bb))
4718 return;
4719
4720 /* If we redirected a branch we must create new PHI nodes at the
4721 start of BB. */
4722 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4723 {
4724 gimple phi, new_phi;
4725
4726 phi = gsi_stmt (gsi);
4727 var = gimple_phi_result (phi);
4728 new_phi = create_phi_node (var, bb);
4729 SSA_NAME_DEF_STMT (var) = new_phi;
4730 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4731 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4732 UNKNOWN_LOCATION);
4733 }
4734
4735 /* Add the arguments we have stored on edges. */
4736 FOR_EACH_EDGE (e, ei, bb->preds)
4737 {
4738 if (e == fallthru)
4739 continue;
4740
4741 flush_pending_stmts (e);
4742 }
4743 }
4744
4745
4746 /* Return a non-special label in the head of basic block BLOCK.
4747 Create one if it doesn't exist. */
4748
4749 tree
4750 gimple_block_label (basic_block bb)
4751 {
4752 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4753 bool first = true;
4754 tree label;
4755 gimple stmt;
4756
4757 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4758 {
4759 stmt = gsi_stmt (i);
4760 if (gimple_code (stmt) != GIMPLE_LABEL)
4761 break;
4762 label = gimple_label_label (stmt);
4763 if (!DECL_NONLOCAL (label))
4764 {
4765 if (!first)
4766 gsi_move_before (&i, &s);
4767 return label;
4768 }
4769 }
4770
4771 label = create_artificial_label (UNKNOWN_LOCATION);
4772 stmt = gimple_build_label (label);
4773 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4774 return label;
4775 }
4776
4777
4778 /* Attempt to perform edge redirection by replacing a possibly complex
4779 jump instruction by a goto or by removing the jump completely.
4780 This can apply only if all edges now point to the same block. The
4781 parameters and return values are equivalent to
4782 redirect_edge_and_branch. */
4783
4784 static edge
4785 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4786 {
4787 basic_block src = e->src;
4788 gimple_stmt_iterator i;
4789 gimple stmt;
4790
4791 /* We can replace or remove a complex jump only when we have exactly
4792 two edges. */
4793 if (EDGE_COUNT (src->succs) != 2
4794 /* Verify that all targets will be TARGET. Specifically, the
4795 edge that is not E must also go to TARGET. */
4796 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4797 return NULL;
4798
4799 i = gsi_last_bb (src);
4800 if (gsi_end_p (i))
4801 return NULL;
4802
4803 stmt = gsi_stmt (i);
4804
4805 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4806 {
4807 gsi_remove (&i, true);
4808 e = ssa_redirect_edge (e, target);
4809 e->flags = EDGE_FALLTHRU;
4810 return e;
4811 }
4812
4813 return NULL;
4814 }
4815
4816
4817 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4818 edge representing the redirected branch. */
4819
4820 static edge
4821 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4822 {
4823 basic_block bb = e->src;
4824 gimple_stmt_iterator gsi;
4825 edge ret;
4826 gimple stmt;
4827
4828 if (e->flags & EDGE_ABNORMAL)
4829 return NULL;
4830
4831 if (e->dest == dest)
4832 return NULL;
4833
4834 if (e->flags & EDGE_EH)
4835 return redirect_eh_edge (e, dest);
4836
4837 if (e->src != ENTRY_BLOCK_PTR)
4838 {
4839 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4840 if (ret)
4841 return ret;
4842 }
4843
4844 gsi = gsi_last_bb (bb);
4845 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4846
4847 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4848 {
4849 case GIMPLE_COND:
4850 /* For COND_EXPR, we only need to redirect the edge. */
4851 break;
4852
4853 case GIMPLE_GOTO:
4854 /* No non-abnormal edges should lead from a non-simple goto, and
4855 simple ones should be represented implicitly. */
4856 gcc_unreachable ();
4857
4858 case GIMPLE_SWITCH:
4859 {
4860 tree label = gimple_block_label (dest);
4861 tree cases = get_cases_for_edge (e, stmt);
4862
4863 /* If we have a list of cases associated with E, then use it
4864 as it's a lot faster than walking the entire case vector. */
4865 if (cases)
4866 {
4867 edge e2 = find_edge (e->src, dest);
4868 tree last, first;
4869
4870 first = cases;
4871 while (cases)
4872 {
4873 last = cases;
4874 CASE_LABEL (cases) = label;
4875 cases = CASE_CHAIN (cases);
4876 }
4877
4878 /* If there was already an edge in the CFG, then we need
4879 to move all the cases associated with E to E2. */
4880 if (e2)
4881 {
4882 tree cases2 = get_cases_for_edge (e2, stmt);
4883
4884 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4885 CASE_CHAIN (cases2) = first;
4886 }
4887 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4888 }
4889 else
4890 {
4891 size_t i, n = gimple_switch_num_labels (stmt);
4892
4893 for (i = 0; i < n; i++)
4894 {
4895 tree elt = gimple_switch_label (stmt, i);
4896 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4897 CASE_LABEL (elt) = label;
4898 }
4899 }
4900 }
4901 break;
4902
4903 case GIMPLE_ASM:
4904 {
4905 int i, n = gimple_asm_nlabels (stmt);
4906 tree label = NULL;
4907
4908 for (i = 0; i < n; ++i)
4909 {
4910 tree cons = gimple_asm_label_op (stmt, i);
4911 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4912 {
4913 if (!label)
4914 label = gimple_block_label (dest);
4915 TREE_VALUE (cons) = label;
4916 }
4917 }
4918
4919 /* If we didn't find any label matching the former edge in the
4920 asm labels, we must be redirecting the fallthrough
4921 edge. */
4922 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4923 }
4924 break;
4925
4926 case GIMPLE_RETURN:
4927 gsi_remove (&gsi, true);
4928 e->flags |= EDGE_FALLTHRU;
4929 break;
4930
4931 case GIMPLE_OMP_RETURN:
4932 case GIMPLE_OMP_CONTINUE:
4933 case GIMPLE_OMP_SECTIONS_SWITCH:
4934 case GIMPLE_OMP_FOR:
4935 /* The edges from OMP constructs can be simply redirected. */
4936 break;
4937
4938 case GIMPLE_EH_DISPATCH:
4939 if (!(e->flags & EDGE_FALLTHRU))
4940 redirect_eh_dispatch_edge (stmt, e, dest);
4941 break;
4942
4943 default:
4944 /* Otherwise it must be a fallthru edge, and we don't need to
4945 do anything besides redirecting it. */
4946 gcc_assert (e->flags & EDGE_FALLTHRU);
4947 break;
4948 }
4949
4950 /* Update/insert PHI nodes as necessary. */
4951
4952 /* Now update the edges in the CFG. */
4953 e = ssa_redirect_edge (e, dest);
4954
4955 return e;
4956 }
4957
4958 /* Returns true if it is possible to remove edge E by redirecting
4959 it to the destination of the other edge from E->src. */
4960
4961 static bool
4962 gimple_can_remove_branch_p (const_edge e)
4963 {
4964 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4965 return false;
4966
4967 return true;
4968 }
4969
4970 /* Simple wrapper, as we can always redirect fallthru edges. */
4971
4972 static basic_block
4973 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4974 {
4975 e = gimple_redirect_edge_and_branch (e, dest);
4976 gcc_assert (e);
4977
4978 return NULL;
4979 }
4980
4981
4982 /* Splits basic block BB after statement STMT (but at least after the
4983 labels). If STMT is NULL, BB is split just after the labels. */
4984
4985 static basic_block
4986 gimple_split_block (basic_block bb, void *stmt)
4987 {
4988 gimple_stmt_iterator gsi;
4989 gimple_stmt_iterator gsi_tgt;
4990 gimple act;
4991 gimple_seq list;
4992 basic_block new_bb;
4993 edge e;
4994 edge_iterator ei;
4995
4996 new_bb = create_empty_bb (bb);
4997
4998 /* Redirect the outgoing edges. */
4999 new_bb->succs = bb->succs;
5000 bb->succs = NULL;
5001 FOR_EACH_EDGE (e, ei, new_bb->succs)
5002 e->src = new_bb;
5003
5004 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5005 stmt = NULL;
5006
5007 /* Move everything from GSI to the new basic block. */
5008 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5009 {
5010 act = gsi_stmt (gsi);
5011 if (gimple_code (act) == GIMPLE_LABEL)
5012 continue;
5013
5014 if (!stmt)
5015 break;
5016
5017 if (stmt == act)
5018 {
5019 gsi_next (&gsi);
5020 break;
5021 }
5022 }
5023
5024 if (gsi_end_p (gsi))
5025 return new_bb;
5026
5027 /* Split the statement list - avoid re-creating new containers as this
5028 brings ugly quadratic memory consumption in the inliner.
