Change edge_to_cases_cleanup to return true.
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "except.h"
42 #include "cfgloop.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
48
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
51
52 /* Local declarations. */
53
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity = 20;
56
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
61
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
64
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
69
70 static struct pointer_map_t *edge_to_cases;
71
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
75
76 static bitmap touched_switch_bbs;
77
78 /* CFG statistics. */
79 struct cfg_stats_d
80 {
81 long num_merged_labels;
82 };
83
84 static struct cfg_stats_d cfg_stats;
85
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto;
88
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
91 {
92 location_t locus;
93 int discriminator;
94 };
95 static htab_t discriminator_per_locus;
96
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq);
99 static void factor_computed_gotos (void);
100
101 /* Edges. */
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block);
104 static void make_gimple_switch_edges (basic_block);
105 static void make_goto_expr_edges (basic_block);
106 static void make_gimple_asm_edges (basic_block);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t, basic_block);
110 static edge gimple_redirect_edge_and_branch (edge, basic_block);
111 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
112 static unsigned int split_critical_edges (void);
113
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple, gimple);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple first_non_label_stmt (basic_block);
120
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block, basic_block);
123 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
124 static void remove_bb (basic_block);
125 static edge find_taken_edge_computed_goto (basic_block, tree);
126 static edge find_taken_edge_cond_expr (basic_block, tree);
127 static edge find_taken_edge_switch_expr (basic_block, tree);
128 static tree find_case_label_for_value (gimple, tree);
129 static void group_case_labels_stmt (gimple);
130
131 void
132 init_empty_tree_cfg_for_function (struct function *fn)
133 {
134 /* Initialize the basic block array. */
135 init_flow (fn);
136 profile_status_for_function (fn) = PROFILE_ABSENT;
137 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
138 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
139 basic_block_info_for_function (fn)
140 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
141 VEC_safe_grow_cleared (basic_block, gc,
142 basic_block_info_for_function (fn),
143 initial_cfg_capacity);
144
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn)
147 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
148 VEC_safe_grow_cleared (basic_block, gc,
149 label_to_block_map_for_function (fn),
150 initial_cfg_capacity);
151
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
156
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
161 }
162
163 void
164 init_empty_tree_cfg (void)
165 {
166 init_empty_tree_cfg_for_function (cfun);
167 }
168
169 /*---------------------------------------------------------------------------
170 Create basic blocks
171 ---------------------------------------------------------------------------*/
172
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
175
176 static void
177 build_gimple_cfg (gimple_seq seq)
178 {
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
181
182 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
183
184 init_empty_tree_cfg ();
185
186 found_computed_goto = 0;
187 make_blocks (seq);
188
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto)
195 factor_computed_gotos ();
196
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks == NUM_FIXED_BLOCKS)
199 create_empty_bb (ENTRY_BLOCK_PTR);
200
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
203 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
204
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
207
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
212
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
215 free);
216 make_edges ();
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus);
219
220 /* Debugging dumps. */
221
222 /* Write the flowgraph to a VCG file. */
223 {
224 int local_dump_flags;
225 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
226 if (vcg_file)
227 {
228 gimple_cfg2vcg (vcg_file);
229 dump_end (TDI_vcg, vcg_file);
230 }
231 }
232 }
233
234 static unsigned int
235 execute_build_cfg (void)
236 {
237 gimple_seq body = gimple_body (current_function_decl);
238
239 build_gimple_cfg (body);
240 gimple_set_body (current_function_decl, NULL);
241 if (dump_file && (dump_flags & TDF_DETAILS))
242 {
243 fprintf (dump_file, "Scope blocks:\n");
244 dump_scope_blocks (dump_file, dump_flags);
245 }
246 return 0;
247 }
248
249 struct gimple_opt_pass pass_build_cfg =
250 {
251 {
252 GIMPLE_PASS,
253 "cfg", /* name */
254 NULL, /* gate */
255 execute_build_cfg, /* execute */
256 NULL, /* sub */
257 NULL, /* next */
258 0, /* static_pass_number */
259 TV_TREE_CFG, /* tv_id */
260 PROP_gimple_leh, /* properties_required */
261 PROP_cfg, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts | TODO_cleanup_cfg
265 | TODO_dump_func /* todo_flags_finish */
266 }
267 };
268
269
270 /* Return true if T is a computed goto. */
271
272 static bool
273 computed_goto_p (gimple t)
274 {
275 return (gimple_code (t) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
277 }
278
279
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
283 normal form. */
284
285 static void
286 factor_computed_gotos (void)
287 {
288 basic_block bb;
289 tree factored_label_decl = NULL;
290 tree var = NULL;
291 gimple factored_computed_goto_label = NULL;
292 gimple factored_computed_goto = NULL;
293
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
297
298 FOR_EACH_BB (bb)
299 {
300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
301 gimple last;
302
303 if (gsi_end_p (gsi))
304 continue;
305
306 last = gsi_stmt (gsi);
307
308 /* Ignore the computed goto we create when we factor the original
309 computed gotos. */
310 if (last == factored_computed_goto)
311 continue;
312
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last))
315 {
316 gimple assignment;
317
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto)
322 {
323 basic_block new_bb = create_empty_bb (bb);
324 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
325
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
329 below. */
330 var = create_tmp_var (ptr_type_node, "gotovar");
331
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl);
337 gsi_insert_after (&new_gsi, factored_computed_goto_label,
338 GSI_NEW_STMT);
339
340 /* Build our new computed goto. */
341 factored_computed_goto = gimple_build_goto (var);
342 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
343 }
344
345 /* Copy the original computed goto's destination into VAR. */
346 assignment = gimple_build_assign (var, gimple_goto_dest (last));
347 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
348
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last, factored_label_decl);
351 }
352 }
353 }
354
355
356 /* Build a flowgraph for the sequence of stmts SEQ. */
357
358 static void
359 make_blocks (gimple_seq seq)
360 {
361 gimple_stmt_iterator i = gsi_start (seq);
362 gimple stmt = NULL;
363 bool start_new_block = true;
364 bool first_stmt_of_seq = true;
365 basic_block bb = ENTRY_BLOCK_PTR;
366
367 while (!gsi_end_p (i))
368 {
369 gimple prev_stmt;
370
371 prev_stmt = stmt;
372 stmt = gsi_stmt (i);
373
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
376 so now. */
377 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
378 {
379 if (!first_stmt_of_seq)
380 seq = gsi_split_seq_before (&i);
381 bb = create_basic_block (seq, NULL, bb);
382 start_new_block = false;
383 }
384
385 /* Now add STMT to BB and create the subgraphs for special statement
386 codes. */
387 gimple_set_bb (stmt, bb);
388
389 if (computed_goto_p (stmt))
390 found_computed_goto = true;
391
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
393 next iteration. */
394 if (stmt_ends_bb_p (stmt))
395 {
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
400 SSA names. */
401 if (gimple_has_lhs (stmt)
402 && stmt_can_make_abnormal_goto (stmt)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
404 {
405 tree lhs = gimple_get_lhs (stmt);
406 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
407 gimple s = gimple_build_assign (lhs, tmp);
408 gimple_set_location (s, gimple_location (stmt));
409 gimple_set_block (s, gimple_block (stmt));
410 gimple_set_lhs (stmt, tmp);
411 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
413 DECL_GIMPLE_REG_P (tmp) = 1;
414 gsi_insert_after (&i, s, GSI_SAME_STMT);
415 }
416 start_new_block = true;
417 }
418
419 gsi_next (&i);
420 first_stmt_of_seq = false;
421 }
422 }
423
424
425 /* Create and return a new empty basic block after bb AFTER. */
426
427 static basic_block
428 create_bb (void *h, void *e, basic_block after)
429 {
430 basic_block bb;
431
432 gcc_assert (!e);
433
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
437 bb = alloc_block ();
438
439 bb->index = last_basic_block;
440 bb->flags = BB_NEW;
441 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
443
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb, after);
446
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
449 {
450 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
451 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
452 }
453
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block, bb);
456
457 n_basic_blocks++;
458 last_basic_block++;
459
460 return bb;
461 }
462
463
464 /*---------------------------------------------------------------------------
465 Edge creation
466 ---------------------------------------------------------------------------*/
467
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
469
470 void
471 fold_cond_expr_cond (void)
472 {
473 basic_block bb;
474
475 FOR_EACH_BB (bb)
476 {
477 gimple stmt = last_stmt (bb);
478
479 if (stmt && gimple_code (stmt) == GIMPLE_COND)
480 {
481 location_t loc = gimple_location (stmt);
482 tree cond;
483 bool zerop, onep;
484
485 fold_defer_overflow_warnings ();
486 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
487 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
488 if (cond)
489 {
490 zerop = integer_zerop (cond);
491 onep = integer_onep (cond);
492 }
493 else
494 zerop = onep = false;
495
496 fold_undefer_overflow_warnings (zerop || onep,
497 stmt,
498 WARN_STRICT_OVERFLOW_CONDITIONAL);
499 if (zerop)
500 gimple_cond_make_false (stmt);
501 else if (onep)
502 gimple_cond_make_true (stmt);
503 }
504 }
505 }
506
507 /* Join all the blocks in the flowgraph. */
508
509 static void
510 make_edges (void)
511 {
512 basic_block bb;
513 struct omp_region *cur_region = NULL;
514
515 /* Create an edge from entry to the first block with executable
516 statements in it. */
517 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
518
519 /* Traverse the basic block array placing edges. */
520 FOR_EACH_BB (bb)
521 {
522 gimple last = last_stmt (bb);
523 bool fallthru;
524
525 if (last)
526 {
527 enum gimple_code code = gimple_code (last);
528 switch (code)
529 {
530 case GIMPLE_GOTO:
531 make_goto_expr_edges (bb);
532 fallthru = false;
533 break;
534 case GIMPLE_RETURN:
535 make_edge (bb, EXIT_BLOCK_PTR, 0);
536 fallthru = false;
537 break;
538 case GIMPLE_COND:
539 make_cond_expr_edges (bb);
540 fallthru = false;
541 break;
542 case GIMPLE_SWITCH:
543 make_gimple_switch_edges (bb);
544 fallthru = false;
545 break;
546 case GIMPLE_RESX:
547 make_eh_edges (last);
548 fallthru = false;
549 break;
550 case GIMPLE_EH_DISPATCH:
551 fallthru = make_eh_dispatch_edges (last);
552 break;
553
554 case GIMPLE_CALL:
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
557 handlers. */
558 if (stmt_can_make_abnormal_goto (last))
559 make_abnormal_goto_edges (bb, true);
560
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last);
564
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
567 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
568 /* Some calls are known not to return. */
569 else
570 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
571 break;
572
573 case GIMPLE_ASSIGN:
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
575 control-altering. */
576 if (is_ctrl_altering_stmt (last))
577 make_eh_edges (last);
578 fallthru = true;
579 break;
580
581 case GIMPLE_ASM:
582 make_gimple_asm_edges (bb);
583 fallthru = true;
584 break;
585
586 case GIMPLE_OMP_PARALLEL:
587 case GIMPLE_OMP_TASK:
588 case GIMPLE_OMP_FOR:
589 case GIMPLE_OMP_SINGLE:
590 case GIMPLE_OMP_MASTER:
591 case GIMPLE_OMP_ORDERED:
592 case GIMPLE_OMP_CRITICAL:
593 case GIMPLE_OMP_SECTION:
594 cur_region = new_omp_region (bb, code, cur_region);
595 fallthru = true;
596 break;
597
598 case GIMPLE_OMP_SECTIONS:
599 cur_region = new_omp_region (bb, code, cur_region);
600 fallthru = true;
601 break;
602
603 case GIMPLE_OMP_SECTIONS_SWITCH:
604 fallthru = false;
605 break;
606
607 case GIMPLE_OMP_ATOMIC_LOAD:
608 case GIMPLE_OMP_ATOMIC_STORE:
609 fallthru = true;
610 break;
611
612 case GIMPLE_OMP_RETURN:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
615 created later. */
616 cur_region->exit = bb;
617 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
618 cur_region = cur_region->outer;
619 break;
620
621 case GIMPLE_OMP_CONTINUE:
622 cur_region->cont = bb;
623 switch (cur_region->type)
624 {
625 case GIMPLE_OMP_FOR:
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
628 them. */
629 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
630 /* Make the loopback edge. */
631 make_edge (bb, single_succ (cur_region->entry),
632 EDGE_ABNORMAL);
633
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
638 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
639 fallthru = false;
640 break;
641
642 case GIMPLE_OMP_SECTIONS:
643 /* Wire up the edges into and out of the nested sections. */
644 {
645 basic_block switch_bb = single_succ (cur_region->entry);
646
647 struct omp_region *i;
648 for (i = cur_region->inner; i ; i = i->next)
649 {
650 gcc_assert (i->type == GIMPLE_OMP_SECTION);
651 make_edge (switch_bb, i->entry, 0);
652 make_edge (i->exit, bb, EDGE_FALLTHRU);
653 }
654
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb, switch_bb, 0);
658
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb, bb->next_bb, 0);
661 fallthru = false;
662 }
663 break;
664
665 default:
666 gcc_unreachable ();
667 }
668 break;
669
670 default:
671 gcc_assert (!stmt_ends_bb_p (last));
672 fallthru = true;
673 }
674 }
675 else
676 fallthru = true;
677
678 if (fallthru)
679 {
680 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
681 if (last)
682 assign_discriminator (gimple_location (last), bb->next_bb);
683 }
684 }
685
686 if (root_omp_region)
687 free_omp_regions ();
688
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
691 }
692
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
695
696 static unsigned int
697 locus_map_hash (const void *item)
698 {
699 return ((const struct locus_discrim_map *) item)->locus;
700 }
701
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
704
705 static int
706 locus_map_eq (const void *va, const void *vb)
707 {
708 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
709 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
710 return a->locus == b->locus;
711 }
712
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
716 profiling. */
717
718 static int
719 next_discriminator_for_locus (location_t locus)
720 {
721 struct locus_discrim_map item;
722 struct locus_discrim_map **slot;
723
724 item.locus = locus;
725 item.discriminator = 0;
726 slot = (struct locus_discrim_map **)
727 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
728 (hashval_t) locus, INSERT);
729 gcc_assert (slot);
730 if (*slot == HTAB_EMPTY_ENTRY)
731 {
732 *slot = XNEW (struct locus_discrim_map);
733 gcc_assert (*slot);
734 (*slot)->locus = locus;
735 (*slot)->discriminator = 0;
736 }
737 (*slot)->discriminator++;
738 return (*slot)->discriminator;
739 }
740
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
742
743 static bool
744 same_line_p (location_t locus1, location_t locus2)
745 {
746 expanded_location from, to;
747
748 if (locus1 == locus2)
749 return true;
750
751 from = expand_location (locus1);
752 to = expand_location (locus2);
753
754 if (from.line != to.line)
755 return false;
756 if (from.file == to.file)
757 return true;
758 return (from.file != NULL
759 && to.file != NULL
760 && filename_cmp (from.file, to.file) == 0);
761 }
762
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
765
766 static void
767 assign_discriminator (location_t locus, basic_block bb)
768 {
769 gimple first_in_to_bb, last_in_to_bb;
770
771 if (locus == 0 || bb->discriminator != 0)
772 return;
773
774 first_in_to_bb = first_non_label_stmt (bb);
775 last_in_to_bb = last_stmt (bb);
776 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
777 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
778 bb->discriminator = next_discriminator_for_locus (locus);
779 }
780
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
782
783 static void
784 make_cond_expr_edges (basic_block bb)
785 {
786 gimple entry = last_stmt (bb);
787 gimple then_stmt, else_stmt;
788 basic_block then_bb, else_bb;
789 tree then_label, else_label;
790 edge e;
791 location_t entry_locus;
792
793 gcc_assert (entry);
794 gcc_assert (gimple_code (entry) == GIMPLE_COND);
795
796 entry_locus = gimple_location (entry);
797
798 /* Entry basic blocks for each component. */
799 then_label = gimple_cond_true_label (entry);
800 else_label = gimple_cond_false_label (entry);
801 then_bb = label_to_block (then_label);
802 else_bb = label_to_block (else_label);
803 then_stmt = first_stmt (then_bb);
804 else_stmt = first_stmt (else_bb);
805
806 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
807 assign_discriminator (entry_locus, then_bb);
808 e->goto_locus = gimple_location (then_stmt);
809 if (e->goto_locus)
810 e->goto_block = gimple_block (then_stmt);
811 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
812 if (e)
813 {
814 assign_discriminator (entry_locus, else_bb);
815 e->goto_locus = gimple_location (else_stmt);
816 if (e->goto_locus)
817 e->goto_block = gimple_block (else_stmt);
818 }
819
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry, NULL_TREE);
822 gimple_cond_set_false_label (entry, NULL_TREE);
823 }
824
825
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
828
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
831 element. */
832
833 static bool
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
835 void *data ATTRIBUTE_UNUSED)
836 {
837 tree t, next;
838
839 for (t = (tree) *value; t; t = next)
840 {
841 next = CASE_CHAIN (t);
842 CASE_CHAIN (t) = NULL;
843 }
844
845 *value = NULL;
846 return true;
847 }
848
849 /* Start recording information mapping edges to case labels. */
850
851 void
852 start_recording_case_labels (void)
853 {
854 gcc_assert (edge_to_cases == NULL);
855 edge_to_cases = pointer_map_create ();
856 touched_switch_bbs = BITMAP_ALLOC (NULL);
857 }
858
859 /* Return nonzero if we are recording information for case labels. */
860
861 static bool
862 recording_case_labels_p (void)
863 {
864 return (edge_to_cases != NULL);
865 }
866
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
869 void
870 end_recording_case_labels (void)
871 {
872 bitmap_iterator bi;
873 unsigned i;
874 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
875 pointer_map_destroy (edge_to_cases);
876 edge_to_cases = NULL;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
878 {
879 basic_block bb = BASIC_BLOCK (i);
880 if (bb)
881 {
882 gimple stmt = last_stmt (bb);
883 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
884 group_case_labels_stmt (stmt);
885 }
886 }
887 BITMAP_FREE (touched_switch_bbs);
888 }
889
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
892
893 Otherwise return NULL. */
894
895 static tree
896 get_cases_for_edge (edge e, gimple t)
897 {
898 void **slot;
899 size_t i, n;
900
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
904 return NULL;
905
906 slot = pointer_map_contains (edge_to_cases, e);
907 if (slot)
908 return (tree) *slot;
909
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
913
914 n = gimple_switch_num_labels (t);
915 for (i = 0; i < n; i++)
916 {
917 tree elt = gimple_switch_label (t, i);
918 tree lab = CASE_LABEL (elt);
919 basic_block label_bb = label_to_block (lab);
920 edge this_edge = find_edge (e->src, label_bb);
921
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
923 a new chain. */
924 slot = pointer_map_insert (edge_to_cases, this_edge);
925 CASE_CHAIN (elt) = (tree) *slot;
926 *slot = elt;
927 }
928
929 return (tree) *pointer_map_contains (edge_to_cases, e);
930 }
931
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
933
934 static void
935 make_gimple_switch_edges (basic_block bb)
936 {
937 gimple entry = last_stmt (bb);
938 location_t entry_locus;
939 size_t i, n;
940
941 entry_locus = gimple_location (entry);
942
943 n = gimple_switch_num_labels (entry);
944
945 for (i = 0; i < n; ++i)
946 {
947 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
948 basic_block label_bb = label_to_block (lab);
949 make_edge (bb, label_bb, 0);
950 assign_discriminator (entry_locus, label_bb);
951 }
952 }
953
954
955 /* Return the basic block holding label DEST. */
956
957 basic_block
958 label_to_block_fn (struct function *ifun, tree dest)
959 {
960 int uid = LABEL_DECL_UID (dest);
961
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid < 0)
966 {
967 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
968 gimple stmt;
969
970 stmt = gimple_build_label (dest);
971 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
972 uid = LABEL_DECL_UID (dest);
973 }
974 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
975 <= (unsigned int) uid)
976 return NULL;
977 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
978 }
979
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
982
983 void
984 make_abnormal_goto_edges (basic_block bb, bool for_call)
985 {
986 basic_block target_bb;
987 gimple_stmt_iterator gsi;
988
989 FOR_EACH_BB (target_bb)
990 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
991 {
992 gimple label_stmt = gsi_stmt (gsi);
993 tree target;
994
995 if (gimple_code (label_stmt) != GIMPLE_LABEL)
996 break;
997
998 target = gimple_label_label (label_stmt);
999
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target) && !for_call)
1003 || (DECL_NONLOCAL (target) && for_call))
1004 {
1005 make_edge (bb, target_bb, EDGE_ABNORMAL);
1006 break;
1007 }
1008 }
1009 }
1010
1011 /* Create edges for a goto statement at block BB. */
1012
1013 static void
1014 make_goto_expr_edges (basic_block bb)
1015 {
1016 gimple_stmt_iterator last = gsi_last_bb (bb);
1017 gimple goto_t = gsi_stmt (last);
1018
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t))
1021 {
1022 tree dest = gimple_goto_dest (goto_t);
1023 basic_block label_bb = label_to_block (dest);
1024 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1025 e->goto_locus = gimple_location (goto_t);
1026 assign_discriminator (e->goto_locus, label_bb);
1027 if (e->goto_locus)
1028 e->goto_block = gimple_block (goto_t);
1029 gsi_remove (&last, true);
1030 return;
1031 }
1032
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb, false);
1035 }
1036
1037 /* Create edges for an asm statement with labels at block BB. */
1038
1039 static void
1040 make_gimple_asm_edges (basic_block bb)
1041 {
1042 gimple stmt = last_stmt (bb);
1043 location_t stmt_loc = gimple_location (stmt);
1044 int i, n = gimple_asm_nlabels (stmt);
1045
1046 for (i = 0; i < n; ++i)
1047 {
1048 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1049 basic_block label_bb = label_to_block (label);
1050 make_edge (bb, label_bb, 0);
1051 assign_discriminator (stmt_loc, label_bb);
1052 }
1053 }
1054
1055 /*---------------------------------------------------------------------------
1056 Flowgraph analysis
1057 ---------------------------------------------------------------------------*/
1058
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1066
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1069 {
1070 /* The label. */
1071 tree label;
1072
1073 /* True if the label is referenced from somewhere. */
1074 bool used;
1075 } *label_for_bb;
1076
1077 /* Given LABEL return the first label in the same basic block. */
1078
1079 static tree
1080 main_block_label (tree label)
1081 {
1082 basic_block bb = label_to_block (label);
1083 tree main_label = label_for_bb[bb->index].label;
1084
1085 /* label_to_block possibly inserted undefined label into the chain. */
1086 if (!main_label)
1087 {
1088 label_for_bb[bb->index].label = label;
1089 main_label = label;
1090 }
1091
1092 label_for_bb[bb->index].used = true;
1093 return main_label;
1094 }
1095
1096 /* Clean up redundant labels within the exception tree. */
1097
1098 static void
1099 cleanup_dead_labels_eh (void)
1100 {
1101 eh_landing_pad lp;
1102 eh_region r;
1103 tree lab;
1104 int i;
1105
1106 if (cfun->eh == NULL)
1107 return;
1108
1109 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1110 if (lp && lp->post_landing_pad)
1111 {
1112 lab = main_block_label (lp->post_landing_pad);
1113 if (lab != lp->post_landing_pad)
1114 {
1115 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1116 EH_LANDING_PAD_NR (lab) = lp->index;
1117 }
1118 }
1119
1120 FOR_ALL_EH_REGION (r)
1121 switch (r->type)
1122 {
1123 case ERT_CLEANUP:
1124 case ERT_MUST_NOT_THROW:
1125 break;
1126
1127 case ERT_TRY:
1128 {
1129 eh_catch c;
1130 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1131 {
1132 lab = c->label;
1133 if (lab)
1134 c->label = main_block_label (lab);
1135 }
1136 }
1137 break;
1138
1139 case ERT_ALLOWED_EXCEPTIONS:
1140 lab = r->u.allowed.label;
1141 if (lab)
1142 r->u.allowed.label = main_block_label (lab);
1143 break;
1144 }
1145 }
1146
1147
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1152
1153 void
1154 cleanup_dead_labels (void)
1155 {
1156 basic_block bb;
1157 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1158
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1161 FOR_EACH_BB (bb)
1162 {
1163 gimple_stmt_iterator i;
1164
1165 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1166 {
1167 tree label;
1168 gimple stmt = gsi_stmt (i);
1169
1170 if (gimple_code (stmt) != GIMPLE_LABEL)
1171 break;
1172
1173 label = gimple_label_label (stmt);
1174
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb[bb->index].label)
1178 {
1179 label_for_bb[bb->index].label = label;
1180 continue;
1181 }
1182
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label)
1187 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1188 {
1189 label_for_bb[bb->index].label = label;
1190 break;
1191 }
1192 }
1193 }
1194
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1197 FOR_EACH_BB (bb)
1198 {
1199 gimple stmt = last_stmt (bb);
1200 if (!stmt)
1201 continue;
1202
1203 switch (gimple_code (stmt))
1204 {
1205 case GIMPLE_COND:
1206 {
1207 tree true_label = gimple_cond_true_label (stmt);
1208 tree false_label = gimple_cond_false_label (stmt);
1209
1210 if (true_label)
1211 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1212 if (false_label)
1213 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1214 break;
1215 }
1216
1217 case GIMPLE_SWITCH:
1218 {
1219 size_t i, n = gimple_switch_num_labels (stmt);
1220
1221 /* Replace all destination labels. */
1222 for (i = 0; i < n; ++i)
1223 {
1224 tree case_label = gimple_switch_label (stmt, i);
1225 tree label = main_block_label (CASE_LABEL (case_label));
1226 CASE_LABEL (case_label) = label;
1227 }
1228 break;
1229 }
1230
1231 case GIMPLE_ASM:
1232 {
1233 int i, n = gimple_asm_nlabels (stmt);
1234
1235 for (i = 0; i < n; ++i)
1236 {
1237 tree cons = gimple_asm_label_op (stmt, i);
1238 tree label = main_block_label (TREE_VALUE (cons));
1239 TREE_VALUE (cons) = label;
1240 }
1241 break;
1242 }
1243
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1246 case GIMPLE_GOTO:
1247 if (!computed_goto_p (stmt))
1248 {
1249 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1250 gimple_goto_set_dest (stmt, new_dest);
1251 }
1252 break;
1253
1254 default:
1255 break;
1256 }
1257 }
1258
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1261
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1265 FOR_EACH_BB (bb)
1266 {
1267 gimple_stmt_iterator i;
1268 tree label_for_this_bb = label_for_bb[bb->index].label;
1269
1270 if (!label_for_this_bb)
1271 continue;
1272
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb[bb->index].used)
1275 label_for_this_bb = NULL;
1276
1277 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1278 {
1279 tree label;
1280 gimple stmt = gsi_stmt (i);
1281
1282 if (gimple_code (stmt) != GIMPLE_LABEL)
1283 break;
1284
1285 label = gimple_label_label (stmt);
1286
1287 if (label == label_for_this_bb
1288 || !DECL_ARTIFICIAL (label)
1289 || DECL_NONLOCAL (label)
1290 || FORCED_LABEL (label))
1291 gsi_next (&i);
1292 else
1293 gsi_remove (&i, true);
1294 }
1295 }
1296
1297 free (label_for_bb);
1298 }
1299
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1303
1304 static void
1305 group_case_labels_stmt (gimple stmt)
1306 {
1307 int old_size = gimple_switch_num_labels (stmt);
1308 int i, j, new_size = old_size;
1309 tree default_case = NULL_TREE;
1310 tree default_label = NULL_TREE;
1311 bool has_default;
1312
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1315 away */
1316 if (!CASE_LOW (gimple_switch_default_label (stmt))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1318 {
1319 default_case = gimple_switch_default_label (stmt);
1320 default_label = CASE_LABEL (default_case);
1321 has_default = true;
