re PR debug/46255 (-fcompare-debug failure with -fprofile-generate)
[gcc.git] / gcc / tree-cfg.c
1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "output.h"
30 #include "flags.h"
31 #include "function.h"
32 #include "ggc.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
37 #include "timevar.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "except.h"
43 #include "cfgloop.h"
44 #include "cfglayout.h"
45 #include "tree-ssa-propagate.h"
46 #include "value-prof.h"
47 #include "pointer-set.h"
48 #include "tree-inline.h"
49
50 /* This file contains functions for building the Control Flow Graph (CFG)
51 for a function tree. */
52
53 /* Local declarations. */
54
55 /* Initial capacity for the basic block array. */
56 static const int initial_cfg_capacity = 20;
57
58 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
59 which use a particular edge. The CASE_LABEL_EXPRs are chained together
60 via their TREE_CHAIN field, which we clear after we're done with the
61 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62
63 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
64 update the case vector in response to edge redirections.
65
66 Right now this table is set up and torn down at key points in the
67 compilation process. It would be nice if we could make the table
68 more persistent. The key is getting notification of changes to
69 the CFG (particularly edge removal, creation and redirection). */
70
71 static struct pointer_map_t *edge_to_cases;
72
73 /* If we record edge_to_cases, this bitmap will hold indexes
74 of basic blocks that end in a GIMPLE_SWITCH which we touched
75 due to edge manipulations. */
76
77 static bitmap touched_switch_bbs;
78
79 /* CFG statistics. */
80 struct cfg_stats_d
81 {
82 long num_merged_labels;
83 };
84
85 static struct cfg_stats_d cfg_stats;
86
87 /* Nonzero if we found a computed goto while building basic blocks. */
88 static bool found_computed_goto;
89
90 /* Hash table to store last discriminator assigned for each locus. */
91 struct locus_discrim_map
92 {
93 location_t locus;
94 int discriminator;
95 };
96 static htab_t discriminator_per_locus;
97
98 /* Basic blocks and flowgraphs. */
99 static void make_blocks (gimple_seq);
100 static void factor_computed_gotos (void);
101
102 /* Edges. */
103 static void make_edges (void);
104 static void make_cond_expr_edges (basic_block);
105 static void make_gimple_switch_edges (basic_block);
106 static void make_goto_expr_edges (basic_block);
107 static void make_gimple_asm_edges (basic_block);
108 static unsigned int locus_map_hash (const void *);
109 static int locus_map_eq (const void *, const void *);
110 static void assign_discriminator (location_t, basic_block);
111 static edge gimple_redirect_edge_and_branch (edge, basic_block);
112 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
113 static unsigned int split_critical_edges (void);
114
115 /* Various helpers. */
116 static inline bool stmt_starts_bb_p (gimple, gimple);
117 static int gimple_verify_flow_info (void);
118 static void gimple_make_forwarder_block (edge);
119 static void gimple_cfg2vcg (FILE *);
120 static gimple first_non_label_stmt (basic_block);
121
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block, basic_block);
124 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
125 static void remove_bb (basic_block);
126 static edge find_taken_edge_computed_goto (basic_block, tree);
127 static edge find_taken_edge_cond_expr (basic_block, tree);
128 static edge find_taken_edge_switch_expr (basic_block, tree);
129 static tree find_case_label_for_value (gimple, tree);
130 static void group_case_labels_stmt (gimple);
131
132 void
133 init_empty_tree_cfg_for_function (struct function *fn)
134 {
135 /* Initialize the basic block array. */
136 init_flow (fn);
137 profile_status_for_function (fn) = PROFILE_ABSENT;
138 n_basic_blocks_for_function (fn) = NUM_FIXED_BLOCKS;
139 last_basic_block_for_function (fn) = NUM_FIXED_BLOCKS;
140 basic_block_info_for_function (fn)
141 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
142 VEC_safe_grow_cleared (basic_block, gc,
143 basic_block_info_for_function (fn),
144 initial_cfg_capacity);
145
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn)
148 = VEC_alloc (basic_block, gc, initial_cfg_capacity);
149 VEC_safe_grow_cleared (basic_block, gc,
150 label_to_block_map_for_function (fn),
151 initial_cfg_capacity);
152
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn, ENTRY_BLOCK,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn, EXIT_BLOCK,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn));
157
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn);
162 }
163
164 void
165 init_empty_tree_cfg (void)
166 {
167 init_empty_tree_cfg_for_function (cfun);
168 }
169
170 /*---------------------------------------------------------------------------
171 Create basic blocks
172 ---------------------------------------------------------------------------*/
173
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
176
177 static void
178 build_gimple_cfg (gimple_seq seq)
179 {
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
182
183 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
184
185 init_empty_tree_cfg ();
186
187 found_computed_goto = 0;
188 make_blocks (seq);
189
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto)
196 factor_computed_gotos ();
197
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks == NUM_FIXED_BLOCKS)
200 create_empty_bb (ENTRY_BLOCK_PTR);
201
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block, basic_block_info) < (size_t) n_basic_blocks)
204 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, n_basic_blocks);
205
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
208
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
213
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus = htab_create (13, locus_map_hash, locus_map_eq,
216 free);
217 make_edges ();
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus);
220
221 /* Debugging dumps. */
222
223 /* Write the flowgraph to a VCG file. */
224 {
225 int local_dump_flags;
226 FILE *vcg_file = dump_begin (TDI_vcg, &local_dump_flags);
227 if (vcg_file)
228 {
229 gimple_cfg2vcg (vcg_file);
230 dump_end (TDI_vcg, vcg_file);
231 }
232 }
233 }
234
235 static unsigned int
236 execute_build_cfg (void)
237 {
238 gimple_seq body = gimple_body (current_function_decl);
239
240 build_gimple_cfg (body);
241 gimple_set_body (current_function_decl, NULL);
242 if (dump_file && (dump_flags & TDF_DETAILS))
243 {
244 fprintf (dump_file, "Scope blocks:\n");
245 dump_scope_blocks (dump_file, dump_flags);
246 }
247 return 0;
248 }
249
250 struct gimple_opt_pass pass_build_cfg =
251 {
252 {
253 GIMPLE_PASS,
254 "cfg", /* name */
255 NULL, /* gate */
256 execute_build_cfg, /* execute */
257 NULL, /* sub */
258 NULL, /* next */
259 0, /* static_pass_number */
260 TV_TREE_CFG, /* tv_id */
261 PROP_gimple_leh, /* properties_required */
262 PROP_cfg, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts | TODO_cleanup_cfg
266 | TODO_dump_func /* todo_flags_finish */
267 }
268 };
269
270
271 /* Return true if T is a computed goto. */
272
273 static bool
274 computed_goto_p (gimple t)
275 {
276 return (gimple_code (t) == GIMPLE_GOTO
277 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
278 }
279
280
281 /* Search the CFG for any computed gotos. If found, factor them to a
282 common computed goto site. Also record the location of that site so
283 that we can un-factor the gotos after we have converted back to
284 normal form. */
285
286 static void
287 factor_computed_gotos (void)
288 {
289 basic_block bb;
290 tree factored_label_decl = NULL;
291 tree var = NULL;
292 gimple factored_computed_goto_label = NULL;
293 gimple factored_computed_goto = NULL;
294
295 /* We know there are one or more computed gotos in this function.
296 Examine the last statement in each basic block to see if the block
297 ends with a computed goto. */
298
299 FOR_EACH_BB (bb)
300 {
301 gimple_stmt_iterator gsi = gsi_last_bb (bb);
302 gimple last;
303
304 if (gsi_end_p (gsi))
305 continue;
306
307 last = gsi_stmt (gsi);
308
309 /* Ignore the computed goto we create when we factor the original
310 computed gotos. */
311 if (last == factored_computed_goto)
312 continue;
313
314 /* If the last statement is a computed goto, factor it. */
315 if (computed_goto_p (last))
316 {
317 gimple assignment;
318
319 /* The first time we find a computed goto we need to create
320 the factored goto block and the variable each original
321 computed goto will use for their goto destination. */
322 if (!factored_computed_goto)
323 {
324 basic_block new_bb = create_empty_bb (bb);
325 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
326
327 /* Create the destination of the factored goto. Each original
328 computed goto will put its desired destination into this
329 variable and jump to the label we create immediately
330 below. */
331 var = create_tmp_var (ptr_type_node, "gotovar");
332
333 /* Build a label for the new block which will contain the
334 factored computed goto. */
335 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
336 factored_computed_goto_label
337 = gimple_build_label (factored_label_decl);
338 gsi_insert_after (&new_gsi, factored_computed_goto_label,
339 GSI_NEW_STMT);
340
341 /* Build our new computed goto. */
342 factored_computed_goto = gimple_build_goto (var);
343 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
344 }
345
346 /* Copy the original computed goto's destination into VAR. */
347 assignment = gimple_build_assign (var, gimple_goto_dest (last));
348 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
349
350 /* And re-vector the computed goto to the new destination. */
351 gimple_goto_set_dest (last, factored_label_decl);
352 }
353 }
354 }
355
356
357 /* Build a flowgraph for the sequence of stmts SEQ. */
358
359 static void
360 make_blocks (gimple_seq seq)
361 {
362 gimple_stmt_iterator i = gsi_start (seq);
363 gimple stmt = NULL;
364 bool start_new_block = true;
365 bool first_stmt_of_seq = true;
366 basic_block bb = ENTRY_BLOCK_PTR;
367
368 while (!gsi_end_p (i))
369 {
370 gimple prev_stmt;
371
372 prev_stmt = stmt;
373 stmt = gsi_stmt (i);
374
375 /* If the statement starts a new basic block or if we have determined
376 in a previous pass that we need to create a new block for STMT, do
377 so now. */
378 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
379 {
380 if (!first_stmt_of_seq)
381 seq = gsi_split_seq_before (&i);
382 bb = create_basic_block (seq, NULL, bb);
383 start_new_block = false;
384 }
385
386 /* Now add STMT to BB and create the subgraphs for special statement
387 codes. */
388 gimple_set_bb (stmt, bb);
389
390 if (computed_goto_p (stmt))
391 found_computed_goto = true;
392
393 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 next iteration. */
395 if (stmt_ends_bb_p (stmt))
396 {
397 /* If the stmt can make abnormal goto use a new temporary
398 for the assignment to the LHS. This makes sure the old value
399 of the LHS is available on the abnormal edge. Otherwise
400 we will end up with overlapping life-ranges for abnormal
401 SSA names. */
402 if (gimple_has_lhs (stmt)
403 && stmt_can_make_abnormal_goto (stmt)
404 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
405 {
406 tree lhs = gimple_get_lhs (stmt);
407 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
408 gimple s = gimple_build_assign (lhs, tmp);
409 gimple_set_location (s, gimple_location (stmt));
410 gimple_set_block (s, gimple_block (stmt));
411 gimple_set_lhs (stmt, tmp);
412 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
413 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
414 DECL_GIMPLE_REG_P (tmp) = 1;
415 gsi_insert_after (&i, s, GSI_SAME_STMT);
416 }
417 start_new_block = true;
418 }
419
420 gsi_next (&i);
421 first_stmt_of_seq = false;
422 }
423 }
424
425
426 /* Create and return a new empty basic block after bb AFTER. */
427
428 static basic_block
429 create_bb (void *h, void *e, basic_block after)
430 {
431 basic_block bb;
432
433 gcc_assert (!e);
434
435 /* Create and initialize a new basic block. Since alloc_block uses
436 GC allocation that clears memory to allocate a basic block, we do
437 not have to clear the newly allocated basic block here. */
438 bb = alloc_block ();
439
440 bb->index = last_basic_block;
441 bb->flags = BB_NEW;
442 bb->il.gimple = ggc_alloc_cleared_gimple_bb_info ();
443 set_bb_seq (bb, h ? (gimple_seq) h : gimple_seq_alloc ());
444
445 /* Add the new block to the linked list of blocks. */
446 link_block (bb, after);
447
448 /* Grow the basic block array if needed. */
449 if ((size_t) last_basic_block == VEC_length (basic_block, basic_block_info))
450 {
451 size_t new_size = last_basic_block + (last_basic_block + 3) / 4;
452 VEC_safe_grow_cleared (basic_block, gc, basic_block_info, new_size);
453 }
454
455 /* Add the newly created block to the array. */
456 SET_BASIC_BLOCK (last_basic_block, bb);
457
458 n_basic_blocks++;
459 last_basic_block++;
460
461 return bb;
462 }
463
464
465 /*---------------------------------------------------------------------------
466 Edge creation
467 ---------------------------------------------------------------------------*/
468
469 /* Fold COND_EXPR_COND of each COND_EXPR. */
470
471 void
472 fold_cond_expr_cond (void)
473 {
474 basic_block bb;
475
476 FOR_EACH_BB (bb)
477 {
478 gimple stmt = last_stmt (bb);
479
480 if (stmt && gimple_code (stmt) == GIMPLE_COND)
481 {
482 location_t loc = gimple_location (stmt);
483 tree cond;
484 bool zerop, onep;
485
486 fold_defer_overflow_warnings ();
487 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
488 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
489 if (cond)
490 {
491 zerop = integer_zerop (cond);
492 onep = integer_onep (cond);
493 }
494 else
495 zerop = onep = false;
496
497 fold_undefer_overflow_warnings (zerop || onep,
498 stmt,
499 WARN_STRICT_OVERFLOW_CONDITIONAL);
500 if (zerop)
501 gimple_cond_make_false (stmt);
502 else if (onep)
503 gimple_cond_make_true (stmt);
504 }
505 }
506 }
507
508 /* Join all the blocks in the flowgraph. */
509
510 static void
511 make_edges (void)
512 {
513 basic_block bb;
514 struct omp_region *cur_region = NULL;
515
516 /* Create an edge from entry to the first block with executable
517 statements in it. */
518 make_edge (ENTRY_BLOCK_PTR, BASIC_BLOCK (NUM_FIXED_BLOCKS), EDGE_FALLTHRU);
519
520 /* Traverse the basic block array placing edges. */
521 FOR_EACH_BB (bb)
522 {
523 gimple last = last_stmt (bb);
524 bool fallthru;
525
526 if (last)
527 {
528 enum gimple_code code = gimple_code (last);
529 switch (code)
530 {
531 case GIMPLE_GOTO:
532 make_goto_expr_edges (bb);
533 fallthru = false;
534 break;
535 case GIMPLE_RETURN:
536 make_edge (bb, EXIT_BLOCK_PTR, 0);
537 fallthru = false;
538 break;
539 case GIMPLE_COND:
540 make_cond_expr_edges (bb);
541 fallthru = false;
542 break;
543 case GIMPLE_SWITCH:
544 make_gimple_switch_edges (bb);
545 fallthru = false;
546 break;
547 case GIMPLE_RESX:
548 make_eh_edges (last);
549 fallthru = false;
550 break;
551 case GIMPLE_EH_DISPATCH:
552 fallthru = make_eh_dispatch_edges (last);
553 break;
554
555 case GIMPLE_CALL:
556 /* If this function receives a nonlocal goto, then we need to
557 make edges from this call site to all the nonlocal goto
558 handlers. */
559 if (stmt_can_make_abnormal_goto (last))
560 make_abnormal_goto_edges (bb, true);
561
562 /* If this statement has reachable exception handlers, then
563 create abnormal edges to them. */
564 make_eh_edges (last);
565
566 /* BUILTIN_RETURN is really a return statement. */
567 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
568 make_edge (bb, EXIT_BLOCK_PTR, 0), fallthru = false;
569 /* Some calls are known not to return. */
570 else
571 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
572 break;
573
574 case GIMPLE_ASSIGN:
575 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 control-altering. */
577 if (is_ctrl_altering_stmt (last))
578 make_eh_edges (last);
579 fallthru = true;
580 break;
581
582 case GIMPLE_ASM:
583 make_gimple_asm_edges (bb);
584 fallthru = true;
585 break;
586
587 case GIMPLE_OMP_PARALLEL:
588 case GIMPLE_OMP_TASK:
589 case GIMPLE_OMP_FOR:
590 case GIMPLE_OMP_SINGLE:
591 case GIMPLE_OMP_MASTER:
592 case GIMPLE_OMP_ORDERED:
593 case GIMPLE_OMP_CRITICAL:
594 case GIMPLE_OMP_SECTION:
595 cur_region = new_omp_region (bb, code, cur_region);
596 fallthru = true;
597 break;
598
599 case GIMPLE_OMP_SECTIONS:
600 cur_region = new_omp_region (bb, code, cur_region);
601 fallthru = true;
602 break;
603
604 case GIMPLE_OMP_SECTIONS_SWITCH:
605 fallthru = false;
606 break;
607
608 case GIMPLE_OMP_ATOMIC_LOAD:
609 case GIMPLE_OMP_ATOMIC_STORE:
610 fallthru = true;
611 break;
612
613 case GIMPLE_OMP_RETURN:
614 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
615 somewhere other than the next block. This will be
616 created later. */
617 cur_region->exit = bb;
618 fallthru = cur_region->type != GIMPLE_OMP_SECTION;
619 cur_region = cur_region->outer;
620 break;
621
622 case GIMPLE_OMP_CONTINUE:
623 cur_region->cont = bb;
624 switch (cur_region->type)
625 {
626 case GIMPLE_OMP_FOR:
627 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
628 succs edges as abnormal to prevent splitting
629 them. */
630 single_succ_edge (cur_region->entry)->flags |= EDGE_ABNORMAL;
631 /* Make the loopback edge. */
632 make_edge (bb, single_succ (cur_region->entry),
633 EDGE_ABNORMAL);
634
635 /* Create an edge from GIMPLE_OMP_FOR to exit, which
636 corresponds to the case that the body of the loop
637 is not executed at all. */
638 make_edge (cur_region->entry, bb->next_bb, EDGE_ABNORMAL);
639 make_edge (bb, bb->next_bb, EDGE_FALLTHRU | EDGE_ABNORMAL);
640 fallthru = false;
641 break;
642
643 case GIMPLE_OMP_SECTIONS:
644 /* Wire up the edges into and out of the nested sections. */
645 {
646 basic_block switch_bb = single_succ (cur_region->entry);
647
648 struct omp_region *i;
649 for (i = cur_region->inner; i ; i = i->next)
650 {
651 gcc_assert (i->type == GIMPLE_OMP_SECTION);
652 make_edge (switch_bb, i->entry, 0);
653 make_edge (i->exit, bb, EDGE_FALLTHRU);
654 }
655
656 /* Make the loopback edge to the block with
657 GIMPLE_OMP_SECTIONS_SWITCH. */
658 make_edge (bb, switch_bb, 0);
659
660 /* Make the edge from the switch to exit. */
661 make_edge (switch_bb, bb->next_bb, 0);
662 fallthru = false;
663 }
664 break;
665
666 default:
667 gcc_unreachable ();
668 }
669 break;
670
671 default:
672 gcc_assert (!stmt_ends_bb_p (last));
673 fallthru = true;
674 }
675 }
676 else
677 fallthru = true;
678
679 if (fallthru)
680 {
681 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
682 if (last)
683 assign_discriminator (gimple_location (last), bb->next_bb);
684 }
685 }
686
687 if (root_omp_region)
688 free_omp_regions ();
689
690 /* Fold COND_EXPR_COND of each COND_EXPR. */
691 fold_cond_expr_cond ();
692 }
693
694 /* Trivial hash function for a location_t. ITEM is a pointer to
695 a hash table entry that maps a location_t to a discriminator. */
696
697 static unsigned int
698 locus_map_hash (const void *item)
699 {
700 return ((const struct locus_discrim_map *) item)->locus;
701 }
702
703 /* Equality function for the locus-to-discriminator map. VA and VB
704 point to the two hash table entries to compare. */
705
706 static int
707 locus_map_eq (const void *va, const void *vb)
708 {
709 const struct locus_discrim_map *a = (const struct locus_discrim_map *) va;
710 const struct locus_discrim_map *b = (const struct locus_discrim_map *) vb;
711 return a->locus == b->locus;
712 }
713
714 /* Find the next available discriminator value for LOCUS. The
715 discriminator distinguishes among several basic blocks that
716 share a common locus, allowing for more accurate sample-based
717 profiling. */
718
719 static int
720 next_discriminator_for_locus (location_t locus)
721 {
722 struct locus_discrim_map item;
723 struct locus_discrim_map **slot;
724
725 item.locus = locus;
726 item.discriminator = 0;
727 slot = (struct locus_discrim_map **)
728 htab_find_slot_with_hash (discriminator_per_locus, (void *) &item,
729 (hashval_t) locus, INSERT);
730 gcc_assert (slot);
731 if (*slot == HTAB_EMPTY_ENTRY)
732 {
733 *slot = XNEW (struct locus_discrim_map);
734 gcc_assert (*slot);
735 (*slot)->locus = locus;
736 (*slot)->discriminator = 0;
737 }
738 (*slot)->discriminator++;
739 return (*slot)->discriminator;
740 }
741
742 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
743
744 static bool
745 same_line_p (location_t locus1, location_t locus2)
746 {
747 expanded_location from, to;
748
749 if (locus1 == locus2)
750 return true;
751
752 from = expand_location (locus1);
753 to = expand_location (locus2);
754
755 if (from.line != to.line)
756 return false;
757 if (from.file == to.file)
758 return true;
759 return (from.file != NULL
760 && to.file != NULL
761 && strcmp (from.file, to.file) == 0);
762 }
763
764 /* Assign a unique discriminator value to block BB if it begins at the same
765 LOCUS as its predecessor block. */
766
767 static void
768 assign_discriminator (location_t locus, basic_block bb)
769 {
770 gimple first_in_to_bb, last_in_to_bb;
771
772 if (locus == 0 || bb->discriminator != 0)
773 return;
774
775 first_in_to_bb = first_non_label_stmt (bb);
776 last_in_to_bb = last_stmt (bb);
777 if ((first_in_to_bb && same_line_p (locus, gimple_location (first_in_to_bb)))
778 || (last_in_to_bb && same_line_p (locus, gimple_location (last_in_to_bb))))
779 bb->discriminator = next_discriminator_for_locus (locus);
780 }
781
782 /* Create the edges for a GIMPLE_COND starting at block BB. */
783
784 static void
785 make_cond_expr_edges (basic_block bb)
786 {
787 gimple entry = last_stmt (bb);
788 gimple then_stmt, else_stmt;
789 basic_block then_bb, else_bb;
790 tree then_label, else_label;
791 edge e;
792 location_t entry_locus;
793
794 gcc_assert (entry);
795 gcc_assert (gimple_code (entry) == GIMPLE_COND);
796
797 entry_locus = gimple_location (entry);
798
799 /* Entry basic blocks for each component. */
800 then_label = gimple_cond_true_label (entry);
801 else_label = gimple_cond_false_label (entry);
802 then_bb = label_to_block (then_label);
803 else_bb = label_to_block (else_label);
804 then_stmt = first_stmt (then_bb);
805 else_stmt = first_stmt (else_bb);
806
807 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
808 assign_discriminator (entry_locus, then_bb);
809 e->goto_locus = gimple_location (then_stmt);
810 if (e->goto_locus)
811 e->goto_block = gimple_block (then_stmt);
812 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
813 if (e)
814 {
815 assign_discriminator (entry_locus, else_bb);
816 e->goto_locus = gimple_location (else_stmt);
817 if (e->goto_locus)
818 e->goto_block = gimple_block (else_stmt);
819 }
820
821 /* We do not need the labels anymore. */
822 gimple_cond_set_true_label (entry, NULL_TREE);
823 gimple_cond_set_false_label (entry, NULL_TREE);
824 }
825
826
827 /* Called for each element in the hash table (P) as we delete the
828 edge to cases hash table.
829
830 Clear all the TREE_CHAINs to prevent problems with copying of
831 SWITCH_EXPRs and structure sharing rules, then free the hash table
832 element. */
833
834 static bool
835 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
836 void *data ATTRIBUTE_UNUSED)
837 {
838 tree t, next;
839
840 for (t = (tree) *value; t; t = next)
841 {
842 next = TREE_CHAIN (t);
843 TREE_CHAIN (t) = NULL;
844 }
845
846 *value = NULL;
847 return false;
848 }
849
850 /* Start recording information mapping edges to case labels. */
851
852 void
853 start_recording_case_labels (void)
854 {
855 gcc_assert (edge_to_cases == NULL);
856 edge_to_cases = pointer_map_create ();
857 touched_switch_bbs = BITMAP_ALLOC (NULL);
858 }
859
860 /* Return nonzero if we are recording information for case labels. */
861
862 static bool
863 recording_case_labels_p (void)
864 {
865 return (edge_to_cases != NULL);
866 }
867
868 /* Stop recording information mapping edges to case labels and
869 remove any information we have recorded. */
870 void
871 end_recording_case_labels (void)
872 {
873 bitmap_iterator bi;
874 unsigned i;
875 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
876 pointer_map_destroy (edge_to_cases);
877 edge_to_cases = NULL;
878 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
879 {
880 basic_block bb = BASIC_BLOCK (i);
881 if (bb)
882 {
883 gimple stmt = last_stmt (bb);
884 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
885 group_case_labels_stmt (stmt);
886 }
887 }
888 BITMAP_FREE (touched_switch_bbs);
889 }
890
891 /* If we are inside a {start,end}_recording_cases block, then return
892 a chain of CASE_LABEL_EXPRs from T which reference E.
