Delete VEC_EXTRACT_EVEN/ODD_EXPR.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120 static bool verify_gimple_transaction (gimple);
121
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
131
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
134 {
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
145
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
152
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
162 }
163
164 void
165 init_empty_tree_cfg (void)
166 {
167 init_empty_tree_cfg_for_function (cfun);
168 }
169
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
173
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
176
177 static void
178 build_gimple_cfg (gimple_seq seq)
179 {
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
182
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184
185 init_empty_tree_cfg ();
186
187 found_computed_goto = 0;
188 make_blocks (seq);
189
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
197
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
201
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
208
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
213
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
220
221 /* Debugging dumps. */
222
223 /* Write the flowgraph to a VCG file. */
224 {
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
228 {
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
231 }
232 }
233 }
234
235 static unsigned int
236 execute_build_cfg (void)
237 {
238 gimple_seq body = gimple_body (current_function_decl);
239
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
243 {
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
246 }
247 return 0;
248 }
249
250 struct gimple_opt_pass pass_build_cfg =
251 {
252 {
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 case GIMPLE_TRANSACTION:
671 {
672 tree abort_label = gimple_transaction_label (last);
673 if (abort_label)
674 make_edge (bb, label_to_block (abort_label), 0);
675 fallthru = true;
676 }
677 break;
678
679 default:
680 gcc_assert (!stmt_ends_bb_p (last));
681 fallthru = true;
682 }
683 }
684 else
685 fallthru = true;
686
687 if (fallthru)
688 {
689 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
690 if (last)
691 assign_discriminator (gimple_location (last), bb->next_bb);
692 }
693 }
694
695 if (root_omp_region)
696 free_omp_regions ();
697
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
700 }
701
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
704
705 static unsigned int
706 locus_map_hash (const void *item)
707 {
708 return ((const struct locus_discrim_map *) item)->locus;
709 }
710
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
713
714 static int
715 locus_map_eq (const void *va, const void *vb)
716 {
717 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
718 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
719 return a->locus == b->locus;
720 }
721
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
725 profiling. */
726
727 static int
728 next_discriminator_for_locus (location_t locus)
729 {
730 struct locus_discrim_map item;
731 struct locus_discrim_map **slot;
732
733 item.locus = locus;
734 item.discriminator = 0;
735 slot = (struct locus_discrim_map **)
736 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
737 (hashval_t) locus, INSERT);
738 gcc_assert (slot);
739 if (*slot == HTAB_EMPTY_ENTRY)
740 {
741 *slot = XNEW (struct locus_discrim_map);
742 gcc_assert (*slot);
743 (*slot)->locus = locus;
744 (*slot)->discriminator = 0;
745 }
746 (*slot)->discriminator++;
747 return (*slot)->discriminator;
748 }
749
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
751
752 static bool
753 same_line_p (location_t locus1, location_t locus2)
754 {
755 expanded_location from, to;
756
757 if (locus1 == locus2)
758 return true;
759
760 from = expand_location (locus1);
761 to = expand_location (locus2);
762
763 if (from.line != to.line)
764 return false;
765 if (from.file == to.file)
766 return true;
767 return (from.file != NULL
768 && to.file != NULL
769 && filename_cmp (from.file, to.file) == 0);
770 }
771
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
774
775 static void
776 assign_discriminator (location_t locus, basic_block bb)
777 {
778 gimple first_in_to_bb, last_in_to_bb;
779
780 if (locus == 0 || bb->discriminator != 0)
781 return;
782
783 first_in_to_bb = first_non_label_stmt (bb);
784 last_in_to_bb = last_stmt (bb);
785 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
786 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
787 bb->discriminator = next_discriminator_for_locus (locus);
788 }
789
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
791
792 static void
793 make_cond_expr_edges (basic_block bb)
794 {
795 gimple entry = last_stmt (bb);
796 gimple then_stmt, else_stmt;
797 basic_block then_bb, else_bb;
798 tree then_label, else_label;
799 edge e;
800 location_t entry_locus;
801
802 gcc_assert (entry);
803 gcc_assert (gimple_code (entry) == GIMPLE_COND);
804
805 entry_locus = gimple_location (entry);
806
807 /* Entry basic blocks for each component. */
808 then_label = gimple_cond_true_label (entry);
809 else_label = gimple_cond_false_label (entry);
810 then_bb = label_to_block (then_label);
811 else_bb = label_to_block (else_label);
812 then_stmt = first_stmt (then_bb);
813 else_stmt = first_stmt (else_bb);
814
815 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
816 assign_discriminator (entry_locus, then_bb);
817 e->goto_locus = gimple_location (then_stmt);
818 if (e->goto_locus)
819 e->goto_block = gimple_block (then_stmt);
820 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
821 if (e)
822 {
823 assign_discriminator (entry_locus, else_bb);
824 e->goto_locus = gimple_location (else_stmt);
825 if (e->goto_locus)
826 e->goto_block = gimple_block (else_stmt);
827 }
828
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry, NULL_TREE);
831 gimple_cond_set_false_label (entry, NULL_TREE);
832 }
833
834
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
837
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
840 element. */
841
842 static bool
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
844 void *data ATTRIBUTE_UNUSED)
845 {
846 tree t, next;
847
848 for (t = (tree) *value; t; t = next)
849 {
850 next = CASE_CHAIN (t);
851 CASE_CHAIN (t) = NULL;
852 }
853
854 *value = NULL;
855 return true;
856 }
857
858 /* Start recording information mapping edges to case labels. */
859
860 void
861 start_recording_case_labels (void)
862 {
863 gcc_assert (edge_to_cases == NULL);
864 edge_to_cases = pointer_map_create ();
865 touched_switch_bbs = BITMAP_ALLOC (NULL);
866 }
867
868 /* Return nonzero if we are recording information for case labels. */
869
870 static bool
871 recording_case_labels_p (void)
872 {
873 return (edge_to_cases != NULL);
874 }
875
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
878 void
879 end_recording_case_labels (void)
880 {
881 bitmap_iterator bi;
882 unsigned i;
883 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
884 pointer_map_destroy (edge_to_cases);
885 edge_to_cases = NULL;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
887 {
888 basic_block bb = BASIC_BLOCK (i);
889 if (bb)
890 {
891 gimple stmt = last_stmt (bb);
892 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
893 group_case_labels_stmt (stmt);
894 }
895 }
896 BITMAP_FREE (touched_switch_bbs);
897 }
898
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
901
902 Otherwise return NULL. */
903
904 static tree
905 get_cases_for_edge (edge e, gimple t)
906 {
907 void **slot;
908 size_t i, n;
909
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
913 return NULL;
914
915 slot = pointer_map_contains (edge_to_cases, e);
916 if (slot)
917 return (tree) *slot;
918
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
922
923 n = gimple_switch_num_labels (t);
924 for (i = 0; i < n; i++)
925 {
926 tree elt = gimple_switch_label (t, i);
927 tree lab = CASE_LABEL (elt);
928 basic_block label_bb = label_to_block (lab);
929 edge this_edge = find_edge (e->src, label_bb);
930
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
932 a new chain. */
933 slot = pointer_map_insert (edge_to_cases, this_edge);
934 CASE_CHAIN (elt) = (tree) *slot;
935 *slot = elt;
936 }
937
938 return (tree) *pointer_map_contains (edge_to_cases, e);
939 }
940
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
942
943 static void
944 make_gimple_switch_edges (basic_block bb)
945 {
946 gimple entry = last_stmt (bb);
947 location_t entry_locus;
948 size_t i, n;
949
950 entry_locus = gimple_location (entry);
951
952 n = gimple_switch_num_labels (entry);
953
954 for (i = 0; i < n; ++i)
955 {
956 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
957 basic_block label_bb = label_to_block (lab);
958 make_edge (bb, label_bb, 0);
959 assign_discriminator (entry_locus, label_bb);
960 }
961 }
962
963
964 /* Return the basic block holding label DEST. */
965
966 basic_block
967 label_to_block_fn (struct function *ifun, tree dest)
968 {
969 int uid = LABEL_DECL_UID (dest);
970
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid < 0)
975 {
976 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
977 gimple stmt;
978
979 stmt = gimple_build_label (dest);
980 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
981 uid = LABEL_DECL_UID (dest);
982 }
983 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
984 <= (unsigned int) uid)
985 return NULL;
986 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
987 }
988
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
991
992 void
993 make_abnormal_goto_edges (basic_block bb, bool for_call)
994 {
995 basic_block target_bb;
996 gimple_stmt_iterator gsi;
997
998 FOR_EACH_BB (target_bb)
999 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1000 {
1001 gimple label_stmt = gsi_stmt (gsi);
1002 tree target;
1003
1004 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1005 break;
1006
1007 target = gimple_label_label (label_stmt);
1008
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target) && !for_call)
1012 || (DECL_NONLOCAL (target) && for_call))
1013 {
1014 make_edge (bb, target_bb, EDGE_ABNORMAL);
1015 break;
1016 }
1017 }
1018 }
1019
1020 /* Create edges for a goto statement at block BB. */
1021
1022 static void
1023 make_goto_expr_edges (basic_block bb)
1024 {
1025 gimple_stmt_iterator last = gsi_last_bb (bb);
1026 gimple goto_t = gsi_stmt (last);
1027
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t))
1030 {
1031 tree dest = gimple_goto_dest (goto_t);
1032 basic_block label_bb = label_to_block (dest);
1033 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1034 e->goto_locus = gimple_location (goto_t);
1035 assign_discriminator (e->goto_locus, label_bb);
1036 if (e->goto_locus)
1037 e->goto_block = gimple_block (goto_t);
1038 gsi_remove (&last, true);
1039 return;
1040 }
1041
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb, false);
1044 }
1045
1046 /* Create edges for an asm statement with labels at block BB. */
1047
1048 static void
1049 make_gimple_asm_edges (basic_block bb)
1050 {
1051 gimple stmt = last_stmt (bb);
1052 location_t stmt_loc = gimple_location (stmt);
1053 int i, n = gimple_asm_nlabels (stmt);
1054
1055 for (i = 0; i < n; ++i)
1056 {
1057 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1058 basic_block label_bb = label_to_block (label);
1059 make_edge (bb, label_bb, 0);
1060 assign_discriminator (stmt_loc, label_bb);
1061 }
1062 }
1063
1064 /*---------------------------------------------------------------------------
1065 Flowgraph analysis
1066 ---------------------------------------------------------------------------*/
1067
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1075
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1078 {
1079 /* The label. */
1080 tree label;
1081
1082 /* True if the label is referenced from somewhere. */
1083 bool used;
1084 } *label_for_bb;
1085
1086 /* Given LABEL return the first label in the same basic block. */
1087
1088 static tree
1089 main_block_label (tree label)
1090 {
1091 basic_block bb = label_to_block (label);
1092 tree main_label = label_for_bb[bb->index].label;
1093
1094 /* label_to_block possibly inserted undefined label into the chain. */
1095 if (!main_label)
1096 {
1097 label_for_bb[bb->index].label = label;
1098 main_label = label;
1099 }
1100
1101 label_for_bb[bb->index].used = true;
1102 return main_label;
1103 }
1104
1105 /* Clean up redundant labels within the exception tree. */
1106
1107 static void
1108 cleanup_dead_labels_eh (void)
1109 {
1110 eh_landing_pad lp;
1111 eh_region r;
1112 tree lab;
1113 int i;
1114
1115 if (cfun->eh == NULL)
1116 return;
1117
1118 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1119 if (lp && lp->post_landing_pad)
1120 {
1121 lab = main_block_label (lp->post_landing_pad);
1122 if (lab != lp->post_landing_pad)
1123 {
1124 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1125 EH_LANDING_PAD_NR (lab) = lp->index;
1126 }
1127 }
1128
1129 FOR_ALL_EH_REGION (r)
1130 switch (r->type)
1131 {
1132 case ERT_CLEANUP:
1133 case ERT_MUST_NOT_THROW:
1134 break;
1135
1136 case ERT_TRY:
1137 {
1138 eh_catch c;
1139 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1140 {
1141 lab = c->label;
1142 if (lab)
1143 c->label = main_block_label (lab);
1144 }
1145 }
1146 break;
1147
1148 case ERT_ALLOWED_EXCEPTIONS:
1149 lab = r->u.allowed.label;
1150 if (lab)
1151 r->u.allowed.label = main_block_label (lab);
1152 break;
1153 }
1154 }
1155
1156
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1161
1162 void
1163 cleanup_dead_labels (void)
1164 {
1165 basic_block bb;
1166 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1167
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1170 FOR_EACH_BB (bb)
1171 {
1172 gimple_stmt_iterator i;
1173
1174 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1175 {
1176 tree label;
1177 gimple stmt = gsi_stmt (i);
1178
1179 if (gimple_code (stmt) != GIMPLE_LABEL)
1180 break;
1181
1182 label = gimple_label_label (stmt);
1183
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb[bb->index].label)
1187 {
1188 label_for_bb[bb->index].label = label;
1189 continue;
1190 }
1191
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label)
1196 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1197 {
1198 label_for_bb[bb->index].label = label;
1199 break;
1200 }
1201 }
1202 }
1203
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1206 FOR_EACH_BB (bb)
1207 {
1208 gimple stmt = last_stmt (bb);
1209 tree label, new_label;
1210
1211 if (!stmt)
1212 continue;
1213
1214 switch (gimple_code (stmt))
1215 {
1216 case GIMPLE_COND:
1217 label = gimple_cond_true_label (stmt);
1218 if (label)
1219 {
1220 new_label = main_block_label (label);
1221 if (new_label != label)
1222 gimple_cond_set_true_label (stmt, new_label);
1223 }
1224
1225 label = gimple_cond_false_label (stmt);
1226 if (label)
1227 {
1228 new_label = main_block_label (label);
1229 if (new_label != label)
1230 gimple_cond_set_false_label (stmt, new_label);
1231 }
1232 break;
1233
1234 case GIMPLE_SWITCH:
1235 {
1236 size_t i, n = gimple_switch_num_labels (stmt);
1237
1238 /* Replace all destination labels. */
1239 for (i = 0; i < n; ++i)
1240 {
1241 tree case_label = gimple_switch_label (stmt, i);
1242 label = CASE_LABEL (case_label);
1243 new_label = main_block_label (label);
1244 if (new_label != label)
1245 CASE_LABEL (case_label) = new_label;
1246 }
1247 break;
1248 }
1249
1250 case GIMPLE_ASM:
1251 {
1252 int i, n = gimple_asm_nlabels (stmt);
1253
1254 for (i = 0; i < n; ++i)
1255 {
1256 tree cons = gimple_asm_label_op (stmt, i);
1257 tree label = main_block_label (TREE_VALUE (cons));
1258 TREE_VALUE (cons) = label;
1259 }
1260 break;
1261 }
1262
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1265 case GIMPLE_GOTO:
1266 if (!computed_goto_p (stmt))
1267 {
1268 label = gimple_goto_dest (stmt);
1269 new_label = main_block_label (label);
1270 if (new_label != label)
1271 gimple_goto_set_dest (stmt, new_label);
1272 }
1273 break;
1274
1275 case GIMPLE_TRANSACTION:
1276 {
1277 tree label = gimple_transaction_label (stmt);
1278 if (label)
1279 {
1280 tree new_label = main_block_label (label);
1281 if (new_label != label)
1282 gimple_transaction_set_label (stmt, new_label);
1283 }
1284 }
1285 break;
1286
1287 default:
1288 break;
1289 }
1290 }
1291
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1294
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1298 FOR_EACH_BB (bb)
1299 {
1300 gimple_stmt_iterator i;
1301 tree label_for_this_bb = label_for_bb[bb->index].label;
1302
1303 if (!label_for_this_bb)
1304 continue;
1305
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb[bb->index].used)
1308 label_for_this_bb = NULL;
1309
1310 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1311 {
1312 tree label;
1313 gimple stmt = gsi_stmt (i);
1314
1315 if (gimple_code (stmt) != GIMPLE_LABEL)
1316 break;
1317
1318 label = gimple_label_label (stmt);
1319
1320 if (label == label_for_this_bb
1321 || !DECL_ARTIFICIAL (label)
1322 || DECL_NONLOCAL (label)
1323 || FORCED_LABEL (label))
1324 gsi_next (&i);
1325 else
1326 gsi_remove (&i, true);
1327 }
1328 }
1329
1330 free (label_for_bb);
1331 }
1332
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1336
1337 static void
1338 group_case_labels_stmt (gimple stmt)
1339 {
1340 int old_size = gimple_switch_num_labels (stmt);
1341 int i, j, new_size = old_size;
1342 tree default_case = NULL_TREE;
1343 tree default_label = NULL_TREE;
1344 bool has_default;
1345
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1348 away */
1349 if (!CASE_LOW (gimple_switch_default_label (stmt))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1351 {
1352 default_case = gimple_switch_default_label (stmt);
1353 default_label = CASE_LABEL (default_case);
1354 has_default = true;
1355 }
1356 else
1357 has_default = false;
1358
1359 /* Look for possible opportunities to merge cases. */
1360 if (has_default)
1361 i = 1;
1362 else
1363 i = 0;
1364 while (i < old_size)
1365 {
1366 tree base_case, base_label, base_high;
1367 base_case = gimple_switch_label (stmt, i);
1368
1369 gcc_assert (base_case);
1370 base_label = CASE_LABEL (base_case);
1371
1372 /* Discard cases that have the same destination as the
1373 default case. */
1374 if (base_label == default_label)
1375 {
1376 gimple_switch_set_label (stmt, i, NULL_TREE);
1377 i++;
1378 new_size--;
1379 continue;
1380 }
1381
1382 base_high = CASE_HIGH (base_case)
1383 ? CASE_HIGH (base_case)
1384 : CASE_LOW (base_case);
1385 i++;
1386
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i < old_size)
1391 {
1392 tree merge_case = gimple_switch_label (stmt, i);
1393 tree merge_label = CASE_LABEL (merge_case);
1394 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1395 double_int_one);
1396
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label == base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1401 bhp1))
1402 {
1403 base_high = CASE_HIGH (merge_case) ?
1404 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1405 CASE_HIGH (base_case) = base_high;
1406 gimple_switch_set_label (stmt, i, NULL_TREE);
1407 new_size--;
1408 i++;
1409 }
1410 else
1411 break;
1412 }
1413 }
1414
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i = 0, j = 0; i < new_size; i++)
1418 {
1419 while (! gimple_switch_label (stmt, j))
1420 j++;
1421 gimple_switch_set_label (stmt, i,
1422 gimple_switch_label (stmt, j++));
1423 }
1424
1425 gcc_assert (new_size <= old_size);
1426 gimple_switch_set_num_labels (stmt, new_size);
1427 }
1428
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1431 same label. */
1432
1433 void
1434 group_case_labels (void)
1435 {
1436 basic_block bb;
1437
1438 FOR_EACH_BB (bb)
1439 {
1440 gimple stmt = last_stmt (bb);
1441 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1442 group_case_labels_stmt (stmt);
1443 }
1444 }
1445
1446 /* Checks whether we can merge block B into block A. */
1447
1448 static bool
1449 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1450 {
1451 gimple stmt;
1452 gimple_stmt_iterator gsi;
1453 gimple_seq phis;
1454
1455 if (!single_succ_p (a))
1456 return false;
1457
1458 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH | EDGE_PRESERVE))
1459 return false;
1460
1461 if (single_succ (a) != b)
1462 return false;
1463
1464 if (!single_pred_p (b))
1465 return false;
1466
1467 if (b == EXIT_BLOCK_PTR)
1468 return false;
1469
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt = last_stmt (a);
1473 if (stmt && stmt_ends_bb_p (stmt))
1474 return false;
1475
1476 /* Do not allow a block with only a non-local label to be merged. */
1477 if (stmt
1478 && gimple_code (stmt) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt)))
1480 return false;
1481
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1484 {
1485 tree lab;
1486 stmt = gsi_stmt (gsi);
1487 if (gimple_code (stmt) != GIMPLE_LABEL)
1488 break;
1489 lab = gimple_label_label (stmt);
1490
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1493 return false;
1494 }
1495
1496 /* Protect the loop latches. */
1497 if (current_loops && b->loop_father->latch == b)
1498 return false;
1499
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis = phi_nodes (b);
1504 if (!gimple_seq_empty_p (phis)
1505 && name_mappings_registered_p ())
1506 return false;
1507
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1509 if (!optimize
1510 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1511 {
1512 location_t goto_locus = single_succ_edge (a)->goto_locus;
1513 gimple_stmt_iterator prev, next;
1514 prev = gsi_last_nondebug_bb (a);
1515 next = gsi_after_labels (b);
1516 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1517 gsi_next_nondebug (&next);
1518 if ((gsi_end_p (prev)
1519 || gimple_location (gsi_stmt (prev)) != goto_locus)
1520 && (gsi_end_p (next)
1521 || gimple_location (gsi_stmt (next)) != goto_locus))
1522 return false;
1523 }
1524
1525 return true;
1526 }
1527
1528 /* Return true if the var whose chain of uses starts at PTR has no
1529 nondebug uses. */
1530 bool
1531 has_zero_uses_1 (const ssa_use_operand_t *head)
1532 {
1533 const ssa_use_operand_t *ptr;
1534
1535 for (ptr = head->next; ptr != head; ptr = ptr->next)
1536 if (!is_gimple_debug (USE_STMT (ptr)))
1537 return false;
1538
1539 return true;
1540 }
1541
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1545 bool
1546 single_imm_use_1 (const ssa_use_operand_t *head,
1547 use_operand_p *use_p, gimple *stmt)
1548 {
1549 ssa_use_operand_t *ptr, *single_use = 0;
1550
1551 for (ptr = head->next; ptr != head; ptr = ptr->next)
1552 if (!is_gimple_debug (USE_STMT (ptr)))
1553 {
1554 if (single_use)
1555 {
1556 single_use = NULL;
1557 break;
1558 }
1559 single_use = ptr;
1560 }
1561
1562 if (use_p)
1563 *use_p = single_use;
1564
1565 if (stmt)
1566 *stmt = single_use ? single_use->loc.stmt : NULL;
1567
1568 return !!single_use;
1569 }
1570
1571 /* Replaces all uses of NAME by VAL. */
1572
1573 void
1574 replace_uses_by (tree name, tree val)
1575 {
1576 imm_use_iterator imm_iter;
1577 use_operand_p use;
1578 gimple stmt;
1579 edge e;
1580
1581 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1582 {
1583 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1584 {
1585 replace_exp (use, val);
1586
1587 if (gimple_code (stmt) == GIMPLE_PHI)
1588 {
1589 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1590 if (e->flags & EDGE_ABNORMAL)
1591 {
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_checking_assert (!is_gimple_reg (name));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1597 }
1598 }
1599 }
1600
1601 if (gimple_code (stmt) != GIMPLE_PHI)
1602 {
1603 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1604 gimple orig_stmt = stmt;
1605 size_t i;
1606
1607 /* Mark the block if we changed the last stmt in it. */
1608 if (cfgcleanup_altered_bbs
1609 && stmt_ends_bb_p (stmt))
1610 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1611
1612 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1613 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1614 only change sth from non-invariant to invariant, and only
1615 when propagating constants. */
1616 if (is_gimple_min_invariant (val))
1617 for (i = 0; i < gimple_num_ops (stmt); i++)
1618 {
1619 tree op = gimple_op (stmt, i);
1620 /* Operands may be empty here. For example, the labels
1621 of a GIMPLE_COND are nulled out following the creation
1622 of the corresponding CFG edges. */
1623 if (op && TREE_CODE (op) == ADDR_EXPR)
1624 recompute_tree_invariant_for_addr_expr (op);
1625 }
1626
1627 if (fold_stmt (&gsi))
1628 stmt = gsi_stmt (gsi);
1629
1630 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1631 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1632
1633 update_stmt (stmt);
1634 }
1635 }
1636
1637 gcc_checking_assert (has_zero_uses (name));
1638
1639 /* Also update the trees stored in loop structures. */
1640 if (current_loops)
1641 {
1642 struct loop *loop;
1643 loop_iterator li;
1644
1645 FOR_EACH_LOOP (li, loop, 0)
1646 {
1647 substitute_in_loop_info (loop, name, val);
1648 }
1649 }
1650 }
1651
1652 /* Merge block B into block A. */
1653
1654 static void
1655 gimple_merge_blocks (basic_block a, basic_block b)
1656 {
1657 gimple_stmt_iterator last, gsi, psi;
1658 gimple_seq phis = phi_nodes (b);
1659
1660 if (dump_file)
1661 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1662
1663 /* Remove all single-valued PHI nodes from block B of the form
1664 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1665 gsi = gsi_last_bb (a);
1666 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1667 {
1668 gimple phi = gsi_stmt (psi);
1669 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1670 gimple copy;
1671 bool may_replace_uses = !is_gimple_reg (def)
1672 || may_propagate_copy (def, use);
1673
1674 /* In case we maintain loop closed ssa form, do not propagate arguments
1675 of loop exit phi nodes. */
1676 if (current_loops
1677 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1678 && is_gimple_reg (def)
1679 && TREE_CODE (use) == SSA_NAME
1680 && a->loop_father != b->loop_father)
1681 may_replace_uses = false;
1682
1683 if (!may_replace_uses)
1684 {
1685 gcc_assert (is_gimple_reg (def));
1686
1687 /* Note that just emitting the copies is fine -- there is no problem
1688 with ordering of phi nodes. This is because A is the single
1689 predecessor of B, therefore results of the phi nodes cannot
1690 appear as arguments of the phi nodes. */
1691 copy = gimple_build_assign (def, use);
1692 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1693 remove_phi_node (&psi, false);
1694 }
1695 else
1696 {
1697 /* If we deal with a PHI for virtual operands, we can simply
1698 propagate these without fussing with folding or updating
1699 the stmt. */
1700 if (!is_gimple_reg (def))
1701 {
1702 imm_use_iterator iter;
1703 use_operand_p use_p;
1704 gimple stmt;
1705
1706 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1707 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1708 SET_USE (use_p, use);
1709
1710 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1711 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1712 }
1713 else
1714 replace_uses_by (def, use);
1715
1716 remove_phi_node (&psi, true);
1717 }
1718 }
1719
1720 /* Ensure that B follows A. */
1721 move_block_after (b, a);
1722
1723 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1724 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1725
1726 /* Remove labels from B and set gimple_bb to A for other statements. */
1727 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1728 {
1729 gimple stmt = gsi_stmt (gsi);
1730 if (gimple_code (stmt) == GIMPLE_LABEL)
1731 {
1732 tree label = gimple_label_label (stmt);
1733 int lp_nr;
1734
1735 gsi_remove (&gsi, false);
1736
1737 /* Now that we can thread computed gotos, we might have
1738 a situation where we have a forced label in block B
1739 However, the label at the start of block B might still be
1740 used in other ways (think about the runtime checking for
1741 Fortran assigned gotos). So we can not just delete the
1742 label. Instead we move the label to the start of block A. */
1743 if (FORCED_LABEL (label))
1744 {
1745 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1746 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1747 }
1748 /* Other user labels keep around in a form of a debug stmt. */
1749 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1750 {
1751 gimple dbg = gimple_build_debug_bind (label,
1752 integer_zero_node,
1753 stmt);
1754 gimple_debug_bind_reset_value (dbg);
1755 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1756 }
1757
1758 lp_nr = EH_LANDING_PAD_NR (label);
1759 if (lp_nr)
1760 {
1761 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1762 lp->post_landing_pad = NULL;
1763 }
1764 }
1765 else
1766 {
1767 gimple_set_bb (stmt, a);
1768 gsi_next (&gsi);
1769 }
1770 }
1771
1772 /* Merge the sequences. */
1773 last = gsi_last_bb (a);
1774 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1775 set_bb_seq (b, NULL);
1776
1777 if (cfgcleanup_altered_bbs)
1778 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1779 }
1780
1781
1782 /* Return the one of two successors of BB that is not reachable by a
1783 complex edge, if there is one. Else, return BB. We use
1784 this in optimizations that use post-dominators for their heuristics,
1785 to catch the cases in C++ where function calls are involved. */
1786
1787 basic_block
1788 single_noncomplex_succ (basic_block bb)
1789 {
1790 edge e0, e1;
1791 if (EDGE_COUNT (bb->succs) != 2)
1792 return bb;
1793
1794 e0 = EDGE_SUCC (bb, 0);
1795 e1 = EDGE_SUCC (bb, 1);
1796 if (e0->flags & EDGE_COMPLEX)
1797 return e1->dest;
1798 if (e1->flags & EDGE_COMPLEX)
1799 return e0->dest;
1800
1801 return bb;
1802 }
1803
1804 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1805
1806 void
1807 notice_special_calls (gimple call)
1808 {
1809 int flags = gimple_call_flags (call);
1810
1811 if (flags & ECF_MAY_BE_ALLOCA)
1812 cfun->calls_alloca = true;
1813 if (flags & ECF_RETURNS_TWICE)
1814 cfun->calls_setjmp = true;
1815 }
1816
1817
1818 /* Clear flags set by notice_special_calls. Used by dead code removal
1819 to update the flags. */
1820
1821 void
1822 clear_special_calls (void)
1823 {
1824 cfun->calls_alloca = false;
1825 cfun->calls_setjmp = false;
1826 }
1827
1828 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1829
1830 static void
1831 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1832 {
1833 /* Since this block is no longer reachable, we can just delete all
1834 of its PHI nodes. */
1835 remove_phi_nodes (bb);
1836
1837 /* Remove edges to BB's successors. */
1838 while (EDGE_COUNT (bb->succs) > 0)
1839 remove_edge (EDGE_SUCC (bb, 0));
1840 }
1841
1842
1843 /* Remove statements of basic block BB. */
1844
1845 static void
1846 remove_bb (basic_block bb)
1847 {
1848 gimple_stmt_iterator i;
1849
1850 if (dump_file)
1851 {
1852 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1853 if (dump_flags & TDF_DETAILS)
1854 {
1855 dump_bb (bb, dump_file, 0);
1856 fprintf (dump_file, "\n");
1857 }
1858 }
1859
1860 if (current_loops)
1861 {
1862 struct loop *loop = bb->loop_father;
1863
1864 /* If a loop gets removed, clean up the information associated
1865 with it. */
1866 if (loop->latch == bb
1867 || loop->header == bb)
1868 free_numbers_of_iterations_estimates_loop (loop);
1869 }
1870
1871 /* Remove all the instructions in the block. */
1872 if (bb_seq (bb) != NULL)
1873 {
1874 /* Walk backwards so as to get a chance to substitute all
1875 released DEFs into debug stmts. See
1876 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1877 details. */
1878 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1879 {
1880 gimple stmt = gsi_stmt (i);
1881 if (gimple_code (stmt) == GIMPLE_LABEL
1882 && (FORCED_LABEL (gimple_label_label (stmt))
1883 || DECL_NONLOCAL (gimple_label_label (stmt))))
1884 {
1885 basic_block new_bb;
1886 gimple_stmt_iterator new_gsi;
1887
1888 /* A non-reachable non-local label may still be referenced.