1322 }
1323 else
1324 has_default = false;
1325
1326 /* Look for possible opportunities to merge cases. */
1327 if (has_default)
1328 i = 1;
1329 else
1330 i = 0;
1331 while (i < old_size)
1332 {
1333 tree base_case, base_label, base_high;
1334 base_case = gimple_switch_label (stmt, i);
1335
1336 gcc_assert (base_case);
1337 base_label = CASE_LABEL (base_case);
1338
1339 /* Discard cases that have the same destination as the
1340 default case. */
1341 if (base_label == default_label)
1342 {
1343 gimple_switch_set_label (stmt, i, NULL_TREE);
1344 i++;
1345 new_size--;
1346 continue;
1347 }
1348
1349 base_high = CASE_HIGH (base_case)
1350 ? CASE_HIGH (base_case)
1351 : CASE_LOW (base_case);
1352 i++;
1353
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i < old_size)
1358 {
1359 tree merge_case = gimple_switch_label (stmt, i);
1360 tree merge_label = CASE_LABEL (merge_case);
1361 double_int bhp1 = double_int_add (tree_to_double_int (base_high),
1362 double_int_one);
1363
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label == base_label
1367 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case)),
1368 bhp1))
1369 {
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1376 }
1377 else
1378 break;
1379 }
1380 }
1381
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1385 {
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1390 }
1391
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1394 }
1395
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1399
1400 void
1401 group_case_labels (void)
1402 {
1403 basic_block bb;
1404
1405 FOR_EACH_BB (bb)
1406 {
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1410 }
1411 }
1412
1413 /* Checks whether we can merge block B into block A. */
1414
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 {
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1421
1422 if (!single_succ_p (a))
1423 return false;
1424
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1427
1428 if (single_succ (a) != b)
1429 return false;
1430
1431 if (!single_pred_p (b))
1432 return false;
1433
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1436
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1442
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1448
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 {
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1457
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1461 }
1462
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1466
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1474
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 {
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1490 }
1491
1492 return true;
1493 }
1494
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 {
1500 const ssa_use_operand_t *ptr;
1501
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1505
1506 return true;
1507 }
1508
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1515 {
1516 ssa_use_operand_t *ptr, *single_use = 0;
1517
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1520 {
1521 if (single_use)
1522 {
1523 single_use = NULL;
1524 break;
1525 }
1526 single_use = ptr;
1527 }
1528
1529 if (use_p)
1530 *use_p = single_use;
1531
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1534
1535 return !!single_use;
1536 }
1537
1538 /* Replaces all uses of NAME by VAL. */
1539
1540 void
1541 replace_uses_by (tree name, tree val)
1542 {
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1547
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 {
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 {
1552 replace_exp (use, val);
1553
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1555 {
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1558 {
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1564 }
1565 }
1566 }
1567
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1569 {
1570 size_t i;
1571
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs && !is_gimple_debug (stmt))
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1575
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1578 {
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1585 }
1586
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1589 }
1590 }
1591
1592 gcc_assert (has_zero_uses (name));
1593
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1596 {
1597 struct loop *loop;
1598 loop_iterator li;
1599
1600 FOR_EACH_LOOP (li, loop, 0)
1601 {
1602 substitute_in_loop_info (loop, name, val);
1603 }
1604 }
1605 }
1606
1607 /* Merge block B into block A. */
1608
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1611 {
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1614
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1622 {
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1628
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1637
1638 if (!may_replace_uses)
1639 {
1640 gcc_assert (is_gimple_reg (def));
1641
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1649 }
1650 else
1651 {
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1656 {
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1660
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1664
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1667 }
1668 else
1669 replace_uses_by (def, use);
1670
1671 remove_phi_node (&psi, true);
1672 }
1673 }
1674
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1677
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 {
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 {
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1689
1690 gsi_remove (&gsi, false);
1691
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1699 {
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1702 }
1703
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1706 {
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1709 }
1710 }
1711 else
1712 {
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1715 }
1716 }
1717
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1722
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1725 }
1726
1727
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1732
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1735 {
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1739
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1746
1747 return bb;
1748 }
1749
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1751
1752 void
1753 notice_special_calls (gimple call)
1754 {
1755 int flags = gimple_call_flags (call);
1756
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1761 }
1762
1763
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1766
1767 void
1768 clear_special_calls (void)
1769 {
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1772 }
1773
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1775
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1778 {
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1782
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1786 }
1787
1788
1789 /* Remove statements of basic block BB. */
1790
1791 static void
1792 remove_bb (basic_block bb)
1793 {
1794 gimple_stmt_iterator i;
1795
1796 if (dump_file)
1797 {
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1800 {
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1803 }
1804 }
1805
1806 if (current_loops)
1807 {
1808 struct loop *loop = bb->loop_father;
1809
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1815 }
1816
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1819 {
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1825 {
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1830 {
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1833
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1838 {
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1841 }
1842
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1847 }
1848 else
1849 {
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1856
1857 gsi_remove (&i, true);
1858 }
1859
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1864 }
1865 }
1866
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1869 }
1870
1871
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1875
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1878 {
1879 gimple stmt;
1880
1881 stmt = last_stmt (bb);
1882
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1885
1886 if (val == NULL)
1887 return NULL;
1888
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1891
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1894
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1897
1898 if (computed_goto_p (stmt))
1899 {
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1902
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1910 }
1911
1912 gcc_unreachable ();
1913 }
1914
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1918
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1921 {
1922 basic_block dest;
1923 edge e = NULL;
1924
1925 dest = label_to_block (val);
1926 if (dest)
1927 {
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1930 }
1931
1932 return e;
1933 }
1934
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1938
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1941 {
1942 edge true_edge, false_edge;
1943
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1945
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1948 }
1949
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1953
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1956 {
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1961
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1965
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1969 }
1970
1971
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1975
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1978 {
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1981
1982 for (low = 0, high = n; high - low > 1; )
1983 {
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1987
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1990
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1995
1996 if (CASE_HIGH (t) == NULL)
1997 {
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2001 }
2002 else
2003 {
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2007 }
2008 }
2009
2010 return default_case;
2011 }
2012
2013
2014 /* Dump a basic block on stderr. */
2015
2016 void
2017 gimple_debug_bb (basic_block bb)
2018 {
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2020 }
2021
2022
2023 /* Dump basic block with index N on stderr. */
2024
2025 basic_block
2026 gimple_debug_bb_n (int n)
2027 {
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2030 }
2031
2032
2033 /* Dump the CFG on stderr.
2034
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2037
2038 void
2039 gimple_debug_cfg (int flags)
2040 {
2041 gimple_dump_cfg (stderr, flags);
2042 }
2043
2044
2045 /* Dump the program showing basic block boundaries on the given FILE.
2046
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2049
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2052 {
2053 if (flags & TDF_DETAILS)
2054 {
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2057
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2062
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2065 }
2066
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2069
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2071 }
2072
2073
2074 /* Dump CFG statistics on FILE. */
2075
2076 void
2077 dump_cfg_stats (FILE *file)
2078 {
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2089
2090
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2092
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2097
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2102
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2109
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2115
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2118
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2121
2122 fprintf (file, "\n");
2123 }
2124
2125
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2128
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2131 {
2132 dump_cfg_stats (stderr);
2133 }
2134
2135
2136 /* Dump the flowgraph to a .vcg FILE. */
2137
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2140 {
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2146
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2154 {
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2157
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2162
2163 fprintf (file, " }\n");
2164 }
2165 fputc ('\n', file);
2166
2167 FOR_EACH_BB (bb)
2168 {
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2175
2176 if (first)
2177 {
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2181 }
2182 else
2183 head_name = "no-statement";
2184
2185 if (last)
2186 {
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2190 }
2191 else
2192 end_name = "no-statement";
2193
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2197
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2199 {
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2204
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2209
2210 fprintf (file, " }\n");
2211 }
2212
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2215 }
2216
2217 fputs ("}\n\n", file);
2218 }
2219
2220
2221
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2225
2226 /* Return true if T represents a stmt that always transfers control. */
2227
2228 bool
2229 is_ctrl_stmt (gimple t)
2230 {
2231 switch (gimple_code (t))
2232 {
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2241 }
2242 }
2243
2244
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2247
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2250 {
2251 gcc_assert (t);
2252
2253 switch (gimple_code (t))
2254 {
2255 case GIMPLE_CALL:
2256 {
2257 int flags = gimple_call_flags (t);
2258
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2264
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2268
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2272 }
2273 break;
2274
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2280
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2285
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2289
2290 default:
2291 break;
2292 }
2293
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2296 }
2297
2298
2299 /* Return true if T is a simple local goto. */
2300
2301 bool
2302 simple_goto_p (gimple t)
2303 {
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2306 }
2307
2308
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2311
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2314 {
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2321 }
2322
2323
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2330
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2333 {
2334 if (stmt == NULL)
2335 return false;
2336
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2341 {
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2346
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2348 {
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2351
2352 cfg_stats.num_merged_labels++;
2353 return false;
2354 }
2355 else
2356 return true;
2357 }
2358
2359 return false;
2360 }
2361
2362
2363 /* Return true if T should end a basic block. */
2364
2365 bool
2366 stmt_ends_bb_p (gimple t)
2367 {
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2369 }
2370
2371 /* Remove block annotations and other data structures. */
2372
2373 void
2374 delete_tree_cfg_annotations (void)
2375 {
2376 label_to_block_map = NULL;
2377 }
2378
2379
2380 /* Return the first statement in basic block BB. */
2381
2382 gimple
2383 first_stmt (basic_block bb)
2384 {
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2387
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2389 {
2390 gsi_next (&i);
2391 stmt = NULL;
2392 }
2393 return stmt;
2394 }
2395
2396 /* Return the first non-label statement in basic block BB. */
2397
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2400 {
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2405 }
2406
2407 /* Return the last statement in basic block BB. */
2408
2409 gimple
2410 last_stmt (basic_block bb)
2411 {
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2414
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2416 {
2417 gsi_prev (&i);
2418 stmt = NULL;
2419 }
2420 return stmt;
2421 }
2422
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2426
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2429 {
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2432
2433 if (gsi_end_p (i))
2434 return NULL;
2435
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2440
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2445
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2453 }
2454
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2456
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2459 {
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2464
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2468
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2472 {
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2476
2477 gcc_assert (result == gimple_phi_result (phi));
2478
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2480 }
2481
2482 redirect_edge_var_map_clear (old_edge);
2483 }
2484
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2489
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2492 {
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2495
2496 if (dest_prev)
2497 {
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2501 }
2502 return dest_prev;
2503 }
2504
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2507
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2510 {
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2513
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2516
2517 dest = edge_in->dest;
2518
2519 after_bb = split_edge_bb_loc (edge_in);
2520
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2527
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2531
2532 return new_bb;
2533 }
2534
2535
2536 /* Verify properties of the address expression T with base object BASE. */
2537
2538 static tree
2539 verify_address (tree t, tree base)
2540 {
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2545
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2548
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2552
2553 if (old_constant != new_constant)
2554 {
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558 if (old_side_effects != new_side_effects)
2559 {
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2562 }
2563
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2568
2569 if (DECL_GIMPLE_REG_P (base))
2570 {
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2573 }
2574
2575 return NULL_TREE;
2576 }
2577
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2581
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2584 {
2585 tree t = *tp, x;
2586
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2589
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594
2595 switch (TREE_CODE (t))
2596 {
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2599 {
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2602 }
2603 break;
2604
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2608
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2613 {
2614 error ("invalid first operand of MEM_REF");
2615 return x;
2616 }
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2619 {
2620 error ("invalid offset operand of MEM_REF");
2621 return TREE_OPERAND (t, 1);
2622 }
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2628
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2632 {
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2635 }
2636 break;
2637
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples");
2640 return *tp;
2641
2642 case ADDR_EXPR:
2643 {
2644 tree tem;
2645
2646 gcc_assert (is_gimple_address (t));
2647
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2654 ;
2655
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2658
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2663
2664 if (!TREE_ADDRESSABLE (x))
2665 {
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2668 }
2669
2670 break;
2671 }
2672
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2676 {
2677 error ("non-integral used in condition");
2678 return x;
2679 }
2680 if (!is_gimple_condexpr (x))
2681 {
2682 error ("invalid conditional operand");
2683 return x;
2684 }
2685 break;
2686
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2689
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2699
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2712 {
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2717 {
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2723 }
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2725 {
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2728 {
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2731 }
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2735 {
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2739 }
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2743 {
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2747 }
2748 }
2749
2750 t = TREE_OPERAND (t, 0);
2751 }
2752
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2754 {
2755 error ("invalid reference prefix");
2756 return t;
2757 }
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2765 {
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2768 }
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2772
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2776 {
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2779 }
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2784 {
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype");
2787 return t;
2788 }
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2827
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2832
2833 case CASE_LABEL_EXPR:
2834 if (CASE_CHAIN (t))
2835 {
2836 error ("invalid CASE_CHAIN");
2837 return t;
2838 }
2839 break;
2840
2841 default:
2842 break;
2843 }
2844 return NULL;
2845
2846 #undef CHECK_OP
2847 }
2848
2849
2850 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2851 Returns true if there is an error, otherwise false. */
2852
2853 static bool
2854 verify_types_in_gimple_min_lval (tree expr)
2855 {
2856 tree op;
2857
2858 if (is_gimple_id (expr))
2859 return false;
2860
2861 if (TREE_CODE (expr) != TARGET_MEM_REF
2862 && TREE_CODE (expr) != MEM_REF)
2863 {
2864 error ("invalid expression for min lvalue");
2865 return true;
2866 }
2867
2868 /* TARGET_MEM_REFs are strange beasts. */
2869 if (TREE_CODE (expr) == TARGET_MEM_REF)
2870 return false;
2871
2872 op = TREE_OPERAND (expr, 0);
2873 if (!is_gimple_val (op))
2874 {
2875 error ("invalid operand in indirect reference");
2876 debug_generic_stmt (op);
2877 return true;
2878 }
2879 /* Memory references now generally can involve a value conversion. */
2880
2881 return false;
2882 }
2883
2884 /* Verify if EXPR is a valid GIMPLE reference expression. If
2885 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2886 if there is an error, otherwise false. */
2887
2888 static bool
2889 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2890 {
2891 while (handled_component_p (expr))
2892 {
2893 tree op = TREE_OPERAND (expr, 0);
2894
2895 if (TREE_CODE (expr) == ARRAY_REF
2896 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2897 {
2898 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2899 || (TREE_OPERAND (expr, 2)
2900 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2901 || (TREE_OPERAND (expr, 3)
2902 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2903 {
2904 error ("invalid operands to array reference");
2905 debug_generic_stmt (expr);
2906 return true;
2907 }
2908 }
2909
2910 /* Verify if the reference array element types are compatible. */
2911 if (TREE_CODE (expr) == ARRAY_REF
2912 && !useless_type_conversion_p (TREE_TYPE (expr),
2913 TREE_TYPE (TREE_TYPE (op))))
2914 {
2915 error ("type mismatch in array reference");
2916 debug_generic_stmt (TREE_TYPE (expr));
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2918 return true;
2919 }
2920 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2921 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2922 TREE_TYPE (TREE_TYPE (op))))
2923 {
2924 error ("type mismatch in array range reference");
2925 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2926 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2927 return true;
2928 }
2929
2930 if ((TREE_CODE (expr) == REALPART_EXPR
2931 || TREE_CODE (expr) == IMAGPART_EXPR)
2932 && !useless_type_conversion_p (TREE_TYPE (expr),
2933 TREE_TYPE (TREE_TYPE (op))))
2934 {
2935 error ("type mismatch in real/imagpart reference");
2936 debug_generic_stmt (TREE_TYPE (expr));
2937 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2938 return true;
2939 }
2940
2941 if (TREE_CODE (expr) == COMPONENT_REF
2942 && !useless_type_conversion_p (TREE_TYPE (expr),
2943 TREE_TYPE (TREE_OPERAND (expr, 1))))
2944 {
2945 error ("type mismatch in component reference");
2946 debug_generic_stmt (TREE_TYPE (expr));
2947 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2948 return true;
2949 }
2950
2951 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2952 {
2953 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2954 that their operand is not an SSA name or an invariant when
2955 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2956 bug). Otherwise there is nothing to verify, gross mismatches at
2957 most invoke undefined behavior. */
2958 if (require_lvalue
2959 && (TREE_CODE (op) == SSA_NAME
2960 || is_gimple_min_invariant (op)))
2961 {
2962 error ("conversion of an SSA_NAME on the left hand side");
2963 debug_generic_stmt (expr);
2964 return true;
2965 }
2966 else if (TREE_CODE (op) == SSA_NAME
2967 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2968 {
2969 error ("conversion of register to a different size");
2970 debug_generic_stmt (expr);
2971 return true;
2972 }
2973 else if (!handled_component_p (op))
2974 return false;
2975 }
2976
2977 expr = op;
2978 }
2979
2980 if (TREE_CODE (expr) == MEM_REF)
2981 {
2982 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2983 {
2984 error ("invalid address operand in MEM_REF");
2985 debug_generic_stmt (expr);
2986 return true;
2987 }
2988 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2989 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2990 {
2991 error ("invalid offset operand in MEM_REF");
2992 debug_generic_stmt (expr);
2993 return true;
2994 }
2995 }
2996 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2997 {
2998 if (!TMR_BASE (expr)
2999 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3000 {
3001 error ("invalid address operand in TARGET_MEM_REF");
3002 return true;
3003 }
3004 if (!TMR_OFFSET (expr)
3005 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3006 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3007 {
3008 error ("invalid offset operand in TARGET_MEM_REF");
3009 debug_generic_stmt (expr);
3010 return true;
3011 }
3012 }
3013
3014 return ((require_lvalue || !is_gimple_min_invariant (expr))
3015 && verify_types_in_gimple_min_lval (expr));
3016 }
3017
3018 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3019 list of pointer-to types that is trivially convertible to DEST. */
3020
3021 static bool
3022 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3023 {
3024 tree src;
3025
3026 if (!TYPE_POINTER_TO (src_obj))
3027 return true;
3028
3029 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3030 if (useless_type_conversion_p (dest, src))
3031 return true;
3032
3033 return false;
3034 }
3035
3036 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3037 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3038
3039 static bool
3040 valid_fixed_convert_types_p (tree type1, tree type2)
3041 {
3042 return (FIXED_POINT_TYPE_P (type1)
3043 && (INTEGRAL_TYPE_P (type2)
3044 || SCALAR_FLOAT_TYPE_P (type2)
3045 || FIXED_POINT_TYPE_P (type2)));
3046 }
3047
3048 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3049 is a problem, otherwise false. */
3050
3051 static bool
3052 verify_gimple_call (gimple stmt)
3053 {
3054 tree fn = gimple_call_fn (stmt);
3055 tree fntype, fndecl;
3056 unsigned i;
3057
3058 if (gimple_call_internal_p (stmt))
3059 {
3060 if (fn)
3061 {
3062 error ("gimple call has two targets");
3063 debug_generic_stmt (fn);
3064 return true;
3065 }
3066 }
3067 else
3068 {
3069 if (!fn)
3070 {
3071 error ("gimple call has no target");
3072 return true;
3073 }
3074 }
3075
3076 if (fn && !is_gimple_call_addr (fn))
3077 {
3078 error ("invalid function in gimple call");
3079 debug_generic_stmt (fn);
3080 return true;
3081 }
3082
3083 if (fn
3084 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3085 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3086 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3087 {
3088 error ("non-function in gimple call");
3089 return true;
3090 }
3091
3092 fndecl = gimple_call_fndecl (stmt);
3093 if (fndecl
3094 && TREE_CODE (fndecl) == FUNCTION_DECL
3095 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3096 && !DECL_PURE_P (fndecl)
3097 && !TREE_READONLY (fndecl))
3098 {
3099 error ("invalid pure const state for function");
3100 return true;
3101 }
3102
3103 if (gimple_call_lhs (stmt)
3104 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3105 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3106 {
3107 error ("invalid LHS in gimple call");
3108 return true;
3109 }
3110
3111 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3112 {
3113 error ("LHS in noreturn call");
3114 return true;
3115 }
3116
3117 fntype = gimple_call_fntype (stmt);
3118 if (fntype
3119 && gimple_call_lhs (stmt)
3120 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3121 TREE_TYPE (fntype))
3122 /* ??? At least C++ misses conversions at assignments from
3123 void * call results.