893
894 Otherwise return NULL. */
895
896 static tree
897 get_cases_for_edge (edge e, gimple t)
898 {
899 void **slot;
900 size_t i, n;
901
902 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
903 chains available. Return NULL so the caller can detect this case. */
904 if (!recording_case_labels_p ())
905 return NULL;
906
907 slot = pointer_map_contains (edge_to_cases, e);
908 if (slot)
909 return (tree) *slot;
910
911 /* If we did not find E in the hash table, then this must be the first
912 time we have been queried for information about E & T. Add all the
913 elements from T to the hash table then perform the query again. */
914
915 n = gimple_switch_num_labels (t);
916 for (i = 0; i < n; i++)
917 {
918 tree elt = gimple_switch_label (t, i);
919 tree lab = CASE_LABEL (elt);
920 basic_block label_bb = label_to_block (lab);
921 edge this_edge = find_edge (e->src, label_bb);
922
923 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 a new chain. */
925 slot = pointer_map_insert (edge_to_cases, this_edge);
926 TREE_CHAIN (elt) = (tree) *slot;
927 *slot = elt;
928 }
929
930 return (tree) *pointer_map_contains (edge_to_cases, e);
931 }
932
933 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
934
935 static void
936 make_gimple_switch_edges (basic_block bb)
937 {
938 gimple entry = last_stmt (bb);
939 location_t entry_locus;
940 size_t i, n;
941
942 entry_locus = gimple_location (entry);
943
944 n = gimple_switch_num_labels (entry);
945
946 for (i = 0; i < n; ++i)
947 {
948 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
949 basic_block label_bb = label_to_block (lab);
950 make_edge (bb, label_bb, 0);
951 assign_discriminator (entry_locus, label_bb);
952 }
953 }
954
955
956 /* Return the basic block holding label DEST. */
957
958 basic_block
959 label_to_block_fn (struct function *ifun, tree dest)
960 {
961 int uid = LABEL_DECL_UID (dest);
962
963 /* We would die hard when faced by an undefined label. Emit a label to
964 the very first basic block. This will hopefully make even the dataflow
965 and undefined variable warnings quite right. */
966 if (seen_error () && uid < 0)
967 {
968 gimple_stmt_iterator gsi = gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS));
969 gimple stmt;
970
971 stmt = gimple_build_label (dest);
972 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
973 uid = LABEL_DECL_UID (dest);
974 }
975 if (VEC_length (basic_block, ifun->cfg->x_label_to_block_map)
976 <= (unsigned int) uid)
977 return NULL;
978 return VEC_index (basic_block, ifun->cfg->x_label_to_block_map, uid);
979 }
980
981 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
982 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
983
984 void
985 make_abnormal_goto_edges (basic_block bb, bool for_call)
986 {
987 basic_block target_bb;
988 gimple_stmt_iterator gsi;
989
990 FOR_EACH_BB (target_bb)
991 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
992 {
993 gimple label_stmt = gsi_stmt (gsi);
994 tree target;
995
996 if (gimple_code (label_stmt) != GIMPLE_LABEL)
997 break;
998
999 target = gimple_label_label (label_stmt);
1000
1001 /* Make an edge to every label block that has been marked as a
1002 potential target for a computed goto or a non-local goto. */
1003 if ((FORCED_LABEL (target) && !for_call)
1004 || (DECL_NONLOCAL (target) && for_call))
1005 {
1006 make_edge (bb, target_bb, EDGE_ABNORMAL);
1007 break;
1008 }
1009 }
1010 }
1011
1012 /* Create edges for a goto statement at block BB. */
1013
1014 static void
1015 make_goto_expr_edges (basic_block bb)
1016 {
1017 gimple_stmt_iterator last = gsi_last_bb (bb);
1018 gimple goto_t = gsi_stmt (last);
1019
1020 /* A simple GOTO creates normal edges. */
1021 if (simple_goto_p (goto_t))
1022 {
1023 tree dest = gimple_goto_dest (goto_t);
1024 basic_block label_bb = label_to_block (dest);
1025 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1026 e->goto_locus = gimple_location (goto_t);
1027 assign_discriminator (e->goto_locus, label_bb);
1028 if (e->goto_locus)
1029 e->goto_block = gimple_block (goto_t);
1030 gsi_remove (&last, true);
1031 return;
1032 }
1033
1034 /* A computed GOTO creates abnormal edges. */
1035 make_abnormal_goto_edges (bb, false);
1036 }
1037
1038 /* Create edges for an asm statement with labels at block BB. */
1039
1040 static void
1041 make_gimple_asm_edges (basic_block bb)
1042 {
1043 gimple stmt = last_stmt (bb);
1044 location_t stmt_loc = gimple_location (stmt);
1045 int i, n = gimple_asm_nlabels (stmt);
1046
1047 for (i = 0; i < n; ++i)
1048 {
1049 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1050 basic_block label_bb = label_to_block (label);
1051 make_edge (bb, label_bb, 0);
1052 assign_discriminator (stmt_loc, label_bb);
1053 }
1054 }
1055
1056 /*---------------------------------------------------------------------------
1057 Flowgraph analysis
1058 ---------------------------------------------------------------------------*/
1059
1060 /* Cleanup useless labels in basic blocks. This is something we wish
1061 to do early because it allows us to group case labels before creating
1062 the edges for the CFG, and it speeds up block statement iterators in
1063 all passes later on.
1064 We rerun this pass after CFG is created, to get rid of the labels that
1065 are no longer referenced. After then we do not run it any more, since
1066 (almost) no new labels should be created. */
1067
1068 /* A map from basic block index to the leading label of that block. */
1069 static struct label_record
1070 {
1071 /* The label. */
1072 tree label;
1073
1074 /* True if the label is referenced from somewhere. */
1075 bool used;
1076 } *label_for_bb;
1077
1078 /* Given LABEL return the first label in the same basic block. */
1079
1080 static tree
1081 main_block_label (tree label)
1082 {
1083 basic_block bb = label_to_block (label);
1084 tree main_label = label_for_bb[bb->index].label;
1085
1086 /* label_to_block possibly inserted undefined label into the chain. */
1087 if (!main_label)
1088 {
1089 label_for_bb[bb->index].label = label;
1090 main_label = label;
1091 }
1092
1093 label_for_bb[bb->index].used = true;
1094 return main_label;
1095 }
1096
1097 /* Clean up redundant labels within the exception tree. */
1098
1099 static void
1100 cleanup_dead_labels_eh (void)
1101 {
1102 eh_landing_pad lp;
1103 eh_region r;
1104 tree lab;
1105 int i;
1106
1107 if (cfun->eh == NULL)
1108 return;
1109
1110 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
1111 if (lp && lp->post_landing_pad)
1112 {
1113 lab = main_block_label (lp->post_landing_pad);
1114 if (lab != lp->post_landing_pad)
1115 {
1116 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1117 EH_LANDING_PAD_NR (lab) = lp->index;
1118 }
1119 }
1120
1121 FOR_ALL_EH_REGION (r)
1122 switch (r->type)
1123 {
1124 case ERT_CLEANUP:
1125 case ERT_MUST_NOT_THROW:
1126 break;
1127
1128 case ERT_TRY:
1129 {
1130 eh_catch c;
1131 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1132 {
1133 lab = c->label;
1134 if (lab)
1135 c->label = main_block_label (lab);
1136 }
1137 }
1138 break;
1139
1140 case ERT_ALLOWED_EXCEPTIONS:
1141 lab = r->u.allowed.label;
1142 if (lab)
1143 r->u.allowed.label = main_block_label (lab);
1144 break;
1145 }
1146 }
1147
1148
1149 /* Cleanup redundant labels. This is a three-step process:
1150 1) Find the leading label for each block.
1151 2) Redirect all references to labels to the leading labels.
1152 3) Cleanup all useless labels. */
1153
1154 void
1155 cleanup_dead_labels (void)
1156 {
1157 basic_block bb;
1158 label_for_bb = XCNEWVEC (struct label_record, last_basic_block);
1159
1160 /* Find a suitable label for each block. We use the first user-defined
1161 label if there is one, or otherwise just the first label we see. */
1162 FOR_EACH_BB (bb)
1163 {
1164 gimple_stmt_iterator i;
1165
1166 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1167 {
1168 tree label;
1169 gimple stmt = gsi_stmt (i);
1170
1171 if (gimple_code (stmt) != GIMPLE_LABEL)
1172 break;
1173
1174 label = gimple_label_label (stmt);
1175
1176 /* If we have not yet seen a label for the current block,
1177 remember this one and see if there are more labels. */
1178 if (!label_for_bb[bb->index].label)
1179 {
1180 label_for_bb[bb->index].label = label;
1181 continue;
1182 }
1183
1184 /* If we did see a label for the current block already, but it
1185 is an artificially created label, replace it if the current
1186 label is a user defined label. */
1187 if (!DECL_ARTIFICIAL (label)
1188 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1189 {
1190 label_for_bb[bb->index].label = label;
1191 break;
1192 }
1193 }
1194 }
1195
1196 /* Now redirect all jumps/branches to the selected label.
1197 First do so for each block ending in a control statement. */
1198 FOR_EACH_BB (bb)
1199 {
1200 gimple stmt = last_stmt (bb);
1201 if (!stmt)
1202 continue;
1203
1204 switch (gimple_code (stmt))
1205 {
1206 case GIMPLE_COND:
1207 {
1208 tree true_label = gimple_cond_true_label (stmt);
1209 tree false_label = gimple_cond_false_label (stmt);
1210
1211 if (true_label)
1212 gimple_cond_set_true_label (stmt, main_block_label (true_label));
1213 if (false_label)
1214 gimple_cond_set_false_label (stmt, main_block_label (false_label));
1215 break;
1216 }
1217
1218 case GIMPLE_SWITCH:
1219 {
1220 size_t i, n = gimple_switch_num_labels (stmt);
1221
1222 /* Replace all destination labels. */
1223 for (i = 0; i < n; ++i)
1224 {
1225 tree case_label = gimple_switch_label (stmt, i);
1226 tree label = main_block_label (CASE_LABEL (case_label));
1227 CASE_LABEL (case_label) = label;
1228 }
1229 break;
1230 }
1231
1232 case GIMPLE_ASM:
1233 {
1234 int i, n = gimple_asm_nlabels (stmt);
1235
1236 for (i = 0; i < n; ++i)
1237 {
1238 tree cons = gimple_asm_label_op (stmt, i);
1239 tree label = main_block_label (TREE_VALUE (cons));
1240 TREE_VALUE (cons) = label;
1241 }
1242 break;
1243 }
1244
1245 /* We have to handle gotos until they're removed, and we don't
1246 remove them until after we've created the CFG edges. */
1247 case GIMPLE_GOTO:
1248 if (!computed_goto_p (stmt))
1249 {
1250 tree new_dest = main_block_label (gimple_goto_dest (stmt));
1251 gimple_goto_set_dest (stmt, new_dest);
1252 }
1253 break;
1254
1255 default:
1256 break;
1257 }
1258 }
1259
1260 /* Do the same for the exception region tree labels. */
1261 cleanup_dead_labels_eh ();
1262
1263 /* Finally, purge dead labels. All user-defined labels and labels that
1264 can be the target of non-local gotos and labels which have their
1265 address taken are preserved. */
1266 FOR_EACH_BB (bb)
1267 {
1268 gimple_stmt_iterator i;
1269 tree label_for_this_bb = label_for_bb[bb->index].label;
1270
1271 if (!label_for_this_bb)
1272 continue;
1273
1274 /* If the main label of the block is unused, we may still remove it. */
1275 if (!label_for_bb[bb->index].used)
1276 label_for_this_bb = NULL;
1277
1278 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1279 {
1280 tree label;
1281 gimple stmt = gsi_stmt (i);
1282
1283 if (gimple_code (stmt) != GIMPLE_LABEL)
1284 break;
1285
1286 label = gimple_label_label (stmt);
1287
1288 if (label == label_for_this_bb
1289 || !DECL_ARTIFICIAL (label)
1290 || DECL_NONLOCAL (label)
1291 || FORCED_LABEL (label))
1292 gsi_next (&i);
1293 else
1294 gsi_remove (&i, true);
1295 }
1296 }
1297
1298 free (label_for_bb);
1299 }
1300
1301 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1302 the ones jumping to the same label.
1303 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1304
1305 static void
1306 group_case_labels_stmt (gimple stmt)
1307 {
1308 int old_size = gimple_switch_num_labels (stmt);
1309 int i, j, new_size = old_size;
1310 tree default_case = NULL_TREE;
1311 tree default_label = NULL_TREE;
1312 bool has_default;
1313
1314 /* The default label is always the first case in a switch
1315 statement after gimplification if it was not optimized
1316 away */
1317 if (!CASE_LOW (gimple_switch_default_label (stmt))
1318 && !CASE_HIGH (gimple_switch_default_label (stmt)))
1319 {
1320 default_case = gimple_switch_default_label (stmt);
1321 default_label = CASE_LABEL (default_case);
1322 has_default = true;
1323 }
1324 else
1325 has_default = false;
1326
1327 /* Look for possible opportunities to merge cases. */
1328 if (has_default)
1329 i = 1;
1330 else
1331 i = 0;
1332 while (i < old_size)
1333 {
1334 tree base_case, base_label, base_high;
1335 base_case = gimple_switch_label (stmt, i);
1336
1337 gcc_assert (base_case);
1338 base_label = CASE_LABEL (base_case);
1339
1340 /* Discard cases that have the same destination as the
1341 default case. */
1342 if (base_label == default_label)
1343 {
1344 gimple_switch_set_label (stmt, i, NULL_TREE);
1345 i++;
1346 new_size--;
1347 continue;
1348 }
1349
1350 base_high = CASE_HIGH (base_case)
1351 ? CASE_HIGH (base_case)
1352 : CASE_LOW (base_case);
1353 i++;
1354
1355 /* Try to merge case labels. Break out when we reach the end
1356 of the label vector or when we cannot merge the next case
1357 label with the current one. */
1358 while (i < old_size)
1359 {
1360 tree merge_case = gimple_switch_label (stmt, i);
1361 tree merge_label = CASE_LABEL (merge_case);
1362 tree t = int_const_binop (PLUS_EXPR, base_high,
1363 integer_one_node, 1);
1364
1365 /* Merge the cases if they jump to the same place,
1366 and their ranges are consecutive. */
1367 if (merge_label == base_label
1368 && tree_int_cst_equal (CASE_LOW (merge_case), t))
1369 {
1370 base_high = CASE_HIGH (merge_case) ?
1371 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1372 CASE_HIGH (base_case) = base_high;
1373 gimple_switch_set_label (stmt, i, NULL_TREE);
1374 new_size--;
1375 i++;
1376 }
1377 else
1378 break;
1379 }
1380 }
1381
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i = 0, j = 0; i < new_size; i++)
1385 {
1386 while (! gimple_switch_label (stmt, j))
1387 j++;
1388 gimple_switch_set_label (stmt, i,
1389 gimple_switch_label (stmt, j++));
1390 }
1391
1392 gcc_assert (new_size <= old_size);
1393 gimple_switch_set_num_labels (stmt, new_size);
1394 }
1395
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1398 same label. */
1399
1400 void
1401 group_case_labels (void)
1402 {
1403 basic_block bb;
1404
1405 FOR_EACH_BB (bb)
1406 {
1407 gimple stmt = last_stmt (bb);
1408 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1409 group_case_labels_stmt (stmt);
1410 }
1411 }
1412
1413 /* Checks whether we can merge block B into block A. */
1414
1415 static bool
1416 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1417 {
1418 gimple stmt;
1419 gimple_stmt_iterator gsi;
1420 gimple_seq phis;
1421
1422 if (!single_succ_p (a))
1423 return false;
1424
1425 if (single_succ_edge (a)->flags & (EDGE_ABNORMAL | EDGE_EH))
1426 return false;
1427
1428 if (single_succ (a) != b)
1429 return false;
1430
1431 if (!single_pred_p (b))
1432 return false;
1433
1434 if (b == EXIT_BLOCK_PTR)
1435 return false;
1436
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt = last_stmt (a);
1440 if (stmt && stmt_ends_bb_p (stmt))
1441 return false;
1442
1443 /* Do not allow a block with only a non-local label to be merged. */
1444 if (stmt
1445 && gimple_code (stmt) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt)))
1447 return false;
1448
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1451 {
1452 tree lab;
1453 stmt = gsi_stmt (gsi);
1454 if (gimple_code (stmt) != GIMPLE_LABEL)
1455 break;
1456 lab = gimple_label_label (stmt);
1457
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab))
1460 return false;
1461 }
1462
1463 /* Protect the loop latches. */
1464 if (current_loops && b->loop_father->latch == b)
1465 return false;
1466
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis = phi_nodes (b);
1471 if (!gimple_seq_empty_p (phis)
1472 && name_mappings_registered_p ())
1473 return false;
1474
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1476 if (!optimize
1477 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1478 {
1479 location_t goto_locus = single_succ_edge (a)->goto_locus;
1480 gimple_stmt_iterator prev, next;
1481 prev = gsi_last_nondebug_bb (a);
1482 next = gsi_after_labels (b);
1483 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1484 gsi_next_nondebug (&next);
1485 if ((gsi_end_p (prev)
1486 || gimple_location (gsi_stmt (prev)) != goto_locus)
1487 && (gsi_end_p (next)
1488 || gimple_location (gsi_stmt (next)) != goto_locus))
1489 return false;
1490 }
1491
1492 return true;
1493 }
1494
1495 /* Return true if the var whose chain of uses starts at PTR has no
1496 nondebug uses. */
1497 bool
1498 has_zero_uses_1 (const ssa_use_operand_t *head)
1499 {
1500 const ssa_use_operand_t *ptr;
1501
1502 for (ptr = head->next; ptr != head; ptr = ptr->next)
1503 if (!is_gimple_debug (USE_STMT (ptr)))
1504 return false;
1505
1506 return true;
1507 }
1508
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1512 bool
1513 single_imm_use_1 (const ssa_use_operand_t *head,
1514 use_operand_p *use_p, gimple *stmt)
1515 {
1516 ssa_use_operand_t *ptr, *single_use = 0;
1517
1518 for (ptr = head->next; ptr != head; ptr = ptr->next)
1519 if (!is_gimple_debug (USE_STMT (ptr)))
1520 {
1521 if (single_use)
1522 {
1523 single_use = NULL;
1524 break;
1525 }
1526 single_use = ptr;
1527 }
1528
1529 if (use_p)
1530 *use_p = single_use;
1531
1532 if (stmt)
1533 *stmt = single_use ? single_use->loc.stmt : NULL;
1534
1535 return !!single_use;
1536 }
1537
1538 /* Replaces all uses of NAME by VAL. */
1539
1540 void
1541 replace_uses_by (tree name, tree val)
1542 {
1543 imm_use_iterator imm_iter;
1544 use_operand_p use;
1545 gimple stmt;
1546 edge e;
1547
1548 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1549 {
1550 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1551 {
1552 replace_exp (use, val);
1553
1554 if (gimple_code (stmt) == GIMPLE_PHI)
1555 {
1556 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1557 if (e->flags & EDGE_ABNORMAL)
1558 {
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1564 }
1565 }
1566 }
1567
1568 if (gimple_code (stmt) != GIMPLE_PHI)
1569 {
1570 size_t i;
1571
1572 fold_stmt_inplace (stmt);
1573 if (cfgcleanup_altered_bbs)
1574 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1575
1576 /* FIXME. This should go in update_stmt. */
1577 for (i = 0; i < gimple_num_ops (stmt); i++)
1578 {
1579 tree op = gimple_op (stmt, i);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op && TREE_CODE (op) == ADDR_EXPR)
1584 recompute_tree_invariant_for_addr_expr (op);
1585 }
1586
1587 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1588 update_stmt (stmt);
1589 }
1590 }
1591
1592 gcc_assert (has_zero_uses (name));
1593
1594 /* Also update the trees stored in loop structures. */
1595 if (current_loops)
1596 {
1597 struct loop *loop;
1598 loop_iterator li;
1599
1600 FOR_EACH_LOOP (li, loop, 0)
1601 {
1602 substitute_in_loop_info (loop, name, val);
1603 }
1604 }
1605 }
1606
1607 /* Merge block B into block A. */
1608
1609 static void
1610 gimple_merge_blocks (basic_block a, basic_block b)
1611 {
1612 gimple_stmt_iterator last, gsi, psi;
1613 gimple_seq phis = phi_nodes (b);
1614
1615 if (dump_file)
1616 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1617
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi = gsi_last_bb (a);
1621 for (psi = gsi_start (phis); !gsi_end_p (psi); )
1622 {
1623 gimple phi = gsi_stmt (psi);
1624 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1625 gimple copy;
1626 bool may_replace_uses = !is_gimple_reg (def)
1627 || may_propagate_copy (def, use);
1628
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1631 if (current_loops
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1633 && is_gimple_reg (def)
1634 && TREE_CODE (use) == SSA_NAME
1635 && a->loop_father != b->loop_father)
1636 may_replace_uses = false;
1637
1638 if (!may_replace_uses)
1639 {
1640 gcc_assert (is_gimple_reg (def));
1641
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy = gimple_build_assign (def, use);
1647 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1648 remove_phi_node (&psi, false);
1649 }
1650 else
1651 {
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1654 the stmt. */
1655 if (!is_gimple_reg (def))
1656 {
1657 imm_use_iterator iter;
1658 use_operand_p use_p;
1659 gimple stmt;
1660
1661 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1663 SET_USE (use_p, use);
1664
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1667 }
1668 else
1669 replace_uses_by (def, use);
1670
1671 remove_phi_node (&psi, true);
1672 }
1673 }
1674
1675 /* Ensure that B follows A. */
1676 move_block_after (b, a);
1677
1678 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1679 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1680
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1683 {
1684 gimple stmt = gsi_stmt (gsi);
1685 if (gimple_code (stmt) == GIMPLE_LABEL)
1686 {
1687 tree label = gimple_label_label (stmt);
1688 int lp_nr;
1689
1690 gsi_remove (&gsi, false);
1691
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label))
1699 {
1700 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1701 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1702 }
1703
1704 lp_nr = EH_LANDING_PAD_NR (label);
1705 if (lp_nr)
1706 {
1707 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1708 lp->post_landing_pad = NULL;
1709 }
1710 }
1711 else
1712 {
1713 gimple_set_bb (stmt, a);
1714 gsi_next (&gsi);
1715 }
1716 }
1717
1718 /* Merge the sequences. */
1719 last = gsi_last_bb (a);
1720 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1721 set_bb_seq (b, NULL);
1722
1723 if (cfgcleanup_altered_bbs)
1724 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1725 }
1726
1727
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1732
1733 basic_block
1734 single_noncomplex_succ (basic_block bb)
1735 {
1736 edge e0, e1;
1737 if (EDGE_COUNT (bb->succs) != 2)
1738 return bb;
1739
1740 e0 = EDGE_SUCC (bb, 0);
1741 e1 = EDGE_SUCC (bb, 1);
1742 if (e0->flags & EDGE_COMPLEX)
1743 return e1->dest;
1744 if (e1->flags & EDGE_COMPLEX)
1745 return e0->dest;
1746
1747 return bb;
1748 }
1749
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1751
1752 void
1753 notice_special_calls (gimple call)
1754 {
1755 int flags = gimple_call_flags (call);
1756
1757 if (flags & ECF_MAY_BE_ALLOCA)
1758 cfun->calls_alloca = true;
1759 if (flags & ECF_RETURNS_TWICE)
1760 cfun->calls_setjmp = true;
1761 }
1762
1763
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1766
1767 void
1768 clear_special_calls (void)
1769 {
1770 cfun->calls_alloca = false;
1771 cfun->calls_setjmp = false;
1772 }
1773
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1775
1776 static void
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1778 {
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb);
1782
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb->succs) > 0)
1785 remove_edge (EDGE_SUCC (bb, 0));
1786 }
1787
1788
1789 /* Remove statements of basic block BB. */
1790
1791 static void
1792 remove_bb (basic_block bb)
1793 {
1794 gimple_stmt_iterator i;
1795
1796 if (dump_file)
1797 {
1798 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1799 if (dump_flags & TDF_DETAILS)
1800 {
1801 dump_bb (bb, dump_file, 0);
1802 fprintf (dump_file, "\n");
1803 }
1804 }
1805
1806 if (current_loops)
1807 {
1808 struct loop *loop = bb->loop_father;
1809
1810 /* If a loop gets removed, clean up the information associated
1811 with it. */
1812 if (loop->latch == bb
1813 || loop->header == bb)
1814 free_numbers_of_iterations_estimates_loop (loop);
1815 }
1816
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb) != NULL)
1819 {
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1823 details. */
1824 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1825 {
1826 gimple stmt = gsi_stmt (i);
1827 if (gimple_code (stmt) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt))
1829 || DECL_NONLOCAL (gimple_label_label (stmt))))
1830 {
1831 basic_block new_bb;
1832 gimple_stmt_iterator new_gsi;
1833
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1836 non-locality. */
1837 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1838 {
1839 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1841 }
1842
1843 new_bb = bb->prev_bb;
1844 new_gsi = gsi_start_bb (new_bb);
1845 gsi_remove (&i, false);
1846 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1847 }
1848 else
1849 {
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun))
1855 release_defs (stmt);
1856
1857 gsi_remove (&i, true);
1858 }
1859
1860 if (gsi_end_p (i))
1861 i = gsi_last_bb (bb);
1862 else
1863 gsi_prev (&i);
1864 }
1865 }
1866
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1868 bb->il.gimple = NULL;
1869 }
1870
1871
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1875
1876 edge
1877 find_taken_edge (basic_block bb, tree val)
1878 {
1879 gimple stmt;
1880
1881 stmt = last_stmt (bb);
1882
1883 gcc_assert (stmt);
1884 gcc_assert (is_ctrl_stmt (stmt));
1885
1886 if (val == NULL)
1887 return NULL;
1888
1889 if (!is_gimple_min_invariant (val))
1890 return NULL;
1891
1892 if (gimple_code (stmt) == GIMPLE_COND)
1893 return find_taken_edge_cond_expr (bb, val);
1894
1895 if (gimple_code (stmt) == GIMPLE_SWITCH)
1896 return find_taken_edge_switch_expr (bb, val);
1897
1898 if (computed_goto_p (stmt))
1899 {
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1902
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1907 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1908 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1909 return NULL;
1910 }
1911
1912 gcc_unreachable ();
1913 }
1914
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1918
1919 static edge
1920 find_taken_edge_computed_goto (basic_block bb, tree val)
1921 {
1922 basic_block dest;
1923 edge e = NULL;
1924
1925 dest = label_to_block (val);
1926 if (dest)
1927 {
1928 e = find_edge (bb, dest);
1929 gcc_assert (e != NULL);
1930 }
1931
1932 return e;
1933 }
1934
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1938
1939 static edge
1940 find_taken_edge_cond_expr (basic_block bb, tree val)
1941 {
1942 edge true_edge, false_edge;
1943
1944 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1945
1946 gcc_assert (TREE_CODE (val) == INTEGER_CST);
1947 return (integer_zerop (val) ? false_edge : true_edge);
1948 }
1949
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1953
1954 static edge
1955 find_taken_edge_switch_expr (basic_block bb, tree val)
1956 {
1957 basic_block dest_bb;
1958 edge e;
1959 gimple switch_stmt;
1960 tree taken_case;
1961
1962 switch_stmt = last_stmt (bb);
1963 taken_case = find_case_label_for_value (switch_stmt, val);
1964 dest_bb = label_to_block (CASE_LABEL (taken_case));
1965
1966 e = find_edge (bb, dest_bb);
1967 gcc_assert (e);
1968 return e;
1969 }
1970
1971
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1975
1976 static tree
1977 find_case_label_for_value (gimple switch_stmt, tree val)
1978 {
1979 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
1980 tree default_case = gimple_switch_default_label (switch_stmt);
1981
1982 for (low = 0, high = n; high - low > 1; )
1983 {
1984 size_t i = (high + low) / 2;
1985 tree t = gimple_switch_label (switch_stmt, i);
1986 int cmp;
1987
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp = tree_int_cst_compare (CASE_LOW (t), val);
1990
1991 if (cmp > 0)
1992 high = i;
1993 else
1994 low = i;
1995
1996 if (CASE_HIGH (t) == NULL)
1997 {
1998 /* A singe-valued case label. */
1999 if (cmp == 0)
2000 return t;
2001 }
2002 else
2003 {
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2006 return t;
2007 }
2008 }
2009
2010 return default_case;
2011 }
2012
2013
2014 /* Dump a basic block on stderr. */
2015
2016 void
2017 gimple_debug_bb (basic_block bb)
2018 {
2019 gimple_dump_bb (bb, stderr, 0, TDF_VOPS|TDF_MEMSYMS);
2020 }
2021
2022
2023 /* Dump basic block with index N on stderr. */
2024
2025 basic_block
2026 gimple_debug_bb_n (int n)
2027 {
2028 gimple_debug_bb (BASIC_BLOCK (n));
2029 return BASIC_BLOCK (n);
2030 }
2031
2032
2033 /* Dump the CFG on stderr.
2034
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2037
2038 void
2039 gimple_debug_cfg (int flags)
2040 {
2041 gimple_dump_cfg (stderr, flags);
2042 }
2043
2044
2045 /* Dump the program showing basic block boundaries on the given FILE.