1889 But it no longer needs to carry the extra semantics of
1890 non-locality. */
1891 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1892 {
1893 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1894 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1895 }
1896
1897 new_bb = bb->prev_bb;
1898 new_gsi = gsi_start_bb (new_bb);
1899 gsi_remove (&i, false);
1900 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1901 }
1902 else
1903 {
1904 /* Release SSA definitions if we are in SSA. Note that we
1905 may be called when not in SSA. For example,
1906 final_cleanup calls this function via
1907 cleanup_tree_cfg. */
1908 if (gimple_in_ssa_p (cfun))
1909 release_defs (stmt);
1910
1911 gsi_remove (&i, true);
1912 }
1913
1914 if (gsi_end_p (i))
1915 i = gsi_last_bb (bb);
1916 else
1917 gsi_prev (&i);
1918 }
1919 }
1920
1921 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1922 bb->il.gimple = NULL;
1923 }
1924
1925
1926 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1927 predicate VAL, return the edge that will be taken out of the block.
1928 If VAL does not match a unique edge, NULL is returned. */
1929
1930 edge
1931 find_taken_edge (basic_block bb, tree val)
1932 {
1933 gimple stmt;
1934
1935 stmt = last_stmt (bb);
1936
1937 gcc_assert (stmt);
1938 gcc_assert (is_ctrl_stmt (stmt));
1939
1940 if (val == NULL)
1941 return NULL;
1942
1943 if (!is_gimple_min_invariant (val))
1944 return NULL;
1945
1946 if (gimple_code (stmt) == GIMPLE_COND)
1947 return find_taken_edge_cond_expr (bb, val);
1948
1949 if (gimple_code (stmt) == GIMPLE_SWITCH)
1950 return find_taken_edge_switch_expr (bb, val);
1951
1952 if (computed_goto_p (stmt))
1953 {
1954 /* Only optimize if the argument is a label, if the argument is
1955 not a label then we can not construct a proper CFG.
1956
1957 It may be the case that we only need to allow the LABEL_REF to
1958 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1959 appear inside a LABEL_EXPR just to be safe. */
1960 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1961 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1962 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1963 return NULL;
1964 }
1965
1966 gcc_unreachable ();
1967 }
1968
1969 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1970 statement, determine which of the outgoing edges will be taken out of the
1971 block. Return NULL if either edge may be taken. */
1972
1973 static edge
1974 find_taken_edge_computed_goto (basic_block bb, tree val)
1975 {
1976 basic_block dest;
1977 edge e = NULL;
1978
1979 dest = label_to_block (val);
1980 if (dest)
1981 {
1982 e = find_edge (bb, dest);
1983 gcc_assert (e != NULL);
1984 }
1985
1986 return e;
1987 }
1988
1989 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1990 statement, determine which of the two edges will be taken out of the
1991 block. Return NULL if either edge may be taken. */
1992
1993 static edge
1994 find_taken_edge_cond_expr (basic_block bb, tree val)
1995 {
1996 edge true_edge, false_edge;
1997
1998 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1999
2000 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2001 return (integer_zerop (val) ? false_edge : true_edge);
2002 }
2003
2004 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2005 statement, determine which edge will be taken out of the block. Return
2006 NULL if any edge may be taken. */
2007
2008 static edge
2009 find_taken_edge_switch_expr (basic_block bb, tree val)
2010 {
2011 basic_block dest_bb;
2012 edge e;
2013 gimple switch_stmt;
2014 tree taken_case;
2015
2016 switch_stmt = last_stmt (bb);
2017 taken_case = find_case_label_for_value (switch_stmt, val);
2018 dest_bb = label_to_block (CASE_LABEL (taken_case));
2019
2020 e = find_edge (bb, dest_bb);
2021 gcc_assert (e);
2022 return e;
2023 }
2024
2025
2026 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2027 We can make optimal use here of the fact that the case labels are
2028 sorted: We can do a binary search for a case matching VAL. */
2029
2030 static tree
2031 find_case_label_for_value (gimple switch_stmt, tree val)
2032 {
2033 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2034 tree default_case = gimple_switch_default_label (switch_stmt);
2035
2036 for (low = 0, high = n; high - low > 1; )
2037 {
2038 size_t i = (high + low) / 2;
2039 tree t = gimple_switch_label (switch_stmt, i);
2040 int cmp;
2041
2042 /* Cache the result of comparing CASE_LOW and val. */
2043 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2044
2045 if (cmp > 0)
2046 high = i;
2047 else
2048 low = i;
2049
2050 if (CASE_HIGH (t) == NULL)
2051 {
2052 /* A singe-valued case label. */
2053 if (cmp == 0)
2054 return t;
2055 }
2056 else
2057 {
2058 /* A case range. We can only handle integer ranges. */
2059 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2060 return t;
2061 }
2062 }
2063
2064 return default_case;
2065 }
2066
2067
2068 /* Dump a basic block on stderr. */
2069
2070 void
2071 gimple_debug_bb (basic_block bb)
2072 {
2073 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2074 }
2075
2076
2077 /* Dump basic block with index N on stderr. */
2078
2079 basic_block
2080 gimple_debug_bb_n (int n)
2081 {
2082 gimple_debug_bb (BASIC_BLOCK (n));
2083 return BASIC_BLOCK (n);
2084 }
2085
2086
2087 /* Dump the CFG on stderr.
2088
2089 FLAGS are the same used by the tree dumping functions
2090 (see TDF_* in tree-pass.h). */
2091
2092 void
2093 gimple_debug_cfg (int flags)
2094 {
2095 gimple_dump_cfg (stderr, flags);
2096 }
2097
2098
2099 /* Dump the program showing basic block boundaries on the given FILE.
2100
2101 FLAGS are the same used by the tree dumping functions (see TDF_* in
2102 tree.h). */
2103
2104 void
2105 gimple_dump_cfg (FILE *file, int flags)
2106 {
2107 if (flags & TDF_DETAILS)
2108 {
2109 dump_function_header (file, current_function_decl, flags);
2110 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2111 n_basic_blocks, n_edges, last_basic_block);
2112
2113 brief_dump_cfg (file);
2114 fprintf (file, "\n");
2115 }
2116
2117 if (flags & TDF_STATS)
2118 dump_cfg_stats (file);
2119
2120 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2121 }
2122
2123
2124 /* Dump CFG statistics on FILE. */
2125
2126 void
2127 dump_cfg_stats (FILE *file)
2128 {
2129 static long max_num_merged_labels = 0;
2130 unsigned long size, total = 0;
2131 long num_edges;
2132 basic_block bb;
2133 const char * const fmt_str = "%-30s%-13s%12s\n";
2134 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2135 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2136 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2137 const char *funcname
2138 = lang_hooks.decl_printable_name (current_function_decl, 2);
2139
2140
2141 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2142
2143 fprintf (file, "---------------------------------------------------------\n");
2144 fprintf (file, fmt_str, "", " Number of ", "Memory");
2145 fprintf (file, fmt_str, "", " instances ", "used ");
2146 fprintf (file, "---------------------------------------------------------\n");
2147
2148 size = n_basic_blocks * sizeof (struct basic_block_def);
2149 total += size;
2150 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2151 SCALE (size), LABEL (size));
2152
2153 num_edges = 0;
2154 FOR_EACH_BB (bb)
2155 num_edges += EDGE_COUNT (bb->succs);
2156 size = num_edges * sizeof (struct edge_def);
2157 total += size;
2158 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2159
2160 fprintf (file, "---------------------------------------------------------\n");
2161 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2162 LABEL (total));
2163 fprintf (file, "---------------------------------------------------------\n");
2164 fprintf (file, "\n");
2165
2166 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2167 max_num_merged_labels = cfg_stats.num_merged_labels;
2168
2169 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2170 cfg_stats.num_merged_labels, max_num_merged_labels);
2171
2172 fprintf (file, "\n");
2173 }
2174
2175
2176 /* Dump CFG statistics on stderr. Keep extern so that it's always
2177 linked in the final executable. */
2178
2179 DEBUG_FUNCTION void
2180 debug_cfg_stats (void)
2181 {
2182 dump_cfg_stats (stderr);
2183 }
2184
2185
2186 /* Dump the flowgraph to a .vcg FILE. */
2187
2188 static void
2189 gimple_cfg2vcg (FILE *file)
2190 {
2191 edge e;
2192 edge_iterator ei;
2193 basic_block bb;
2194 const char *funcname
2195 = lang_hooks.decl_printable_name (current_function_decl, 2);
2196
2197 /* Write the file header. */
2198 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2199 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2200 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2201
2202 /* Write blocks and edges. */
2203 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2204 {
2205 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2206 e->dest->index);
2207
2208 if (e->flags & EDGE_FAKE)
2209 fprintf (file, " linestyle: dotted priority: 10");
2210 else
2211 fprintf (file, " linestyle: solid priority: 100");
2212
2213 fprintf (file, " }\n");
2214 }
2215 fputc ('\n', file);
2216
2217 FOR_EACH_BB (bb)
2218 {
2219 enum gimple_code head_code, end_code;
2220 const char *head_name, *end_name;
2221 int head_line = 0;
2222 int end_line = 0;
2223 gimple first = first_stmt (bb);
2224 gimple last = last_stmt (bb);
2225
2226 if (first)
2227 {
2228 head_code = gimple_code (first);
2229 head_name = gimple_code_name[head_code];
2230 head_line = get_lineno (first);
2231 }
2232 else
2233 head_name = "no-statement";
2234
2235 if (last)
2236 {
2237 end_code = gimple_code (last);
2238 end_name = gimple_code_name[end_code];
2239 end_line = get_lineno (last);
2240 }
2241 else
2242 end_name = "no-statement";
2243
2244 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2245 bb->index, bb->index, head_name, head_line, end_name,
2246 end_line);
2247
2248 FOR_EACH_EDGE (e, ei, bb->succs)
2249 {
2250 if (e->dest == EXIT_BLOCK_PTR)
2251 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2252 else
2253 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2254
2255 if (e->flags & EDGE_FAKE)
2256 fprintf (file, " priority: 10 linestyle: dotted");
2257 else
2258 fprintf (file, " priority: 100 linestyle: solid");
2259
2260 fprintf (file, " }\n");
2261 }
2262
2263 if (bb->next_bb != EXIT_BLOCK_PTR)
2264 fputc ('\n', file);
2265 }
2266
2267 fputs ("}\n\n", file);
2268 }
2269
2270
2271
2272 /*---------------------------------------------------------------------------
2273 Miscellaneous helpers
2274 ---------------------------------------------------------------------------*/
2275
2276 /* Return true if T represents a stmt that always transfers control. */
2277
2278 bool
2279 is_ctrl_stmt (gimple t)
2280 {
2281 switch (gimple_code (t))
2282 {
2283 case GIMPLE_COND:
2284 case GIMPLE_SWITCH:
2285 case GIMPLE_GOTO:
2286 case GIMPLE_RETURN:
2287 case GIMPLE_RESX:
2288 return true;
2289 default:
2290 return false;
2291 }
2292 }
2293
2294
2295 /* Return true if T is a statement that may alter the flow of control
2296 (e.g., a call to a non-returning function). */
2297
2298 bool
2299 is_ctrl_altering_stmt (gimple t)
2300 {
2301 gcc_assert (t);
2302
2303 switch (gimple_code (t))
2304 {
2305 case GIMPLE_CALL:
2306 {
2307 int flags = gimple_call_flags (t);
2308
2309 /* A non-pure/const call alters flow control if the current
2310 function has nonlocal labels. */
2311 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2312 && cfun->has_nonlocal_label)
2313 return true;
2314
2315 /* A call also alters control flow if it does not return. */
2316 if (flags & ECF_NORETURN)
2317 return true;
2318
2319 /* TM ending statements have backedges out of the transaction.
2320 Return true so we split the basic block containing them.
2321 Note that the TM_BUILTIN test is merely an optimization. */
2322 if ((flags & ECF_TM_BUILTIN)
2323 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2324 return true;
2325
2326 /* BUILT_IN_RETURN call is same as return statement. */
2327 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2328 return true;
2329 }
2330 break;
2331
2332 case GIMPLE_EH_DISPATCH:
2333 /* EH_DISPATCH branches to the individual catch handlers at
2334 this level of a try or allowed-exceptions region. It can
2335 fallthru to the next statement as well. */
2336 return true;
2337
2338 case GIMPLE_ASM:
2339 if (gimple_asm_nlabels (t) > 0)
2340 return true;
2341 break;
2342
2343 CASE_GIMPLE_OMP:
2344 /* OpenMP directives alter control flow. */
2345 return true;
2346
2347 case GIMPLE_TRANSACTION:
2348 /* A transaction start alters control flow. */
2349 return true;
2350
2351 default:
2352 break;
2353 }
2354
2355 /* If a statement can throw, it alters control flow. */
2356 return stmt_can_throw_internal (t);
2357 }
2358
2359
2360 /* Return true if T is a simple local goto. */
2361
2362 bool
2363 simple_goto_p (gimple t)
2364 {
2365 return (gimple_code (t) == GIMPLE_GOTO
2366 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2367 }
2368
2369
2370 /* Return true if T can make an abnormal transfer of control flow.
2371 Transfers of control flow associated with EH are excluded. */
2372
2373 bool
2374 stmt_can_make_abnormal_goto (gimple t)
2375 {
2376 if (computed_goto_p (t))
2377 return true;
2378 if (is_gimple_call (t))
2379 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2380 && !(gimple_call_flags (t) & ECF_LEAF));
2381 return false;
2382 }
2383
2384
2385 /* Return true if STMT should start a new basic block. PREV_STMT is
2386 the statement preceding STMT. It is used when STMT is a label or a
2387 case label. Labels should only start a new basic block if their
2388 previous statement wasn't a label. Otherwise, sequence of labels
2389 would generate unnecessary basic blocks that only contain a single
2390 label. */
2391
2392 static inline bool
2393 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2394 {
2395 if (stmt == NULL)
2396 return false;
2397
2398 /* Labels start a new basic block only if the preceding statement
2399 wasn't a label of the same type. This prevents the creation of
2400 consecutive blocks that have nothing but a single label. */
2401 if (gimple_code (stmt) == GIMPLE_LABEL)
2402 {
2403 /* Nonlocal and computed GOTO targets always start a new block. */
2404 if (DECL_NONLOCAL (gimple_label_label (stmt))
2405 || FORCED_LABEL (gimple_label_label (stmt)))
2406 return true;
2407
2408 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2409 {
2410 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2411 return true;
2412
2413 cfg_stats.num_merged_labels++;
2414 return false;
2415 }
2416 else
2417 return true;
2418 }
2419
2420 return false;
2421 }
2422
2423
2424 /* Return true if T should end a basic block. */
2425
2426 bool
2427 stmt_ends_bb_p (gimple t)
2428 {
2429 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2430 }
2431
2432 /* Remove block annotations and other data structures. */
2433
2434 void
2435 delete_tree_cfg_annotations (void)
2436 {
2437 label_to_block_map = NULL;
2438 }
2439
2440
2441 /* Return the first statement in basic block BB. */
2442
2443 gimple
2444 first_stmt (basic_block bb)
2445 {
2446 gimple_stmt_iterator i = gsi_start_bb (bb);
2447 gimple stmt = NULL;
2448
2449 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2450 {
2451 gsi_next (&i);
2452 stmt = NULL;
2453 }
2454 return stmt;
2455 }
2456
2457 /* Return the first non-label statement in basic block BB. */
2458
2459 static gimple
2460 first_non_label_stmt (basic_block bb)
2461 {
2462 gimple_stmt_iterator i = gsi_start_bb (bb);
2463 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2464 gsi_next (&i);
2465 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2466 }
2467
2468 /* Return the last statement in basic block BB. */
2469
2470 gimple
2471 last_stmt (basic_block bb)
2472 {
2473 gimple_stmt_iterator i = gsi_last_bb (bb);
2474 gimple stmt = NULL;
2475
2476 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2477 {
2478 gsi_prev (&i);
2479 stmt = NULL;
2480 }
2481 return stmt;
2482 }
2483
2484 /* Return the last statement of an otherwise empty block. Return NULL
2485 if the block is totally empty, or if it contains more than one
2486 statement. */
2487
2488 gimple
2489 last_and_only_stmt (basic_block bb)
2490 {
2491 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2492 gimple last, prev;
2493
2494 if (gsi_end_p (i))
2495 return NULL;
2496
2497 last = gsi_stmt (i);
2498 gsi_prev_nondebug (&i);
2499 if (gsi_end_p (i))
2500 return last;
2501
2502 /* Empty statements should no longer appear in the instruction stream.
2503 Everything that might have appeared before should be deleted by
2504 remove_useless_stmts, and the optimizers should just gsi_remove
2505 instead of smashing with build_empty_stmt.
