typo fix
[gcc.git] / gcc / tree-chrec.c
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
25 */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-flow.h"
37 #include "tree-chrec.h"
38 #include "tree-pass.h"
39 #include "params.h"
40 #include "tree-scalar-evolution.h"
41
42 \f
43
44 /* Extended folder for chrecs. */
45
46 /* Determines whether CST is not a constant evolution. */
47
48 static inline bool
49 is_not_constant_evolution (tree cst)
50 {
51 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
52 }
53
54 /* Fold CODE for a polynomial function and a constant. */
55
56 static inline tree
57 chrec_fold_poly_cst (enum tree_code code,
58 tree type,
59 tree poly,
60 tree cst)
61 {
62 gcc_assert (poly);
63 gcc_assert (cst);
64 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65 gcc_assert (!is_not_constant_evolution (cst));
66 gcc_assert (type == chrec_type (poly));
67
68 switch (code)
69 {
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
75
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
81
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
87
88 default:
89 return chrec_dont_know;
90 }
91 }
92
93 /* Fold the addition of two polynomial functions. */
94
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
100 {
101 tree left, right;
102 struct loop *loop0 = get_chrec_loop (poly0);
103 struct loop *loop1 = get_chrec_loop (poly1);
104
105 gcc_assert (poly0);
106 gcc_assert (poly1);
107 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
108 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
109 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
110 gcc_assert (type == chrec_type (poly0));
111
112 /*
113 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
114 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
115 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
116 if (flow_loop_nested_p (loop0, loop1))
117 {
118 if (code == PLUS_EXPR)
119 return build_polynomial_chrec
120 (CHREC_VARIABLE (poly1),
121 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
122 CHREC_RIGHT (poly1));
123 else
124 return build_polynomial_chrec
125 (CHREC_VARIABLE (poly1),
126 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
127 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
128 SCALAR_FLOAT_TYPE_P (type)
129 ? build_real (type, dconstm1)
130 : build_int_cst_type (type, -1)));
131 }
132
133 if (flow_loop_nested_p (loop1, loop0))
134 {
135 if (code == PLUS_EXPR)
136 return build_polynomial_chrec
137 (CHREC_VARIABLE (poly0),
138 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
139 CHREC_RIGHT (poly0));
140 else
141 return build_polynomial_chrec
142 (CHREC_VARIABLE (poly0),
143 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
144 CHREC_RIGHT (poly0));
145 }
146
147 /* This function should never be called for chrecs of loops that
148 do not belong to the same loop nest. */
149 gcc_assert (loop0 == loop1);
150
151 if (code == PLUS_EXPR)
152 {
153 left = chrec_fold_plus
154 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
155 right = chrec_fold_plus
156 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
157 }
158 else
159 {
160 left = chrec_fold_minus
161 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
162 right = chrec_fold_minus
163 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
164 }
165
166 if (chrec_zerop (right))
167 return left;
168 else
169 return build_polynomial_chrec
170 (CHREC_VARIABLE (poly0), left, right);
171 }
172
173 \f
174
175 /* Fold the multiplication of two polynomial functions. */
176
177 static inline tree
178 chrec_fold_multiply_poly_poly (tree type,
179 tree poly0,
180 tree poly1)
181 {
182 tree t0, t1, t2;
183 int var;
184 struct loop *loop0 = get_chrec_loop (poly0);
185 struct loop *loop1 = get_chrec_loop (poly1);
186
187 gcc_assert (poly0);
188 gcc_assert (poly1);
189 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
190 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
191 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
192 gcc_assert (type == chrec_type (poly0));
193
194 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
195 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
196 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
197 if (flow_loop_nested_p (loop0, loop1))
198 /* poly0 is a constant wrt. poly1. */
199 return build_polynomial_chrec
200 (CHREC_VARIABLE (poly1),
201 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
202 CHREC_RIGHT (poly1));
203