2046
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2048 tree.h). */
2049
2050 void
2051 gimple_dump_cfg (FILE *file, int flags)
2052 {
2053 if (flags & TDF_DETAILS)
2054 {
2055 const char *funcname
2056 = lang_hooks.decl_printable_name (current_function_decl, 2);
2057
2058 fputc ('\n', file);
2059 fprintf (file, ";; Function %s\n\n", funcname);
2060 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2061 n_basic_blocks, n_edges, last_basic_block);
2062
2063 brief_dump_cfg (file);
2064 fprintf (file, "\n");
2065 }
2066
2067 if (flags & TDF_STATS)
2068 dump_cfg_stats (file);
2069
2070 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2071 }
2072
2073
2074 /* Dump CFG statistics on FILE. */
2075
2076 void
2077 dump_cfg_stats (FILE *file)
2078 {
2079 static long max_num_merged_labels = 0;
2080 unsigned long size, total = 0;
2081 long num_edges;
2082 basic_block bb;
2083 const char * const fmt_str = "%-30s%-13s%12s\n";
2084 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2085 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2086 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2087 const char *funcname
2088 = lang_hooks.decl_printable_name (current_function_decl, 2);
2089
2090
2091 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2092
2093 fprintf (file, "---------------------------------------------------------\n");
2094 fprintf (file, fmt_str, "", " Number of ", "Memory");
2095 fprintf (file, fmt_str, "", " instances ", "used ");
2096 fprintf (file, "---------------------------------------------------------\n");
2097
2098 size = n_basic_blocks * sizeof (struct basic_block_def);
2099 total += size;
2100 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks,
2101 SCALE (size), LABEL (size));
2102
2103 num_edges = 0;
2104 FOR_EACH_BB (bb)
2105 num_edges += EDGE_COUNT (bb->succs);
2106 size = num_edges * sizeof (struct edge_def);
2107 total += size;
2108 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2109
2110 fprintf (file, "---------------------------------------------------------\n");
2111 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2112 LABEL (total));
2113 fprintf (file, "---------------------------------------------------------\n");
2114 fprintf (file, "\n");
2115
2116 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2117 max_num_merged_labels = cfg_stats.num_merged_labels;
2118
2119 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2120 cfg_stats.num_merged_labels, max_num_merged_labels);
2121
2122 fprintf (file, "\n");
2123 }
2124
2125
2126 /* Dump CFG statistics on stderr. Keep extern so that it's always
2127 linked in the final executable. */
2128
2129 DEBUG_FUNCTION void
2130 debug_cfg_stats (void)
2131 {
2132 dump_cfg_stats (stderr);
2133 }
2134
2135
2136 /* Dump the flowgraph to a .vcg FILE. */
2137
2138 static void
2139 gimple_cfg2vcg (FILE *file)
2140 {
2141 edge e;
2142 edge_iterator ei;
2143 basic_block bb;
2144 const char *funcname
2145 = lang_hooks.decl_printable_name (current_function_decl, 2);
2146
2147 /* Write the file header. */
2148 fprintf (file, "graph: { title: \"%s\"\n", funcname);
2149 fprintf (file, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2150 fprintf (file, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2151
2152 /* Write blocks and edges. */
2153 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2154 {
2155 fprintf (file, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2156 e->dest->index);
2157
2158 if (e->flags & EDGE_FAKE)
2159 fprintf (file, " linestyle: dotted priority: 10");
2160 else
2161 fprintf (file, " linestyle: solid priority: 100");
2162
2163 fprintf (file, " }\n");
2164 }
2165 fputc ('\n', file);
2166
2167 FOR_EACH_BB (bb)
2168 {
2169 enum gimple_code head_code, end_code;
2170 const char *head_name, *end_name;
2171 int head_line = 0;
2172 int end_line = 0;
2173 gimple first = first_stmt (bb);
2174 gimple last = last_stmt (bb);
2175
2176 if (first)
2177 {
2178 head_code = gimple_code (first);
2179 head_name = gimple_code_name[head_code];
2180 head_line = get_lineno (first);
2181 }
2182 else
2183 head_name = "no-statement";
2184
2185 if (last)
2186 {
2187 end_code = gimple_code (last);
2188 end_name = gimple_code_name[end_code];
2189 end_line = get_lineno (last);
2190 }
2191 else
2192 end_name = "no-statement";
2193
2194 fprintf (file, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2195 bb->index, bb->index, head_name, head_line, end_name,
2196 end_line);
2197
2198 FOR_EACH_EDGE (e, ei, bb->succs)
2199 {
2200 if (e->dest == EXIT_BLOCK_PTR)
2201 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb->index);
2202 else
2203 fprintf (file, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb->index, e->dest->index);
2204
2205 if (e->flags & EDGE_FAKE)
2206 fprintf (file, " priority: 10 linestyle: dotted");
2207 else
2208 fprintf (file, " priority: 100 linestyle: solid");
2209
2210 fprintf (file, " }\n");
2211 }
2212
2213 if (bb->next_bb != EXIT_BLOCK_PTR)
2214 fputc ('\n', file);
2215 }
2216
2217 fputs ("}\n\n", file);
2218 }
2219
2220
2221
2222 /*---------------------------------------------------------------------------
2223 Miscellaneous helpers
2224 ---------------------------------------------------------------------------*/
2225
2226 /* Return true if T represents a stmt that always transfers control. */
2227
2228 bool
2229 is_ctrl_stmt (gimple t)
2230 {
2231 switch (gimple_code (t))
2232 {
2233 case GIMPLE_COND:
2234 case GIMPLE_SWITCH:
2235 case GIMPLE_GOTO:
2236 case GIMPLE_RETURN:
2237 case GIMPLE_RESX:
2238 return true;
2239 default:
2240 return false;
2241 }
2242 }
2243
2244
2245 /* Return true if T is a statement that may alter the flow of control
2246 (e.g., a call to a non-returning function). */
2247
2248 bool
2249 is_ctrl_altering_stmt (gimple t)
2250 {
2251 gcc_assert (t);
2252
2253 switch (gimple_code (t))
2254 {
2255 case GIMPLE_CALL:
2256 {
2257 int flags = gimple_call_flags (t);
2258
2259 /* A non-pure/const call alters flow control if the current
2260 function has nonlocal labels. */
2261 if (!(flags & (ECF_CONST | ECF_PURE | ECF_LEAF))
2262 && cfun->has_nonlocal_label)
2263 return true;
2264
2265 /* A call also alters control flow if it does not return. */
2266 if (flags & ECF_NORETURN)
2267 return true;
2268
2269 /* BUILT_IN_RETURN call is same as return statement. */
2270 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2271 return true;
2272 }
2273 break;
2274
2275 case GIMPLE_EH_DISPATCH:
2276 /* EH_DISPATCH branches to the individual catch handlers at
2277 this level of a try or allowed-exceptions region. It can
2278 fallthru to the next statement as well. */
2279 return true;
2280
2281 case GIMPLE_ASM:
2282 if (gimple_asm_nlabels (t) > 0)
2283 return true;
2284 break;
2285
2286 CASE_GIMPLE_OMP:
2287 /* OpenMP directives alter control flow. */
2288 return true;
2289
2290 default:
2291 break;
2292 }
2293
2294 /* If a statement can throw, it alters control flow. */
2295 return stmt_can_throw_internal (t);
2296 }
2297
2298
2299 /* Return true if T is a simple local goto. */
2300
2301 bool
2302 simple_goto_p (gimple t)
2303 {
2304 return (gimple_code (t) == GIMPLE_GOTO
2305 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2306 }
2307
2308
2309 /* Return true if T can make an abnormal transfer of control flow.
2310 Transfers of control flow associated with EH are excluded. */
2311
2312 bool
2313 stmt_can_make_abnormal_goto (gimple t)
2314 {
2315 if (computed_goto_p (t))
2316 return true;
2317 if (is_gimple_call (t))
2318 return (gimple_has_side_effects (t) && cfun->has_nonlocal_label
2319 && !(gimple_call_flags (t) & ECF_LEAF));
2320 return false;
2321 }
2322
2323
2324 /* Return true if STMT should start a new basic block. PREV_STMT is
2325 the statement preceding STMT. It is used when STMT is a label or a
2326 case label. Labels should only start a new basic block if their
2327 previous statement wasn't a label. Otherwise, sequence of labels
2328 would generate unnecessary basic blocks that only contain a single
2329 label. */
2330
2331 static inline bool
2332 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2333 {
2334 if (stmt == NULL)
2335 return false;
2336
2337 /* Labels start a new basic block only if the preceding statement
2338 wasn't a label of the same type. This prevents the creation of
2339 consecutive blocks that have nothing but a single label. */
2340 if (gimple_code (stmt) == GIMPLE_LABEL)
2341 {
2342 /* Nonlocal and computed GOTO targets always start a new block. */
2343 if (DECL_NONLOCAL (gimple_label_label (stmt))
2344 || FORCED_LABEL (gimple_label_label (stmt)))
2345 return true;
2346
2347 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2348 {
2349 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2350 return true;
2351
2352 cfg_stats.num_merged_labels++;
2353 return false;
2354 }
2355 else
2356 return true;
2357 }
2358
2359 return false;
2360 }
2361
2362
2363 /* Return true if T should end a basic block. */
2364
2365 bool
2366 stmt_ends_bb_p (gimple t)
2367 {
2368 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2369 }
2370
2371 /* Remove block annotations and other data structures. */
2372
2373 void
2374 delete_tree_cfg_annotations (void)
2375 {
2376 label_to_block_map = NULL;
2377 }
2378
2379
2380 /* Return the first statement in basic block BB. */
2381
2382 gimple
2383 first_stmt (basic_block bb)
2384 {
2385 gimple_stmt_iterator i = gsi_start_bb (bb);
2386 gimple stmt = NULL;
2387
2388 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2389 {
2390 gsi_next (&i);
2391 stmt = NULL;
2392 }
2393 return stmt;
2394 }
2395
2396 /* Return the first non-label statement in basic block BB. */
2397
2398 static gimple
2399 first_non_label_stmt (basic_block bb)
2400 {
2401 gimple_stmt_iterator i = gsi_start_bb (bb);
2402 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2403 gsi_next (&i);
2404 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2405 }
2406
2407 /* Return the last statement in basic block BB. */
2408
2409 gimple
2410 last_stmt (basic_block bb)
2411 {
2412 gimple_stmt_iterator i = gsi_last_bb (bb);
2413 gimple stmt = NULL;
2414
2415 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2416 {
2417 gsi_prev (&i);
2418 stmt = NULL;
2419 }
2420 return stmt;
2421 }
2422
2423 /* Return the last statement of an otherwise empty block. Return NULL
2424 if the block is totally empty, or if it contains more than one
2425 statement. */
2426
2427 gimple
2428 last_and_only_stmt (basic_block bb)
2429 {
2430 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2431 gimple last, prev;
2432
2433 if (gsi_end_p (i))
2434 return NULL;
2435
2436 last = gsi_stmt (i);
2437 gsi_prev_nondebug (&i);
2438 if (gsi_end_p (i))
2439 return last;
2440
2441 /* Empty statements should no longer appear in the instruction stream.
2442 Everything that might have appeared before should be deleted by
2443 remove_useless_stmts, and the optimizers should just gsi_remove
2444 instead of smashing with build_empty_stmt.
2445
2446 Thus the only thing that should appear here in a block containing
2447 one executable statement is a label. */
2448 prev = gsi_stmt (i);
2449 if (gimple_code (prev) == GIMPLE_LABEL)
2450 return last;
2451 else
2452 return NULL;
2453 }
2454
2455 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2456
2457 static void
2458 reinstall_phi_args (edge new_edge, edge old_edge)
2459 {
2460 edge_var_map_vector v;
2461 edge_var_map *vm;
2462 int i;
2463 gimple_stmt_iterator phis;
2464
2465 v = redirect_edge_var_map_vector (old_edge);
2466 if (!v)
2467 return;
2468
2469 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2470 VEC_iterate (edge_var_map, v, i, vm) && !gsi_end_p (phis);
2471 i++, gsi_next (&phis))
2472 {
2473 gimple phi = gsi_stmt (phis);
2474 tree result = redirect_edge_var_map_result (vm);
2475 tree arg = redirect_edge_var_map_def (vm);
2476
2477 gcc_assert (result == gimple_phi_result (phi));
2478
2479 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2480 }
2481
2482 redirect_edge_var_map_clear (old_edge);
2483 }
2484
2485 /* Returns the basic block after which the new basic block created
2486 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2487 near its "logical" location. This is of most help to humans looking
2488 at debugging dumps. */
2489
2490 static basic_block
2491 split_edge_bb_loc (edge edge_in)
2492 {
2493 basic_block dest = edge_in->dest;
2494 basic_block dest_prev = dest->prev_bb;
2495
2496 if (dest_prev)
2497 {
2498 edge e = find_edge (dest_prev, dest);
2499 if (e && !(e->flags & EDGE_COMPLEX))
2500 return edge_in->src;
2501 }
2502 return dest_prev;
2503 }
2504
2505 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2506 Abort on abnormal edges. */
2507
2508 static basic_block
2509 gimple_split_edge (edge edge_in)
2510 {
2511 basic_block new_bb, after_bb, dest;
2512 edge new_edge, e;
2513
2514 /* Abnormal edges cannot be split. */
2515 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2516
2517 dest = edge_in->dest;
2518
2519 after_bb = split_edge_bb_loc (edge_in);
2520
2521 new_bb = create_empty_bb (after_bb);
2522 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2523 new_bb->count = edge_in->count;
2524 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2525 new_edge->probability = REG_BR_PROB_BASE;
2526 new_edge->count = edge_in->count;
2527
2528 e = redirect_edge_and_branch (edge_in, new_bb);
2529 gcc_assert (e == edge_in);
2530 reinstall_phi_args (new_edge, e);
2531
2532 return new_bb;
2533 }
2534
2535
2536 /* Verify properties of the address expression T with base object BASE. */
2537
2538 static tree
2539 verify_address (tree t, tree base)
2540 {
2541 bool old_constant;
2542 bool old_side_effects;
2543 bool new_constant;
2544 bool new_side_effects;
2545
2546 old_constant = TREE_CONSTANT (t);
2547 old_side_effects = TREE_SIDE_EFFECTS (t);
2548
2549 recompute_tree_invariant_for_addr_expr (t);
2550 new_side_effects = TREE_SIDE_EFFECTS (t);
2551 new_constant = TREE_CONSTANT (t);
2552
2553 if (old_constant != new_constant)
2554 {
2555 error ("constant not recomputed when ADDR_EXPR changed");
2556 return t;
2557 }
2558 if (old_side_effects != new_side_effects)
2559 {
2560 error ("side effects not recomputed when ADDR_EXPR changed");
2561 return t;
2562 }
2563
2564 if (!(TREE_CODE (base) == VAR_DECL
2565 || TREE_CODE (base) == PARM_DECL
2566 || TREE_CODE (base) == RESULT_DECL))
2567 return NULL_TREE;
2568
2569 if (DECL_GIMPLE_REG_P (base))
2570 {
2571 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2572 return base;
2573 }
2574
2575 return NULL_TREE;
2576 }
2577
2578 /* Callback for walk_tree, check that all elements with address taken are
2579 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2580 inside a PHI node. */
2581
2582 static tree
2583 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2584 {
2585 tree t = *tp, x;
2586
2587 if (TYPE_P (t))
2588 *walk_subtrees = 0;
2589
2590 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2591 #define CHECK_OP(N, MSG) \
2592 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2593 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2594
2595 switch (TREE_CODE (t))
2596 {
2597 case SSA_NAME:
2598 if (SSA_NAME_IN_FREE_LIST (t))
2599 {
2600 error ("SSA name in freelist but still referenced");
2601 return *tp;
2602 }
2603 break;
2604
2605 case INDIRECT_REF:
2606 error ("INDIRECT_REF in gimple IL");
2607 return t;
2608
2609 case MEM_REF:
2610 x = TREE_OPERAND (t, 0);
2611 if (!POINTER_TYPE_P (TREE_TYPE (x))
2612 || !is_gimple_mem_ref_addr (x))
2613 {
2614 error ("Invalid first operand of MEM_REF.");
2615 return x;
2616 }
2617 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2618 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2619 {
2620 error ("Invalid offset operand of MEM_REF.");
2621 return TREE_OPERAND (t, 1);
2622 }
2623 if (TREE_CODE (x) == ADDR_EXPR
2624 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2625 return x;
2626 *walk_subtrees = 0;
2627 break;
2628
2629 case ASSERT_EXPR:
2630 x = fold (ASSERT_EXPR_COND (t));
2631 if (x == boolean_false_node)
2632 {
2633 error ("ASSERT_EXPR with an always-false condition");
2634 return *tp;
2635 }
2636 break;
2637
2638 case MODIFY_EXPR:
2639 error ("MODIFY_EXPR not expected while having tuples.");
2640 return *tp;
2641
2642 case ADDR_EXPR:
2643 {
2644 tree tem;
2645
2646 gcc_assert (is_gimple_address (t));
2647
2648 /* Skip any references (they will be checked when we recurse down the
2649 tree) and ensure that any variable used as a prefix is marked
2650 addressable. */
2651 for (x = TREE_OPERAND (t, 0);
2652 handled_component_p (x);
2653 x = TREE_OPERAND (x, 0))
2654 ;
2655
2656 if ((tem = verify_address (t, x)))
2657 return tem;
2658
2659 if (!(TREE_CODE (x) == VAR_DECL
2660 || TREE_CODE (x) == PARM_DECL
2661 || TREE_CODE (x) == RESULT_DECL))
2662 return NULL;
2663
2664 if (!TREE_ADDRESSABLE (x))
2665 {
2666 error ("address taken, but ADDRESSABLE bit not set");
2667 return x;
2668 }
2669
2670 break;
2671 }
2672
2673 case COND_EXPR:
2674 x = COND_EXPR_COND (t);
2675 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2676 {
2677 error ("non-integral used in condition");
2678 return x;
2679 }
2680 if (!is_gimple_condexpr (x))
2681 {
2682 error ("invalid conditional operand");
2683 return x;
2684 }
2685 break;
2686
2687 case NON_LVALUE_EXPR:
2688 gcc_unreachable ();
2689
2690 CASE_CONVERT:
2691 case FIX_TRUNC_EXPR:
2692 case FLOAT_EXPR:
2693 case NEGATE_EXPR:
2694 case ABS_EXPR:
2695 case BIT_NOT_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 CHECK_OP (0, "invalid operand to unary operator");
2698 break;
2699
2700 case REALPART_EXPR:
2701 case IMAGPART_EXPR:
2702 case COMPONENT_REF:
2703 case ARRAY_REF:
2704 case ARRAY_RANGE_REF:
2705 case BIT_FIELD_REF:
2706 case VIEW_CONVERT_EXPR:
2707 /* We have a nest of references. Verify that each of the operands
2708 that determine where to reference is either a constant or a variable,
2709 verify that the base is valid, and then show we've already checked
2710 the subtrees. */
2711 while (handled_component_p (t))
2712 {
2713 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2714 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2715 else if (TREE_CODE (t) == ARRAY_REF
2716 || TREE_CODE (t) == ARRAY_RANGE_REF)
2717 {
2718 CHECK_OP (1, "invalid array index");
2719 if (TREE_OPERAND (t, 2))
2720 CHECK_OP (2, "invalid array lower bound");
2721 if (TREE_OPERAND (t, 3))
2722 CHECK_OP (3, "invalid array stride");
2723 }
2724 else if (TREE_CODE (t) == BIT_FIELD_REF)
2725 {
2726 if (!host_integerp (TREE_OPERAND (t, 1), 1)
2727 || !host_integerp (TREE_OPERAND (t, 2), 1))
2728 {
2729 error ("invalid position or size operand to BIT_FIELD_REF");
2730 return t;
2731 }
2732 else if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2733 && (TYPE_PRECISION (TREE_TYPE (t))
2734 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2735 {
2736 error ("integral result type precision does not match "
2737 "field size of BIT_FIELD_REF");
2738 return t;
2739 }
2740 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2741 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2742 != TREE_INT_CST_LOW (TREE_OPERAND (t, 1))))
2743 {
2744 error ("mode precision of non-integral result does not "
2745 "match field size of BIT_FIELD_REF");
2746 return t;
2747 }
2748 }
2749
2750 t = TREE_OPERAND (t, 0);
2751 }
2752
2753 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2754 {
2755 error ("invalid reference prefix");
2756 return t;
2757 }
2758 *walk_subtrees = 0;
2759 break;
2760 case PLUS_EXPR:
2761 case MINUS_EXPR:
2762 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2763 POINTER_PLUS_EXPR. */
2764 if (POINTER_TYPE_P (TREE_TYPE (t)))
2765 {
2766 error ("invalid operand to plus/minus, type is a pointer");
2767 return t;
2768 }
2769 CHECK_OP (0, "invalid operand to binary operator");
2770 CHECK_OP (1, "invalid operand to binary operator");
2771 break;
2772
2773 case POINTER_PLUS_EXPR:
2774 /* Check to make sure the first operand is a pointer or reference type. */
2775 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2776 {
2777 error ("invalid operand to pointer plus, first operand is not a pointer");
2778 return t;
2779 }
2780 /* Check to make sure the second operand is an integer with type of
2781 sizetype. */
2782 if (!useless_type_conversion_p (sizetype,
2783 TREE_TYPE (TREE_OPERAND (t, 1))))
2784 {
2785 error ("invalid operand to pointer plus, second operand is not an "
2786 "integer with type of sizetype.");
2787 return t;
2788 }
2789 /* FALLTHROUGH */
2790 case LT_EXPR:
2791 case LE_EXPR:
2792 case GT_EXPR:
2793 case GE_EXPR:
2794 case EQ_EXPR:
2795 case NE_EXPR:
2796 case UNORDERED_EXPR:
2797 case ORDERED_EXPR:
2798 case UNLT_EXPR:
2799 case UNLE_EXPR:
2800 case UNGT_EXPR:
2801 case UNGE_EXPR:
2802 case UNEQ_EXPR:
2803 case LTGT_EXPR:
2804 case MULT_EXPR:
2805 case TRUNC_DIV_EXPR:
2806 case CEIL_DIV_EXPR:
2807 case FLOOR_DIV_EXPR:
2808 case ROUND_DIV_EXPR:
2809 case TRUNC_MOD_EXPR:
2810 case CEIL_MOD_EXPR:
2811 case FLOOR_MOD_EXPR:
2812 case ROUND_MOD_EXPR:
2813 case RDIV_EXPR:
2814 case EXACT_DIV_EXPR:
2815 case MIN_EXPR:
2816 case MAX_EXPR:
2817 case LSHIFT_EXPR:
2818 case RSHIFT_EXPR:
2819 case LROTATE_EXPR:
2820 case RROTATE_EXPR:
2821 case BIT_IOR_EXPR:
2822 case BIT_XOR_EXPR:
2823 case BIT_AND_EXPR:
2824 CHECK_OP (0, "invalid operand to binary operator");
2825 CHECK_OP (1, "invalid operand to binary operator");
2826 break;
2827
2828 case CONSTRUCTOR:
2829 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2830 *walk_subtrees = 0;
2831 break;
2832
2833 default:
2834 break;
2835 }
2836 return NULL;
2837
2838 #undef CHECK_OP
2839 }
2840
2841
2842 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2843 Returns true if there is an error, otherwise false. */
2844
2845 static bool
2846 verify_types_in_gimple_min_lval (tree expr)
2847 {
2848 tree op;
2849
2850 if (is_gimple_id (expr))
2851 return false;
2852
2853 if (TREE_CODE (expr) != TARGET_MEM_REF
2854 && TREE_CODE (expr) != MEM_REF)
2855 {
2856 error ("invalid expression for min lvalue");
2857 return true;
2858 }
2859
2860 /* TARGET_MEM_REFs are strange beasts. */
2861 if (TREE_CODE (expr) == TARGET_MEM_REF)
2862 return false;
2863
2864 op = TREE_OPERAND (expr, 0);
2865 if (!is_gimple_val (op))
2866 {
2867 error ("invalid operand in indirect reference");
2868 debug_generic_stmt (op);
2869 return true;
2870 }
2871 /* Memory references now generally can involve a value conversion. */
2872
2873 return false;
2874 }
2875
2876 /* Verify if EXPR is a valid GIMPLE reference expression. If
2877 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2878 if there is an error, otherwise false. */
2879
2880 static bool
2881 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2882 {
2883 while (handled_component_p (expr))
2884 {
2885 tree op = TREE_OPERAND (expr, 0);
2886
2887 if (TREE_CODE (expr) == ARRAY_REF
2888 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2889 {
2890 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2891 || (TREE_OPERAND (expr, 2)
2892 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2893 || (TREE_OPERAND (expr, 3)
2894 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2895 {
2896 error ("invalid operands to array reference");
2897 debug_generic_stmt (expr);
2898 return true;
2899 }
2900 }
2901
2902 /* Verify if the reference array element types are compatible. */
2903 if (TREE_CODE (expr) == ARRAY_REF
2904 && !useless_type_conversion_p (TREE_TYPE (expr),
2905 TREE_TYPE (TREE_TYPE (op))))
2906 {
2907 error ("type mismatch in array reference");
2908 debug_generic_stmt (TREE_TYPE (expr));
2909 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2910 return true;
2911 }
2912 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2913 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2914 TREE_TYPE (TREE_TYPE (op))))
2915 {
2916 error ("type mismatch in array range reference");
2917 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2918 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2919 return true;
2920 }
2921
2922 if ((TREE_CODE (expr) == REALPART_EXPR
2923 || TREE_CODE (expr) == IMAGPART_EXPR)
2924 && !useless_type_conversion_p (TREE_TYPE (expr),
2925 TREE_TYPE (TREE_TYPE (op))))
2926 {
2927 error ("type mismatch in real/imagpart reference");
2928 debug_generic_stmt (TREE_TYPE (expr));
2929 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2930 return true;
2931 }
2932
2933 if (TREE_CODE (expr) == COMPONENT_REF
2934 && !useless_type_conversion_p (TREE_TYPE (expr),
2935 TREE_TYPE (TREE_OPERAND (expr, 1))))
2936 {
2937 error ("type mismatch in component reference");
2938 debug_generic_stmt (TREE_TYPE (expr));
2939 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2940 return true;
2941 }
2942
2943 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2944 {
2945 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2946 that their operand is not an SSA name or an invariant when
2947 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2948 bug). Otherwise there is nothing to verify, gross mismatches at
2949 most invoke undefined behavior. */
2950 if (require_lvalue
2951 && (TREE_CODE (op) == SSA_NAME
2952 || is_gimple_min_invariant (op)))
2953 {
2954 error ("Conversion of an SSA_NAME on the left hand side.");
2955 debug_generic_stmt (expr);
2956 return true;
2957 }
2958 else if (TREE_CODE (op) == SSA_NAME
2959 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
2960 {
2961 error ("Conversion of register to a different size.");
2962 debug_generic_stmt (expr);
2963 return true;
2964 }
2965 else if (!handled_component_p (op))
2966 return false;
2967 }
2968
2969 expr = op;
2970 }
2971
2972 if (TREE_CODE (expr) == MEM_REF)
2973 {
2974 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
2975 {
2976 error ("Invalid address operand in MEM_REF.");
2977 debug_generic_stmt (expr);
2978 return true;
2979 }
2980 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
2981 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
2982 {
2983 error ("Invalid offset operand in MEM_REF.");
2984 debug_generic_stmt (expr);
2985 return true;
2986 }
2987 }
2988 else if (TREE_CODE (expr) == TARGET_MEM_REF)
2989 {
2990 if (!TMR_BASE (expr)
2991 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
2992 {
2993 error ("Invalid address operand in in TARGET_MEM_REF.");
2994 return true;
2995 }
2996 if (!TMR_OFFSET (expr)
2997 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
2998 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
2999 {
3000 error ("Invalid offset operand in TARGET_MEM_REF.");
3001 debug_generic_stmt (expr);
3002 return true;
3003 }
3004 }
3005
3006 return ((require_lvalue || !is_gimple_min_invariant (expr))
3007 && verify_types_in_gimple_min_lval (expr));
3008 }
3009
3010 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3011 list of pointer-to types that is trivially convertible to DEST. */
3012
3013 static bool
3014 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3015 {
3016 tree src;
3017
3018 if (!TYPE_POINTER_TO (src_obj))
3019 return true;
3020
3021 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3022 if (useless_type_conversion_p (dest, src))
3023 return true;
3024
3025 return false;
3026 }
3027
3028 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3029 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3030
3031 static bool
3032 valid_fixed_convert_types_p (tree type1, tree type2)
3033 {
3034 return (FIXED_POINT_TYPE_P (type1)
3035 && (INTEGRAL_TYPE_P (type2)
3036 || SCALAR_FLOAT_TYPE_P (type2)
3037 || FIXED_POINT_TYPE_P (type2)));
3038 }
3039
3040 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3041 is a problem, otherwise false. */
3042
3043 static bool
3044 verify_gimple_call (gimple stmt)
3045 {
3046 tree fn = gimple_call_fn (stmt);
3047 tree fntype;
3048 unsigned i;
3049
3050 if (TREE_CODE (fn) != OBJ_TYPE_REF
3051 && !is_gimple_val (fn))
3052 {
3053 error ("invalid function in gimple call");
3054 debug_generic_stmt (fn);
3055 return true;
3056 }
3057
3058 if (!POINTER_TYPE_P (TREE_TYPE (fn))
3059 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3060 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE))
3061 {
3062 error ("non-function in gimple call");
3063 return true;
3064 }
3065
3066 if (gimple_call_lhs (stmt)
3067 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3068 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3069 {
3070 error ("invalid LHS in gimple call");
3071 return true;
3072 }
3073
3074 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3075 {
3076 error ("LHS in noreturn call");
3077 return true;
3078 }
3079
3080 fntype = TREE_TYPE (TREE_TYPE (fn));
3081 if (gimple_call_lhs (stmt)
3082 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3083 TREE_TYPE (fntype))
3084 /* ??? At least C++ misses conversions at assignments from
3085 void * call results.
