(Synchronize with addition made to binutils sources):
[gcc.git] / gcc / tree-chrec.c
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
25 */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-flow.h"
37 #include "tree-chrec.h"
38 #include "tree-pass.h"
39 #include "params.h"
40 #include "tree-scalar-evolution.h"
41
42 \f
43
44 /* Extended folder for chrecs. */
45
46 /* Determines whether CST is not a constant evolution. */
47
48 static inline bool
49 is_not_constant_evolution (const_tree cst)
50 {
51 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
52 }
53
54 /* Fold CODE for a polynomial function and a constant. */
55
56 static inline tree
57 chrec_fold_poly_cst (enum tree_code code,
58 tree type,
59 tree poly,
60 tree cst)
61 {
62 gcc_assert (poly);
63 gcc_assert (cst);
64 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65 gcc_assert (!is_not_constant_evolution (cst));
66 gcc_assert (type == chrec_type (poly));
67
68 switch (code)
69 {
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
75
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
81
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
87
88 default:
89 return chrec_dont_know;
90 }
91 }
92
93 /* Fold the addition of two polynomial functions. */
94
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
100 {
101 tree left, right;
102 struct loop *loop0 = get_chrec_loop (poly0);
103 struct loop *loop1 = get_chrec_loop (poly1);
104 tree rtype = code == POINTER_PLUS_EXPR ? sizetype : type;
105
106 gcc_assert (poly0);
107 gcc_assert (poly1);
108 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
109 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
110 if (POINTER_TYPE_P (chrec_type (poly0)))
111 gcc_assert (chrec_type (poly1) == sizetype);
112 else
113 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
114 gcc_assert (type == chrec_type (poly0));
115
116 /*
117 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
118 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
119 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
120 if (flow_loop_nested_p (loop0, loop1))
121 {
122 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
123 return build_polynomial_chrec
124 (CHREC_VARIABLE (poly1),
125 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
126 CHREC_RIGHT (poly1));
127 else
128 return build_polynomial_chrec
129 (CHREC_VARIABLE (poly1),
130 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
131 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
132 SCALAR_FLOAT_TYPE_P (type)
133 ? build_real (type, dconstm1)
134 : build_int_cst_type (type, -1)));
135 }
136
137 if (flow_loop_nested_p (loop1, loop0))
138 {
139 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
140 return build_polynomial_chrec
141 (CHREC_VARIABLE (poly0),
142 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
143 CHREC_RIGHT (poly0));
144 else
145 return build_polynomial_chrec
146 (CHREC_VARIABLE (poly0),
147 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
148 CHREC_RIGHT (poly0));
149 }
150
151 /* This function should never be called for chrecs of loops that
152 do not belong to the same loop nest. */
153 gcc_assert (loop0 == loop1);
154
155 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
156 {
157 left = chrec_fold_plus
158 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
159 right = chrec_fold_plus
160 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
161 }
162 else
163 {
164 left = chrec_fold_minus
165 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
166 right = chrec_fold_minus
167 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
168 }
169
170 if (chrec_zerop (right))
171 return left;
172 else
173 return build_polynomial_chrec
174 (CHREC_VARIABLE (poly0), left, right);
175 }
176
177 \f
178
179 /* Fold the multiplication of two polynomial functions. */
180
181 static inline tree
182 chrec_fold_multiply_poly_poly (tree type,
183 tree poly0,
184 tree poly1)
185 {
186 tree t0, t1, t2;
187 int var;
188 struct loop *loop0 = get_chrec_loop (poly0);
189 struct loop *loop1 = get_chrec_loop (poly1);
190
191 gcc_assert (poly0);