3124 ??? Java is completely off. Especially with functions
3125 returning java.lang.Object.
3126 For now simply allow arbitrary pointer type conversions. */
3127 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3128 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3129 {
3130 error ("invalid conversion in gimple call");
3131 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3132 debug_generic_stmt (TREE_TYPE (fntype));
3133 return true;
3134 }
3135
3136 if (gimple_call_chain (stmt)
3137 && !is_gimple_val (gimple_call_chain (stmt)))
3138 {
3139 error ("invalid static chain in gimple call");
3140 debug_generic_stmt (gimple_call_chain (stmt));
3141 return true;
3142 }
3143
3144 /* If there is a static chain argument, this should not be an indirect
3145 call, and the decl should have DECL_STATIC_CHAIN set. */
3146 if (gimple_call_chain (stmt))
3147 {
3148 if (!gimple_call_fndecl (stmt))
3149 {
3150 error ("static chain in indirect gimple call");
3151 return true;
3152 }
3153 fn = TREE_OPERAND (fn, 0);
3154
3155 if (!DECL_STATIC_CHAIN (fn))
3156 {
3157 error ("static chain with function that doesn%'t use one");
3158 return true;
3159 }
3160 }
3161
3162 /* ??? The C frontend passes unpromoted arguments in case it
3163 didn't see a function declaration before the call. So for now
3164 leave the call arguments mostly unverified. Once we gimplify
3165 unit-at-a-time we have a chance to fix this. */
3166
3167 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3168 {
3169 tree arg = gimple_call_arg (stmt, i);
3170 if ((is_gimple_reg_type (TREE_TYPE (arg))
3171 && !is_gimple_val (arg))
3172 || (!is_gimple_reg_type (TREE_TYPE (arg))
3173 && !is_gimple_lvalue (arg)))
3174 {
3175 error ("invalid argument to gimple call");
3176 debug_generic_expr (arg);
3177 return true;
3178 }
3179 }
3180
3181 return false;
3182 }
3183
3184 /* Verifies the gimple comparison with the result type TYPE and
3185 the operands OP0 and OP1. */
3186
3187 static bool
3188 verify_gimple_comparison (tree type, tree op0, tree op1)
3189 {
3190 tree op0_type = TREE_TYPE (op0);
3191 tree op1_type = TREE_TYPE (op1);
3192
3193 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3194 {
3195 error ("invalid operands in gimple comparison");
3196 return true;
3197 }
3198
3199 /* For comparisons we do not have the operations type as the
3200 effective type the comparison is carried out in. Instead
3201 we require that either the first operand is trivially
3202 convertible into the second, or the other way around.
3203 The resulting type of a comparison may be any integral type.
3204 Because we special-case pointers to void we allow
3205 comparisons of pointers with the same mode as well. */
3206 if ((!useless_type_conversion_p (op0_type, op1_type)
3207 && !useless_type_conversion_p (op1_type, op0_type)
3208 && (!POINTER_TYPE_P (op0_type)
3209 || !POINTER_TYPE_P (op1_type)
3210 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3211 || !INTEGRAL_TYPE_P (type))
3212 {
3213 error ("type mismatch in comparison expression");
3214 debug_generic_expr (type);
3215 debug_generic_expr (op0_type);
3216 debug_generic_expr (op1_type);
3217 return true;
3218 }
3219
3220 return false;
3221 }
3222
3223 /* Verify a gimple assignment statement STMT with an unary rhs.
3224 Returns true if anything is wrong. */
3225
3226 static bool
3227 verify_gimple_assign_unary (gimple stmt)
3228 {
3229 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3230 tree lhs = gimple_assign_lhs (stmt);
3231 tree lhs_type = TREE_TYPE (lhs);
3232 tree rhs1 = gimple_assign_rhs1 (stmt);
3233 tree rhs1_type = TREE_TYPE (rhs1);
3234
3235 if (!is_gimple_reg (lhs))
3236 {
3237 error ("non-register as LHS of unary operation");
3238 return true;
3239 }
3240
3241 if (!is_gimple_val (rhs1))
3242 {
3243 error ("invalid operand in unary operation");
3244 return true;
3245 }
3246
3247 /* First handle conversions. */
3248 switch (rhs_code)
3249 {
3250 CASE_CONVERT:
3251 {
3252 /* Allow conversions between integral types and pointers only if
3253 there is no sign or zero extension involved.
3254 For targets were the precision of sizetype doesn't match that
3255 of pointers we need to allow arbitrary conversions from and
3256 to sizetype. */
3257 if ((POINTER_TYPE_P (lhs_type)
3258 && INTEGRAL_TYPE_P (rhs1_type)
3259 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3260 || rhs1_type == sizetype))
3261 || (POINTER_TYPE_P (rhs1_type)
3262 && INTEGRAL_TYPE_P (lhs_type)
3263 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3264 || lhs_type == sizetype)))
3265 return false;
3266
3267 /* Allow conversion from integer to offset type and vice versa. */
3268 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3269 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3270 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3271 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3272 return false;
3273
3274 /* Otherwise assert we are converting between types of the
3275 same kind. */
3276 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3277 {
3278 error ("invalid types in nop conversion");
3279 debug_generic_expr (lhs_type);
3280 debug_generic_expr (rhs1_type);
3281 return true;
3282 }
3283
3284 return false;
3285 }
3286
3287 case ADDR_SPACE_CONVERT_EXPR:
3288 {
3289 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3290 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3291 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3292 {
3293 error ("invalid types in address space conversion");
3294 debug_generic_expr (lhs_type);
3295 debug_generic_expr (rhs1_type);
3296 return true;
3297 }
3298
3299 return false;
3300 }
3301
3302 case FIXED_CONVERT_EXPR:
3303 {
3304 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3305 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3306 {
3307 error ("invalid types in fixed-point conversion");
3308 debug_generic_expr (lhs_type);
3309 debug_generic_expr (rhs1_type);
3310 return true;
3311 }
3312
3313 return false;
3314 }
3315
3316 case FLOAT_EXPR:
3317 {
3318 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3319 {
3320 error ("invalid types in conversion to floating point");
3321 debug_generic_expr (lhs_type);
3322 debug_generic_expr (rhs1_type);
3323 return true;
3324 }
3325
3326 return false;
3327 }
3328
3329 case FIX_TRUNC_EXPR:
3330 {
3331 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3332 {
3333 error ("invalid types in conversion to integer");
3334 debug_generic_expr (lhs_type);
3335 debug_generic_expr (rhs1_type);
3336 return true;
3337 }
3338
3339 return false;
3340 }
3341
3342 case VEC_UNPACK_HI_EXPR:
3343 case VEC_UNPACK_LO_EXPR:
3344 case REDUC_MAX_EXPR:
3345 case REDUC_MIN_EXPR:
3346 case REDUC_PLUS_EXPR:
3347 case VEC_UNPACK_FLOAT_HI_EXPR:
3348 case VEC_UNPACK_FLOAT_LO_EXPR:
3349 /* FIXME. */
3350 return false;
3351
3352 case TRUTH_NOT_EXPR:
3353 if (!useless_type_conversion_p (boolean_type_node, rhs1_type))
3354 {
3355 error ("invalid types in truth not");
3356 debug_generic_expr (lhs_type);
3357 debug_generic_expr (rhs1_type);
3358 return true;
3359 }
3360 break;
3361
3362 case NEGATE_EXPR:
3363 case ABS_EXPR:
3364 case BIT_NOT_EXPR:
3365 case PAREN_EXPR:
3366 case NON_LVALUE_EXPR:
3367 case CONJ_EXPR:
3368 break;
3369
3370 default:
3371 gcc_unreachable ();
3372 }
3373
3374 /* For the remaining codes assert there is no conversion involved. */
3375 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3376 {
3377 error ("non-trivial conversion in unary operation");
3378 debug_generic_expr (lhs_type);
3379 debug_generic_expr (rhs1_type);
3380 return true;
3381 }
3382
3383 return false;
3384 }
3385
3386 /* Verify a gimple assignment statement STMT with a binary rhs.
3387 Returns true if anything is wrong. */
3388
3389 static bool
3390 verify_gimple_assign_binary (gimple stmt)
3391 {
3392 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3393 tree lhs = gimple_assign_lhs (stmt);
3394 tree lhs_type = TREE_TYPE (lhs);
3395 tree rhs1 = gimple_assign_rhs1 (stmt);
3396 tree rhs1_type = TREE_TYPE (rhs1);
3397 tree rhs2 = gimple_assign_rhs2 (stmt);
3398 tree rhs2_type = TREE_TYPE (rhs2);
3399
3400 if (!is_gimple_reg (lhs))
3401 {
3402 error ("non-register as LHS of binary operation");
3403 return true;
3404 }
3405
3406 if (!is_gimple_val (rhs1)
3407 || !is_gimple_val (rhs2))
3408 {
3409 error ("invalid operands in binary operation");
3410 return true;
3411 }
3412
3413 /* First handle operations that involve different types. */
3414 switch (rhs_code)
3415 {
3416 case COMPLEX_EXPR:
3417 {
3418 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3419 || !(INTEGRAL_TYPE_P (rhs1_type)
3420 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3421 || !(INTEGRAL_TYPE_P (rhs2_type)
3422 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3423 {
3424 error ("type mismatch in complex expression");
3425 debug_generic_expr (lhs_type);
3426 debug_generic_expr (rhs1_type);
3427 debug_generic_expr (rhs2_type);
3428 return true;
3429 }
3430
3431 return false;
3432 }
3433
3434 case LSHIFT_EXPR:
3435 case RSHIFT_EXPR:
3436 case LROTATE_EXPR:
3437 case RROTATE_EXPR:
3438 {
3439 /* Shifts and rotates are ok on integral types, fixed point
3440 types and integer vector types. */
3441 if ((!INTEGRAL_TYPE_P (rhs1_type)
3442 && !FIXED_POINT_TYPE_P (rhs1_type)
3443 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3444 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3445 || (!INTEGRAL_TYPE_P (rhs2_type)
3446 /* Vector shifts of vectors are also ok. */
3447 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3448 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3449 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3450 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3451 || !useless_type_conversion_p (lhs_type, rhs1_type))
3452 {
3453 error ("type mismatch in shift expression");
3454 debug_generic_expr (lhs_type);
3455 debug_generic_expr (rhs1_type);
3456 debug_generic_expr (rhs2_type);
3457 return true;
3458 }
3459
3460 return false;
3461 }
3462
3463 case VEC_LSHIFT_EXPR:
3464 case VEC_RSHIFT_EXPR:
3465 {
3466 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3467 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3468 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3469 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3470 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3471 || (!INTEGRAL_TYPE_P (rhs2_type)
3472 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3473 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3474 || !useless_type_conversion_p (lhs_type, rhs1_type))
3475 {
3476 error ("type mismatch in vector shift expression");
3477 debug_generic_expr (lhs_type);
3478 debug_generic_expr (rhs1_type);
3479 debug_generic_expr (rhs2_type);
3480 return true;
3481 }
3482 /* For shifting a vector of non-integral components we
3483 only allow shifting by a constant multiple of the element size. */
3484 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3485 && (TREE_CODE (rhs2) != INTEGER_CST
3486 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3487 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3488 {
3489 error ("non-element sized vector shift of floating point vector");
3490 return true;
3491 }
3492
3493 return false;
3494 }
3495
3496 case PLUS_EXPR:
3497 case MINUS_EXPR:
3498 {
3499 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3500 ??? This just makes the checker happy and may not be what is
3501 intended. */
3502 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3503 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3504 {
3505 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3506 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3507 {
3508 error ("invalid non-vector operands to vector valued plus");
3509 return true;
3510 }
3511 lhs_type = TREE_TYPE (lhs_type);
3512 rhs1_type = TREE_TYPE (rhs1_type);
3513 rhs2_type = TREE_TYPE (rhs2_type);
3514 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3515 the pointer to 2nd place. */
3516 if (POINTER_TYPE_P (rhs2_type))
3517 {
3518 tree tem = rhs1_type;
3519 rhs1_type = rhs2_type;
3520 rhs2_type = tem;
3521 }
3522 goto do_pointer_plus_expr_check;
3523 }
3524 if (POINTER_TYPE_P (lhs_type)
3525 || POINTER_TYPE_P (rhs1_type)
3526 || POINTER_TYPE_P (rhs2_type))
3527 {
3528 error ("invalid (pointer) operands to plus/minus");
3529 return true;
3530 }
3531
3532 /* Continue with generic binary expression handling. */
3533 break;
3534 }
3535
3536 case POINTER_PLUS_EXPR:
3537 {
3538 do_pointer_plus_expr_check:
3539 if (!POINTER_TYPE_P (rhs1_type)
3540 || !useless_type_conversion_p (lhs_type, rhs1_type)
3541 || !useless_type_conversion_p (sizetype, rhs2_type))
3542 {
3543 error ("type mismatch in pointer plus expression");
3544 debug_generic_stmt (lhs_type);
3545 debug_generic_stmt (rhs1_type);
3546 debug_generic_stmt (rhs2_type);
3547 return true;
3548 }
3549
3550 return false;
3551 }
3552
3553 case TRUTH_ANDIF_EXPR:
3554 case TRUTH_ORIF_EXPR:
3555 gcc_unreachable ();
3556
3557 case TRUTH_AND_EXPR:
3558 case TRUTH_OR_EXPR:
3559 case TRUTH_XOR_EXPR:
3560 {
3561 /* We allow only boolean typed or compatible argument and result. */
3562 if (!useless_type_conversion_p (boolean_type_node, rhs1_type)
3563 || !useless_type_conversion_p (boolean_type_node, rhs2_type)
3564 || !useless_type_conversion_p (boolean_type_node, lhs_type))
3565 {
3566 error ("type mismatch in binary truth expression");
3567 debug_generic_expr (lhs_type);
3568 debug_generic_expr (rhs1_type);
3569 debug_generic_expr (rhs2_type);
3570 return true;
3571 }
3572
3573 return false;
3574 }
3575
3576 case LT_EXPR:
3577 case LE_EXPR:
3578 case GT_EXPR:
3579 case GE_EXPR:
3580 case EQ_EXPR:
3581 case NE_EXPR:
3582 case UNORDERED_EXPR:
3583 case ORDERED_EXPR:
3584 case UNLT_EXPR:
3585 case UNLE_EXPR:
3586 case UNGT_EXPR:
3587 case UNGE_EXPR:
3588 case UNEQ_EXPR:
3589 case LTGT_EXPR:
3590 /* Comparisons are also binary, but the result type is not
3591 connected to the operand types. */
3592 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3593
3594 case WIDEN_MULT_EXPR:
3595 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3596 return true;
3597 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3598 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3599
3600 case WIDEN_SUM_EXPR:
3601 case VEC_WIDEN_MULT_HI_EXPR:
3602 case VEC_WIDEN_MULT_LO_EXPR:
3603 case VEC_PACK_TRUNC_EXPR:
3604 case VEC_PACK_SAT_EXPR:
3605 case VEC_PACK_FIX_TRUNC_EXPR:
3606 case VEC_EXTRACT_EVEN_EXPR:
3607 case VEC_EXTRACT_ODD_EXPR:
3608 case VEC_INTERLEAVE_HIGH_EXPR:
3609 case VEC_INTERLEAVE_LOW_EXPR:
3610 /* FIXME. */
3611 return false;
3612
3613 case MULT_EXPR:
3614 case TRUNC_DIV_EXPR:
3615 case CEIL_DIV_EXPR:
3616 case FLOOR_DIV_EXPR:
3617 case ROUND_DIV_EXPR:
3618 case TRUNC_MOD_EXPR:
3619 case CEIL_MOD_EXPR:
3620 case FLOOR_MOD_EXPR:
3621 case ROUND_MOD_EXPR:
3622 case RDIV_EXPR:
3623 case EXACT_DIV_EXPR:
3624 case MIN_EXPR:
3625 case MAX_EXPR:
3626 case BIT_IOR_EXPR:
3627 case BIT_XOR_EXPR:
3628 case BIT_AND_EXPR:
3629 /* Continue with generic binary expression handling. */
3630 break;
3631
3632 default:
3633 gcc_unreachable ();
3634 }
3635
3636 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3637 || !useless_type_conversion_p (lhs_type, rhs2_type))
3638 {
3639 error ("type mismatch in binary expression");
3640 debug_generic_stmt (lhs_type);
3641 debug_generic_stmt (rhs1_type);
3642 debug_generic_stmt (rhs2_type);
3643 return true;
3644 }
3645
3646 return false;
3647 }
3648
3649 /* Verify a gimple assignment statement STMT with a ternary rhs.
3650 Returns true if anything is wrong. */
3651
3652 static bool
3653 verify_gimple_assign_ternary (gimple stmt)
3654 {
3655 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3656 tree lhs = gimple_assign_lhs (stmt);
3657 tree lhs_type = TREE_TYPE (lhs);
3658 tree rhs1 = gimple_assign_rhs1 (stmt);
3659 tree rhs1_type = TREE_TYPE (rhs1);
3660 tree rhs2 = gimple_assign_rhs2 (stmt);
3661 tree rhs2_type = TREE_TYPE (rhs2);
3662 tree rhs3 = gimple_assign_rhs3 (stmt);
3663 tree rhs3_type = TREE_TYPE (rhs3);
3664
3665 if (!is_gimple_reg (lhs))
3666 {
3667 error ("non-register as LHS of ternary operation");
3668 return true;
3669 }
3670
3671 if (!is_gimple_val (rhs1)
3672 || !is_gimple_val (rhs2)
3673 || !is_gimple_val (rhs3))
3674 {
3675 error ("invalid operands in ternary operation");
3676 return true;
3677 }
3678
3679 /* First handle operations that involve different types. */
3680 switch (rhs_code)
3681 {
3682 case WIDEN_MULT_PLUS_EXPR:
3683 case WIDEN_MULT_MINUS_EXPR:
3684 if ((!INTEGRAL_TYPE_P (rhs1_type)
3685 && !FIXED_POINT_TYPE_P (rhs1_type))
3686 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3687 || !useless_type_conversion_p (lhs_type, rhs3_type)
3688 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3689 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3690 {
3691 error ("type mismatch in widening multiply-accumulate expression");
3692 debug_generic_expr (lhs_type);
3693 debug_generic_expr (rhs1_type);
3694 debug_generic_expr (rhs2_type);
3695 debug_generic_expr (rhs3_type);
3696 return true;
3697 }
3698 break;
3699
3700 case FMA_EXPR:
3701 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3702 || !useless_type_conversion_p (lhs_type, rhs2_type)
3703 || !useless_type_conversion_p (lhs_type, rhs3_type))
3704 {
3705 error ("type mismatch in fused multiply-add expression");
3706 debug_generic_expr (lhs_type);
3707 debug_generic_expr (rhs1_type);
3708 debug_generic_expr (rhs2_type);
3709 debug_generic_expr (rhs3_type);
3710 return true;
3711 }
3712 break;
3713
3714 case DOT_PROD_EXPR:
3715 case REALIGN_LOAD_EXPR:
3716 /* FIXME. */
3717 return false;
3718
3719 default:
3720 gcc_unreachable ();
3721 }
3722 return false;
3723 }
3724
3725 /* Verify a gimple assignment statement STMT with a single rhs.