2506
2507 Thus the only thing that should appear here in a block containing
2508 one executable statement is a label. */
2509 prev = gsi_stmt (i);
2510 if (gimple_code (prev) == GIMPLE_LABEL)
2511 return last;
2512 else
2513 return NULL;
2514 }
2515
2516 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2517
2518 static void
2519 reinstall_phi_args (edge new_edge, edge old_edge)
2520 {
2521 edge_var_map_vector v;
2522 edge_var_map *vm;
2523 int i;
2524 gimple_stmt_iterator phis;
2525
2526 v = redirect_edge_var_map_vector (old_edge);
2527 if (!v)
2528 return;
2529
2530 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2531 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2532 i++, gsi_next (&phis))
2533 {
2534 gimple phi = gsi_stmt (phis);
2535 tree result = redirect_edge_var_map_result (vm);
2536 tree arg = redirect_edge_var_map_def (vm);
2537
2538 gcc_assert (result == gimple_phi_result (phi));
2539
2540 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2541 }
2542
2543 redirect_edge_var_map_clear (old_edge);
2544 }
2545
2546 /* Returns the basic block after which the new basic block created
2547 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2548 near its "logical" location. This is of most help to humans looking
2549 at debugging dumps. */
2550
2551 static basic_block
2552 split_edge_bb_loc (edge edge_in)
2553 {
2554 basic_block dest = edge_in->dest;
2555 basic_block dest_prev = dest->prev_bb;
2556
2557 if (dest_prev)
2558 {
2559 edge e = find_edge (dest_prev, dest);
2560 if (e && !(e->flags & EDGE_COMPLEX))
2561 return edge_in->src;
2562 }
2563 return dest_prev;
2564 }
2565
2566 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2567 Abort on abnormal edges. */
2568
2569 static basic_block
2570 gimple_split_edge (edge edge_in)
2571 {
2572 basic_block new_bb, after_bb, dest;
2573 edge new_edge, e;
2574
2575 /* Abnormal edges cannot be split. */
2576 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2577
2578 dest = edge_in->dest;
2579
2580 after_bb = split_edge_bb_loc (edge_in);
2581
2582 new_bb = create_empty_bb (after_bb);
2583 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2584 new_bb->count = edge_in->count;
2585 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2586 new_edge->probability = REG_BR_PROB_BASE;
2587 new_edge->count = edge_in->count;
2588
2589 e = redirect_edge_and_branch (edge_in, new_bb);
2590 gcc_assert (e == edge_in);
2591 reinstall_phi_args (new_edge, e);
2592
2593 return new_bb;
2594 }
2595
2596
2597 /* Verify properties of the address expression T with base object BASE. */
2598
2599 static tree
2600 verify_address (tree t, tree base)
2601 {
2602 bool old_constant;
2603 bool old_side_effects;
2604 bool new_constant;
2605 bool new_side_effects;
2606
2607 old_constant = TREE_CONSTANT (t);
2608 old_side_effects = TREE_SIDE_EFFECTS (t);
2609
2610 recompute_tree_invariant_for_addr_expr (t);
2611 new_side_effects = TREE_SIDE_EFFECTS (t);
2612 new_constant = TREE_CONSTANT (t);
2613
2614 if (old_constant != new_constant)
2615 {
2616 error ("constant not recomputed when ADDR_EXPR changed");
2617 return t;
2618 }
2619 if (old_side_effects != new_side_effects)
2620 {
2621 error ("side effects not recomputed when ADDR_EXPR changed");
2622 return t;
2623 }
2624
2625 if (!(TREE_CODE (base) == VAR_DECL
2626 || TREE_CODE (base) == PARM_DECL
2627 || TREE_CODE (base) == RESULT_DECL))
2628 return NULL_TREE;
2629
2630 if (DECL_GIMPLE_REG_P (base))
2631 {
2632 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2633 return base;
2634 }
2635
2636 return NULL_TREE;
2637 }
2638
2639 /* Callback for walk_tree, check that all elements with address taken are
2640 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2641 inside a PHI node. */
2642
2643 static tree
2644 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2645 {
2646 tree t = *tp, x;
2647
2648 if (TYPE_P (t))
2649 *walk_subtrees = 0;
2650
2651 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2652 #define CHECK_OP(N, MSG) \
2653 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2654 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2655
2656 switch (TREE_CODE (t))
2657 {
2658 case SSA_NAME:
2659 if (SSA_NAME_IN_FREE_LIST (t))
2660 {
2661 error ("SSA name in freelist but still referenced");
2662 return *tp;
2663 }
2664 break;
2665
2666 case INDIRECT_REF:
2667 error ("INDIRECT_REF in gimple IL");
2668 return t;
2669
2670 case MEM_REF:
2671 x = TREE_OPERAND (t, 0);
2672 if (!POINTER_TYPE_P (TREE_TYPE (x))
2673 || !is_gimple_mem_ref_addr (x))
2674 {
2675 error ("invalid first operand of MEM_REF");
2676 return x;
2677 }
2678 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2679 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2680 {
2681 error ("invalid offset operand of MEM_REF");
2682 return TREE_OPERAND (t, 1);
2683 }
2684 if (TREE_CODE (x) == ADDR_EXPR
2685 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2686 return x;
2687 *walk_subtrees = 0;
2688 break;
2689
2690 case ASSERT_EXPR:
2691 x = fold (ASSERT_EXPR_COND (t));
2692 if (x == boolean_false_node)
2693 {
2694 error ("ASSERT_EXPR with an always-false condition");
2695 return *tp;
2696 }
2697 break;
2698
2699 case MODIFY_EXPR:
2700 error ("MODIFY_EXPR not expected while having tuples");
2701 return *tp;
2702
2703 case ADDR_EXPR:
2704 {
2705 tree tem;
2706
2707 gcc_assert (is_gimple_address (t));
2708
2709 /* Skip any references (they will be checked when we recurse down the
2710 tree) and ensure that any variable used as a prefix is marked
2711 addressable. */
2712 for (x = TREE_OPERAND (t, 0);
2713 handled_component_p (x);
2714 x = TREE_OPERAND (x, 0))
2715 ;
2716
2717 if ((tem = verify_address (t, x)))
2718 return tem;
2719
2720 if (!(TREE_CODE (x) == VAR_DECL
2721 || TREE_CODE (x) == PARM_DECL
2722 || TREE_CODE (x) == RESULT_DECL))
2723 return NULL;
2724
2725 if (!TREE_ADDRESSABLE (x))
2726 {
2727 error ("address taken, but ADDRESSABLE bit not set");
2728 return x;
2729 }
2730
2731 break;
2732 }
2733
2734 case COND_EXPR:
2735 x = COND_EXPR_COND (t);
2736 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2737 {
2738 error ("non-integral used in condition");
2739 return x;
2740 }
2741 if (!is_gimple_condexpr (x))
2742 {
2743 error ("invalid conditional operand");
2744 return x;
2745 }
2746 break;
2747
2748 case NON_LVALUE_EXPR:
2749 case TRUTH_NOT_EXPR:
2750 gcc_unreachable ();
2751
2752 CASE_CONVERT:
2753 case FIX_TRUNC_EXPR:
2754 case FLOAT_EXPR:
2755 case NEGATE_EXPR:
2756 case ABS_EXPR:
2757 case BIT_NOT_EXPR:
2758 CHECK_OP (0, "invalid operand to unary operator");
2759 break;
2760
2761 case REALPART_EXPR:
2762 case IMAGPART_EXPR:
2763 case COMPONENT_REF:
2764 case ARRAY_REF:
2765 case ARRAY_RANGE_REF:
2766 case BIT_FIELD_REF:
2767 case VIEW_CONVERT_EXPR:
2768 /* We have a nest of references. Verify that each of the operands
2769 that determine where to reference is either a constant or a variable,
2770 verify that the base is valid, and then show we've already checked
2771 the subtrees. */
2772 while (handled_component_p (t))
2773 {
2774 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2775 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2776 else if (TREE_CODE (t) == ARRAY_REF
2777 || TREE_CODE (t) == ARRAY_RANGE_REF)
2778 {
2779 CHECK_OP (1, "invalid array index");
2780 if (TREE_OPERAND (t, 2))
2781 CHECK_OP (2, "invalid array lower bound");
2782 if (TREE_OPERAND (t, 3))
2783 CHECK_OP (3, "invalid array stride");
2784 }
2785 else if (TREE_CODE (t) == BIT_FIELD_REF)
2786 {
2787 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2788 || !host_integerp (TREE_OPERAND (t, 2), 1))
2789 {
2790 error ("invalid position or size operand to BIT_FIELD_REF");
2791 return t;
2792 }
2793 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2794 && (TYPE_PRECISION (TREE_TYPE (t))
2795 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2796 {
2797 error ("integral result type precision does not match "
2798 "field size of BIT_FIELD_REF");
2799 return t;
2800 }
2801 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2802 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2803 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2804 {
2805 error ("mode precision of non-integral result does not "
2806 "match field size of BIT_FIELD_REF");
2807 return t;
2808 }
2809 }
2810
2811 t = TREE_OPERAND (t, 0);
2812 }
2813
2814 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2815 {
2816 error ("invalid reference prefix");
2817 return t;
2818 }
2819 *walk_subtrees = 0;
2820 break;
2821 case PLUS_EXPR:
2822 case MINUS_EXPR:
2823 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2824 POINTER_PLUS_EXPR. */
2825 if (POINTER_TYPE_P (TREE_TYPE (t)))
2826 {
2827 error ("invalid operand to plus/minus, type is a pointer");
2828 return t;
2829 }
2830 CHECK_OP (0, "invalid operand to binary operator");
2831 CHECK_OP (1, "invalid operand to binary operator");
2832 break;
2833
2834 case POINTER_PLUS_EXPR:
2835 /* Check to make sure the first operand is a pointer or reference type. */
2836 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2837 {
2838 error ("invalid operand to pointer plus, first operand is not a pointer");
2839 return t;
2840 }
2841 /* Check to make sure the second operand is a ptrofftype. */
2842 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2843 {
2844 error ("invalid operand to pointer plus, second operand is not an "
2845 "integer type of appropriate width");
2846 return t;
2847 }
2848 /* FALLTHROUGH */
2849 case LT_EXPR:
2850 case LE_EXPR:
2851 case GT_EXPR:
2852 case GE_EXPR:
2853 case EQ_EXPR:
2854 case NE_EXPR:
2855 case UNORDERED_EXPR:
2856 case ORDERED_EXPR:
2857 case UNLT_EXPR:
2858 case UNLE_EXPR:
2859 case UNGT_EXPR:
2860 case UNGE_EXPR:
2861 case UNEQ_EXPR:
2862 case LTGT_EXPR:
2863 case MULT_EXPR:
2864 case TRUNC_DIV_EXPR:
2865 case CEIL_DIV_EXPR:
2866 case FLOOR_DIV_EXPR:
2867 case ROUND_DIV_EXPR:
2868 case TRUNC_MOD_EXPR:
2869 case CEIL_MOD_EXPR:
2870 case FLOOR_MOD_EXPR:
2871 case ROUND_MOD_EXPR:
2872 case RDIV_EXPR:
2873 case EXACT_DIV_EXPR:
2874 case MIN_EXPR:
2875 case MAX_EXPR:
2876 case LSHIFT_EXPR:
2877 case RSHIFT_EXPR:
2878 case LROTATE_EXPR:
2879 case RROTATE_EXPR:
2880 case BIT_IOR_EXPR:
2881 case BIT_XOR_EXPR:
2882 case BIT_AND_EXPR:
2883 CHECK_OP (0, "invalid operand to binary operator");
2884 CHECK_OP (1, "invalid operand to binary operator");
2885 break;
2886
2887 case CONSTRUCTOR:
2888 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2889 *walk_subtrees = 0;
2890 break;
2891
2892 case CASE_LABEL_EXPR:
2893 if (CASE_CHAIN (t))
2894 {
2895 error ("invalid CASE_CHAIN");
2896 return t;
2897 }
2898 break;
2899
2900 default:
2901 break;
2902 }
2903 return NULL;
2904
2905 #undef CHECK_OP
2906 }
2907
2908
2909 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2910 Returns true if there is an error, otherwise false. */
2911
2912 static bool
2913 verify_types_in_gimple_min_lval (tree expr)
2914 {
2915 tree op;
2916
2917 if (is_gimple_id (expr))
2918 return false;
2919
2920 if (TREE_CODE (expr) != TARGET_MEM_REF
2921 && TREE_CODE (expr) != MEM_REF)
2922 {
2923 error ("invalid expression for min lvalue");
2924 return true;
2925 }
2926
2927 /* TARGET_MEM_REFs are strange beasts. */
2928 if (TREE_CODE (expr) == TARGET_MEM_REF)
2929 return false;
2930
2931 op = TREE_OPERAND (expr, 0);
2932 if (!is_gimple_val (op))
2933 {
2934 error ("invalid operand in indirect reference");
2935 debug_generic_stmt (op);
2936 return true;
2937 }
2938 /* Memory references now generally can involve a value conversion. */
2939
2940 return false;
2941 }
2942
2943 /* Verify if EXPR is a valid GIMPLE reference expression. If
2944 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2945 if there is an error, otherwise false. */
2946
2947 static bool
2948 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2949 {
2950 while (handled_component_p (expr))
2951 {
2952 tree op = TREE_OPERAND (expr, 0);
2953
2954 if (TREE_CODE (expr) == ARRAY_REF
2955 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2956 {
2957 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2958 || (TREE_OPERAND (expr, 2)
2959 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2960 || (TREE_OPERAND (expr, 3)
2961 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2962 {
2963 error ("invalid operands to array reference");
2964 debug_generic_stmt (expr);
2965 return true;
2966 }
2967 }
2968
2969 /* Verify if the reference array element types are compatible. */
2970 if (TREE_CODE (expr) == ARRAY_REF
2971 && !useless_type_conversion_p (TREE_TYPE (expr),
2972 TREE_TYPE (TREE_TYPE (op))))
2973 {
2974 error ("type mismatch in array reference");
2975 debug_generic_stmt (TREE_TYPE (expr));
2976 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2977 return true;
2978 }
2979 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2980 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2981 TREE_TYPE (TREE_TYPE (op))))
2982 {
2983 error ("type mismatch in array range reference");
2984 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2985 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2986 return true;
2987 }
2988
2989 if ((TREE_CODE (expr) == REALPART_EXPR
2990 || TREE_CODE (expr) == IMAGPART_EXPR)
2991 && !useless_type_conversion_p (TREE_TYPE (expr),
2992 TREE_TYPE (TREE_TYPE (op))))
2993 {
2994 error ("type mismatch in real/imagpart reference");
2995 debug_generic_stmt (TREE_TYPE (expr));
2996 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2997 return true;
2998 }
2999
3000 if (TREE_CODE (expr) == COMPONENT_REF
3001 && !useless_type_conversion_p (TREE_TYPE (expr),
3002 TREE_TYPE (TREE_OPERAND (expr, 1))))
3003 {
3004 error ("type mismatch in component reference");
3005 debug_generic_stmt (TREE_TYPE (expr));
3006 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3007 return true;
3008 }
3009
3010 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3011 {
3012 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3013 that their operand is not an SSA name or an invariant when
3014 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3015 bug). Otherwise there is nothing to verify, gross mismatches at
3016 most invoke undefined behavior. */
3017 if (require_lvalue
3018 && (TREE_CODE (op) == SSA_NAME
3019 || is_gimple_min_invariant (op)))
3020 {
3021 error ("conversion of an SSA_NAME on the left hand side");
3022 debug_generic_stmt (expr);
3023 return true;
3024 }
3025 else if (TREE_CODE (op) == SSA_NAME
3026 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3027 {
3028 error ("conversion of register to a different size");
3029 debug_generic_stmt (expr);
3030 return true;
3031 }
3032 else if (!handled_component_p (op))
3033 return false;
3034 }
3035
3036 expr = op;
3037 }
3038
3039 if (TREE_CODE (expr) == MEM_REF)
3040 {
3041 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3042 {
3043 error ("invalid address operand in MEM_REF");
3044 debug_generic_stmt (expr);
3045 return true;
3046 }
3047 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3048 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3049 {
3050 error ("invalid offset operand in MEM_REF");
3051 debug_generic_stmt (expr);
3052 return true;
3053 }
3054 }
3055 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3056 {
3057 if (!TMR_BASE (expr)
3058 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3059 {
3060 error ("invalid address operand in TARGET_MEM_REF");
3061 return true;
3062 }
3063 if (!TMR_OFFSET (expr)
3064 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3065 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3066 {
3067 error ("invalid offset operand in TARGET_MEM_REF");
3068 debug_generic_stmt (expr);
3069 return true;
3070 }
3071 }
3072
3073 return ((require_lvalue || !is_gimple_min_invariant (expr))
3074 && verify_types_in_gimple_min_lval (expr));
3075 }
3076
3077 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3078 list of pointer-to types that is trivially convertible to DEST. */
3079
3080 static bool
3081 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3082 {
3083 tree src;
3084
3085 if (!TYPE_POINTER_TO (src_obj))
3086 return true;
3087
3088 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3089 if (useless_type_conversion_p (dest, src))
3090 return true;
3091
3092 return false;
3093 }
3094
3095 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3096 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3097
3098 static bool
3099 valid_fixed_convert_types_p (tree type1, tree type2)
3100 {
3101 return (FIXED_POINT_TYPE_P (type1)
3102 && (INTEGRAL_TYPE_P (type2)
3103 || SCALAR_FLOAT_TYPE_P (type2)
3104 || FIXED_POINT_TYPE_P (type2)));
3105 }
3106
3107 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3108 is a problem, otherwise false. */
3109
3110 static bool
3111 verify_gimple_call (gimple stmt)
3112 {
3113 tree fn = gimple_call_fn (stmt);
3114 tree fntype, fndecl;
3115 unsigned i;
3116
3117 if (gimple_call_internal_p (stmt))
3118 {
3119 if (fn)
3120 {
3121 error ("gimple call has two targets");
3122 debug_generic_stmt (fn);
3123 return true;
3124 }
3125 }
3126 else
3127 {
3128 if (!fn)
3129 {
3130 error ("gimple call has no target");
3131 return true;
3132 }
3133 }
3134
3135 if (fn && !is_gimple_call_addr (fn))
3136 {
3137 error ("invalid function in gimple call");
3138 debug_generic_stmt (fn);
3139 return true;
3140 }
3141
3142 if (fn
3143 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3144 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3145 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3146 {
3147 error ("non-function in gimple call");
3148 return true;
3149 }
3150
3151 fndecl = gimple_call_fndecl (stmt);
3152 if (fndecl
3153 && TREE_CODE (fndecl) == FUNCTION_DECL
3154 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3155 && !DECL_PURE_P (fndecl)
3156 && !TREE_READONLY (fndecl))
3157 {
3158 error ("invalid pure const state for function");
3159 return true;
3160 }
3161
3162 if (gimple_call_lhs (stmt)
3163 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3164 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3165 {
3166 error ("invalid LHS in gimple call");
3167 return true;
3168 }
3169
3170 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3171 {
3172 error ("LHS in noreturn call");
3173 return true;
3174 }
3175
3176 fntype = gimple_call_fntype (stmt);
3177 if (fntype
3178 && gimple_call_lhs (stmt)
3179 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3180 TREE_TYPE (fntype))
3181 /* ??? At least C++ misses conversions at assignments from
3182 void * call results.
3183 ??? Java is completely off. Especially with functions
3184 returning java.lang.Object.
3185 For now simply allow arbitrary pointer type conversions. */
3186 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3187 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3188 {
3189 error ("invalid conversion in gimple call");
3190 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3191 debug_generic_stmt (TREE_TYPE (fntype));
3192 return true;
3193 }
3194
3195 if (gimple_call_chain (stmt)
3196 && !is_gimple_val (gimple_call_chain (stmt)))
3197 {
3198 error ("invalid static chain in gimple call");
3199 debug_generic_stmt (gimple_call_chain (stmt));
3200 return true;
3201 }
3202
3203 /* If there is a static chain argument, this should not be an indirect
3204 call, and the decl should have DECL_STATIC_CHAIN set. */
3205 if (gimple_call_chain (stmt))
3206 {
3207 if (!gimple_call_fndecl (stmt))
3208 {
3209 error ("static chain in indirect gimple call");
3210 return true;
3211 }
3212 fn = TREE_OPERAND (fn, 0);
3213
3214 if (!DECL_STATIC_CHAIN (fn))
3215 {
3216 error ("static chain with function that doesn%'t use one");
3217 return true;
3218 }
3219 }
3220
3221 /* ??? The C frontend passes unpromoted arguments in case it
3222 didn't see a function declaration before the call. So for now
3223 leave the call arguments mostly unverified. Once we gimplify
3224 unit-at-a-time we have a chance to fix this. */
3225
3226 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3227 {
3228 tree arg = gimple_call_arg (stmt, i);
3229 if ((is_gimple_reg_type (TREE_TYPE (arg))
3230 && !is_gimple_val (arg))
3231 || (!is_gimple_reg_type (TREE_TYPE (arg))
3232 && !is_gimple_lvalue (arg)))
3233 {
3234 error ("invalid argument to gimple call");
3235 debug_generic_expr (arg);
3236 return true;
3237 }
3238 }
3239
3240 return false;
3241 }
3242
3243 /* Verifies the gimple comparison with the result type TYPE and
3244 the operands OP0 and OP1. */
3245
3246 static bool
3247 verify_gimple_comparison (tree type, tree op0, tree op1)
3248 {
3249 tree op0_type = TREE_TYPE (op0);
3250 tree op1_type = TREE_TYPE (op1);
3251
3252 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3253 {
3254 error ("invalid operands in gimple comparison");
3255 return true;
3256 }
3257
3258 /* For comparisons we do not have the operations type as the
3259 effective type the comparison is carried out in. Instead
3260 we require that either the first operand is trivially
3261 convertible into the second, or the other way around.
3262 Because we special-case pointers to void we allow
3263 comparisons of pointers with the same mode as well. */
3264 if (!useless_type_conversion_p (op0_type, op1_type)
3265 && !useless_type_conversion_p (op1_type, op0_type)
3266 && (!POINTER_TYPE_P (op0_type)
3267 || !POINTER_TYPE_P (op1_type)
3268 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3269 {
3270 error ("mismatching comparison operand types");
3271 debug_generic_expr (op0_type);
3272 debug_generic_expr (op1_type);
3273 return true;
3274 }
3275
3276 /* The resulting type of a comparison may be an effective boolean type. */
3277 if (INTEGRAL_TYPE_P (type)
3278 && (TREE_CODE (type) == BOOLEAN_TYPE
3279 || TYPE_PRECISION (type) == 1))
3280 ;
3281 /* Or an integer vector type with the same size and element count
3282 as the comparison operand types. */
3283 else if (TREE_CODE (type) == VECTOR_TYPE
3284 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3285 {
3286 if (TREE_CODE (op0_type) != VECTOR_TYPE
3287 || TREE_CODE (op1_type) != VECTOR_TYPE)
3288 {
3289 error ("non-vector operands in vector comparison");
3290 debug_generic_expr (op0_type);
3291 debug_generic_expr (op1_type);
3292 return true;
3293 }
3294
3295 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3296 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3297 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type)))))
3298 {
3299 error ("invalid vector comparison resulting type");
3300 debug_generic_expr (type);
3301 return true;
3302 }
3303 }
3304 else
3305 {
3306 error ("bogus comparison result type");
3307 debug_generic_expr (type);
3308 return true;
3309 }
3310
3311 return false;
3312 }
3313
3314 /* Verify a gimple assignment statement STMT with an unary rhs.
3315 Returns true if anything is wrong. */
3316
3317 static bool
3318 verify_gimple_assign_unary (gimple stmt)
3319 {
3320 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3321 tree lhs = gimple_assign_lhs (stmt);
3322 tree lhs_type = TREE_TYPE (lhs);
3323 tree rhs1 = gimple_assign_rhs1 (stmt);
3324 tree rhs1_type = TREE_TYPE (rhs1);
3325
3326 if (!is_gimple_reg (lhs))
3327 {
3328 error ("non-register as LHS of unary operation");
3329 return true;
3330 }
3331
3332 if (!is_gimple_val (rhs1))
3333 {
3334 error ("invalid operand in unary operation");
3335 return true;
3336 }
3337
3338 /* First handle conversions. */
3339 switch (rhs_code)
3340 {
3341 CASE_CONVERT:
3342 {
3343 /* Allow conversions between integral types and pointers only if
3344 there is no sign or zero extension involved.
3345 For targets were the precision of ptrofftype doesn't match that
3346 of pointers we need to allow arbitrary conversions from and
3347 to ptrofftype. */
3348 if ((POINTER_TYPE_P (lhs_type)
3349 && INTEGRAL_TYPE_P (rhs1_type)
3350 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3351 || ptrofftype_p (rhs1_type)))
3352 || (POINTER_TYPE_P (rhs1_type)
3353 && INTEGRAL_TYPE_P (lhs_type)
3354 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3355 || ptrofftype_p (sizetype))))
3356 return false;
3357
3358 /* Allow conversion from integer to offset type and vice versa. */
3359 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3360 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3361 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3362 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3363 return false;
3364
3365 /* Otherwise assert we are converting between types of the
3366 same kind. */
3367 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3368 {
3369 error ("invalid types in nop conversion");
3370 debug_generic_expr (lhs_type);
3371 debug_generic_expr (rhs1_type);
3372 return true;
3373 }
3374
3375 return false;
3376 }
3377
3378 case ADDR_SPACE_CONVERT_EXPR:
3379 {
3380 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3381 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3382 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3383 {
3384 error ("invalid types in address space conversion");
3385 debug_generic_expr (lhs_type);
3386 debug_generic_expr (rhs1_type);
3387 return true;
3388 }
3389
3390 return false;
3391 }
3392
3393 case FIXED_CONVERT_EXPR:
3394 {
3395 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3396 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3397 {
3398 error ("invalid types in fixed-point conversion");
3399 debug_generic_expr (lhs_type);
3400 debug_generic_expr (rhs1_type);
3401 return true;
3402 }
3403
3404 return false;
3405 }
3406
3407 case FLOAT_EXPR:
3408 {
3409 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3410 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3411 || !VECTOR_FLOAT_TYPE_P(lhs_type)))
3412 {
3413 error ("invalid types in conversion to floating point");
3414 debug_generic_expr (lhs_type);
3415 debug_generic_expr (rhs1_type);
3416 return true;
3417 }
3418
3419 return false;
3420 }
3421
3422 case FIX_TRUNC_EXPR:
3423 {
3424 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3425 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3426 || !VECTOR_FLOAT_TYPE_P(rhs1_type)))
3427 {
3428 error ("invalid types in conversion to integer");
3429 debug_generic_expr (lhs_type);
3430 debug_generic_expr (rhs1_type);
3431 return true;
3432 }
3433
3434 return false;
3435 }
3436
3437 case VEC_UNPACK_HI_EXPR:
3438 case VEC_UNPACK_LO_EXPR:
3439 case REDUC_MAX_EXPR:
3440 case REDUC_MIN_EXPR:
3441 case REDUC_PLUS_EXPR:
3442 case VEC_UNPACK_FLOAT_HI_EXPR:
3443 case VEC_UNPACK_FLOAT_LO_EXPR:
3444 /* FIXME. */
3445 return false;
3446
3447 case NEGATE_EXPR:
3448 case ABS_EXPR:
3449 case BIT_NOT_EXPR:
3450 case PAREN_EXPR:
3451 case NON_LVALUE_EXPR:
3452 case CONJ_EXPR:
3453 break;
3454
3455 default:
3456 gcc_unreachable ();
3457 }
3458
3459 /* For the remaining codes assert there is no conversion involved. */
3460 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3461 {
3462 error ("non-trivial conversion in unary operation");
3463 debug_generic_expr (lhs_type);
3464 debug_generic_expr (rhs1_type);
3465 return true;
3466 }
3467
3468 return false;
3469 }
3470
3471 /* Verify a gimple assignment statement STMT with a binary rhs.