5029 (We are still quadratic since we need to update stmt BB pointers,
5030 sadly.) */
5031 list = gsi_split_seq_before (&gsi);
5032 set_bb_seq (new_bb, list);
5033 for (gsi_tgt = gsi_start (list);
5034 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5035 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5036
5037 return new_bb;
5038 }
5039
5040
5041 /* Moves basic block BB after block AFTER. */
5042
5043 static bool
5044 gimple_move_block_after (basic_block bb, basic_block after)
5045 {
5046 if (bb->prev_bb == after)
5047 return true;
5048
5049 unlink_block (bb);
5050 link_block (bb, after);
5051
5052 return true;
5053 }
5054
5055
5056 /* Return true if basic_block can be duplicated. */
5057
5058 static bool
5059 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5060 {
5061 return true;
5062 }
5063
5064 /* Create a duplicate of the basic block BB. NOTE: This does not
5065 preserve SSA form. */
5066
5067 static basic_block
5068 gimple_duplicate_bb (basic_block bb)
5069 {
5070 basic_block new_bb;
5071 gimple_stmt_iterator gsi, gsi_tgt;
5072 gimple_seq phis = phi_nodes (bb);
5073 gimple phi, stmt, copy;
5074
5075 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5076
5077 /* Copy the PHI nodes. We ignore PHI node arguments here because
5078 the incoming edges have not been setup yet. */
5079 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5080 {
5081 phi = gsi_stmt (gsi);
5082 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5083 create_new_def_for (gimple_phi_result (copy), copy,
5084 gimple_phi_result_ptr (copy));
5085 }
5086
5087 gsi_tgt = gsi_start_bb (new_bb);
5088 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5089 {
5090 def_operand_p def_p;
5091 ssa_op_iter op_iter;
5092
5093 stmt = gsi_stmt (gsi);
5094 if (gimple_code (stmt) == GIMPLE_LABEL)
5095 continue;
5096
5097 /* Create a new copy of STMT and duplicate STMT's virtual
5098 operands. */
5099 copy = gimple_copy (stmt);
5100 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5101
5102 maybe_duplicate_eh_stmt (copy, stmt);
5103 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5104
5105 /* Create new names for all the definitions created by COPY and
5106 add replacement mappings for each new name. */
5107 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5108 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5109 }
5110
5111 return new_bb;
5112 }
5113
5114 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5115
5116 static void
5117 add_phi_args_after_copy_edge (edge e_copy)
5118 {
5119 basic_block bb, bb_copy = e_copy->src, dest;
5120 edge e;
5121 edge_iterator ei;
5122 gimple phi, phi_copy;
5123 tree def;
5124 gimple_stmt_iterator psi, psi_copy;
5125
5126 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5127 return;
5128
5129 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5130
5131 if (e_copy->dest->flags & BB_DUPLICATED)
5132 dest = get_bb_original (e_copy->dest);
5133 else
5134 dest = e_copy->dest;
5135
5136 e = find_edge (bb, dest);
5137 if (!e)
5138 {
5139 /* During loop unrolling the target of the latch edge is copied.
5140 In this case we are not looking for edge to dest, but to
5141 duplicated block whose original was dest. */
5142 FOR_EACH_EDGE (e, ei, bb->succs)
5143 {
5144 if ((e->dest->flags & BB_DUPLICATED)
5145 && get_bb_original (e->dest) == dest)
5146 break;
5147 }
5148
5149 gcc_assert (e != NULL);
5150 }
5151
5152 for (psi = gsi_start_phis (e->dest),
5153 psi_copy = gsi_start_phis (e_copy->dest);
5154 !gsi_end_p (psi);
5155 gsi_next (&psi), gsi_next (&psi_copy))
5156 {
5157 phi = gsi_stmt (psi);
5158 phi_copy = gsi_stmt (psi_copy);
5159 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5160 add_phi_arg (phi_copy, def, e_copy,
5161 gimple_phi_arg_location_from_edge (phi, e));
5162 }
5163 }
5164
5165
5166 /* Basic block BB_COPY was created by code duplication. Add phi node
5167 arguments for edges going out of BB_COPY. The blocks that were
5168 duplicated have BB_DUPLICATED set. */
5169
5170 void
5171 add_phi_args_after_copy_bb (basic_block bb_copy)
5172 {
5173 edge e_copy;
5174 edge_iterator ei;
5175
5176 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5177 {
5178 add_phi_args_after_copy_edge (e_copy);
5179 }
5180 }
5181
5182 /* Blocks in REGION_COPY array of length N_REGION were created by
5183 duplication of basic blocks. Add phi node arguments for edges
5184 going from these blocks. If E_COPY is not NULL, also add
5185 phi node arguments for its destination.*/
5186
5187 void
5188 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5189 edge e_copy)
5190 {
5191 unsigned i;
5192
5193 for (i = 0; i < n_region; i++)
5194 region_copy[i]->flags |= BB_DUPLICATED;
5195
5196 for (i = 0; i < n_region; i++)
5197 add_phi_args_after_copy_bb (region_copy[i]);
5198 if (e_copy)
5199 add_phi_args_after_copy_edge (e_copy);
5200
5201 for (i = 0; i < n_region; i++)
5202 region_copy[i]->flags &= ~BB_DUPLICATED;
5203 }
5204
5205 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5206 important exit edge EXIT. By important we mean that no SSA name defined
5207 inside region is live over the other exit edges of the region. All entry
5208 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5209 to the duplicate of the region. SSA form, dominance and loop information
5210 is updated. The new basic blocks are stored to REGION_COPY in the same
5211 order as they had in REGION, provided that REGION_COPY is not NULL.
5212 The function returns false if it is unable to copy the region,
5213 true otherwise. */
5214
5215 bool
5216 gimple_duplicate_sese_region (edge entry, edge exit,
5217 basic_block *region, unsigned n_region,
5218 basic_block *region_copy)
5219 {
5220 unsigned i;
5221 bool free_region_copy = false, copying_header = false;
5222 struct loop *loop = entry->dest->loop_father;
5223 edge exit_copy;
5224 VEC (basic_block, heap) *doms;
5225 edge redirected;
5226 int total_freq = 0, entry_freq = 0;
5227 gcov_type total_count = 0, entry_count = 0;
5228
5229 if (!can_copy_bbs_p (region, n_region))
5230 return false;
5231
5232 /* Some sanity checking. Note that we do not check for all possible
5233 missuses of the functions. I.e. if you ask to copy something weird,
5234 it will work, but the state of structures probably will not be
5235 correct. */
5236 for (i = 0; i < n_region; i++)
5237 {
5238 /* We do not handle subloops, i.e. all the blocks must belong to the
5239 same loop. */
5240 if (region[i]->loop_father != loop)
5241 return false;
5242
5243 if (region[i] != entry->dest
5244 && region[i] == loop->header)
5245 return false;
5246 }
5247
5248 set_loop_copy (loop, loop);
5249
5250 /* In case the function is used for loop header copying (which is the primary
5251 use), ensure that EXIT and its copy will be new latch and entry edges. */
5252 if (loop->header == entry->dest)
5253 {
5254 copying_header = true;
5255 set_loop_copy (loop, loop_outer (loop));
5256
5257 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5258 return false;
5259
5260 for (i = 0; i < n_region; i++)
5261 if (region[i] != exit->src
5262 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5263 return false;
5264 }
5265
5266 if (!region_copy)
5267 {
5268 region_copy = XNEWVEC (basic_block, n_region);
5269 free_region_copy = true;
5270 }
5271
5272 gcc_assert (!need_ssa_update_p (cfun));
5273
5274 /* Record blocks outside the region that are dominated by something
5275 inside. */
5276 doms = NULL;
5277 initialize_original_copy_tables ();
5278
5279 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5280
5281 if (entry->dest->count)
5282 {
5283 total_count = entry->dest->count;
5284 entry_count = entry->count;
5285 /* Fix up corner cases, to avoid division by zero or creation of negative
5286 frequencies. */
5287 if (entry_count > total_count)
5288 entry_count = total_count;
5289 }
5290 else
5291 {
5292 total_freq = entry->dest->frequency;
5293 entry_freq = EDGE_FREQUENCY (entry);
5294 /* Fix up corner cases, to avoid division by zero or creation of negative
5295 frequencies. */
5296 if (total_freq == 0)
5297 total_freq = 1;
5298 else if (entry_freq > total_freq)
5299 entry_freq = total_freq;
5300 }
5301
5302 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5303 split_edge_bb_loc (entry));
5304 if (total_count)
5305 {
5306 scale_bbs_frequencies_gcov_type (region, n_region,
5307 total_count - entry_count,
5308 total_count);
5309 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5310 total_count);
5311 }
5312 else
5313 {
5314 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5315 total_freq);
5316 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5317 }
5318
5319 if (copying_header)
5320 {
5321 loop->header = exit->dest;
5322 loop->latch = exit->src;
5323 }
5324
5325 /* Redirect the entry and add the phi node arguments. */
5326 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5327 gcc_assert (redirected != NULL);
5328 flush_pending_stmts (entry);
5329
5330 /* Concerning updating of dominators: We must recount dominators
5331 for entry block and its copy. Anything that is outside of the
5332 region, but was dominated by something inside needs recounting as
5333 well. */
5334 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5335 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5336 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5337 VEC_free (basic_block, heap, doms);
5338
5339 /* Add the other PHI node arguments. */
5340 add_phi_args_after_copy (region_copy, n_region, NULL);
5341
5342 /* Update the SSA web. */
5343 update_ssa (TODO_update_ssa);
5344
5345 if (free_region_copy)
5346 free (region_copy);
5347
5348 free_original_copy_tables ();
5349 return true;
5350 }
5351
5352 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5353 are stored to REGION_COPY in the same order in that they appear
5354 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5355 the region, EXIT an exit from it. The condition guarding EXIT
5356 is moved to ENTRY. Returns true if duplication succeeds, false
5357 otherwise.