3726 Returns true if anything is wrong. */
3727
3728 static bool
3729 verify_gimple_assign_single (gimple stmt)
3730 {
3731 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3732 tree lhs = gimple_assign_lhs (stmt);
3733 tree lhs_type = TREE_TYPE (lhs);
3734 tree rhs1 = gimple_assign_rhs1 (stmt);
3735 tree rhs1_type = TREE_TYPE (rhs1);
3736 bool res = false;
3737
3738 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3739 {
3740 error ("non-trivial conversion at assignment");
3741 debug_generic_expr (lhs_type);
3742 debug_generic_expr (rhs1_type);
3743 return true;
3744 }
3745
3746 if (handled_component_p (lhs))
3747 res |= verify_types_in_gimple_reference (lhs, true);
3748
3749 /* Special codes we cannot handle via their class. */
3750 switch (rhs_code)
3751 {
3752 case ADDR_EXPR:
3753 {
3754 tree op = TREE_OPERAND (rhs1, 0);
3755 if (!is_gimple_addressable (op))
3756 {
3757 error ("invalid operand in unary expression");
3758 return true;
3759 }
3760
3761 /* Technically there is no longer a need for matching types, but
3762 gimple hygiene asks for this check. In LTO we can end up
3763 combining incompatible units and thus end up with addresses
3764 of globals that change their type to a common one. */
3765 if (!in_lto_p
3766 && !types_compatible_p (TREE_TYPE (op),
3767 TREE_TYPE (TREE_TYPE (rhs1)))
3768 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3769 TREE_TYPE (op)))
3770 {
3771 error ("type mismatch in address expression");
3772 debug_generic_stmt (TREE_TYPE (rhs1));
3773 debug_generic_stmt (TREE_TYPE (op));
3774 return true;
3775 }
3776
3777 return verify_types_in_gimple_reference (op, true);
3778 }
3779
3780 /* tcc_reference */
3781 case INDIRECT_REF:
3782 error ("INDIRECT_REF in gimple IL");
3783 return true;
3784
3785 case COMPONENT_REF:
3786 case BIT_FIELD_REF:
3787 case ARRAY_REF:
3788 case ARRAY_RANGE_REF:
3789 case VIEW_CONVERT_EXPR:
3790 case REALPART_EXPR:
3791 case IMAGPART_EXPR:
3792 case TARGET_MEM_REF:
3793 case MEM_REF:
3794 if (!is_gimple_reg (lhs)
3795 && is_gimple_reg_type (TREE_TYPE (lhs)))
3796 {
3797 error ("invalid rhs for gimple memory store");
3798 debug_generic_stmt (lhs);
3799 debug_generic_stmt (rhs1);
3800 return true;
3801 }
3802 return res || verify_types_in_gimple_reference (rhs1, false);
3803
3804 /* tcc_constant */
3805 case SSA_NAME:
3806 case INTEGER_CST:
3807 case REAL_CST:
3808 case FIXED_CST:
3809 case COMPLEX_CST:
3810 case VECTOR_CST:
3811 case STRING_CST:
3812 return res;
3813
3814 /* tcc_declaration */
3815 case CONST_DECL:
3816 return res;
3817 case VAR_DECL:
3818 case PARM_DECL:
3819 if (!is_gimple_reg (lhs)
3820 && !is_gimple_reg (rhs1)
3821 && is_gimple_reg_type (TREE_TYPE (lhs)))
3822 {
3823 error ("invalid rhs for gimple memory store");
3824 debug_generic_stmt (lhs);
3825 debug_generic_stmt (rhs1);
3826 return true;
3827 }
3828 return res;
3829
3830 case COND_EXPR:
3831 if (!is_gimple_reg (lhs)
3832 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3833 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3834 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3835 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3836 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3837 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3838 {
3839 error ("invalid COND_EXPR in gimple assignment");
3840 debug_generic_stmt (rhs1);
3841 return true;
3842 }
3843 return res;
3844
3845 case CONSTRUCTOR:
3846 case OBJ_TYPE_REF:
3847 case ASSERT_EXPR:
3848 case WITH_SIZE_EXPR:
3849 case VEC_COND_EXPR:
3850 /* FIXME. */
3851 return res;
3852
3853 default:;
3854 }
3855
3856 return res;
3857 }
3858
3859 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3860 is a problem, otherwise false. */
3861
3862 static bool
3863 verify_gimple_assign (gimple stmt)
3864 {
3865 switch (gimple_assign_rhs_class (stmt))
3866 {
3867 case GIMPLE_SINGLE_RHS:
3868 return verify_gimple_assign_single (stmt);
3869
3870 case GIMPLE_UNARY_RHS:
3871 return verify_gimple_assign_unary (stmt);
3872
3873 case GIMPLE_BINARY_RHS:
3874 return verify_gimple_assign_binary (stmt);
3875
3876 case GIMPLE_TERNARY_RHS:
3877 return verify_gimple_assign_ternary (stmt);
3878
3879 default:
3880 gcc_unreachable ();
3881 }
3882 }
3883
3884 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3885 is a problem, otherwise false. */
3886
3887 static bool
3888 verify_gimple_return (gimple stmt)
3889 {
3890 tree op = gimple_return_retval (stmt);
3891 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3892
3893 /* We cannot test for present return values as we do not fix up missing
3894 return values from the original source. */
3895 if (op == NULL)
3896 return false;
3897
3898 if (!is_gimple_val (op)
3899 && TREE_CODE (op) != RESULT_DECL)
3900 {
3901 error ("invalid operand in return statement");
3902 debug_generic_stmt (op);
3903 return true;
3904 }
3905
3906 if ((TREE_CODE (op) == RESULT_DECL
3907 && DECL_BY_REFERENCE (op))
3908 || (TREE_CODE (op) == SSA_NAME
3909 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3910 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3911 op = TREE_TYPE (op);
3912
3913 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3914 {
3915 error ("invalid conversion in return statement");
3916 debug_generic_stmt (restype);
3917 debug_generic_stmt (TREE_TYPE (op));
3918 return true;
3919 }
3920
3921 return false;
3922 }
3923
3924
3925 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3926 is a problem, otherwise false. */
3927
3928 static bool
3929 verify_gimple_goto (gimple stmt)
3930 {
3931 tree dest = gimple_goto_dest (stmt);
3932
3933 /* ??? We have two canonical forms of direct goto destinations, a
3934 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3935 if (TREE_CODE (dest) != LABEL_DECL
3936 && (!is_gimple_val (dest)
3937 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3938 {
3939 error ("goto destination is neither a label nor a pointer");
3940 return true;
3941 }
3942
3943 return false;
3944 }
3945
3946 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3947 is a problem, otherwise false. */
3948
3949 static bool
3950 verify_gimple_switch (gimple stmt)
3951 {
3952 if (!is_gimple_val (gimple_switch_index (stmt)))
3953 {
3954 error ("invalid operand to switch statement");
3955 debug_generic_stmt (gimple_switch_index (stmt));
3956 return true;
3957 }
3958
3959 return false;
3960 }
3961
3962
3963 /* Verify a gimple debug statement STMT.
3964 Returns true if anything is wrong. */
3965
3966 static bool
3967 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3968 {
3969 /* There isn't much that could be wrong in a gimple debug stmt. A
3970 gimple debug bind stmt, for example, maps a tree, that's usually
3971 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3972 component or member of an aggregate type, to another tree, that
3973 can be an arbitrary expression. These stmts expand into debug
3974 insns, and are converted to debug notes by var-tracking.c. */
3975 return false;
3976 }
3977
3978 /* Verify a gimple label statement STMT.
3979 Returns true if anything is wrong. */
3980
3981 static bool
3982 verify_gimple_label (gimple stmt)
3983 {
3984 tree decl = gimple_label_label (stmt);
3985 int uid;
3986 bool err = false;
3987
3988 if (TREE_CODE (decl) != LABEL_DECL)
3989 return true;
3990
3991 uid = LABEL_DECL_UID (decl);
3992 if (cfun->cfg
3993 && (uid == -1
3994 || VEC_index (basic_block,
3995 label_to_block_map, uid) != gimple_bb (stmt)))
3996 {
3997 error ("incorrect entry in label_to_block_map");
3998 err |= true;
3999 }
4000
4001 uid = EH_LANDING_PAD_NR (decl);
4002 if (uid)
4003 {
4004 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4005 if (decl != lp->post_landing_pad)
4006 {
4007 error ("incorrect setting of landing pad number");
4008 err |= true;
4009 }
4010 }
4011
4012 return err;
4013 }
4014
4015 /* Verify the GIMPLE statement STMT. Returns true if there is an
4016 error, otherwise false. */
4017
4018 static bool
4019 verify_gimple_stmt (gimple stmt)
4020 {
4021 switch (gimple_code (stmt))
4022 {
4023 case GIMPLE_ASSIGN:
4024 return verify_gimple_assign (stmt);
4025
4026 case GIMPLE_LABEL:
4027 return verify_gimple_label (stmt);
4028
4029 case GIMPLE_CALL:
4030 return verify_gimple_call (stmt);
4031
4032 case GIMPLE_COND:
4033 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4034 {
4035 error ("invalid comparison code in gimple cond");
4036 return true;
4037 }
4038 if (!(!gimple_cond_true_label (stmt)
4039 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4040 || !(!gimple_cond_false_label (stmt)
4041 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4042 {
4043 error ("invalid labels in gimple cond");
4044 return true;
4045 }
4046
4047 return verify_gimple_comparison (boolean_type_node,
4048 gimple_cond_lhs (stmt),
4049 gimple_cond_rhs (stmt));
4050
4051 case GIMPLE_GOTO:
4052 return verify_gimple_goto (stmt);
4053
4054 case GIMPLE_SWITCH:
4055 return verify_gimple_switch (stmt);
4056
4057 case GIMPLE_RETURN:
4058 return verify_gimple_return (stmt);
4059
4060 case GIMPLE_ASM:
4061 return false;
4062
4063 /* Tuples that do not have tree operands. */
4064 case GIMPLE_NOP:
4065 case GIMPLE_PREDICT:
4066 case GIMPLE_RESX:
4067 case GIMPLE_EH_DISPATCH:
4068 case GIMPLE_EH_MUST_NOT_THROW:
4069 return false;
4070
4071 CASE_GIMPLE_OMP:
4072 /* OpenMP directives are validated by the FE and never operated
4073 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4074 non-gimple expressions when the main index variable has had
4075 its address taken. This does not affect the loop itself
4076 because the header of an GIMPLE_OMP_FOR is merely used to determine
4077 how to setup the parallel iteration. */
4078 return false;
4079
4080 case GIMPLE_DEBUG:
4081 return verify_gimple_debug (stmt);
4082
4083 default:
4084 gcc_unreachable ();
4085 }
4086 }
4087
4088 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4089 and false otherwise. */
4090
4091 static bool
4092 verify_gimple_phi (gimple phi)
4093 {
4094 bool err = false;
4095 unsigned i;
4096 tree phi_result = gimple_phi_result (phi);
4097 bool virtual_p;
4098
4099 if (!phi_result)
4100 {
4101 error ("invalid PHI result");
4102 return true;
4103 }
4104
4105 virtual_p = !is_gimple_reg (phi_result);
4106 if (TREE_CODE (phi_result) != SSA_NAME
4107 || (virtual_p
4108 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4109 {
4110 error ("invalid PHI result");
4111 err = true;
4112 }
4113
4114 for (i = 0; i < gimple_phi_num_args (phi); i++)
4115 {
4116 tree t = gimple_phi_arg_def (phi, i);
4117
4118 if (!t)
4119 {
4120 error ("missing PHI def");
4121 err |= true;
4122 continue;
4123 }
4124 /* Addressable variables do have SSA_NAMEs but they
4125 are not considered gimple values. */
4126 else if ((TREE_CODE (t) == SSA_NAME
4127 && virtual_p != !is_gimple_reg (t))
4128 || (virtual_p
4129 && (TREE_CODE (t) != SSA_NAME
4130 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4131 || (!virtual_p
4132 && !is_gimple_val (t)))
4133 {
4134 error ("invalid PHI argument");
4135 debug_generic_expr (t);
4136 err |= true;
4137 }
4138 #ifdef ENABLE_TYPES_CHECKING
4139 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4140 {
4141 error ("incompatible types in PHI argument %u", i);
4142 debug_generic_stmt (TREE_TYPE (phi_result));
4143 debug_generic_stmt (TREE_TYPE (t));
4144 err |= true;
4145 }
4146 #endif
4147 }
4148
4149 return err;
4150 }
4151
4152 /* Verify the GIMPLE statements inside the sequence STMTS. */
4153
4154 static bool
4155 verify_gimple_in_seq_2 (gimple_seq stmts)
4156 {
4157 gimple_stmt_iterator ittr;
4158 bool err = false;
4159
4160 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4161 {
4162 gimple stmt = gsi_stmt (ittr);
4163
4164 switch (gimple_code (stmt))
4165 {
4166 case GIMPLE_BIND:
4167 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4168 break;
4169
4170 case GIMPLE_TRY:
4171 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4172 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4173 break;
4174
4175 case GIMPLE_EH_FILTER:
4176 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4177 break;
4178
4179 case GIMPLE_CATCH:
4180 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4181 break;
4182
4183 default:
4184 {
4185 bool err2 = verify_gimple_stmt (stmt);
4186 if (err2)
4187 debug_gimple_stmt (stmt);
4188 err |= err2;
4189 }
4190 }
4191 }
4192
4193 return err;
4194 }
4195
4196
4197 /* Verify the GIMPLE statements inside the statement list STMTS. */
4198
4199 DEBUG_FUNCTION void
4200 verify_gimple_in_seq (gimple_seq stmts)
4201 {
4202 timevar_push (TV_TREE_STMT_VERIFY);
4203 if (verify_gimple_in_seq_2 (stmts))
4204 internal_error ("verify_gimple failed");
4205 timevar_pop (TV_TREE_STMT_VERIFY);
4206 }
4207
4208 /* Return true when the T can be shared. */
4209
4210 bool
4211 tree_node_can_be_shared (tree t)
4212 {
4213 if (IS_TYPE_OR_DECL_P (t)
4214 || is_gimple_min_invariant (t)
4215 || TREE_CODE (t) == SSA_NAME
4216 || t == error_mark_node
4217 || TREE_CODE (t) == IDENTIFIER_NODE)
4218 return true;
4219
4220 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4221 return true;
4222
4223 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4224 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4225 || TREE_CODE (t) == COMPONENT_REF
4226 || TREE_CODE (t) == REALPART_EXPR
4227 || TREE_CODE (t) == IMAGPART_EXPR)
4228 t = TREE_OPERAND (t, 0);
4229
4230 if (DECL_P (t))
4231 return true;
4232
4233 return false;
4234 }
4235
4236 /* Called via walk_gimple_stmt. Verify tree sharing. */
4237
4238 static tree
4239 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4240 {
4241 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4242 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4243
4244 if (tree_node_can_be_shared (*tp))
4245 {
4246 *walk_subtrees = false;
4247 return NULL;
4248 }
4249
4250 if (pointer_set_insert (visited, *tp))
4251 return *tp;
4252
4253 return NULL;
4254 }
4255
4256 static bool eh_error_found;
4257 static int
4258 verify_eh_throw_stmt_node (void **slot, void *data)
4259 {
4260 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4261 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4262
4263 if (!pointer_set_contains (visited, node->stmt))
4264 {
4265 error ("dead STMT in EH table");
4266 debug_gimple_stmt (node->stmt);
4267 eh_error_found = true;
4268 }
4269 return 1;
4270 }
4271
4272 /* Verify the GIMPLE statements in the CFG of FN. */
4273
4274 DEBUG_FUNCTION void
4275 verify_gimple_in_cfg (struct function *fn)
4276 {
4277 basic_block bb;
4278 bool err = false;
4279 struct pointer_set_t *visited, *visited_stmts;
4280
4281 timevar_push (TV_TREE_STMT_VERIFY);
4282 visited = pointer_set_create ();
4283 visited_stmts = pointer_set_create ();
4284
4285 FOR_EACH_BB_FN (bb, fn)
4286 {
4287 gimple_stmt_iterator gsi;
4288
4289 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4290 {
4291 gimple phi = gsi_stmt (gsi);
4292 bool err2 = false;
4293 unsigned i;
4294
4295 pointer_set_insert (visited_stmts, phi);
4296
4297 if (gimple_bb (phi) != bb)
4298 {
4299 error ("gimple_bb (phi) is set to a wrong basic block");
4300 err2 = true;
4301 }
4302
4303 err2 |= verify_gimple_phi (phi);
4304
4305 for (i = 0; i < gimple_phi_num_args (phi); i++)
4306 {
4307 tree arg = gimple_phi_arg_def (phi, i);
4308 tree addr = walk_tree (&arg, verify_node_sharing, visited, NULL);
4309 if (addr)
4310 {
4311 error ("incorrect sharing of tree nodes");
4312 debug_generic_expr (addr);
4313 err2 |= true;
4314 }
4315 }
4316
4317 if (err2)
4318 debug_gimple_stmt (phi);
4319 err |= err2;
4320 }
4321
4322 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4323 {
4324 gimple stmt = gsi_stmt (gsi);
4325 bool err2 = false;
4326 struct walk_stmt_info wi;
4327 tree addr;
4328 int lp_nr;
4329
4330 pointer_set_insert (visited_stmts, stmt);
4331
4332 if (gimple_bb (stmt) != bb)
4333 {
4334 error ("gimple_bb (stmt) is set to a wrong basic block");
4335 err2 = true;
4336 }
4337
4338 err2 |= verify_gimple_stmt (stmt);
4339
4340 memset (&wi, 0, sizeof (wi));
4341 wi.info = (void *) visited;
4342 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4343 if (addr)
4344 {
4345 error ("incorrect sharing of tree nodes");
4346 debug_generic_expr (addr);
4347 err2 |= true;
4348 }
4349
4350 /* ??? Instead of not checking these stmts at all the walker
4351 should know its context via wi. */
4352 if (!is_gimple_debug (stmt)
4353 && !is_gimple_omp (stmt))
4354 {
4355 memset (&wi, 0, sizeof (wi));
4356 addr = walk_gimple_op (stmt, verify_expr, &wi);
4357 if (addr)
4358 {
4359 debug_generic_expr (addr);
4360 inform (gimple_location (stmt), "in statement");
4361 err2 |= true;
4362 }
4363 }
4364
4365 /* If the statement is marked as part of an EH region, then it is
4366 expected that the statement could throw. Verify that when we
4367 have optimizations that simplify statements such that we prove
4368 that they cannot throw, that we update other data structures
4369 to match. */
4370 lp_nr = lookup_stmt_eh_lp (stmt);
4371 if (lp_nr != 0)
4372 {
4373 if (!stmt_could_throw_p (stmt))
4374 {
4375 error ("statement marked for throw, but doesn%'t");
4376 err2 |= true;
4377 }
4378 else if (lp_nr > 0
4379 && !gsi_one_before_end_p (gsi)
4380 && stmt_can_throw_internal (stmt))
4381 {
4382 error ("statement marked for throw in middle of block");
4383 err2 |= true;
4384 }
4385 }
4386
4387 if (err2)
4388 debug_gimple_stmt (stmt);
4389 err |= err2;
4390 }
4391 }
4392
4393 eh_error_found = false;
4394 if (get_eh_throw_stmt_table (cfun))
4395 htab_traverse (get_eh_throw_stmt_table (cfun),
4396 verify_eh_throw_stmt_node,
4397 visited_stmts);
4398
4399 if (err || eh_error_found)
4400 internal_error ("verify_gimple failed");
4401
4402 pointer_set_destroy (visited);
4403 pointer_set_destroy (visited_stmts);
4404 verify_histograms ();
4405 timevar_pop (TV_TREE_STMT_VERIFY);
4406 }
4407
4408
4409 /* Verifies that the flow information is OK. */
4410
4411 static int
4412 gimple_verify_flow_info (void)
4413 {
4414 int err = 0;
4415 basic_block bb;
4416 gimple_stmt_iterator gsi;
4417 gimple stmt;
4418 edge e;
4419 edge_iterator ei;
4420
4421 if (ENTRY_BLOCK_PTR->il.gimple)
4422 {
4423 error ("ENTRY_BLOCK has IL associated with it");
4424 err = 1;
4425 }
4426
4427 if (EXIT_BLOCK_PTR->il.gimple)
4428 {
4429 error ("EXIT_BLOCK has IL associated with it");
4430 err = 1;
4431 }
4432
4433 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4434 if (e->flags & EDGE_FALLTHRU)
4435 {
4436 error ("fallthru to exit from bb %d", e->src->index);
4437 err = 1;
4438 }
4439
4440 FOR_EACH_BB (bb)
4441 {
4442 bool found_ctrl_stmt = false;
4443
4444 stmt = NULL;
4445
4446 /* Skip labels on the start of basic block. */
4447 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4448 {
4449 tree label;
4450 gimple prev_stmt = stmt;
4451
4452 stmt = gsi_stmt (gsi);
4453
4454 if (gimple_code (stmt) != GIMPLE_LABEL)
4455 break;
4456
4457 label = gimple_label_label (stmt);
4458 if (prev_stmt && DECL_NONLOCAL (label))
4459 {
4460 error ("nonlocal label ");
4461 print_generic_expr (stderr, label, 0);
4462 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4463 bb->index);
4464 err = 1;
4465 }
4466
4467 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4468 {
4469 error ("EH landing pad label ");
4470 print_generic_expr (stderr, label, 0);
4471 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4472 bb->index);
4473 err = 1;
4474 }
4475
4476 if (label_to_block (label) != bb)
4477 {
4478 error ("label ");
4479 print_generic_expr (stderr, label, 0);
4480 fprintf (stderr, " to block does not match in bb %d",
4481 bb->index);
4482 err = 1;
4483 }