204 if (flow_loop_nested_p (loop1, loop0))
205 /* poly1 is a constant wrt. poly0. */
206 return build_polynomial_chrec
207 (CHREC_VARIABLE (poly0),
208 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
209 CHREC_RIGHT (poly0));
210
211 gcc_assert (loop0 == loop1);
212
213 /* poly0 and poly1 are two polynomials in the same variable,
214 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
215
216 /* "a*c". */
217 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
218
219 /* "a*d + b*c + b*d". */
220 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
221 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
222 CHREC_RIGHT (poly0),
223 CHREC_LEFT (poly1)));
224 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
225 CHREC_RIGHT (poly0),
226 CHREC_RIGHT (poly1)));
227 /* "2*b*d". */
228 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
229 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
230 ? build_real (type, dconst2)
231 : build_int_cst (type, 2), t2);
232
233 var = CHREC_VARIABLE (poly0);
234 return build_polynomial_chrec (var, t0,
235 build_polynomial_chrec (var, t1, t2));
236 }
237
238 /* When the operands are automatically_generated_chrec_p, the fold has
239 to respect the semantics of the operands. */
240
241 static inline tree
242 chrec_fold_automatically_generated_operands (tree op0,
243 tree op1)
244 {
245 if (op0 == chrec_dont_know
246 || op1 == chrec_dont_know)
247 return chrec_dont_know;
248
249 if (op0 == chrec_known
250 || op1 == chrec_known)
251 return chrec_known;
252
253 if (op0 == chrec_not_analyzed_yet
254 || op1 == chrec_not_analyzed_yet)
255 return chrec_not_analyzed_yet;
256
257 /* The default case produces a safe result. */
258 return chrec_dont_know;
259 }
260
261 /* Fold the addition of two chrecs. */
262
263 static tree
264 chrec_fold_plus_1 (enum tree_code code, tree type,
265 tree op0, tree op1)
266 {
267 if (automatically_generated_chrec_p (op0)
268 || automatically_generated_chrec_p (op1))
269 return chrec_fold_automatically_generated_operands (op0, op1);
270
271 switch (TREE_CODE (op0))
272 {
273 case POLYNOMIAL_CHREC:
274 switch (TREE_CODE (op1))
275 {
276 case POLYNOMIAL_CHREC:
277 return chrec_fold_plus_poly_poly (code, type, op0, op1);
278
279 default:
280 if (code == PLUS_EXPR)
281 return build_polynomial_chrec
282 (CHREC_VARIABLE (op0),
283 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
284 CHREC_RIGHT (op0));
285 else
286 return build_polynomial_chrec
287 (CHREC_VARIABLE (op0),
288 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
289 CHREC_RIGHT (op0));
290 }
291
292 default:
293 switch (TREE_CODE (op1))
294 {
295 case POLYNOMIAL_CHREC:
296 if (code == PLUS_EXPR)
297 return build_polynomial_chrec
298 (CHREC_VARIABLE (op1),
299 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
300 CHREC_RIGHT (op1));
301 else
302 return build_polynomial_chrec
303 (CHREC_VARIABLE (op1),
304 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
305 chrec_fold_multiply (type, CHREC_RIGHT (op1),
306 SCALAR_FLOAT_TYPE_P (type)
307 ? build_real (type, dconstm1)
308 : build_int_cst_type (type, -1)));
309
310 default:
311 {
312 int size = 0;
313 if ((tree_contains_chrecs (op0, &size)
314 || tree_contains_chrecs (op1, &size))
315 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
316 return build2 (code, type, op0, op1);
317 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
318 return fold_build2 (code, type,
319 fold_convert (type, op0),
320 fold_convert (type, op1));
321 else
322 return chrec_dont_know;
323 }
324 }
325 }
326 }
327
328 /* Fold the addition of two chrecs. */
329
330 tree
331 chrec_fold_plus (tree type,
332 tree op0,
333 tree op1)
334 {
335 if (automatically_generated_chrec_p (op0)
336 || automatically_generated_chrec_p (op1))
337 return chrec_fold_automatically_generated_operands (op0, op1);
338
339 if (integer_zerop (op0))
340 return op1;
341 if (integer_zerop (op1))
342 return op0;
343
344 return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
345 }
346
347 /* Fold the subtraction of two chrecs. */
348
349 tree
350 chrec_fold_minus (tree type,
351 tree op0,
352 tree op1)
353 {
354 if (automatically_generated_chrec_p (op0)
355 || automatically_generated_chrec_p (op1))
356 return chrec_fold_automatically_generated_operands (op0, op1);
357
358 if (integer_zerop (op1))
359 return op0;
360
361 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
362 }
363
364 /* Fold the multiplication of two chrecs. */
365
366 tree