5358
5359 For example,
5360
5361 some_code;
5362 if (cond)
5363 A;
5364 else
5365 B;
5366
5367 is transformed to
5368
5369 if (cond)
5370 {
5371 some_code;
5372 A;
5373 }
5374 else
5375 {
5376 some_code;
5377 B;
5378 }
5379 */
5380
5381 bool
5382 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5383 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5384 basic_block *region_copy ATTRIBUTE_UNUSED)
5385 {
5386 unsigned i;
5387 bool free_region_copy = false;
5388 struct loop *loop = exit->dest->loop_father;
5389 struct loop *orig_loop = entry->dest->loop_father;
5390 basic_block switch_bb, entry_bb, nentry_bb;
5391 VEC (basic_block, heap) *doms;
5392 int total_freq = 0, exit_freq = 0;
5393 gcov_type total_count = 0, exit_count = 0;
5394 edge exits[2], nexits[2], e;
5395 gimple_stmt_iterator gsi,gsi1;
5396 gimple cond_stmt;
5397 edge sorig, snew;
5398 basic_block exit_bb;
5399 basic_block iters_bb;
5400 tree new_rhs;
5401 gimple_stmt_iterator psi;
5402 gimple phi;
5403 tree def;
5404
5405 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5406 exits[0] = exit;
5407 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5408
5409 if (!can_copy_bbs_p (region, n_region))
5410 return false;
5411
5412 initialize_original_copy_tables ();
5413 set_loop_copy (orig_loop, loop);
5414 duplicate_subloops (orig_loop, loop);
5415
5416 if (!region_copy)
5417 {
5418 region_copy = XNEWVEC (basic_block, n_region);
5419 free_region_copy = true;
5420 }
5421
5422 gcc_assert (!need_ssa_update_p (cfun));
5423
5424 /* Record blocks outside the region that are dominated by something
5425 inside. */
5426 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5427
5428 if (exit->src->count)
5429 {
5430 total_count = exit->src->count;
5431 exit_count = exit->count;
5432 /* Fix up corner cases, to avoid division by zero or creation of negative
5433 frequencies. */
5434 if (exit_count > total_count)
5435 exit_count = total_count;
5436 }
5437 else
5438 {
5439 total_freq = exit->src->frequency;
5440 exit_freq = EDGE_FREQUENCY (exit);
5441 /* Fix up corner cases, to avoid division by zero or creation of negative
5442 frequencies. */
5443 if (total_freq == 0)
5444 total_freq = 1;
5445 if (exit_freq > total_freq)
5446 exit_freq = total_freq;
5447 }
5448
5449 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5450 split_edge_bb_loc (exit));
5451 if (total_count)
5452 {
5453 scale_bbs_frequencies_gcov_type (region, n_region,
5454 total_count - exit_count,
5455 total_count);
5456 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5457 total_count);
5458 }
5459 else
5460 {
5461 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5462 total_freq);
5463 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5464 }
5465
5466 /* Create the switch block, and put the exit condition to it. */
5467 entry_bb = entry->dest;
5468 nentry_bb = get_bb_copy (entry_bb);
5469 if (!last_stmt (entry->src)
5470 || !stmt_ends_bb_p (last_stmt (entry->src)))
5471 switch_bb = entry->src;
5472 else
5473 switch_bb = split_edge (entry);
5474 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5475
5476 gsi = gsi_last_bb (switch_bb);
5477 cond_stmt = last_stmt (exit->src);
5478 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5479 cond_stmt = gimple_copy (cond_stmt);
5480
5481 /* If the block consisting of the exit condition has the latch as
5482 successor, then the body of the loop is executed before
5483 the exit condition is tested. In such case, moving the
5484 condition to the entry, causes that the loop will iterate
5485 one less iteration (which is the wanted outcome, since we
5486 peel out the last iteration). If the body is executed after
5487 the condition, moving the condition to the entry requires
5488 decrementing one iteration. */
5489 if (exits[1]->dest == orig_loop->latch)
5490 new_rhs = gimple_cond_rhs (cond_stmt);
5491 else
5492 {
5493 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5494 gimple_cond_rhs (cond_stmt),
5495 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5496
5497 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5498 {
5499 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5500 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5501 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5502 break;
5503
5504 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5505 NULL_TREE,false,GSI_CONTINUE_LINKING);
5506 }
5507 }
5508 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5509 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5510 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5511
5512 sorig = single_succ_edge (switch_bb);
5513 sorig->flags = exits[1]->flags;
5514 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5515
5516 /* Register the new edge from SWITCH_BB in loop exit lists. */
5517 rescan_loop_exit (snew, true, false);
5518
5519 /* Add the PHI node arguments. */
5520 add_phi_args_after_copy (region_copy, n_region, snew);
5521
5522 /* Get rid of now superfluous conditions and associated edges (and phi node
5523 arguments). */
5524 exit_bb = exit->dest;
5525
5526 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5527 PENDING_STMT (e) = NULL;
5528
5529 /* The latch of ORIG_LOOP was copied, and so was the backedge
5530 to the original header. We redirect this backedge to EXIT_BB. */
5531 for (i = 0; i < n_region; i++)
5532 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5533 {
5534 gcc_assert (single_succ_edge (region_copy[i]));
5535 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5536 PENDING_STMT (e) = NULL;
5537 for (psi = gsi_start_phis (exit_bb);
5538 !gsi_end_p (psi);
5539 gsi_next (&psi))
5540 {
5541 phi = gsi_stmt (psi);
5542 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5543 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5544 }
5545 }
5546 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5547 PENDING_STMT (e) = NULL;
5548
5549 /* Anything that is outside of the region, but was dominated by something
5550 inside needs to update dominance info. */
5551 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5552 VEC_free (basic_block, heap, doms);
5553 /* Update the SSA web. */
5554 update_ssa (TODO_update_ssa);
5555
5556 if (free_region_copy)
5557 free (region_copy);
5558
5559 free_original_copy_tables ();
5560 return true;
5561 }
5562
5563 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5564 adding blocks when the dominator traversal reaches EXIT. This
5565 function silently assumes that ENTRY strictly dominates EXIT. */
5566
5567 void
5568 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5569 VEC(basic_block,heap) **bbs_p)
5570 {
5571 basic_block son;
5572
5573 for (son = first_dom_son (CDI_DOMINATORS, entry);
5574 son;
5575 son = next_dom_son (CDI_DOMINATORS, son))
5576 {
5577 VEC_safe_push (basic_block, heap, *bbs_p, son);
5578 if (son != exit)
5579 gather_blocks_in_sese_region (son, exit, bbs_p);
5580 }
5581 }
5582
5583 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5584 The duplicates are recorded in VARS_MAP. */
5585
5586 static void
5587 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5588 tree to_context)
5589 {
5590 tree t = *tp, new_t;
5591 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5592 void **loc;
5593
5594 if (DECL_CONTEXT (t) == to_context)
5595 return;
5596
5597 loc = pointer_map_contains (vars_map, t);
5598
5599 if (!loc)
5600 {
5601 loc = pointer_map_insert (vars_map, t);
5602
5603 if (SSA_VAR_P (t))
5604 {
5605 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5606 add_local_decl (f, new_t);
5607 }
5608 else
5609 {
5610 gcc_assert (TREE_CODE (t) == CONST_DECL);
5611 new_t = copy_node (t);
5612 }
5613 DECL_CONTEXT (new_t) = to_context;
5614
5615 *loc = new_t;
5616 }
5617 else
5618 new_t = (tree) *loc;
5619
5620 *tp = new_t;
5621 }
5622
5623
5624 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5625 VARS_MAP maps old ssa names and var_decls to the new ones. */
5626
5627 static tree
5628 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5629 tree to_context)
5630 {
5631 void **loc;
5632 tree new_name, decl = SSA_NAME_VAR (name);
5633
5634 gcc_assert (is_gimple_reg (name));
5635
5636 loc = pointer_map_contains (vars_map, name);
5637
5638 if (!loc)
5639 {
5640 replace_by_duplicate_decl (&decl, vars_map, to_context);
5641
5642 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5643 if (gimple_in_ssa_p (cfun))
5644 add_referenced_var (decl);
5645
5646 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5647 if (SSA_NAME_IS_DEFAULT_DEF (name))
5648 set_default_def (decl, new_name);
5649 pop_cfun ();
5650
5651 loc = pointer_map_insert (vars_map, name);
5652 *loc = new_name;
5653 }
5654 else
5655 new_name = (tree) *loc;
5656
5657 return new_name;
5658 }
5659
5660 struct move_stmt_d
5661 {
5662 tree orig_block;
5663 tree new_block;
5664 tree from_context;
5665 tree to_context;
5666 struct pointer_map_t *vars_map;
5667 htab_t new_label_map;
5668 struct pointer_map_t *eh_map;
5669 bool remap_decls_p;
5670 };
5671
5672 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5673 contained in *TP if it has been ORIG_BLOCK previously and change the
5674 DECL_CONTEXT of every local variable referenced in *TP. */
5675
5676 static tree
5677 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5678 {
5679 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5680 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5681 tree t = *tp;
5682
5683 if (EXPR_P (t))
5684 /* We should never have TREE_BLOCK set on non-statements. */
5685 gcc_assert (!TREE_BLOCK (t));
5686
5687 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5688 {
5689 if (TREE_CODE (t) == SSA_NAME)
5690 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5691 else if (TREE_CODE (t) == LABEL_DECL)
5692 {
5693 if (p->new_label_map)
5694 {
5695 struct tree_map in, *out;
5696 in.base.from = t;
5697 out = (struct tree_map *)
5698 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5699 if (out)
5700 *tp = t = out->to;
5701 }
5702
5703 DECL_CONTEXT (t) = p->to_context;
5704 }
5705 else if (p->remap_decls_p)
5706 {
5707 /* Replace T with its duplicate. T should no longer appear in the
5708 parent function, so this looks wasteful; however, it may appear
5709 in referenced_vars, and more importantly, as virtual operands of
5710 statements, and in alias lists of other variables. It would be
5711 quite difficult to expunge it from all those places. ??? It might
5712 suffice to do this for addressable variables. */
5713 if ((TREE_CODE (t) == VAR_DECL
5714 && !is_global_var (t))
5715 || TREE_CODE (t) == CONST_DECL)
5716 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5717
5718 if (SSA_VAR_P (t)
5719 && gimple_in_ssa_p (cfun))
5720 {
5721 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5722 add_referenced_var (*tp);
5723 pop_cfun ();
5724 }
5725 }
5726 *walk_subtrees = 0;
5727 }
5728 else if (TYPE_P (t))
5729 *walk_subtrees = 0;
5730
5731 return NULL_TREE;
5732 }
5733
5734 /* Helper for move_stmt_r. Given an EH region number for the source
5735 function, map that to the duplicate EH regio number in the dest. */
5736
5737 static int
5738 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5739 {
5740 eh_region old_r, new_r;
5741 void **slot;
5742
5743 old_r = get_eh_region_from_number (old_nr);
5744 slot = pointer_map_contains (p->eh_map, old_r);
5745 new_r = (eh_region) *slot;
5746
5747 return new_r->index;
5748 }
5749
5750 /* Similar, but operate on INTEGER_CSTs. */
5751
5752 static tree
5753 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5754 {
5755 int old_nr, new_nr;
5756
5757 old_nr = tree_low_cst (old_t_nr, 0);
5758 new_nr = move_stmt_eh_region_nr (old_nr, p);
5759
5760 return build_int_cst (integer_type_node, new_nr);
5761 }
5762
5763 /* Like move_stmt_op, but for gimple statements.