4484
4485 if (decl_function_context (label) != current_function_decl)
4486 {
4487 error ("label ");
4488 print_generic_expr (stderr, label, 0);
4489 fprintf (stderr, " has incorrect context in bb %d",
4490 bb->index);
4491 err = 1;
4492 }
4493 }
4494
4495 /* Verify that body of basic block BB is free of control flow. */
4496 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4497 {
4498 gimple stmt = gsi_stmt (gsi);
4499
4500 if (found_ctrl_stmt)
4501 {
4502 error ("control flow in the middle of basic block %d",
4503 bb->index);
4504 err = 1;
4505 }
4506
4507 if (stmt_ends_bb_p (stmt))
4508 found_ctrl_stmt = true;
4509
4510 if (gimple_code (stmt) == GIMPLE_LABEL)
4511 {
4512 error ("label ");
4513 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4514 fprintf (stderr, " in the middle of basic block %d", bb->index);
4515 err = 1;
4516 }
4517 }
4518
4519 gsi = gsi_last_bb (bb);
4520 if (gsi_end_p (gsi))
4521 continue;
4522
4523 stmt = gsi_stmt (gsi);
4524
4525 if (gimple_code (stmt) == GIMPLE_LABEL)
4526 continue;
4527
4528 err |= verify_eh_edges (stmt);
4529
4530 if (is_ctrl_stmt (stmt))
4531 {
4532 FOR_EACH_EDGE (e, ei, bb->succs)
4533 if (e->flags & EDGE_FALLTHRU)
4534 {
4535 error ("fallthru edge after a control statement in bb %d",
4536 bb->index);
4537 err = 1;
4538 }
4539 }
4540
4541 if (gimple_code (stmt) != GIMPLE_COND)
4542 {
4543 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4544 after anything else but if statement. */
4545 FOR_EACH_EDGE (e, ei, bb->succs)
4546 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4547 {
4548 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4549 bb->index);
4550 err = 1;
4551 }
4552 }
4553
4554 switch (gimple_code (stmt))
4555 {
4556 case GIMPLE_COND:
4557 {
4558 edge true_edge;
4559 edge false_edge;
4560
4561 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4562
4563 if (!true_edge
4564 || !false_edge
4565 || !(true_edge->flags & EDGE_TRUE_VALUE)
4566 || !(false_edge->flags & EDGE_FALSE_VALUE)
4567 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4568 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4569 || EDGE_COUNT (bb->succs) >= 3)
4570 {
4571 error ("wrong outgoing edge flags at end of bb %d",
4572 bb->index);
4573 err = 1;
4574 }
4575 }
4576 break;
4577
4578 case GIMPLE_GOTO:
4579 if (simple_goto_p (stmt))
4580 {
4581 error ("explicit goto at end of bb %d", bb->index);
4582 err = 1;
4583 }
4584 else
4585 {
4586 /* FIXME. We should double check that the labels in the
4587 destination blocks have their address taken. */
4588 FOR_EACH_EDGE (e, ei, bb->succs)
4589 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4590 | EDGE_FALSE_VALUE))
4591 || !(e->flags & EDGE_ABNORMAL))
4592 {
4593 error ("wrong outgoing edge flags at end of bb %d",
4594 bb->index);
4595 err = 1;
4596 }
4597 }
4598 break;
4599
4600 case GIMPLE_CALL:
4601 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4602 break;
4603 /* ... fallthru ... */
4604 case GIMPLE_RETURN:
4605 if (!single_succ_p (bb)
4606 || (single_succ_edge (bb)->flags
4607 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4608 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4609 {
4610 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4611 err = 1;
4612 }
4613 if (single_succ (bb) != EXIT_BLOCK_PTR)
4614 {
4615 error ("return edge does not point to exit in bb %d",
4616 bb->index);
4617 err = 1;
4618 }
4619 break;
4620
4621 case GIMPLE_SWITCH:
4622 {
4623 tree prev;
4624 edge e;
4625 size_t i, n;
4626
4627 n = gimple_switch_num_labels (stmt);
4628
4629 /* Mark all the destination basic blocks. */
4630 for (i = 0; i < n; ++i)
4631 {
4632 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4633 basic_block label_bb = label_to_block (lab);
4634 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4635 label_bb->aux = (void *)1;
4636 }
4637
4638 /* Verify that the case labels are sorted. */
4639 prev = gimple_switch_label (stmt, 0);
4640 for (i = 1; i < n; ++i)
4641 {
4642 tree c = gimple_switch_label (stmt, i);
4643 if (!CASE_LOW (c))
4644 {
4645 error ("found default case not at the start of "
4646 "case vector");
4647 err = 1;
4648 continue;
4649 }
4650 if (CASE_LOW (prev)
4651 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4652 {
4653 error ("case labels not sorted: ");
4654 print_generic_expr (stderr, prev, 0);
4655 fprintf (stderr," is greater than ");
4656 print_generic_expr (stderr, c, 0);
4657 fprintf (stderr," but comes before it.\n");
4658 err = 1;
4659 }
4660 prev = c;
4661 }
4662 /* VRP will remove the default case if it can prove it will
4663 never be executed. So do not verify there always exists
4664 a default case here. */
4665
4666 FOR_EACH_EDGE (e, ei, bb->succs)
4667 {
4668 if (!e->dest->aux)
4669 {
4670 error ("extra outgoing edge %d->%d",
4671 bb->index, e->dest->index);
4672 err = 1;
4673 }
4674
4675 e->dest->aux = (void *)2;
4676 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4677 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4678 {
4679 error ("wrong outgoing edge flags at end of bb %d",
4680 bb->index);
4681 err = 1;
4682 }
4683 }
4684
4685 /* Check that we have all of them. */
4686 for (i = 0; i < n; ++i)
4687 {
4688 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4689 basic_block label_bb = label_to_block (lab);
4690
4691 if (label_bb->aux != (void *)2)
4692 {
4693 error ("missing edge %i->%i", bb->index, label_bb->index);
4694 err = 1;
4695 }
4696 }
4697
4698 FOR_EACH_EDGE (e, ei, bb->succs)
4699 e->dest->aux = (void *)0;
4700 }
4701 break;
4702
4703 case GIMPLE_EH_DISPATCH:
4704 err |= verify_eh_dispatch_edge (stmt);
4705 break;
4706
4707 default:
4708 break;
4709 }
4710 }
4711
4712 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4713 verify_dominators (CDI_DOMINATORS);
4714
4715 return err;
4716 }
4717
4718
4719 /* Updates phi nodes after creating a forwarder block joined
4720 by edge FALLTHRU. */
4721
4722 static void
4723 gimple_make_forwarder_block (edge fallthru)
4724 {
4725 edge e;
4726 edge_iterator ei;
4727 basic_block dummy, bb;
4728 tree var;
4729 gimple_stmt_iterator gsi;
4730
4731 dummy = fallthru->src;
4732 bb = fallthru->dest;
4733
4734 if (single_pred_p (bb))
4735 return;
4736
4737 /* If we redirected a branch we must create new PHI nodes at the
4738 start of BB. */
4739 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4740 {
4741 gimple phi, new_phi;
4742
4743 phi = gsi_stmt (gsi);
4744 var = gimple_phi_result (phi);
4745 new_phi = create_phi_node (var, bb);
4746 SSA_NAME_DEF_STMT (var) = new_phi;
4747 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4748 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4749 UNKNOWN_LOCATION);
4750 }
4751
4752 /* Add the arguments we have stored on edges. */
4753 FOR_EACH_EDGE (e, ei, bb->preds)
4754 {
4755 if (e == fallthru)
4756 continue;
4757
4758 flush_pending_stmts (e);
4759 }
4760 }
4761
4762
4763 /* Return a non-special label in the head of basic block BLOCK.
4764 Create one if it doesn't exist. */
4765
4766 tree
4767 gimple_block_label (basic_block bb)
4768 {
4769 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4770 bool first = true;
4771 tree label;
4772 gimple stmt;
4773
4774 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4775 {
4776 stmt = gsi_stmt (i);
4777 if (gimple_code (stmt) != GIMPLE_LABEL)
4778 break;
4779 label = gimple_label_label (stmt);
4780 if (!DECL_NONLOCAL (label))
4781 {
4782 if (!first)
4783 gsi_move_before (&i, &s);
4784 return label;
4785 }
4786 }
4787
4788 label = create_artificial_label (UNKNOWN_LOCATION);
4789 stmt = gimple_build_label (label);
4790 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4791 return label;
4792 }
4793
4794
4795 /* Attempt to perform edge redirection by replacing a possibly complex
4796 jump instruction by a goto or by removing the jump completely.
4797 This can apply only if all edges now point to the same block. The
4798 parameters and return values are equivalent to
4799 redirect_edge_and_branch. */
4800
4801 static edge
4802 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4803 {
4804 basic_block src = e->src;
4805 gimple_stmt_iterator i;
4806 gimple stmt;
4807
4808 /* We can replace or remove a complex jump only when we have exactly
4809 two edges. */
4810 if (EDGE_COUNT (src->succs) != 2
4811 /* Verify that all targets will be TARGET. Specifically, the
4812 edge that is not E must also go to TARGET. */
4813 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4814 return NULL;
4815
4816 i = gsi_last_bb (src);
4817 if (gsi_end_p (i))
4818 return NULL;
4819
4820 stmt = gsi_stmt (i);
4821
4822 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4823 {
4824 gsi_remove (&i, true);
4825 e = ssa_redirect_edge (e, target);
4826 e->flags = EDGE_FALLTHRU;
4827 return e;
4828 }
4829
4830 return NULL;
4831 }
4832
4833
4834 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4835 edge representing the redirected branch. */
4836
4837 static edge
4838 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4839 {
4840 basic_block bb = e->src;
4841 gimple_stmt_iterator gsi;
4842 edge ret;
4843 gimple stmt;
4844
4845 if (e->flags & EDGE_ABNORMAL)
4846 return NULL;
4847
4848 if (e->dest == dest)
4849 return NULL;
4850
4851 if (e->flags & EDGE_EH)
4852 return redirect_eh_edge (e, dest);
4853
4854 if (e->src != ENTRY_BLOCK_PTR)
4855 {
4856 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4857 if (ret)
4858 return ret;
4859 }
4860
4861 gsi = gsi_last_bb (bb);
4862 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4863
4864 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4865 {
4866 case GIMPLE_COND:
4867 /* For COND_EXPR, we only need to redirect the edge. */
4868 break;
4869
4870 case GIMPLE_GOTO:
4871 /* No non-abnormal edges should lead from a non-simple goto, and
4872 simple ones should be represented implicitly. */
4873 gcc_unreachable ();
4874
4875 case GIMPLE_SWITCH:
4876 {
4877 tree label = gimple_block_label (dest);
4878 tree cases = get_cases_for_edge (e, stmt);
4879
4880 /* If we have a list of cases associated with E, then use it
4881 as it's a lot faster than walking the entire case vector. */
4882 if (cases)
4883 {
4884 edge e2 = find_edge (e->src, dest);
4885 tree last, first;
4886
4887 first = cases;
4888 while (cases)
4889 {
4890 last = cases;
4891 CASE_LABEL (cases) = label;
4892 cases = CASE_CHAIN (cases);
4893 }
4894
4895 /* If there was already an edge in the CFG, then we need
4896 to move all the cases associated with E to E2. */
4897 if (e2)
4898 {
4899 tree cases2 = get_cases_for_edge (e2, stmt);
4900
4901 CASE_CHAIN (last) = CASE_CHAIN (cases2);
4902 CASE_CHAIN (cases2) = first;
4903 }
4904 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4905 }
4906 else
4907 {
4908 size_t i, n = gimple_switch_num_labels (stmt);
4909
4910 for (i = 0; i < n; i++)
4911 {
4912 tree elt = gimple_switch_label (stmt, i);
4913 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4914 CASE_LABEL (elt) = label;
4915 }
4916 }
4917 }
4918 break;
4919
4920 case GIMPLE_ASM:
4921 {
4922 int i, n = gimple_asm_nlabels (stmt);
4923 tree label = NULL;
4924
4925 for (i = 0; i < n; ++i)
4926 {
4927 tree cons = gimple_asm_label_op (stmt, i);
4928 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4929 {
4930 if (!label)
4931 label = gimple_block_label (dest);
4932 TREE_VALUE (cons) = label;
4933 }
4934 }
4935
4936 /* If we didn't find any label matching the former edge in the
4937 asm labels, we must be redirecting the fallthrough
4938 edge. */
4939 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4940 }
4941 break;
4942
4943 case GIMPLE_RETURN:
4944 gsi_remove (&gsi, true);
4945 e->flags |= EDGE_FALLTHRU;
4946 break;
4947
4948 case GIMPLE_OMP_RETURN:
4949 case GIMPLE_OMP_CONTINUE:
4950 case GIMPLE_OMP_SECTIONS_SWITCH:
4951 case GIMPLE_OMP_FOR:
4952 /* The edges from OMP constructs can be simply redirected. */
4953 break;
4954
4955 case GIMPLE_EH_DISPATCH:
4956 if (!(e->flags & EDGE_FALLTHRU))
4957 redirect_eh_dispatch_edge (stmt, e, dest);
4958 break;
4959
4960 default:
4961 /* Otherwise it must be a fallthru edge, and we don't need to
4962 do anything besides redirecting it. */
4963 gcc_assert (e->flags & EDGE_FALLTHRU);
4964 break;
4965 }
4966
4967 /* Update/insert PHI nodes as necessary. */
4968
4969 /* Now update the edges in the CFG. */
4970 e = ssa_redirect_edge (e, dest);
4971
4972 return e;
4973 }
4974
4975 /* Returns true if it is possible to remove edge E by redirecting
4976 it to the destination of the other edge from E->src. */
4977
4978 static bool
4979 gimple_can_remove_branch_p (const_edge e)
4980 {
4981 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4982 return false;
4983
4984 return true;
4985 }
4986
4987 /* Simple wrapper, as we can always redirect fallthru edges. */
4988
4989 static basic_block
4990 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4991 {
4992 e = gimple_redirect_edge_and_branch (e, dest);
4993 gcc_assert (e);
4994
4995 return NULL;
4996 }
4997
4998
4999 /* Splits basic block BB after statement STMT (but at least after the
5000 labels). If STMT is NULL, BB is split just after the labels. */
5001
5002 static basic_block
5003 gimple_split_block (basic_block bb, void *stmt)
5004 {
5005 gimple_stmt_iterator gsi;
5006 gimple_stmt_iterator gsi_tgt;
5007 gimple act;
5008 gimple_seq list;
5009 basic_block new_bb;
5010 edge e;
5011 edge_iterator ei;
5012
5013 new_bb = create_empty_bb (bb);
5014
5015 /* Redirect the outgoing edges. */
5016 new_bb->succs = bb->succs;
5017 bb->succs = NULL;
5018 FOR_EACH_EDGE (e, ei, new_bb->succs)
5019 e->src = new_bb;
5020
5021 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5022 stmt = NULL;
5023
5024 /* Move everything from GSI to the new basic block. */
5025 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5026 {
5027 act = gsi_stmt (gsi);
5028 if (gimple_code (act) == GIMPLE_LABEL)
5029 continue;
5030
5031 if (!stmt)
5032 break;
5033
5034 if (stmt == act)
5035 {
5036 gsi_next (&gsi);
5037 break;
5038 }
5039 }
5040
5041 if (gsi_end_p (gsi))
5042 return new_bb;
5043
5044 /* Split the statement list - avoid re-creating new containers as this
5045 brings ugly quadratic memory consumption in the inliner.
5046 (We are still quadratic since we need to update stmt BB pointers,
5047 sadly.) */
5048 list = gsi_split_seq_before (&gsi);
5049 set_bb_seq (new_bb, list);
5050 for (gsi_tgt = gsi_start (list);
5051 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5052 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5053
5054 return new_bb;
5055 }
5056
5057
5058 /* Moves basic block BB after block AFTER. */
5059
5060 static bool
5061 gimple_move_block_after (basic_block bb, basic_block after)
5062 {
5063 if (bb->prev_bb == after)
5064 return true;
5065
5066 unlink_block (bb);
5067 link_block (bb, after);
5068
5069 return true;
5070 }
5071
5072
5073 /* Return true if basic_block can be duplicated. */
5074
5075 static bool
5076 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5077 {
5078 return true;
5079 }
5080
5081 /* Create a duplicate of the basic block BB. NOTE: This does not
5082 preserve SSA form. */
5083
5084 static basic_block
5085 gimple_duplicate_bb (basic_block bb)
5086 {
5087 basic_block new_bb;
5088 gimple_stmt_iterator gsi, gsi_tgt;
5089 gimple_seq phis = phi_nodes (bb);
5090 gimple phi, stmt, copy;
5091
5092 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5093
5094 /* Copy the PHI nodes. We ignore PHI node arguments here because
5095 the incoming edges have not been setup yet. */
5096 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5097 {
5098 phi = gsi_stmt (gsi);
5099 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5100 create_new_def_for (gimple_phi_result (copy), copy,
5101 gimple_phi_result_ptr (copy));
5102 }
5103
5104 gsi_tgt = gsi_start_bb (new_bb);
5105 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5106 {
5107 def_operand_p def_p;
5108 ssa_op_iter op_iter;
5109
5110 stmt = gsi_stmt (gsi);
5111 if (gimple_code (stmt) == GIMPLE_LABEL)
5112 continue;
5113
5114 /* Create a new copy of STMT and duplicate STMT's virtual
5115 operands. */
5116 copy = gimple_copy (stmt);
5117 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5118
5119 maybe_duplicate_eh_stmt (copy, stmt);
5120 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5121
5122 /* Create new names for all the definitions created by COPY and
5123 add replacement mappings for each new name. */
5124 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5125 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5126 }
5127
5128 return new_bb;
5129 }
5130
5131 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5132
5133 static void
5134 add_phi_args_after_copy_edge (edge e_copy)
5135 {
5136 basic_block bb, bb_copy = e_copy->src, dest;
5137 edge e;
5138 edge_iterator ei;
5139 gimple phi, phi_copy;
5140 tree def;
5141 gimple_stmt_iterator psi, psi_copy;
5142
5143 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5144 return;
5145
5146 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5147
5148 if (e_copy->dest->flags & BB_DUPLICATED)
5149 dest = get_bb_original (e_copy->dest);
5150 else
5151 dest = e_copy->dest;
5152
5153 e = find_edge (bb, dest);
5154 if (!e)
5155 {
5156 /* During loop unrolling the target of the latch edge is copied.
5157 In this case we are not looking for edge to dest, but to
5158 duplicated block whose original was dest. */
5159 FOR_EACH_EDGE (e, ei, bb->succs)
5160 {
5161 if ((e->dest->flags & BB_DUPLICATED)
5162 && get_bb_original (e->dest) == dest)
5163 break;
5164 }
5165
5166 gcc_assert (e != NULL);
5167 }
5168
5169 for (psi = gsi_start_phis (e->dest),
5170 psi_copy = gsi_start_phis (e_copy->dest);
5171 !gsi_end_p (psi);
5172 gsi_next (&psi), gsi_next (&psi_copy))
5173 {
5174 phi = gsi_stmt (psi);
5175 phi_copy = gsi_stmt (psi_copy);
5176 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5177 add_phi_arg (phi_copy, def, e_copy,
5178 gimple_phi_arg_location_from_edge (phi, e));
5179 }
5180 }
5181
5182
5183 /* Basic block BB_COPY was created by code duplication. Add phi node
5184 arguments for edges going out of BB_COPY. The blocks that were
5185 duplicated have BB_DUPLICATED set. */
5186
5187 void
5188 add_phi_args_after_copy_bb (basic_block bb_copy)
5189 {
5190 edge e_copy;
5191 edge_iterator ei;
5192
5193 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5194 {
5195 add_phi_args_after_copy_edge (e_copy);
5196 }
5197 }
5198
5199 /* Blocks in REGION_COPY array of length N_REGION were created by
5200 duplication of basic blocks. Add phi node arguments for edges
5201 going from these blocks. If E_COPY is not NULL, also add
5202 phi node arguments for its destination.*/
5203
5204 void
5205 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5206 edge e_copy)
5207 {
5208 unsigned i;
5209
5210 for (i = 0; i < n_region; i++)
5211 region_copy[i]->flags |= BB_DUPLICATED;
5212
5213 for (i = 0; i < n_region; i++)
5214 add_phi_args_after_copy_bb (region_copy[i]);
5215 if (e_copy)
5216 add_phi_args_after_copy_edge (e_copy);
5217
5218 for (i = 0; i < n_region; i++)
5219 region_copy[i]->flags &= ~BB_DUPLICATED;
5220 }
5221
5222 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5223 important exit edge EXIT. By important we mean that no SSA name defined
5224 inside region is live over the other exit edges of the region. All entry
5225 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5226 to the duplicate of the region. SSA form, dominance and loop information
5227 is updated. The new basic blocks are stored to REGION_COPY in the same
5228 order as they had in REGION, provided that REGION_COPY is not NULL.