3472 Returns true if anything is wrong. */
3473
3474 static bool
3475 verify_gimple_assign_binary (gimple stmt)
3476 {
3477 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3478 tree lhs = gimple_assign_lhs (stmt);
3479 tree lhs_type = TREE_TYPE (lhs);
3480 tree rhs1 = gimple_assign_rhs1 (stmt);
3481 tree rhs1_type = TREE_TYPE (rhs1);
3482 tree rhs2 = gimple_assign_rhs2 (stmt);
3483 tree rhs2_type = TREE_TYPE (rhs2);
3484
3485 if (!is_gimple_reg (lhs))
3486 {
3487 error ("non-register as LHS of binary operation");
3488 return true;
3489 }
3490
3491 if (!is_gimple_val (rhs1)
3492 || !is_gimple_val (rhs2))
3493 {
3494 error ("invalid operands in binary operation");
3495 return true;
3496 }
3497
3498 /* First handle operations that involve different types. */
3499 switch (rhs_code)
3500 {
3501 case COMPLEX_EXPR:
3502 {
3503 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3504 || !(INTEGRAL_TYPE_P (rhs1_type)
3505 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3506 || !(INTEGRAL_TYPE_P (rhs2_type)
3507 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3508 {
3509 error ("type mismatch in complex expression");
3510 debug_generic_expr (lhs_type);
3511 debug_generic_expr (rhs1_type);
3512 debug_generic_expr (rhs2_type);
3513 return true;
3514 }
3515
3516 return false;
3517 }
3518
3519 case LSHIFT_EXPR:
3520 case RSHIFT_EXPR:
3521 case LROTATE_EXPR:
3522 case RROTATE_EXPR:
3523 {
3524 /* Shifts and rotates are ok on integral types, fixed point
3525 types and integer vector types. */
3526 if ((!INTEGRAL_TYPE_P (rhs1_type)
3527 && !FIXED_POINT_TYPE_P (rhs1_type)
3528 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3529 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3530 || (!INTEGRAL_TYPE_P (rhs2_type)
3531 /* Vector shifts of vectors are also ok. */
3532 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3533 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3534 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3535 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3536 || !useless_type_conversion_p (lhs_type, rhs1_type))
3537 {
3538 error ("type mismatch in shift expression");
3539 debug_generic_expr (lhs_type);
3540 debug_generic_expr (rhs1_type);
3541 debug_generic_expr (rhs2_type);
3542 return true;
3543 }
3544
3545 return false;
3546 }
3547
3548 case VEC_LSHIFT_EXPR:
3549 case VEC_RSHIFT_EXPR:
3550 {
3551 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3552 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3553 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3554 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3555 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3556 || (!INTEGRAL_TYPE_P (rhs2_type)
3557 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3558 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3559 || !useless_type_conversion_p (lhs_type, rhs1_type))
3560 {
3561 error ("type mismatch in vector shift expression");
3562 debug_generic_expr (lhs_type);
3563 debug_generic_expr (rhs1_type);
3564 debug_generic_expr (rhs2_type);
3565 return true;
3566 }
3567 /* For shifting a vector of non-integral components we
3568 only allow shifting by a constant multiple of the element size. */
3569 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3570 && (TREE_CODE (rhs2) != INTEGER_CST
3571 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3572 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3573 {
3574 error ("non-element sized vector shift of floating point vector");
3575 return true;
3576 }
3577
3578 return false;
3579 }
3580
3581 case WIDEN_LSHIFT_EXPR:
3582 {
3583 if (!INTEGRAL_TYPE_P (lhs_type)
3584 || !INTEGRAL_TYPE_P (rhs1_type)
3585 || TREE_CODE (rhs2) != INTEGER_CST
3586 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3587 {
3588 error ("type mismatch in widening vector shift expression");
3589 debug_generic_expr (lhs_type);
3590 debug_generic_expr (rhs1_type);
3591 debug_generic_expr (rhs2_type);
3592 return true;
3593 }
3594
3595 return false;
3596 }
3597
3598 case VEC_WIDEN_LSHIFT_HI_EXPR:
3599 case VEC_WIDEN_LSHIFT_LO_EXPR:
3600 {
3601 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3602 || TREE_CODE (lhs_type) != VECTOR_TYPE
3603 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3604 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3605 || TREE_CODE (rhs2) != INTEGER_CST
3606 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3607 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3608 {
3609 error ("type mismatch in widening vector shift expression");
3610 debug_generic_expr (lhs_type);
3611 debug_generic_expr (rhs1_type);
3612 debug_generic_expr (rhs2_type);
3613 return true;
3614 }
3615
3616 return false;
3617 }
3618
3619 case PLUS_EXPR:
3620 case MINUS_EXPR:
3621 {
3622 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3623 ??? This just makes the checker happy and may not be what is
3624 intended. */
3625 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3626 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3627 {
3628 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3629 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3630 {
3631 error ("invalid non-vector operands to vector valued plus");
3632 return true;
3633 }
3634 lhs_type = TREE_TYPE (lhs_type);
3635 rhs1_type = TREE_TYPE (rhs1_type);
3636 rhs2_type = TREE_TYPE (rhs2_type);
3637 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3638 the pointer to 2nd place. */
3639 if (POINTER_TYPE_P (rhs2_type))
3640 {
3641 tree tem = rhs1_type;
3642 rhs1_type = rhs2_type;
3643 rhs2_type = tem;
3644 }
3645 goto do_pointer_plus_expr_check;
3646 }
3647 if (POINTER_TYPE_P (lhs_type)
3648 || POINTER_TYPE_P (rhs1_type)
3649 || POINTER_TYPE_P (rhs2_type))
3650 {
3651 error ("invalid (pointer) operands to plus/minus");
3652 return true;
3653 }
3654
3655 /* Continue with generic binary expression handling. */
3656 break;
3657 }
3658
3659 case POINTER_PLUS_EXPR:
3660 {
3661 do_pointer_plus_expr_check:
3662 if (!POINTER_TYPE_P (rhs1_type)
3663 || !useless_type_conversion_p (lhs_type, rhs1_type)
3664 || !ptrofftype_p (rhs2_type))
3665 {
3666 error ("type mismatch in pointer plus expression");
3667 debug_generic_stmt (lhs_type);
3668 debug_generic_stmt (rhs1_type);
3669 debug_generic_stmt (rhs2_type);
3670 return true;
3671 }
3672
3673 return false;
3674 }
3675
3676 case TRUTH_ANDIF_EXPR:
3677 case TRUTH_ORIF_EXPR:
3678 case TRUTH_AND_EXPR:
3679 case TRUTH_OR_EXPR:
3680 case TRUTH_XOR_EXPR:
3681
3682 gcc_unreachable ();
3683
3684 case LT_EXPR:
3685 case LE_EXPR:
3686 case GT_EXPR:
3687 case GE_EXPR:
3688 case EQ_EXPR:
3689 case NE_EXPR:
3690 case UNORDERED_EXPR:
3691 case ORDERED_EXPR:
3692 case UNLT_EXPR:
3693 case UNLE_EXPR:
3694 case UNGT_EXPR:
3695 case UNGE_EXPR:
3696 case UNEQ_EXPR:
3697 case LTGT_EXPR:
3698 /* Comparisons are also binary, but the result type is not
3699 connected to the operand types. */
3700 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3701
3702 case WIDEN_MULT_EXPR:
3703 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3704 return true;
3705 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3706 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3707
3708 case WIDEN_SUM_EXPR:
3709 case VEC_WIDEN_MULT_HI_EXPR:
3710 case VEC_WIDEN_MULT_LO_EXPR:
3711 case VEC_PACK_TRUNC_EXPR:
3712 case VEC_PACK_SAT_EXPR:
3713 case VEC_PACK_FIX_TRUNC_EXPR:
3714 /* FIXME. */
3715 return false;
3716
3717 case MULT_EXPR:
3718 case TRUNC_DIV_EXPR:
3719 case CEIL_DIV_EXPR:
3720 case FLOOR_DIV_EXPR:
3721 case ROUND_DIV_EXPR:
3722 case TRUNC_MOD_EXPR:
3723 case CEIL_MOD_EXPR:
3724 case FLOOR_MOD_EXPR:
3725 case ROUND_MOD_EXPR:
3726 case RDIV_EXPR:
3727 case EXACT_DIV_EXPR:
3728 case MIN_EXPR:
3729 case MAX_EXPR:
3730 case BIT_IOR_EXPR:
3731 case BIT_XOR_EXPR:
3732 case BIT_AND_EXPR:
3733 /* Continue with generic binary expression handling. */
3734 break;
3735
3736 default:
3737 gcc_unreachable ();
3738 }
3739
3740 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3741 || !useless_type_conversion_p (lhs_type, rhs2_type))
3742 {
3743 error ("type mismatch in binary expression");
3744 debug_generic_stmt (lhs_type);
3745 debug_generic_stmt (rhs1_type);
3746 debug_generic_stmt (rhs2_type);
3747 return true;
3748 }
3749
3750 return false;
3751 }
3752
3753 /* Verify a gimple assignment statement STMT with a ternary rhs.
3754 Returns true if anything is wrong. */
3755
3756 static bool
3757 verify_gimple_assign_ternary (gimple stmt)
3758 {
3759 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3760 tree lhs = gimple_assign_lhs (stmt);
3761 tree lhs_type = TREE_TYPE (lhs);
3762 tree rhs1 = gimple_assign_rhs1 (stmt);
3763 tree rhs1_type = TREE_TYPE (rhs1);
3764 tree rhs2 = gimple_assign_rhs2 (stmt);
3765 tree rhs2_type = TREE_TYPE (rhs2);
3766 tree rhs3 = gimple_assign_rhs3 (stmt);
3767 tree rhs3_type = TREE_TYPE (rhs3);
3768
3769 if (!is_gimple_reg (lhs))
3770 {
3771 error ("non-register as LHS of ternary operation");
3772 return true;
3773 }
3774
3775 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3776 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3777 || !is_gimple_val (rhs2)
3778 || !is_gimple_val (rhs3))
3779 {
3780 error ("invalid operands in ternary operation");
3781 return true;
3782 }
3783
3784 /* First handle operations that involve different types. */
3785 switch (rhs_code)
3786 {
3787 case WIDEN_MULT_PLUS_EXPR:
3788 case WIDEN_MULT_MINUS_EXPR:
3789 if ((!INTEGRAL_TYPE_P (rhs1_type)
3790 && !FIXED_POINT_TYPE_P (rhs1_type))
3791 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3792 || !useless_type_conversion_p (lhs_type, rhs3_type)
3793 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3794 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3795 {
3796 error ("type mismatch in widening multiply-accumulate expression");
3797 debug_generic_expr (lhs_type);
3798 debug_generic_expr (rhs1_type);
3799 debug_generic_expr (rhs2_type);
3800 debug_generic_expr (rhs3_type);
3801 return true;
3802 }
3803 break;
3804
3805 case FMA_EXPR:
3806 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3807 || !useless_type_conversion_p (lhs_type, rhs2_type)
3808 || !useless_type_conversion_p (lhs_type, rhs3_type))
3809 {
3810 error ("type mismatch in fused multiply-add expression");
3811 debug_generic_expr (lhs_type);
3812 debug_generic_expr (rhs1_type);
3813 debug_generic_expr (rhs2_type);
3814 debug_generic_expr (rhs3_type);
3815 return true;
3816 }
3817 break;
3818
3819 case COND_EXPR:
3820 case VEC_COND_EXPR:
3821 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3822 || !useless_type_conversion_p (lhs_type, rhs3_type))
3823 {
3824 error ("type mismatch in conditional expression");
3825 debug_generic_expr (lhs_type);
3826 debug_generic_expr (rhs2_type);
3827 debug_generic_expr (rhs3_type);
3828 return true;
3829 }
3830 break;
3831
3832 case VEC_PERM_EXPR:
3833 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3834 || !useless_type_conversion_p (lhs_type, rhs2_type))
3835 {
3836 error ("type mismatch in vector permute expression");
3837 debug_generic_expr (lhs_type);
3838 debug_generic_expr (rhs1_type);
3839 debug_generic_expr (rhs2_type);
3840 debug_generic_expr (rhs3_type);
3841 return true;
3842 }
3843
3844 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3845 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3846 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3847 {
3848 error ("vector types expected in vector permute expression");
3849 debug_generic_expr (lhs_type);
3850 debug_generic_expr (rhs1_type);
3851 debug_generic_expr (rhs2_type);
3852 debug_generic_expr (rhs3_type);
3853 return true;
3854 }
3855
3856 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3857 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3858 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3859 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3860 != TYPE_VECTOR_SUBPARTS (lhs_type))
3861 {
3862 error ("vectors with different element number found "
3863 "in vector permute expression");
3864 debug_generic_expr (lhs_type);
3865 debug_generic_expr (rhs1_type);
3866 debug_generic_expr (rhs2_type);
3867 debug_generic_expr (rhs3_type);
3868 return true;
3869 }
3870
3871 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3872 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3873 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3874 {
3875 error ("invalid mask type in vector permute expression");
3876 debug_generic_expr (lhs_type);
3877 debug_generic_expr (rhs1_type);
3878 debug_generic_expr (rhs2_type);
3879 debug_generic_expr (rhs3_type);
3880 return true;
3881 }
3882
3883 return false;
3884
3885 case DOT_PROD_EXPR:
3886 case REALIGN_LOAD_EXPR:
3887 /* FIXME. */
3888 return false;
3889
3890 default:
3891 gcc_unreachable ();
3892 }
3893 return false;
3894 }
3895
3896 /* Verify a gimple assignment statement STMT with a single rhs.
3897 Returns true if anything is wrong. */
3898
3899 static bool
3900 verify_gimple_assign_single (gimple stmt)
3901 {
3902 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3903 tree lhs = gimple_assign_lhs (stmt);
3904 tree lhs_type = TREE_TYPE (lhs);
3905 tree rhs1 = gimple_assign_rhs1 (stmt);
3906 tree rhs1_type = TREE_TYPE (rhs1);
3907 bool res = false;
3908
3909 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3910 {
3911 error ("non-trivial conversion at assignment");
3912 debug_generic_expr (lhs_type);
3913 debug_generic_expr (rhs1_type);
3914 return true;
3915 }
3916
3917 if (handled_component_p (lhs))
3918 res |= verify_types_in_gimple_reference (lhs, true);
3919
3920 /* Special codes we cannot handle via their class. */
3921 switch (rhs_code)
3922 {
3923 case ADDR_EXPR:
3924 {
3925 tree op = TREE_OPERAND (rhs1, 0);
3926 if (!is_gimple_addressable (op))
3927 {
3928 error ("invalid operand in unary expression");
3929 return true;
3930 }
3931
3932 /* Technically there is no longer a need for matching types, but
3933 gimple hygiene asks for this check. In LTO we can end up
3934 combining incompatible units and thus end up with addresses
3935 of globals that change their type to a common one. */
3936 if (!in_lto_p
3937 && !types_compatible_p (TREE_TYPE (op),
3938 TREE_TYPE (TREE_TYPE (rhs1)))
3939 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3940 TREE_TYPE (op)))
3941 {
3942 error ("type mismatch in address expression");
3943 debug_generic_stmt (TREE_TYPE (rhs1));
3944 debug_generic_stmt (TREE_TYPE (op));
3945 return true;
3946 }
3947
3948 return verify_types_in_gimple_reference (op, true);
3949 }
3950
3951 /* tcc_reference */
3952 case INDIRECT_REF:
3953 error ("INDIRECT_REF in gimple IL");
3954 return true;
3955
3956 case COMPONENT_REF:
3957 case BIT_FIELD_REF:
3958 case ARRAY_REF:
3959 case ARRAY_RANGE_REF:
3960 case VIEW_CONVERT_EXPR:
3961 case REALPART_EXPR:
3962 case IMAGPART_EXPR:
3963 case TARGET_MEM_REF:
3964 case MEM_REF:
3965 if (!is_gimple_reg (lhs)
3966 && is_gimple_reg_type (TREE_TYPE (lhs)))
3967 {
3968 error ("invalid rhs for gimple memory store");
3969 debug_generic_stmt (lhs);
3970 debug_generic_stmt (rhs1);
3971 return true;
3972 }
3973 return res || verify_types_in_gimple_reference (rhs1, false);
3974
3975 /* tcc_constant */
3976 case SSA_NAME:
3977 case INTEGER_CST:
3978 case REAL_CST:
3979 case FIXED_CST:
3980 case COMPLEX_CST:
3981 case VECTOR_CST:
3982 case STRING_CST:
3983 return res;
3984
3985 /* tcc_declaration */
3986 case CONST_DECL:
3987 return res;
3988 case VAR_DECL:
3989 case PARM_DECL:
3990 if (!is_gimple_reg (lhs)
3991 && !is_gimple_reg (rhs1)
3992 && is_gimple_reg_type (TREE_TYPE (lhs)))
3993 {
3994 error ("invalid rhs for gimple memory store");
3995 debug_generic_stmt (lhs);
3996 debug_generic_stmt (rhs1);
3997 return true;
3998 }
3999 return res;
4000
4001 case CONSTRUCTOR:
4002 case OBJ_TYPE_REF:
4003 case ASSERT_EXPR:
4004 case WITH_SIZE_EXPR:
4005 /* FIXME. */
4006 return res;
4007
4008 default:;
4009 }
4010
4011 return res;
4012 }
4013
4014 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4015 is a problem, otherwise false. */
4016
4017 static bool
4018 verify_gimple_assign (gimple stmt)
4019 {
4020 switch (gimple_assign_rhs_class (stmt))
4021 {
4022 case GIMPLE_SINGLE_RHS:
4023 return verify_gimple_assign_single (stmt);
4024
4025 case GIMPLE_UNARY_RHS:
4026 return verify_gimple_assign_unary (stmt);
4027
4028 case GIMPLE_BINARY_RHS:
4029 return verify_gimple_assign_binary (stmt);
4030
4031 case GIMPLE_TERNARY_RHS:
4032 return verify_gimple_assign_ternary (stmt);
4033
4034 default:
4035 gcc_unreachable ();
4036 }
4037 }
4038
4039 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4040 is a problem, otherwise false. */
4041
4042 static bool
4043 verify_gimple_return (gimple stmt)
4044 {
4045 tree op = gimple_return_retval (stmt);
4046 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4047
4048 /* We cannot test for present return values as we do not fix up missing
4049 return values from the original source. */
4050 if (op == NULL)
4051 return false;
4052
4053 if (!is_gimple_val (op)
4054 && TREE_CODE (op) != RESULT_DECL)
4055 {
4056 error ("invalid operand in return statement");
4057 debug_generic_stmt (op);
4058 return true;
4059 }
4060
4061 if ((TREE_CODE (op) == RESULT_DECL
4062 && DECL_BY_REFERENCE (op))
4063 || (TREE_CODE (op) == SSA_NAME
4064 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4065 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4066 op = TREE_TYPE (op);
4067
4068 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4069 {
4070 error ("invalid conversion in return statement");
4071 debug_generic_stmt (restype);
4072 debug_generic_stmt (TREE_TYPE (op));
4073 return true;
4074 }
4075
4076 return false;
4077 }
4078
4079
4080 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4081 is a problem, otherwise false. */
4082
4083 static bool
4084 verify_gimple_goto (gimple stmt)
4085 {
4086 tree dest = gimple_goto_dest (stmt);
4087
4088 /* ??? We have two canonical forms of direct goto destinations, a
4089 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4090 if (TREE_CODE (dest) != LABEL_DECL
4091 && (!is_gimple_val (dest)
4092 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4093 {
4094 error ("goto destination is neither a label nor a pointer");
4095 return true;
4096 }
4097
4098 return false;
4099 }
4100
4101 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4102 is a problem, otherwise false. */
4103
4104 static bool
4105 verify_gimple_switch (gimple stmt)
4106 {
4107 if (!is_gimple_val (gimple_switch_index (stmt)))
4108 {
4109 error ("invalid operand to switch statement");
4110 debug_generic_stmt (gimple_switch_index (stmt));
4111 return true;
4112 }
4113
4114 return false;
4115 }
4116
4117 /* Verify a gimple debug statement STMT.
4118 Returns true if anything is wrong. */
4119
4120 static bool
4121 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4122 {
4123 /* There isn't much that could be wrong in a gimple debug stmt. A
4124 gimple debug bind stmt, for example, maps a tree, that's usually
4125 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4126 component or member of an aggregate type, to another tree, that
4127 can be an arbitrary expression. These stmts expand into debug
4128 insns, and are converted to debug notes by var-tracking.c. */
4129 return false;
4130 }
4131
4132 /* Verify a gimple label statement STMT.