192 gcc_assert (poly1);
193 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
194 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
195 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
196 gcc_assert (type == chrec_type (poly0));
197
198 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
199 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
200 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
201 if (flow_loop_nested_p (loop0, loop1))
202 /* poly0 is a constant wrt. poly1. */
203 return build_polynomial_chrec
204 (CHREC_VARIABLE (poly1),
205 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
206 CHREC_RIGHT (poly1));
207
208 if (flow_loop_nested_p (loop1, loop0))
209 /* poly1 is a constant wrt. poly0. */
210 return build_polynomial_chrec
211 (CHREC_VARIABLE (poly0),
212 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
213 CHREC_RIGHT (poly0));
214
215 gcc_assert (loop0 == loop1);
216
217 /* poly0 and poly1 are two polynomials in the same variable,
218 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
219
220 /* "a*c". */
221 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
222
223 /* "a*d + b*c + b*d". */
224 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
225 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
226 CHREC_RIGHT (poly0),
227 CHREC_LEFT (poly1)));
228 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
229 CHREC_RIGHT (poly0),
230 CHREC_RIGHT (poly1)));
231 /* "2*b*d". */
232 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
233 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
234 ? build_real (type, dconst2)
235 : build_int_cst (type, 2), t2);
236
237 var = CHREC_VARIABLE (poly0);
238 return build_polynomial_chrec (var, t0,
239 build_polynomial_chrec (var, t1, t2));
240 }
241
242 /* When the operands are automatically_generated_chrec_p, the fold has
243 to respect the semantics of the operands. */
244
245 static inline tree
246 chrec_fold_automatically_generated_operands (tree op0,
247 tree op1)
248 {
249 if (op0 == chrec_dont_know
250 || op1 == chrec_dont_know)
251 return chrec_dont_know;
252
253 if (op0 == chrec_known
254 || op1 == chrec_known)
255 return chrec_known;
256
257 if (op0 == chrec_not_analyzed_yet
258 || op1 == chrec_not_analyzed_yet)
259 return chrec_not_analyzed_yet;
260
261 /* The default case produces a safe result. */
262 return chrec_dont_know;
263 }
264
265 /* Fold the addition of two chrecs. */
266
267 static tree
268 chrec_fold_plus_1 (enum tree_code code, tree type,
269 tree op0, tree op1)
270 {
271 tree op1_type = code == POINTER_PLUS_EXPR ? sizetype : type;
272
273 if (automatically_generated_chrec_p (op0)
274 || automatically_generated_chrec_p (op1))
275 return chrec_fold_automatically_generated_operands (op0, op1);
276
277 switch (TREE_CODE (op0))
278 {
279 case POLYNOMIAL_CHREC:
280 switch (TREE_CODE (op1))
281 {
282 case POLYNOMIAL_CHREC:
283 return chrec_fold_plus_poly_poly (code, type, op0, op1);
284
285 default:
286 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
287 return build_polynomial_chrec
288 (CHREC_VARIABLE (op0),
289 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
290 CHREC_RIGHT (op0));
291 else
292 return build_polynomial_chrec
293 (CHREC_VARIABLE (op0),
294 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
295 CHREC_RIGHT (op0));
296 }
297
298 default:
299 switch (TREE_CODE (op1))
300 {
301 case POLYNOMIAL_CHREC:
302 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
303 return build_polynomial_chrec
304 (CHREC_VARIABLE (op1),
305 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
306 CHREC_RIGHT (op1));
307 else
308 return build_polynomial_chrec
309 (CHREC_VARIABLE (op1),
310 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
311 chrec_fold_multiply (type, CHREC_RIGHT (op1),
312 SCALAR_FLOAT_TYPE_P (type)
313 ? build_real (type, dconstm1)
314 : build_int_cst_type (type, -1)));
315
316 default:
317 {
318 int size = 0;
319 if ((tree_contains_chrecs (op0, &size)
320 || tree_contains_chrecs (op1, &size))
321 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
322 return build2 (code, type, op0, op1);