5229 The function returns false if it is unable to copy the region,
5230 true otherwise. */
5231
5232 bool
5233 gimple_duplicate_sese_region (edge entry, edge exit,
5234 basic_block *region, unsigned n_region,
5235 basic_block *region_copy)
5236 {
5237 unsigned i;
5238 bool free_region_copy = false, copying_header = false;
5239 struct loop *loop = entry->dest->loop_father;
5240 edge exit_copy;
5241 VEC (basic_block, heap) *doms;
5242 edge redirected;
5243 int total_freq = 0, entry_freq = 0;
5244 gcov_type total_count = 0, entry_count = 0;
5245
5246 if (!can_copy_bbs_p (region, n_region))
5247 return false;
5248
5249 /* Some sanity checking. Note that we do not check for all possible
5250 missuses of the functions. I.e. if you ask to copy something weird,
5251 it will work, but the state of structures probably will not be
5252 correct. */
5253 for (i = 0; i < n_region; i++)
5254 {
5255 /* We do not handle subloops, i.e. all the blocks must belong to the
5256 same loop. */
5257 if (region[i]->loop_father != loop)
5258 return false;
5259
5260 if (region[i] != entry->dest
5261 && region[i] == loop->header)
5262 return false;
5263 }
5264
5265 set_loop_copy (loop, loop);
5266
5267 /* In case the function is used for loop header copying (which is the primary
5268 use), ensure that EXIT and its copy will be new latch and entry edges. */
5269 if (loop->header == entry->dest)
5270 {
5271 copying_header = true;
5272 set_loop_copy (loop, loop_outer (loop));
5273
5274 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5275 return false;
5276
5277 for (i = 0; i < n_region; i++)
5278 if (region[i] != exit->src
5279 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5280 return false;
5281 }
5282
5283 if (!region_copy)
5284 {
5285 region_copy = XNEWVEC (basic_block, n_region);
5286 free_region_copy = true;
5287 }
5288
5289 gcc_assert (!need_ssa_update_p (cfun));
5290
5291 /* Record blocks outside the region that are dominated by something
5292 inside. */
5293 doms = NULL;
5294 initialize_original_copy_tables ();
5295
5296 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5297
5298 if (entry->dest->count)
5299 {
5300 total_count = entry->dest->count;
5301 entry_count = entry->count;
5302 /* Fix up corner cases, to avoid division by zero or creation of negative
5303 frequencies. */
5304 if (entry_count > total_count)
5305 entry_count = total_count;
5306 }
5307 else
5308 {
5309 total_freq = entry->dest->frequency;
5310 entry_freq = EDGE_FREQUENCY (entry);
5311 /* Fix up corner cases, to avoid division by zero or creation of negative
5312 frequencies. */
5313 if (total_freq == 0)
5314 total_freq = 1;
5315 else if (entry_freq > total_freq)
5316 entry_freq = total_freq;
5317 }
5318
5319 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5320 split_edge_bb_loc (entry));
5321 if (total_count)
5322 {
5323 scale_bbs_frequencies_gcov_type (region, n_region,
5324 total_count - entry_count,
5325 total_count);
5326 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5327 total_count);
5328 }
5329 else
5330 {
5331 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5332 total_freq);
5333 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5334 }
5335
5336 if (copying_header)
5337 {
5338 loop->header = exit->dest;
5339 loop->latch = exit->src;
5340 }
5341
5342 /* Redirect the entry and add the phi node arguments. */
5343 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5344 gcc_assert (redirected != NULL);
5345 flush_pending_stmts (entry);
5346
5347 /* Concerning updating of dominators: We must recount dominators
5348 for entry block and its copy. Anything that is outside of the
5349 region, but was dominated by something inside needs recounting as
5350 well. */
5351 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5352 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5353 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5354 VEC_free (basic_block, heap, doms);
5355
5356 /* Add the other PHI node arguments. */
5357 add_phi_args_after_copy (region_copy, n_region, NULL);
5358
5359 /* Update the SSA web. */
5360 update_ssa (TODO_update_ssa);
5361
5362 if (free_region_copy)
5363 free (region_copy);
5364
5365 free_original_copy_tables ();
5366 return true;
5367 }
5368
5369 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5370 are stored to REGION_COPY in the same order in that they appear
5371 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5372 the region, EXIT an exit from it. The condition guarding EXIT
5373 is moved to ENTRY. Returns true if duplication succeeds, false
5374 otherwise.
5375
5376 For example,
5377
5378 some_code;
5379 if (cond)
5380 A;
5381 else
5382 B;
5383
5384 is transformed to
5385
5386 if (cond)
5387 {
5388 some_code;
5389 A;
5390 }
5391 else
5392 {
5393 some_code;
5394 B;
5395 }
5396 */
5397
5398 bool
5399 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5400 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5401 basic_block *region_copy ATTRIBUTE_UNUSED)
5402 {
5403 unsigned i;
5404 bool free_region_copy = false;
5405 struct loop *loop = exit->dest->loop_father;
5406 struct loop *orig_loop = entry->dest->loop_father;
5407 basic_block switch_bb, entry_bb, nentry_bb;
5408 VEC (basic_block, heap) *doms;
5409 int total_freq = 0, exit_freq = 0;
5410 gcov_type total_count = 0, exit_count = 0;
5411 edge exits[2], nexits[2], e;
5412 gimple_stmt_iterator gsi,gsi1;
5413 gimple cond_stmt;
5414 edge sorig, snew;
5415 basic_block exit_bb;
5416 basic_block iters_bb;
5417 tree new_rhs;
5418 gimple_stmt_iterator psi;
5419 gimple phi;
5420 tree def;
5421
5422 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5423 exits[0] = exit;
5424 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5425
5426 if (!can_copy_bbs_p (region, n_region))
5427 return false;
5428
5429 initialize_original_copy_tables ();
5430 set_loop_copy (orig_loop, loop);
5431 duplicate_subloops (orig_loop, loop);
5432
5433 if (!region_copy)
5434 {
5435 region_copy = XNEWVEC (basic_block, n_region);
5436 free_region_copy = true;
5437 }
5438
5439 gcc_assert (!need_ssa_update_p (cfun));
5440
5441 /* Record blocks outside the region that are dominated by something
5442 inside. */
5443 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5444
5445 if (exit->src->count)
5446 {
5447 total_count = exit->src->count;
5448 exit_count = exit->count;
5449 /* Fix up corner cases, to avoid division by zero or creation of negative
5450 frequencies. */
5451 if (exit_count > total_count)
5452 exit_count = total_count;
5453 }
5454 else
5455 {
5456 total_freq = exit->src->frequency;
5457 exit_freq = EDGE_FREQUENCY (exit);
5458 /* Fix up corner cases, to avoid division by zero or creation of negative
5459 frequencies. */
5460 if (total_freq == 0)
5461 total_freq = 1;
5462 if (exit_freq > total_freq)
5463 exit_freq = total_freq;
5464 }
5465
5466 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5467 split_edge_bb_loc (exit));
5468 if (total_count)
5469 {
5470 scale_bbs_frequencies_gcov_type (region, n_region,
5471 total_count - exit_count,
5472 total_count);
5473 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5474 total_count);
5475 }
5476 else
5477 {
5478 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5479 total_freq);
5480 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5481 }
5482
5483 /* Create the switch block, and put the exit condition to it. */
5484 entry_bb = entry->dest;
5485 nentry_bb = get_bb_copy (entry_bb);
5486 if (!last_stmt (entry->src)
5487 || !stmt_ends_bb_p (last_stmt (entry->src)))
5488 switch_bb = entry->src;
5489 else
5490 switch_bb = split_edge (entry);
5491 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5492
5493 gsi = gsi_last_bb (switch_bb);
5494 cond_stmt = last_stmt (exit->src);
5495 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5496 cond_stmt = gimple_copy (cond_stmt);
5497
5498 /* If the block consisting of the exit condition has the latch as
5499 successor, then the body of the loop is executed before
5500 the exit condition is tested. In such case, moving the
5501 condition to the entry, causes that the loop will iterate
5502 one less iteration (which is the wanted outcome, since we
5503 peel out the last iteration). If the body is executed after
5504 the condition, moving the condition to the entry requires
5505 decrementing one iteration. */
5506 if (exits[1]->dest == orig_loop->latch)
5507 new_rhs = gimple_cond_rhs (cond_stmt);
5508 else
5509 {
5510 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5511 gimple_cond_rhs (cond_stmt),
5512 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5513
5514 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5515 {
5516 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5517 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5518 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5519 break;
5520
5521 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5522 NULL_TREE,false,GSI_CONTINUE_LINKING);
5523 }
5524 }
5525 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5526 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5527 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5528
5529 sorig = single_succ_edge (switch_bb);
5530 sorig->flags = exits[1]->flags;
5531 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5532
5533 /* Register the new edge from SWITCH_BB in loop exit lists. */
5534 rescan_loop_exit (snew, true, false);
5535
5536 /* Add the PHI node arguments. */
5537 add_phi_args_after_copy (region_copy, n_region, snew);
5538
5539 /* Get rid of now superfluous conditions and associated edges (and phi node
5540 arguments). */
5541 exit_bb = exit->dest;
5542
5543 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5544 PENDING_STMT (e) = NULL;
5545
5546 /* The latch of ORIG_LOOP was copied, and so was the backedge
5547 to the original header. We redirect this backedge to EXIT_BB. */
5548 for (i = 0; i < n_region; i++)
5549 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5550 {
5551 gcc_assert (single_succ_edge (region_copy[i]));
5552 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5553 PENDING_STMT (e) = NULL;
5554 for (psi = gsi_start_phis (exit_bb);
5555 !gsi_end_p (psi);
5556 gsi_next (&psi))
5557 {
5558 phi = gsi_stmt (psi);
5559 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5560 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5561 }
5562 }
5563 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5564 PENDING_STMT (e) = NULL;
5565
5566 /* Anything that is outside of the region, but was dominated by something
5567 inside needs to update dominance info. */
5568 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5569 VEC_free (basic_block, heap, doms);
5570 /* Update the SSA web. */
5571 update_ssa (TODO_update_ssa);
5572
5573 if (free_region_copy)
5574 free (region_copy);
5575
5576 free_original_copy_tables ();
5577 return true;
5578 }
5579
5580 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5581 adding blocks when the dominator traversal reaches EXIT. This
5582 function silently assumes that ENTRY strictly dominates EXIT. */
5583
5584 void
5585 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5586 VEC(basic_block,heap) **bbs_p)
5587 {
5588 basic_block son;
5589
5590 for (son = first_dom_son (CDI_DOMINATORS, entry);
5591 son;
5592 son = next_dom_son (CDI_DOMINATORS, son))
5593 {
5594 VEC_safe_push (basic_block, heap, *bbs_p, son);
5595 if (son != exit)
5596 gather_blocks_in_sese_region (son, exit, bbs_p);
5597 }
5598 }
5599
5600 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5601 The duplicates are recorded in VARS_MAP. */
5602
5603 static void
5604 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5605 tree to_context)
5606 {
5607 tree t = *tp, new_t;
5608 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5609 void **loc;
5610
5611 if (DECL_CONTEXT (t) == to_context)
5612 return;
5613
5614 loc = pointer_map_contains (vars_map, t);
5615
5616 if (!loc)
5617 {
5618 loc = pointer_map_insert (vars_map, t);
5619
5620 if (SSA_VAR_P (t))
5621 {
5622 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5623 add_local_decl (f, new_t);
5624 }
5625 else
5626 {
5627 gcc_assert (TREE_CODE (t) == CONST_DECL);
5628 new_t = copy_node (t);
5629 }
5630 DECL_CONTEXT (new_t) = to_context;
5631
5632 *loc = new_t;
5633 }
5634 else
5635 new_t = (tree) *loc;
5636
5637 *tp = new_t;
5638 }
5639
5640
5641 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5642 VARS_MAP maps old ssa names and var_decls to the new ones. */
5643
5644 static tree
5645 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5646 tree to_context)
5647 {
5648 void **loc;
5649 tree new_name, decl = SSA_NAME_VAR (name);
5650
5651 gcc_assert (is_gimple_reg (name));
5652
5653 loc = pointer_map_contains (vars_map, name);
5654
5655 if (!loc)
5656 {
5657 replace_by_duplicate_decl (&decl, vars_map, to_context);
5658
5659 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5660 if (gimple_in_ssa_p (cfun))
5661 add_referenced_var (decl);
5662
5663 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5664 if (SSA_NAME_IS_DEFAULT_DEF (name))
5665 set_default_def (decl, new_name);
5666 pop_cfun ();
5667
5668 loc = pointer_map_insert (vars_map, name);
5669 *loc = new_name;
5670 }
5671 else
5672 new_name = (tree) *loc;
5673
5674 return new_name;
5675 }
5676
5677 struct move_stmt_d
5678 {
5679 tree orig_block;
5680 tree new_block;
5681 tree from_context;
5682 tree to_context;
5683 struct pointer_map_t *vars_map;
5684 htab_t new_label_map;
5685 struct pointer_map_t *eh_map;
5686 bool remap_decls_p;
5687 };
5688
5689 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5690 contained in *TP if it has been ORIG_BLOCK previously and change the
5691 DECL_CONTEXT of every local variable referenced in *TP. */
5692
5693 static tree
5694 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5695 {
5696 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5697 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5698 tree t = *tp;
5699
5700 if (EXPR_P (t))
5701 /* We should never have TREE_BLOCK set on non-statements. */
5702 gcc_assert (!TREE_BLOCK (t));
5703
5704 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5705 {
5706 if (TREE_CODE (t) == SSA_NAME)
5707 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5708 else if (TREE_CODE (t) == LABEL_DECL)
5709 {
5710 if (p->new_label_map)
5711 {
5712 struct tree_map in, *out;
5713 in.base.from = t;
5714 out = (struct tree_map *)
5715 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5716 if (out)
5717 *tp = t = out->to;
5718 }
5719
5720 DECL_CONTEXT (t) = p->to_context;
5721 }
5722 else if (p->remap_decls_p)
5723 {
5724 /* Replace T with its duplicate. T should no longer appear in the
5725 parent function, so this looks wasteful; however, it may appear
5726 in referenced_vars, and more importantly, as virtual operands of
5727 statements, and in alias lists of other variables. It would be
5728 quite difficult to expunge it from all those places. ??? It might
5729 suffice to do this for addressable variables. */
5730 if ((TREE_CODE (t) == VAR_DECL
5731 && !is_global_var (t))
5732 || TREE_CODE (t) == CONST_DECL)
5733 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5734
5735 if (SSA_VAR_P (t)
5736 && gimple_in_ssa_p (cfun))
5737 {
5738 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5739 add_referenced_var (*tp);
5740 pop_cfun ();
5741 }
5742 }
5743 *walk_subtrees = 0;
5744 }
5745 else if (TYPE_P (t))
5746 *walk_subtrees = 0;
5747
5748 return NULL_TREE;
5749 }
5750
5751 /* Helper for move_stmt_r. Given an EH region number for the source
5752 function, map that to the duplicate EH regio number in the dest. */
5753
5754 static int
5755 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5756 {
5757 eh_region old_r, new_r;
5758 void **slot;
5759
5760 old_r = get_eh_region_from_number (old_nr);
5761 slot = pointer_map_contains (p->eh_map, old_r);
5762 new_r = (eh_region) *slot;
5763
5764 return new_r->index;
5765 }
5766
5767 /* Similar, but operate on INTEGER_CSTs. */
5768
5769 static tree
5770 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5771 {
5772 int old_nr, new_nr;
5773
5774 old_nr = tree_low_cst (old_t_nr, 0);
5775 new_nr = move_stmt_eh_region_nr (old_nr, p);
5776
5777 return build_int_cst (integer_type_node, new_nr);
5778 }
5779
5780 /* Like move_stmt_op, but for gimple statements.
5781
5782 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5783 contained in the current statement in *GSI_P and change the
5784 DECL_CONTEXT of every local variable referenced in the current
5785 statement. */
5786
5787 static tree
5788 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5789 struct walk_stmt_info *wi)
5790 {
5791 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5792 gimple stmt = gsi_stmt (*gsi_p);
5793 tree block = gimple_block (stmt);
5794
5795 if (p->orig_block == NULL_TREE
5796 || block == p->orig_block
5797 || block == NULL_TREE)
5798 gimple_set_block (stmt, p->new_block);
5799 #ifdef ENABLE_CHECKING
5800 else if (block != p->new_block)
5801 {
5802 while (block && block != p->orig_block)
5803 block = BLOCK_SUPERCONTEXT (block);
5804 gcc_assert (block);
5805 }
5806 #endif
5807
5808 switch (gimple_code (stmt))
5809 {
5810 case GIMPLE_CALL:
5811 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5812 {
5813 tree r, fndecl = gimple_call_fndecl (stmt);
5814 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5815 switch (DECL_FUNCTION_CODE (fndecl))
5816 {
5817 case BUILT_IN_EH_COPY_VALUES:
5818 r = gimple_call_arg (stmt, 1);
5819 r = move_stmt_eh_region_tree_nr (r, p);
5820 gimple_call_set_arg (stmt, 1, r);
5821 /* FALLTHRU */
5822
5823 case BUILT_IN_EH_POINTER:
5824 case BUILT_IN_EH_FILTER:
5825 r = gimple_call_arg (stmt, 0);
5826 r = move_stmt_eh_region_tree_nr (r, p);
5827 gimple_call_set_arg (stmt, 0, r);
5828 break;
5829
5830 default:
5831 break;
5832 }
5833 }
5834 break;
5835
5836 case GIMPLE_RESX:
5837 {
5838 int r = gimple_resx_region (stmt);
5839 r = move_stmt_eh_region_nr (r, p);
5840 gimple_resx_set_region (stmt, r);
5841 }
5842 break;
5843
5844 case GIMPLE_EH_DISPATCH:
5845 {
5846 int r = gimple_eh_dispatch_region (stmt);
5847 r = move_stmt_eh_region_nr (r, p);
5848 gimple_eh_dispatch_set_region (stmt, r);
5849 }
5850 break;
5851
5852 case GIMPLE_OMP_RETURN:
5853 case GIMPLE_OMP_CONTINUE:
5854 break;
5855 default:
5856 if (is_gimple_omp (stmt))
5857 {
5858 /* Do not remap variables inside OMP directives. Variables
5859 referenced in clauses and directive header belong to the
5860 parent function and should not be moved into the child
5861 function. */
5862 bool save_remap_decls_p = p->remap_decls_p;
5863 p->remap_decls_p = false;
5864 *handled_ops_p = true;
5865
5866 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5867 move_stmt_op, wi);
5868
5869 p->remap_decls_p = save_remap_decls_p;
5870 }
5871 break;
5872 }
5873
5874 return NULL_TREE;
5875 }
5876
5877 /* Move basic block BB from function CFUN to function DEST_FN. The
5878 block is moved out of the original linked list and placed after
5879 block AFTER in the new list. Also, the block is removed from the
5880 original array of blocks and placed in DEST_FN's array of blocks.
5881 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5882 updated to reflect the moved edges.