367 chrec_fold_multiply (tree type,
368 tree op0,
369 tree op1)
370 {
371 if (automatically_generated_chrec_p (op0)
372 || automatically_generated_chrec_p (op1))
373 return chrec_fold_automatically_generated_operands (op0, op1);
374
375 switch (TREE_CODE (op0))
376 {
377 case POLYNOMIAL_CHREC:
378 switch (TREE_CODE (op1))
379 {
380 case POLYNOMIAL_CHREC:
381 return chrec_fold_multiply_poly_poly (type, op0, op1);
382
383 default:
384 if (integer_onep (op1))
385 return op0;
386 if (integer_zerop (op1))
387 return build_int_cst (type, 0);
388
389 return build_polynomial_chrec
390 (CHREC_VARIABLE (op0),
391 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
392 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
393 }
394
395 default:
396 if (integer_onep (op0))
397 return op1;
398
399 if (integer_zerop (op0))
400 return build_int_cst (type, 0);
401
402 switch (TREE_CODE (op1))
403 {
404 case POLYNOMIAL_CHREC:
405 return build_polynomial_chrec
406 (CHREC_VARIABLE (op1),
407 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
408 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
409
410 default:
411 if (integer_onep (op1))
412 return op0;
413 if (integer_zerop (op1))
414 return build_int_cst (type, 0);
415 return fold_build2 (MULT_EXPR, type, op0, op1);
416 }
417 }
418 }
419
420 \f
421
422 /* Operations. */
423
424 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
425 calculation overflows, otherwise return C(n,k) with type TYPE. */
426
427 static tree
428 tree_fold_binomial (tree type, tree n, unsigned int k)
429 {
430 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
431 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
432 unsigned int i;
433 tree res;
434
435 /* Handle the most frequent cases. */
436 if (k == 0)
437 return build_int_cst (type, 1);
438 if (k == 1)
439 return fold_convert (type, n);
440
441 /* Check that k <= n. */
442 if (TREE_INT_CST_HIGH (n) == 0
443 && TREE_INT_CST_LOW (n) < k)
444 return NULL_TREE;
445
446 /* Numerator = n. */
447 lnum = TREE_INT_CST_LOW (n);
448 hnum = TREE_INT_CST_HIGH (n);
449
450 /* Denominator = 2. */
451 ldenom = 2;
452 hdenom = 0;
453
454 /* Index = Numerator-1. */
455 if (lnum == 0)
456 {
457 hidx = hnum - 1;
458 lidx = ~ (unsigned HOST_WIDE_INT) 0;
459 }
460 else
461 {
462 hidx = hnum;
463 lidx = lnum - 1;
464 }
465
466 /* Numerator = Numerator*Index = n*(n-1). */
467 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
468 return NULL_TREE;
469
470 for (i = 3; i <= k; i++)
471 {
472 /* Index--. */
473 if (lidx == 0)
474 {
475 hidx--;
476 lidx = ~ (unsigned HOST_WIDE_INT) 0;
477 }
478 else
479 lidx--;
480
481 /* Numerator *= Index. */
482 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
483 return NULL_TREE;
484
485 /* Denominator *= i. */
486 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
487 }
488
489 /* Result = Numerator / Denominator. */
490 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
491 &lres, &hres, &ldum, &hdum);
492
493 res = build_int_cst_wide (type, lres, hres);
494 return int_fits_type_p (res, type) ? res : NULL_TREE;
495 }
496
497 /* Helper function. Use the Newton's interpolating formula for
498 evaluating the value of the evolution function. */
499
500 static tree
501 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
502 {
503 tree arg0, arg1, binomial_n_k;
504 tree type = TREE_TYPE (chrec);
505 struct loop *var_loop = get_loop (var);
506
507 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
508 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
509 chrec = CHREC_LEFT (chrec);
510
511 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
512 && CHREC_VARIABLE (chrec) == var)
513 {
514 arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
515 if (arg0 == chrec_dont_know)
516 return chrec_dont_know;
517 binomial_n_k = tree_fold_binomial (type, n, k);
518 if (!binomial_n_k)
519 return chrec_dont_know;
520 arg1 = fold_build2 (MULT_EXPR, type,
521 CHREC_LEFT (chrec), binomial_n_k);
522 return chrec_fold_plus (type, arg0, arg1);
523 }
524
525 binomial_n_k = tree_fold_binomial (type, n, k);
526 if (!binomial_n_k)
527 return chrec_dont_know;
528
529 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
530 }
531
532 /* Evaluates "CHREC (X)" when the varying variable is VAR.
533 Example: Given the following parameters,
534
535 var = 1
536 chrec = {3, +, 4}_1
537 x = 10
538
539 The result is given by the Newton's interpolating formula:
540 3 * \binom{10}{0} + 4 * \binom{10}{1}.