3086 ??? Java is completely off. Especially with functions
3087 returning java.lang.Object.
3088 For now simply allow arbitrary pointer type conversions. */
3089 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3090 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3091 {
3092 error ("invalid conversion in gimple call");
3093 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3094 debug_generic_stmt (TREE_TYPE (fntype));
3095 return true;
3096 }
3097
3098 if (gimple_call_chain (stmt)
3099 && !is_gimple_val (gimple_call_chain (stmt)))
3100 {
3101 error ("invalid static chain in gimple call");
3102 debug_generic_stmt (gimple_call_chain (stmt));
3103 return true;
3104 }
3105
3106 /* If there is a static chain argument, this should not be an indirect
3107 call, and the decl should have DECL_STATIC_CHAIN set. */
3108 if (gimple_call_chain (stmt))
3109 {
3110 if (!gimple_call_fndecl (stmt))
3111 {
3112 error ("static chain in indirect gimple call");
3113 return true;
3114 }
3115 fn = TREE_OPERAND (fn, 0);
3116
3117 if (!DECL_STATIC_CHAIN (fn))
3118 {
3119 error ("static chain with function that doesn't use one");
3120 return true;
3121 }
3122 }
3123
3124 /* ??? The C frontend passes unpromoted arguments in case it
3125 didn't see a function declaration before the call. So for now
3126 leave the call arguments mostly unverified. Once we gimplify
3127 unit-at-a-time we have a chance to fix this. */
3128
3129 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3130 {
3131 tree arg = gimple_call_arg (stmt, i);
3132 if ((is_gimple_reg_type (TREE_TYPE (arg))
3133 && !is_gimple_val (arg))
3134 || (!is_gimple_reg_type (TREE_TYPE (arg))
3135 && !is_gimple_lvalue (arg)))
3136 {
3137 error ("invalid argument to gimple call");
3138 debug_generic_expr (arg);
3139 }
3140 }
3141
3142 return false;
3143 }
3144
3145 /* Verifies the gimple comparison with the result type TYPE and
3146 the operands OP0 and OP1. */
3147
3148 static bool
3149 verify_gimple_comparison (tree type, tree op0, tree op1)
3150 {
3151 tree op0_type = TREE_TYPE (op0);
3152 tree op1_type = TREE_TYPE (op1);
3153
3154 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3155 {
3156 error ("invalid operands in gimple comparison");
3157 return true;
3158 }
3159
3160 /* For comparisons we do not have the operations type as the
3161 effective type the comparison is carried out in. Instead
3162 we require that either the first operand is trivially
3163 convertible into the second, or the other way around.
3164 The resulting type of a comparison may be any integral type.
3165 Because we special-case pointers to void we allow
3166 comparisons of pointers with the same mode as well. */
3167 if ((!useless_type_conversion_p (op0_type, op1_type)
3168 && !useless_type_conversion_p (op1_type, op0_type)
3169 && (!POINTER_TYPE_P (op0_type)
3170 || !POINTER_TYPE_P (op1_type)
3171 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3172 || !INTEGRAL_TYPE_P (type))
3173 {
3174 error ("type mismatch in comparison expression");
3175 debug_generic_expr (type);
3176 debug_generic_expr (op0_type);
3177 debug_generic_expr (op1_type);
3178 return true;
3179 }
3180
3181 return false;
3182 }
3183
3184 /* Verify a gimple assignment statement STMT with an unary rhs.
3185 Returns true if anything is wrong. */
3186
3187 static bool
3188 verify_gimple_assign_unary (gimple stmt)
3189 {
3190 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3191 tree lhs = gimple_assign_lhs (stmt);
3192 tree lhs_type = TREE_TYPE (lhs);
3193 tree rhs1 = gimple_assign_rhs1 (stmt);
3194 tree rhs1_type = TREE_TYPE (rhs1);
3195
3196 if (!is_gimple_reg (lhs)
3197 && !(optimize == 0
3198 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3199 {
3200 error ("non-register as LHS of unary operation");
3201 return true;
3202 }
3203
3204 if (!is_gimple_val (rhs1))
3205 {
3206 error ("invalid operand in unary operation");
3207 return true;
3208 }
3209
3210 /* First handle conversions. */
3211 switch (rhs_code)
3212 {
3213 CASE_CONVERT:
3214 {
3215 /* Allow conversions between integral types and pointers only if
3216 there is no sign or zero extension involved.
3217 For targets were the precision of sizetype doesn't match that
3218 of pointers we need to allow arbitrary conversions from and
3219 to sizetype. */
3220 if ((POINTER_TYPE_P (lhs_type)
3221 && INTEGRAL_TYPE_P (rhs1_type)
3222 && (TYPE_PRECISION (lhs_type) >= TYPE_PRECISION (rhs1_type)
3223 || rhs1_type == sizetype))
3224 || (POINTER_TYPE_P (rhs1_type)
3225 && INTEGRAL_TYPE_P (lhs_type)
3226 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3227 || lhs_type == sizetype)))
3228 return false;
3229
3230 /* Allow conversion from integer to offset type and vice versa. */
3231 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3232 && TREE_CODE (rhs1_type) == INTEGER_TYPE)
3233 || (TREE_CODE (lhs_type) == INTEGER_TYPE
3234 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3235 return false;
3236
3237 /* Otherwise assert we are converting between types of the
3238 same kind. */
3239 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3240 {
3241 error ("invalid types in nop conversion");
3242 debug_generic_expr (lhs_type);
3243 debug_generic_expr (rhs1_type);
3244 return true;
3245 }
3246
3247 return false;
3248 }
3249
3250 case ADDR_SPACE_CONVERT_EXPR:
3251 {
3252 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3253 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3254 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3255 {
3256 error ("invalid types in address space conversion");
3257 debug_generic_expr (lhs_type);
3258 debug_generic_expr (rhs1_type);
3259 return true;
3260 }
3261
3262 return false;
3263 }
3264
3265 case FIXED_CONVERT_EXPR:
3266 {
3267 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3268 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3269 {
3270 error ("invalid types in fixed-point conversion");
3271 debug_generic_expr (lhs_type);
3272 debug_generic_expr (rhs1_type);
3273 return true;
3274 }
3275
3276 return false;
3277 }
3278
3279 case FLOAT_EXPR:
3280 {
3281 if (!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3282 {
3283 error ("invalid types in conversion to floating point");
3284 debug_generic_expr (lhs_type);
3285 debug_generic_expr (rhs1_type);
3286 return true;
3287 }
3288
3289 return false;
3290 }
3291
3292 case FIX_TRUNC_EXPR:
3293 {
3294 if (!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3295 {
3296 error ("invalid types in conversion to integer");
3297 debug_generic_expr (lhs_type);
3298 debug_generic_expr (rhs1_type);
3299 return true;
3300 }
3301
3302 return false;
3303 }
3304
3305 case VEC_UNPACK_HI_EXPR:
3306 case VEC_UNPACK_LO_EXPR:
3307 case REDUC_MAX_EXPR:
3308 case REDUC_MIN_EXPR:
3309 case REDUC_PLUS_EXPR:
3310 case VEC_UNPACK_FLOAT_HI_EXPR:
3311 case VEC_UNPACK_FLOAT_LO_EXPR:
3312 /* FIXME. */
3313 return false;
3314
3315 case TRUTH_NOT_EXPR:
3316 case NEGATE_EXPR:
3317 case ABS_EXPR:
3318 case BIT_NOT_EXPR:
3319 case PAREN_EXPR:
3320 case NON_LVALUE_EXPR:
3321 case CONJ_EXPR:
3322 break;
3323
3324 default:
3325 gcc_unreachable ();
3326 }
3327
3328 /* For the remaining codes assert there is no conversion involved. */
3329 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3330 {
3331 error ("non-trivial conversion in unary operation");
3332 debug_generic_expr (lhs_type);
3333 debug_generic_expr (rhs1_type);
3334 return true;
3335 }
3336
3337 return false;
3338 }
3339
3340 /* Verify a gimple assignment statement STMT with a binary rhs.
3341 Returns true if anything is wrong. */
3342
3343 static bool
3344 verify_gimple_assign_binary (gimple stmt)
3345 {
3346 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3347 tree lhs = gimple_assign_lhs (stmt);
3348 tree lhs_type = TREE_TYPE (lhs);
3349 tree rhs1 = gimple_assign_rhs1 (stmt);
3350 tree rhs1_type = TREE_TYPE (rhs1);
3351 tree rhs2 = gimple_assign_rhs2 (stmt);
3352 tree rhs2_type = TREE_TYPE (rhs2);
3353
3354 if (!is_gimple_reg (lhs)
3355 && !(optimize == 0
3356 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3357 {
3358 error ("non-register as LHS of binary operation");
3359 return true;
3360 }
3361
3362 if (!is_gimple_val (rhs1)
3363 || !is_gimple_val (rhs2))
3364 {
3365 error ("invalid operands in binary operation");
3366 return true;
3367 }
3368
3369 /* First handle operations that involve different types. */
3370 switch (rhs_code)
3371 {
3372 case COMPLEX_EXPR:
3373 {
3374 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3375 || !(INTEGRAL_TYPE_P (rhs1_type)
3376 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3377 || !(INTEGRAL_TYPE_P (rhs2_type)
3378 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3379 {
3380 error ("type mismatch in complex expression");
3381 debug_generic_expr (lhs_type);
3382 debug_generic_expr (rhs1_type);
3383 debug_generic_expr (rhs2_type);
3384 return true;
3385 }
3386
3387 return false;
3388 }
3389
3390 case LSHIFT_EXPR:
3391 case RSHIFT_EXPR:
3392 case LROTATE_EXPR:
3393 case RROTATE_EXPR:
3394 {
3395 /* Shifts and rotates are ok on integral types, fixed point
3396 types and integer vector types. */
3397 if ((!INTEGRAL_TYPE_P (rhs1_type)
3398 && !FIXED_POINT_TYPE_P (rhs1_type)
3399 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3400 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3401 || (!INTEGRAL_TYPE_P (rhs2_type)
3402 /* Vector shifts of vectors are also ok. */
3403 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3404 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3405 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3406 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3407 || !useless_type_conversion_p (lhs_type, rhs1_type))
3408 {
3409 error ("type mismatch in shift expression");
3410 debug_generic_expr (lhs_type);
3411 debug_generic_expr (rhs1_type);
3412 debug_generic_expr (rhs2_type);
3413 return true;
3414 }
3415
3416 return false;
3417 }
3418
3419 case VEC_LSHIFT_EXPR:
3420 case VEC_RSHIFT_EXPR:
3421 {
3422 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3423 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3424 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3425 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3426 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3427 || (!INTEGRAL_TYPE_P (rhs2_type)
3428 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3429 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3430 || !useless_type_conversion_p (lhs_type, rhs1_type))
3431 {
3432 error ("type mismatch in vector shift expression");
3433 debug_generic_expr (lhs_type);
3434 debug_generic_expr (rhs1_type);
3435 debug_generic_expr (rhs2_type);
3436 return true;
3437 }
3438 /* For shifting a vector of non-integral components we
3439 only allow shifting by a constant multiple of the element size. */
3440 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3441 && (TREE_CODE (rhs2) != INTEGER_CST
3442 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3443 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3444 {
3445 error ("non-element sized vector shift of floating point vector");
3446 return true;
3447 }
3448
3449 return false;
3450 }
3451
3452 case PLUS_EXPR:
3453 case MINUS_EXPR:
3454 {
3455 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3456 ??? This just makes the checker happy and may not be what is
3457 intended. */
3458 if (TREE_CODE (lhs_type) == VECTOR_TYPE
3459 && POINTER_TYPE_P (TREE_TYPE (lhs_type)))
3460 {
3461 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3462 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3463 {
3464 error ("invalid non-vector operands to vector valued plus");
3465 return true;
3466 }
3467 lhs_type = TREE_TYPE (lhs_type);
3468 rhs1_type = TREE_TYPE (rhs1_type);
3469 rhs2_type = TREE_TYPE (rhs2_type);
3470 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3471 the pointer to 2nd place. */
3472 if (POINTER_TYPE_P (rhs2_type))
3473 {
3474 tree tem = rhs1_type;
3475 rhs1_type = rhs2_type;
3476 rhs2_type = tem;
3477 }
3478 goto do_pointer_plus_expr_check;
3479 }
3480 if (POINTER_TYPE_P (lhs_type)
3481 || POINTER_TYPE_P (rhs1_type)
3482 || POINTER_TYPE_P (rhs2_type))
3483 {
3484 error ("invalid (pointer) operands to plus/minus");
3485 return true;
3486 }
3487
3488 /* Continue with generic binary expression handling. */
3489 break;
3490 }
3491
3492 case POINTER_PLUS_EXPR:
3493 {
3494 do_pointer_plus_expr_check:
3495 if (!POINTER_TYPE_P (rhs1_type)
3496 || !useless_type_conversion_p (lhs_type, rhs1_type)
3497 || !useless_type_conversion_p (sizetype, rhs2_type))
3498 {
3499 error ("type mismatch in pointer plus expression");
3500 debug_generic_stmt (lhs_type);
3501 debug_generic_stmt (rhs1_type);
3502 debug_generic_stmt (rhs2_type);
3503 return true;
3504 }
3505
3506 return false;
3507 }
3508
3509 case TRUTH_ANDIF_EXPR:
3510 case TRUTH_ORIF_EXPR:
3511 gcc_unreachable ();
3512
3513 case TRUTH_AND_EXPR:
3514 case TRUTH_OR_EXPR:
3515 case TRUTH_XOR_EXPR:
3516 {
3517 /* We allow any kind of integral typed argument and result. */
3518 if (!INTEGRAL_TYPE_P (rhs1_type)
3519 || !INTEGRAL_TYPE_P (rhs2_type)
3520 || !INTEGRAL_TYPE_P (lhs_type))
3521 {
3522 error ("type mismatch in binary truth expression");
3523 debug_generic_expr (lhs_type);
3524 debug_generic_expr (rhs1_type);
3525 debug_generic_expr (rhs2_type);
3526 return true;
3527 }
3528
3529 return false;
3530 }
3531
3532 case LT_EXPR:
3533 case LE_EXPR:
3534 case GT_EXPR:
3535 case GE_EXPR:
3536 case EQ_EXPR:
3537 case NE_EXPR:
3538 case UNORDERED_EXPR:
3539 case ORDERED_EXPR:
3540 case UNLT_EXPR:
3541 case UNLE_EXPR:
3542 case UNGT_EXPR:
3543 case UNGE_EXPR:
3544 case UNEQ_EXPR:
3545 case LTGT_EXPR:
3546 /* Comparisons are also binary, but the result type is not
3547 connected to the operand types. */
3548 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3549
3550 case WIDEN_MULT_EXPR:
3551 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3552 return true;
3553 return ((2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type))
3554 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3555
3556 case WIDEN_SUM_EXPR:
3557 case VEC_WIDEN_MULT_HI_EXPR:
3558 case VEC_WIDEN_MULT_LO_EXPR:
3559 case VEC_PACK_TRUNC_EXPR:
3560 case VEC_PACK_SAT_EXPR:
3561 case VEC_PACK_FIX_TRUNC_EXPR:
3562 case VEC_EXTRACT_EVEN_EXPR:
3563 case VEC_EXTRACT_ODD_EXPR:
3564 case VEC_INTERLEAVE_HIGH_EXPR:
3565 case VEC_INTERLEAVE_LOW_EXPR:
3566 /* FIXME. */
3567 return false;
3568
3569 case MULT_EXPR:
3570 case TRUNC_DIV_EXPR:
3571 case CEIL_DIV_EXPR:
3572 case FLOOR_DIV_EXPR:
3573 case ROUND_DIV_EXPR:
3574 case TRUNC_MOD_EXPR:
3575 case CEIL_MOD_EXPR:
3576 case FLOOR_MOD_EXPR:
3577 case ROUND_MOD_EXPR:
3578 case RDIV_EXPR:
3579 case EXACT_DIV_EXPR:
3580 case MIN_EXPR:
3581 case MAX_EXPR:
3582 case BIT_IOR_EXPR:
3583 case BIT_XOR_EXPR:
3584 case BIT_AND_EXPR:
3585 /* Continue with generic binary expression handling. */
3586 break;
3587
3588 default:
3589 gcc_unreachable ();
3590 }
3591
3592 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3593 || !useless_type_conversion_p (lhs_type, rhs2_type))
3594 {
3595 error ("type mismatch in binary expression");
3596 debug_generic_stmt (lhs_type);
3597 debug_generic_stmt (rhs1_type);
3598 debug_generic_stmt (rhs2_type);
3599 return true;
3600 }
3601
3602 return false;
3603 }
3604
3605 /* Verify a gimple assignment statement STMT with a ternary rhs.
3606 Returns true if anything is wrong. */
3607
3608 static bool
3609 verify_gimple_assign_ternary (gimple stmt)
3610 {
3611 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3612 tree lhs = gimple_assign_lhs (stmt);
3613 tree lhs_type = TREE_TYPE (lhs);
3614 tree rhs1 = gimple_assign_rhs1 (stmt);
3615 tree rhs1_type = TREE_TYPE (rhs1);
3616 tree rhs2 = gimple_assign_rhs2 (stmt);
3617 tree rhs2_type = TREE_TYPE (rhs2);
3618 tree rhs3 = gimple_assign_rhs3 (stmt);
3619 tree rhs3_type = TREE_TYPE (rhs3);
3620
3621 if (!is_gimple_reg (lhs)
3622 && !(optimize == 0
3623 && TREE_CODE (lhs_type) == COMPLEX_TYPE))
3624 {
3625 error ("non-register as LHS of ternary operation");
3626 return true;
3627 }
3628
3629 if (!is_gimple_val (rhs1)
3630 || !is_gimple_val (rhs2)
3631 || !is_gimple_val (rhs3))
3632 {
3633 error ("invalid operands in ternary operation");
3634 return true;
3635 }
3636
3637 /* First handle operations that involve different types. */
3638 switch (rhs_code)
3639 {
3640 case WIDEN_MULT_PLUS_EXPR:
3641 case WIDEN_MULT_MINUS_EXPR:
3642 if ((!INTEGRAL_TYPE_P (rhs1_type)
3643 && !FIXED_POINT_TYPE_P (rhs1_type))
3644 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3645 || !useless_type_conversion_p (lhs_type, rhs3_type)
3646 || 2 * TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (lhs_type)
3647 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3648 {
3649 error ("type mismatch in widening multiply-accumulate expression");
3650 debug_generic_expr (lhs_type);
3651 debug_generic_expr (rhs1_type);
3652 debug_generic_expr (rhs2_type);
3653 debug_generic_expr (rhs3_type);
3654 return true;
3655 }
3656 break;
3657
3658 default:
3659 gcc_unreachable ();
3660 }
3661 return false;
3662 }
3663
3664 /* Verify a gimple assignment statement STMT with a single rhs.
3665 Returns true if anything is wrong. */
3666
3667 static bool
3668 verify_gimple_assign_single (gimple stmt)
3669 {
3670 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3671 tree lhs = gimple_assign_lhs (stmt);
3672 tree lhs_type = TREE_TYPE (lhs);
3673 tree rhs1 = gimple_assign_rhs1 (stmt);
3674 tree rhs1_type = TREE_TYPE (rhs1);
3675 bool res = false;
3676
3677 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3678 {
3679 error ("non-trivial conversion at assignment");
3680 debug_generic_expr (lhs_type);
3681 debug_generic_expr (rhs1_type);
3682 return true;
3683 }
3684
3685 if (handled_component_p (lhs))
3686 res |= verify_types_in_gimple_reference (lhs, true);
3687
3688 /* Special codes we cannot handle via their class. */
3689 switch (rhs_code)
3690 {
3691 case ADDR_EXPR:
3692 {
3693 tree op = TREE_OPERAND (rhs1, 0);
3694 if (!is_gimple_addressable (op))
3695 {
3696 error ("invalid operand in unary expression");
3697 return true;
3698 }
3699
3700 /* Technically there is no longer a need for matching types, but
3701 gimple hygiene asks for this check. In LTO we can end up
3702 combining incompatible units and thus end up with addresses
3703 of globals that change their type to a common one. */
3704 if (!in_lto_p
3705 && !types_compatible_p (TREE_TYPE (op),
3706 TREE_TYPE (TREE_TYPE (rhs1)))
3707 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3708 TREE_TYPE (op)))
3709 {
3710 error ("type mismatch in address expression");
3711 debug_generic_stmt (TREE_TYPE (rhs1));
3712 debug_generic_stmt (TREE_TYPE (op));
3713 return true;
3714 }
3715
3716 return verify_types_in_gimple_reference (op, true);
3717 }
3718
3719 /* tcc_reference */
3720 case INDIRECT_REF:
3721 error ("INDIRECT_REF in gimple IL");
3722 return true;
3723
3724 case COMPONENT_REF:
3725 case BIT_FIELD_REF:
3726 case ARRAY_REF:
3727 case ARRAY_RANGE_REF:
3728 case VIEW_CONVERT_EXPR:
3729 case REALPART_EXPR:
3730 case IMAGPART_EXPR:
3731 case TARGET_MEM_REF:
3732 case MEM_REF:
3733 if (!is_gimple_reg (lhs)
3734 && is_gimple_reg_type (TREE_TYPE (lhs)))
3735 {
3736 error ("invalid rhs for gimple memory store");
3737 debug_generic_stmt (lhs);
3738 debug_generic_stmt (rhs1);
3739 return true;
3740 }
3741 return res || verify_types_in_gimple_reference (rhs1, false);
3742
3743 /* tcc_constant */
3744 case SSA_NAME:
3745 case INTEGER_CST:
3746 case REAL_CST:
3747 case FIXED_CST:
3748 case COMPLEX_CST:
3749 case VECTOR_CST:
3750 case STRING_CST:
3751 return res;
3752
3753 /* tcc_declaration */
3754 case CONST_DECL:
3755 return res;
3756 case VAR_DECL:
3757 case PARM_DECL:
3758 if (!is_gimple_reg (lhs)
3759 && !is_gimple_reg (rhs1)
3760 && is_gimple_reg_type (TREE_TYPE (lhs)))
3761 {
3762 error ("invalid rhs for gimple memory store");
3763 debug_generic_stmt (lhs);
3764 debug_generic_stmt (rhs1);
3765 return true;
3766 }
3767 return res;
3768
3769 case COND_EXPR:
3770 if (!is_gimple_reg (lhs)
3771 || (!is_gimple_reg (TREE_OPERAND (rhs1, 0))
3772 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1, 0)))
3773 || (!is_gimple_reg (TREE_OPERAND (rhs1, 1))
3774 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 1)))
3775 || (!is_gimple_reg (TREE_OPERAND (rhs1, 2))
3776 && !is_gimple_min_invariant (TREE_OPERAND (rhs1, 2))))
3777 {
3778 error ("invalid COND_EXPR in gimple assignment");
3779 debug_generic_stmt (rhs1);
3780 return true;
3781 }
3782 return res;
3783
3784 case CONSTRUCTOR:
3785 case OBJ_TYPE_REF:
3786 case ASSERT_EXPR:
3787 case WITH_SIZE_EXPR:
3788 case POLYNOMIAL_CHREC:
3789 case DOT_PROD_EXPR:
3790 case VEC_COND_EXPR:
3791 case REALIGN_LOAD_EXPR:
3792 /* FIXME. */
3793 return res;
3794
3795 default:;
3796 }
3797
3798 return res;
3799 }
3800
3801 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3802 is a problem, otherwise false. */
3803
3804 static bool
3805 verify_gimple_assign (gimple stmt)
3806 {
3807 switch (gimple_assign_rhs_class (stmt))
3808 {
3809 case GIMPLE_SINGLE_RHS:
3810 return verify_gimple_assign_single (stmt);
3811
3812 case GIMPLE_UNARY_RHS:
3813 return verify_gimple_assign_unary (stmt);
3814
3815 case GIMPLE_BINARY_RHS:
3816 return verify_gimple_assign_binary (stmt);
3817
3818 case GIMPLE_TERNARY_RHS:
3819 return verify_gimple_assign_ternary (stmt);
3820
3821 default:
3822 gcc_unreachable ();
3823 }
3824 }
3825
3826 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3827 is a problem, otherwise false. */
3828
3829 static bool
3830 verify_gimple_return (gimple stmt)
3831 {
3832 tree op = gimple_return_retval (stmt);
3833 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
3834
3835 /* We cannot test for present return values as we do not fix up missing
3836 return values from the original source. */
3837 if (op == NULL)
3838 return false;
3839
3840 if (!is_gimple_val (op)
3841 && TREE_CODE (op) != RESULT_DECL)
3842 {
3843 error ("invalid operand in return statement");
3844 debug_generic_stmt (op);
3845 return true;
3846 }
3847
3848 if ((TREE_CODE (op) == RESULT_DECL
3849 && DECL_BY_REFERENCE (op))
3850 || (TREE_CODE (op) == SSA_NAME
3851 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
3852 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
3853 op = TREE_TYPE (op);
3854
3855 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
3856 {
3857 error ("invalid conversion in return statement");
3858 debug_generic_stmt (restype);
3859 debug_generic_stmt (TREE_TYPE (op));
3860 return true;
3861 }
3862
3863 return false;
3864 }
3865
3866
3867 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3868 is a problem, otherwise false. */
3869
3870 static bool
3871 verify_gimple_goto (gimple stmt)
3872 {
3873 tree dest = gimple_goto_dest (stmt);
3874
3875 /* ??? We have two canonical forms of direct goto destinations, a
3876 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3877 if (TREE_CODE (dest) != LABEL_DECL
3878 && (!is_gimple_val (dest)
3879 || !POINTER_TYPE_P (TREE_TYPE (dest))))
3880 {
3881 error ("goto destination is neither a label nor a pointer");
3882 return true;
3883 }
3884
3885 return false;
3886 }
3887
3888 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3889 is a problem, otherwise false. */
3890
3891 static bool
3892 verify_gimple_switch (gimple stmt)
3893 {
3894 if (!is_gimple_val (gimple_switch_index (stmt)))
3895 {
3896 error ("invalid operand to switch statement");
3897 debug_generic_stmt (gimple_switch_index (stmt));
3898 return true;
3899 }
3900
3901 return false;
3902 }
3903
3904
3905 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
3906 and false otherwise. */
3907
3908 static bool
3909 verify_gimple_phi (gimple stmt)
3910 {
3911 tree type = TREE_TYPE (gimple_phi_result (stmt));
3912 unsigned i;
3913
3914 if (TREE_CODE (gimple_phi_result (stmt)) != SSA_NAME)
3915 {
3916 error ("Invalid PHI result");
3917 return true;
3918 }
3919
3920 for (i = 0; i < gimple_phi_num_args (stmt); i++)
3921 {
3922 tree arg = gimple_phi_arg_def (stmt, i);
3923 if ((is_gimple_reg (gimple_phi_result (stmt))
3924 && !is_gimple_val (arg))
3925 || (!is_gimple_reg (gimple_phi_result (stmt))
3926 && !is_gimple_addressable (arg)))
3927 {
3928 error ("Invalid PHI argument");
3929 debug_generic_stmt (arg);
3930 return true;
3931 }
3932 if (!useless_type_conversion_p (type, TREE_TYPE (arg)))
3933 {
3934 error ("Incompatible types in PHI argument %u", i);
3935 debug_generic_stmt (type);
3936 debug_generic_stmt (TREE_TYPE (arg));
3937 return true;
3938 }
3939 }
3940
3941 return false;
3942 }
3943
3944
3945 /* Verify a gimple debug statement STMT.