323 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
324 return fold_build2 (code, type,
325 fold_convert (type, op0),
326 fold_convert (op1_type, op1));
327 else
328 return chrec_dont_know;
329 }
330 }
331 }
332 }
333
334 /* Fold the addition of two chrecs. */
335
336 tree
337 chrec_fold_plus (tree type,
338 tree op0,
339 tree op1)
340 {
341 enum tree_code code;
342 if (automatically_generated_chrec_p (op0)
343 || automatically_generated_chrec_p (op1))
344 return chrec_fold_automatically_generated_operands (op0, op1);
345
346 if (integer_zerop (op0))
347 return chrec_convert (type, op1, NULL);
348 if (integer_zerop (op1))
349 return chrec_convert (type, op0, NULL);
350
351 if (POINTER_TYPE_P (type))
352 code = POINTER_PLUS_EXPR;
353 else
354 code = PLUS_EXPR;
355
356 return chrec_fold_plus_1 (code, type, op0, op1);
357 }
358
359 /* Fold the subtraction of two chrecs. */
360
361 tree
362 chrec_fold_minus (tree type,
363 tree op0,
364 tree op1)
365 {
366 if (automatically_generated_chrec_p (op0)
367 || automatically_generated_chrec_p (op1))
368 return chrec_fold_automatically_generated_operands (op0, op1);
369
370 if (integer_zerop (op1))
371 return op0;
372
373 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
374 }
375
376 /* Fold the multiplication of two chrecs. */
377
378 tree
379 chrec_fold_multiply (tree type,
380 tree op0,
381 tree op1)
382 {
383 if (automatically_generated_chrec_p (op0)
384 || automatically_generated_chrec_p (op1))
385 return chrec_fold_automatically_generated_operands (op0, op1);
386
387 switch (TREE_CODE (op0))
388 {
389 case POLYNOMIAL_CHREC:
390 switch (TREE_CODE (op1))
391 {
392 case POLYNOMIAL_CHREC:
393 return chrec_fold_multiply_poly_poly (type, op0, op1);
394
395 default:
396 if (integer_onep (op1))
397 return op0;
398 if (integer_zerop (op1))
399 return build_int_cst (type, 0);
400
401 return build_polynomial_chrec
402 (CHREC_VARIABLE (op0),
403 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
404 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
405 }
406
407 default:
408 if (integer_onep (op0))
409 return op1;
410
411 if (integer_zerop (op0))
412 return build_int_cst (type, 0);
413
414 switch (TREE_CODE (op1))
415 {
416 case POLYNOMIAL_CHREC:
417 return build_polynomial_chrec
418 (CHREC_VARIABLE (op1),
419 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
420 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
421
422 default:
423 if (integer_onep (op1))
424 return op0;
425 if (integer_zerop (op1))
426 return build_int_cst (type, 0);
427 return fold_build2 (MULT_EXPR, type, op0, op1);
428 }
429 }
430 }
431
432 \f
433
434 /* Operations. */
435
436 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
437 calculation overflows, otherwise return C(n,k) with type TYPE. */
438
439 static tree
440 tree_fold_binomial (tree type, tree n, unsigned int k)
441 {
442 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
443 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
444 unsigned int i;
445 tree res;
446
447 /* Handle the most frequent cases. */
448 if (k == 0)
449 return build_int_cst (type, 1);
450 if (k == 1)
451 return fold_convert (type, n);
452
453 /* Check that k <= n. */
454 if (TREE_INT_CST_HIGH (n) == 0
455 && TREE_INT_CST_LOW (n) < k)
456 return NULL_TREE;
457
458 /* Numerator = n. */
459 lnum = TREE_INT_CST_LOW (n);
460 hnum = TREE_INT_CST_HIGH (n);
461
462 /* Denominator = 2. */
463 ldenom = 2;
464 hdenom = 0;
465
466 /* Index = Numerator-1. */
467 if (lnum == 0)
468 {
469 hidx = hnum - 1;
470 lidx = ~ (unsigned HOST_WIDE_INT) 0;
471 }
472 else
473 {
474 hidx = hnum;
475 lidx = lnum - 1;
476 }
477
478 /* Numerator = Numerator*Index = n*(n-1). */
479 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
480 return NULL_TREE;
481
482 for (i = 3; i <= k; i++)
483 {
484 /* Index--. */
485 if (lidx == 0)
486 {
487 hidx--;
488 lidx = ~ (unsigned HOST_WIDE_INT) 0;
489 }
490 else
491 lidx--;
492
493 /* Numerator *= Index. */
494 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
495 return NULL_TREE;
496
497 /* Denominator *= i. */
498 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