541 */
542
543 tree
544 chrec_apply (unsigned var,
545 tree chrec,
546 tree x)
547 {
548 tree type = chrec_type (chrec);
549 tree res = chrec_dont_know;
550
551 if (automatically_generated_chrec_p (chrec)
552 || automatically_generated_chrec_p (x)
553
554 /* When the symbols are defined in an outer loop, it is possible
555 to symbolically compute the apply, since the symbols are
556 constants with respect to the varying loop. */
557 || chrec_contains_symbols_defined_in_loop (chrec, var))
558 return chrec_dont_know;
559
560 if (dump_file && (dump_flags & TDF_DETAILS))
561 fprintf (dump_file, "(chrec_apply \n");
562
563 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
564 x = build_real_from_int_cst (type, x);
565
566 if (evolution_function_is_affine_p (chrec))
567 {
568 /* "{a, +, b} (x)" -> "a + b*x". */
569 x = chrec_convert (type, x, NULL_TREE);
570 res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
571 if (!integer_zerop (CHREC_LEFT (chrec)))
572 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
573 }
574
575 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
576 res = chrec;
577
578 else if (TREE_CODE (x) == INTEGER_CST
579 && tree_int_cst_sgn (x) == 1)
580 /* testsuite/.../ssa-chrec-38.c. */
581 res = chrec_evaluate (var, chrec, x, 0);
582 else
583 res = chrec_dont_know;
584
585 if (dump_file && (dump_flags & TDF_DETAILS))
586 {
587 fprintf (dump_file, " (varying_loop = %d\n", var);
588 fprintf (dump_file, ")\n (chrec = ");
589 print_generic_expr (dump_file, chrec, 0);
590 fprintf (dump_file, ")\n (x = ");
591 print_generic_expr (dump_file, x, 0);
592 fprintf (dump_file, ")\n (res = ");
593 print_generic_expr (dump_file, res, 0);
594 fprintf (dump_file, "))\n");
595 }
596
597 return res;
598 }
599
600 /* Replaces the initial condition in CHREC with INIT_COND. */
601
602 tree
603 chrec_replace_initial_condition (tree chrec,
604 tree init_cond)
605 {
606 if (automatically_generated_chrec_p (chrec))
607 return chrec;
608
609 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
610
611 switch (TREE_CODE (chrec))
612 {
613 case POLYNOMIAL_CHREC:
614 return build_polynomial_chrec
615 (CHREC_VARIABLE (chrec),
616 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
617 CHREC_RIGHT (chrec));
618
619 default:
620 return init_cond;
621 }
622 }
623
624 /* Returns the initial condition of a given CHREC. */
625
626 tree
627 initial_condition (tree chrec)
628 {
629 if (automatically_generated_chrec_p (chrec))
630 return chrec;
631
632 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
633 return initial_condition (CHREC_LEFT (chrec));
634 else
635 return chrec;
636 }
637
638 /* Returns a univariate function that represents the evolution in
639 LOOP_NUM. Mask the evolution of any other loop. */
640
641 tree
642 hide_evolution_in_other_loops_than_loop (tree chrec,
643 unsigned loop_num)
644 {
645 struct loop *loop = get_loop (loop_num), *chloop;
646 if (automatically_generated_chrec_p (chrec))
647 return chrec;
648
649 switch (TREE_CODE (chrec))
650 {
651 case POLYNOMIAL_CHREC:
652 chloop = get_chrec_loop (chrec);
653
654 if (chloop == loop)
655 return build_polynomial_chrec
656 (loop_num,
657 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
658 loop_num),
659 CHREC_RIGHT (chrec));
660
661 else if (flow_loop_nested_p (chloop, loop))
662 /* There is no evolution in this loop. */
663 return initial_condition (chrec);
664
665 else
666 {
667 gcc_assert (flow_loop_nested_p (loop, chloop));
668 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
669 loop_num);
670 }
671
672 default:
673 return chrec;
674 }
675 }
676
677 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
678 true, otherwise returns the initial condition in LOOP_NUM. */
679
680 static tree
681 chrec_component_in_loop_num (tree chrec,
682 unsigned loop_num,
683 bool right)
684 {
685 tree component;
686 struct loop *loop = get_loop (loop_num), *chloop;
687
688 if (automatically_generated_chrec_p (chrec))
689 return chrec;
690
691 switch (TREE_CODE (chrec))
692 {
693 case POLYNOMIAL_CHREC:
694 chloop = get_chrec_loop (chrec);
695
696 if (chloop == loop)
697 {
698 if (right)
699 component = CHREC_RIGHT (chrec);
700 else
701 component = CHREC_LEFT (chrec);
702
703 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
704 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
705 return component;
706
707 else
708 return build_polynomial_chrec
709 (loop_num,
710 chrec_component_in_loop_num (CHREC_LEFT (chrec),
711 loop_num,
712 right),
713 component);
714 }
715
716 else if (flow_loop_nested_p (chloop, loop))
717 /* There is no evolution part in this loop. */
718 return NULL_TREE;
719
720 else
721 {
722 gcc_assert (flow_loop_nested_p (loop, chloop));
723 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
724 loop_num,
725 right);
726 }
727
728 default:
729 if (right)
730 return NULL_TREE;
731 else
732 return chrec;
733 }
734 }
735
736 /* Returns the evolution part in LOOP_NUM. Example: the call
737 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
738 {1, +, 2}_1 */
739
740 tree