3946 Returns true if anything is wrong. */
3947
3948 static bool
3949 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
3950 {
3951 /* There isn't much that could be wrong in a gimple debug stmt. A
3952 gimple debug bind stmt, for example, maps a tree, that's usually
3953 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3954 component or member of an aggregate type, to another tree, that
3955 can be an arbitrary expression. These stmts expand into debug
3956 insns, and are converted to debug notes by var-tracking.c. */
3957 return false;
3958 }
3959
3960
3961 /* Verify the GIMPLE statement STMT. Returns true if there is an
3962 error, otherwise false. */
3963
3964 static bool
3965 verify_types_in_gimple_stmt (gimple stmt)
3966 {
3967 switch (gimple_code (stmt))
3968 {
3969 case GIMPLE_ASSIGN:
3970 return verify_gimple_assign (stmt);
3971
3972 case GIMPLE_LABEL:
3973 return TREE_CODE (gimple_label_label (stmt)) != LABEL_DECL;
3974
3975 case GIMPLE_CALL:
3976 return verify_gimple_call (stmt);
3977
3978 case GIMPLE_COND:
3979 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
3980 {
3981 error ("invalid comparison code in gimple cond");
3982 return true;
3983 }
3984 if (!(!gimple_cond_true_label (stmt)
3985 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
3986 || !(!gimple_cond_false_label (stmt)
3987 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
3988 {
3989 error ("invalid labels in gimple cond");
3990 return true;
3991 }
3992
3993 return verify_gimple_comparison (boolean_type_node,
3994 gimple_cond_lhs (stmt),
3995 gimple_cond_rhs (stmt));
3996
3997 case GIMPLE_GOTO:
3998 return verify_gimple_goto (stmt);
3999
4000 case GIMPLE_SWITCH:
4001 return verify_gimple_switch (stmt);
4002
4003 case GIMPLE_RETURN:
4004 return verify_gimple_return (stmt);
4005
4006 case GIMPLE_ASM:
4007 return false;
4008
4009 case GIMPLE_PHI:
4010 return verify_gimple_phi (stmt);
4011
4012 /* Tuples that do not have tree operands. */
4013 case GIMPLE_NOP:
4014 case GIMPLE_PREDICT:
4015 case GIMPLE_RESX:
4016 case GIMPLE_EH_DISPATCH:
4017 case GIMPLE_EH_MUST_NOT_THROW:
4018 return false;
4019
4020 CASE_GIMPLE_OMP:
4021 /* OpenMP directives are validated by the FE and never operated
4022 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4023 non-gimple expressions when the main index variable has had
4024 its address taken. This does not affect the loop itself
4025 because the header of an GIMPLE_OMP_FOR is merely used to determine
4026 how to setup the parallel iteration. */
4027 return false;
4028
4029 case GIMPLE_DEBUG:
4030 return verify_gimple_debug (stmt);
4031
4032 default:
4033 gcc_unreachable ();
4034 }
4035 }
4036
4037 /* Verify the GIMPLE statements inside the sequence STMTS. */
4038
4039 static bool
4040 verify_types_in_gimple_seq_2 (gimple_seq stmts)
4041 {
4042 gimple_stmt_iterator ittr;
4043 bool err = false;
4044
4045 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4046 {
4047 gimple stmt = gsi_stmt (ittr);
4048
4049 switch (gimple_code (stmt))
4050 {
4051 case GIMPLE_BIND:
4052 err |= verify_types_in_gimple_seq_2 (gimple_bind_body (stmt));
4053 break;
4054
4055 case GIMPLE_TRY:
4056 err |= verify_types_in_gimple_seq_2 (gimple_try_eval (stmt));
4057 err |= verify_types_in_gimple_seq_2 (gimple_try_cleanup (stmt));
4058 break;
4059
4060 case GIMPLE_EH_FILTER:
4061 err |= verify_types_in_gimple_seq_2 (gimple_eh_filter_failure (stmt));
4062 break;
4063
4064 case GIMPLE_CATCH:
4065 err |= verify_types_in_gimple_seq_2 (gimple_catch_handler (stmt));
4066 break;
4067
4068 default:
4069 {
4070 bool err2 = verify_types_in_gimple_stmt (stmt);
4071 if (err2)
4072 debug_gimple_stmt (stmt);
4073 err |= err2;
4074 }
4075 }
4076 }
4077
4078 return err;
4079 }
4080
4081
4082 /* Verify the GIMPLE statements inside the statement list STMTS. */
4083
4084 void
4085 verify_types_in_gimple_seq (gimple_seq stmts)
4086 {
4087 if (verify_types_in_gimple_seq_2 (stmts))
4088 internal_error ("verify_gimple failed");
4089 }
4090
4091
4092 /* Verify STMT, return true if STMT is not in GIMPLE form.
4093 TODO: Implement type checking. */
4094
4095 static bool
4096 verify_stmt (gimple_stmt_iterator *gsi)
4097 {
4098 tree addr;
4099 struct walk_stmt_info wi;
4100 bool last_in_block = gsi_one_before_end_p (*gsi);
4101 gimple stmt = gsi_stmt (*gsi);
4102 int lp_nr;
4103
4104 if (is_gimple_omp (stmt))
4105 {
4106 /* OpenMP directives are validated by the FE and never operated
4107 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4108 non-gimple expressions when the main index variable has had
4109 its address taken. This does not affect the loop itself
4110 because the header of an GIMPLE_OMP_FOR is merely used to determine
4111 how to setup the parallel iteration. */
4112 return false;
4113 }
4114
4115 /* FIXME. The C frontend passes unpromoted arguments in case it
4116 didn't see a function declaration before the call. */
4117 if (is_gimple_call (stmt))
4118 {
4119 tree decl;
4120
4121 if (!is_gimple_call_addr (gimple_call_fn (stmt)))
4122 {
4123 error ("invalid function in call statement");
4124 return true;
4125 }
4126
4127 decl = gimple_call_fndecl (stmt);
4128 if (decl
4129 && TREE_CODE (decl) == FUNCTION_DECL
4130 && DECL_LOOPING_CONST_OR_PURE_P (decl)
4131 && (!DECL_PURE_P (decl))
4132 && (!TREE_READONLY (decl)))
4133 {
4134 error ("invalid pure const state for function");
4135 return true;
4136 }
4137 }
4138
4139 if (is_gimple_debug (stmt))
4140 return false;
4141
4142 memset (&wi, 0, sizeof (wi));
4143 addr = walk_gimple_op (gsi_stmt (*gsi), verify_expr, &wi);
4144 if (addr)
4145 {
4146 debug_generic_expr (addr);
4147 inform (gimple_location (gsi_stmt (*gsi)), "in statement");
4148 debug_gimple_stmt (stmt);
4149 return true;
4150 }
4151
4152 /* If the statement is marked as part of an EH region, then it is
4153 expected that the statement could throw. Verify that when we
4154 have optimizations that simplify statements such that we prove
4155 that they cannot throw, that we update other data structures
4156 to match. */
4157 lp_nr = lookup_stmt_eh_lp (stmt);
4158 if (lp_nr != 0)
4159 {
4160 if (!stmt_could_throw_p (stmt))
4161 {
4162 error ("statement marked for throw, but doesn%'t");
4163 goto fail;
4164 }
4165 else if (lp_nr > 0 && !last_in_block && stmt_can_throw_internal (stmt))
4166 {
4167 error ("statement marked for throw in middle of block");
4168 goto fail;
4169 }
4170 }
4171
4172 return false;
4173
4174 fail:
4175 debug_gimple_stmt (stmt);
4176 return true;
4177 }
4178
4179
4180 /* Return true when the T can be shared. */
4181
4182 bool
4183 tree_node_can_be_shared (tree t)
4184 {
4185 if (IS_TYPE_OR_DECL_P (t)
4186 || is_gimple_min_invariant (t)
4187 || TREE_CODE (t) == SSA_NAME
4188 || t == error_mark_node
4189 || TREE_CODE (t) == IDENTIFIER_NODE)
4190 return true;
4191
4192 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4193 return true;
4194
4195 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
4196 && is_gimple_min_invariant (TREE_OPERAND (t, 1)))
4197 || TREE_CODE (t) == COMPONENT_REF
4198 || TREE_CODE (t) == REALPART_EXPR
4199 || TREE_CODE (t) == IMAGPART_EXPR)
4200 t = TREE_OPERAND (t, 0);
4201
4202 if (DECL_P (t))
4203 return true;
4204
4205 return false;
4206 }
4207
4208
4209 /* Called via walk_gimple_stmt. Verify tree sharing. */
4210
4211 static tree
4212 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4213 {
4214 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4215 struct pointer_set_t *visited = (struct pointer_set_t *) wi->info;
4216
4217 if (tree_node_can_be_shared (*tp))
4218 {
4219 *walk_subtrees = false;
4220 return NULL;
4221 }
4222
4223 if (pointer_set_insert (visited, *tp))
4224 return *tp;
4225
4226 return NULL;
4227 }
4228
4229
4230 static bool eh_error_found;
4231 static int
4232 verify_eh_throw_stmt_node (void **slot, void *data)
4233 {
4234 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4235 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4236
4237 if (!pointer_set_contains (visited, node->stmt))
4238 {
4239 error ("Dead STMT in EH table");
4240 debug_gimple_stmt (node->stmt);
4241 eh_error_found = true;
4242 }
4243 return 1;
4244 }
4245
4246
4247 /* Verify the GIMPLE statements in every basic block. */
4248
4249 DEBUG_FUNCTION void
4250 verify_stmts (void)
4251 {
4252 basic_block bb;
4253 gimple_stmt_iterator gsi;
4254 bool err = false;
4255 struct pointer_set_t *visited, *visited_stmts;
4256 tree addr;
4257 struct walk_stmt_info wi;
4258
4259 timevar_push (TV_TREE_STMT_VERIFY);
4260 visited = pointer_set_create ();
4261 visited_stmts = pointer_set_create ();
4262
4263 memset (&wi, 0, sizeof (wi));
4264 wi.info = (void *) visited;
4265
4266 FOR_EACH_BB (bb)
4267 {
4268 gimple phi;
4269 size_t i;
4270
4271 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4272 {
4273 phi = gsi_stmt (gsi);
4274 pointer_set_insert (visited_stmts, phi);
4275 if (gimple_bb (phi) != bb)
4276 {
4277 error ("gimple_bb (phi) is set to a wrong basic block");
4278 err |= true;
4279 }
4280
4281 for (i = 0; i < gimple_phi_num_args (phi); i++)
4282 {
4283 tree t = gimple_phi_arg_def (phi, i);
4284 tree addr;
4285
4286 if (!t)
4287 {
4288 error ("missing PHI def");
4289 debug_gimple_stmt (phi);
4290 err |= true;
4291 continue;
4292 }
4293 /* Addressable variables do have SSA_NAMEs but they
4294 are not considered gimple values. */
4295 else if (TREE_CODE (t) != SSA_NAME
4296 && TREE_CODE (t) != FUNCTION_DECL
4297 && !is_gimple_min_invariant (t))
4298 {
4299 error ("PHI argument is not a GIMPLE value");
4300 debug_gimple_stmt (phi);
4301 debug_generic_expr (t);
4302 err |= true;
4303 }
4304
4305 addr = walk_tree (&t, verify_node_sharing, visited, NULL);
4306 if (addr)
4307 {
4308 error ("incorrect sharing of tree nodes");
4309 debug_gimple_stmt (phi);
4310 debug_generic_expr (addr);
4311 err |= true;
4312 }
4313 }
4314
4315 #ifdef ENABLE_TYPES_CHECKING
4316 if (verify_gimple_phi (phi))
4317 {
4318 debug_gimple_stmt (phi);
4319 err |= true;
4320 }
4321 #endif
4322 }
4323
4324 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
4325 {
4326 gimple stmt = gsi_stmt (gsi);
4327
4328 if (gimple_code (stmt) == GIMPLE_WITH_CLEANUP_EXPR
4329 || gimple_code (stmt) == GIMPLE_BIND)
4330 {
4331 error ("invalid GIMPLE statement");
4332 debug_gimple_stmt (stmt);
4333 err |= true;
4334 }
4335
4336 pointer_set_insert (visited_stmts, stmt);
4337
4338 if (gimple_bb (stmt) != bb)
4339 {
4340 error ("gimple_bb (stmt) is set to a wrong basic block");
4341 debug_gimple_stmt (stmt);
4342 err |= true;
4343 }
4344
4345 if (gimple_code (stmt) == GIMPLE_LABEL)
4346 {
4347 tree decl = gimple_label_label (stmt);
4348 int uid = LABEL_DECL_UID (decl);
4349
4350 if (uid == -1
4351 || VEC_index (basic_block, label_to_block_map, uid) != bb)
4352 {
4353 error ("incorrect entry in label_to_block_map");
4354 err |= true;
4355 }
4356
4357 uid = EH_LANDING_PAD_NR (decl);
4358 if (uid)
4359 {
4360 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4361 if (decl != lp->post_landing_pad)
4362 {
4363 error ("incorrect setting of landing pad number");
4364 err |= true;
4365 }
4366 }
4367 }
4368
4369 err |= verify_stmt (&gsi);
4370
4371 #ifdef ENABLE_TYPES_CHECKING
4372 if (verify_types_in_gimple_stmt (gsi_stmt (gsi)))
4373 {
4374 debug_gimple_stmt (stmt);
4375 err |= true;
4376 }
4377 #endif
4378 addr = walk_gimple_op (gsi_stmt (gsi), verify_node_sharing, &wi);
4379 if (addr)
4380 {
4381 error ("incorrect sharing of tree nodes");
4382 debug_gimple_stmt (stmt);
4383 debug_generic_expr (addr);
4384 err |= true;
4385 }
4386 gsi_next (&gsi);
4387 }
4388 }
4389
4390 eh_error_found = false;
4391 if (get_eh_throw_stmt_table (cfun))
4392 htab_traverse (get_eh_throw_stmt_table (cfun),
4393 verify_eh_throw_stmt_node,
4394 visited_stmts);
4395
4396 if (err | eh_error_found)
4397 internal_error ("verify_stmts failed");
4398
4399 pointer_set_destroy (visited);
4400 pointer_set_destroy (visited_stmts);
4401 verify_histograms ();
4402 timevar_pop (TV_TREE_STMT_VERIFY);
4403 }
4404
4405
4406 /* Verifies that the flow information is OK. */
4407
4408 static int
4409 gimple_verify_flow_info (void)
4410 {
4411 int err = 0;
4412 basic_block bb;
4413 gimple_stmt_iterator gsi;
4414 gimple stmt;
4415 edge e;
4416 edge_iterator ei;
4417
4418 if (ENTRY_BLOCK_PTR->il.gimple)
4419 {
4420 error ("ENTRY_BLOCK has IL associated with it");
4421 err = 1;
4422 }
4423
4424 if (EXIT_BLOCK_PTR->il.gimple)
4425 {
4426 error ("EXIT_BLOCK has IL associated with it");
4427 err = 1;
4428 }
4429
4430 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4431 if (e->flags & EDGE_FALLTHRU)
4432 {
4433 error ("fallthru to exit from bb %d", e->src->index);
4434 err = 1;
4435 }
4436
4437 FOR_EACH_BB (bb)
4438 {
4439 bool found_ctrl_stmt = false;
4440
4441 stmt = NULL;
4442
4443 /* Skip labels on the start of basic block. */
4444 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4445 {
4446 tree label;
4447 gimple prev_stmt = stmt;
4448
4449 stmt = gsi_stmt (gsi);
4450
4451 if (gimple_code (stmt) != GIMPLE_LABEL)
4452 break;
4453
4454 label = gimple_label_label (stmt);
4455 if (prev_stmt && DECL_NONLOCAL (label))
4456 {
4457 error ("nonlocal label ");
4458 print_generic_expr (stderr, label, 0);
4459 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4460 bb->index);
4461 err = 1;
4462 }
4463
4464 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4465 {
4466 error ("EH landing pad label ");
4467 print_generic_expr (stderr, label, 0);
4468 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4469 bb->index);
4470 err = 1;
4471 }
4472
4473 if (label_to_block (label) != bb)
4474 {
4475 error ("label ");
4476 print_generic_expr (stderr, label, 0);
4477 fprintf (stderr, " to block does not match in bb %d",
4478 bb->index);
4479 err = 1;
4480 }
4481
4482 if (decl_function_context (label) != current_function_decl)
4483 {
4484 error ("label ");
4485 print_generic_expr (stderr, label, 0);
4486 fprintf (stderr, " has incorrect context in bb %d",
4487 bb->index);
4488 err = 1;
4489 }
4490 }
4491
4492 /* Verify that body of basic block BB is free of control flow. */
4493 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4494 {
4495 gimple stmt = gsi_stmt (gsi);
4496
4497 if (found_ctrl_stmt)
4498 {
4499 error ("control flow in the middle of basic block %d",
4500 bb->index);
4501 err = 1;
4502 }
4503
4504 if (stmt_ends_bb_p (stmt))
4505 found_ctrl_stmt = true;
4506
4507 if (gimple_code (stmt) == GIMPLE_LABEL)
4508 {
4509 error ("label ");
4510 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4511 fprintf (stderr, " in the middle of basic block %d", bb->index);
4512 err = 1;
4513 }
4514 }
4515
4516 gsi = gsi_last_bb (bb);
4517 if (gsi_end_p (gsi))
4518 continue;
4519
4520 stmt = gsi_stmt (gsi);
4521
4522 if (gimple_code (stmt) == GIMPLE_LABEL)
4523 continue;
4524
4525 err |= verify_eh_edges (stmt);
4526
4527 if (is_ctrl_stmt (stmt))
4528 {
4529 FOR_EACH_EDGE (e, ei, bb->succs)
4530 if (e->flags & EDGE_FALLTHRU)
4531 {
4532 error ("fallthru edge after a control statement in bb %d",
4533 bb->index);
4534 err = 1;
4535 }
4536 }
4537
4538 if (gimple_code (stmt) != GIMPLE_COND)
4539 {
4540 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4541 after anything else but if statement. */
4542 FOR_EACH_EDGE (e, ei, bb->succs)
4543 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
4544 {
4545 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4546 bb->index);
4547 err = 1;
4548 }
4549 }
4550
4551 switch (gimple_code (stmt))
4552 {
4553 case GIMPLE_COND:
4554 {
4555 edge true_edge;
4556 edge false_edge;
4557
4558 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
4559
4560 if (!true_edge
4561 || !false_edge
4562 || !(true_edge->flags & EDGE_TRUE_VALUE)
4563 || !(false_edge->flags & EDGE_FALSE_VALUE)
4564 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4565 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
4566 || EDGE_COUNT (bb->succs) >= 3)
4567 {
4568 error ("wrong outgoing edge flags at end of bb %d",
4569 bb->index);
4570 err = 1;
4571 }
4572 }
4573 break;
4574
4575 case GIMPLE_GOTO:
4576 if (simple_goto_p (stmt))
4577 {
4578 error ("explicit goto at end of bb %d", bb->index);
4579 err = 1;
4580 }
4581 else
4582 {
4583 /* FIXME. We should double check that the labels in the
4584 destination blocks have their address taken. */
4585 FOR_EACH_EDGE (e, ei, bb->succs)
4586 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
4587 | EDGE_FALSE_VALUE))
4588 || !(e->flags & EDGE_ABNORMAL))
4589 {
4590 error ("wrong outgoing edge flags at end of bb %d",
4591 bb->index);
4592 err = 1;
4593 }
4594 }
4595 break;
4596
4597 case GIMPLE_CALL:
4598 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
4599 break;
4600 /* ... fallthru ... */
4601 case GIMPLE_RETURN:
4602 if (!single_succ_p (bb)
4603 || (single_succ_edge (bb)->flags
4604 & (EDGE_FALLTHRU | EDGE_ABNORMAL
4605 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4606 {
4607 error ("wrong outgoing edge flags at end of bb %d", bb->index);
4608 err = 1;
4609 }
4610 if (single_succ (bb) != EXIT_BLOCK_PTR)
4611 {
4612 error ("return edge does not point to exit in bb %d",
4613 bb->index);
4614 err = 1;
4615 }
4616 break;
4617
4618 case GIMPLE_SWITCH:
4619 {
4620 tree prev;
4621 edge e;
4622 size_t i, n;
4623
4624 n = gimple_switch_num_labels (stmt);
4625
4626 /* Mark all the destination basic blocks. */
4627 for (i = 0; i < n; ++i)
4628 {
4629 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4630 basic_block label_bb = label_to_block (lab);
4631 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
4632 label_bb->aux = (void *)1;
4633 }
4634
4635 /* Verify that the case labels are sorted. */
4636 prev = gimple_switch_label (stmt, 0);
4637 for (i = 1; i < n; ++i)
4638 {
4639 tree c = gimple_switch_label (stmt, i);
4640 if (!CASE_LOW (c))
4641 {
4642 error ("found default case not at the start of "
4643 "case vector");
4644 err = 1;
4645 continue;
4646 }
4647 if (CASE_LOW (prev)
4648 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
4649 {
4650 error ("case labels not sorted: ");
4651 print_generic_expr (stderr, prev, 0);
4652 fprintf (stderr," is greater than ");
4653 print_generic_expr (stderr, c, 0);
4654 fprintf (stderr," but comes before it.\n");
4655 err = 1;
4656 }
4657 prev = c;
4658 }
4659 /* VRP will remove the default case if it can prove it will
4660 never be executed. So do not verify there always exists
4661 a default case here. */
4662
4663 FOR_EACH_EDGE (e, ei, bb->succs)
4664 {
4665 if (!e->dest->aux)
4666 {
4667 error ("extra outgoing edge %d->%d",
4668 bb->index, e->dest->index);
4669 err = 1;
4670 }
4671
4672 e->dest->aux = (void *)2;
4673 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
4674 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
4675 {
4676 error ("wrong outgoing edge flags at end of bb %d",
4677 bb->index);
4678 err = 1;
4679 }
4680 }
4681
4682 /* Check that we have all of them. */
4683 for (i = 0; i < n; ++i)
4684 {
4685 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
4686 basic_block label_bb = label_to_block (lab);
4687
4688 if (label_bb->aux != (void *)2)
4689 {
4690 error ("missing edge %i->%i", bb->index, label_bb->index);
4691 err = 1;
4692 }
4693 }
4694
4695 FOR_EACH_EDGE (e, ei, bb->succs)
4696 e->dest->aux = (void *)0;
4697 }
4698 break;
4699
4700 case GIMPLE_EH_DISPATCH:
4701 err |= verify_eh_dispatch_edge (stmt);
4702 break;
4703
4704 default:
4705 break;
4706 }
4707 }
4708
4709 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
4710 verify_dominators (CDI_DOMINATORS);
4711
4712 return err;
4713 }
4714
4715
4716 /* Updates phi nodes after creating a forwarder block joined
4717 by edge FALLTHRU. */
4718
4719 static void
4720 gimple_make_forwarder_block (edge fallthru)
4721 {
4722 edge e;
4723 edge_iterator ei;
4724 basic_block dummy, bb;
4725 tree var;
4726 gimple_stmt_iterator gsi;
4727
4728 dummy = fallthru->src;
4729 bb = fallthru->dest;
4730
4731 if (single_pred_p (bb))
4732 return;
4733
4734 /* If we redirected a branch we must create new PHI nodes at the
4735 start of BB. */
4736 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
4737 {
4738 gimple phi, new_phi;
4739
4740 phi = gsi_stmt (gsi);
4741 var = gimple_phi_result (phi);
4742 new_phi = create_phi_node (var, bb);
4743 SSA_NAME_DEF_STMT (var) = new_phi;
4744 gimple_phi_set_result (phi, make_ssa_name (SSA_NAME_VAR (var), phi));
4745 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
4746 UNKNOWN_LOCATION);
4747 }
4748
4749 /* Add the arguments we have stored on edges. */
4750 FOR_EACH_EDGE (e, ei, bb->preds)
4751 {
4752 if (e == fallthru)
4753 continue;
4754
4755 flush_pending_stmts (e);
4756 }
4757 }
4758
4759
4760 /* Return a non-special label in the head of basic block BLOCK.
4761 Create one if it doesn't exist. */
4762
4763 tree
4764 gimple_block_label (basic_block bb)
4765 {
4766 gimple_stmt_iterator i, s = gsi_start_bb (bb);
4767 bool first = true;
4768 tree label;
4769 gimple stmt;
4770
4771 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
4772 {
4773 stmt = gsi_stmt (i);
4774 if (gimple_code (stmt) != GIMPLE_LABEL)
4775 break;
4776 label = gimple_label_label (stmt);
4777 if (!DECL_NONLOCAL (label))
4778 {
4779 if (!first)
4780 gsi_move_before (&i, &s);
4781 return label;
4782 }
4783 }
4784
4785 label = create_artificial_label (UNKNOWN_LOCATION);
4786 stmt = gimple_build_label (label);
4787 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
4788 return label;
4789 }
4790
4791
4792 /* Attempt to perform edge redirection by replacing a possibly complex
4793 jump instruction by a goto or by removing the jump completely.