4133 Returns true if anything is wrong. */
4134
4135 static bool
4136 verify_gimple_label (gimple stmt)
4137 {
4138 tree decl = gimple_label_label (stmt);
4139 int uid;
4140 bool err = false;
4141
4142 if (TREE_CODE (decl) != LABEL_DECL)
4143 return true;
4144
4145 uid = LABEL_DECL_UID (decl);
4146 if (cfun->cfg
4147 && (uid == -1
4148 || VEC_index (basic_block,
4149 label_to_block_map, uid) != gimple_bb (stmt)))
4150 {
4151 error ("incorrect entry in label_to_block_map");
4152 err |= true;
4153 }
4154
4155 uid = EH_LANDING_PAD_NR (decl);
4156 if (uid)
4157 {
4158 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4159 if (decl != lp->post_landing_pad)
4160 {
4161 error ("incorrect setting of landing pad number");
4162 err |= true;
4163 }
4164 }
4165
4166 return err;
4167 }
4168
4169 /* Verify the GIMPLE statement STMT. Returns true if there is an
4170 error, otherwise false. */
4171
4172 static bool
4173 verify_gimple_stmt (gimple stmt)
4174 {
4175 switch (gimple_code (stmt))
4176 {
4177 case GIMPLE_ASSIGN:
4178 return verify_gimple_assign (stmt);
4179
4180 case GIMPLE_LABEL:
4181 return verify_gimple_label (stmt);
4182
4183 case GIMPLE_CALL:
4184 return verify_gimple_call (stmt);
4185
4186 case GIMPLE_COND:
4187 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4188 {
4189 error ("invalid comparison code in gimple cond");
4190 return true;
4191 }
4192 if (!(!gimple_cond_true_label (stmt)
4193 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4194 || !(!gimple_cond_false_label (stmt)
4195 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4196 {
4197 error ("invalid labels in gimple cond");
4198 return true;
4199 }
4200
4201 return verify_gimple_comparison (boolean_type_node,
4202 gimple_cond_lhs (stmt),
4203 gimple_cond_rhs (stmt));
4204
4205 case GIMPLE_GOTO:
4206 return verify_gimple_goto (stmt);
4207
4208 case GIMPLE_SWITCH:
4209 return verify_gimple_switch (stmt);
4210
4211 case GIMPLE_RETURN:
4212 return verify_gimple_return (stmt);
4213
4214 case GIMPLE_ASM:
4215 return false;
4216
4217 case GIMPLE_TRANSACTION:
4218 return verify_gimple_transaction (stmt);
4219
4220 /* Tuples that do not have tree operands. */
4221 case GIMPLE_NOP:
4222 case GIMPLE_PREDICT:
4223 case GIMPLE_RESX:
4224 case GIMPLE_EH_DISPATCH:
4225 case GIMPLE_EH_MUST_NOT_THROW:
4226 return false;
4227
4228 CASE_GIMPLE_OMP:
4229 /* OpenMP directives are validated by the FE and never operated
4230 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4231 non-gimple expressions when the main index variable has had
4232 its address taken. This does not affect the loop itself
4233 because the header of an GIMPLE_OMP_FOR is merely used to determine
4234 how to setup the parallel iteration. */
4235 return false;
4236
4237 case GIMPLE_DEBUG:
4238 return verify_gimple_debug (stmt);
4239
4240 default:
4241 gcc_unreachable ();
4242 }
4243 }
4244
4245 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4246 and false otherwise. */
4247
4248 static bool
4249 verify_gimple_phi (gimple phi)
4250 {
4251 bool err = false;
4252 unsigned i;
4253 tree phi_result = gimple_phi_result (phi);
4254 bool virtual_p;
4255
4256 if (!phi_result)
4257 {
4258 error ("invalid PHI result");
4259 return true;
4260 }
4261
4262 virtual_p = !is_gimple_reg (phi_result);
4263 if (TREE_CODE (phi_result) != SSA_NAME
4264 || (virtual_p
4265 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4266 {
4267 error ("invalid PHI result");
4268 err = true;
4269 }
4270
4271 for (i = 0; i < gimple_phi_num_args (phi); i++)
4272 {
4273 tree t = gimple_phi_arg_def (phi, i);
4274
4275 if (!t)
4276 {
4277 error ("missing PHI def");
4278 err |= true;
4279 continue;
4280 }
4281 /* Addressable variables do have SSA_NAMEs but they
4282 are not considered gimple values. */
4283 else if ((TREE_CODE (t) == SSA_NAME
4284 && virtual_p != !is_gimple_reg (t))
4285 || (virtual_p
4286 && (TREE_CODE (t) != SSA_NAME
4287 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4288 || (!virtual_p
4289 && !is_gimple_val (t)))
4290 {
4291 error ("invalid PHI argument");
4292 debug_generic_expr (t);
4293 err |= true;
4294 }
4295 #ifdef ENABLE_TYPES_CHECKING
4296 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4297 {
4298 error ("incompatible types in PHI argument %u", i);
4299 debug_generic_stmt (TREE_TYPE (phi_result));
4300 debug_generic_stmt (TREE_TYPE (t));
4301 err |= true;
4302 }
4303 #endif
4304 }
4305
4306 return err;
4307 }
4308
4309 /* Verify the GIMPLE statements inside the sequence STMTS. */
4310
4311 static bool
4312 verify_gimple_in_seq_2 (gimple_seq stmts)
4313 {
4314 gimple_stmt_iterator ittr;
4315 bool err = false;
4316
4317 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4318 {
4319 gimple stmt = gsi_stmt (ittr);
4320
4321 switch (gimple_code (stmt))
4322 {
4323 case GIMPLE_BIND:
4324 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4325 break;
4326
4327 case GIMPLE_TRY:
4328 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4329 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4330 break;
4331
4332 case GIMPLE_EH_FILTER:
4333 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4334 break;
4335
4336 case GIMPLE_EH_ELSE:
4337 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4338 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4339 break;
4340
4341 case GIMPLE_CATCH:
4342 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4343 break;
4344
4345 case GIMPLE_TRANSACTION:
4346 err |= verify_gimple_transaction (stmt);
4347 break;
4348
4349 default:
4350 {
4351 bool err2 = verify_gimple_stmt (stmt);
4352 if (err2)
4353 debug_gimple_stmt (stmt);
4354 err |= err2;
4355 }
4356 }
4357 }
4358
4359 return err;
4360 }
4361
4362 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4363 is a problem, otherwise false. */
4364
4365 static bool
4366 verify_gimple_transaction (gimple stmt)
4367 {
4368 tree lab = gimple_transaction_label (stmt);
4369 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4370 return true;
4371 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4372 }
4373
4374
4375 /* Verify the GIMPLE statements inside the statement list STMTS. */
4376
4377 DEBUG_FUNCTION void
4378 verify_gimple_in_seq (gimple_seq stmts)
4379 {
4380 timevar_push (TV_TREE_STMT_VERIFY);
4381 if (verify_gimple_in_seq_2 (stmts))
4382 internal_error ("verify_gimple failed");
4383 timevar_pop (TV_TREE_STMT_VERIFY);
4384 }
4385
4386 /* Return true when the T can be shared. */
4387
4388 bool
4389 tree_node_can_be_shared (tree t)
4390 {
4391 if (IS_TYPE_OR_DECL_P (t)
4392 || is_gimple_min_invariant (t)
4393 || TREE_CODE (t) == SSA_NAME
4394 || t == error_mark_node
4395 || TREE_CODE (t) == IDENTIFIER_NODE)
4396 return true;
4397
4398 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4399 return true;
4400
4401 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4402 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4403 || TREE_CODE (t) == COMPONENT_REF
4404 || TREE_CODE (t) == REALPART_EXPR
4405 || TREE_CODE (t) == IMAGPART_EXPR)
4406 t = TREE_OPERAND (t, 0);
4407
4408 if (DECL_P (t))
4409 return true;
4410
4411 return false;
4412 }
4413
4414 /* Called via walk_gimple_stmt. Verify tree sharing. */
4415
4416 static tree
4417 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4418 {
4419 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4420 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4421
4422 if (tree_node_can_be_shared (*tp))
4423 {
4424 *walk_subtrees = false;
4425 return NULL;
4426 }
4427
4428 if (pointer_set_insert (visited, *tp))
4429 return *tp;
4430
4431 return NULL;
4432 }
4433
4434 static bool eh_error_found;
4435 static int
4436 verify_eh_throw_stmt_node (void **slot, void *data)
4437 {
4438 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4439 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4440
4441 if (!pointer_set_contains (visited, node->stmt))
4442 {
4443 error ("dead STMT in EH table");
4444 debug_gimple_stmt (node->stmt);
4445 eh_error_found = true;
4446 }
4447 return 1;
4448 }
4449
4450 /* Verify the GIMPLE statements in the CFG of FN. */
4451
4452 DEBUG_FUNCTION void
4453 verify_gimple_in_cfg (struct function *fn)
4454 {
4455 basic_block bb;
4456 bool err = false;
4457 struct pointer_set_t *visited, *visited_stmts;
4458
4459 timevar_push (TV_TREE_STMT_VERIFY);
4460 visited = pointer_set_create ();
4461 visited_stmts = pointer_set_create ();
4462
4463 FOR_EACH_BB_FN (bb, fn)
4464 {
4465 gimple_stmt_iterator gsi;
4466
4467 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4468 {
4469 gimple phi = gsi_stmt (gsi);
4470 bool err2 = false;
4471 unsigned i;
4472
4473 pointer_set_insert (visited_stmts, phi);
4474
4475 if (gimple_bb (phi) != bb)
4476 {
4477 error ("gimple_bb (phi) is set to a wrong basic block");
4478 err2 = true;
4479 }
4480
4481 err2 |= verify_gimple_phi (phi);
4482
4483 for (i = 0; i < gimple_phi_num_args (phi); i++)
4484 {
4485 tree arg = gimple_phi_arg_def (phi, i);
4486 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4487 if (addr)
4488 {
4489 error ("incorrect sharing of tree nodes");
4490 debug_generic_expr (addr);
4491 err2 |= true;
4492 }
4493 }
4494
4495 if (err2)
4496 debug_gimple_stmt (phi);
4497 err |= err2;
4498 }
4499
4500 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4501 {
4502 gimple stmt = gsi_stmt (gsi);
4503 bool err2 = false;
4504 struct walk_stmt_info wi;
4505 tree addr;
4506 int lp_nr;
4507
4508 pointer_set_insert (visited_stmts, stmt);
4509
4510 if (gimple_bb (stmt) != bb)
4511 {
4512 error ("gimple_bb (stmt) is set to a wrong basic block");
4513 err2 = true;
4514 }
4515
4516 err2 |= verify_gimple_stmt (stmt);
4517
4518 memset (&wi, 0, sizeof (wi));
4519 wi.info = (void *) visited;
4520 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4521 if (addr)
4522 {
4523 error ("incorrect sharing of tree nodes");
4524 debug_generic_expr (addr);
4525 err2 |= true;
4526 }
4527
4528 /* ??? Instead of not checking these stmts at all the walker
4529 should know its context via wi. */
4530 if (!is_gimple_debug (stmt)
4531 && !is_gimple_omp (stmt))
4532 {
4533 memset (&wi, 0, sizeof (wi));
4534 addr = walk_gimple_op (stmt, verify_expr, &wi);
4535 if (addr)
4536 {
4537 debug_generic_expr (addr);
4538 inform (gimple_location (stmt), "in statement");
4539 err2 |= true;
4540 }
4541 }
4542
4543 /* If the statement is marked as part of an EH region, then it is
4544 expected that the statement could throw. Verify that when we
4545 have optimizations that simplify statements such that we prove
4546 that they cannot throw, that we update other data structures
4547 to match. */
4548 lp_nr = lookup_stmt_eh_lp (stmt);
4549 if (lp_nr != 0)
4550 {
4551 if (!stmt_could_throw_p (stmt))
4552 {
4553 error ("statement marked for throw, but doesn%'t");
4554 err2 |= true;
4555 }
4556 else if (lp_nr > 0
4557 && !gsi_one_before_end_p (gsi)
4558 && stmt_can_throw_internal (stmt))
4559 {
4560 error ("statement marked for throw in middle of block");
4561 err2 |= true;
4562 }
4563 }
4564
4565 if (err2)
4566 debug_gimple_stmt (stmt);
4567 err |= err2;
4568 }
4569 }
4570
4571 eh_error_found = false;
4572 if (get_eh_throw_stmt_table (cfun))
4573 htab_traverse (get_eh_throw_stmt_table (cfun),
4574 verify_eh_throw_stmt_node,
4575 visited_stmts);
4576
4577 if (err || eh_error_found)
4578 internal_error ("verify_gimple failed");
4579
4580 pointer_set_destroy (visited);
4581 pointer_set_destroy (visited_stmts);
4582 verify_histograms ();
4583 timevar_pop (TV_TREE_STMT_VERIFY);
4584 }
4585
4586
4587 /* Verifies that the flow information is OK. */
4588
4589 static int
4590 gimple_verify_flow_info (void)
4591 {
4592 int err = 0;
4593 basic_block bb;
4594 gimple_stmt_iterator gsi;
4595 gimple stmt;
4596 edge e;
4597 edge_iterator ei;
4598
4599 if (ENTRY_BLOCK_PTR->il.gimple)
4600 {
4601 error ("ENTRY_BLOCK has IL associated with it");
4602 err = 1;
4603 }
4604
4605 if (EXIT_BLOCK_PTR->il.gimple)
4606 {
4607 error ("EXIT_BLOCK has IL associated with it");
4608 err = 1;
4609 }
4610
4611 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4612 if (e->flags & EDGE_FALLTHRU)
4613 {
4614 error ("fallthru to exit from bb %d", e->src->index);
4615 err = 1;
4616 }
4617
4618 FOR_EACH_BB (bb)
4619 {
4620 bool found_ctrl_stmt = false;
4621
4622 stmt = NULL;
4623
4624 /* Skip labels on the start of basic block. */
4625 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4626 {
4627 tree label;
4628 gimple prev_stmt = stmt;
4629
4630 stmt = gsi_stmt (gsi);
4631
4632 if (gimple_code (stmt) != GIMPLE_LABEL)
4633 break;
4634
4635 label = gimple_label_label (stmt);
4636 if (prev_stmt && DECL_NONLOCAL (label))
4637 {
4638 error ("nonlocal label ");
4639 print_generic_expr (stderr, label, 0);
4640 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4641 bb->index);
4642 err = 1;
4643 }
4644
4645 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4646 {
4647 error ("EH landing pad label ");
4648 print_generic_expr (stderr, label, 0);
4649 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4650 bb->index);
4651 err = 1;
4652 }
4653
4654 if (label_to_block (label) != bb)
4655 {
4656 error ("label ");
4657 print_generic_expr (stderr, label, 0);
4658 fprintf (stderr, " to block does not match in bb %d",
4659 bb->index);
4660 err = 1;
4661 }
4662
4663 if (decl_function_context (label) != current_function_decl)
4664 {
4665 error ("label ");
4666 print_generic_expr (stderr, label, 0);
4667 fprintf (stderr, " has incorrect context in bb %d",
4668 bb->index);
4669 err = 1;
4670 }
4671 }
4672
4673 /* Verify that body of basic block BB is free of control flow. */
4674 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4675 {
4676 gimple stmt = gsi_stmt (gsi);
4677
4678 if (found_ctrl_stmt)
4679 {
4680 error ("control flow in the middle of basic block %d",
4681 bb->index);
4682 err = 1;
4683 }
4684
4685 if (stmt_ends_bb_p (stmt))
4686 found_ctrl_stmt = true;
4687
4688 if (gimple_code (stmt) == GIMPLE_LABEL)
4689 {
4690 error ("label ");
4691 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4692 fprintf (stderr, " in the middle of basic block %d", bb->index);
4693 err = 1;
4694 }
4695 }
4696
4697 gsi = gsi_last_bb (bb);
4698 if (gsi_end_p (gsi))
4699 continue;
4700
4701 stmt = gsi_stmt (gsi);
4702
4703 if (gimple_code (stmt) == GIMPLE_LABEL)
4704 continue;
4705
4706 err |= verify_eh_edges (stmt);
4707
4708 if (is_ctrl_stmt (stmt))
4709 {
4710 FOR_EACH_EDGE (e, ei, bb->succs)
4711 if (e->flags & EDGE_FALLTHRU)
4712 {
4713 error ("fallthru edge after a control statement in bb %d",
4714 bb->index);
4715 err = 1;
4716 }
4717 }
4718
4719 if (gimple_code (stmt) != GIMPLE_COND)
4720 {
4721 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4722 after anything else but if statement. */
4723 FOR_EACH_EDGE (e, ei, bb->succs)
4724 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4725 {
4726 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4727 bb->index);
4728 err = 1;
4729 }
4730 }
4731
4732 switch (gimple_code (stmt))
4733 {
4734 case GIMPLE_COND:
4735 {
4736 edge true_edge;
4737 edge false_edge;
4738
4739 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4740
4741 if (!true_edge
4742 || !false_edge
4743 || !(true_edge->flags & EDGE_TRUE_VALUE)
4744 || !(false_edge->flags & EDGE_FALSE_VALUE)
4745 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4746 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4747 || EDGE_COUNT (bb->succs) >= 3)
4748 {
4749 error ("wrong outgoing edge flags at end of bb %d",
4750 bb->index);
4751 err = 1;
4752 }
4753 }
4754 break;
4755
4756 case GIMPLE_GOTO:
4757 if (simple_goto_p (stmt))
4758 {
4759 error ("explicit goto at end of bb %d", bb->index);
4760 err = 1;
4761 }
4762 else
4763 {
4764 /* FIXME. We should double check that the labels in the
4765 destination blocks have their address taken. */
4766 FOR_EACH_EDGE (e, ei, bb->succs)
4767 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4768 | EDGE_FALSE_VALUE))
4769 || !(e->flags & EDGE_ABNORMAL))
4770 {
4771 error ("wrong outgoing edge flags at end of bb %d",
4772 bb->index);
4773 err = 1;
4774 }
4775 }
4776 break;
4777
4778 case GIMPLE_CALL:
4779 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4780 break;
4781 /* ... fallthru ... */
4782 case GIMPLE_RETURN:
4783 if (!single_succ_p (bb)
4784 || (single_succ_edge (bb)->flags
4785 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4786 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4787 {
4788 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4789 err = 1;
4790 }
4791 if (single_succ (bb) != EXIT_BLOCK_PTR)
4792 {
4793 error ("return edge does not point to exit in bb %d",
4794 bb->index);
4795 err = 1;
4796 }
4797 break;
4798
4799 case GIMPLE_SWITCH:
4800 {
4801 tree prev;
4802 edge e;
4803 size_t i, n;
4804
4805 n = gimple_switch_num_labels (stmt);
4806
4807 /* Mark all the destination basic blocks. */
4808 for (i = 0; i < n; ++i)
4809 {
4810 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4811 basic_block label_bb = label_to_block (lab);
4812 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4813 label_bb->aux = (void *)1;
4814 }
4815
4816 /* Verify that the case labels are sorted. */
4817 prev = gimple_switch_label (stmt, 0);
4818 for (i = 1; i < n; ++i)
4819 {
4820 tree c = gimple_switch_label (stmt, i);
4821 if (!CASE_LOW (c))
4822 {
4823 error ("found default case not at the start of "
4824 "case vector");
4825 err = 1;
4826 continue;
4827 }
4828 if (CASE_LOW (prev)
4829 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4830 {
4831 error ("case labels not sorted: ");
4832 print_generic_expr (stderr, prev, 0);
4833 fprintf (stderr," is greater than ");
4834 print_generic_expr (stderr, c, 0);
4835 fprintf (stderr," but comes before it.\n");
4836 err = 1;
4837 }
4838 prev = c;
4839 }
4840 /* VRP will remove the default case if it can prove it will
4841 never be executed. So do not verify there always exists
4842 a default case here. */
4843
4844 FOR_EACH_EDGE (e, ei, bb->succs)
4845 {
4846 if (!e->dest->aux)
4847 {
4848 error ("extra outgoing edge %d->%d",
4849 bb->index, e->dest->index);
4850 err = 1;
4851 }
4852
4853 e->dest->aux = (void *)2;
4854 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4855 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4856 {
4857 error ("wrong outgoing edge flags at end of bb %d",
4858 bb->index);
4859 err = 1;
4860 }
4861 }
4862
4863 /* Check that we have all of them. */
4864 for (i = 0; i < n; ++i)
4865 {
4866 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4867 basic_block label_bb = label_to_block (lab);
4868
4869 if (label_bb->aux != (void *)2)
4870 {
4871 error ("missing edge %i->%i", bb->index, label_bb->index);
4872 err = 1;
4873 }
4874 }
4875
4876 FOR_EACH_EDGE (e, ei, bb->succs)
4877 e->dest->aux = (void *)0;
4878 }
4879 break;
4880
4881 case GIMPLE_EH_DISPATCH:
4882 err |= verify_eh_dispatch_edge (stmt);
4883 break;
4884
4885 default:
4886 break;
4887 }
4888 }
4889
4890 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4891 verify_dominators (CDI_DOMINATORS);
4892
4893 return err;
4894 }
4895
4896
4897 /* Updates phi nodes after creating a forwarder block joined
4898 by edge FALLTHRU. */
4899
4900 static void
4901 gimple_make_forwarder_block (edge fallthru)
4902 {
4903 edge e;
4904 edge_iterator ei;
4905 basic_block dummy, bb;
4906 tree var;
4907 gimple_stmt_iterator gsi;
4908
4909 dummy = fallthru->src;
4910 bb = fallthru->dest;
4911
4912 if (single_pred_p (bb))
4913 return;
4914
4915 /* If we redirected a branch we must create new PHI nodes at the
4916 start of BB. */
4917 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4918 {
4919 gimple phi, new_phi;
4920
4921 phi = gsi_stmt (gsi);
4922 var = gimple_phi_result (phi);
4923 new_phi = create_phi_node (var, bb);
4924 SSA_NAME_DEF_STMT (var) = new_phi;
4925 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4926 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4927 UNKNOWN_LOCATION);
4928 }
4929
4930 /* Add the arguments we have stored on edges. */
4931 FOR_EACH_EDGE (e, ei, bb->preds)
4932 {
4933 if (e == fallthru)
4934 continue;
4935
4936 flush_pending_stmts (e);
4937 }
4938 }
4939
4940
4941 /* Return a non-special label in the head of basic block BLOCK.
4942 Create one if it doesn't exist. */
4943
4944 tree
4945 gimple_block_label (basic_block bb)
4946 {
4947 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4948 bool first = true;
4949 tree label;
4950 gimple stmt;
4951
4952 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4953 {
4954 stmt = gsi_stmt (i);
4955 if (gimple_code (stmt) != GIMPLE_LABEL)
4956 break;
4957 label = gimple_label_label (stmt);
4958 if (!DECL_NONLOCAL (label))
4959 {
4960 if (!first)
4961 gsi_move_before (&i, &s);
4962 return label;
4963 }
4964 }
4965
4966 label = create_artificial_label (UNKNOWN_LOCATION);
4967 stmt = gimple_build_label (label);
4968 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4969 return label;
4970 }
4971
4972
4973 /* Attempt to perform edge redirection by replacing a possibly complex
4974 jump instruction by a goto or by removing the jump completely.
4975 This can apply only if all edges now point to the same block. The
4976 parameters and return values are equivalent to
4977 redirect_edge_and_branch. */
4978
4979 static edge
4980 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4981 {
4982 basic_block src = e->src;
4983 gimple_stmt_iterator i;
4984 gimple stmt;
4985
4986 /* We can replace or remove a complex jump only when we have exactly
4987 two edges. */
4988 if (EDGE_COUNT (src->succs) != 2
4989 /* Verify that all targets will be TARGET. Specifically, the
4990 edge that is not E must also go to TARGET. */
4991 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4992 return NULL;
4993
4994 i = gsi_last_bb (src);
4995 if (gsi_end_p (i))
4996 return NULL;
4997
4998 stmt = gsi_stmt (i);
4999
5000 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5001 {
5002 gsi_remove (&i, true);
5003 e = ssa_redirect_edge (e, target);
5004 e->flags = EDGE_FALLTHRU;
5005 return e;
5006 }
5007
5008 return NULL;
5009 }
5010
5011
5012 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5013 edge representing the redirected branch. */
5014
5015 static edge
5016 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5017 {
5018 basic_block bb = e->src;
5019 gimple_stmt_iterator gsi;
5020 edge ret;
5021 gimple stmt;
5022
5023 if (e->flags & EDGE_ABNORMAL)
5024 return NULL;
5025
5026 if (e->dest == dest)
5027 return NULL;
5028
5029 if (e->flags & EDGE_EH)
5030 return redirect_eh_edge (e, dest);
5031
5032 if (e->src != ENTRY_BLOCK_PTR)
5033 {
5034 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5035 if (ret)
5036 return ret;
5037 }
5038
5039 gsi = gsi_last_bb (bb);
5040 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5041
5042 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5043 {
5044 case GIMPLE_COND:
5045 /* For COND_EXPR, we only need to redirect the edge. */
5046 break;
5047
5048 case GIMPLE_GOTO:
5049 /* No non-abnormal edges should lead from a non-simple goto, and
5050 simple ones should be represented implicitly. */
5051 gcc_unreachable ();
5052
5053 case GIMPLE_SWITCH:
5054 {
5055 tree label = gimple_block_label (dest);
5056 tree cases = get_cases_for_edge (e, stmt);
5057
5058 /* If we have a list of cases associated with E, then use it
5059 as it's a lot faster than walking the entire case vector. */
5060 if (cases)
5061 {
5062 edge e2 = find_edge (e->src, dest);
5063 tree last, first;
5064
5065 first = cases;
5066 while (cases)
5067 {
5068 last = cases;
5069 CASE_LABEL (cases) = label;
5070 cases = CASE_CHAIN (cases);
5071 }
5072
5073 /* If there was already an edge in the CFG, then we need
5074 to move all the cases associated with E to E2. */
5075 if (e2)
5076 {
5077 tree cases2 = get_cases_for_edge (e2, stmt);
5078
5079 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5080 CASE_CHAIN (cases2) = first;
5081 }
5082 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5083 }
5084 else
5085 {
5086 size_t i, n = gimple_switch_num_labels (stmt);
5087
5088 for (i = 0; i < n; i++)
5089 {
5090 tree elt = gimple_switch_label (stmt, i);
5091 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5092 CASE_LABEL (elt) = label;
5093 }
5094 }
5095 }
5096 break;
5097
5098 case GIMPLE_ASM:
5099 {
5100 int i, n = gimple_asm_nlabels (stmt);
5101 tree label = NULL;
5102
5103 for (i = 0; i < n; ++i)
5104 {
5105 tree cons = gimple_asm_label_op (stmt, i);
5106 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5107 {
5108 if (!label)
5109 label = gimple_block_label (dest);
5110 TREE_VALUE (cons) = label;
5111 }
5112 }
5113
5114 /* If we didn't find any label matching the former edge in the
5115 asm labels, we must be redirecting the fallthrough
5116 edge. */
5117 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5118 }
5119 break;
5120
5121 case GIMPLE_RETURN:
5122 gsi_remove (&gsi, true);
5123 e->flags |= EDGE_FALLTHRU;
5124 break;
5125
5126 case GIMPLE_OMP_RETURN:
5127 case GIMPLE_OMP_CONTINUE:
5128 case GIMPLE_OMP_SECTIONS_SWITCH:
5129 case GIMPLE_OMP_FOR:
5130 /* The edges from OMP constructs can be simply redirected. */
5131 break;
5132
5133 case GIMPLE_EH_DISPATCH:
5134 if (!(e->flags & EDGE_FALLTHRU))
5135 redirect_eh_dispatch_edge (stmt, e, dest);
5136 break;
5137
5138 case GIMPLE_TRANSACTION:
5139 /* The ABORT edge has a stored label associated with it, otherwise
5140 the edges are simply redirectable. */
5141 if (e->flags == 0)
5142 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5143 break;
5144
5145 default:
5146 /* Otherwise it must be a fallthru edge, and we don't need to
5147 do anything besides redirecting it. */
5148 gcc_assert (e->flags & EDGE_FALLTHRU);
5149 break;
5150 }
5151
5152 /* Update/insert PHI nodes as necessary. */
5153
5154 /* Now update the edges in the CFG. */
5155 e = ssa_redirect_edge (e, dest);
5156
5157 return e;
5158 }
5159
5160 /* Returns true if it is possible to remove edge E by redirecting
5161 it to the destination of the other edge from E->src. */
5162
5163 static bool
5164 gimple_can_remove_branch_p (const_edge e)
5165 {
5166 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5167 return false;
5168
5169 return true;
5170 }
5171
5172 /* Simple wrapper, as we can always redirect fallthru edges. */
5173
5174 static basic_block
5175 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5176 {
5177 e = gimple_redirect_edge_and_branch (e, dest);
5178 gcc_assert (e);
5179
5180 return NULL;
5181 }
5182
5183
5184 /* Splits basic block BB after statement STMT (but at least after the
5185 labels). If STMT is NULL, BB is split just after the labels. */
5186
5187 static basic_block
5188 gimple_split_block (basic_block bb, void *stmt)
5189 {
5190 gimple_stmt_iterator gsi;
5191 gimple_stmt_iterator gsi_tgt;
5192 gimple act;
5193 gimple_seq list;
5194 basic_block new_bb;
5195 edge e;
5196 edge_iterator ei;
5197
5198 new_bb = create_empty_bb (bb);
5199
5200 /* Redirect the outgoing edges. */
5201 new_bb->succs = bb->succs;
5202 bb->succs = NULL;
5203 FOR_EACH_EDGE (e, ei, new_bb->succs)
5204 e->src = new_bb;
5205
5206 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5207 stmt = NULL;
5208
5209 /* Move everything from GSI to the new basic block. */
5210 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5211 {
5212 act = gsi_stmt (gsi);
5213 if (gimple_code (act) == GIMPLE_LABEL)
5214 continue;
5215
5216 if (!stmt)
5217 break;
5218
5219 if (stmt == act)
5220 {
5221 gsi_next (&gsi);
5222 break;
5223 }
5224 }
5225
5226 if (gsi_end_p (gsi))
5227 return new_bb;
5228
5229 /* Split the statement list - avoid re-creating new containers as this
5230 brings ugly quadratic memory consumption in the inliner.