741 evolution_part_in_loop_num (tree chrec,
742 unsigned loop_num)
743 {
744 return chrec_component_in_loop_num (chrec, loop_num, true);
745 }
746
747 /* Returns the initial condition in LOOP_NUM. Example: the call
748 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
749 {0, +, 1}_1 */
750
751 tree
752 initial_condition_in_loop_num (tree chrec,
753 unsigned loop_num)
754 {
755 return chrec_component_in_loop_num (chrec, loop_num, false);
756 }
757
758 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
759 This function is essentially used for setting the evolution to
760 chrec_dont_know, for example after having determined that it is
761 impossible to say how many times a loop will execute. */
762
763 tree
764 reset_evolution_in_loop (unsigned loop_num,
765 tree chrec,
766 tree new_evol)
767 {
768 struct loop *loop = get_loop (loop_num);
769
770 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
771
772 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
773 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
774 {
775 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
776 new_evol);
777 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
778 new_evol);
779 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
780 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
781 left, right);
782 }
783
784 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
785 && CHREC_VARIABLE (chrec) == loop_num)
786 chrec = CHREC_LEFT (chrec);
787
788 return build_polynomial_chrec (loop_num, chrec, new_evol);
789 }
790
791 /* Merges two evolution functions that were found by following two
792 alternate paths of a conditional expression. */
793
794 tree
795 chrec_merge (tree chrec1,
796 tree chrec2)
797 {
798 if (chrec1 == chrec_dont_know
799 || chrec2 == chrec_dont_know)
800 return chrec_dont_know;
801
802 if (chrec1 == chrec_known
803 || chrec2 == chrec_known)
804 return chrec_known;
805
806 if (chrec1 == chrec_not_analyzed_yet)
807 return chrec2;
808 if (chrec2 == chrec_not_analyzed_yet)
809 return chrec1;
810
811 if (eq_evolutions_p (chrec1, chrec2))
812 return chrec1;
813
814 return chrec_dont_know;
815 }
816
817 \f
818
819 /* Observers. */
820
821 /* Helper function for is_multivariate_chrec. */
822
823 static bool
824 is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
825 {
826 if (chrec == NULL_TREE)
827 return false;
828
829 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
830 {
831 if (CHREC_VARIABLE (chrec) != rec_var)
832 return true;
833 else
834 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
835 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
836 }
837 else
838 return false;
839 }
840
841 /* Determine whether the given chrec is multivariate or not. */
842
843 bool
844 is_multivariate_chrec (tree chrec)
845 {
846 if (chrec == NULL_TREE)
847 return false;
848
849 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
850 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
851 CHREC_VARIABLE (chrec))
852 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
853 CHREC_VARIABLE (chrec)));
854 else
855 return false;
856 }
857
858 /* Determines whether the chrec contains symbolic names or not. */
859
860 bool
861 chrec_contains_symbols (tree chrec)
862 {
863 int i, n;
864
865 if (chrec == NULL_TREE)
866 return false;
867
868 if (TREE_CODE (chrec) == SSA_NAME
869 || TREE_CODE (chrec) == VAR_DECL
870 || TREE_CODE (chrec) == PARM_DECL
871 || TREE_CODE (chrec) == FUNCTION_DECL
872 || TREE_CODE (chrec) == LABEL_DECL
873 || TREE_CODE (chrec) == RESULT_DECL
874 || TREE_CODE (chrec) == FIELD_DECL)
875 return true;
876
877 n = TREE_OPERAND_LENGTH (chrec);
878 for (i = 0; i < n; i++)
879 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
880 return true;
881 return false;
882 }
883
884 /* Determines whether the chrec contains undetermined coefficients. */
885
886 bool
887 chrec_contains_undetermined (tree chrec)
888 {
889 int i, n;
890
891 if (chrec == chrec_dont_know
892 || chrec == chrec_not_analyzed_yet
893 || chrec == NULL_TREE)
894 return true;
895
896 n = TREE_OPERAND_LENGTH (chrec);
897 for (i = 0; i < n; i++)
898 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
899 return true;
900 return false;
901 }
902
903 /* Determines whether the tree EXPR contains chrecs, and increment
904 SIZE if it is not a NULL pointer by an estimation of the depth of
905 the tree. */
906
907 bool
908 tree_contains_chrecs (tree expr, int *size)
909 {
910 int i, n;
911
912 if (expr == NULL_TREE)
913 return false;
914
915 if (size)
916 (*size)++;
917
918 if (tree_is_chrec (expr))
919 return true;
920
921 n = TREE_OPERAND_LENGTH (expr);
922 for (i = 0; i < n; i++)
923 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
924 return true;
925 return false;
926 }
927
928 /* Recursive helper function. */
929
930 static bool
931 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
932 {
933 if (evolution_function_is_constant_p (chrec))
934 return true;
935
936 if (TREE_CODE (chrec) == SSA_NAME
937 && expr_invariant_in_loop_p (get_loop (loopnum), chrec))
938 return true;