4794 This can apply only if all edges now point to the same block. The
4795 parameters and return values are equivalent to
4796 redirect_edge_and_branch. */
4797
4798 static edge
4799 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
4800 {
4801 basic_block src = e->src;
4802 gimple_stmt_iterator i;
4803 gimple stmt;
4804
4805 /* We can replace or remove a complex jump only when we have exactly
4806 two edges. */
4807 if (EDGE_COUNT (src->succs) != 2
4808 /* Verify that all targets will be TARGET. Specifically, the
4809 edge that is not E must also go to TARGET. */
4810 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
4811 return NULL;
4812
4813 i = gsi_last_bb (src);
4814 if (gsi_end_p (i))
4815 return NULL;
4816
4817 stmt = gsi_stmt (i);
4818
4819 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
4820 {
4821 gsi_remove (&i, true);
4822 e = ssa_redirect_edge (e, target);
4823 e->flags = EDGE_FALLTHRU;
4824 return e;
4825 }
4826
4827 return NULL;
4828 }
4829
4830
4831 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4832 edge representing the redirected branch. */
4833
4834 static edge
4835 gimple_redirect_edge_and_branch (edge e, basic_block dest)
4836 {
4837 basic_block bb = e->src;
4838 gimple_stmt_iterator gsi;
4839 edge ret;
4840 gimple stmt;
4841
4842 if (e->flags & EDGE_ABNORMAL)
4843 return NULL;
4844
4845 if (e->dest == dest)
4846 return NULL;
4847
4848 if (e->flags & EDGE_EH)
4849 return redirect_eh_edge (e, dest);
4850
4851 if (e->src != ENTRY_BLOCK_PTR)
4852 {
4853 ret = gimple_try_redirect_by_replacing_jump (e, dest);
4854 if (ret)
4855 return ret;
4856 }
4857
4858 gsi = gsi_last_bb (bb);
4859 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
4860
4861 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
4862 {
4863 case GIMPLE_COND:
4864 /* For COND_EXPR, we only need to redirect the edge. */
4865 break;
4866
4867 case GIMPLE_GOTO:
4868 /* No non-abnormal edges should lead from a non-simple goto, and
4869 simple ones should be represented implicitly. */
4870 gcc_unreachable ();
4871
4872 case GIMPLE_SWITCH:
4873 {
4874 tree label = gimple_block_label (dest);
4875 tree cases = get_cases_for_edge (e, stmt);
4876
4877 /* If we have a list of cases associated with E, then use it
4878 as it's a lot faster than walking the entire case vector. */
4879 if (cases)
4880 {
4881 edge e2 = find_edge (e->src, dest);
4882 tree last, first;
4883
4884 first = cases;
4885 while (cases)
4886 {
4887 last = cases;
4888 CASE_LABEL (cases) = label;
4889 cases = TREE_CHAIN (cases);
4890 }
4891
4892 /* If there was already an edge in the CFG, then we need
4893 to move all the cases associated with E to E2. */
4894 if (e2)
4895 {
4896 tree cases2 = get_cases_for_edge (e2, stmt);
4897
4898 TREE_CHAIN (last) = TREE_CHAIN (cases2);
4899 TREE_CHAIN (cases2) = first;
4900 }
4901 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
4902 }
4903 else
4904 {
4905 size_t i, n = gimple_switch_num_labels (stmt);
4906
4907 for (i = 0; i < n; i++)
4908 {
4909 tree elt = gimple_switch_label (stmt, i);
4910 if (label_to_block (CASE_LABEL (elt)) == e->dest)
4911 CASE_LABEL (elt) = label;
4912 }
4913 }
4914 }
4915 break;
4916
4917 case GIMPLE_ASM:
4918 {
4919 int i, n = gimple_asm_nlabels (stmt);
4920 tree label = NULL;
4921
4922 for (i = 0; i < n; ++i)
4923 {
4924 tree cons = gimple_asm_label_op (stmt, i);
4925 if (label_to_block (TREE_VALUE (cons)) == e->dest)
4926 {
4927 if (!label)
4928 label = gimple_block_label (dest);
4929 TREE_VALUE (cons) = label;
4930 }
4931 }
4932
4933 /* If we didn't find any label matching the former edge in the
4934 asm labels, we must be redirecting the fallthrough
4935 edge. */
4936 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
4937 }
4938 break;
4939
4940 case GIMPLE_RETURN:
4941 gsi_remove (&gsi, true);
4942 e->flags |= EDGE_FALLTHRU;
4943 break;
4944
4945 case GIMPLE_OMP_RETURN:
4946 case GIMPLE_OMP_CONTINUE:
4947 case GIMPLE_OMP_SECTIONS_SWITCH:
4948 case GIMPLE_OMP_FOR:
4949 /* The edges from OMP constructs can be simply redirected. */
4950 break;
4951
4952 case GIMPLE_EH_DISPATCH:
4953 if (!(e->flags & EDGE_FALLTHRU))
4954 redirect_eh_dispatch_edge (stmt, e, dest);
4955 break;
4956
4957 default:
4958 /* Otherwise it must be a fallthru edge, and we don't need to
4959 do anything besides redirecting it. */
4960 gcc_assert (e->flags & EDGE_FALLTHRU);
4961 break;
4962 }
4963
4964 /* Update/insert PHI nodes as necessary. */
4965
4966 /* Now update the edges in the CFG. */
4967 e = ssa_redirect_edge (e, dest);
4968
4969 return e;
4970 }
4971
4972 /* Returns true if it is possible to remove edge E by redirecting
4973 it to the destination of the other edge from E->src. */
4974
4975 static bool
4976 gimple_can_remove_branch_p (const_edge e)
4977 {
4978 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
4979 return false;
4980
4981 return true;
4982 }
4983
4984 /* Simple wrapper, as we can always redirect fallthru edges. */
4985
4986 static basic_block
4987 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
4988 {
4989 e = gimple_redirect_edge_and_branch (e, dest);
4990 gcc_assert (e);
4991
4992 return NULL;
4993 }
4994
4995
4996 /* Splits basic block BB after statement STMT (but at least after the
4997 labels). If STMT is NULL, BB is split just after the labels. */
4998
4999 static basic_block
5000 gimple_split_block (basic_block bb, void *stmt)
5001 {
5002 gimple_stmt_iterator gsi;
5003 gimple_stmt_iterator gsi_tgt;
5004 gimple act;
5005 gimple_seq list;
5006 basic_block new_bb;
5007 edge e;
5008 edge_iterator ei;
5009
5010 new_bb = create_empty_bb (bb);
5011
5012 /* Redirect the outgoing edges. */
5013 new_bb->succs = bb->succs;
5014 bb->succs = NULL;
5015 FOR_EACH_EDGE (e, ei, new_bb->succs)
5016 e->src = new_bb;
5017
5018 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5019 stmt = NULL;
5020
5021 /* Move everything from GSI to the new basic block. */
5022 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5023 {
5024 act = gsi_stmt (gsi);
5025 if (gimple_code (act) == GIMPLE_LABEL)
5026 continue;
5027
5028 if (!stmt)
5029 break;
5030
5031 if (stmt == act)
5032 {
5033 gsi_next (&gsi);
5034 break;
5035 }
5036 }
5037
5038 if (gsi_end_p (gsi))
5039 return new_bb;
5040
5041 /* Split the statement list - avoid re-creating new containers as this
5042 brings ugly quadratic memory consumption in the inliner.
5043 (We are still quadratic since we need to update stmt BB pointers,
5044 sadly.) */
5045 list = gsi_split_seq_before (&gsi);
5046 set_bb_seq (new_bb, list);
5047 for (gsi_tgt = gsi_start (list);
5048 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5049 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5050
5051 return new_bb;
5052 }
5053
5054
5055 /* Moves basic block BB after block AFTER. */
5056
5057 static bool
5058 gimple_move_block_after (basic_block bb, basic_block after)
5059 {
5060 if (bb->prev_bb == after)
5061 return true;
5062
5063 unlink_block (bb);
5064 link_block (bb, after);
5065
5066 return true;
5067 }
5068
5069
5070 /* Return true if basic_block can be duplicated. */
5071
5072 static bool
5073 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5074 {
5075 return true;
5076 }
5077
5078 /* Create a duplicate of the basic block BB. NOTE: This does not
5079 preserve SSA form. */
5080
5081 static basic_block
5082 gimple_duplicate_bb (basic_block bb)
5083 {
5084 basic_block new_bb;
5085 gimple_stmt_iterator gsi, gsi_tgt;
5086 gimple_seq phis = phi_nodes (bb);
5087 gimple phi, stmt, copy;
5088
5089 new_bb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
5090
5091 /* Copy the PHI nodes. We ignore PHI node arguments here because
5092 the incoming edges have not been setup yet. */
5093 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5094 {
5095 phi = gsi_stmt (gsi);
5096 copy = create_phi_node (gimple_phi_result (phi), new_bb);
5097 create_new_def_for (gimple_phi_result (copy), copy,
5098 gimple_phi_result_ptr (copy));
5099 }
5100
5101 gsi_tgt = gsi_start_bb (new_bb);
5102 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5103 {
5104 def_operand_p def_p;
5105 ssa_op_iter op_iter;
5106
5107 stmt = gsi_stmt (gsi);
5108 if (gimple_code (stmt) == GIMPLE_LABEL)
5109 continue;
5110
5111 /* Create a new copy of STMT and duplicate STMT's virtual
5112 operands. */
5113 copy = gimple_copy (stmt);
5114 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5115
5116 maybe_duplicate_eh_stmt (copy, stmt);
5117 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5118
5119 /* Create new names for all the definitions created by COPY and
5120 add replacement mappings for each new name. */
5121 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5122 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5123 }
5124
5125 return new_bb;
5126 }
5127
5128 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5129
5130 static void
5131 add_phi_args_after_copy_edge (edge e_copy)
5132 {
5133 basic_block bb, bb_copy = e_copy->src, dest;
5134 edge e;
5135 edge_iterator ei;
5136 gimple phi, phi_copy;
5137 tree def;
5138 gimple_stmt_iterator psi, psi_copy;
5139
5140 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5141 return;
5142
5143 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5144
5145 if (e_copy->dest->flags & BB_DUPLICATED)
5146 dest = get_bb_original (e_copy->dest);
5147 else
5148 dest = e_copy->dest;
5149
5150 e = find_edge (bb, dest);
5151 if (!e)
5152 {
5153 /* During loop unrolling the target of the latch edge is copied.
5154 In this case we are not looking for edge to dest, but to
5155 duplicated block whose original was dest. */
5156 FOR_EACH_EDGE (e, ei, bb->succs)
5157 {
5158 if ((e->dest->flags & BB_DUPLICATED)
5159 && get_bb_original (e->dest) == dest)
5160 break;
5161 }
5162
5163 gcc_assert (e != NULL);
5164 }
5165
5166 for (psi = gsi_start_phis (e->dest),
5167 psi_copy = gsi_start_phis (e_copy->dest);
5168 !gsi_end_p (psi);
5169 gsi_next (&psi), gsi_next (&psi_copy))
5170 {
5171 phi = gsi_stmt (psi);
5172 phi_copy = gsi_stmt (psi_copy);
5173 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5174 add_phi_arg (phi_copy, def, e_copy,
5175 gimple_phi_arg_location_from_edge (phi, e));
5176 }
5177 }
5178
5179
5180 /* Basic block BB_COPY was created by code duplication. Add phi node
5181 arguments for edges going out of BB_COPY. The blocks that were
5182 duplicated have BB_DUPLICATED set. */
5183
5184 void
5185 add_phi_args_after_copy_bb (basic_block bb_copy)
5186 {
5187 edge e_copy;
5188 edge_iterator ei;
5189
5190 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5191 {
5192 add_phi_args_after_copy_edge (e_copy);
5193 }
5194 }
5195
5196 /* Blocks in REGION_COPY array of length N_REGION were created by
5197 duplication of basic blocks. Add phi node arguments for edges
5198 going from these blocks. If E_COPY is not NULL, also add
5199 phi node arguments for its destination.*/
5200
5201 void
5202 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5203 edge e_copy)
5204 {
5205 unsigned i;
5206
5207 for (i = 0; i < n_region; i++)
5208 region_copy[i]->flags |= BB_DUPLICATED;
5209
5210 for (i = 0; i < n_region; i++)
5211 add_phi_args_after_copy_bb (region_copy[i]);
5212 if (e_copy)
5213 add_phi_args_after_copy_edge (e_copy);
5214
5215 for (i = 0; i < n_region; i++)
5216 region_copy[i]->flags &= ~BB_DUPLICATED;
5217 }
5218
5219 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5220 important exit edge EXIT. By important we mean that no SSA name defined
5221 inside region is live over the other exit edges of the region. All entry
5222 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5223 to the duplicate of the region. SSA form, dominance and loop information
5224 is updated. The new basic blocks are stored to REGION_COPY in the same
5225 order as they had in REGION, provided that REGION_COPY is not NULL.
5226 The function returns false if it is unable to copy the region,
5227 true otherwise. */
5228
5229 bool
5230 gimple_duplicate_sese_region (edge entry, edge exit,
5231 basic_block *region, unsigned n_region,
5232 basic_block *region_copy)
5233 {
5234 unsigned i;
5235 bool free_region_copy = false, copying_header = false;
5236 struct loop *loop = entry->dest->loop_father;
5237 edge exit_copy;
5238 VEC (basic_block, heap) *doms;
5239 edge redirected;
5240 int total_freq = 0, entry_freq = 0;
5241 gcov_type total_count = 0, entry_count = 0;
5242
5243 if (!can_copy_bbs_p (region, n_region))
5244 return false;
5245
5246 /* Some sanity checking. Note that we do not check for all possible
5247 missuses of the functions. I.e. if you ask to copy something weird,
5248 it will work, but the state of structures probably will not be
5249 correct. */
5250 for (i = 0; i < n_region; i++)
5251 {
5252 /* We do not handle subloops, i.e. all the blocks must belong to the
5253 same loop. */
5254 if (region[i]->loop_father != loop)
5255 return false;
5256
5257 if (region[i] != entry->dest
5258 && region[i] == loop->header)
5259 return false;
5260 }
5261
5262 set_loop_copy (loop, loop);
5263
5264 /* In case the function is used for loop header copying (which is the primary
5265 use), ensure that EXIT and its copy will be new latch and entry edges. */
5266 if (loop->header == entry->dest)
5267 {
5268 copying_header = true;
5269 set_loop_copy (loop, loop_outer (loop));
5270
5271 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5272 return false;
5273
5274 for (i = 0; i < n_region; i++)
5275 if (region[i] != exit->src
5276 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5277 return false;
5278 }
5279
5280 if (!region_copy)
5281 {
5282 region_copy = XNEWVEC (basic_block, n_region);
5283 free_region_copy = true;
5284 }
5285
5286 gcc_assert (!need_ssa_update_p (cfun));
5287
5288 /* Record blocks outside the region that are dominated by something
5289 inside. */
5290 doms = NULL;
5291 initialize_original_copy_tables ();
5292
5293 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5294
5295 if (entry->dest->count)
5296 {
5297 total_count = entry->dest->count;
5298 entry_count = entry->count;
5299 /* Fix up corner cases, to avoid division by zero or creation of negative
5300 frequencies. */
5301 if (entry_count > total_count)
5302 entry_count = total_count;
5303 }
5304 else
5305 {
5306 total_freq = entry->dest->frequency;
5307 entry_freq = EDGE_FREQUENCY (entry);
5308 /* Fix up corner cases, to avoid division by zero or creation of negative
5309 frequencies. */
5310 if (total_freq == 0)
5311 total_freq = 1;
5312 else if (entry_freq > total_freq)
5313 entry_freq = total_freq;
5314 }
5315
5316 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5317 split_edge_bb_loc (entry));
5318 if (total_count)
5319 {
5320 scale_bbs_frequencies_gcov_type (region, n_region,
5321 total_count - entry_count,
5322 total_count);
5323 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5324 total_count);
5325 }
5326 else
5327 {
5328 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5329 total_freq);
5330 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5331 }
5332
5333 if (copying_header)
5334 {
5335 loop->header = exit->dest;
5336 loop->latch = exit->src;
5337 }
5338
5339 /* Redirect the entry and add the phi node arguments. */
5340 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5341 gcc_assert (redirected != NULL);
5342 flush_pending_stmts (entry);
5343
5344 /* Concerning updating of dominators: We must recount dominators
5345 for entry block and its copy. Anything that is outside of the
5346 region, but was dominated by something inside needs recounting as
5347 well. */
5348 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5349 VEC_safe_push (basic_block, heap, doms, get_bb_original (entry->dest));
5350 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5351 VEC_free (basic_block, heap, doms);
5352
5353 /* Add the other PHI node arguments. */
5354 add_phi_args_after_copy (region_copy, n_region, NULL);
5355
5356 /* Update the SSA web. */
5357 update_ssa (TODO_update_ssa);
5358
5359 if (free_region_copy)
5360 free (region_copy);
5361
5362 free_original_copy_tables ();
5363 return true;
5364 }
5365
5366 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5367 are stored to REGION_COPY in the same order in that they appear
5368 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5369 the region, EXIT an exit from it. The condition guarding EXIT
5370 is moved to ENTRY. Returns true if duplication succeeds, false
5371 otherwise.
5372
5373 For example,
5374
5375 some_code;
5376 if (cond)
5377 A;
5378 else
5379 B;
5380
5381 is transformed to
5382
5383 if (cond)
5384 {
5385 some_code;
5386 A;
5387 }
5388 else
5389 {
5390 some_code;
5391 B;
5392 }
5393 */
5394
5395 bool
5396 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5397 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5398 basic_block *region_copy ATTRIBUTE_UNUSED)
5399 {
5400 unsigned i;
5401 bool free_region_copy = false;
5402 struct loop *loop = exit->dest->loop_father;
5403 struct loop *orig_loop = entry->dest->loop_father;
5404 basic_block switch_bb, entry_bb, nentry_bb;
5405 VEC (basic_block, heap) *doms;
5406 int total_freq = 0, exit_freq = 0;
5407 gcov_type total_count = 0, exit_count = 0;
5408 edge exits[2], nexits[2], e;
5409 gimple_stmt_iterator gsi,gsi1;
5410 gimple cond_stmt;
5411 edge sorig, snew;
5412 basic_block exit_bb;
5413 basic_block iters_bb;
5414 tree new_rhs;
5415 gimple_stmt_iterator psi;
5416 gimple phi;
5417 tree def;
5418
5419 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5420 exits[0] = exit;
5421 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5422
5423 if (!can_copy_bbs_p (region, n_region))
5424 return false;
5425
5426 initialize_original_copy_tables ();
5427 set_loop_copy (orig_loop, loop);
5428 duplicate_subloops (orig_loop, loop);
5429
5430 if (!region_copy)
5431 {
5432 region_copy = XNEWVEC (basic_block, n_region);
5433 free_region_copy = true;
5434 }
5435
5436 gcc_assert (!need_ssa_update_p (cfun));
5437
5438 /* Record blocks outside the region that are dominated by something
5439 inside. */
5440 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5441
5442 if (exit->src->count)
5443 {
5444 total_count = exit->src->count;
5445 exit_count = exit->count;
5446 /* Fix up corner cases, to avoid division by zero or creation of negative
5447 frequencies. */
5448 if (exit_count > total_count)
5449 exit_count = total_count;
5450 }
5451 else
5452 {
5453 total_freq = exit->src->frequency;
5454 exit_freq = EDGE_FREQUENCY (exit);
5455 /* Fix up corner cases, to avoid division by zero or creation of negative
5456 frequencies. */
5457 if (total_freq == 0)
5458 total_freq = 1;
5459 if (exit_freq > total_freq)
5460 exit_freq = total_freq;
5461 }
5462
5463 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
5464 split_edge_bb_loc (exit));
5465 if (total_count)
5466 {
5467 scale_bbs_frequencies_gcov_type (region, n_region,
5468 total_count - exit_count,
5469 total_count);
5470 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
5471 total_count);
5472 }
5473 else
5474 {
5475 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
5476 total_freq);
5477 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
5478 }
5479
5480 /* Create the switch block, and put the exit condition to it. */
5481 entry_bb = entry->dest;
5482 nentry_bb = get_bb_copy (entry_bb);
5483 if (!last_stmt (entry->src)
5484 || !stmt_ends_bb_p (last_stmt (entry->src)))
5485 switch_bb = entry->src;
5486 else
5487 switch_bb = split_edge (entry);
5488 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
5489
5490 gsi = gsi_last_bb (switch_bb);
5491 cond_stmt = last_stmt (exit->src);
5492 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
5493 cond_stmt = gimple_copy (cond_stmt);
5494
5495 /* If the block consisting of the exit condition has the latch as
5496 successor, then the body of the loop is executed before
5497 the exit condition is tested. In such case, moving the
5498 condition to the entry, causes that the loop will iterate
5499 one less iteration (which is the wanted outcome, since we
5500 peel out the last iteration). If the body is executed after
5501 the condition, moving the condition to the entry requires
5502 decrementing one iteration. */
5503 if (exits[1]->dest == orig_loop->latch)
5504 new_rhs = gimple_cond_rhs (cond_stmt);
5505 else
5506 {
5507 new_rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (gimple_cond_rhs (cond_stmt)),
5508 gimple_cond_rhs (cond_stmt),
5509 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt)), 1));
5510
5511 if (TREE_CODE (gimple_cond_rhs (cond_stmt)) == SSA_NAME)
5512 {
5513 iters_bb = gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)));
5514 for (gsi1 = gsi_start_bb (iters_bb); !gsi_end_p (gsi1); gsi_next (&gsi1))
5515 if (gsi_stmt (gsi1) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt)))
5516 break;
5517
5518 new_rhs = force_gimple_operand_gsi (&gsi1, new_rhs, true,
5519 NULL_TREE,false,GSI_CONTINUE_LINKING);
5520 }
5521 }
5522 gimple_cond_set_rhs (cond_stmt, unshare_expr (new_rhs));
5523 gimple_cond_set_lhs (cond_stmt, unshare_expr (gimple_cond_lhs (cond_stmt)));
5524 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
5525
5526 sorig = single_succ_edge (switch_bb);
5527 sorig->flags = exits[1]->flags;
5528 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
5529
5530 /* Register the new edge from SWITCH_BB in loop exit lists. */
5531 rescan_loop_exit (snew, true, false);
5532
5533 /* Add the PHI node arguments. */
5534 add_phi_args_after_copy (region_copy, n_region, snew);
5535
5536 /* Get rid of now superfluous conditions and associated edges (and phi node
5537 arguments). */
5538 exit_bb = exit->dest;
5539
5540 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
5541 PENDING_STMT (e) = NULL;
5542
5543 /* The latch of ORIG_LOOP was copied, and so was the backedge
5544 to the original header. We redirect this backedge to EXIT_BB. */
5545 for (i = 0; i < n_region; i++)
5546 if (get_bb_original (region_copy[i]) == orig_loop->latch)
5547 {
5548 gcc_assert (single_succ_edge (region_copy[i]));
5549 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
5550 PENDING_STMT (e) = NULL;
5551 for (psi = gsi_start_phis (exit_bb);
5552 !gsi_end_p (psi);
5553 gsi_next (&psi))
5554 {
5555 phi = gsi_stmt (psi);
5556 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
5557 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
5558 }
5559 }
5560 e = redirect_edge_and_branch (nexits[0], nexits[1]->dest);
5561 PENDING_STMT (e) = NULL;
5562
5563 /* Anything that is outside of the region, but was dominated by something
5564 inside needs to update dominance info. */
5565 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5566 VEC_free (basic_block, heap, doms);
5567 /* Update the SSA web. */
5568 update_ssa (TODO_update_ssa);
5569
5570 if (free_region_copy)
5571 free (region_copy);
5572
5573 free_original_copy_tables ();
5574 return true;
5575 }
5576
5577 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5578 adding blocks when the dominator traversal reaches EXIT. This
5579 function silently assumes that ENTRY strictly dominates EXIT. */
5580
5581 void
5582 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
5583 VEC(basic_block,heap) **bbs_p)
5584 {
5585 basic_block son;
5586
5587 for (son = first_dom_son (CDI_DOMINATORS, entry);
5588 son;
5589 son = next_dom_son (CDI_DOMINATORS, son))
5590 {
5591 VEC_safe_push (basic_block, heap, *bbs_p, son);
5592 if (son != exit)
5593 gather_blocks_in_sese_region (son, exit, bbs_p);
5594 }
5595 }
5596
5597 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5598 The duplicates are recorded in VARS_MAP. */
5599
5600 static void
5601 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
5602 tree to_context)
5603 {
5604 tree t = *tp, new_t;
5605 struct function *f = DECL_STRUCT_FUNCTION (to_context);
5606 void **loc;
5607
5608 if (DECL_CONTEXT (t) == to_context)
5609 return;
5610
5611 loc = pointer_map_contains (vars_map, t);
5612
5613 if (!loc)
5614 {
5615 loc = pointer_map_insert (vars_map, t);
5616
5617 if (SSA_VAR_P (t))
5618 {
5619 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
5620 add_local_decl (f, new_t);
5621 }
5622 else
5623 {
5624 gcc_assert (TREE_CODE (t) == CONST_DECL);
5625 new_t = copy_node (t);
5626 }
5627 DECL_CONTEXT (new_t) = to_context;
5628
5629 *loc = new_t;
5630 }
5631 else
5632 new_t = (tree) *loc;
5633
5634 *tp = new_t;
5635 }
5636
5637
5638 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5639 VARS_MAP maps old ssa names and var_decls to the new ones. */
5640
5641 static tree
5642 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
5643 tree to_context)
5644 {
5645 void **loc;
5646 tree new_name, decl = SSA_NAME_VAR (name);
5647
5648 gcc_assert (is_gimple_reg (name));
5649
5650 loc = pointer_map_contains (vars_map, name);
5651
5652 if (!loc)
5653 {
5654 replace_by_duplicate_decl (&decl, vars_map, to_context);
5655
5656 push_cfun (DECL_STRUCT_FUNCTION (to_context));
5657 if (gimple_in_ssa_p (cfun))
5658 add_referenced_var (decl);
5659
5660 new_name = make_ssa_name (decl, SSA_NAME_DEF_STMT (name));
5661 if (SSA_NAME_IS_DEFAULT_DEF (name))
5662 set_default_def (decl, new_name);
5663 pop_cfun ();
5664
5665 loc = pointer_map_insert (vars_map, name);
5666 *loc = new_name;
5667 }
5668 else
5669 new_name = (tree) *loc;
5670
5671 return new_name;
5672 }
5673
5674 struct move_stmt_d
5675 {
5676 tree orig_block;
5677 tree new_block;
5678 tree from_context;
5679 tree to_context;
5680 struct pointer_map_t *vars_map;
5681 htab_t new_label_map;
5682 struct pointer_map_t *eh_map;
5683 bool remap_decls_p;
5684 };
5685
5686 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5687 contained in *TP if it has been ORIG_BLOCK previously and change the
5688 DECL_CONTEXT of every local variable referenced in *TP. */
5689
5690 static tree
5691 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
5692 {
5693 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5694 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5695 tree t = *tp;
5696
5697 if (EXPR_P (t))
5698 /* We should never have TREE_BLOCK set on non-statements. */
5699 gcc_assert (!TREE_BLOCK (t));
5700
5701 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
5702 {
5703 if (TREE_CODE (t) == SSA_NAME)
5704 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
5705 else if (TREE_CODE (t) == LABEL_DECL)
5706 {
5707 if (p->new_label_map)
5708 {
5709 struct tree_map in, *out;
5710 in.base.from = t;
5711 out = (struct tree_map *)
5712 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
5713 if (out)
5714 *tp = t = out->to;
5715 }
5716
5717 DECL_CONTEXT (t) = p->to_context;
5718 }
5719 else if (p->remap_decls_p)
5720 {
5721 /* Replace T with its duplicate. T should no longer appear in the
5722 parent function, so this looks wasteful; however, it may appear
5723 in referenced_vars, and more importantly, as virtual operands of
5724 statements, and in alias lists of other variables. It would be
5725 quite difficult to expunge it from all those places. ??? It might
5726 suffice to do this for addressable variables. */
5727 if ((TREE_CODE (t) == VAR_DECL
5728 && !is_global_var (t))
5729 || TREE_CODE (t) == CONST_DECL)
5730 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
5731
5732 if (SSA_VAR_P (t)
5733 && gimple_in_ssa_p (cfun))
5734 {
5735 push_cfun (DECL_STRUCT_FUNCTION (p->to_context));
5736 add_referenced_var (*tp);
5737 pop_cfun ();
5738 }
5739 }
5740 *walk_subtrees = 0;
5741 }
5742 else if (TYPE_P (t))
5743 *walk_subtrees = 0;
5744
5745 return NULL_TREE;
5746 }
5747
5748 /* Helper for move_stmt_r. Given an EH region number for the source
5749 function, map that to the duplicate EH regio number in the dest. */
5750
5751 static int
5752 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
5753 {
5754 eh_region old_r, new_r;
5755 void **slot;
5756
5757 old_r = get_eh_region_from_number (old_nr);
5758 slot = pointer_map_contains (p->eh_map, old_r);
5759 new_r = (eh_region) *slot;
5760
5761 return new_r->index;
5762 }
5763
5764 /* Similar, but operate on INTEGER_CSTs. */
5765
5766 static tree
5767 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
5768 {
5769 int old_nr, new_nr;
5770
5771 old_nr = tree_low_cst (old_t_nr, 0);
5772 new_nr = move_stmt_eh_region_nr (old_nr, p);
5773
5774 return build_int_cst (NULL, new_nr);
5775 }
5776
5777 /* Like move_stmt_op, but for gimple statements.