5764
5765 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5766 contained in the current statement in *GSI_P and change the
5767 DECL_CONTEXT of every local variable referenced in the current
5768 statement. */
5769
5770 static tree
5771 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5772 struct walk_stmt_info *wi)
5773 {
5774 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5775 gimple stmt = gsi_stmt (*gsi_p);
5776 tree block = gimple_block (stmt);
5777
5778 if (p->orig_block == NULL_TREE
5779 || block == p->orig_block
5780 || block == NULL_TREE)
5781 gimple_set_block (stmt, p->new_block);
5782 #ifdef ENABLE_CHECKING
5783 else if (block != p->new_block)
5784 {
5785 while (block && block != p->orig_block)
5786 block = BLOCK_SUPERCONTEXT (block);
5787 gcc_assert (block);
5788 }
5789 #endif
5790
5791 switch (gimple_code (stmt))
5792 {
5793 case GIMPLE_CALL:
5794 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5795 {
5796 tree r, fndecl = gimple_call_fndecl (stmt);
5797 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5798 switch (DECL_FUNCTION_CODE (fndecl))
5799 {
5800 case BUILT_IN_EH_COPY_VALUES:
5801 r = gimple_call_arg (stmt, 1);
5802 r = move_stmt_eh_region_tree_nr (r, p);
5803 gimple_call_set_arg (stmt, 1, r);
5804 /* FALLTHRU */
5805
5806 case BUILT_IN_EH_POINTER:
5807 case BUILT_IN_EH_FILTER:
5808 r = gimple_call_arg (stmt, 0);
5809 r = move_stmt_eh_region_tree_nr (r, p);
5810 gimple_call_set_arg (stmt, 0, r);
5811 break;
5812
5813 default:
5814 break;
5815 }
5816 }
5817 break;
5818
5819 case GIMPLE_RESX:
5820 {
5821 int r = gimple_resx_region (stmt);
5822 r = move_stmt_eh_region_nr (r, p);
5823 gimple_resx_set_region (stmt, r);
5824 }
5825 break;
5826
5827 case GIMPLE_EH_DISPATCH:
5828 {
5829 int r = gimple_eh_dispatch_region (stmt);
5830 r = move_stmt_eh_region_nr (r, p);
5831 gimple_eh_dispatch_set_region (stmt, r);
5832 }
5833 break;
5834
5835 case GIMPLE_OMP_RETURN:
5836 case GIMPLE_OMP_CONTINUE:
5837 break;
5838 default:
5839 if (is_gimple_omp (stmt))
5840 {
5841 /* Do not remap variables inside OMP directives. Variables
5842 referenced in clauses and directive header belong to the
5843 parent function and should not be moved into the child
5844 function. */
5845 bool save_remap_decls_p = p->remap_decls_p;
5846 p->remap_decls_p = false;
5847 *handled_ops_p = true;
5848
5849 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5850 move_stmt_op, wi);
5851
5852 p->remap_decls_p = save_remap_decls_p;
5853 }
5854 break;
5855 }
5856
5857 return NULL_TREE;
5858 }
5859
5860 /* Move basic block BB from function CFUN to function DEST_FN. The
5861 block is moved out of the original linked list and placed after
5862 block AFTER in the new list. Also, the block is removed from the
5863 original array of blocks and placed in DEST_FN's array of blocks.
5864 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5865 updated to reflect the moved edges.
5866
5867 The local variables are remapped to new instances, VARS_MAP is used
5868 to record the mapping. */
5869
5870 static void
5871 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5872 basic_block after, bool update_edge_count_p,
5873 struct move_stmt_d *d)
5874 {
5875 struct control_flow_graph *cfg;
5876 edge_iterator ei;
5877 edge e;
5878 gimple_stmt_iterator si;
5879 unsigned old_len, new_len;
5880
5881 /* Remove BB from dominance structures. */
5882 delete_from_dominance_info (CDI_DOMINATORS, bb);
5883 if (current_loops)
5884 remove_bb_from_loops (bb);
5885
5886 /* Link BB to the new linked list. */
5887 move_block_after (bb, after);
5888
5889 /* Update the edge count in the corresponding flowgraphs. */
5890 if (update_edge_count_p)
5891 FOR_EACH_EDGE (e, ei, bb->succs)
5892 {
5893 cfun->cfg->x_n_edges--;
5894 dest_cfun->cfg->x_n_edges++;
5895 }
5896
5897 /* Remove BB from the original basic block array. */
5898 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5899 cfun->cfg->x_n_basic_blocks--;
5900
5901 /* Grow DEST_CFUN's basic block array if needed. */
5902 cfg = dest_cfun->cfg;
5903 cfg->x_n_basic_blocks++;
5904 if (bb->index >= cfg->x_last_basic_block)
5905 cfg->x_last_basic_block = bb->index + 1;
5906
5907 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5908 if ((unsigned) cfg->x_last_basic_block >= old_len)
5909 {
5910 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5911 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5912 new_len);
5913 }
5914
5915 VEC_replace (basic_block, cfg->x_basic_block_info,
5916 bb->index, bb);
5917
5918 /* Remap the variables in phi nodes. */
5919 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5920 {
5921 gimple phi = gsi_stmt (si);
5922 use_operand_p use;
5923 tree op = PHI_RESULT (phi);
5924 ssa_op_iter oi;
5925
5926 if (!is_gimple_reg (op))
5927 {
5928 /* Remove the phi nodes for virtual operands (alias analysis will be
5929 run for the new function, anyway). */
5930 remove_phi_node (&si, true);
5931 continue;
5932 }
5933
5934 SET_PHI_RESULT (phi,
5935 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5936 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5937 {
5938 op = USE_FROM_PTR (use);
5939 if (TREE_CODE (op) == SSA_NAME)
5940 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5941 }
5942
5943 gsi_next (&si);
5944 }
5945
5946 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5947 {
5948 gimple stmt = gsi_stmt (si);
5949 struct walk_stmt_info wi;
5950
5951 memset (&wi, 0, sizeof (wi));
5952 wi.info = d;
5953 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5954
5955 if (gimple_code (stmt) == GIMPLE_LABEL)
5956 {
5957 tree label = gimple_label_label (stmt);
5958 int uid = LABEL_DECL_UID (label);
5959
5960 gcc_assert (uid > -1);
5961
5962 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5963 if (old_len <= (unsigned) uid)
5964 {
5965 new_len = 3 * uid / 2 + 1;
5966 VEC_safe_grow_cleared (basic_block, gc,
5967 cfg->x_label_to_block_map, new_len);
5968 }
5969
5970 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5971 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5972
5973 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5974
5975 if (uid >= dest_cfun->cfg->last_label_uid)
5976 dest_cfun->cfg->last_label_uid = uid + 1;
5977 }
5978
5979 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5980 remove_stmt_from_eh_lp_fn (cfun, stmt);
5981
5982 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5983 gimple_remove_stmt_histograms (cfun, stmt);
5984
5985 /* We cannot leave any operands allocated from the operand caches of
5986 the current function. */
5987 free_stmt_operands (stmt);
5988 push_cfun (dest_cfun);
5989 update_stmt (stmt);
5990 pop_cfun ();
5991 }
5992
5993 FOR_EACH_EDGE (e, ei, bb->succs)
5994 if (e->goto_locus)
5995 {
5996 tree block = e->goto_block;
5997 if (d->orig_block == NULL_TREE
5998 || block == d->orig_block)
5999 e->goto_block = d->new_block;
6000 #ifdef ENABLE_CHECKING
6001 else if (block != d->new_block)
6002 {
6003 while (block && block != d->orig_block)
6004 block = BLOCK_SUPERCONTEXT (block);
6005 gcc_assert (block);
6006 }
6007 #endif
6008 }
6009 }
6010
6011 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6012 the outermost EH region. Use REGION as the incoming base EH region. */
6013
6014 static eh_region
6015 find_outermost_region_in_block (struct function *src_cfun,
6016 basic_block bb, eh_region region)
6017 {
6018 gimple_stmt_iterator si;
6019
6020 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6021 {
6022 gimple stmt = gsi_stmt (si);
6023 eh_region stmt_region;
6024 int lp_nr;
6025
6026 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6027 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6028 if (stmt_region)
6029 {
6030 if (region == NULL)
6031 region = stmt_region;
6032 else if (stmt_region != region)
6033 {
6034 region = eh_region_outermost (src_cfun, stmt_region, region);
6035 gcc_assert (region != NULL);
6036 }
6037 }
6038 }
6039
6040 return region;
6041 }
6042
6043 static tree
6044 new_label_mapper (tree decl, void *data)
6045 {
6046 htab_t hash = (htab_t) data;
6047 struct tree_map *m;
6048 void **slot;
6049
6050 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6051
6052 m = XNEW (struct tree_map);
6053 m->hash = DECL_UID (decl);
6054 m->base.from = decl;
6055 m->to = create_artificial_label (UNKNOWN_LOCATION);
6056 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6057 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6058 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6059
6060 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6061 gcc_assert (*slot == NULL);
6062
6063 *slot = m;
6064
6065 return m->to;
6066 }
6067
6068 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6069 subblocks. */
6070
6071 static void
6072 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6073 tree to_context)
6074 {
6075 tree *tp, t;
6076
6077 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6078 {
6079 t = *tp;
6080 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6081 continue;
6082 replace_by_duplicate_decl (&t, vars_map, to_context);
6083 if (t != *tp)
6084 {
6085 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6086 {
6087 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6088 DECL_HAS_VALUE_EXPR_P (t) = 1;
6089 }
6090 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6091 *tp = t;
6092 }
6093 }
6094
6095 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6096 replace_block_vars_by_duplicates (block, vars_map, to_context);
6097 }
6098
6099 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6100 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6101 single basic block in the original CFG and the new basic block is
6102 returned. DEST_CFUN must not have a CFG yet.
6103
6104 Note that the region need not be a pure SESE region. Blocks inside
6105 the region may contain calls to abort/exit. The only restriction
6106 is that ENTRY_BB should be the only entry point and it must
6107 dominate EXIT_BB.
6108
6109 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6110 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6111 to the new function.