939
940 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
941 {
942 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
943 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
944 loopnum)
945 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
946 loopnum))
947 return false;
948 return true;
949 }
950
951 switch (TREE_OPERAND_LENGTH (chrec))
952 {
953 case 2:
954 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
955 loopnum))
956 return false;
957
958 case 1:
959 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
960 loopnum))
961 return false;
962 return true;
963
964 default:
965 return false;
966 }
967
968 return false;
969 }
970
971 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
972
973 bool
974 evolution_function_is_invariant_p (tree chrec, int loopnum)
975 {
976 if (evolution_function_is_constant_p (chrec))
977 return true;
978
979 if (current_loops != NULL)
980 return evolution_function_is_invariant_rec_p (chrec, loopnum);
981
982 return false;
983 }
984
985 /* Determine whether the given tree is an affine multivariate
986 evolution. */
987
988 bool
989 evolution_function_is_affine_multivariate_p (tree chrec)
990 {
991 if (chrec == NULL_TREE)
992 return false;
993
994 switch (TREE_CODE (chrec))
995 {
996 case POLYNOMIAL_CHREC:
997 if (evolution_function_is_constant_p (CHREC_LEFT (chrec)))
998 {
999 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec)))
1000 return true;
1001 else
1002 {
1003 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1004 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1005 != CHREC_VARIABLE (chrec)
1006 && evolution_function_is_affine_multivariate_p
1007 (CHREC_RIGHT (chrec)))
1008 return true;
1009 else
1010 return false;
1011 }
1012 }
1013 else
1014 {
1015 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec))
1016 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1017 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1018 && evolution_function_is_affine_multivariate_p
1019 (CHREC_LEFT (chrec)))
1020 return true;
1021 else
1022 return false;
1023 }
1024
1025 default:
1026 return false;
1027 }
1028 }
1029
1030 /* Determine whether the given tree is a function in zero or one
1031 variables. */
1032
1033 bool
1034 evolution_function_is_univariate_p (tree chrec)
1035 {
1036 if (chrec == NULL_TREE)
1037 return true;
1038
1039 switch (TREE_CODE (chrec))
1040 {
1041 case POLYNOMIAL_CHREC:
1042 switch (TREE_CODE (CHREC_LEFT (chrec)))
1043 {
1044 case POLYNOMIAL_CHREC:
1045 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1046 return false;
1047 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1048 return false;
1049 break;
1050
1051 default:
1052 break;
1053 }
1054
1055 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1056 {
1057 case POLYNOMIAL_CHREC:
1058 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1059 return false;
1060 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1061 return false;
1062 break;
1063
1064 default:
1065 break;
1066 }
1067
1068 default:
1069 return true;
1070 }
1071 }
1072
1073 /* Returns the number of variables of CHREC. Example: the call
1074 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1075
1076 unsigned
1077 nb_vars_in_chrec (tree chrec)
1078 {
1079 if (chrec == NULL_TREE)
1080 return 0;
1081
1082 switch (TREE_CODE (chrec))
1083 {
1084 case POLYNOMIAL_CHREC:
1085 return 1 + nb_vars_in_chrec
1086 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1087
1088 default:
1089 return 0;
1090 }
1091 }
1092
1093 /* Returns true if TYPE is a type in that we cannot directly perform
1094 arithmetics, even though it is a scalar type. */
1095
1096 static bool
1097 avoid_arithmetics_in_type_p (tree type)
1098 {
1099 /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
1100 in the subtype, but a base type must be used, and the result then can
1101 be casted to the subtype. */
1102 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
1103 return true;
1104
1105 return false;
1106 }
1107
1108 static tree chrec_convert_1 (tree, tree, tree, bool);
1109
1110 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1111 the scev corresponds to. AT_STMT is the statement at that the scev is
1112 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1113 the rules for overflow of the given language apply (e.g., that signed
1114 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1115 tests, but also to enforce that the result follows them. Returns true if the
1116 conversion succeeded, false otherwise. */
1117
1118 bool
1119 convert_affine_scev (struct loop *loop, tree type,
1120 tree *base, tree *step, tree at_stmt,
1121 bool use_overflow_semantics)
1122 {
1123 tree ct = TREE_TYPE (*step);
1124 bool enforce_overflow_semantics;
1125 bool must_check_src_overflow, must_check_rslt_overflow;
1126 tree new_base, new_step;
1127
1128 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1129 if (avoid_arithmetics_in_type_p (type))
1130 return false;
1131
1132 /* In general,
1133 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1134 but we must check some assumptions.