5778
5779 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5780 contained in the current statement in *GSI_P and change the
5781 DECL_CONTEXT of every local variable referenced in the current
5782 statement. */
5783
5784 static tree
5785 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
5786 struct walk_stmt_info *wi)
5787 {
5788 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
5789 gimple stmt = gsi_stmt (*gsi_p);
5790 tree block = gimple_block (stmt);
5791
5792 if (p->orig_block == NULL_TREE
5793 || block == p->orig_block
5794 || block == NULL_TREE)
5795 gimple_set_block (stmt, p->new_block);
5796 #ifdef ENABLE_CHECKING
5797 else if (block != p->new_block)
5798 {
5799 while (block && block != p->orig_block)
5800 block = BLOCK_SUPERCONTEXT (block);
5801 gcc_assert (block);
5802 }
5803 #endif
5804
5805 switch (gimple_code (stmt))
5806 {
5807 case GIMPLE_CALL:
5808 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5809 {
5810 tree r, fndecl = gimple_call_fndecl (stmt);
5811 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
5812 switch (DECL_FUNCTION_CODE (fndecl))
5813 {
5814 case BUILT_IN_EH_COPY_VALUES:
5815 r = gimple_call_arg (stmt, 1);
5816 r = move_stmt_eh_region_tree_nr (r, p);
5817 gimple_call_set_arg (stmt, 1, r);
5818 /* FALLTHRU */
5819
5820 case BUILT_IN_EH_POINTER:
5821 case BUILT_IN_EH_FILTER:
5822 r = gimple_call_arg (stmt, 0);
5823 r = move_stmt_eh_region_tree_nr (r, p);
5824 gimple_call_set_arg (stmt, 0, r);
5825 break;
5826
5827 default:
5828 break;
5829 }
5830 }
5831 break;
5832
5833 case GIMPLE_RESX:
5834 {
5835 int r = gimple_resx_region (stmt);
5836 r = move_stmt_eh_region_nr (r, p);
5837 gimple_resx_set_region (stmt, r);
5838 }
5839 break;
5840
5841 case GIMPLE_EH_DISPATCH:
5842 {
5843 int r = gimple_eh_dispatch_region (stmt);
5844 r = move_stmt_eh_region_nr (r, p);
5845 gimple_eh_dispatch_set_region (stmt, r);
5846 }
5847 break;
5848
5849 case GIMPLE_OMP_RETURN:
5850 case GIMPLE_OMP_CONTINUE:
5851 break;
5852 default:
5853 if (is_gimple_omp (stmt))
5854 {
5855 /* Do not remap variables inside OMP directives. Variables
5856 referenced in clauses and directive header belong to the
5857 parent function and should not be moved into the child
5858 function. */
5859 bool save_remap_decls_p = p->remap_decls_p;
5860 p->remap_decls_p = false;
5861 *handled_ops_p = true;
5862
5863 walk_gimple_seq (gimple_omp_body (stmt), move_stmt_r,
5864 move_stmt_op, wi);
5865
5866 p->remap_decls_p = save_remap_decls_p;
5867 }
5868 break;
5869 }
5870
5871 return NULL_TREE;
5872 }
5873
5874 /* Move basic block BB from function CFUN to function DEST_FN. The
5875 block is moved out of the original linked list and placed after
5876 block AFTER in the new list. Also, the block is removed from the
5877 original array of blocks and placed in DEST_FN's array of blocks.
5878 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5879 updated to reflect the moved edges.
5880
5881 The local variables are remapped to new instances, VARS_MAP is used
5882 to record the mapping. */
5883
5884 static void
5885 move_block_to_fn (struct function *dest_cfun, basic_block bb,
5886 basic_block after, bool update_edge_count_p,
5887 struct move_stmt_d *d)
5888 {
5889 struct control_flow_graph *cfg;
5890 edge_iterator ei;
5891 edge e;
5892 gimple_stmt_iterator si;
5893 unsigned old_len, new_len;
5894
5895 /* Remove BB from dominance structures. */
5896 delete_from_dominance_info (CDI_DOMINATORS, bb);
5897 if (current_loops)
5898 remove_bb_from_loops (bb);
5899
5900 /* Link BB to the new linked list. */
5901 move_block_after (bb, after);
5902
5903 /* Update the edge count in the corresponding flowgraphs. */
5904 if (update_edge_count_p)
5905 FOR_EACH_EDGE (e, ei, bb->succs)
5906 {
5907 cfun->cfg->x_n_edges--;
5908 dest_cfun->cfg->x_n_edges++;
5909 }
5910
5911 /* Remove BB from the original basic block array. */
5912 VEC_replace (basic_block, cfun->cfg->x_basic_block_info, bb->index, NULL);
5913 cfun->cfg->x_n_basic_blocks--;
5914
5915 /* Grow DEST_CFUN's basic block array if needed. */
5916 cfg = dest_cfun->cfg;
5917 cfg->x_n_basic_blocks++;
5918 if (bb->index >= cfg->x_last_basic_block)
5919 cfg->x_last_basic_block = bb->index + 1;
5920
5921 old_len = VEC_length (basic_block, cfg->x_basic_block_info);
5922 if ((unsigned) cfg->x_last_basic_block >= old_len)
5923 {
5924 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
5925 VEC_safe_grow_cleared (basic_block, gc, cfg->x_basic_block_info,
5926 new_len);
5927 }
5928
5929 VEC_replace (basic_block, cfg->x_basic_block_info,
5930 bb->index, bb);
5931
5932 /* Remap the variables in phi nodes. */
5933 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
5934 {
5935 gimple phi = gsi_stmt (si);
5936 use_operand_p use;
5937 tree op = PHI_RESULT (phi);
5938 ssa_op_iter oi;
5939
5940 if (!is_gimple_reg (op))
5941 {
5942 /* Remove the phi nodes for virtual operands (alias analysis will be
5943 run for the new function, anyway). */
5944 remove_phi_node (&si, true);
5945 continue;
5946 }
5947
5948 SET_PHI_RESULT (phi,
5949 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5950 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
5951 {
5952 op = USE_FROM_PTR (use);
5953 if (TREE_CODE (op) == SSA_NAME)
5954 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
5955 }
5956
5957 gsi_next (&si);
5958 }
5959
5960 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5961 {
5962 gimple stmt = gsi_stmt (si);
5963 struct walk_stmt_info wi;
5964
5965 memset (&wi, 0, sizeof (wi));
5966 wi.info = d;
5967 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
5968
5969 if (gimple_code (stmt) == GIMPLE_LABEL)
5970 {
5971 tree label = gimple_label_label (stmt);
5972 int uid = LABEL_DECL_UID (label);
5973
5974 gcc_assert (uid > -1);
5975
5976 old_len = VEC_length (basic_block, cfg->x_label_to_block_map);
5977 if (old_len <= (unsigned) uid)
5978 {
5979 new_len = 3 * uid / 2 + 1;
5980 VEC_safe_grow_cleared (basic_block, gc,
5981 cfg->x_label_to_block_map, new_len);
5982 }
5983
5984 VEC_replace (basic_block, cfg->x_label_to_block_map, uid, bb);
5985 VEC_replace (basic_block, cfun->cfg->x_label_to_block_map, uid, NULL);
5986
5987 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
5988
5989 if (uid >= dest_cfun->cfg->last_label_uid)
5990 dest_cfun->cfg->last_label_uid = uid + 1;
5991 }
5992
5993 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
5994 remove_stmt_from_eh_lp_fn (cfun, stmt);
5995
5996 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
5997 gimple_remove_stmt_histograms (cfun, stmt);
5998
5999 /* We cannot leave any operands allocated from the operand caches of
6000 the current function. */
6001 free_stmt_operands (stmt);
6002 push_cfun (dest_cfun);
6003 update_stmt (stmt);
6004 pop_cfun ();
6005 }
6006
6007 FOR_EACH_EDGE (e, ei, bb->succs)
6008 if (e->goto_locus)
6009 {
6010 tree block = e->goto_block;
6011 if (d->orig_block == NULL_TREE
6012 || block == d->orig_block)
6013 e->goto_block = d->new_block;
6014 #ifdef ENABLE_CHECKING
6015 else if (block != d->new_block)
6016 {
6017 while (block && block != d->orig_block)
6018 block = BLOCK_SUPERCONTEXT (block);
6019 gcc_assert (block);
6020 }
6021 #endif
6022 }
6023 }
6024
6025 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6026 the outermost EH region. Use REGION as the incoming base EH region. */
6027
6028 static eh_region
6029 find_outermost_region_in_block (struct function *src_cfun,
6030 basic_block bb, eh_region region)
6031 {
6032 gimple_stmt_iterator si;
6033
6034 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6035 {
6036 gimple stmt = gsi_stmt (si);
6037 eh_region stmt_region;
6038 int lp_nr;
6039
6040 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6041 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6042 if (stmt_region)
6043 {
6044 if (region == NULL)
6045 region = stmt_region;
6046 else if (stmt_region != region)
6047 {
6048 region = eh_region_outermost (src_cfun, stmt_region, region);
6049 gcc_assert (region != NULL);
6050 }
6051 }
6052 }
6053
6054 return region;
6055 }
6056
6057 static tree
6058 new_label_mapper (tree decl, void *data)
6059 {
6060 htab_t hash = (htab_t) data;
6061 struct tree_map *m;
6062 void **slot;
6063
6064 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6065
6066 m = XNEW (struct tree_map);
6067 m->hash = DECL_UID (decl);
6068 m->base.from = decl;
6069 m->to = create_artificial_label (UNKNOWN_LOCATION);
6070 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6071 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6072 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6073
6074 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6075 gcc_assert (*slot == NULL);
6076
6077 *slot = m;
6078
6079 return m->to;
6080 }
6081
6082 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6083 subblocks. */
6084
6085 static void
6086 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6087 tree to_context)
6088 {
6089 tree *tp, t;
6090
6091 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6092 {
6093 t = *tp;
6094 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6095 continue;
6096 replace_by_duplicate_decl (&t, vars_map, to_context);
6097 if (t != *tp)
6098 {
6099 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6100 {
6101 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6102 DECL_HAS_VALUE_EXPR_P (t) = 1;
6103 }
6104 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6105 *tp = t;
6106 }
6107 }
6108
6109 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6110 replace_block_vars_by_duplicates (block, vars_map, to_context);
6111 }
6112
6113 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6114 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6115 single basic block in the original CFG and the new basic block is
6116 returned. DEST_CFUN must not have a CFG yet.
6117
6118 Note that the region need not be a pure SESE region. Blocks inside
6119 the region may contain calls to abort/exit. The only restriction
6120 is that ENTRY_BB should be the only entry point and it must
6121 dominate EXIT_BB.
6122
6123 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6124 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6125 to the new function.
6126
6127 All local variables referenced in the region are assumed to be in
6128 the corresponding BLOCK_VARS and unexpanded variable lists
6129 associated with DEST_CFUN. */
6130
6131 basic_block
6132 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6133 basic_block exit_bb, tree orig_block)
6134 {
6135 VEC(basic_block,heap) *bbs, *dom_bbs;
6136 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6137 basic_block after, bb, *entry_pred, *exit_succ, abb;
6138 struct function *saved_cfun = cfun;
6139 int *entry_flag, *exit_flag;
6140 unsigned *entry_prob, *exit_prob;
6141 unsigned i, num_entry_edges, num_exit_edges;
6142 edge e;
6143 edge_iterator ei;
6144 htab_t new_label_map;
6145 struct pointer_map_t *vars_map, *eh_map;
6146 struct loop *loop = entry_bb->loop_father;
6147 struct move_stmt_d d;
6148
6149 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6150 region. */
6151 gcc_assert (entry_bb != exit_bb
6152 && (!exit_bb
6153 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6154
6155 /* Collect all the blocks in the region. Manually add ENTRY_BB
6156 because it won't be added by dfs_enumerate_from. */
6157 bbs = NULL;
6158 VEC_safe_push (basic_block, heap, bbs, entry_bb);
6159 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6160
6161 /* The blocks that used to be dominated by something in BBS will now be
6162 dominated by the new block. */
6163 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6164 VEC_address (basic_block, bbs),
6165 VEC_length (basic_block, bbs));
6166
6167 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6168 the predecessor edges to ENTRY_BB and the successor edges to
6169 EXIT_BB so that we can re-attach them to the new basic block that
6170 will replace the region. */
6171 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6172 entry_pred = (basic_block *) xcalloc (num_entry_edges, sizeof (basic_block));
6173 entry_flag = (int *) xcalloc (num_entry_edges, sizeof (int));
6174 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6175 i = 0;
6176 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6177 {
6178 entry_prob[i] = e->probability;
6179 entry_flag[i] = e->flags;
6180 entry_pred[i++] = e->src;
6181 remove_edge (e);
6182 }
6183
6184 if (exit_bb)
6185 {
6186 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6187 exit_succ = (basic_block *) xcalloc (num_exit_edges,
6188 sizeof (basic_block));
6189 exit_flag = (int *) xcalloc (num_exit_edges, sizeof (int));
6190 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6191 i = 0;
6192 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6193 {
6194 exit_prob[i] = e->probability;
6195 exit_flag[i] = e->flags;
6196 exit_succ[i++] = e->dest;
6197 remove_edge (e);
6198 }
6199 }
6200 else
6201 {
6202 num_exit_edges = 0;
6203 exit_succ = NULL;
6204 exit_flag = NULL;
6205 exit_prob = NULL;
6206 }
6207
6208 /* Switch context to the child function to initialize DEST_FN's CFG. */
6209 gcc_assert (dest_cfun->cfg == NULL);
6210 push_cfun (dest_cfun);
6211
6212 init_empty_tree_cfg ();
6213
6214 /* Initialize EH information for the new function. */
6215 eh_map = NULL;
6216 new_label_map = NULL;
6217 if (saved_cfun->eh)
6218 {
6219 eh_region region = NULL;
6220
6221 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6222 region = find_outermost_region_in_block (saved_cfun, bb, region);
6223
6224 init_eh_for_function ();
6225 if (region != NULL)
6226 {
6227 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6228 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6229 new_label_mapper, new_label_map);
6230 }
6231 }
6232
6233 pop_cfun ();
6234
6235 /* Move blocks from BBS into DEST_CFUN. */
6236 gcc_assert (VEC_length (basic_block, bbs) >= 2);
6237 after = dest_cfun->cfg->x_entry_block_ptr;
6238 vars_map = pointer_map_create ();
6239
6240 memset (&d, 0, sizeof (d));
6241 d.orig_block = orig_block;
6242 d.new_block = DECL_INITIAL (dest_cfun->decl);
6243 d.from_context = cfun->decl;
6244 d.to_context = dest_cfun->decl;
6245 d.vars_map = vars_map;
6246 d.new_label_map = new_label_map;
6247 d.eh_map = eh_map;
6248 d.remap_decls_p = true;
6249
6250 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
6251 {
6252 /* No need to update edge counts on the last block. It has
6253 already been updated earlier when we detached the region from
6254 the original CFG. */
6255 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6256 after = bb;
6257 }
6258
6259 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6260 if (orig_block)
6261 {
6262 tree block;
6263 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6264 == NULL_TREE);
6265 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6266 = BLOCK_SUBBLOCKS (orig_block);
6267 for (block = BLOCK_SUBBLOCKS (orig_block);
6268 block; block = BLOCK_CHAIN (block))
6269 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6270 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6271 }
6272
6273 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6274 vars_map, dest_cfun->decl);
6275
6276 if (new_label_map)
6277 htab_delete (new_label_map);
6278 if (eh_map)
6279 pointer_map_destroy (eh_map);
6280 pointer_map_destroy (vars_map);
6281
6282 /* Rewire the entry and exit blocks. The successor to the entry
6283 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6284 the child function. Similarly, the predecessor of DEST_FN's
6285 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6286 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6287 various CFG manipulation function get to the right CFG.
6288
6289 FIXME, this is silly. The CFG ought to become a parameter to
6290 these helpers. */
6291 push_cfun (dest_cfun);
6292 make_edge (ENTRY_BLOCK_PTR, entry_bb, EDGE_FALLTHRU);
6293 if (exit_bb)
6294 make_edge (exit_bb, EXIT_BLOCK_PTR, 0);
6295 pop_cfun ();
6296
6297 /* Back in the original function, the SESE region has disappeared,
6298 create a new basic block in its place. */
6299 bb = create_empty_bb (entry_pred[0]);
6300 if (current_loops)
6301 add_bb_to_loop (bb, loop);
6302 for (i = 0; i < num_entry_edges; i++)
6303 {
6304 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6305 e->probability = entry_prob[i];
6306 }
6307
6308 for (i = 0; i < num_exit_edges; i++)
6309 {
6310 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6311 e->probability = exit_prob[i];
6312 }
6313
6314 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6315 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, abb)
6316 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6317 VEC_free (basic_block, heap, dom_bbs);
6318
6319 if (exit_bb)
6320 {
6321 free (exit_prob);
6322 free (exit_flag);
6323 free (exit_succ);
6324 }
6325 free (entry_prob);
6326 free (entry_flag);
6327 free (entry_pred);
6328 VEC_free (basic_block, heap, bbs);
6329
6330 return bb;
6331 }
6332
6333
6334 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6335 */
6336
6337 void
6338 dump_function_to_file (tree fn, FILE *file, int flags)
6339 {
6340 tree arg, var;
6341 struct function *dsf;
6342 bool ignore_topmost_bind = false, any_var = false;
6343 basic_block bb;
6344 tree chain;
6345
6346 fprintf (file, "%s (", lang_hooks.decl_printable_name (fn, 2));
6347
6348 arg = DECL_ARGUMENTS (fn);
6349 while (arg)
6350 {
6351 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6352 fprintf (file, " ");
6353 print_generic_expr (file, arg, dump_flags);
6354 if (flags & TDF_VERBOSE)
6355 print_node (file, "", arg, 4);
6356 if (DECL_CHAIN (arg))
6357 fprintf (file, ", ");
6358 arg = DECL_CHAIN (arg);
6359 }
6360 fprintf (file, ")\n");
6361
6362 if (flags & TDF_VERBOSE)
6363 print_node (file, "", fn, 2);
6364
6365 dsf = DECL_STRUCT_FUNCTION (fn);
6366 if (dsf && (flags & TDF_EH))
6367 dump_eh_tree (file, dsf);
6368
6369 if (flags & TDF_RAW && !gimple_has_body_p (fn))
6370 {
6371 dump_node (fn, TDF_SLIM | flags, file);
6372 return;
6373 }
6374
6375 /* Switch CFUN to point to FN. */
6376 push_cfun (DECL_STRUCT_FUNCTION (fn));
6377
6378 /* When GIMPLE is lowered, the variables are no longer available in
6379 BIND_EXPRs, so display them separately. */
6380 if (cfun && cfun->decl == fn && !VEC_empty (tree, cfun->local_decls))
6381 {
6382 unsigned ix;
6383 ignore_topmost_bind = true;
6384
6385 fprintf (file, "{\n");
6386 FOR_EACH_LOCAL_DECL (cfun, ix, var)
6387 {
6388 print_generic_decl (file, var, flags);
6389 if (flags & TDF_VERBOSE)
6390 print_node (file, "", var, 4);
6391 fprintf (file, "\n");
6392
6393 any_var = true;
6394 }
6395 }
6396
6397 if (cfun && cfun->decl == fn && cfun->cfg && basic_block_info)
6398 {
6399 /* If the CFG has been built, emit a CFG-based dump. */
6400 check_bb_profile (ENTRY_BLOCK_PTR, file);
6401 if (!ignore_topmost_bind)
6402 fprintf (file, "{\n");
6403
6404 if (any_var && n_basic_blocks)
6405 fprintf (file, "\n");
6406
6407 FOR_EACH_BB (bb)
6408 gimple_dump_bb (bb, file, 2, flags);
6409
6410 fprintf (file, "}\n");
6411 check_bb_profile (EXIT_BLOCK_PTR, file);
6412 }
6413 else if (DECL_SAVED_TREE (fn) == NULL)
6414 {
6415 /* The function is now in GIMPLE form but the CFG has not been
6416 built yet. Emit the single sequence of GIMPLE statements
6417 that make up its body. */
6418 gimple_seq body = gimple_body (fn);
6419
6420 if (gimple_seq_first_stmt (body)
6421 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
6422 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
6423 print_gimple_seq (file, body, 0, flags);
6424 else
6425 {
6426 if (!ignore_topmost_bind)
6427 fprintf (file, "{\n");
6428
6429 if (any_var)
6430 fprintf (file, "\n");
6431
6432 print_gimple_seq (file, body, 2, flags);
6433 fprintf (file, "}\n");
6434 }
6435 }
6436 else
6437 {
6438 int indent;
6439
6440 /* Make a tree based dump. */
6441 chain = DECL_SAVED_TREE (fn);
6442
6443 if (chain && TREE_CODE (chain) == BIND_EXPR)
6444 {
6445 if (ignore_topmost_bind)
6446 {
6447 chain = BIND_EXPR_BODY (chain);
6448 indent = 2;
6449 }
6450 else
6451 indent = 0;
6452 }
6453 else
6454 {
6455 if (!ignore_topmost_bind)
6456 fprintf (file, "{\n");
6457 indent = 2;
6458 }
6459
6460 if (any_var)
6461 fprintf (file, "\n");
6462
6463 print_generic_stmt_indented (file, chain, flags, indent);
6464 if (ignore_topmost_bind)
6465 fprintf (file, "}\n");
6466 }
6467
6468 if (flags & TDF_ENUMERATE_LOCALS)
6469 dump_enumerated_decls (file, flags);
6470 fprintf (file, "\n\n");
6471
6472 /* Restore CFUN. */
6473 pop_cfun ();
6474 }
6475
6476
6477 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6478
6479 DEBUG_FUNCTION void
6480 debug_function (tree fn, int flags)
6481 {
6482 dump_function_to_file (fn, stderr, flags);
6483 }
6484
6485
6486 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6487
6488 static void
6489 print_pred_bbs (FILE *file, basic_block bb)
6490 {
6491 edge e;
6492 edge_iterator ei;
6493
6494 FOR_EACH_EDGE (e, ei, bb->preds)
6495 fprintf (file, "bb_%d ", e->src->index);
6496 }
6497
6498
6499 /* Print on FILE the indexes for the successors of basic_block BB. */
6500
6501 static void
6502 print_succ_bbs (FILE *file, basic_block bb)
6503 {
6504 edge e;
6505 edge_iterator ei;
6506
6507 FOR_EACH_EDGE (e, ei, bb->succs)
6508 fprintf (file, "bb_%d ", e->dest->index);
6509 }
6510
6511 /* Print to FILE the basic block BB following the VERBOSITY level. */
6512
6513 void
6514 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
6515 {
6516 char *s_indent = (char *) alloca ((size_t) indent + 1);
6517 memset ((void *) s_indent, ' ', (size_t) indent);
6518 s_indent[indent] = '\0';
6519
6520 /* Print basic_block's header. */
6521 if (verbosity >= 2)
6522 {
6523 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
6524 print_pred_bbs (file, bb);
6525 fprintf (file, "}, succs = {");
6526 print_succ_bbs (file, bb);
6527 fprintf (file, "})\n");
6528 }
6529
6530 /* Print basic_block's body. */
6531 if (verbosity >= 3)
6532 {
6533 fprintf (file, "%s {\n", s_indent);
6534 gimple_dump_bb (bb, file, indent + 4, TDF_VOPS|TDF_MEMSYMS);
6535 fprintf (file, "%s }\n", s_indent);
6536 }
6537 }
6538
6539 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
6540
6541 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6542 VERBOSITY level this outputs the contents of the loop, or just its
6543 structure. */
6544
6545 static void
6546 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
6547 {
6548 char *s_indent;
6549 basic_block bb;
6550
6551 if (loop == NULL)
6552 return;
6553
6554 s_indent = (char *) alloca ((size_t) indent + 1);
6555 memset ((void *) s_indent, ' ', (size_t) indent);
6556 s_indent[indent] = '\0';
6557
6558 /* Print loop's header. */
6559 fprintf (file, "%sloop_%d (header = %d, latch = %d", s_indent,
6560 loop->num, loop->header->index, loop->latch->index);
6561 fprintf (file, ", niter = ");
6562 print_generic_expr (file, loop->nb_iterations, 0);
6563
6564 if (loop->any_upper_bound)
6565 {
6566 fprintf (file, ", upper_bound = ");
6567 dump_double_int (file, loop->nb_iterations_upper_bound, true);
6568 }
6569
6570 if (loop->any_estimate)
6571 {
6572 fprintf (file, ", estimate = ");
6573 dump_double_int (file, loop->nb_iterations_estimate, true);
6574 }
6575 fprintf (file, ")\n");
6576
6577 /* Print loop's body. */
6578 if (verbosity >= 1)
6579 {
6580 fprintf (file, "%s{\n", s_indent);
6581 FOR_EACH_BB (bb)
6582 if (bb->loop_father == loop)
6583 print_loops_bb (file, bb, indent, verbosity);
6584
6585 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
6586 fprintf (file, "%s}\n", s_indent);
6587 }
6588 }
6589
6590 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6591 spaces. Following VERBOSITY level this outputs the contents of the
6592 loop, or just its structure. */
6593
6594 static void
6595 print_loop_and_siblings (FILE *file, struct loop *loop, int indent, int verbosity)
6596 {
6597 if (loop == NULL)
6598 return;
6599
6600 print_loop (file, loop, indent, verbosity);
6601 print_loop_and_siblings (file, loop->next, indent, verbosity);
6602 }
6603
6604 /* Follow a CFG edge from the entry point of the program, and on entry
6605 of a loop, pretty print the loop structure on FILE. */
6606
6607 void
6608 print_loops (FILE *file, int verbosity)
6609 {
6610 basic_block bb;
6611
6612 bb = ENTRY_BLOCK_PTR;
6613 if (bb && bb->loop_father)
6614 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
6615 }
6616
6617
6618 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6619
6620 DEBUG_FUNCTION void
6621 debug_loops (int verbosity)
6622 {
6623 print_loops (stderr, verbosity);
6624 }
6625
6626 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6627
6628 DEBUG_FUNCTION void
6629 debug_loop (struct loop *loop, int verbosity)
6630 {
6631 print_loop (stderr, loop, 0, verbosity);
6632 }
6633
6634 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6635 level. */
6636
6637 DEBUG_FUNCTION void
6638 debug_loop_num (unsigned num, int verbosity)
6639 {
6640 debug_loop (get_loop (num), verbosity);
6641 }
6642
6643 /* Return true if BB ends with a call, possibly followed by some
6644 instructions that must stay with the call. Return false,
6645 otherwise. */
6646
6647 static bool
6648 gimple_block_ends_with_call_p (basic_block bb)
6649 {
6650 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6651 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
6652 }
6653
6654
6655 /* Return true if BB ends with a conditional branch. Return false,
6656 otherwise. */
6657
6658 static bool
6659 gimple_block_ends_with_condjump_p (const_basic_block bb)
6660 {
6661 gimple stmt = last_stmt (CONST_CAST_BB (bb));
6662 return (stmt && gimple_code (stmt) == GIMPLE_COND);
6663 }
6664
6665
6666 /* Return true if we need to add fake edge to exit at statement T.