6112
6113 All local variables referenced in the region are assumed to be in
6114 the corresponding BLOCK_VARS and unexpanded variable lists
6115 associated with DEST_CFUN. */
6116
6117 basic_block
6118 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6119 basic_block exit_bb, tree orig_block)
6120 {
6121 VEC(basic_block,heap) *bbs, *dom_bbs;
6122 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6123 basic_block after, bb, *entry_pred, *exit_succ, abb;
6124 struct function *saved_cfun = cfun;
6125 int *entry_flag, *exit_flag;
6126 unsigned *entry_prob, *exit_prob;
6127 unsigned i, num_entry_edges, num_exit_edges;
6128 edge e;
6129 edge_iterator ei;
6130 htab_t new_label_map;
6131 struct pointer_map_t *vars_map, *eh_map;
6132 struct loop *loop = entry_bb->loop_father;
6133 struct move_stmt_d d;
6134
6135 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6136 region. */
6137 gcc_assert (entry_bb != exit_bb
6138 && (!exit_bb
6139 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6140
6141 /* Collect all the blocks in the region. Manually add ENTRY_BB
6142 because it won't be added by dfs_enumerate_from. */
6143 bbs = NULL;
6144 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6145 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6146
6147 /* The blocks that used to be dominated by something in BBS will now be
6148 dominated by the new block. */
6149 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6150 VEC_address (basic_block, bbs),
6151 VEC_length (basic_block, bbs));
6152
6153 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6154 the predecessor edges to ENTRY_BB and the successor edges to
6155 EXIT_BB so that we can re-attach them to the new basic block that
6156 will replace the region. */
6157 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6158 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6159 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6160 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6161 i = 0;
6162 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6163 {
6164 entry_prob[i] = e->probability;
6165 entry_flag[i] = e->flags;
6166 entry_pred[i++] = e->src;
6167 remove_edge (e);
6168 }
6169
6170 if (exit_bb)
6171 {
6172 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6173 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6174 sizeof (basic_block));
6175 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6176 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6177 i = 0;
6178 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6179 {
6180 exit_prob[i] = e->probability;
6181 exit_flag[i] = e->flags;
6182 exit_succ[i++] = e->dest;
6183 remove_edge (e);
6184 }
6185 }
6186 else
6187 {
6188 num_exit_edges = 0;
6189 exit_succ = NULL;
6190 exit_flag = NULL;
6191 exit_prob = NULL;
6192 }
6193
6194 /* Switch context to the child function to initialize DEST_FN's CFG. */
6195 gcc_assert (dest_cfun->cfg == NULL);
6196 push_cfun (dest_cfun);
6197
6198 init_empty_tree_cfg ();
6199
6200 /* Initialize EH information for the new function. */
6201 eh_map = NULL;
6202 new_label_map = NULL;
6203 if (saved_cfun->eh)
6204 {
6205 eh_region region = NULL;
6206
6207 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6208 region = find_outermost_region_in_block (saved_cfun, bb, region);
6209
6210 init_eh_for_function ();
6211 if (region != NULL)
6212 {
6213 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6214 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6215 new_label_mapper, new_label_map);
6216 }
6217 }
6218
6219 pop_cfun ();
6220
6221 /* Move blocks from BBS into DEST_CFUN. */
6222 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6223 after = dest_cfun->cfg->x_entry_block_ptr;
6224 vars_map = pointer_map_create ();
6225
6226 memset (&d, 0, sizeof (d));
6227 d.orig_block = orig_block;
6228 d.new_block = DECL_INITIAL (dest_cfun->decl);
6229 d.from_context = cfun->decl;
6230 d.to_context = dest_cfun->decl;
6231 d.vars_map = vars_map;
6232 d.new_label_map = new_label_map;
6233 d.eh_map = eh_map;
6234 d.remap_decls_p = true;
6235
6236 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6237 {
6238 /* No need to update edge counts on the last block. It has
6239 already been updated earlier when we detached the region from
6240 the original CFG. */
6241 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6242 after = bb;
6243 }
6244
6245 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6246 if (orig_block)
6247 {
6248 tree block;
6249 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6250 == NULL_TREE);
6251 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6252 = BLOCK_SUBBLOCKS (orig_block);
6253 for (block = BLOCK_SUBBLOCKS (orig_block);
6254 block; block = BLOCK_CHAIN (block))
6255 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6256 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6257 }
6258
6259 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6260 vars_map, dest_cfun->decl);
6261
6262 if (new_label_map)
6263 htab_delete (new_label_map);
6264 if (eh_map)
6265 pointer_map_destroy (eh_map);
6266 pointer_map_destroy (vars_map);
6267
6268 /* Rewire the entry and exit blocks. The successor to the entry
6269 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6270 the child function. Similarly, the predecessor of DEST_FN's
6271 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6272 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6273 various CFG manipulation function get to the right CFG.
6274
6275 FIXME, this is silly. The CFG ought to become a parameter to
6276 these helpers. */
6277 push_cfun (dest_cfun);
6278 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6279 if (exit_bb)
6280 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6281 pop_cfun ();
6282
6283 /* Back in the original function, the SESE region has disappeared,
6284 create a new basic block in its place. */
6285 bb = create_empty_bb (entry_pred[0]);
6286 if (current_loops)
6287 add_bb_to_loop (bb, loop);
6288 for (i = 0; i < num_entry_edges; i++)
6289 {
6290 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6291 e->probability = entry_prob[i];
6292 }
6293
6294 for (i = 0; i < num_exit_edges; i++)
6295 {
6296 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6297 e->probability = exit_prob[i];
6298 }
6299
6300 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6301 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6302 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6303 VEC_free (basic_block, heap, dom_bbs);
6304
6305 if (exit_bb)
6306 {
6307 free (exit_prob);
6308 free (exit_flag);
6309 free (exit_succ);
6310 }
6311 free (entry_prob);
6312 free (entry_flag);
6313 free (entry_pred);
6314 VEC_free (basic_block, heap, bbs);
6315
6316 return bb;
6317 }
6318
6319
6320 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6321 */
6322
6323 void
6324 dump_function_to_file (tree fn, FILE *file, int flags)
6325 {
6326 tree arg, var;
6327 struct function *dsf;
6328 bool ignore_topmost_bind = false, any_var = false;
6329 basic_block bb;
6330 tree chain;
6331
6332 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6333
6334 arg = DECL_ARGUMENTS (fn);
6335 while (arg)
6336 {
6337 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6338 fprintf (file, " ");
6339 print_generic_expr (file, arg, dump_flags);
6340 if (flags & TDF_VERBOSE)
6341 print_node (file, "", arg, 4);
6342 if (DECL_CHAIN (arg))
6343 fprintf (file, ", ");
6344 arg = DECL_CHAIN (arg);
6345 }
6346 fprintf (file, ")\n");
6347
6348 if (flags & TDF_VERBOSE)
6349 print_node (file, "", fn, 2);
6350
6351 dsf = DECL_STRUCT_FUNCTION (fn);
6352 if (dsf && (flags & TDF_EH))
6353 dump_eh_tree (file, dsf);
6354
6355 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6356 {
6357 dump_node (fn, TDF_SLIM | flags, file);
6358 return;
6359 }
6360
6361 /* Switch CFUN to point to FN. */
6362 push_cfun (DECL_STRUCT_FUNCTION (fn));
6363
6364 /* When GIMPLE is lowered, the variables are no longer available in
6365 BIND_EXPRs, so display them separately. */
6366 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6367 {
6368 unsigned ix;
6369 ignore_topmost_bind = true;
6370
6371 fprintf (file, "{\n");
6372 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6373 {
6374 print_generic_decl (file, var, flags);
6375 if (flags & TDF_VERBOSE)
6376 print_node (file, "", var, 4);
6377 fprintf (file, "\n");
6378
6379 any_var = true;
6380 }
6381 }
6382
6383 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6384 {
6385 /* If the CFG has been built, emit a CFG-based dump. */
6386 check_bb_profile (ENTRY_BLOCK_PTR, file);
6387 if (!ignore_topmost_bind)
6388 fprintf (file, "{\n");
6389
6390 if (any_var && n_basic_blocks)
6391 fprintf (file, "\n");
6392
6393 FOR_EACH_BB (bb)
6394 gimple_dump_bb (bb, file, 2, flags);
6395
6396 fprintf (file, "}\n");
6397 check_bb_profile (EXIT_BLOCK_PTR, file);
6398 }
6399 else if (DECL_SAVED_TREE (fn) == NULL)
6400 {
6401 /* The function is now in GIMPLE form but the CFG has not been
6402 built yet. Emit the single sequence of GIMPLE statements
6403 that make up its body. */
6404 gimple_seq body = gimple_body (fn);
6405
6406 if (gimple_seq_first_stmt (body)
6407 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6408 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6409 print_gimple_seq (file, body, 0, flags);
6410 else
6411 {
6412 if (!ignore_topmost_bind)
6413 fprintf (file, "{\n");
6414
6415 if (any_var)
6416 fprintf (file, "\n");
6417
6418 print_gimple_seq (file, body, 2, flags);
6419 fprintf (file, "}\n");
6420 }
6421 }
6422 else
6423 {
6424 int indent;
6425
6426 /* Make a tree based dump. */
6427 chain = DECL_SAVED_TREE (fn);
6428
6429 if (chain && TREE_CODE (chain) == BIND_EXPR)
6430 {
6431 if (ignore_topmost_bind)
6432 {
6433 chain = BIND_EXPR_BODY (chain);
6434 indent = 2;
6435 }
6436 else
6437 indent = 0;
6438 }
6439 else
6440 {
6441 if (!ignore_topmost_bind)
6442 fprintf (file, "{\n");
6443 indent = 2;
6444 }
6445
6446 if (any_var)
6447 fprintf (file, "\n");
6448
6449 print_generic_stmt_indented (file, chain, flags, indent);
6450 if (ignore_topmost_bind)
6451 fprintf (file, "}\n");
6452 }
6453
6454 if (flags & TDF_ENUMERATE_LOCALS)
6455 dump_enumerated_decls (file, flags);
6456 fprintf (file, "\n\n");
6457
6458 /* Restore CFUN. */