499 }
500
501 /* Result = Numerator / Denominator. */
502 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
503 &lres, &hres, &ldum, &hdum);
504
505 res = build_int_cst_wide (type, lres, hres);
506 return int_fits_type_p (res, type) ? res : NULL_TREE;
507 }
508
509 /* Helper function. Use the Newton's interpolating formula for
510 evaluating the value of the evolution function. */
511
512 static tree
513 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
514 {
515 tree arg0, arg1, binomial_n_k;
516 tree type = TREE_TYPE (chrec);
517 struct loop *var_loop = get_loop (var);
518
519 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
520 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
521 chrec = CHREC_LEFT (chrec);
522
523 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
524 && CHREC_VARIABLE (chrec) == var)
525 {
526 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
527 if (arg1 == chrec_dont_know)
528 return chrec_dont_know;
529 binomial_n_k = tree_fold_binomial (type, n, k);
530 if (!binomial_n_k)
531 return chrec_dont_know;
532 arg0 = fold_build2 (MULT_EXPR, type,
533 CHREC_LEFT (chrec), binomial_n_k);
534 return chrec_fold_plus (type, arg0, arg1);
535 }
536
537 binomial_n_k = tree_fold_binomial (type, n, k);
538 if (!binomial_n_k)
539 return chrec_dont_know;
540
541 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
542 }
543
544 /* Evaluates "CHREC (X)" when the varying variable is VAR.
545 Example: Given the following parameters,
546
547 var = 1
548 chrec = {3, +, 4}_1
549 x = 10
550
551 The result is given by the Newton's interpolating formula:
552 3 * \binom{10}{0} + 4 * \binom{10}{1}.
553 */
554
555 tree
556 chrec_apply (unsigned var,
557 tree chrec,
558 tree x)
559 {
560 tree type = chrec_type (chrec);
561 tree res = chrec_dont_know;
562
563 if (automatically_generated_chrec_p (chrec)
564 || automatically_generated_chrec_p (x)
565
566 /* When the symbols are defined in an outer loop, it is possible
567 to symbolically compute the apply, since the symbols are
568 constants with respect to the varying loop. */
569 || chrec_contains_symbols_defined_in_loop (chrec, var))
570 return chrec_dont_know;
571
572 if (dump_file && (dump_flags & TDF_DETAILS))
573 fprintf (dump_file, "(chrec_apply \n");
574
575 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
576 x = build_real_from_int_cst (type, x);
577
578 if (evolution_function_is_affine_p (chrec))
579 {
580 /* "{a, +, b} (x)" -> "a + b*x". */
581 x = chrec_convert_rhs (type, x, NULL);
582 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
583 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
584 }
585
586 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
587 res = chrec;
588
589 else if (TREE_CODE (x) == INTEGER_CST
590 && tree_int_cst_sgn (x) == 1)
591 /* testsuite/.../ssa-chrec-38.c. */
592 res = chrec_evaluate (var, chrec, x, 0);
593 else
594 res = chrec_dont_know;
595
596 if (dump_file && (dump_flags & TDF_DETAILS))
597 {
598 fprintf (dump_file, " (varying_loop = %d\n", var);
599 fprintf (dump_file, ")\n (chrec = ");
600 print_generic_expr (dump_file, chrec, 0);
601 fprintf (dump_file, ")\n (x = ");
602 print_generic_expr (dump_file, x, 0);
603 fprintf (dump_file, ")\n (res = ");
604 print_generic_expr (dump_file, res, 0);
605 fprintf (dump_file, "))\n");
606 }
607
608 return res;
609 }
610
611 /* Replaces the initial condition in CHREC with INIT_COND. */
612
613 tree
614 chrec_replace_initial_condition (tree chrec,
615 tree init_cond)
616 {
617 if (automatically_generated_chrec_p (chrec))
618 return chrec;
619
620 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
621
622 switch (TREE_CODE (chrec))
623 {
624 case POLYNOMIAL_CHREC:
625 return build_polynomial_chrec
626 (CHREC_VARIABLE (chrec),
627 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
628 CHREC_RIGHT (chrec));
629
630 default:
631 return init_cond;
632 }
633 }
634
635 /* Returns the initial condition of a given CHREC. */
636
637 tree
638 initial_condition (tree chrec)
639 {
640 if (automatically_generated_chrec_p (chrec))
641 return chrec;
642