6667 Helper function for gimple_flow_call_edges_add. */
6668
6669 static bool
6670 need_fake_edge_p (gimple t)
6671 {
6672 tree fndecl = NULL_TREE;
6673 int call_flags = 0;
6674
6675 /* NORETURN and LONGJMP calls already have an edge to exit.
6676 CONST and PURE calls do not need one.
6677 We don't currently check for CONST and PURE here, although
6678 it would be a good idea, because those attributes are
6679 figured out from the RTL in mark_constant_function, and
6680 the counter incrementation code from -fprofile-arcs
6681 leads to different results from -fbranch-probabilities. */
6682 if (is_gimple_call (t))
6683 {
6684 fndecl = gimple_call_fndecl (t);
6685 call_flags = gimple_call_flags (t);
6686 }
6687
6688 if (is_gimple_call (t)
6689 && fndecl
6690 && DECL_BUILT_IN (fndecl)
6691 && (call_flags & ECF_NOTHROW)
6692 && !(call_flags & ECF_RETURNS_TWICE)
6693 /* fork() doesn't really return twice, but the effect of
6694 wrapping it in __gcov_fork() which calls __gcov_flush()
6695 and clears the counters before forking has the same
6696 effect as returning twice. Force a fake edge. */
6697 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
6698 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
6699 return false;
6700
6701 if (is_gimple_call (t)
6702 && !(call_flags & ECF_NORETURN))
6703 return true;
6704
6705 if (gimple_code (t) == GIMPLE_ASM
6706 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
6707 return true;
6708
6709 return false;
6710 }
6711
6712
6713 /* Add fake edges to the function exit for any non constant and non
6714 noreturn calls, volatile inline assembly in the bitmap of blocks
6715 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6716 the number of blocks that were split.
6717
6718 The goal is to expose cases in which entering a basic block does
6719 not imply that all subsequent instructions must be executed. */
6720
6721 static int
6722 gimple_flow_call_edges_add (sbitmap blocks)
6723 {
6724 int i;
6725 int blocks_split = 0;
6726 int last_bb = last_basic_block;
6727 bool check_last_block = false;
6728
6729 if (n_basic_blocks == NUM_FIXED_BLOCKS)
6730 return 0;
6731
6732 if (! blocks)
6733 check_last_block = true;
6734 else
6735 check_last_block = TEST_BIT (blocks, EXIT_BLOCK_PTR->prev_bb->index);
6736
6737 /* In the last basic block, before epilogue generation, there will be
6738 a fallthru edge to EXIT. Special care is required if the last insn
6739 of the last basic block is a call because make_edge folds duplicate
6740 edges, which would result in the fallthru edge also being marked
6741 fake, which would result in the fallthru edge being removed by
6742 remove_fake_edges, which would result in an invalid CFG.
6743
6744 Moreover, we can't elide the outgoing fake edge, since the block
6745 profiler needs to take this into account in order to solve the minimal
6746 spanning tree in the case that the call doesn't return.
6747
6748 Handle this by adding a dummy instruction in a new last basic block. */
6749 if (check_last_block)
6750 {
6751 basic_block bb = EXIT_BLOCK_PTR->prev_bb;
6752 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6753 gimple t = NULL;
6754
6755 if (!gsi_end_p (gsi))
6756 t = gsi_stmt (gsi);
6757
6758 if (t && need_fake_edge_p (t))
6759 {
6760 edge e;
6761
6762 e = find_edge (bb, EXIT_BLOCK_PTR);
6763 if (e)
6764 {
6765 gsi_insert_on_edge (e, gimple_build_nop ());
6766 gsi_commit_edge_inserts ();
6767 }
6768 }
6769 }
6770
6771 /* Now add fake edges to the function exit for any non constant
6772 calls since there is no way that we can determine if they will
6773 return or not... */
6774 for (i = 0; i < last_bb; i++)
6775 {
6776 basic_block bb = BASIC_BLOCK (i);
6777 gimple_stmt_iterator gsi;
6778 gimple stmt, last_stmt;
6779
6780 if (!bb)
6781 continue;
6782
6783 if (blocks && !TEST_BIT (blocks, i))
6784 continue;
6785
6786 gsi = gsi_last_nondebug_bb (bb);
6787 if (!gsi_end_p (gsi))
6788 {
6789 last_stmt = gsi_stmt (gsi);
6790 do
6791 {
6792 stmt = gsi_stmt (gsi);
6793 if (need_fake_edge_p (stmt))
6794 {
6795 edge e;
6796
6797 /* The handling above of the final block before the
6798 epilogue should be enough to verify that there is
6799 no edge to the exit block in CFG already.
6800 Calling make_edge in such case would cause us to
6801 mark that edge as fake and remove it later. */
6802 #ifdef ENABLE_CHECKING
6803 if (stmt == last_stmt)
6804 {
6805 e = find_edge (bb, EXIT_BLOCK_PTR);
6806 gcc_assert (e == NULL);
6807 }
6808 #endif
6809
6810 /* Note that the following may create a new basic block
6811 and renumber the existing basic blocks. */
6812 if (stmt != last_stmt)
6813 {
6814 e = split_block (bb, stmt);
6815 if (e)
6816 blocks_split++;
6817 }
6818 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
6819 }
6820 gsi_prev (&gsi);
6821 }
6822 while (!gsi_end_p (gsi));
6823 }
6824 }
6825
6826 if (blocks_split)
6827 verify_flow_info ();
6828
6829 return blocks_split;
6830 }
6831
6832 /* Removes edge E and all the blocks dominated by it, and updates dominance
6833 information. The IL in E->src needs to be updated separately.
6834 If dominance info is not available, only the edge E is removed.*/
6835
6836 void
6837 remove_edge_and_dominated_blocks (edge e)
6838 {
6839 VEC (basic_block, heap) *bbs_to_remove = NULL;
6840 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
6841 bitmap df, df_idom;
6842 edge f;
6843 edge_iterator ei;
6844 bool none_removed = false;
6845 unsigned i;
6846 basic_block bb, dbb;
6847 bitmap_iterator bi;
6848
6849 if (!dom_info_available_p (CDI_DOMINATORS))
6850 {
6851 remove_edge (e);
6852 return;
6853 }
6854
6855 /* No updating is needed for edges to exit. */
6856 if (e->dest == EXIT_BLOCK_PTR)
6857 {
6858 if (cfgcleanup_altered_bbs)
6859 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6860 remove_edge (e);
6861 return;
6862 }
6863
6864 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6865 that is not dominated by E->dest, then this set is empty. Otherwise,
6866 all the basic blocks dominated by E->dest are removed.
6867
6868 Also, to DF_IDOM we store the immediate dominators of the blocks in
6869 the dominance frontier of E (i.e., of the successors of the
6870 removed blocks, if there are any, and of E->dest otherwise). */
6871 FOR_EACH_EDGE (f, ei, e->dest->preds)
6872 {
6873 if (f == e)
6874 continue;
6875
6876 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
6877 {
6878 none_removed = true;
6879 break;
6880 }
6881 }
6882
6883 df = BITMAP_ALLOC (NULL);
6884 df_idom = BITMAP_ALLOC (NULL);
6885
6886 if (none_removed)
6887 bitmap_set_bit (df_idom,
6888 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
6889 else
6890 {
6891 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
6892 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6893 {
6894 FOR_EACH_EDGE (f, ei, bb->succs)
6895 {
6896 if (f->dest != EXIT_BLOCK_PTR)
6897 bitmap_set_bit (df, f->dest->index);
6898 }
6899 }
6900 FOR_EACH_VEC_ELT (basic_block, bbs_to_remove, i, bb)
6901 bitmap_clear_bit (df, bb->index);
6902
6903 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
6904 {
6905 bb = BASIC_BLOCK (i);
6906 bitmap_set_bit (df_idom,
6907 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
6908 }
6909 }
6910
6911 if (cfgcleanup_altered_bbs)
6912 {
6913 /* Record the set of the altered basic blocks. */
6914 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
6915 bitmap_ior_into (cfgcleanup_altered_bbs, df);
6916 }
6917
6918 /* Remove E and the cancelled blocks. */
6919 if (none_removed)
6920 remove_edge (e);
6921 else
6922 {
6923 /* Walk backwards so as to get a chance to substitute all
6924 released DEFs into debug stmts. See
6925 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6926 details. */
6927 for (i = VEC_length (basic_block, bbs_to_remove); i-- > 0; )
6928 delete_basic_block (VEC_index (basic_block, bbs_to_remove, i));
6929 }
6930
6931 /* Update the dominance information. The immediate dominator may change only
6932 for blocks whose immediate dominator belongs to DF_IDOM:
6933
6934 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6935 removal. Let Z the arbitrary block such that idom(Z) = Y and
6936 Z dominates X after the removal. Before removal, there exists a path P
6937 from Y to X that avoids Z. Let F be the last edge on P that is
6938 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6939 dominates W, and because of P, Z does not dominate W), and W belongs to
6940 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6941 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
6942 {
6943 bb = BASIC_BLOCK (i);
6944 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
6945 dbb;
6946 dbb = next_dom_son (CDI_DOMINATORS, dbb))
6947 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dbb);
6948 }
6949
6950 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
6951
6952 BITMAP_FREE (df);
6953 BITMAP_FREE (df_idom);
6954 VEC_free (basic_block, heap, bbs_to_remove);
6955 VEC_free (basic_block, heap, bbs_to_fix_dom);
6956 }
6957
6958 /* Purge dead EH edges from basic block BB. */
6959
6960 bool
6961 gimple_purge_dead_eh_edges (basic_block bb)
6962 {
6963 bool changed = false;
6964 edge e;
6965 edge_iterator ei;
6966 gimple stmt = last_stmt (bb);
6967
6968 if (stmt && stmt_can_throw_internal (stmt))
6969 return false;
6970
6971 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
6972 {
6973 if (e->flags & EDGE_EH)
6974 {
6975 remove_edge_and_dominated_blocks (e);
6976 changed = true;
6977 }
6978 else
6979 ei_next (&ei);
6980 }
6981
6982 return changed;
6983 }
6984
6985 /* Purge dead EH edges from basic block listed in BLOCKS. */
6986
6987 bool
6988 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
6989 {
6990 bool changed = false;
6991 unsigned i;
6992 bitmap_iterator bi;
6993
6994 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
6995 {
6996 basic_block bb = BASIC_BLOCK (i);
6997
6998 /* Earlier gimple_purge_dead_eh_edges could have removed
6999 this basic block already. */
7000 gcc_assert (bb || changed);
7001 if (bb != NULL)
7002 changed |= gimple_purge_dead_eh_edges (bb);
7003 }
7004
7005 return changed;
7006 }
7007
7008 /* Purge dead abnormal call edges from basic block BB. */
7009
7010 bool
7011 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7012 {
7013 bool changed = false;
7014 edge e;
7015 edge_iterator ei;
7016 gimple stmt = last_stmt (bb);
7017
7018 if (!cfun->has_nonlocal_label)
7019 return false;
7020
7021 if (stmt && stmt_can_make_abnormal_goto (stmt))
7022 return false;
7023
7024 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7025 {
7026 if (e->flags & EDGE_ABNORMAL)
7027 {
7028 remove_edge_and_dominated_blocks (e);
7029 changed = true;
7030 }
7031 else
7032 ei_next (&ei);
7033 }
7034
7035 return changed;
7036 }
7037
7038 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7039
7040 bool
7041 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7042 {
7043 bool changed = false;
7044 unsigned i;
7045 bitmap_iterator bi;
7046
7047 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7048 {
7049 basic_block bb = BASIC_BLOCK (i);
7050
7051 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7052 this basic block already. */
7053 gcc_assert (bb || changed);
7054 if (bb != NULL)
7055 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7056 }
7057
7058 return changed;
7059 }
7060
7061 /* This function is called whenever a new edge is created or
7062 redirected. */
7063
7064 static void
7065 gimple_execute_on_growing_pred (edge e)
7066 {
7067 basic_block bb = e->dest;
7068
7069 if (!gimple_seq_empty_p (phi_nodes (bb)))
7070 reserve_phi_args_for_new_edge (bb);
7071 }
7072
7073 /* This function is called immediately before edge E is removed from
7074 the edge vector E->dest->preds. */
7075
7076 static void
7077 gimple_execute_on_shrinking_pred (edge e)
7078 {
7079 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7080 remove_phi_args (e);
7081 }
7082
7083 /*---------------------------------------------------------------------------
7084 Helper functions for Loop versioning
7085 ---------------------------------------------------------------------------*/
7086
7087 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7088 of 'first'. Both of them are dominated by 'new_head' basic block. When
7089 'new_head' was created by 'second's incoming edge it received phi arguments
7090 on the edge by split_edge(). Later, additional edge 'e' was created to
7091 connect 'new_head' and 'first'. Now this routine adds phi args on this
7092 additional edge 'e' that new_head to second edge received as part of edge
7093 splitting. */
7094
7095 static void
7096 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7097 basic_block new_head, edge e)
7098 {
7099 gimple phi1, phi2;
7100 gimple_stmt_iterator psi1, psi2;
7101 tree def;
7102 edge e2 = find_edge (new_head, second);
7103
7104 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7105 edge, we should always have an edge from NEW_HEAD to SECOND. */
7106 gcc_assert (e2 != NULL);
7107
7108 /* Browse all 'second' basic block phi nodes and add phi args to
7109 edge 'e' for 'first' head. PHI args are always in correct order. */
7110
7111 for (psi2 = gsi_start_phis (second),
7112 psi1 = gsi_start_phis (first);
7113 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7114 gsi_next (&psi2), gsi_next (&psi1))
7115 {
7116 phi1 = gsi_stmt (psi1);
7117 phi2 = gsi_stmt (psi2);
7118 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7119 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7120 }
7121 }
7122
7123
7124 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7125 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7126 the destination of the ELSE part. */
7127
7128 static void
7129 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7130 basic_block second_head ATTRIBUTE_UNUSED,
7131 basic_block cond_bb, void *cond_e)
7132 {
7133 gimple_stmt_iterator gsi;
7134 gimple new_cond_expr;
7135 tree cond_expr = (tree) cond_e;
7136 edge e0;
7137
7138 /* Build new conditional expr */
7139 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7140 NULL_TREE, NULL_TREE);
7141
7142 /* Add new cond in cond_bb. */
7143 gsi = gsi_last_bb (cond_bb);
7144 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7145
7146 /* Adjust edges appropriately to connect new head with first head
7147 as well as second head. */
7148 e0 = single_succ_edge (cond_bb);
7149 e0->flags &= ~EDGE_FALLTHRU;
7150 e0->flags |= EDGE_FALSE_VALUE;
7151 }
7152
7153 struct cfg_hooks gimple_cfg_hooks = {
7154 "gimple",
7155 gimple_verify_flow_info,
7156 gimple_dump_bb, /* dump_bb */
7157 create_bb, /* create_basic_block */
7158 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7159 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7160 gimple_can_remove_branch_p, /* can_remove_branch_p */
7161 remove_bb, /* delete_basic_block */
7162 gimple_split_block, /* split_block */
7163 gimple_move_block_after, /* move_block_after */
7164 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7165 gimple_merge_blocks, /* merge_blocks */
7166 gimple_predict_edge, /* predict_edge */
7167 gimple_predicted_by_p, /* predicted_by_p */
7168 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7169 gimple_duplicate_bb, /* duplicate_block */
7170 gimple_split_edge, /* split_edge */
7171 gimple_make_forwarder_block, /* make_forward_block */
7172 NULL, /* tidy_fallthru_edge */
7173 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7174 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7175 gimple_flow_call_edges_add, /* flow_call_edges_add */
7176 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7177 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7178 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7179 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7180 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7181 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7182 flush_pending_stmts /* flush_pending_stmts */
7183 };
7184
7185
7186 /* Split all critical edges. */
7187
7188 static unsigned int
7189 split_critical_edges (void)
7190 {
7191 basic_block bb;
7192 edge e;
7193 edge_iterator ei;
7194
7195 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7196 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7197 mappings around the calls to split_edge. */
7198 start_recording_case_labels ();
7199 FOR_ALL_BB (bb)
7200 {
7201 FOR_EACH_EDGE (e, ei, bb->succs)
7202 {
7203 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7204 split_edge (e);
7205 /* PRE inserts statements to edges and expects that
7206 since split_critical_edges was done beforehand, committing edge
7207 insertions will not split more edges. In addition to critical
7208 edges we must split edges that have multiple successors and
7209 end by control flow statements, such as RESX.
7210 Go ahead and split them too. This matches the logic in
7211 gimple_find_edge_insert_loc. */
7212 else if ((!single_pred_p (e->dest)
7213 || !gimple_seq_empty_p (phi_nodes (e->dest))
7214 || e->dest == EXIT_BLOCK_PTR)
7215 && e->src != ENTRY_BLOCK_PTR
7216 && !(e->flags & EDGE_ABNORMAL))
7217 {
7218 gimple_stmt_iterator gsi;
7219
7220 gsi = gsi_last_bb (e->src);
7221 if (!gsi_end_p (gsi)
7222 && stmt_ends_bb_p (gsi_stmt (gsi))
7223 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7224 && !gimple_call_builtin_p (gsi_stmt (gsi),
7225 BUILT_IN_RETURN)))
7226 split_edge (e);
7227 }
7228 }
7229 }
7230 end_recording_case_labels ();
7231 return 0;
7232 }
7233
7234 struct gimple_opt_pass pass_split_crit_edges =
7235 {
7236 {
7237 GIMPLE_PASS,
7238 "crited", /* name */
7239 NULL, /* gate */
7240 split_critical_edges, /* execute */
7241 NULL, /* sub */
7242 NULL, /* next */
7243 0, /* static_pass_number */
7244 TV_TREE_SPLIT_EDGES, /* tv_id */
7245 PROP_cfg, /* properties required */
7246 PROP_no_crit_edges, /* properties_provided */
7247 0, /* properties_destroyed */
7248 0, /* todo_flags_start */
7249 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
7250 }
7251 };
7252
7253
7254 /* Build a ternary operation and gimplify it. Emit code before GSI.
7255 Return the gimple_val holding the result. */
7256
7257 tree
7258 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
7259 tree type, tree a, tree b, tree c)
7260 {
7261 tree ret;
7262 location_t loc = gimple_location (gsi_stmt (*gsi));
7263
7264 ret = fold_build3_loc (loc, code, type, a, b, c);
7265 STRIP_NOPS (ret);
7266
7267 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7268 GSI_SAME_STMT);
7269 }
7270
7271 /* Build a binary operation and gimplify it. Emit code before GSI.
7272 Return the gimple_val holding the result. */
7273
7274 tree
7275 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
7276 tree type, tree a, tree b)
7277 {
7278 tree ret;
7279
7280 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
7281 STRIP_NOPS (ret);
7282
7283 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7284 GSI_SAME_STMT);
7285 }
7286
7287 /* Build a unary operation and gimplify it. Emit code before GSI.
7288 Return the gimple_val holding the result. */
7289
7290 tree
7291 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
7292 tree a)
7293 {
7294 tree ret;
7295
7296 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
7297 STRIP_NOPS (ret);
7298
7299 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
7300 GSI_SAME_STMT);
7301 }
7302
7303
7304 \f
7305 /* Emit return warnings. */
7306
7307 static unsigned int
7308 execute_warn_function_return (void)
7309 {
7310 source_location location;
7311 gimple last;
7312 edge e;
7313 edge_iterator ei;
7314
7315 /* If we have a path to EXIT, then we do return. */
7316 if (TREE_THIS_VOLATILE (cfun->decl)
7317 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0)
7318 {
7319 location = UNKNOWN_LOCATION;
7320 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7321 {
7322 last = last_stmt (e->src);
7323 if ((gimple_code (last) == GIMPLE_RETURN
7324 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
7325 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
7326 break;
7327 }
7328 if (location == UNKNOWN_LOCATION)
7329 location = cfun->function_end_locus;
7330 warning_at (location, 0, "%<noreturn%> function does return");
7331 }
7332
7333 /* If we see "return;" in some basic block, then we do reach the end
7334 without returning a value. */
7335 else if (warn_return_type
7336 && !TREE_NO_WARNING (cfun->decl)
7337 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) > 0
7338 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
7339 {
7340 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
7341 {
7342 gimple last = last_stmt (e->src);
7343 if (gimple_code (last) == GIMPLE_RETURN
7344 && gimple_return_retval (last) == NULL
7345 && !gimple_no_warning_p (last))
7346 {
7347 location = gimple_location (last);
7348 if (location == UNKNOWN_LOCATION)
7349 location = cfun->function_end_locus;
7350 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
7351 TREE_NO_WARNING (cfun->decl) = 1;
7352 break;
7353 }
7354 }
7355 }
7356 return 0;
7357 }
7358
7359
7360 /* Given a basic block B which ends with a conditional and has
7361 precisely two successors, determine which of the edges is taken if
7362 the conditional is true and which is taken if the conditional is
7363 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7364
7365 void
7366 extract_true_false_edges_from_block (basic_block b,
7367 edge *true_edge,
7368 edge *false_edge)
7369 {
7370 edge e = EDGE_SUCC (b, 0);
7371
7372 if (e->flags & EDGE_TRUE_VALUE)
7373 {
7374 *true_edge = e;
7375 *false_edge = EDGE_SUCC (b, 1);
7376 }
7377 else
7378 {
7379 *false_edge = e;
7380 *true_edge = EDGE_SUCC (b, 1);
7381 }
7382 }
7383
7384 struct gimple_opt_pass pass_warn_function_return =
7385 {
7386 {
7387 GIMPLE_PASS,
7388 "*warn_function_return", /* name */
7389 NULL, /* gate */
7390 execute_warn_function_return, /* execute */
7391 NULL, /* sub */
7392 NULL, /* next */
7393 0, /* static_pass_number */
7394 TV_NONE, /* tv_id */
7395 PROP_cfg, /* properties_required */
7396 0, /* properties_provided */
7397 0, /* properties_destroyed */
7398 0, /* todo_flags_start */
7399 0 /* todo_flags_finish */
7400 }
7401 };
7402
7403 /* Emit noreturn warnings. */
7404
7405 static unsigned int
7406 execute_warn_function_noreturn (void)
7407 {
7408 if (!TREE_THIS_VOLATILE (current_function_decl)
7409 && EDGE_COUNT (EXIT_BLOCK_PTR->preds) == 0)
7410 warn_function_noreturn (current_function_decl);
7411 return 0;
7412 }
7413
7414 static bool
7415 gate_warn_function_noreturn (void)
7416 {
7417 return warn_suggest_attribute_noreturn;
7418 }
7419
7420 struct gimple_opt_pass pass_warn_function_noreturn =
7421 {
7422 {
7423 GIMPLE_PASS,
7424 "*warn_function_noreturn", /* name */
7425 gate_warn_function_noreturn, /* gate */
7426 execute_warn_function_noreturn, /* execute */
7427 NULL, /* sub */
7428 NULL, /* next */
7429 0, /* static_pass_number */
7430 TV_NONE, /* tv_id */
7431 PROP_cfg, /* properties_required */
7432 0, /* properties_provided */
7433 0, /* properties_destroyed */
7434 0, /* todo_flags_start */
7435 0 /* todo_flags_finish */
7436 }
7437 };
7438
7439
7440 /* Walk a gimplified function and warn for functions whose return value is
7441 ignored and attribute((warn_unused_result)) is set. This is done before
7442 inlining, so we don't have to worry about that. */
7443
7444 static void
7445 do_warn_unused_result (gimple_seq seq)
7446 {
7447 tree fdecl, ftype;
7448 gimple_stmt_iterator i;
7449
7450 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
7451 {
7452 gimple g = gsi_stmt (i);
7453
7454 switch (gimple_code (g))
7455 {
7456 case GIMPLE_BIND:
7457 do_warn_unused_result (gimple_bind_body (g));
7458 break;
7459 case GIMPLE_TRY:
7460 do_warn_unused_result (gimple_try_eval (g));
7461 do_warn_unused_result (gimple_try_cleanup (g));
7462 break;
7463 case GIMPLE_CATCH:
7464 do_warn_unused_result (gimple_catch_handler (g));
7465 break;
7466 case GIMPLE_EH_FILTER:
7467 do_warn_unused_result (gimple_eh_filter_failure (g));
7468 break;
7469
7470 case GIMPLE_CALL:
7471 if (gimple_call_lhs (g))
7472 break;
7473
7474 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7475 LHS. All calls whose value is ignored should be
7476 represented like this. Look for the attribute. */
7477 fdecl = gimple_call_fndecl (g);
7478 ftype = TREE_TYPE (TREE_TYPE (gimple_call_fn (g)));
7479
7480 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
7481 {
7482 location_t loc = gimple_location (g);
7483
7484 if (fdecl)
7485 warning_at (loc, OPT_Wunused_result,
7486 "ignoring return value of %qD, "
7487 "declared with attribute warn_unused_result",
7488 fdecl);
7489 else
7490 warning_at (loc, OPT_Wunused_result,
7491 "ignoring return value of function "
7492 "declared with attribute warn_unused_result");
7493 }
7494 break;
7495
7496 default:
7497 /* Not a container, not a call, or a call whose value is used. */
7498 break;
7499 }
7500 }
7501 }
7502
7503 static unsigned int
7504 run_warn_unused_result (void)
7505 {
7506 do_warn_unused_result (gimple_body (current_function_decl));
7507 return 0;
7508 }
7509
7510 static bool
7511 gate_warn_unused_result (void)
7512 {
7513 return flag_warn_unused_result;
7514 }
7515
7516 struct gimple_opt_pass pass_warn_unused_result =
7517 {
7518 {
7519 GIMPLE_PASS,
7520 "*warn_unused_result", /* name */
7521 gate_warn_unused_result, /* gate */
7522 run_warn_unused_result, /* execute */
7523 NULL, /* sub */
7524 NULL, /* next */
7525 0, /* static_pass_number */
7526 TV_NONE, /* tv_id */
7527 PROP_gimple_any, /* properties_required */
7528 0, /* properties_provided */
7529 0, /* properties_destroyed */
7530 0, /* todo_flags_start */
7531 0, /* todo_flags_finish */
7532 }
7533 };
7534