6459 pop_cfun ();
6460 }
6461
6462
6463 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6464
6465 DEBUG_FUNCTION void
6466 debug_function (tree fn, int flags)
6467 {
6468 dump_function_to_file (fn, stderr, flags);
6469 }
6470
6471
6472 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6473
6474 static void
6475 print_pred_bbs (FILE *file, basic_block bb)
6476 {
6477 edge e;
6478 edge_iterator ei;
6479
6480 FOR_EACH_EDGE (e, ei, bb->preds)
6481 fprintf (file, "bb_%d ", e->src->index);
6482 }
6483
6484
6485 /* Print on FILE the indexes for the successors of basic_block BB. */
6486
6487 static void
6488 print_succ_bbs (FILE *file, basic_block bb)
6489 {
6490 edge e;
6491 edge_iterator ei;
6492
6493 FOR_EACH_EDGE (e, ei, bb->succs)
6494 fprintf (file, "bb_%d ", e->dest->index);
6495 }
6496
6497 /* Print to FILE the basic block BB following the VERBOSITY level. */
6498
6499 void
6500 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6501 {
6502 char *s_indent = (char *) alloca ((size_t) indent + 1);
6503 memset ((void *) s_indent, ' ', (size_t) indent);
6504 s_indent[indent] = '\0';
6505
6506 /* Print basic_block's header. */
6507 if (verbosity >= 2)
6508 {
6509 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6510 print_pred_bbs (file, bb);
6511 fprintf (file, "}, succs = {");
6512 print_succ_bbs (file, bb);
6513 fprintf (file, "})\n");
6514 }
6515
6516 /* Print basic_block's body. */
6517 if (verbosity >= 3)
6518 {
6519 fprintf (file, "%s {\n", s_indent);
6520 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6521 fprintf (file, "%s }\n", s_indent);
6522 }
6523 }
6524
6525 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6526
6527 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6528 VERBOSITY level this outputs the contents of the loop, or just its
6529 structure. */
6530
6531 static void
6532 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6533 {
6534 char *s_indent;
6535 basic_block bb;
6536
6537 if (loop == NULL)
6538 return;
6539
6540 s_indent = (char *) alloca ((size_t) indent + 1);
6541 memset ((void *) s_indent, ' ', (size_t) indent);
6542 s_indent[indent] = '\0';
6543
6544 /* Print loop's header. */
6545 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6546 loop->num, loop->header->index, loop->latch->index);
6547 fprintf (file, ", niter = ");
6548 print_generic_expr (file, loop->nb_iterations, 0);
6549
6550 if (loop->any_upper_bound)
6551 {
6552 fprintf (file, ", upper_bound = ");
6553 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6554 }
6555
6556 if (loop->any_estimate)
6557 {
6558 fprintf (file, ", estimate = ");
6559 dump_double_int (file, loop->nb_iterations_estimate, true);
6560 }
6561 fprintf (file, ")\n");
6562
6563 /* Print loop's body. */
6564 if (verbosity >= 1)
6565 {
6566 fprintf (file, "%s{\n", s_indent);
6567 FOR_EACH_BB (bb)
6568 if (bb->loop_father == loop)
6569 print_loops_bb (file, bb, indent, verbosity);
6570
6571 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6572 fprintf (file, "%s}\n", s_indent);
6573 }
6574 }
6575
6576 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6577 spaces. Following VERBOSITY level this outputs the contents of the
6578 loop, or just its structure. */
6579
6580 static void
6581 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6582 {
6583 if (loop == NULL)
6584 return;
6585
6586 print_loop (file, loop, indent, verbosity);
6587 print_loop_and_siblings (file, loop->next, indent, verbosity);
6588 }
6589
6590 /* Follow a CFG edge from the entry point of the program, and on entry
6591 of a loop, pretty print the loop structure on FILE. */
6592
6593 void
6594 print_loops (FILE *file, int verbosity)
6595 {
6596 basic_block bb;
6597
6598 bb = ENTRY_BLOCK_PTR;
6599 if (bb && bb->loop_father)
6600 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6601 }
6602
6603
6604 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6605
6606 DEBUG_FUNCTION void
6607 debug_loops (int verbosity)
6608 {
6609 print_loops (stderr, verbosity);
6610 }
6611
6612 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6613
6614 DEBUG_FUNCTION void
6615 debug_loop (struct loop *loop, int verbosity)
6616 {
6617 print_loop (stderr, loop, 0, verbosity);
6618 }
6619
6620 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6621 level. */
6622
6623 DEBUG_FUNCTION void
6624 debug_loop_num (unsigned num, int verbosity)
6625 {
6626 debug_loop (get_loop (num), verbosity);
6627 }
6628
6629 /* Return true if BB ends with a call, possibly followed by some
6630 instructions that must stay with the call. Return false,
6631 otherwise. */
6632
6633 static bool
6634 gimple_block_ends_with_call_p (basic_block bb)
6635 {
6636 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6637 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6638 }
6639
6640
6641 /* Return true if BB ends with a conditional branch. Return false,
6642 otherwise. */
6643
6644 static bool
6645 gimple_block_ends_with_condjump_p (const_basic_block bb)
6646 {
6647 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6648 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6649 }
6650
6651
6652 /* Return true if we need to add fake edge to exit at statement T.
6653 Helper function for gimple_flow_call_edges_add. */
6654
6655 static bool
6656 need_fake_edge_p (gimple t)
6657 {
6658 tree fndecl = NULL_TREE;
6659 int call_flags = 0;
6660
6661 /* NORETURN and LONGJMP calls already have an edge to exit.
6662 CONST and PURE calls do not need one.
6663 We don't currently check for CONST and PURE here, although
6664 it would be a good idea, because those attributes are
6665 figured out from the RTL in mark_constant_function, and
6666 the counter incrementation code from -fprofile-arcs
6667 leads to different results from -fbranch-probabilities. */
6668 if (is_gimple_call (t))
6669 {
6670 fndecl = gimple_call_fndecl (t);
6671 call_flags = gimple_call_flags (t);
6672 }
6673
6674 if (is_gimple_call (t)
6675 && fndecl
6676 && DECL_BUILT_IN (fndecl)
6677 && (call_flags & ECF_NOTHROW)
6678 && !(call_flags & ECF_RETURNS_TWICE)
6679 /* fork() doesn't really return twice, but the effect of
6680 wrapping it in __gcov_fork() which calls __gcov_flush()
6681 and clears the counters before forking has the same
6682 effect as returning twice. Force a fake edge. */
6683 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6684 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6685 return false;
6686
6687 if (is_gimple_call (t)
6688 && !(call_flags & ECF_NORETURN))
6689 return true;
6690
6691 if (gimple_code (t) == GIMPLE_ASM
6692 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6693 return true;
6694
6695 return false;
6696 }
6697
6698
6699 /* Add fake edges to the function exit for any non constant and non
6700 noreturn calls, volatile inline assembly in the bitmap of blocks
6701 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6702 the number of blocks that were split.
6703
6704 The goal is to expose cases in which entering a basic block does
6705 not imply that all subsequent instructions must be executed. */
6706
6707 static int
6708 gimple_flow_call_edges_add (sbitmap blocks)
6709 {
6710 int i;
6711 int blocks_split = 0;
6712 int last_bb = last_basic_block;
6713 bool check_last_block = false;
6714
6715 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6716 return 0;
6717
6718 if (! blocks)
6719 check_last_block = true;
6720 else
6721 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6722
6723 /* In the last basic block, before epilogue generation, there will be
6724 a fallthru edge to EXIT. Special care is required if the last insn
6725 of the last basic block is a call because make_edge folds duplicate
6726 edges, which would result in the fallthru edge also being marked
6727 fake, which would result in the fallthru edge being removed by
6728 remove_fake_edges, which would result in an invalid CFG.
6729
6730 Moreover, we can't elide the outgoing fake edge, since the block
6731 profiler needs to take this into account in order to solve the minimal
6732 spanning tree in the case that the call doesn't return.
6733
6734 Handle this by adding a dummy instruction in a new last basic block. */
6735 if (check_last_block)
6736 {
6737 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6738 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6739 gimple t = NULL;
6740
6741 if (!gsi_end_p (gsi))
6742 t = gsi_stmt (gsi);
6743
6744 if (t && need_fake_edge_p (t))
6745 {
6746 edge e;
6747
6748 e = find_edge (bb, EXIT_BLOCK_PTR);
6749 if (e)
6750 {
6751 gsi_insert_on_edge (e, gimple_build_nop ());
6752 gsi_commit_edge_inserts ();
6753 }
6754 }
6755 }
6756
6757 /* Now add fake edges to the function exit for any non constant
6758 calls since there is no way that we can determine if they will
6759 return or not... */
6760 for (i = 0; i < last_bb; i++)
6761 {
6762 basic_block bb = BASIC_BLOCK (i);
6763 gimple_stmt_iterator gsi;
6764 gimple stmt, last_stmt;
6765
6766 if (!bb)
6767 continue;
6768
6769 if (blocks && !TEST_BIT (blocks, i))
6770 continue;
6771
6772 gsi = gsi_last_nondebug_bb (bb);
6773 if (!gsi_end_p (gsi))
6774 {
6775 last_stmt = gsi_stmt (gsi);
6776 do
6777 {
6778 stmt = gsi_stmt (gsi);
6779 if (need_fake_edge_p (stmt))
6780 {
6781 edge e;
6782
6783 /* The handling above of the final block before the
6784 epilogue should be enough to verify that there is
6785 no edge to the exit block in CFG already.
6786 Calling make_edge in such case would cause us to
6787 mark that edge as fake and remove it later. */
6788 #ifdef ENABLE_CHECKING
6789 if (stmt == last_stmt)
6790 {
6791 e = find_edge (bb, EXIT_BLOCK_PTR);
6792 gcc_assert (e == NULL);
6793 }
6794 #endif
6795
6796 /* Note that the following may create a new basic block
6797 and renumber the existing basic blocks. */
6798 if (stmt != last_stmt)
6799 {
6800 e = split_block (bb, stmt);
6801 if (e)
6802 blocks_split++;
6803 }
6804 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6805 }
6806 gsi_prev (&gsi);
6807 }
6808 while (!gsi_end_p (gsi));
6809 }
6810 }
6811
6812 if (blocks_split)
6813 verify_flow_info ();
6814
6815 return blocks_split;
6816 }
6817
6818 /* Removes edge E and all the blocks dominated by it, and updates dominance
6819 information. The IL in E->src needs to be updated separately.