643 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
644 return initial_condition (CHREC_LEFT (chrec));
645 else
646 return chrec;
647 }
648
649 /* Returns a univariate function that represents the evolution in
650 LOOP_NUM. Mask the evolution of any other loop. */
651
652 tree
653 hide_evolution_in_other_loops_than_loop (tree chrec,
654 unsigned loop_num)
655 {
656 struct loop *loop = get_loop (loop_num), *chloop;
657 if (automatically_generated_chrec_p (chrec))
658 return chrec;
659
660 switch (TREE_CODE (chrec))
661 {
662 case POLYNOMIAL_CHREC:
663 chloop = get_chrec_loop (chrec);
664
665 if (chloop == loop)
666 return build_polynomial_chrec
667 (loop_num,
668 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
669 loop_num),
670 CHREC_RIGHT (chrec));
671
672 else if (flow_loop_nested_p (chloop, loop))
673 /* There is no evolution in this loop. */
674 return initial_condition (chrec);
675
676 else
677 {
678 gcc_assert (flow_loop_nested_p (loop, chloop));
679 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
680 loop_num);
681 }
682
683 default:
684 return chrec;
685 }
686 }
687
688 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
689 true, otherwise returns the initial condition in LOOP_NUM. */
690
691 static tree
692 chrec_component_in_loop_num (tree chrec,
693 unsigned loop_num,
694 bool right)
695 {
696 tree component;
697 struct loop *loop = get_loop (loop_num), *chloop;
698
699 if (automatically_generated_chrec_p (chrec))
700 return chrec;
701
702 switch (TREE_CODE (chrec))
703 {
704 case POLYNOMIAL_CHREC:
705 chloop = get_chrec_loop (chrec);
706
707 if (chloop == loop)
708 {
709 if (right)
710 component = CHREC_RIGHT (chrec);
711 else
712 component = CHREC_LEFT (chrec);
713
714 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
715 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
716 return component;
717
718 else
719 return build_polynomial_chrec
720 (loop_num,
721 chrec_component_in_loop_num (CHREC_LEFT (chrec),
722 loop_num,
723 right),
724 component);
725 }
726
727 else if (flow_loop_nested_p (chloop, loop))
728 /* There is no evolution part in this loop. */
729 return NULL_TREE;
730
731 else
732 {
733 gcc_assert (flow_loop_nested_p (loop, chloop));
734 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
735 loop_num,
736 right);
737 }
738
739 default:
740 if (right)
741 return NULL_TREE;
742 else
743 return chrec;
744 }
745 }
746
747 /* Returns the evolution part in LOOP_NUM. Example: the call
748 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
749 {1, +, 2}_1 */
750
751 tree
752 evolution_part_in_loop_num (tree chrec,
753 unsigned loop_num)
754 {
755 return chrec_component_in_loop_num (chrec, loop_num, true);
756 }
757
758 /* Returns the initial condition in LOOP_NUM. Example: the call
759 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
760 {0, +, 1}_1 */
761
762 tree
763 initial_condition_in_loop_num (tree chrec,
764 unsigned loop_num)
765 {
766 return chrec_component_in_loop_num (chrec, loop_num, false);
767 }
768
769 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
770 This function is essentially used for setting the evolution to
771 chrec_dont_know, for example after having determined that it is
772 impossible to say how many times a loop will execute. */
773
774 tree
775 reset_evolution_in_loop (unsigned loop_num,
776 tree chrec,
777 tree new_evol)
778 {
779 struct loop *loop = get_loop (loop_num);
780
781 if (POINTER_TYPE_P (chrec_type (chrec)))
782 gcc_assert (sizetype == chrec_type (new_evol));
783 else
784 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
785
786 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
787 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
788 {
789 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
790 new_evol);
791 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
792 new_evol);
793 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
794 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
795 left, right);
796 }
797
798 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
799 && CHREC_VARIABLE (chrec) == loop_num)