5883
5884 The local variables are remapped to new instances, VARS_MAP is used
5885 to record the mapping. */
5886
5887 static void
5888 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5889 basic_block after, bool update_edge_count_p,
5890 struct move_stmt_d *d)
5891 {
5892 struct control_flow_graph *cfg;
5893 edge_iterator ei;
5894 edge e;
5895 gimple_stmt_iterator si;
5896 unsigned old_len, new_len;
5897
5898 /* Remove BB from dominance structures. */
5899 delete_from_dominance_info (CDI_DOMINATORS, bb);
5900 if (current_loops)
5901 remove_bb_from_loops (bb);
5902
5903 /* Link BB to the new linked list. */
5904 move_block_after (bb, after);
5905
5906 /* Update the edge count in the corresponding flowgraphs. */
5907 if (update_edge_count_p)
5908 FOR_EACH_EDGE (e, ei, bb->succs)
5909 {
5910 cfun->cfg->x_n_edges--;
5911 dest_cfun->cfg->x_n_edges++;
5912 }
5913
5914 /* Remove BB from the original basic block array. */
5915 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5916 cfun->cfg->x_n_basic_blocks--;
5917
5918 /* Grow DEST_CFUN's basic block array if needed. */
5919 cfg = dest_cfun->cfg;
5920 cfg->x_n_basic_blocks++;
5921 if (bb->index >= cfg->x_last_basic_block)
5922 cfg->x_last_basic_block = bb->index + 1;
5923
5924 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5925 if ((unsigned) cfg->x_last_basic_block >= old_len)
5926 {
5927 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5928 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5929 new_len);
5930 }
5931
5932 VEC_replace (basic_block, cfg->x_basic_block_info,
5933 bb->index, bb);
5934
5935 /* Remap the variables in phi nodes. */
5936 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5937 {
5938 gimple phi = gsi_stmt (si);
5939 use_operand_p use;
5940 tree op = PHI_RESULT (phi);
5941 ssa_op_iter oi;
5942
5943 if (!is_gimple_reg (op))
5944 {
5945 /* Remove the phi nodes for virtual operands (alias analysis will be
5946 run for the new function, anyway). */
5947 remove_phi_node (&si, true);
5948 continue;
5949 }
5950
5951 SET_PHI_RESULT (phi,
5952 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5953 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5954 {
5955 op = USE_FROM_PTR (use);
5956 if (TREE_CODE (op) == SSA_NAME)
5957 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5958 }
5959
5960 gsi_next (&si);
5961 }
5962
5963 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5964 {
5965 gimple stmt = gsi_stmt (si);
5966 struct walk_stmt_info wi;
5967
5968 memset (&wi, 0, sizeof (wi));
5969 wi.info = d;
5970 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5971
5972 if (gimple_code (stmt) == GIMPLE_LABEL)
5973 {
5974 tree label = gimple_label_label (stmt);
5975 int uid = LABEL_DECL_UID (label);
5976
5977 gcc_assert (uid > -1);
5978
5979 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5980 if (old_len <= (unsigned) uid)
5981 {
5982 new_len = 3 * uid / 2 + 1;
5983 VEC_safe_grow_cleared (basic_block, gc,
5984 cfg->x_label_to_block_map, new_len);
5985 }
5986
5987 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5988 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5989
5990 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5991
5992 if (uid >= dest_cfun->cfg->last_label_uid)
5993 dest_cfun->cfg->last_label_uid = uid + 1;
5994 }
5995
5996 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5997 remove_stmt_from_eh_lp_fn (cfun, stmt);
5998
5999 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6000 gimple_remove_stmt_histograms (cfun, stmt);
6001
6002 /* We cannot leave any operands allocated from the operand caches of
6003 the current function. */
6004 free_stmt_operands (stmt);
6005 push_cfun (dest_cfun);
6006 update_stmt (stmt);
6007 pop_cfun ();
6008 }
6009
6010 FOR_EACH_EDGE (e, ei, bb->succs)
6011 if (e->goto_locus)
6012 {
6013 tree block = e->goto_block;
6014 if (d->orig_block == NULL_TREE
6015 || block == d->orig_block)
6016 e->goto_block = d->new_block;
6017 #ifdef ENABLE_CHECKING
6018 else if (block != d->new_block)
6019 {
6020 while (block && block != d->orig_block)
6021 block = BLOCK_SUPERCONTEXT (block);
6022 gcc_assert (block);
6023 }
6024 #endif
6025 }
6026 }
6027
6028 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6029 the outermost EH region. Use REGION as the incoming base EH region. */
6030
6031 static eh_region
6032 find_outermost_region_in_block (struct function *src_cfun,
6033 basic_block bb, eh_region region)
6034 {
6035 gimple_stmt_iterator si;
6036
6037 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6038 {
6039 gimple stmt = gsi_stmt (si);
6040 eh_region stmt_region;
6041 int lp_nr;
6042
6043 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6044 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6045 if (stmt_region)
6046 {
6047 if (region == NULL)
6048 region = stmt_region;
6049 else if (stmt_region != region)
6050 {
6051 region = eh_region_outermost (src_cfun, stmt_region, region);
6052 gcc_assert (region != NULL);
6053 }
6054 }
6055 }
6056
6057 return region;
6058 }
6059
6060 static tree
6061 new_label_mapper (tree decl, void *data)
6062 {
6063 htab_t hash = (htab_t) data;
6064 struct tree_map *m;
6065 void **slot;
6066
6067 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6068
6069 m = XNEW (struct tree_map);
6070 m->hash = DECL_UID (decl);
6071 m->base.from = decl;
6072 m->to = create_artificial_label (UNKNOWN_LOCATION);
6073 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6074 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6075 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6076
6077 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6078 gcc_assert (*slot == NULL);
6079
6080 *slot = m;
6081
6082 return m->to;
6083 }
6084
6085 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6086 subblocks. */
6087
6088 static void
6089 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6090 tree to_context)
6091 {
6092 tree *tp, t;
6093
6094 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6095 {
6096 t = *tp;
6097 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6098 continue;
6099 replace_by_duplicate_decl (&t, vars_map, to_context);
6100 if (t != *tp)
6101 {
6102 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6103 {
6104 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6105 DECL_HAS_VALUE_EXPR_P (t) = 1;
6106 }
6107 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6108 *tp = t;
6109 }
6110 }
6111
6112 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6113 replace_block_vars_by_duplicates (block, vars_map, to_context);
6114 }
6115
6116 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6117 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6118 single basic block in the original CFG and the new basic block is
6119 returned. DEST_CFUN must not have a CFG yet.
6120
6121 Note that the region need not be a pure SESE region. Blocks inside
6122 the region may contain calls to abort/exit. The only restriction
6123 is that ENTRY_BB should be the only entry point and it must
6124 dominate EXIT_BB.
6125
6126 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6127 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6128 to the new function.
6129
6130 All local variables referenced in the region are assumed to be in
6131 the corresponding BLOCK_VARS and unexpanded variable lists
6132 associated with DEST_CFUN. */
6133
6134 basic_block
6135 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6136 basic_block exit_bb, tree orig_block)
6137 {
6138 VEC(basic_block,heap) *bbs, *dom_bbs;
6139 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6140 basic_block after, bb, *entry_pred, *exit_succ, abb;
6141 struct function *saved_cfun = cfun;
6142 int *entry_flag, *exit_flag;
6143 unsigned *entry_prob, *exit_prob;
6144 unsigned i, num_entry_edges, num_exit_edges;
6145 edge e;
6146 edge_iterator ei;
6147 htab_t new_label_map;
6148 struct pointer_map_t *vars_map, *eh_map;
6149 struct loop *loop = entry_bb->loop_father;
6150 struct move_stmt_d d;
6151
6152 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6153 region. */
6154 gcc_assert (entry_bb != exit_bb
6155 && (!exit_bb
6156 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6157
6158 /* Collect all the blocks in the region. Manually add ENTRY_BB
6159 because it won't be added by dfs_enumerate_from. */
6160 bbs = NULL;
6161 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6162 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6163
6164 /* The blocks that used to be dominated by something in BBS will now be
6165 dominated by the new block. */
6166 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6167 VEC_address (basic_block, bbs),
6168 VEC_length (basic_block, bbs));
6169
6170 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6171 the predecessor edges to ENTRY_BB and the successor edges to
6172 EXIT_BB so that we can re-attach them to the new basic block that
6173 will replace the region. */
6174 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6175 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6176 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6177 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6178 i = 0;
6179 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6180 {
6181 entry_prob[i] = e->probability;
6182 entry_flag[i] = e->flags;
6183 entry_pred[i++] = e->src;
6184 remove_edge (e);
6185 }
6186
6187 if (exit_bb)
6188 {
6189 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6190 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6191 sizeof (basic_block));
6192 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6193 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6194 i = 0;
6195 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6196 {
6197 exit_prob[i] = e->probability;
6198 exit_flag[i] = e->flags;
6199 exit_succ[i++] = e->dest;
6200 remove_edge (e);
6201 }
6202 }
6203 else
6204 {
6205 num_exit_edges = 0;
6206 exit_succ = NULL;
6207 exit_flag = NULL;
6208 exit_prob = NULL;
6209 }
6210
6211 /* Switch context to the child function to initialize DEST_FN's CFG. */
6212 gcc_assert (dest_cfun->cfg == NULL);
6213 push_cfun (dest_cfun);
6214
6215 init_empty_tree_cfg ();
6216
6217 /* Initialize EH information for the new function. */
6218 eh_map = NULL;
6219 new_label_map = NULL;
6220 if (saved_cfun->eh)
6221 {
6222 eh_region region = NULL;
6223
6224 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6225 region = find_outermost_region_in_block (saved_cfun, bb, region);
6226
6227 init_eh_for_function ();
6228 if (region != NULL)
6229 {
6230 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6231 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6232 new_label_mapper, new_label_map);
6233 }
6234 }
6235
6236 pop_cfun ();
6237
6238 /* Move blocks from BBS into DEST_CFUN. */
6239 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6240 after = dest_cfun->cfg->x_entry_block_ptr;
6241 vars_map = pointer_map_create ();
6242
6243 memset (&d, 0, sizeof (d));
6244 d.orig_block = orig_block;
6245 d.new_block = DECL_INITIAL (dest_cfun->decl);
6246 d.from_context = cfun->decl;
6247 d.to_context = dest_cfun->decl;
6248 d.vars_map = vars_map;
6249 d.new_label_map = new_label_map;
6250 d.eh_map = eh_map;
6251 d.remap_decls_p = true;
6252
6253 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6254 {
6255 /* No need to update edge counts on the last block. It has
6256 already been updated earlier when we detached the region from
6257 the original CFG. */
6258 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6259 after = bb;
6260 }
6261
6262 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6263 if (orig_block)
6264 {
6265 tree block;
6266 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6267 == NULL_TREE);
6268 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6269 = BLOCK_SUBBLOCKS (orig_block);
6270 for (block = BLOCK_SUBBLOCKS (orig_block);
6271 block; block = BLOCK_CHAIN (block))
6272 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6273 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6274 }
6275
6276 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6277 vars_map, dest_cfun->decl);
6278
6279 if (new_label_map)
6280 htab_delete (new_label_map);
6281 if (eh_map)
6282 pointer_map_destroy (eh_map);
6283 pointer_map_destroy (vars_map);
6284
6285 /* Rewire the entry and exit blocks. The successor to the entry
6286 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6287 the child function. Similarly, the predecessor of DEST_FN's
6288 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6289 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6290 various CFG manipulation function get to the right CFG.
6291
6292 FIXME, this is silly. The CFG ought to become a parameter to
6293 these helpers. */
6294 push_cfun (dest_cfun);
6295 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6296 if (exit_bb)
6297 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6298 pop_cfun ();
6299
6300 /* Back in the original function, the SESE region has disappeared,
6301 create a new basic block in its place. */
6302 bb = create_empty_bb (entry_pred[0]);
6303 if (current_loops)
6304 add_bb_to_loop (bb, loop);
6305 for (i = 0; i < num_entry_edges; i++)
6306 {
6307 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6308 e->probability = entry_prob[i];
6309 }
6310
6311 for (i = 0; i < num_exit_edges; i++)
6312 {
6313 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6314 e->probability = exit_prob[i];
6315 }
6316
6317 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6318 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6319 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6320 VEC_free (basic_block, heap, dom_bbs);
6321
6322 if (exit_bb)
6323 {
6324 free (exit_prob);
6325 free (exit_flag);
6326 free (exit_succ);
6327 }
6328 free (entry_prob);
6329 free (entry_flag);
6330 free (entry_pred);
6331 VEC_free (basic_block, heap, bbs);
6332
6333 return bb;
6334 }
6335
6336
6337 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6338 */
6339
6340 void
6341 dump_function_to_file (tree fn, FILE *file, int flags)
6342 {
6343 tree arg, var;
6344 struct function *dsf;
6345 bool ignore_topmost_bind = false, any_var = false;
6346 basic_block bb;
6347 tree chain;
6348
6349 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6350
6351 arg = DECL_ARGUMENTS (fn);
6352 while (arg)
6353 {
6354 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6355 fprintf (file, " ");
6356 print_generic_expr (file, arg, dump_flags);
6357 if (flags & TDF_VERBOSE)
6358 print_node (file, "", arg, 4);
6359 if (DECL_CHAIN (arg))
6360 fprintf (file, ", ");
6361 arg = DECL_CHAIN (arg);
6362 }
6363 fprintf (file, ")\n");
6364
6365 if (flags & TDF_VERBOSE)
6366 print_node (file, "", fn, 2);
6367
6368 dsf = DECL_STRUCT_FUNCTION (fn);
6369 if (dsf && (flags & TDF_EH))
6370 dump_eh_tree (file, dsf);
6371
6372 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6373 {
6374 dump_node (fn, TDF_SLIM | flags, file);
6375 return;
6376 }
6377
6378 /* Switch CFUN to point to FN. */
6379 push_cfun (DECL_STRUCT_FUNCTION (fn));
6380
6381 /* When GIMPLE is lowered, the variables are no longer available in
6382 BIND_EXPRs, so display them separately. */
6383 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6384 {
6385 unsigned ix;
6386 ignore_topmost_bind = true;
6387
6388 fprintf (file, "{\n");
6389 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6390 {
6391 print_generic_decl (file, var, flags);
6392 if (flags & TDF_VERBOSE)
6393 print_node (file, "", var, 4);
6394 fprintf (file, "\n");
6395
6396 any_var = true;
6397 }
6398 }
6399
6400 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6401 {
6402 /* If the CFG has been built, emit a CFG-based dump. */
6403 check_bb_profile (ENTRY_BLOCK_PTR, file);
6404 if (!ignore_topmost_bind)
6405 fprintf (file, "{\n");
6406
6407 if (any_var && n_basic_blocks)
6408 fprintf (file, "\n");
6409
6410 FOR_EACH_BB (bb)
6411 gimple_dump_bb (bb, file, 2, flags);
6412
6413 fprintf (file, "}\n");
6414 check_bb_profile (EXIT_BLOCK_PTR, file);
6415 }
6416 else if (DECL_SAVED_TREE (fn) == NULL)
6417 {
6418 /* The function is now in GIMPLE form but the CFG has not been
6419 built yet. Emit the single sequence of GIMPLE statements
6420 that make up its body. */
6421 gimple_seq body = gimple_body (fn);
6422
6423 if (gimple_seq_first_stmt (body)
6424 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6425 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6426 print_gimple_seq (file, body, 0, flags);
6427 else
6428 {
6429 if (!ignore_topmost_bind)
6430 fprintf (file, "{\n");
6431
6432 if (any_var)
6433 fprintf (file, "\n");
6434
6435 print_gimple_seq (file, body, 2, flags);
6436 fprintf (file, "}\n");
6437 }
6438 }
6439 else
6440 {
6441 int indent;
6442
6443 /* Make a tree based dump. */
6444 chain = DECL_SAVED_TREE (fn);
6445
6446 if (chain && TREE_CODE (chain) == BIND_EXPR)
6447 {
6448 if (ignore_topmost_bind)
6449 {
6450 chain = BIND_EXPR_BODY (chain);
6451 indent = 2;
6452 }
6453 else
6454 indent = 0;
6455 }
6456 else
6457 {
6458 if (!ignore_topmost_bind)
6459 fprintf (file, "{\n");
6460 indent = 2;
6461 }
6462
6463 if (any_var)
6464 fprintf (file, "\n");
6465
6466 print_generic_stmt_indented (file, chain, flags, indent);
6467 if (ignore_topmost_bind)
6468 fprintf (file, "}\n");
6469 }
6470
6471 if (flags & TDF_ENUMERATE_LOCALS)
6472 dump_enumerated_decls (file, flags);
6473 fprintf (file, "\n\n");
6474
6475 /* Restore CFUN. */
6476 pop_cfun ();
6477 }
6478
6479
6480 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6481
6482 DEBUG_FUNCTION void
6483 debug_function (tree fn, int flags)
6484 {
6485 dump_function_to_file (fn, stderr, flags);
6486 }
6487
6488
6489 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6490
6491 static void
6492 print_pred_bbs (FILE *file, basic_block bb)
6493 {
6494 edge e;
6495 edge_iterator ei;
6496
6497 FOR_EACH_EDGE (e, ei, bb->preds)
6498 fprintf (file, "bb_%d ", e->src->index);
6499 }
6500
6501
6502 /* Print on FILE the indexes for the successors of basic_block BB. */
6503
6504 static void
6505 print_succ_bbs (FILE *file, basic_block bb)
6506 {
6507 edge e;
6508 edge_iterator ei;
6509
6510 FOR_EACH_EDGE (e, ei, bb->succs)
6511 fprintf (file, "bb_%d ", e->dest->index);
6512 }
6513
6514 /* Print to FILE the basic block BB following the VERBOSITY level. */
6515
6516 void
6517 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6518 {
6519 char *s_indent = (char *) alloca ((size_t) indent + 1);
6520 memset ((void *) s_indent, ' ', (size_t) indent);
6521 s_indent[indent] = '\0';
6522
6523 /* Print basic_block's header. */
6524 if (verbosity >= 2)
6525 {
6526 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6527 print_pred_bbs (file, bb);
6528 fprintf (file, "}, succs = {");
6529 print_succ_bbs (file, bb);
6530 fprintf (file, "})\n");
6531 }
6532
6533 /* Print basic_block's body. */
6534 if (verbosity >= 3)
6535 {
6536 fprintf (file, "%s {\n", s_indent);
6537 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6538 fprintf (file, "%s }\n", s_indent);
6539 }
6540 }
6541
6542 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6543
6544 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6545 VERBOSITY level this outputs the contents of the loop, or just its
6546 structure. */
6547
6548 static void
6549 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6550 {
6551 char *s_indent;
6552 basic_block bb;
6553
6554 if (loop == NULL)
6555 return;
6556
6557 s_indent = (char *) alloca ((size_t) indent + 1);
6558 memset ((void *) s_indent, ' ', (size_t) indent);
6559 s_indent[indent] = '\0';
6560
6561 /* Print loop's header. */
6562 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6563 loop->num, loop->header->index, loop->latch->index);
6564 fprintf (file, ", niter = ");
6565 print_generic_expr (file, loop->nb_iterations, 0);
6566
6567 if (loop->any_upper_bound)
6568 {
6569 fprintf (file, ", upper_bound = ");
6570 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6571 }
6572
6573 if (loop->any_estimate)
6574 {
6575 fprintf (file, ", estimate = ");
6576 dump_double_int (file, loop->nb_iterations_estimate, true);
6577 }
6578 fprintf (file, ")\n");
6579
6580 /* Print loop's body. */
6581 if (verbosity >= 1)
6582 {
6583 fprintf (file, "%s{\n", s_indent);
6584 FOR_EACH_BB (bb)
6585 if (bb->loop_father == loop)
6586 print_loops_bb (file, bb, indent, verbosity);
6587
6588 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6589 fprintf (file, "%s}\n", s_indent);
6590 }
6591 }
6592
6593 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6594 spaces. Following VERBOSITY level this outputs the contents of the
6595 loop, or just its structure. */
6596
6597 static void
6598 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6599 {
6600 if (loop == NULL)
6601 return;
6602
6603 print_loop (file, loop, indent, verbosity);
6604 print_loop_and_siblings (file, loop->next, indent, verbosity);
6605 }
6606
6607 /* Follow a CFG edge from the entry point of the program, and on entry
6608 of a loop, pretty print the loop structure on FILE. */
6609
6610 void
6611 print_loops (FILE *file, int verbosity)
6612 {
6613 basic_block bb;
6614
6615 bb = ENTRY_BLOCK_PTR;
6616 if (bb && bb->loop_father)
6617 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6618 }
6619
6620
6621 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6622
6623 DEBUG_FUNCTION void
6624 debug_loops (int verbosity)
6625 {
6626 print_loops (stderr, verbosity);
6627 }
6628
6629 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6630
6631 DEBUG_FUNCTION void
6632 debug_loop (struct loop *loop, int verbosity)
6633 {
6634 print_loop (stderr, loop, 0, verbosity);
6635 }
6636
6637 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6638 level. */
6639
6640 DEBUG_FUNCTION void
6641 debug_loop_num (unsigned num, int verbosity)
6642 {
6643 debug_loop (get_loop (num), verbosity);
6644 }
6645
6646 /* Return true if BB ends with a call, possibly followed by some
6647 instructions that must stay with the call. Return false,
6648 otherwise. */
6649
6650 static bool
6651 gimple_block_ends_with_call_p (basic_block bb)
6652 {
6653 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6654 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6655 }
6656
6657
6658 /* Return true if BB ends with a conditional branch. Return false,
6659 otherwise. */
6660
6661 static bool
6662 gimple_block_ends_with_condjump_p (const_basic_block bb)
6663 {
6664 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6665 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6666 }
6667
6668
6669 /* Return true if we need to add fake edge to exit at statement T.
6670 Helper function for gimple_flow_call_edges_add. */
6671
6672 static bool
6673 need_fake_edge_p (gimple t)
6674 {
6675 tree fndecl = NULL_TREE;
6676 int call_flags = 0;
6677
6678 /* NORETURN and LONGJMP calls already have an edge to exit.
6679 CONST and PURE calls do not need one.
6680 We don't currently check for CONST and PURE here, although
6681 it would be a good idea, because those attributes are
6682 figured out from the RTL in mark_constant_function, and
6683 the counter incrementation code from -fprofile-arcs
6684 leads to different results from -fbranch-probabilities. */
6685 if (is_gimple_call (t))
6686 {
6687 fndecl = gimple_call_fndecl (t);
6688 call_flags = gimple_call_flags (t);
6689 }
6690
6691 if (is_gimple_call (t)
6692 && fndecl
6693 && DECL_BUILT_IN (fndecl)
6694 && (call_flags & ECF_NOTHROW)
6695 && !(call_flags & ECF_RETURNS_TWICE)
6696 /* fork() doesn't really return twice, but the effect of
6697 wrapping it in __gcov_fork() which calls __gcov_flush()
6698 and clears the counters before forking has the same
6699 effect as returning twice. Force a fake edge. */
6700 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6701 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6702 return false;
6703
6704 if (is_gimple_call (t)
6705 && !(call_flags & ECF_NORETURN))
6706 return true;
6707
6708 if (gimple_code (t) == GIMPLE_ASM
6709 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6710 return true;
6711
6712 return false;
6713 }
6714
6715
6716 /* Add fake edges to the function exit for any non constant and non
6717 noreturn calls, volatile inline assembly in the bitmap of blocks
6718 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6719 the number of blocks that were split.
6720
6721 The goal is to expose cases in which entering a basic block does
6722 not imply that all subsequent instructions must be executed. */
6723
6724 static int
6725 gimple_flow_call_edges_add (sbitmap blocks)
6726 {
6727 int i;
6728 int blocks_split = 0;
6729 int last_bb = last_basic_block;
6730 bool check_last_block = false;
6731
6732 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6733 return 0;
6734
6735 if (! blocks)
6736 check_last_block = true;
6737 else
6738 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6739
6740 /* In the last basic block, before epilogue generation, there will be
6741 a fallthru edge to EXIT. Special care is required if the last insn
6742 of the last basic block is a call because make_edge folds duplicate
6743 edges, which would result in the fallthru edge also being marked
6744 fake, which would result in the fallthru edge being removed by
6745 remove_fake_edges, which would result in an invalid CFG.
6746
6747 Moreover, we can't elide the outgoing fake edge, since the block
6748 profiler needs to take this into account in order to solve the minimal
6749 spanning tree in the case that the call doesn't return.