1135
1136 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1137 of CT is smaller than the precision of TYPE. For example, when we
1138 cast unsigned char [254, +, 1] to unsigned, the values on left side
1139 are 254, 255, 0, 1, ..., but those on the right side are
1140 254, 255, 256, 257, ...
1141 2) In case that we must also preserve the fact that signed ivs do not
1142 overflow, we must additionally check that the new iv does not wrap.
1143 For example, unsigned char [125, +, 1] casted to signed char could
1144 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1145 which would confuse optimizers that assume that this does not
1146 happen. */
1147 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1148
1149 enforce_overflow_semantics = (use_overflow_semantics
1150 && nowrap_type_p (type));
1151 if (enforce_overflow_semantics)
1152 {
1153 /* We can avoid checking whether the result overflows in the following
1154 cases:
1155
1156 -- must_check_src_overflow is true, and the range of TYPE is superset
1157 of the range of CT -- i.e., in all cases except if CT signed and
1158 TYPE unsigned.
1159 -- both CT and TYPE have the same precision and signedness, and we
1160 verify instead that the source does not overflow (this may be
1161 easier than verifying it for the result, as we may use the
1162 information about the semantics of overflow in CT). */
1163 if (must_check_src_overflow)
1164 {
1165 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1166 must_check_rslt_overflow = true;
1167 else
1168 must_check_rslt_overflow = false;
1169 }
1170 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1171 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1172 {
1173 must_check_rslt_overflow = false;
1174 must_check_src_overflow = true;
1175 }
1176 else
1177 must_check_rslt_overflow = true;
1178 }
1179 else
1180 must_check_rslt_overflow = false;
1181
1182 if (must_check_src_overflow
1183 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1184 use_overflow_semantics))
1185 return false;
1186
1187 new_base = chrec_convert_1 (type, *base, at_stmt,
1188 use_overflow_semantics);
1189 /* The step must be sign extended, regardless of the signedness
1190 of CT and TYPE. This only needs to be handled specially when
1191 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1192 (with values 100, 99, 98, ...) from becoming signed or unsigned
1193 [100, +, 255] with values 100, 355, ...; the sign-extension is
1194 performed by default when CT is signed. */
1195 new_step = *step;
1196 if (TYPE_PRECISION (type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1197 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1198 use_overflow_semantics);
1199 new_step = chrec_convert_1 (type, new_step, at_stmt, use_overflow_semantics);
1200
1201 if (automatically_generated_chrec_p (new_base)
1202 || automatically_generated_chrec_p (new_step))
1203 return false;
1204
1205 if (must_check_rslt_overflow
1206 /* Note that in this case we cannot use the fact that signed variables
1207 do not overflow, as this is what we are verifying for the new iv. */
1208 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1209 return false;
1210
1211 *base = new_base;
1212 *step = new_step;
1213 return true;
1214 }
1215 \f
1216
1217 /* Convert CHREC to TYPE. When the analyzer knows the context in
1218 which the CHREC is built, it sets AT_STMT to the statement that
1219 contains the definition of the analyzed variable, otherwise the
1220 conversion is less accurate: the information is used for
1221 determining a more accurate estimation of the number of iterations.
1222 By default AT_STMT could be safely set to NULL_TREE.
1223
1224 The following rule is always true: TREE_TYPE (chrec) ==
1225 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1226 An example of what could happen when adding two chrecs and the type
1227 of the CHREC_RIGHT is different than CHREC_LEFT is:
1228
1229 {(uint) 0, +, (uchar) 10} +
1230 {(uint) 0, +, (uchar) 250}
1231
1232 that would produce a wrong result if CHREC_RIGHT is not (uint):
1233
1234 {(uint) 0, +, (uchar) 4}
1235
1236 instead of
1237
1238 {(uint) 0, +, (uint) 260}
1239 */
1240
1241 tree
1242 chrec_convert (tree type, tree chrec, tree at_stmt)
1243 {
1244 return chrec_convert_1 (type, chrec, at_stmt, true);
1245 }
1246
1247 /* Convert CHREC to TYPE. When the analyzer knows the context in
1248 which the CHREC is built, it sets AT_STMT to the statement that
1249 contains the definition of the analyzed variable, otherwise the
1250 conversion is less accurate: the information is used for
1251 determining a more accurate estimation of the number of iterations.