800 chrec = CHREC_LEFT (chrec);
801
802 return build_polynomial_chrec (loop_num, chrec, new_evol);
803 }
804
805 /* Merges two evolution functions that were found by following two
806 alternate paths of a conditional expression. */
807
808 tree
809 chrec_merge (tree chrec1,
810 tree chrec2)
811 {
812 if (chrec1 == chrec_dont_know
813 || chrec2 == chrec_dont_know)
814 return chrec_dont_know;
815
816 if (chrec1 == chrec_known
817 || chrec2 == chrec_known)
818 return chrec_known;
819
820 if (chrec1 == chrec_not_analyzed_yet)
821 return chrec2;
822 if (chrec2 == chrec_not_analyzed_yet)
823 return chrec1;
824
825 if (eq_evolutions_p (chrec1, chrec2))
826 return chrec1;
827
828 return chrec_dont_know;
829 }
830
831 \f
832
833 /* Observers. */
834
835 /* Helper function for is_multivariate_chrec. */
836
837 static bool
838 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
839 {
840 if (chrec == NULL_TREE)
841 return false;
842
843 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
844 {
845 if (CHREC_VARIABLE (chrec) != rec_var)
846 return true;
847 else
848 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
849 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
850 }
851 else
852 return false;
853 }
854
855 /* Determine whether the given chrec is multivariate or not. */
856
857 bool
858 is_multivariate_chrec (const_tree chrec)
859 {
860 if (chrec == NULL_TREE)
861 return false;
862
863 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
864 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
865 CHREC_VARIABLE (chrec))
866 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
867 CHREC_VARIABLE (chrec)));
868 else
869 return false;
870 }
871
872 /* Determines whether the chrec contains symbolic names or not. */
873
874 bool
875 chrec_contains_symbols (const_tree chrec)
876 {
877 int i, n;
878
879 if (chrec == NULL_TREE)
880 return false;
881
882 if (TREE_CODE (chrec) == SSA_NAME
883 || TREE_CODE (chrec) == VAR_DECL
884 || TREE_CODE (chrec) == PARM_DECL
885 || TREE_CODE (chrec) == FUNCTION_DECL
886 || TREE_CODE (chrec) == LABEL_DECL
887 || TREE_CODE (chrec) == RESULT_DECL
888 || TREE_CODE (chrec) == FIELD_DECL)
889 return true;
890
891 n = TREE_OPERAND_LENGTH (chrec);
892 for (i = 0; i < n; i++)
893 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
894 return true;
895 return false;
896 }
897
898 /* Determines whether the chrec contains undetermined coefficients. */
899
900 bool
901 chrec_contains_undetermined (const_tree chrec)
902 {
903 int i, n;
904
905 if (chrec == chrec_dont_know)
906 return true;
907
908 if (chrec == NULL_TREE)
909 return false;
910
911 n = TREE_OPERAND_LENGTH (chrec);
912 for (i = 0; i < n; i++)
913 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
914 return true;
915 return false;
916 }
917
918 /* Determines whether the tree EXPR contains chrecs, and increment
919 SIZE if it is not a NULL pointer by an estimation of the depth of
920 the tree. */
921
922 bool
923 tree_contains_chrecs (const_tree expr, int *size)
924 {
925 int i, n;
926
927 if (expr == NULL_TREE)
928 return false;
929
930 if (size)
931 (*size)++;
932
933 if (tree_is_chrec (expr))
934 return true;
935
936 n = TREE_OPERAND_LENGTH (expr);
937 for (i = 0; i < n; i++)
938 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
939 return true;
940 return false;
941 }
942
943 /* Recursive helper function. */
944
945 static bool
946 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
947 {
948 if (evolution_function_is_constant_p (chrec))
949 return true;
950
951 if (TREE_CODE (chrec) == SSA_NAME
952 && (loopnum == 0
953 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
954 return true;
955
956 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
957 {
958 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
959 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
960 loopnum)
961 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
962 loopnum))
963 return false;
964 return true;
965 }
966
967 switch (TREE_OPERAND_LENGTH (chrec))
968 {
969 case 2:
970 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
971 loopnum))
972 return false;