6820 If dominance info is not available, only the edge E is removed.*/
6821
6822 void
6823 remove_edge_and_dominated_blocks (edge e)
6824 {
6825 VEC (basic_block, heap) *bbs_to_remove = NULL;
6826 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6827 bitmap df, df_idom;
6828 edge f;
6829 edge_iterator ei;
6830 bool none_removed = false;
6831 unsigned i;
6832 basic_block bb, dbb;
6833 bitmap_iterator bi;
6834
6835 if (!dom_info_available_p (CDI_DOMINATORS))
6836 {
6837 remove_edge (e);
6838 return;
6839 }
6840
6841 /* No updating is needed for edges to exit. */
6842 if (e->dest == EXIT_BLOCK_PTR)
6843 {
6844 if (cfgcleanup_altered_bbs)
6845 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6846 remove_edge (e);
6847 return;
6848 }
6849
6850 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6851 that is not dominated by E->dest, then this set is empty. Otherwise,
6852 all the basic blocks dominated by E->dest are removed.
6853
6854 Also, to DF_IDOM we store the immediate dominators of the blocks in
6855 the dominance frontier of E (i.e., of the successors of the
6856 removed blocks, if there are any, and of E->dest otherwise). */
6857 FOR_EACH_EDGE (f, ei, e->dest->preds)
6858 {
6859 if (f == e)
6860 continue;
6861
6862 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6863 {
6864 none_removed = true;
6865 break;
6866 }
6867 }
6868
6869 df = BITMAP_ALLOC (NULL);
6870 df_idom = BITMAP_ALLOC (NULL);
6871
6872 if (none_removed)
6873 bitmap_set_bit (df_idom,
6874 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6875 else
6876 {
6877 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6878 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6879 {
6880 FOR_EACH_EDGE (f, ei, bb->succs)
6881 {
6882 if (f->dest != EXIT_BLOCK_PTR)
6883 bitmap_set_bit (df, f->dest->index);
6884 }
6885 }
6886 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6887 bitmap_clear_bit (df, bb->index);
6888
6889 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6890 {
6891 bb = BASIC_BLOCK (i);
6892 bitmap_set_bit (df_idom,
6893 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6894 }
6895 }
6896
6897 if (cfgcleanup_altered_bbs)
6898 {
6899 /* Record the set of the altered basic blocks. */
6900 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6901 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6902 }
6903
6904 /* Remove E and the cancelled blocks. */
6905 if (none_removed)
6906 remove_edge (e);
6907 else
6908 {
6909 /* Walk backwards so as to get a chance to substitute all
6910 released DEFs into debug stmts. See
6911 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6912 details. */
6913 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6914 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6915 }
6916
6917 /* Update the dominance information. The immediate dominator may change only
6918 for blocks whose immediate dominator belongs to DF_IDOM:
6919
6920 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6921 removal. Let Z the arbitrary block such that idom(Z) = Y and
6922 Z dominates X after the removal. Before removal, there exists a path P
6923 from Y to X that avoids Z. Let F be the last edge on P that is
6924 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6925 dominates W, and because of P, Z does not dominate W), and W belongs to
6926 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6927 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6928 {
6929 bb = BASIC_BLOCK (i);
6930 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6931 dbb;
6932 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6933 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6934 }
6935
6936 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6937
6938 BITMAP_FREE (df);
6939 BITMAP_FREE (df_idom);
6940 VEC_free (basic_block, heap, bbs_to_remove);
6941 VEC_free (basic_block, heap, bbs_to_fix_dom);
6942 }
6943
6944 /* Purge dead EH edges from basic block BB. */
6945
6946 bool
6947 gimple_purge_dead_eh_edges (basic_block bb)
6948 {
6949 bool changed = false;
6950 edge e;
6951 edge_iterator ei;
6952 gimple stmt = last_stmt (bb);
6953
6954 if (stmt && stmt_can_throw_internal (stmt))
6955 return false;
6956
6957 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6958 {
6959 if (e->flags & EDGE_EH)
6960 {
6961 remove_edge_and_dominated_blocks (e);
6962 changed = true;
6963 }
6964 else
6965 ei_next (&ei);
6966 }
6967
6968 return changed;
6969 }
6970
6971 /* Purge dead EH edges from basic block listed in BLOCKS. */
6972
6973 bool
6974 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6975 {
6976 bool changed = false;
6977 unsigned i;
6978 bitmap_iterator bi;
6979
6980 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6981 {
6982 basic_block bb = BASIC_BLOCK (i);
6983
6984 /* Earlier gimple_purge_dead_eh_edges could have removed
6985 this basic block already. */
6986 gcc_assert (bb || changed);
6987 if (bb != NULL)
6988 changed |= gimple_purge_dead_eh_edges (bb);
6989 }
6990
6991 return changed;
6992 }
6993
6994 /* Purge dead abnormal call edges from basic block BB. */
6995
6996 bool
6997 gimple_purge_dead_abnormal_call_edges (basic_block bb)
6998 {
6999 bool changed = false;
7000 edge e;
7001 edge_iterator ei;
7002 gimple stmt = last_stmt (bb);
7003
7004 if (!cfun->has_nonlocal_label)
7005 return false;
7006
7007 if (stmt && stmt_can_make_abnormal_goto (stmt))
7008 return false;
7009
7010 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7011 {
7012 if (e->flags & EDGE_ABNORMAL)
7013 {
7014 remove_edge_and_dominated_blocks (e);
7015 changed = true;
7016 }
7017 else
7018 ei_next (&ei);
7019 }
7020
7021 return changed;
7022 }
7023
7024 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7025
7026 bool
7027 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7028 {
7029 bool changed = false;
7030 unsigned i;
7031 bitmap_iterator bi;
7032
7033 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7034 {
7035 basic_block bb = BASIC_BLOCK (i);
7036
7037 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7038 this basic block already. */
7039 gcc_assert (bb || changed);
7040 if (bb != NULL)
7041 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7042 }
7043
7044 return changed;
7045 }
7046
7047 /* This function is called whenever a new edge is created or
7048 redirected. */
7049
7050 static void
7051 gimple_execute_on_growing_pred (edge e)
7052 {
7053 basic_block bb = e->dest;
7054
7055 if (!gimple_seq_empty_p (phi_nodes (bb)))
7056 reserve_phi_args_for_new_edge (bb);
7057 }
7058
7059 /* This function is called immediately before edge E is removed from
7060 the edge vector E->dest->preds. */
7061
7062 static void
7063 gimple_execute_on_shrinking_pred (edge e)
7064 {
7065 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7066 remove_phi_args (e);
7067 }
7068
7069 /*---------------------------------------------------------------------------
7070 Helper functions for Loop versioning
7071 ---------------------------------------------------------------------------*/
7072
7073 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7074 of 'first'. Both of them are dominated by 'new_head' basic block. When
7075 'new_head' was created by 'second's incoming edge it received phi arguments
7076 on the edge by split_edge(). Later, additional edge 'e' was created to
7077 connect 'new_head' and 'first'. Now this routine adds phi args on this
7078 additional edge 'e' that new_head to second edge received as part of edge
7079 splitting. */
7080
7081 static void
7082 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7083 basic_block new_head, edge e)
7084 {
7085 gimple phi1, phi2;
7086 gimple_stmt_iterator psi1, psi2;
7087 tree def;
7088 edge e2 = find_edge (new_head, second);
7089
7090 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7091 edge, we should always have an edge from NEW_HEAD to SECOND. */
7092 gcc_assert (e2 != NULL);
7093
7094 /* Browse all 'second' basic block phi nodes and add phi args to
7095 edge 'e' for 'first' head. PHI args are always in correct order. */
7096
7097 for (psi2 = gsi_start_phis (second),
7098 psi1 = gsi_start_phis (first);
7099 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7100 gsi_next (&psi2), gsi_next (&psi1))
7101 {
7102 phi1 = gsi_stmt (psi1);
7103 phi2 = gsi_stmt (psi2);
7104 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7105 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7106 }
7107 }
7108
7109
7110 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7111 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7112 the destination of the ELSE part. */
7113
7114 static void
7115 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7116 basic_block second_head ATTRIBUTE_UNUSED,
7117 basic_block cond_bb, void *cond_e)
7118 {
7119 gimple_stmt_iterator gsi;
7120 gimple new_cond_expr;
7121 tree cond_expr = (tree) cond_e;
7122 edge e0;
7123
7124 /* Build new conditional expr */
7125 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7126 NULL_TREE, NULL_TREE);
7127
7128 /* Add new cond in cond_bb. */
7129 gsi = gsi_last_bb (cond_bb);
7130 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7131
7132 /* Adjust edges appropriately to connect new head with first head
7133 as well as second head. */
7134 e0 = single_succ_edge (cond_bb);
7135 e0->flags &= ~EDGE_FALLTHRU;
7136 e0->flags |= EDGE_FALSE_VALUE;
7137 }
7138
7139 struct cfg_hooks gimple_cfg_hooks = {
7140 "gimple",
7141 gimple_verify_flow_info,
7142 gimple_dump_bb, /* dump_bb */
7143 create_bb, /* create_basic_block */
7144 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7145 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7146 gimple_can_remove_branch_p, /* can_remove_branch_p */
7147 remove_bb, /* delete_basic_block */
7148 gimple_split_block, /* split_block */
7149 gimple_move_block_after, /* move_block_after */
7150 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7151 gimple_merge_blocks, /* merge_blocks */
7152 gimple_predict_edge, /* predict_edge */
7153 gimple_predicted_by_p, /* predicted_by_p */
7154 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7155 gimple_duplicate_bb, /* duplicate_block */
7156 gimple_split_edge, /* split_edge */
7157 gimple_make_forwarder_block, /* make_forward_block */
7158 NULL, /* tidy_fallthru_edge */
7159 NULL, /* force_nonfallthru */
7160 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7161 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7162 gimple_flow_call_edges_add, /* flow_call_edges_add */
7163 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7164 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7165 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7166 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7167 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7168 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7169 flush_pending_stmts /* flush_pending_stmts */
7170 };
7171
7172
7173 /* Split all critical edges. */
7174
7175 static unsigned int
7176 split_critical_edges (void)
7177 {
7178 basic_block bb;
7179 edge e;
7180 edge_iterator ei;
7181
7182 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7183 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7184 mappings around the calls to split_edge. */
7185 start_recording_case_labels ();
7186 FOR_ALL_BB (bb)
7187 {
7188 FOR_EACH_EDGE (e, ei, bb->succs)
7189 {
7190 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7191 split_edge (e);
7192 /* PRE inserts statements to edges and expects that
7193 since split_critical_edges was done beforehand, committing edge
7194 insertions will not split more edges. In addition to critical
7195 edges we must split edges that have multiple successors and
7196 end by control flow statements, such as RESX.