5231 (We are still quadratic since we need to update stmt BB pointers,
5232 sadly.) */
5233 list = gsi_split_seq_before (&gsi);
5234 set_bb_seq (new_bb, list);
5235 for (gsi_tgt = gsi_start (list);
5236 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5237 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5238
5239 return new_bb;
5240 }
5241
5242
5243 /* Moves basic block BB after block AFTER. */
5244
5245 static bool
5246 gimple_move_block_after (basic_block bb, basic_block after)
5247 {
5248 if (bb->prev_bb == after)
5249 return true;
5250
5251 unlink_block (bb);
5252 link_block (bb, after);
5253
5254 return true;
5255 }
5256
5257
5258 /* Return true if basic_block can be duplicated. */
5259
5260 static bool
5261 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5262 {
5263 return true;
5264 }
5265
5266 /* Create a duplicate of the basic block BB. NOTE: This does not
5267 preserve SSA form. */
5268
5269 static basic_block
5270 gimple_duplicate_bb (basic_block bb)
5271 {
5272 basic_block new_bb;
5273 gimple_stmt_iterator gsi, gsi_tgt;
5274 gimple_seq phis = phi_nodes (bb);
5275 gimple phi, stmt, copy;
5276
5277 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5278
5279 /* Copy the PHI nodes. We ignore PHI node arguments here because
5280 the incoming edges have not been setup yet. */
5281 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5282 {
5283 phi = gsi_stmt (gsi);
5284 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5285 create_new_def_for (gimple_phi_result (copy), copy,
5286 gimple_phi_result_ptr (copy));
5287 }
5288
5289 gsi_tgt = gsi_start_bb (new_bb);
5290 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5291 {
5292 def_operand_p def_p;
5293 ssa_op_iter op_iter;
5294 tree lhs;
5295
5296 stmt = gsi_stmt (gsi);
5297 if (gimple_code (stmt) == GIMPLE_LABEL)
5298 continue;
5299
5300 /* Don't duplicate label debug stmts. */
5301 if (gimple_debug_bind_p (stmt)
5302 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5303 == LABEL_DECL)
5304 continue;
5305
5306 /* Create a new copy of STMT and duplicate STMT's virtual
5307 operands. */
5308 copy = gimple_copy (stmt);
5309 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5310
5311 maybe_duplicate_eh_stmt (copy, stmt);
5312 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5313
5314 /* When copying around a stmt writing into a local non-user
5315 aggregate, make sure it won't share stack slot with other
5316 vars. */
5317 lhs = gimple_get_lhs (stmt);
5318 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5319 {
5320 tree base = get_base_address (lhs);
5321 if (base
5322 && (TREE_CODE (base) == VAR_DECL
5323 || TREE_CODE (base) == RESULT_DECL)
5324 && DECL_IGNORED_P (base)
5325 && !TREE_STATIC (base)
5326 && !DECL_EXTERNAL (base)
5327 && (TREE_CODE (base) != VAR_DECL
5328 || !DECL_HAS_VALUE_EXPR_P (base)))
5329 DECL_NONSHAREABLE (base) = 1;
5330 }
5331
5332 /* Create new names for all the definitions created by COPY and
5333 add replacement mappings for each new name. */
5334 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5335 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5336 }
5337
5338 return new_bb;
5339 }
5340
5341 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5342
5343 static void
5344 add_phi_args_after_copy_edge (edge e_copy)
5345 {
5346 basic_block bb, bb_copy = e_copy->src, dest;
5347 edge e;
5348 edge_iterator ei;
5349 gimple phi, phi_copy;
5350 tree def;
5351 gimple_stmt_iterator psi, psi_copy;
5352
5353 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5354 return;
5355
5356 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5357
5358 if (e_copy->dest->flags & BB_DUPLICATED)
5359 dest = get_bb_original (e_copy->dest);
5360 else
5361 dest = e_copy->dest;
5362
5363 e = find_edge (bb, dest);
5364 if (!e)
5365 {
5366 /* During loop unrolling the target of the latch edge is copied.
5367 In this case we are not looking for edge to dest, but to
5368 duplicated block whose original was dest. */
5369 FOR_EACH_EDGE (e, ei, bb->succs)
5370 {
5371 if ((e->dest->flags & BB_DUPLICATED)
5372 && get_bb_original (e->dest) == dest)
5373 break;
5374 }
5375
5376 gcc_assert (e != NULL);
5377 }
5378
5379 for (psi = gsi_start_phis (e->dest),
5380 psi_copy = gsi_start_phis (e_copy->dest);
5381 !gsi_end_p (psi);
5382 gsi_next (&psi), gsi_next (&psi_copy))
5383 {
5384 phi = gsi_stmt (psi);
5385 phi_copy = gsi_stmt (psi_copy);
5386 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5387 add_phi_arg (phi_copy, def, e_copy,
5388 gimple_phi_arg_location_from_edge (phi, e));
5389 }
5390 }
5391
5392
5393 /* Basic block BB_COPY was created by code duplication. Add phi node
5394 arguments for edges going out of BB_COPY. The blocks that were
5395 duplicated have BB_DUPLICATED set. */
5396
5397 void
5398 add_phi_args_after_copy_bb (basic_block bb_copy)
5399 {
5400 edge e_copy;
5401 edge_iterator ei;
5402
5403 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5404 {
5405 add_phi_args_after_copy_edge (e_copy);
5406 }
5407 }
5408
5409 /* Blocks in REGION_COPY array of length N_REGION were created by
5410 duplication of basic blocks. Add phi node arguments for edges
5411 going from these blocks. If E_COPY is not NULL, also add
5412 phi node arguments for its destination.*/
5413
5414 void
5415 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5416 edge e_copy)
5417 {
5418 unsigned i;
5419
5420 for (i = 0; i < n_region; i++)
5421 region_copy[i]->flags |= BB_DUPLICATED;
5422
5423 for (i = 0; i < n_region; i++)
5424 add_phi_args_after_copy_bb (region_copy[i]);
5425 if (e_copy)
5426 add_phi_args_after_copy_edge (e_copy);
5427
5428 for (i = 0; i < n_region; i++)
5429 region_copy[i]->flags &= ~BB_DUPLICATED;
5430 }
5431
5432 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5433 important exit edge EXIT. By important we mean that no SSA name defined
5434 inside region is live over the other exit edges of the region. All entry
5435 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5436 to the duplicate of the region. SSA form, dominance and loop information
5437 is updated. The new basic blocks are stored to REGION_COPY in the same
5438 order as they had in REGION, provided that REGION_COPY is not NULL.
5439 The function returns false if it is unable to copy the region,
5440 true otherwise. */
5441
5442 bool
5443 gimple_duplicate_sese_region (edge entry, edge exit,
5444 basic_block *region, unsigned n_region,
5445 basic_block *region_copy)
5446 {
5447 unsigned i;
5448 bool free_region_copy = false, copying_header = false;
5449 struct loop *loop = entry->dest->loop_father;
5450 edge exit_copy;
5451 VEC (basic_block, heap) *doms;
5452 edge redirected;
5453 int total_freq = 0, entry_freq = 0;
5454 gcov_type total_count = 0, entry_count = 0;
5455
5456 if (!can_copy_bbs_p (region, n_region))
5457 return false;
5458
5459 /* Some sanity checking. Note that we do not check for all possible
5460 missuses of the functions. I.e. if you ask to copy something weird,
5461 it will work, but the state of structures probably will not be
5462 correct. */
5463 for (i = 0; i < n_region; i++)
5464 {
5465 /* We do not handle subloops, i.e. all the blocks must belong to the
5466 same loop. */
5467 if (region[i]->loop_father != loop)
5468 return false;
5469
5470 if (region[i] != entry->dest
5471 && region[i] == loop->header)
5472 return false;
5473 }
5474
5475 set_loop_copy (loop, loop);
5476
5477 /* In case the function is used for loop header copying (which is the primary
5478 use), ensure that EXIT and its copy will be new latch and entry edges. */
5479 if (loop->header == entry->dest)
5480 {
5481 copying_header = true;
5482 set_loop_copy (loop, loop_outer (loop));
5483
5484 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5485 return false;
5486
5487 for (i = 0; i < n_region; i++)
5488 if (region[i] != exit->src
5489 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5490 return false;
5491 }
5492
5493 if (!region_copy)
5494 {
5495 region_copy = XNEWVEC (basic_block, n_region);
5496 free_region_copy = true;
5497 }
5498
5499 gcc_assert (!need_ssa_update_p (cfun));
5500
5501 /* Record blocks outside the region that are dominated by something
5502 inside. */
5503 doms = NULL;
5504 initialize_original_copy_tables ();
5505
5506 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5507
5508 if (entry->dest->count)
5509 {
5510 total_count = entry->dest->count;
5511 entry_count = entry->count;
5512 /* Fix up corner cases, to avoid division by zero or creation of negative
5513 frequencies. */
5514 if (entry_count > total_count)
5515 entry_count = total_count;
5516 }
5517 else
5518 {
5519 total_freq = entry->dest->frequency;
5520 entry_freq = EDGE_FREQUENCY (entry);
5521 /* Fix up corner cases, to avoid division by zero or creation of negative
5522 frequencies. */
5523 if (total_freq == 0)
5524 total_freq = 1;
5525 else if (entry_freq > total_freq)
5526 entry_freq = total_freq;
5527 }
5528
5529 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5530 split_edge_bb_loc (entry));
5531 if (total_count)
5532 {
5533 scale_bbs_frequencies_gcov_type (region, n_region,
5534 total_count - entry_count,
5535 total_count);
5536 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5537 total_count);
5538 }
5539 else
5540 {
5541 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5542 total_freq);
5543 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5544 }
5545
5546 if (copying_header)
5547 {
5548 loop->header = exit->dest;
5549 loop->latch = exit->src;
5550 }
5551
5552 /* Redirect the entry and add the phi node arguments. */
5553 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5554 gcc_assert (redirected != NULL);
5555 flush_pending_stmts (entry);
5556
5557 /* Concerning updating of dominators: We must recount dominators
5558 for entry block and its copy. Anything that is outside of the
5559 region, but was dominated by something inside needs recounting as
5560 well. */
5561 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5562 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5563 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5564 VEC_free (basic_block, heap, doms);
5565
5566 /* Add the other PHI node arguments. */
5567 add_phi_args_after_copy (region_copy, n_region, NULL);
5568
5569 /* Update the SSA web. */
5570 update_ssa (TODO_update_ssa);
5571
5572 if (free_region_copy)
5573 free (region_copy);
5574
5575 free_original_copy_tables ();
5576 return true;
5577 }
5578
5579 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5580 are stored to REGION_COPY in the same order in that they appear
5581 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5582 the region, EXIT an exit from it. The condition guarding EXIT
5583 is moved to ENTRY. Returns true if duplication succeeds, false
5584 otherwise.
5585
5586 For example,
5587
5588 some_code;
5589 if (cond)
5590 A;
5591 else
5592 B;
5593
5594 is transformed to
5595
5596 if (cond)
5597 {
5598 some_code;
5599 A;
5600 }
5601 else
5602 {
5603 some_code;
5604 B;
5605 }
5606 */
5607
5608 bool
5609 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5610 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5611 basic_block *region_copy ATTRIBUTE_UNUSED)
5612 {
5613 unsigned i;
5614 bool free_region_copy = false;
5615 struct loop *loop = exit->dest->loop_father;
5616 struct loop *orig_loop = entry->dest->loop_father;
5617 basic_block switch_bb, entry_bb, nentry_bb;
5618 VEC (basic_block, heap) *doms;
5619 int total_freq = 0, exit_freq = 0;
5620 gcov_type total_count = 0, exit_count = 0;
5621 edge exits[2], nexits[2], e;
5622 gimple_stmt_iterator gsi;
5623 gimple cond_stmt;
5624 edge sorig, snew;
5625 basic_block exit_bb;
5626 gimple_stmt_iterator psi;
5627 gimple phi;
5628 tree def;
5629
5630 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5631 exits[0] = exit;
5632 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5633
5634 if (!can_copy_bbs_p (region, n_region))
5635 return false;
5636
5637 initialize_original_copy_tables ();
5638 set_loop_copy (orig_loop, loop);
5639 duplicate_subloops (orig_loop, loop);
5640
5641 if (!region_copy)
5642 {
5643 region_copy = XNEWVEC (basic_block, n_region);
5644 free_region_copy = true;
5645 }
5646
5647 gcc_assert (!need_ssa_update_p (cfun));
5648
5649 /* Record blocks outside the region that are dominated by something
5650 inside. */
5651 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5652
5653 if (exit->src->count)
5654 {
5655 total_count = exit->src->count;
5656 exit_count = exit->count;
5657 /* Fix up corner cases, to avoid division by zero or creation of negative
5658 frequencies. */
5659 if (exit_count > total_count)
5660 exit_count = total_count;
5661 }
5662 else
5663 {
5664 total_freq = exit->src->frequency;
5665 exit_freq = EDGE_FREQUENCY (exit);
5666 /* Fix up corner cases, to avoid division by zero or creation of negative
5667 frequencies. */
5668 if (total_freq == 0)
5669 total_freq = 1;
5670 if (exit_freq > total_freq)
5671 exit_freq = total_freq;
5672 }
5673
5674 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5675 split_edge_bb_loc (exit));
5676 if (total_count)
5677 {
5678 scale_bbs_frequencies_gcov_type (region, n_region,
5679 total_count - exit_count,
5680 total_count);
5681 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5682 total_count);
5683 }
5684 else
5685 {
5686 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5687 total_freq);
5688 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5689 }
5690
5691 /* Create the switch block, and put the exit condition to it. */
5692 entry_bb = entry->dest;
5693 nentry_bb = get_bb_copy (entry_bb);
5694 if (!last_stmt (entry->src)
5695 || !stmt_ends_bb_p (last_stmt (entry->src)))
5696 switch_bb = entry->src;
5697 else
5698 switch_bb = split_edge (entry);
5699 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5700
5701 gsi = gsi_last_bb (switch_bb);
5702 cond_stmt = last_stmt (exit->src);
5703 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5704 cond_stmt = gimple_copy (cond_stmt);
5705
5706 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5707
5708 sorig = single_succ_edge (switch_bb);
5709 sorig->flags = exits[1]->flags;
5710 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5711
5712 /* Register the new edge from SWITCH_BB in loop exit lists. */
5713 rescan_loop_exit (snew, true, false);
5714
5715 /* Add the PHI node arguments. */
5716 add_phi_args_after_copy (region_copy, n_region, snew);
5717
5718 /* Get rid of now superfluous conditions and associated edges (and phi node
5719 arguments). */
5720 exit_bb = exit->dest;
5721
5722 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5723 PENDING_STMT (e) = NULL;
5724
5725 /* The latch of ORIG_LOOP was copied, and so was the backedge
5726 to the original header. We redirect this backedge to EXIT_BB. */
5727 for (i = 0; i < n_region; i++)
5728 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5729 {
5730 gcc_assert (single_succ_edge (region_copy[i]));
5731 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5732 PENDING_STMT (e) = NULL;
5733 for (psi = gsi_start_phis (exit_bb);
5734 !gsi_end_p (psi);
5735 gsi_next (&psi))
5736 {
5737 phi = gsi_stmt (psi);
5738 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5739 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5740 }
5741 }
5742 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5743 PENDING_STMT (e) = NULL;
5744
5745 /* Anything that is outside of the region, but was dominated by something
5746 inside needs to update dominance info. */
5747 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5748 VEC_free (basic_block, heap, doms);
5749 /* Update the SSA web. */
5750 update_ssa (TODO_update_ssa);
5751
5752 if (free_region_copy)
5753 free (region_copy);
5754
5755 free_original_copy_tables ();
5756 return true;
5757 }
5758
5759 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5760 adding blocks when the dominator traversal reaches EXIT. This
5761 function silently assumes that ENTRY strictly dominates EXIT. */
5762
5763 void
5764 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5765 VEC(basic_block,heap) **bbs_p)
5766 {
5767 basic_block son;
5768
5769 for (son = first_dom_son (CDI_DOMINATORS, entry);
5770 son;
5771 son = next_dom_son (CDI_DOMINATORS, son))
5772 {
5773 VEC_safe_push (basic_block, heap, *bbs_p, son);
5774 if (son != exit)
5775 gather_blocks_in_sese_region (son, exit, bbs_p);
5776 }
5777 }
5778
5779 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5780 The duplicates are recorded in VARS_MAP. */
5781
5782 static void
5783 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5784 tree to_context)
5785 {
5786 tree t = *tp, new_t;
5787 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5788 void **loc;
5789
5790 if (DECL_CONTEXT (t) == to_context)
5791 return;
5792
5793 loc = pointer_map_contains (vars_map, t);
5794
5795 if (!loc)
5796 {
5797 loc = pointer_map_insert (vars_map, t);
5798
5799 if (SSA_VAR_P (t))
5800 {
5801 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5802 add_local_decl (f, new_t);
5803 }
5804 else
5805 {
5806 gcc_assert (TREE_CODE (t) == CONST_DECL);
5807 new_t = copy_node (t);
5808 }
5809 DECL_CONTEXT (new_t) = to_context;
5810
5811 *loc = new_t;
5812 }
5813 else
5814 new_t = (tree) *loc;
5815
5816 *tp = new_t;
5817 }
5818
5819
5820 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5821 VARS_MAP maps old ssa names and var_decls to the new ones. */
5822
5823 static tree
5824 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5825 tree to_context)
5826 {
5827 void **loc;
5828 tree new_name, decl = SSA_NAME_VAR (name);
5829
5830 gcc_assert (is_gimple_reg (name));
5831
5832 loc = pointer_map_contains (vars_map, name);
5833
5834 if (!loc)
5835 {
5836 replace_by_duplicate_decl (&decl, vars_map, to_context);
5837
5838 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5839 if (gimple_in_ssa_p (cfun))
5840 add_referenced_var (decl);
5841
5842 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5843 if (SSA_NAME_IS_DEFAULT_DEF (name))
5844 set_default_def (decl, new_name);
5845 pop_cfun ();
5846
5847 loc = pointer_map_insert (vars_map, name);
5848 *loc = new_name;
5849 }
5850 else
5851 new_name = (tree) *loc;
5852
5853 return new_name;
5854 }
5855
5856 struct move_stmt_d
5857 {
5858 tree orig_block;
5859 tree new_block;
5860 tree from_context;
5861 tree to_context;
5862 struct pointer_map_t *vars_map;
5863 htab_t new_label_map;
5864 struct pointer_map_t *eh_map;
5865 bool remap_decls_p;
5866 };
5867
5868 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5869 contained in *TP if it has been ORIG_BLOCK previously and change the
5870 DECL_CONTEXT of every local variable referenced in *TP. */
5871
5872 static tree
5873 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5874 {
5875 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5876 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5877 tree t = *tp;
5878
5879 if (EXPR_P (t))
5880 /* We should never have TREE_BLOCK set on non-statements. */
5881 gcc_assert (!TREE_BLOCK (t));
5882
5883 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5884 {
5885 if (TREE_CODE (t) == SSA_NAME)
5886 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5887 else if (TREE_CODE (t) == LABEL_DECL)
5888 {
5889 if (p->new_label_map)
5890 {
5891 struct tree_map in, *out;
5892 in.base.from = t;
5893 out = (struct tree_map *)
5894 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5895 if (out)
5896 *tp = t = out->to;
5897 }
5898
5899 DECL_CONTEXT (t) = p->to_context;
5900 }
5901 else if (p->remap_decls_p)
5902 {
5903 /* Replace T with its duplicate. T should no longer appear in the
5904 parent function, so this looks wasteful; however, it may appear
5905 in referenced_vars, and more importantly, as virtual operands of
5906 statements, and in alias lists of other variables. It would be
5907 quite difficult to expunge it from all those places. ??? It might
5908 suffice to do this for addressable variables. */
5909 if ((TREE_CODE (t) == VAR_DECL
5910 && !is_global_var (t))
5911 || TREE_CODE (t) == CONST_DECL)
5912 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5913
5914 if (SSA_VAR_P (t)
5915 && gimple_in_ssa_p (cfun))
5916 {
5917 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5918 add_referenced_var (*tp);
5919 pop_cfun ();
5920 }
5921 }
5922 *walk_subtrees = 0;
5923 }
5924 else if (TYPE_P (t))
5925 *walk_subtrees = 0;
5926
5927 return NULL_TREE;
5928 }
5929
5930 /* Helper for move_stmt_r. Given an EH region number for the source
5931 function, map that to the duplicate EH regio number in the dest. */
5932
5933 static int
5934 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5935 {
5936 eh_region old_r, new_r;
5937 void **slot;
5938
5939 old_r = get_eh_region_from_number (old_nr);
5940 slot = pointer_map_contains (p->eh_map, old_r);
5941 new_r = (eh_region) *slot;
5942
5943 return new_r->index;
5944 }
5945
5946 /* Similar, but operate on INTEGER_CSTs. */
5947
5948 static tree
5949 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5950 {
5951 int old_nr, new_nr;
5952
5953 old_nr = tree_low_cst (old_t_nr, 0);
5954 new_nr = move_stmt_eh_region_nr (old_nr, p);
5955
5956 return build_int_cst (integer_type_node, new_nr);
5957 }
5958
5959 /* Like move_stmt_op, but for gimple statements.