6750
6751 Handle this by adding a dummy instruction in a new last basic block. */
6752 if (check_last_block)
6753 {
6754 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6755 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6756 gimple t = NULL;
6757
6758 if (!gsi_end_p (gsi))
6759 t = gsi_stmt (gsi);
6760
6761 if (t && need_fake_edge_p (t))
6762 {
6763 edge e;
6764
6765 e = find_edge (bb, EXIT_BLOCK_PTR);
6766 if (e)
6767 {
6768 gsi_insert_on_edge (e, gimple_build_nop ());
6769 gsi_commit_edge_inserts ();
6770 }
6771 }
6772 }
6773
6774 /* Now add fake edges to the function exit for any non constant
6775 calls since there is no way that we can determine if they will
6776 return or not... */
6777 for (i = 0; i < last_bb; i++)
6778 {
6779 basic_block bb = BASIC_BLOCK (i);
6780 gimple_stmt_iterator gsi;
6781 gimple stmt, last_stmt;
6782
6783 if (!bb)
6784 continue;
6785
6786 if (blocks && !TEST_BIT (blocks, i))
6787 continue;
6788
6789 gsi = gsi_last_nondebug_bb (bb);
6790 if (!gsi_end_p (gsi))
6791 {
6792 last_stmt = gsi_stmt (gsi);
6793 do
6794 {
6795 stmt = gsi_stmt (gsi);
6796 if (need_fake_edge_p (stmt))
6797 {
6798 edge e;
6799
6800 /* The handling above of the final block before the
6801 epilogue should be enough to verify that there is
6802 no edge to the exit block in CFG already.
6803 Calling make_edge in such case would cause us to
6804 mark that edge as fake and remove it later. */
6805 #ifdef ENABLE_CHECKING
6806 if (stmt == last_stmt)
6807 {
6808 e = find_edge (bb, EXIT_BLOCK_PTR);
6809 gcc_assert (e == NULL);
6810 }
6811 #endif
6812
6813 /* Note that the following may create a new basic block
6814 and renumber the existing basic blocks. */
6815 if (stmt != last_stmt)
6816 {
6817 e = split_block (bb, stmt);
6818 if (e)
6819 blocks_split++;
6820 }
6821 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6822 }
6823 gsi_prev (&gsi);
6824 }
6825 while (!gsi_end_p (gsi));
6826 }
6827 }
6828
6829 if (blocks_split)
6830 verify_flow_info ();
6831
6832 return blocks_split;
6833 }
6834
6835 /* Removes edge E and all the blocks dominated by it, and updates dominance
6836 information. The IL in E->src needs to be updated separately.
6837 If dominance info is not available, only the edge E is removed.*/
6838
6839 void
6840 remove_edge_and_dominated_blocks (edge e)
6841 {
6842 VEC (basic_block, heap) *bbs_to_remove = NULL;
6843 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6844 bitmap df, df_idom;
6845 edge f;
6846 edge_iterator ei;
6847 bool none_removed = false;
6848 unsigned i;
6849 basic_block bb, dbb;
6850 bitmap_iterator bi;
6851
6852 if (!dom_info_available_p (CDI_DOMINATORS))
6853 {
6854 remove_edge (e);
6855 return;
6856 }
6857
6858 /* No updating is needed for edges to exit. */
6859 if (e->dest == EXIT_BLOCK_PTR)
6860 {
6861 if (cfgcleanup_altered_bbs)
6862 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6863 remove_edge (e);
6864 return;
6865 }
6866
6867 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6868 that is not dominated by E->dest, then this set is empty. Otherwise,
6869 all the basic blocks dominated by E->dest are removed.
6870
6871 Also, to DF_IDOM we store the immediate dominators of the blocks in
6872 the dominance frontier of E (i.e., of the successors of the
6873 removed blocks, if there are any, and of E->dest otherwise). */
6874 FOR_EACH_EDGE (f, ei, e->dest->preds)
6875 {
6876 if (f == e)
6877 continue;
6878
6879 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6880 {
6881 none_removed = true;
6882 break;
6883 }
6884 }
6885
6886 df = BITMAP_ALLOC (NULL);
6887 df_idom = BITMAP_ALLOC (NULL);
6888
6889 if (none_removed)
6890 bitmap_set_bit (df_idom,
6891 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6892 else
6893 {
6894 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6895 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6896 {
6897 FOR_EACH_EDGE (f, ei, bb->succs)
6898 {
6899 if (f->dest != EXIT_BLOCK_PTR)
6900 bitmap_set_bit (df, f->dest->index);
6901 }
6902 }
6903 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6904 bitmap_clear_bit (df, bb->index);
6905
6906 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6907 {
6908 bb = BASIC_BLOCK (i);
6909 bitmap_set_bit (df_idom,
6910 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6911 }
6912 }
6913
6914 if (cfgcleanup_altered_bbs)
6915 {
6916 /* Record the set of the altered basic blocks. */
6917 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6918 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6919 }
6920
6921 /* Remove E and the cancelled blocks. */
6922 if (none_removed)
6923 remove_edge (e);
6924 else
6925 {
6926 /* Walk backwards so as to get a chance to substitute all
6927 released DEFs into debug stmts. See
6928 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6929 details. */
6930 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6931 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6932 }
6933
6934 /* Update the dominance information. The immediate dominator may change only
6935 for blocks whose immediate dominator belongs to DF_IDOM:
6936
6937 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6938 removal. Let Z the arbitrary block such that idom(Z) = Y and
6939 Z dominates X after the removal. Before removal, there exists a path P
6940 from Y to X that avoids Z. Let F be the last edge on P that is
6941 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6942 dominates W, and because of P, Z does not dominate W), and W belongs to
6943 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6944 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6945 {
6946 bb = BASIC_BLOCK (i);
6947 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6948 dbb;
6949 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6950 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6951 }
6952
6953 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6954
6955 BITMAP_FREE (df);
6956 BITMAP_FREE (df_idom);
6957 VEC_free (basic_block, heap, bbs_to_remove);
6958 VEC_free (basic_block, heap, bbs_to_fix_dom);
6959 }
6960
6961 /* Purge dead EH edges from basic block BB. */
6962
6963 bool
6964 gimple_purge_dead_eh_edges (basic_block bb)
6965 {
6966 bool changed = false;
6967 edge e;
6968 edge_iterator ei;
6969 gimple stmt = last_stmt (bb);
6970
6971 if (stmt && stmt_can_throw_internal (stmt))
6972 return false;
6973
6974 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6975 {
6976 if (e->flags & EDGE_EH)
6977 {
6978 remove_edge_and_dominated_blocks (e);
6979 changed = true;
6980 }
6981 else
6982 ei_next (&ei);
6983 }
6984
6985 return changed;
6986 }
6987
6988 /* Purge dead EH edges from basic block listed in BLOCKS. */
6989
6990 bool
6991 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6992 {
6993 bool changed = false;
6994 unsigned i;
6995 bitmap_iterator bi;
6996
6997 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6998 {
6999 basic_block bb = BASIC_BLOCK (i);
7000
7001 /* Earlier gimple_purge_dead_eh_edges could have removed
7002 this basic block already. */
7003 gcc_assert (bb || changed);
7004 if (bb != NULL)
7005 changed |= gimple_purge_dead_eh_edges (bb);
7006 }
7007
7008 return changed;
7009 }
7010
7011 /* Purge dead abnormal call edges from basic block BB. */
7012
7013 bool
7014 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7015 {
7016 bool changed = false;
7017 edge e;
7018 edge_iterator ei;
7019 gimple stmt = last_stmt (bb);
7020
7021 if (!cfun->has_nonlocal_label)
7022 return false;
7023
7024 if (stmt && stmt_can_make_abnormal_goto (stmt))
7025 return false;
7026
7027 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7028 {
7029 if (e->flags & EDGE_ABNORMAL)
7030 {
7031 remove_edge_and_dominated_blocks (e);
7032 changed = true;
7033 }
7034 else
7035 ei_next (&ei);
7036 }
7037
7038 return changed;
7039 }
7040
7041 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7042
7043 bool
7044 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7045 {
7046 bool changed = false;
7047 unsigned i;
7048 bitmap_iterator bi;
7049
7050 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7051 {
7052 basic_block bb = BASIC_BLOCK (i);
7053
7054 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7055 this basic block already. */
7056 gcc_assert (bb || changed);
7057 if (bb != NULL)
7058 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7059 }
7060
7061 return changed;
7062 }
7063
7064 /* This function is called whenever a new edge is created or
7065 redirected. */
7066
7067 static void
7068 gimple_execute_on_growing_pred (edge e)
7069 {
7070 basic_block bb = e->dest;
7071
7072 if (!gimple_seq_empty_p (phi_nodes (bb)))
7073 reserve_phi_args_for_new_edge (bb);
7074 }
7075
7076 /* This function is called immediately before edge E is removed from
7077 the edge vector E->dest->preds. */
7078
7079 static void
7080 gimple_execute_on_shrinking_pred (edge e)
7081 {
7082 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7083 remove_phi_args (e);
7084 }
7085
7086 /*---------------------------------------------------------------------------
7087 Helper functions for Loop versioning
7088 ---------------------------------------------------------------------------*/
7089
7090 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7091 of 'first'. Both of them are dominated by 'new_head' basic block. When
7092 'new_head' was created by 'second's incoming edge it received phi arguments
7093 on the edge by split_edge(). Later, additional edge 'e' was created to
7094 connect 'new_head' and 'first'. Now this routine adds phi args on this
7095 additional edge 'e' that new_head to second edge received as part of edge
7096 splitting. */
7097
7098 static void
7099 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7100 basic_block new_head, edge e)
7101 {
7102 gimple phi1, phi2;
7103 gimple_stmt_iterator psi1, psi2;
7104 tree def;
7105 edge e2 = find_edge (new_head, second);
7106
7107 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7108 edge, we should always have an edge from NEW_HEAD to SECOND. */
7109 gcc_assert (e2 != NULL);
7110
7111 /* Browse all 'second' basic block phi nodes and add phi args to
7112 edge 'e' for 'first' head. PHI args are always in correct order. */
7113
7114 for (psi2 = gsi_start_phis (second),
7115 psi1 = gsi_start_phis (first);
7116 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7117 gsi_next (&psi2), gsi_next (&psi1))
7118 {
7119 phi1 = gsi_stmt (psi1);
7120 phi2 = gsi_stmt (psi2);
7121 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7122 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7123 }
7124 }
7125
7126
7127 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7128 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7129 the destination of the ELSE part. */
7130
7131 static void
7132 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7133 basic_block second_head ATTRIBUTE_UNUSED,
7134 basic_block cond_bb, void *cond_e)
7135 {
7136 gimple_stmt_iterator gsi;
7137 gimple new_cond_expr;
7138 tree cond_expr = (tree) cond_e;
7139 edge e0;
7140
7141 /* Build new conditional expr */
7142 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7143 NULL_TREE, NULL_TREE);
7144
7145 /* Add new cond in cond_bb. */
7146 gsi = gsi_last_bb (cond_bb);
7147 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7148
7149 /* Adjust edges appropriately to connect new head with first head
7150 as well as second head. */
7151 e0 = single_succ_edge (cond_bb);
7152 e0->flags &= ~EDGE_FALLTHRU;
7153 e0->flags |= EDGE_FALSE_VALUE;
7154 }
7155
7156 struct cfg_hooks gimple_cfg_hooks = {
7157 "gimple",
7158 gimple_verify_flow_info,
7159 gimple_dump_bb, /* dump_bb */
7160 create_bb, /* create_basic_block */
7161 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7162 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7163 gimple_can_remove_branch_p, /* can_remove_branch_p */
7164 remove_bb, /* delete_basic_block */
7165 gimple_split_block, /* split_block */
7166 gimple_move_block_after, /* move_block_after */
7167 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7168 gimple_merge_blocks, /* merge_blocks */
7169 gimple_predict_edge, /* predict_edge */
7170 gimple_predicted_by_p, /* predicted_by_p */
7171 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7172 gimple_duplicate_bb, /* duplicate_block */
7173 gimple_split_edge, /* split_edge */
7174 gimple_make_forwarder_block, /* make_forward_block */
7175 NULL, /* tidy_fallthru_edge */
7176 NULL, /* force_nonfallthru */
7177 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7178 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7179 gimple_flow_call_edges_add, /* flow_call_edges_add */
7180 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7181 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7182 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7183 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7184 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7185 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7186 flush_pending_stmts /* flush_pending_stmts */
7187 };
7188
7189
7190 /* Split all critical edges. */
7191
7192 static unsigned int
7193 split_critical_edges (void)
7194 {
7195 basic_block bb;
7196 edge e;
7197 edge_iterator ei;
7198
7199 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7200 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7201 mappings around the calls to split_edge. */
7202 start_recording_case_labels ();
7203 FOR_ALL_BB (bb)
7204 {
7205 FOR_EACH_EDGE (e, ei, bb->succs)
7206 {
7207 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7208 split_edge (e);
7209 /* PRE inserts statements to edges and expects that
7210 since split_critical_edges was done beforehand, committing edge
7211 insertions will not split more edges. In addition to critical
7212 edges we must split edges that have multiple successors and
7213 end by control flow statements, such as RESX.
7214 Go ahead and split them too. This matches the logic in
7215 gimple_find_edge_insert_loc. */
7216 else if ((!single_pred_p (e->dest)
7217 || !gimple_seq_empty_p (phi_nodes (e->dest))
7218 || e->dest == EXIT_BLOCK_PTR)
7219 && e->src != ENTRY_BLOCK_PTR
7220 && !(e->flags & EDGE_ABNORMAL))
7221 {
7222 gimple_stmt_iterator gsi;
7223
7224 gsi = gsi_last_bb (e->src);
7225 if (!gsi_end_p (gsi)
7226 && stmt_ends_bb_p (gsi_stmt (gsi))
7227 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7228 && !gimple_call_builtin_p (gsi_stmt (gsi),
7229 BUILT_IN_RETURN)))
7230 split_edge (e);
7231 }
7232 }
7233 }
7234 end_recording_case_labels ();
7235 return 0;
7236 }
7237
7238 struct gimple_opt_pass pass_split_crit_edges =
7239 {
7240 {
7241 GIMPLE_PASS,
7242 "crited", /* name */
7243 NULL, /* gate */
7244 split_critical_edges, /* execute */
7245 NULL, /* sub */
7246 NULL, /* next */
7247 0, /* static_pass_number */
7248 TV_TREE_SPLIT_EDGES, /* tv_id */
7249 PROP_cfg, /* properties required */
7250 PROP_no_crit_edges, /* properties_provided */
7251 0, /* properties_destroyed */
7252 0, /* todo_flags_start */
7253 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7254 }
7255 };
7256
7257
7258 /* Build a ternary operation and gimplify it. Emit code before GSI.
7259 Return the gimple_val holding the result. */
7260
7261 tree
7262 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7263 tree type, tree a, tree b, tree c)
7264 {
7265 tree ret;
7266 location_t loc = gimple_location (gsi_stmt (*gsi));
7267
7268 ret = fold_build3_loc (loc, code, type, a, b, c);
7269 STRIP_NOPS (ret);
7270
7271 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7272 GSI_SAME_STMT);
7273 }
7274
7275 /* Build a binary operation and gimplify it. Emit code before GSI.
7276 Return the gimple_val holding the result. */
7277
7278 tree
7279 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7280 tree type, tree a, tree b)
7281 {
7282 tree ret;
7283
7284 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7285 STRIP_NOPS (ret);
7286
7287 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7288 GSI_SAME_STMT);
7289 }
7290
7291 /* Build a unary operation and gimplify it. Emit code before GSI.
7292 Return the gimple_val holding the result. */
7293
7294 tree
7295 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7296 tree a)
7297 {
7298 tree ret;
7299
7300 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7301 STRIP_NOPS (ret);
7302
7303 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7304 GSI_SAME_STMT);
7305 }
7306
7307
7308 \f
7309 /* Emit return warnings. */
7310
7311 static unsigned int
7312 execute_warn_function_return (void)
7313 {
7314 source_location location;
7315 gimple last;
7316 edge e;
7317 edge_iterator ei;
7318
7319 /* If we have a path to EXIT, then we do return. */
7320 if (TREE_THIS_VOLATILE (cfun->decl)
7321 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7322 {
7323 location = UNKNOWN_LOCATION;
7324 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7325 {
7326 last = last_stmt (e->src);
7327 if ((gimple_code (last) == GIMPLE_RETURN
7328 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7329 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7330 break;
7331 }
7332 if (location == UNKNOWN_LOCATION)
7333 location = cfun->function_end_locus;
7334 warning_at (location, 0, "%<noreturn%> function does return");
7335 }
7336
7337 /* If we see "return;" in some basic block, then we do reach the end
7338 without returning a value. */
7339 else if (warn_return_type
7340 && !TREE_NO_WARNING (cfun->decl)
7341 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7342 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7343 {
7344 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7345 {
7346 gimple last = last_stmt (e->src);
7347 if (gimple_code (last) == GIMPLE_RETURN
7348 && gimple_return_retval (last) == NULL
7349 && !gimple_no_warning_p (last))
7350 {
7351 location = gimple_location (last);
7352 if (location == UNKNOWN_LOCATION)
7353 location = cfun->function_end_locus;
7354 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7355 TREE_NO_WARNING (cfun->decl) = 1;
7356 break;
7357 }
7358 }
7359 }
7360 return 0;
7361 }
7362
7363
7364 /* Given a basic block B which ends with a conditional and has
7365 precisely two successors, determine which of the edges is taken if
7366 the conditional is true and which is taken if the conditional is
7367 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7368
7369 void
7370 extract_true_false_edges_from_block (basic_block b,
7371 edge *true_edge,
7372 edge *false_edge)
7373 {
7374 edge e = EDGE_SUCC (b, 0);
7375
7376 if (e->flags & EDGE_TRUE_VALUE)
7377 {
7378 *true_edge = e;
7379 *false_edge = EDGE_SUCC (b, 1);
7380 }
7381 else
7382 {
7383 *false_edge = e;
7384 *true_edge = EDGE_SUCC (b, 1);
7385 }
7386 }
7387
7388 struct gimple_opt_pass pass_warn_function_return =
7389 {
7390 {
7391 GIMPLE_PASS,
7392 "*warn_function_return", /* name */
7393 NULL, /* gate */
7394 execute_warn_function_return, /* execute */
7395 NULL, /* sub */
7396 NULL, /* next */
7397 0, /* static_pass_number */
7398 TV_NONE, /* tv_id */
7399 PROP_cfg, /* properties_required */
7400 0, /* properties_provided */
7401 0, /* properties_destroyed */
7402 0, /* todo_flags_start */
7403 0 /* todo_flags_finish */
7404 }
7405 };
7406
7407 /* Emit noreturn warnings. */
7408
7409 static unsigned int
7410 execute_warn_function_noreturn (void)
7411 {
7412 if (!TREE_THIS_VOLATILE (current_function_decl)
7413 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7414 warn_function_noreturn (current_function_decl);
7415 return 0;
7416 }
7417
7418 static bool
7419 gate_warn_function_noreturn (void)
7420 {
7421 return warn_suggest_attribute_noreturn;
7422 }
7423
7424 struct gimple_opt_pass pass_warn_function_noreturn =
7425 {
7426 {
7427 GIMPLE_PASS,
7428 "*warn_function_noreturn", /* name */
7429 gate_warn_function_noreturn, /* gate */
7430 execute_warn_function_noreturn, /* execute */
7431 NULL, /* sub */
7432 NULL, /* next */
7433 0, /* static_pass_number */
7434 TV_NONE, /* tv_id */
7435 PROP_cfg, /* properties_required */
7436 0, /* properties_provided */
7437 0, /* properties_destroyed */
7438 0, /* todo_flags_start */
7439 0 /* todo_flags_finish */
7440 }
7441 };
7442
7443
7444 /* Walk a gimplified function and warn for functions whose return value is
7445 ignored and attribute((warn_unused_result)) is set. This is done before
7446 inlining, so we don't have to worry about that. */
7447
7448 static void
7449 do_warn_unused_result (gimple_seq seq)
7450 {
7451 tree fdecl, ftype;
7452 gimple_stmt_iterator i;
7453
7454 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7455 {
7456 gimple g = gsi_stmt (i);
7457
7458 switch (gimple_code (g))
7459 {
7460 case GIMPLE_BIND:
7461 do_warn_unused_result (gimple_bind_body (g));
7462 break;
7463 case GIMPLE_TRY:
7464 do_warn_unused_result (gimple_try_eval (g));
7465 do_warn_unused_result (gimple_try_cleanup (g));
7466 break;
7467 case GIMPLE_CATCH:
7468 do_warn_unused_result (gimple_catch_handler (g));
7469 break;
7470 case GIMPLE_EH_FILTER:
7471 do_warn_unused_result (gimple_eh_filter_failure (g));
7472 break;
7473
7474 case GIMPLE_CALL:
7475 if (gimple_call_lhs (g))
7476 break;
7477 if (gimple_call_internal_p (g))
7478 break;
7479
7480 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7481 LHS. All calls whose value is ignored should be
7482 represented like this. Look for the attribute. */
7483 fdecl = gimple_call_fndecl (g);
7484 ftype = gimple_call_fntype (g);
7485
7486 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7487 {
7488 location_t loc = gimple_location (g);
7489
7490 if (fdecl)
7491 warning_at (loc, OPT_Wunused_result,
7492 "ignoring return value of %qD, "
7493 "declared with attribute warn_unused_result",
7494 fdecl);
7495 else
7496 warning_at (loc, OPT_Wunused_result,
7497 "ignoring return value of function "
7498 "declared with attribute warn_unused_result");
7499 }
7500 break;
7501
7502 default:
7503 /* Not a container, not a call, or a call whose value is used. */
7504 break;
7505 }
7506 }
7507 }
7508
7509 static unsigned int
7510 run_warn_unused_result (void)
7511 {
7512 do_warn_unused_result (gimple_body (current_function_decl));
7513 return 0;
7514 }
7515
7516 static bool
7517 gate_warn_unused_result (void)
7518 {
7519 return flag_warn_unused_result;
7520 }
7521
7522 struct gimple_opt_pass pass_warn_unused_result =
7523 {
7524 {
7525 GIMPLE_PASS,
7526 "*warn_unused_result", /* name */
7527 gate_warn_unused_result, /* gate */
7528 run_warn_unused_result, /* execute */
7529 NULL, /* sub */
7530 NULL, /* next */
7531 0, /* static_pass_number */
7532 TV_NONE, /* tv_id */
7533 PROP_gimple_any, /* properties_required */
7534 0, /* properties_provided */
7535 0, /* properties_destroyed */
7536 0, /* todo_flags_start */
7537 0, /* todo_flags_finish */
7538 }
7539 };
7540