7197 Go ahead and split them too. This matches the logic in
7198 gimple_find_edge_insert_loc. */
7199 else if ((!single_pred_p (e->dest)
7200 || !gimple_seq_empty_p (phi_nodes (e->dest))
7201 || e->dest == EXIT_BLOCK_PTR)
7202 && e->src != ENTRY_BLOCK_PTR
7203 && !(e->flags & EDGE_ABNORMAL))
7204 {
7205 gimple_stmt_iterator gsi;
7206
7207 gsi = gsi_last_bb (e->src);
7208 if (!gsi_end_p (gsi)
7209 && stmt_ends_bb_p (gsi_stmt (gsi))
7210 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7211 && !gimple_call_builtin_p (gsi_stmt (gsi),
7212 BUILT_IN_RETURN)))
7213 split_edge (e);
7214 }
7215 }
7216 }
7217 end_recording_case_labels ();
7218 return 0;
7219 }
7220
7221 struct gimple_opt_pass pass_split_crit_edges =
7222 {
7223 {
7224 GIMPLE_PASS,
7225 "crited", /* name */
7226 NULL, /* gate */
7227 split_critical_edges, /* execute */
7228 NULL, /* sub */
7229 NULL, /* next */
7230 0, /* static_pass_number */
7231 TV_TREE_SPLIT_EDGES, /* tv_id */
7232 PROP_cfg, /* properties required */
7233 PROP_no_crit_edges, /* properties_provided */
7234 0, /* properties_destroyed */
7235 0, /* todo_flags_start */
7236 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7237 }
7238 };
7239
7240
7241 /* Build a ternary operation and gimplify it. Emit code before GSI.
7242 Return the gimple_val holding the result. */
7243
7244 tree
7245 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7246 tree type, tree a, tree b, tree c)
7247 {
7248 tree ret;
7249 location_t loc = gimple_location (gsi_stmt (*gsi));
7250
7251 ret = fold_build3_loc (loc, code, type, a, b, c);
7252 STRIP_NOPS (ret);
7253
7254 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7255 GSI_SAME_STMT);
7256 }
7257
7258 /* Build a binary operation and gimplify it. Emit code before GSI.
7259 Return the gimple_val holding the result. */
7260
7261 tree
7262 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7263 tree type, tree a, tree b)
7264 {
7265 tree ret;
7266
7267 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7268 STRIP_NOPS (ret);
7269
7270 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7271 GSI_SAME_STMT);
7272 }
7273
7274 /* Build a unary operation and gimplify it. Emit code before GSI.
7275 Return the gimple_val holding the result. */
7276
7277 tree
7278 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7279 tree a)
7280 {
7281 tree ret;
7282
7283 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7284 STRIP_NOPS (ret);
7285
7286 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7287 GSI_SAME_STMT);
7288 }
7289
7290
7291 \f
7292 /* Emit return warnings. */
7293
7294 static unsigned int
7295 execute_warn_function_return (void)
7296 {
7297 source_location location;
7298 gimple last;
7299 edge e;
7300 edge_iterator ei;
7301
7302 /* If we have a path to EXIT, then we do return. */
7303 if (TREE_THIS_VOLATILE (cfun->decl)
7304 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7305 {
7306 location = UNKNOWN_LOCATION;
7307 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7308 {
7309 last = last_stmt (e->src);
7310 if ((gimple_code (last) == GIMPLE_RETURN
7311 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7312 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7313 break;
7314 }
7315 if (location == UNKNOWN_LOCATION)
7316 location = cfun->function_end_locus;
7317 warning_at (location, 0, "%<noreturn%> function does return");
7318 }
7319
7320 /* If we see "return;" in some basic block, then we do reach the end
7321 without returning a value. */
7322 else if (warn_return_type
7323 && !TREE_NO_WARNING (cfun->decl)
7324 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7325 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7326 {
7327 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7328 {
7329 gimple last = last_stmt (e->src);
7330 if (gimple_code (last) == GIMPLE_RETURN
7331 && gimple_return_retval (last) == NULL
7332 && !gimple_no_warning_p (last))
7333 {
7334 location = gimple_location (last);
7335 if (location == UNKNOWN_LOCATION)
7336 location = cfun->function_end_locus;
7337 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7338 TREE_NO_WARNING (cfun->decl) = 1;
7339 break;
7340 }
7341 }
7342 }
7343 return 0;
7344 }
7345
7346
7347 /* Given a basic block B which ends with a conditional and has
7348 precisely two successors, determine which of the edges is taken if
7349 the conditional is true and which is taken if the conditional is
7350 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7351
7352 void
7353 extract_true_false_edges_from_block (basic_block b,
7354 edge *true_edge,
7355 edge *false_edge)
7356 {
7357 edge e = EDGE_SUCC (b, 0);
7358
7359 if (e->flags & EDGE_TRUE_VALUE)
7360 {
7361 *true_edge = e;
7362 *false_edge = EDGE_SUCC (b, 1);
7363 }
7364 else
7365 {
7366 *false_edge = e;
7367 *true_edge = EDGE_SUCC (b, 1);
7368 }
7369 }
7370
7371 struct gimple_opt_pass pass_warn_function_return =
7372 {
7373 {
7374 GIMPLE_PASS,
7375 "*warn_function_return", /* name */
7376 NULL, /* gate */
7377 execute_warn_function_return, /* execute */
7378 NULL, /* sub */
7379 NULL, /* next */
7380 0, /* static_pass_number */
7381 TV_NONE, /* tv_id */
7382 PROP_cfg, /* properties_required */
7383 0, /* properties_provided */
7384 0, /* properties_destroyed */
7385 0, /* todo_flags_start */
7386 0 /* todo_flags_finish */
7387 }
7388 };
7389
7390 /* Emit noreturn warnings. */
7391
7392 static unsigned int
7393 execute_warn_function_noreturn (void)
7394 {
7395 if (!TREE_THIS_VOLATILE (current_function_decl)
7396 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7397 warn_function_noreturn (current_function_decl);
7398 return 0;
7399 }
7400
7401 static bool
7402 gate_warn_function_noreturn (void)
7403 {
7404 return warn_suggest_attribute_noreturn;
7405 }
7406
7407 struct gimple_opt_pass pass_warn_function_noreturn =
7408 {
7409 {
7410 GIMPLE_PASS,
7411 "*warn_function_noreturn", /* name */
7412 gate_warn_function_noreturn, /* gate */
7413 execute_warn_function_noreturn, /* execute */
7414 NULL, /* sub */
7415 NULL, /* next */
7416 0, /* static_pass_number */
7417 TV_NONE, /* tv_id */
7418 PROP_cfg, /* properties_required */
7419 0, /* properties_provided */
7420 0, /* properties_destroyed */
7421 0, /* todo_flags_start */
7422 0 /* todo_flags_finish */
7423 }
7424 };
7425
7426
7427 /* Walk a gimplified function and warn for functions whose return value is
7428 ignored and attribute((warn_unused_result)) is set. This is done before
7429 inlining, so we don't have to worry about that. */
7430
7431 static void
7432 do_warn_unused_result (gimple_seq seq)
7433 {
7434 tree fdecl, ftype;
7435 gimple_stmt_iterator i;
7436
7437 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7438 {
7439 gimple g = gsi_stmt (i);
7440
7441 switch (gimple_code (g))
7442 {
7443 case GIMPLE_BIND:
7444 do_warn_unused_result (gimple_bind_body (g));
7445 break;
7446 case GIMPLE_TRY:
7447 do_warn_unused_result (gimple_try_eval (g));
7448 do_warn_unused_result (gimple_try_cleanup (g));
7449 break;
7450 case GIMPLE_CATCH:
7451 do_warn_unused_result (gimple_catch_handler (g));
7452 break;
7453 case GIMPLE_EH_FILTER:
7454 do_warn_unused_result (gimple_eh_filter_failure (g));
7455 break;
7456
7457 case GIMPLE_CALL:
7458 if (gimple_call_lhs (g))
7459 break;
7460 if (gimple_call_internal_p (g))
7461 break;
7462
7463 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7464 LHS. All calls whose value is ignored should be
7465 represented like this. Look for the attribute. */
7466 fdecl = gimple_call_fndecl (g);
7467 ftype = gimple_call_fntype (g);
7468
7469 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7470 {
7471 location_t loc = gimple_location (g);
7472
7473 if (fdecl)
7474 warning_at (loc, OPT_Wunused_result,
7475 "ignoring return value of %qD, "
7476 "declared with attribute warn_unused_result",
7477 fdecl);
7478 else
7479 warning_at (loc, OPT_Wunused_result,
7480 "ignoring return value of function "
7481 "declared with attribute warn_unused_result");
7482 }
7483 break;
7484
7485 default:
7486 /* Not a container, not a call, or a call whose value is used. */
7487 break;
7488 }
7489 }
7490 }
7491
7492 static unsigned int
7493 run_warn_unused_result (void)
7494 {
7495 do_warn_unused_result (gimple_body (current_function_decl));
7496 return 0;
7497 }
7498
7499 static bool
7500 gate_warn_unused_result (void)
7501 {
7502 return flag_warn_unused_result;
7503 }
7504
7505 struct gimple_opt_pass pass_warn_unused_result =
7506 {
7507 {
7508 GIMPLE_PASS,
7509 "*warn_unused_result", /* name */
7510 gate_warn_unused_result, /* gate */
7511 run_warn_unused_result, /* execute */
7512 NULL, /* sub */
7513 NULL, /* next */
7514 0, /* static_pass_number */
7515 TV_NONE, /* tv_id */
7516 PROP_gimple_any, /* properties_required */
7517 0, /* properties_provided */
7518 0, /* properties_destroyed */
7519 0, /* todo_flags_start */
7520 0, /* todo_flags_finish */
7521 }
7522 };
7523