5960
5961 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5962 contained in the current statement in *GSI_P and change the
5963 DECL_CONTEXT of every local variable referenced in the current
5964 statement. */
5965
5966 static tree
5967 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5968 struct walk_stmt_info *wi)
5969 {
5970 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5971 gimple stmt = gsi_stmt (*gsi_p);
5972 tree block = gimple_block (stmt);
5973
5974 if (p->orig_block == NULL_TREE
5975 || block == p->orig_block
5976 || block == NULL_TREE)
5977 gimple_set_block (stmt, p->new_block);
5978 #ifdef ENABLE_CHECKING
5979 else if (block != p->new_block)
5980 {
5981 while (block && block != p->orig_block)
5982 block = BLOCK_SUPERCONTEXT (block);
5983 gcc_assert (block);
5984 }
5985 #endif
5986
5987 switch (gimple_code (stmt))
5988 {
5989 case GIMPLE_CALL:
5990 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5991 {
5992 tree r, fndecl = gimple_call_fndecl (stmt);
5993 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5994 switch (DECL_FUNCTION_CODE (fndecl))
5995 {
5996 case BUILT_IN_EH_COPY_VALUES:
5997 r = gimple_call_arg (stmt, 1);
5998 r = move_stmt_eh_region_tree_nr (r, p);
5999 gimple_call_set_arg (stmt, 1, r);
6000 /* FALLTHRU */
6001
6002 case BUILT_IN_EH_POINTER:
6003 case BUILT_IN_EH_FILTER:
6004 r = gimple_call_arg (stmt, 0);
6005 r = move_stmt_eh_region_tree_nr (r, p);
6006 gimple_call_set_arg (stmt, 0, r);
6007 break;
6008
6009 default:
6010 break;
6011 }
6012 }
6013 break;
6014
6015 case GIMPLE_RESX:
6016 {
6017 int r = gimple_resx_region (stmt);
6018 r = move_stmt_eh_region_nr (r, p);
6019 gimple_resx_set_region (stmt, r);
6020 }
6021 break;
6022
6023 case GIMPLE_EH_DISPATCH:
6024 {
6025 int r = gimple_eh_dispatch_region (stmt);
6026 r = move_stmt_eh_region_nr (r, p);
6027 gimple_eh_dispatch_set_region (stmt, r);
6028 }
6029 break;
6030
6031 case GIMPLE_OMP_RETURN:
6032 case GIMPLE_OMP_CONTINUE:
6033 break;
6034 default:
6035 if (is_gimple_omp (stmt))
6036 {
6037 /* Do not remap variables inside OMP directives. Variables
6038 referenced in clauses and directive header belong to the
6039 parent function and should not be moved into the child
6040 function. */
6041 bool save_remap_decls_p = p->remap_decls_p;
6042 p->remap_decls_p = false;
6043 *handled_ops_p = true;
6044
6045 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
6046 move_stmt_op, wi);
6047
6048 p->remap_decls_p = save_remap_decls_p;
6049 }
6050 break;
6051 }
6052
6053 return NULL_TREE;
6054 }
6055
6056 /* Move basic block BB from function CFUN to function DEST_FN. The
6057 block is moved out of the original linked list and placed after
6058 block AFTER in the new list. Also, the block is removed from the
6059 original array of blocks and placed in DEST_FN's array of blocks.
6060 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6061 updated to reflect the moved edges.
6062
6063 The local variables are remapped to new instances, VARS_MAP is used
6064 to record the mapping. */
6065
6066 static void
6067 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6068 basic_block after, bool update_edge_count_p,
6069 struct move_stmt_d *d)
6070 {
6071 struct control_flow_graph *cfg;
6072 edge_iterator ei;
6073 edge e;
6074 gimple_stmt_iterator si;
6075 unsigned old_len, new_len;
6076
6077 /* Remove BB from dominance structures. */
6078 delete_from_dominance_info (CDI_DOMINATORS, bb);
6079 if (current_loops)
6080 remove_bb_from_loops (bb);
6081
6082 /* Link BB to the new linked list. */
6083 move_block_after (bb, after);
6084
6085 /* Update the edge count in the corresponding flowgraphs. */
6086 if (update_edge_count_p)
6087 FOR_EACH_EDGE (e, ei, bb->succs)
6088 {
6089 cfun->cfg->x_n_edges--;
6090 dest_cfun->cfg->x_n_edges++;
6091 }
6092
6093 /* Remove BB from the original basic block array. */
6094 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
6095 cfun->cfg->x_n_basic_blocks--;
6096
6097 /* Grow DEST_CFUN's basic block array if needed. */
6098 cfg = dest_cfun->cfg;
6099 cfg->x_n_basic_blocks++;
6100 if (bb->index >= cfg->x_last_basic_block)
6101 cfg->x_last_basic_block = bb->index + 1;
6102
6103 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
6104 if ((unsigned) cfg->x_last_basic_block >= old_len)
6105 {
6106 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6107 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
6108 new_len);
6109 }
6110
6111 VEC_replace (basic_block, cfg->x_basic_block_info,
6112 bb->index, bb);
6113
6114 /* Remap the variables in phi nodes. */
6115 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6116 {
6117 gimple phi = gsi_stmt (si);
6118 use_operand_p use;
6119 tree op = PHI_RESULT (phi);
6120 ssa_op_iter oi;
6121
6122 if (!is_gimple_reg (op))
6123 {
6124 /* Remove the phi nodes for virtual operands (alias analysis will be
6125 run for the new function, anyway). */
6126 remove_phi_node (&si, true);
6127 continue;
6128 }
6129
6130 SET_PHI_RESULT (phi,
6131 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6132 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6133 {
6134 op = USE_FROM_PTR (use);
6135 if (TREE_CODE (op) == SSA_NAME)
6136 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6137 }
6138
6139 gsi_next (&si);
6140 }
6141
6142 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6143 {
6144 gimple stmt = gsi_stmt (si);
6145 struct walk_stmt_info wi;
6146
6147 memset (&wi, 0, sizeof (wi));
6148 wi.info = d;
6149 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6150
6151 if (gimple_code (stmt) == GIMPLE_LABEL)
6152 {
6153 tree label = gimple_label_label (stmt);
6154 int uid = LABEL_DECL_UID (label);
6155
6156 gcc_assert (uid > -1);
6157
6158 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
6159 if (old_len <= (unsigned) uid)
6160 {
6161 new_len = 3 * uid / 2 + 1;
6162 VEC_safe_grow_cleared (basic_block, gc,
6163 cfg->x_label_to_block_map, new_len);
6164 }
6165
6166 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
6167 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
6168
6169 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6170
6171 if (uid >= dest_cfun->cfg->last_label_uid)
6172 dest_cfun->cfg->last_label_uid = uid + 1;
6173 }
6174
6175 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6176 remove_stmt_from_eh_lp_fn (cfun, stmt);
6177
6178 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6179 gimple_remove_stmt_histograms (cfun, stmt);
6180
6181 /* We cannot leave any operands allocated from the operand caches of
6182 the current function. */
6183 free_stmt_operands (stmt);
6184 push_cfun (dest_cfun);
6185 update_stmt (stmt);
6186 pop_cfun ();
6187 }
6188
6189 FOR_EACH_EDGE (e, ei, bb->succs)
6190 if (e->goto_locus)
6191 {
6192 tree block = e->goto_block;
6193 if (d->orig_block == NULL_TREE
6194 || block == d->orig_block)
6195 e->goto_block = d->new_block;
6196 #ifdef ENABLE_CHECKING
6197 else if (block != d->new_block)
6198 {
6199 while (block && block != d->orig_block)
6200 block = BLOCK_SUPERCONTEXT (block);
6201 gcc_assert (block);
6202 }
6203 #endif
6204 }
6205 }
6206
6207 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6208 the outermost EH region. Use REGION as the incoming base EH region. */
6209
6210 static eh_region
6211 find_outermost_region_in_block (struct function *src_cfun,
6212 basic_block bb, eh_region region)
6213 {
6214 gimple_stmt_iterator si;
6215
6216 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6217 {
6218 gimple stmt = gsi_stmt (si);
6219 eh_region stmt_region;
6220 int lp_nr;
6221
6222 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6223 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6224 if (stmt_region)
6225 {
6226 if (region == NULL)
6227 region = stmt_region;
6228 else if (stmt_region != region)
6229 {
6230 region = eh_region_outermost (src_cfun, stmt_region, region);
6231 gcc_assert (region != NULL);
6232 }
6233 }
6234 }
6235
6236 return region;
6237 }
6238
6239 static tree
6240 new_label_mapper (tree decl, void *data)
6241 {
6242 htab_t hash = (htab_t) data;
6243 struct tree_map *m;
6244 void **slot;
6245
6246 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6247
6248 m = XNEW (struct tree_map);
6249 m->hash = DECL_UID (decl);
6250 m->base.from = decl;
6251 m->to = create_artificial_label (UNKNOWN_LOCATION);
6252 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6253 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6254 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6255
6256 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6257 gcc_assert (*slot == NULL);
6258
6259 *slot = m;
6260
6261 return m->to;
6262 }
6263
6264 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6265 subblocks. */
6266
6267 static void
6268 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6269 tree to_context)
6270 {
6271 tree *tp, t;
6272
6273 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6274 {
6275 t = *tp;
6276 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6277 continue;
6278 replace_by_duplicate_decl (&t, vars_map, to_context);
6279 if (t != *tp)
6280 {
6281 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6282 {
6283 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6284 DECL_HAS_VALUE_EXPR_P (t) = 1;
6285 }
6286 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6287 *tp = t;
6288 }
6289 }
6290
6291 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6292 replace_block_vars_by_duplicates (block, vars_map, to_context);
6293 }
6294
6295 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6296 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6297 single basic block in the original CFG and the new basic block is
6298 returned. DEST_CFUN must not have a CFG yet.
6299
6300 Note that the region need not be a pure SESE region. Blocks inside
6301 the region may contain calls to abort/exit. The only restriction
6302 is that ENTRY_BB should be the only entry point and it must
6303 dominate EXIT_BB.
6304
6305 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6306 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6307 to the new function.
6308
6309 All local variables referenced in the region are assumed to be in
6310 the corresponding BLOCK_VARS and unexpanded variable lists
6311 associated with DEST_CFUN. */
6312
6313 basic_block
6314 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6315 basic_block exit_bb, tree orig_block)
6316 {
6317 VEC(basic_block,heap) *bbs, *dom_bbs;
6318 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6319 basic_block after, bb, *entry_pred, *exit_succ, abb;
6320 struct function *saved_cfun = cfun;
6321 int *entry_flag, *exit_flag;
6322 unsigned *entry_prob, *exit_prob;
6323 unsigned i, num_entry_edges, num_exit_edges;
6324 edge e;
6325 edge_iterator ei;
6326 htab_t new_label_map;
6327 struct pointer_map_t *vars_map, *eh_map;
6328 struct loop *loop = entry_bb->loop_father;
6329 struct move_stmt_d d;
6330
6331 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6332 region. */
6333 gcc_assert (entry_bb != exit_bb
6334 && (!exit_bb
6335 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6336
6337 /* Collect all the blocks in the region. Manually add ENTRY_BB
6338 because it won't be added by dfs_enumerate_from. */
6339 bbs = NULL;
6340 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6341 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6342
6343 /* The blocks that used to be dominated by something in BBS will now be
6344 dominated by the new block. */
6345 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6346 VEC_address (basic_block, bbs),
6347 VEC_length (basic_block, bbs));
6348
6349 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6350 the predecessor edges to ENTRY_BB and the successor edges to
6351 EXIT_BB so that we can re-attach them to the new basic block that
6352 will replace the region. */
6353 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6354 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6355 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6356 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6357 i = 0;
6358 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6359 {
6360 entry_prob[i] = e->probability;
6361 entry_flag[i] = e->flags;
6362 entry_pred[i++] = e->src;
6363 remove_edge (e);
6364 }
6365
6366 if (exit_bb)
6367 {
6368 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6369 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6370 sizeof (basic_block));
6371 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6372 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6373 i = 0;
6374 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6375 {
6376 exit_prob[i] = e->probability;
6377 exit_flag[i] = e->flags;
6378 exit_succ[i++] = e->dest;
6379 remove_edge (e);
6380 }
6381 }
6382 else
6383 {
6384 num_exit_edges = 0;
6385 exit_succ = NULL;
6386 exit_flag = NULL;
6387 exit_prob = NULL;
6388 }
6389
6390 /* Switch context to the child function to initialize DEST_FN's CFG. */
6391 gcc_assert (dest_cfun->cfg == NULL);
6392 push_cfun (dest_cfun);
6393
6394 init_empty_tree_cfg ();
6395
6396 /* Initialize EH information for the new function. */
6397 eh_map = NULL;
6398 new_label_map = NULL;
6399 if (saved_cfun->eh)
6400 {
6401 eh_region region = NULL;
6402
6403 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6404 region = find_outermost_region_in_block (saved_cfun, bb, region);
6405
6406 init_eh_for_function ();
6407 if (region != NULL)
6408 {
6409 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6410 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6411 new_label_mapper, new_label_map);
6412 }
6413 }
6414
6415 pop_cfun ();
6416
6417 /* Move blocks from BBS into DEST_CFUN. */
6418 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6419 after = dest_cfun->cfg->x_entry_block_ptr;
6420 vars_map = pointer_map_create ();
6421
6422 memset (&d, 0, sizeof (d));
6423 d.orig_block = orig_block;
6424 d.new_block = DECL_INITIAL (dest_cfun->decl);
6425 d.from_context = cfun->decl;
6426 d.to_context = dest_cfun->decl;
6427 d.vars_map = vars_map;
6428 d.new_label_map = new_label_map;
6429 d.eh_map = eh_map;
6430 d.remap_decls_p = true;
6431
6432 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6433 {
6434 /* No need to update edge counts on the last block. It has
6435 already been updated earlier when we detached the region from
6436 the original CFG. */
6437 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6438 after = bb;
6439 }
6440
6441 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6442 if (orig_block)
6443 {
6444 tree block;
6445 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6446 == NULL_TREE);
6447 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6448 = BLOCK_SUBBLOCKS (orig_block);
6449 for (block = BLOCK_SUBBLOCKS (orig_block);
6450 block; block = BLOCK_CHAIN (block))
6451 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6452 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6453 }
6454
6455 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6456 vars_map, dest_cfun->decl);
6457
6458 if (new_label_map)
6459 htab_delete (new_label_map);
6460 if (eh_map)
6461 pointer_map_destroy (eh_map);
6462 pointer_map_destroy (vars_map);
6463
6464 /* Rewire the entry and exit blocks. The successor to the entry
6465 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6466 the child function. Similarly, the predecessor of DEST_FN's
6467 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6468 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6469 various CFG manipulation function get to the right CFG.
6470
6471 FIXME, this is silly. The CFG ought to become a parameter to
6472 these helpers. */
6473 push_cfun (dest_cfun);
6474 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6475 if (exit_bb)
6476 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6477 pop_cfun ();
6478
6479 /* Back in the original function, the SESE region has disappeared,
6480 create a new basic block in its place. */
6481 bb = create_empty_bb (entry_pred[0]);
6482 if (current_loops)
6483 add_bb_to_loop (bb, loop);
6484 for (i = 0; i < num_entry_edges; i++)
6485 {
6486 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6487 e->probability = entry_prob[i];
6488 }
6489
6490 for (i = 0; i < num_exit_edges; i++)
6491 {
6492 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6493 e->probability = exit_prob[i];
6494 }
6495
6496 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6497 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6498 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6499 VEC_free (basic_block, heap, dom_bbs);
6500
6501 if (exit_bb)
6502 {
6503 free (exit_prob);
6504 free (exit_flag);
6505 free (exit_succ);
6506 }
6507 free (entry_prob);
6508 free (entry_flag);
6509 free (entry_pred);
6510 VEC_free (basic_block, heap, bbs);
6511
6512 return bb;
6513 }
6514
6515
6516 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6517 */
6518
6519 void
6520 dump_function_to_file (tree fn, FILE *file, int flags)
6521 {
6522 tree arg, var;
6523 struct function *dsf;
6524 bool ignore_topmost_bind = false, any_var = false;
6525 basic_block bb;
6526 tree chain;
6527 bool tmclone = TREE_CODE (fn) == FUNCTION_DECL && decl_is_tm_clone (fn);
6528
6529 fprintf (file, "%s %s(", lang_hooks.decl_printable_name (fn, 2),
6530 tmclone ? "[tm-clone] " : "");
6531
6532 arg = DECL_ARGUMENTS (fn);
6533 while (arg)
6534 {
6535 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6536 fprintf (file, " ");
6537 print_generic_expr (file, arg, dump_flags);
6538 if (flags & TDF_VERBOSE)
6539 print_node (file, "", arg, 4);
6540 if (DECL_CHAIN (arg))
6541 fprintf (file, ", ");
6542 arg = DECL_CHAIN (arg);
6543 }
6544 fprintf (file, ")\n");
6545
6546 if (flags & TDF_VERBOSE)
6547 print_node (file, "", fn, 2);
6548
6549 dsf = DECL_STRUCT_FUNCTION (fn);
6550 if (dsf && (flags & TDF_EH))
6551 dump_eh_tree (file, dsf);
6552
6553 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6554 {
6555 dump_node (fn, TDF_SLIM | flags, file);
6556 return;
6557 }
6558
6559 /* Switch CFUN to point to FN. */
6560 push_cfun (DECL_STRUCT_FUNCTION (fn));
6561
6562 /* When GIMPLE is lowered, the variables are no longer available in
6563 BIND_EXPRs, so display them separately. */
6564 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6565 {
6566 unsigned ix;
6567 ignore_topmost_bind = true;
6568
6569 fprintf (file, "{\n");
6570 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6571 {
6572 print_generic_decl (file, var, flags);
6573 if (flags & TDF_VERBOSE)
6574 print_node (file, "", var, 4);
6575 fprintf (file, "\n");
6576
6577 any_var = true;
6578 }
6579 }
6580
6581 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6582 {
6583 /* If the CFG has been built, emit a CFG-based dump. */
6584 check_bb_profile (ENTRY_BLOCK_PTR, file);
6585 if (!ignore_topmost_bind)
6586 fprintf (file, "{\n");
6587
6588 if (any_var && n_basic_blocks)
6589 fprintf (file, "\n");
6590
6591 FOR_EACH_BB (bb)
6592 gimple_dump_bb (bb, file, 2, flags);
6593
6594 fprintf (file, "}\n");
6595 check_bb_profile (EXIT_BLOCK_PTR, file);
6596 }
6597 else if (DECL_SAVED_TREE (fn) == NULL)
6598 {
6599 /* The function is now in GIMPLE form but the CFG has not been
6600 built yet. Emit the single sequence of GIMPLE statements
6601 that make up its body. */
6602 gimple_seq body = gimple_body (fn);
6603
6604 if (gimple_seq_first_stmt (body)
6605 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6606 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6607 print_gimple_seq (file, body, 0, flags);
6608 else
6609 {
6610 if (!ignore_topmost_bind)
6611 fprintf (file, "{\n");
6612
6613 if (any_var)
6614 fprintf (file, "\n");
6615
6616 print_gimple_seq (file, body, 2, flags);
6617 fprintf (file, "}\n");
6618 }
6619 }
6620 else
6621 {
6622 int indent;
6623
6624 /* Make a tree based dump. */
6625 chain = DECL_SAVED_TREE (fn);
6626
6627 if (chain && TREE_CODE (chain) == BIND_EXPR)
6628 {
6629 if (ignore_topmost_bind)
6630 {
6631 chain = BIND_EXPR_BODY (chain);
6632 indent = 2;
6633 }
6634 else
6635 indent = 0;
6636 }
6637 else
6638 {
6639 if (!ignore_topmost_bind)
6640 fprintf (file, "{\n");
6641 indent = 2;
6642 }
6643
6644 if (any_var)
6645 fprintf (file, "\n");
6646
6647 print_generic_stmt_indented (file, chain, flags, indent);
6648 if (ignore_topmost_bind)
6649 fprintf (file, "}\n");
6650 }
6651
6652 if (flags & TDF_ENUMERATE_LOCALS)
6653 dump_enumerated_decls (file, flags);
6654 fprintf (file, "\n\n");
6655
6656 /* Restore CFUN. */
6657 pop_cfun ();
6658 }
6659
6660
6661 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6662
6663 DEBUG_FUNCTION void
6664 debug_function (tree fn, int flags)
6665 {
6666 dump_function_to_file (fn, stderr, flags);
6667 }
6668
6669
6670 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6671
6672 static void
6673 print_pred_bbs (FILE *file, basic_block bb)
6674 {
6675 edge e;
6676 edge_iterator ei;
6677
6678 FOR_EACH_EDGE (e, ei, bb->preds)
6679 fprintf (file, "bb_%d ", e->src->index);
6680 }
6681
6682
6683 /* Print on FILE the indexes for the successors of basic_block BB. */
6684
6685 static void
6686 print_succ_bbs (FILE *file, basic_block bb)
6687 {
6688 edge e;
6689 edge_iterator ei;
6690
6691 FOR_EACH_EDGE (e, ei, bb->succs)
6692 fprintf (file, "bb_%d ", e->dest->index);
6693 }
6694
6695 /* Print to FILE the basic block BB following the VERBOSITY level. */
6696
6697 void
6698 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6699 {
6700 char *s_indent = (char *) alloca ((size_t) indent + 1);
6701 memset ((void *) s_indent, ' ', (size_t) indent);
6702 s_indent[indent] = '\0';
6703
6704 /* Print basic_block's header. */
6705 if (verbosity >= 2)
6706 {
6707 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6708 print_pred_bbs (file, bb);
6709 fprintf (file, "}, succs = {");
6710 print_succ_bbs (file, bb);
6711 fprintf (file, "})\n");
6712 }
6713
6714 /* Print basic_block's body. */
6715 if (verbosity >= 3)
6716 {
6717 fprintf (file, "%s {\n", s_indent);
6718 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6719 fprintf (file, "%s }\n", s_indent);
6720 }
6721 }
6722
6723 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6724
6725 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6726 VERBOSITY level this outputs the contents of the loop, or just its
6727 structure. */
6728
6729 static void
6730 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6731 {
6732 char *s_indent;
6733 basic_block bb;
6734
6735 if (loop == NULL)
6736 return;
6737
6738 s_indent = (char *) alloca ((size_t) indent + 1);
6739 memset ((void *) s_indent, ' ', (size_t) indent);
6740 s_indent[indent] = '\0';
6741
6742 /* Print loop's header. */
6743 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6744 loop->num, loop->header->index, loop->latch->index);
6745 fprintf (file, ", niter = ");
6746 print_generic_expr (file, loop->nb_iterations, 0);
6747
6748 if (loop->any_upper_bound)
6749 {
6750 fprintf (file, ", upper_bound = ");
6751 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6752 }
6753
6754 if (loop->any_estimate)
6755 {
6756 fprintf (file, ", estimate = ");
6757 dump_double_int (file, loop->nb_iterations_estimate, true);
6758 }
6759 fprintf (file, ")\n");
6760
6761 /* Print loop's body. */
6762 if (verbosity >= 1)
6763 {
6764 fprintf (file, "%s{\n", s_indent);
6765 FOR_EACH_BB (bb)
6766 if (bb->loop_father == loop)
6767 print_loops_bb (file, bb, indent, verbosity);
6768
6769 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6770 fprintf (file, "%s}\n", s_indent);
6771 }
6772 }
6773
6774 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6775 spaces. Following VERBOSITY level this outputs the contents of the
6776 loop, or just its structure. */
6777
6778 static void
6779 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6780 {
6781 if (loop == NULL)
6782 return;
6783
6784 print_loop (file, loop, indent, verbosity);
6785 print_loop_and_siblings (file, loop->next, indent, verbosity);
6786 }
6787
6788 /* Follow a CFG edge from the entry point of the program, and on entry
6789 of a loop, pretty print the loop structure on FILE. */
6790
6791 void
6792 print_loops (FILE *file, int verbosity)
6793 {
6794 basic_block bb;
6795
6796 bb = ENTRY_BLOCK_PTR;
6797 if (bb && bb->loop_father)
6798 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6799 }
6800
6801
6802 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6803
6804 DEBUG_FUNCTION void
6805 debug_loops (int verbosity)
6806 {
6807 print_loops (stderr, verbosity);
6808 }
6809
6810 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6811
6812 DEBUG_FUNCTION void
6813 debug_loop (struct loop *loop, int verbosity)
6814 {
6815 print_loop (stderr, loop, 0, verbosity);
6816 }
6817
6818 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6819 level. */
6820
6821 DEBUG_FUNCTION void
6822 debug_loop_num (unsigned num, int verbosity)
6823 {
6824 debug_loop (get_loop (num), verbosity);
6825 }
6826
6827 /* Return true if BB ends with a call, possibly followed by some
6828 instructions that must stay with the call. Return false,
6829 otherwise. */
6830
6831 static bool
6832 gimple_block_ends_with_call_p (basic_block bb)
6833 {
6834 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6835 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6836 }
6837
6838
6839 /* Return true if BB ends with a conditional branch. Return false,
6840 otherwise. */
6841
6842 static bool
6843 gimple_block_ends_with_condjump_p (const_basic_block bb)
6844 {
6845 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6846 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6847 }
6848
6849
6850 /* Return true if we need to add fake edge to exit at statement T.
6851 Helper function for gimple_flow_call_edges_add. */
6852
6853 static bool
6854 need_fake_edge_p (gimple t)
6855 {
6856 tree fndecl = NULL_TREE;
6857 int call_flags = 0;
6858
6859 /* NORETURN and LONGJMP calls already have an edge to exit.