1252 By default AT_STMT could be safely set to NULL_TREE.
1253
1254 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1255 the rules for overflow of the given language apply (e.g., that signed
1256 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1257 tests, but also to enforce that the result follows them. */
1258
1259 static tree
1260 chrec_convert_1 (tree type, tree chrec, tree at_stmt,
1261 bool use_overflow_semantics)
1262 {
1263 tree ct, res;
1264 tree base, step;
1265 struct loop *loop;
1266
1267 if (automatically_generated_chrec_p (chrec))
1268 return chrec;
1269
1270 ct = chrec_type (chrec);
1271 if (ct == type)
1272 return chrec;
1273
1274 if (!evolution_function_is_affine_p (chrec))
1275 goto keep_cast;
1276
1277 loop = get_chrec_loop (chrec);
1278 base = CHREC_LEFT (chrec);
1279 step = CHREC_RIGHT (chrec);
1280
1281 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1282 use_overflow_semantics))
1283 return build_polynomial_chrec (loop->num, base, step);
1284
1285 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1286 keep_cast:
1287 res = fold_convert (type, chrec);
1288
1289 /* Don't propagate overflows. */
1290 if (CONSTANT_CLASS_P (res))
1291 TREE_OVERFLOW (res) = 0;
1292
1293 /* But reject constants that don't fit in their type after conversion.
1294 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1295 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1296 and can cause problems later when computing niters of loops. Note
1297 that we don't do the check before converting because we don't want
1298 to reject conversions of negative chrecs to unsigned types. */
1299 if (TREE_CODE (res) == INTEGER_CST
1300 && TREE_CODE (type) == INTEGER_TYPE
1301 && !int_fits_type_p (res, type))
1302 res = chrec_dont_know;
1303
1304 return res;
1305 }
1306
1307 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1308 chrec if something else than what chrec_convert would do happens, NULL_TREE
1309 otherwise. */
1310
1311 tree
1312 chrec_convert_aggressive (tree type, tree chrec)
1313 {
1314 tree inner_type, left, right, lc, rc;
1315
1316 if (automatically_generated_chrec_p (chrec)
1317 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1318 return NULL_TREE;
1319
1320 inner_type = TREE_TYPE (chrec);
1321 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1322 return NULL_TREE;
1323
1324 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1325 if (avoid_arithmetics_in_type_p (type))
1326 return NULL_TREE;
1327
1328 left = CHREC_LEFT (chrec);
1329 right = CHREC_RIGHT (chrec);
1330 lc = chrec_convert_aggressive (type, left);
1331 if (!lc)
1332 lc = chrec_convert (type, left, NULL_TREE);
1333 rc = chrec_convert_aggressive (type, right);
1334 if (!rc)
1335 rc = chrec_convert (type, right, NULL_TREE);
1336
1337 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1338 }
1339
1340 /* Returns true when CHREC0 == CHREC1. */
1341
1342 bool
1343 eq_evolutions_p (tree chrec0,
1344 tree chrec1)
1345 {
1346 if (chrec0 == NULL_TREE
1347 || chrec1 == NULL_TREE
1348 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1349 return false;
1350
1351 if (chrec0 == chrec1)
1352 return true;
1353
1354 switch (TREE_CODE (chrec0))
1355 {
1356 case INTEGER_CST:
1357 return operand_equal_p (chrec0, chrec1, 0);
1358
1359 case POLYNOMIAL_CHREC:
1360 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1361 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1362 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1363 default:
1364 return false;
1365 }
1366 }
1367
1368 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1369 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1370 which of these cases happens. */
1371
1372 enum ev_direction
1373 scev_direction (tree chrec)
1374 {
1375 tree step;
1376
1377 if (!evolution_function_is_affine_p (chrec))
1378 return EV_DIR_UNKNOWN;
1379
1380 step = CHREC_RIGHT (chrec);
1381 if (TREE_CODE (step) != INTEGER_CST)
1382 return EV_DIR_UNKNOWN;
1383
1384 if (tree_int_cst_sign_bit (step))
1385 return EV_DIR_DECREASES;
1386 else
1387 return EV_DIR_GROWS;
1388 }