6860 CONST and PURE calls do not need one.
6861 We don't currently check for CONST and PURE here, although
6862 it would be a good idea, because those attributes are
6863 figured out from the RTL in mark_constant_function, and
6864 the counter incrementation code from -fprofile-arcs
6865 leads to different results from -fbranch-probabilities. */
6866 if (is_gimple_call (t))
6867 {
6868 fndecl = gimple_call_fndecl (t);
6869 call_flags = gimple_call_flags (t);
6870 }
6871
6872 if (is_gimple_call (t)
6873 && fndecl
6874 && DECL_BUILT_IN (fndecl)
6875 && (call_flags & ECF_NOTHROW)
6876 && !(call_flags & ECF_RETURNS_TWICE)
6877 /* fork() doesn't really return twice, but the effect of
6878 wrapping it in __gcov_fork() which calls __gcov_flush()
6879 and clears the counters before forking has the same
6880 effect as returning twice. Force a fake edge. */
6881 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6882 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6883 return false;
6884
6885 if (is_gimple_call (t)
6886 && !(call_flags & ECF_NORETURN))
6887 return true;
6888
6889 if (gimple_code (t) == GIMPLE_ASM
6890 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6891 return true;
6892
6893 return false;
6894 }
6895
6896
6897 /* Add fake edges to the function exit for any non constant and non
6898 noreturn calls, volatile inline assembly in the bitmap of blocks
6899 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6900 the number of blocks that were split.
6901
6902 The goal is to expose cases in which entering a basic block does
6903 not imply that all subsequent instructions must be executed. */
6904
6905 static int
6906 gimple_flow_call_edges_add (sbitmap blocks)
6907 {
6908 int i;
6909 int blocks_split = 0;
6910 int last_bb = last_basic_block;
6911 bool check_last_block = false;
6912
6913 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6914 return 0;
6915
6916 if (! blocks)
6917 check_last_block = true;
6918 else
6919 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6920
6921 /* In the last basic block, before epilogue generation, there will be
6922 a fallthru edge to EXIT. Special care is required if the last insn
6923 of the last basic block is a call because make_edge folds duplicate
6924 edges, which would result in the fallthru edge also being marked
6925 fake, which would result in the fallthru edge being removed by
6926 remove_fake_edges, which would result in an invalid CFG.
6927
6928 Moreover, we can't elide the outgoing fake edge, since the block
6929 profiler needs to take this into account in order to solve the minimal
6930 spanning tree in the case that the call doesn't return.
6931
6932 Handle this by adding a dummy instruction in a new last basic block. */
6933 if (check_last_block)
6934 {
6935 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6936 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6937 gimple t = NULL;
6938
6939 if (!gsi_end_p (gsi))
6940 t = gsi_stmt (gsi);
6941
6942 if (t && need_fake_edge_p (t))
6943 {
6944 edge e;
6945
6946 e = find_edge (bb, EXIT_BLOCK_PTR);
6947 if (e)
6948 {
6949 gsi_insert_on_edge (e, gimple_build_nop ());
6950 gsi_commit_edge_inserts ();
6951 }
6952 }
6953 }
6954
6955 /* Now add fake edges to the function exit for any non constant
6956 calls since there is no way that we can determine if they will
6957 return or not... */
6958 for (i = 0; i < last_bb; i++)
6959 {
6960 basic_block bb = BASIC_BLOCK (i);
6961 gimple_stmt_iterator gsi;
6962 gimple stmt, last_stmt;
6963
6964 if (!bb)
6965 continue;
6966
6967 if (blocks && !TEST_BIT (blocks, i))
6968 continue;
6969
6970 gsi = gsi_last_nondebug_bb (bb);
6971 if (!gsi_end_p (gsi))
6972 {
6973 last_stmt = gsi_stmt (gsi);
6974 do
6975 {
6976 stmt = gsi_stmt (gsi);
6977 if (need_fake_edge_p (stmt))
6978 {
6979 edge e;
6980
6981 /* The handling above of the final block before the
6982 epilogue should be enough to verify that there is
6983 no edge to the exit block in CFG already.
6984 Calling make_edge in such case would cause us to
6985 mark that edge as fake and remove it later. */
6986 #ifdef ENABLE_CHECKING
6987 if (stmt == last_stmt)
6988 {
6989 e = find_edge (bb, EXIT_BLOCK_PTR);
6990 gcc_assert (e == NULL);
6991 }
6992 #endif
6993
6994 /* Note that the following may create a new basic block
6995 and renumber the existing basic blocks. */
6996 if (stmt != last_stmt)
6997 {
6998 e = split_block (bb, stmt);
6999 if (e)
7000 blocks_split++;
7001 }
7002 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
7003 }
7004 gsi_prev (&gsi);
7005 }
7006 while (!gsi_end_p (gsi));
7007 }
7008 }
7009
7010 if (blocks_split)
7011 verify_flow_info ();
7012
7013 return blocks_split;
7014 }
7015
7016 /* Removes edge E and all the blocks dominated by it, and updates dominance
7017 information. The IL in E->src needs to be updated separately.
7018 If dominance info is not available, only the edge E is removed.*/
7019
7020 void
7021 remove_edge_and_dominated_blocks (edge e)
7022 {
7023 VEC (basic_block, heap) *bbs_to_remove = NULL;
7024 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
7025 bitmap df, df_idom;
7026 edge f;
7027 edge_iterator ei;
7028 bool none_removed = false;
7029 unsigned i;
7030 basic_block bb, dbb;
7031 bitmap_iterator bi;
7032
7033 if (!dom_info_available_p (CDI_DOMINATORS))
7034 {
7035 remove_edge (e);
7036 return;
7037 }
7038
7039 /* No updating is needed for edges to exit. */
7040 if (e->dest == EXIT_BLOCK_PTR)
7041 {
7042 if (cfgcleanup_altered_bbs)
7043 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7044 remove_edge (e);
7045 return;
7046 }
7047
7048 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7049 that is not dominated by E->dest, then this set is empty. Otherwise,
7050 all the basic blocks dominated by E->dest are removed.
7051
7052 Also, to DF_IDOM we store the immediate dominators of the blocks in
7053 the dominance frontier of E (i.e., of the successors of the
7054 removed blocks, if there are any, and of E->dest otherwise). */
7055 FOR_EACH_EDGE (f, ei, e->dest->preds)
7056 {
7057 if (f == e)
7058 continue;
7059
7060 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7061 {
7062 none_removed = true;
7063 break;
7064 }
7065 }
7066
7067 df = BITMAP_ALLOC (NULL);
7068 df_idom = BITMAP_ALLOC (NULL);
7069
7070 if (none_removed)
7071 bitmap_set_bit (df_idom,
7072 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7073 else
7074 {
7075 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7076 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7077 {
7078 FOR_EACH_EDGE (f, ei, bb->succs)
7079 {
7080 if (f->dest != EXIT_BLOCK_PTR)
7081 bitmap_set_bit (df, f->dest->index);
7082 }
7083 }
7084 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
7085 bitmap_clear_bit (df, bb->index);
7086
7087 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7088 {
7089 bb = BASIC_BLOCK (i);
7090 bitmap_set_bit (df_idom,
7091 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7092 }
7093 }
7094
7095 if (cfgcleanup_altered_bbs)
7096 {
7097 /* Record the set of the altered basic blocks. */
7098 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7099 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7100 }
7101
7102 /* Remove E and the cancelled blocks. */
7103 if (none_removed)
7104 remove_edge (e);
7105 else
7106 {
7107 /* Walk backwards so as to get a chance to substitute all
7108 released DEFs into debug stmts. See
7109 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7110 details. */
7111 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
7112 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
7113 }
7114
7115 /* Update the dominance information. The immediate dominator may change only
7116 for blocks whose immediate dominator belongs to DF_IDOM:
7117
7118 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7119 removal. Let Z the arbitrary block such that idom(Z) = Y and
7120 Z dominates X after the removal. Before removal, there exists a path P
7121 from Y to X that avoids Z. Let F be the last edge on P that is
7122 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7123 dominates W, and because of P, Z does not dominate W), and W belongs to
7124 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7125 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7126 {
7127 bb = BASIC_BLOCK (i);
7128 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7129 dbb;
7130 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7131 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
7132 }
7133
7134 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7135
7136 BITMAP_FREE (df);
7137 BITMAP_FREE (df_idom);
7138 VEC_free (basic_block, heap, bbs_to_remove);
7139 VEC_free (basic_block, heap, bbs_to_fix_dom);
7140 }
7141
7142 /* Purge dead EH edges from basic block BB. */
7143
7144 bool
7145 gimple_purge_dead_eh_edges (basic_block bb)
7146 {
7147 bool changed = false;
7148 edge e;
7149 edge_iterator ei;
7150 gimple stmt = last_stmt (bb);
7151
7152 if (stmt && stmt_can_throw_internal (stmt))
7153 return false;
7154
7155 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7156 {
7157 if (e->flags & EDGE_EH)
7158 {
7159 remove_edge_and_dominated_blocks (e);
7160 changed = true;
7161 }
7162 else
7163 ei_next (&ei);
7164 }
7165
7166 return changed;
7167 }
7168
7169 /* Purge dead EH edges from basic block listed in BLOCKS. */
7170
7171 bool
7172 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7173 {
7174 bool changed = false;
7175 unsigned i;
7176 bitmap_iterator bi;
7177
7178 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7179 {
7180 basic_block bb = BASIC_BLOCK (i);
7181
7182 /* Earlier gimple_purge_dead_eh_edges could have removed
7183 this basic block already. */
7184 gcc_assert (bb || changed);
7185 if (bb != NULL)
7186 changed |= gimple_purge_dead_eh_edges (bb);
7187 }
7188
7189 return changed;
7190 }
7191
7192 /* Purge dead abnormal call edges from basic block BB. */
7193
7194 bool
7195 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7196 {
7197 bool changed = false;
7198 edge e;
7199 edge_iterator ei;
7200 gimple stmt = last_stmt (bb);
7201
7202 if (!cfun->has_nonlocal_label)
7203 return false;
7204
7205 if (stmt && stmt_can_make_abnormal_goto (stmt))
7206 return false;
7207
7208 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7209 {
7210 if (e->flags & EDGE_ABNORMAL)
7211 {
7212 remove_edge_and_dominated_blocks (e);
7213 changed = true;
7214 }
7215 else
7216 ei_next (&ei);
7217 }
7218
7219 return changed;
7220 }
7221
7222 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7223
7224 bool
7225 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7226 {
7227 bool changed = false;
7228 unsigned i;
7229 bitmap_iterator bi;
7230
7231 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7232 {
7233 basic_block bb = BASIC_BLOCK (i);
7234
7235 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7236 this basic block already. */
7237 gcc_assert (bb || changed);
7238 if (bb != NULL)
7239 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7240 }
7241
7242 return changed;
7243 }
7244
7245 /* This function is called whenever a new edge is created or
7246 redirected. */
7247
7248 static void
7249 gimple_execute_on_growing_pred (edge e)
7250 {
7251 basic_block bb = e->dest;
7252
7253 if (!gimple_seq_empty_p (phi_nodes (bb)))
7254 reserve_phi_args_for_new_edge (bb);
7255 }
7256
7257 /* This function is called immediately before edge E is removed from
7258 the edge vector E->dest->preds. */
7259
7260 static void
7261 gimple_execute_on_shrinking_pred (edge e)
7262 {
7263 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7264 remove_phi_args (e);
7265 }
7266
7267 /*---------------------------------------------------------------------------
7268 Helper functions for Loop versioning
7269 ---------------------------------------------------------------------------*/
7270
7271 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7272 of 'first'. Both of them are dominated by 'new_head' basic block. When
7273 'new_head' was created by 'second's incoming edge it received phi arguments
7274 on the edge by split_edge(). Later, additional edge 'e' was created to
7275 connect 'new_head' and 'first'. Now this routine adds phi args on this
7276 additional edge 'e' that new_head to second edge received as part of edge
7277 splitting. */
7278
7279 static void
7280 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7281 basic_block new_head, edge e)
7282 {
7283 gimple phi1, phi2;
7284 gimple_stmt_iterator psi1, psi2;
7285 tree def;
7286 edge e2 = find_edge (new_head, second);
7287
7288 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7289 edge, we should always have an edge from NEW_HEAD to SECOND. */
7290 gcc_assert (e2 != NULL);
7291
7292 /* Browse all 'second' basic block phi nodes and add phi args to
7293 edge 'e' for 'first' head. PHI args are always in correct order. */
7294
7295 for (psi2 = gsi_start_phis (second),
7296 psi1 = gsi_start_phis (first);
7297 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7298 gsi_next (&psi2), gsi_next (&psi1))
7299 {
7300 phi1 = gsi_stmt (psi1);
7301 phi2 = gsi_stmt (psi2);
7302 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7303 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7304 }
7305 }
7306
7307
7308 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7309 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7310 the destination of the ELSE part. */
7311
7312 static void
7313 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7314 basic_block second_head ATTRIBUTE_UNUSED,
7315 basic_block cond_bb, void *cond_e)
7316 {
7317 gimple_stmt_iterator gsi;
7318 gimple new_cond_expr;
7319 tree cond_expr = (tree) cond_e;
7320 edge e0;
7321
7322 /* Build new conditional expr */
7323 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7324 NULL_TREE, NULL_TREE);
7325
7326 /* Add new cond in cond_bb. */
7327 gsi = gsi_last_bb (cond_bb);
7328 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7329
7330 /* Adjust edges appropriately to connect new head with first head
7331 as well as second head. */
7332 e0 = single_succ_edge (cond_bb);
7333 e0->flags &= ~EDGE_FALLTHRU;
7334 e0->flags |= EDGE_FALSE_VALUE;
7335 }
7336
7337 struct cfg_hooks gimple_cfg_hooks = {
7338 "gimple",
7339 gimple_verify_flow_info,
7340 gimple_dump_bb, /* dump_bb */
7341 create_bb, /* create_basic_block */
7342 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7343 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7344 gimple_can_remove_branch_p, /* can_remove_branch_p */
7345 remove_bb, /* delete_basic_block */
7346 gimple_split_block, /* split_block */
7347 gimple_move_block_after, /* move_block_after */
7348 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7349 gimple_merge_blocks, /* merge_blocks */
7350 gimple_predict_edge, /* predict_edge */
7351 gimple_predicted_by_p, /* predicted_by_p */
7352 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7353 gimple_duplicate_bb, /* duplicate_block */
7354 gimple_split_edge, /* split_edge */
7355 gimple_make_forwarder_block, /* make_forward_block */
7356 NULL, /* tidy_fallthru_edge */
7357 NULL, /* force_nonfallthru */
7358 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7359 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7360 gimple_flow_call_edges_add, /* flow_call_edges_add */
7361 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7362 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7363 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7364 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7365 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7366 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7367 flush_pending_stmts /* flush_pending_stmts */
7368 };
7369
7370
7371 /* Split all critical edges. */
7372
7373 static unsigned int
7374 split_critical_edges (void)
7375 {
7376 basic_block bb;
7377 edge e;
7378 edge_iterator ei;
7379
7380 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7381 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7382 mappings around the calls to split_edge. */
7383 start_recording_case_labels ();
7384 FOR_ALL_BB (bb)
7385 {
7386 FOR_EACH_EDGE (e, ei, bb->succs)
7387 {
7388 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7389 split_edge (e);
7390 /* PRE inserts statements to edges and expects that
7391 since split_critical_edges was done beforehand, committing edge
7392 insertions will not split more edges. In addition to critical
7393 edges we must split edges that have multiple successors and
7394 end by control flow statements, such as RESX.
7395 Go ahead and split them too. This matches the logic in
7396 gimple_find_edge_insert_loc. */
7397 else if ((!single_pred_p (e->dest)
7398 || !gimple_seq_empty_p (phi_nodes (e->dest))
7399 || e->dest == EXIT_BLOCK_PTR)
7400 && e->src != ENTRY_BLOCK_PTR
7401 && !(e->flags & EDGE_ABNORMAL))
7402 {
7403 gimple_stmt_iterator gsi;
7404
7405 gsi = gsi_last_bb (e->src);
7406 if (!gsi_end_p (gsi)
7407 && stmt_ends_bb_p (gsi_stmt (gsi))
7408 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7409 && !gimple_call_builtin_p (gsi_stmt (gsi),
7410 BUILT_IN_RETURN)))
7411 split_edge (e);
7412 }
7413 }
7414 }
7415 end_recording_case_labels ();
7416 return 0;
7417 }
7418
7419 struct gimple_opt_pass pass_split_crit_edges =
7420 {
7421 {
7422 GIMPLE_PASS,
7423 "crited", /* name */
7424 NULL, /* gate */
7425 split_critical_edges, /* execute */
7426 NULL, /* sub */
7427 NULL, /* next */
7428 0, /* static_pass_number */
7429 TV_TREE_SPLIT_EDGES, /* tv_id */
7430 PROP_cfg, /* properties required */
7431 PROP_no_crit_edges, /* properties_provided */
7432 0, /* properties_destroyed */
7433 0, /* todo_flags_start */
7434 TODO_verify_flow /* todo_flags_finish */
7435 }
7436 };
7437
7438
7439 /* Build a ternary operation and gimplify it. Emit code before GSI.
7440 Return the gimple_val holding the result. */
7441
7442 tree
7443 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7444 tree type, tree a, tree b, tree c)
7445 {
7446 tree ret;
7447 location_t loc = gimple_location (gsi_stmt (*gsi));
7448
7449 ret = fold_build3_loc (loc, code, type, a, b, c);
7450 STRIP_NOPS (ret);
7451
7452 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7453 GSI_SAME_STMT);
7454 }
7455
7456 /* Build a binary operation and gimplify it. Emit code before GSI.
7457 Return the gimple_val holding the result. */
7458
7459 tree
7460 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7461 tree type, tree a, tree b)
7462 {
7463 tree ret;
7464
7465 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7466 STRIP_NOPS (ret);
7467
7468 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7469 GSI_SAME_STMT);
7470 }
7471
7472 /* Build a unary operation and gimplify it. Emit code before GSI.
7473 Return the gimple_val holding the result. */
7474
7475 tree
7476 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7477 tree a)
7478 {
7479 tree ret;
7480
7481 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7482 STRIP_NOPS (ret);
7483
7484 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7485 GSI_SAME_STMT);
7486 }
7487
7488
7489 \f
7490 /* Emit return warnings. */
7491
7492 static unsigned int
7493 execute_warn_function_return (void)
7494 {
7495 source_location location;
7496 gimple last;
7497 edge e;
7498 edge_iterator ei;
7499
7500 /* If we have a path to EXIT, then we do return. */
7501 if (TREE_THIS_VOLATILE (cfun->decl)
7502 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7503 {
7504 location = UNKNOWN_LOCATION;
7505 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7506 {
7507 last = last_stmt (e->src);
7508 if ((gimple_code (last) == GIMPLE_RETURN
7509 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7510 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7511 break;
7512 }
7513 if (location == UNKNOWN_LOCATION)
7514 location = cfun->function_end_locus;
7515 warning_at (location, 0, "%<noreturn%> function does return");
7516 }
7517
7518 /* If we see "return;" in some basic block, then we do reach the end
7519 without returning a value. */
7520 else if (warn_return_type
7521 && !TREE_NO_WARNING (cfun->decl)
7522 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7523 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7524 {
7525 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7526 {
7527 gimple last = last_stmt (e->src);
7528 if (gimple_code (last) == GIMPLE_RETURN
7529 && gimple_return_retval (last) == NULL
7530 && !gimple_no_warning_p (last))
7531 {
7532 location = gimple_location (last);
7533 if (location == UNKNOWN_LOCATION)
7534 location = cfun->function_end_locus;
7535 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7536 TREE_NO_WARNING (cfun->decl) = 1;
7537 break;
7538 }
7539 }
7540 }
7541 return 0;
7542 }
7543
7544
7545 /* Given a basic block B which ends with a conditional and has
7546 precisely two successors, determine which of the edges is taken if
7547 the conditional is true and which is taken if the conditional is
7548 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7549
7550 void
7551 extract_true_false_edges_from_block (basic_block b,
7552 edge *true_edge,
7553 edge *false_edge)
7554 {
7555 edge e = EDGE_SUCC (b, 0);
7556
7557 if (e->flags & EDGE_TRUE_VALUE)
7558 {
7559 *true_edge = e;
7560 *false_edge = EDGE_SUCC (b, 1);
7561 }
7562 else
7563 {
7564 *false_edge = e;
7565 *true_edge = EDGE_SUCC (b, 1);
7566 }
7567 }
7568
7569 struct gimple_opt_pass pass_warn_function_return =
7570 {
7571 {
7572 GIMPLE_PASS,
7573 "*warn_function_return", /* name */
7574 NULL, /* gate */
7575 execute_warn_function_return, /* execute */
7576 NULL, /* sub */
7577 NULL, /* next */
7578 0, /* static_pass_number */
7579 TV_NONE, /* tv_id */
7580 PROP_cfg, /* properties_required */
7581 0, /* properties_provided */
7582 0, /* properties_destroyed */
7583 0, /* todo_flags_start */
7584 0 /* todo_flags_finish */
7585 }
7586 };
7587
7588 /* Emit noreturn warnings. */
7589
7590 static unsigned int
7591 execute_warn_function_noreturn (void)
7592 {
7593 if (!TREE_THIS_VOLATILE (current_function_decl)
7594 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7595 warn_function_noreturn (current_function_decl);
7596 return 0;
7597 }
7598
7599 static bool
7600 gate_warn_function_noreturn (void)
7601 {
7602 return warn_suggest_attribute_noreturn;
7603 }
7604
7605 struct gimple_opt_pass pass_warn_function_noreturn =
7606 {
7607 {
7608 GIMPLE_PASS,
7609 "*warn_function_noreturn", /* name */
7610 gate_warn_function_noreturn, /* gate */
7611 execute_warn_function_noreturn, /* execute */
7612 NULL, /* sub */
7613 NULL, /* next */
7614 0, /* static_pass_number */
7615 TV_NONE, /* tv_id */
7616 PROP_cfg, /* properties_required */
7617 0, /* properties_provided */
7618 0, /* properties_destroyed */
7619 0, /* todo_flags_start */
7620 0 /* todo_flags_finish */
7621 }
7622 };
7623
7624
7625 /* Walk a gimplified function and warn for functions whose return value is
7626 ignored and attribute((warn_unused_result)) is set. This is done before
7627 inlining, so we don't have to worry about that. */
7628
7629 static void
7630 do_warn_unused_result (gimple_seq seq)
7631 {
7632 tree fdecl, ftype;
7633 gimple_stmt_iterator i;
7634
7635 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7636 {
7637 gimple g = gsi_stmt (i);
7638
7639 switch (gimple_code (g))
7640 {
7641 case GIMPLE_BIND:
7642 do_warn_unused_result (gimple_bind_body (g));
7643 break;
7644 case GIMPLE_TRY:
7645 do_warn_unused_result (gimple_try_eval (g));
7646 do_warn_unused_result (gimple_try_cleanup (g));
7647 break;
7648 case GIMPLE_CATCH:
7649 do_warn_unused_result (gimple_catch_handler (g));
7650 break;
7651 case GIMPLE_EH_FILTER:
7652 do_warn_unused_result (gimple_eh_filter_failure (g));
7653 break;
7654
7655 case GIMPLE_CALL:
7656 if (gimple_call_lhs (g))
7657 break;
7658 if (gimple_call_internal_p (g))
7659 break;
7660
7661 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7662 LHS. All calls whose value is ignored should be
7663 represented like this. Look for the attribute. */
7664 fdecl = gimple_call_fndecl (g);
7665 ftype = gimple_call_fntype (g);
7666
7667 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7668 {
7669 location_t loc = gimple_location (g);
7670
7671 if (fdecl)
7672 warning_at (loc, OPT_Wunused_result,
7673 "ignoring return value of %qD, "
7674 "declared with attribute warn_unused_result",
7675 fdecl);
7676 else
7677 warning_at (loc, OPT_Wunused_result,
7678 "ignoring return value of function "
7679 "declared with attribute warn_unused_result");
7680 }
7681 break;
7682
7683 default:
7684 /* Not a container, not a call, or a call whose value is used. */
7685 break;
7686 }
7687 }
7688 }
7689
7690 static unsigned int
7691 run_warn_unused_result (void)
7692 {
7693 do_warn_unused_result (gimple_body (current_function_decl));
7694 return 0;
7695 }
7696
7697 static bool
7698 gate_warn_unused_result (void)
7699 {
7700 return flag_warn_unused_result;
7701 }
7702
7703 struct gimple_opt_pass pass_warn_unused_result =
7704 {
7705 {
7706 GIMPLE_PASS,
7707 "*warn_unused_result", /* name */
7708 gate_warn_unused_result, /* gate */
7709 run_warn_unused_result, /* execute */
7710 NULL, /* sub */
7711 NULL, /* next */
7712 0, /* static_pass_number */
7713 TV_NONE, /* tv_id */
7714 PROP_gimple_any, /* properties_required */
7715 0, /* properties_provided */
7716 0, /* properties_destroyed */
7717 0, /* todo_flags_start */
7718 0, /* todo_flags_finish */
7719 }
7720 };