973
974 case 1:
975 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
976 loopnum))
977 return false;
978 return true;
979
980 default:
981 return false;
982 }
983
984 return false;
985 }
986
987 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
988
989 bool
990 evolution_function_is_invariant_p (tree chrec, int loopnum)
991 {
992 return evolution_function_is_invariant_rec_p (chrec, loopnum);
993 }
994
995 /* Determine whether the given tree is an affine multivariate
996 evolution. */
997
998 bool
999 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1000 {
1001 if (chrec == NULL_TREE)
1002 return false;
1003
1004 switch (TREE_CODE (chrec))
1005 {
1006 case POLYNOMIAL_CHREC:
1007 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1008 {
1009 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1010 return true;
1011 else
1012 {
1013 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1014 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1015 != CHREC_VARIABLE (chrec)
1016 && evolution_function_is_affine_multivariate_p
1017 (CHREC_RIGHT (chrec), loopnum))
1018 return true;
1019 else
1020 return false;
1021 }
1022 }
1023 else
1024 {
1025 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1026 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1027 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1028 && evolution_function_is_affine_multivariate_p
1029 (CHREC_LEFT (chrec), loopnum))
1030 return true;
1031 else
1032 return false;
1033 }
1034
1035 default:
1036 return false;
1037 }
1038 }
1039
1040 /* Determine whether the given tree is a function in zero or one
1041 variables. */
1042
1043 bool
1044 evolution_function_is_univariate_p (const_tree chrec)
1045 {
1046 if (chrec == NULL_TREE)
1047 return true;
1048
1049 switch (TREE_CODE (chrec))
1050 {
1051 case POLYNOMIAL_CHREC:
1052 switch (TREE_CODE (CHREC_LEFT (chrec)))
1053 {
1054 case POLYNOMIAL_CHREC:
1055 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1056 return false;
1057 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1058 return false;
1059 break;
1060
1061 default:
1062 break;
1063 }
1064
1065 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1066 {
1067 case POLYNOMIAL_CHREC:
1068 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1069 return false;
1070 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1071 return false;
1072 break;
1073
1074 default:
1075 break;
1076 }
1077
1078 default:
1079 return true;
1080 }
1081 }
1082
1083 /* Returns the number of variables of CHREC. Example: the call
1084 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1085
1086 unsigned
1087 nb_vars_in_chrec (tree chrec)
1088 {
1089 if (chrec == NULL_TREE)
1090 return 0;
1091
1092 switch (TREE_CODE (chrec))
1093 {
1094 case POLYNOMIAL_CHREC:
1095 return 1 + nb_vars_in_chrec
1096 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1097
1098 default:
1099 return 0;
1100 }
1101 }
1102
1103 static tree chrec_convert_1 (tree, tree, gimple, bool);
1104
1105 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1106 the scev corresponds to. AT_STMT is the statement at that the scev is
1107 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1108 the rules for overflow of the given language apply (e.g., that signed
1109 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1110 tests, but also to enforce that the result follows them. Returns true if the
1111 conversion succeeded, false otherwise. */
1112
1113 bool
1114 convert_affine_scev (struct loop *loop, tree type,
1115 tree *base, tree *step, gimple at_stmt,
1116 bool use_overflow_semantics)
1117 {
1118 tree ct = TREE_TYPE (*step);
1119 bool enforce_overflow_semantics;
1120 bool must_check_src_overflow, must_check_rslt_overflow;
1121 tree new_base, new_step;
1122 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1123
1124 /* In general,
1125 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1126 but we must check some assumptions.
1127
1128 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1129 of CT is smaller than the precision of TYPE. For example, when we
1130 cast unsigned char [254, +, 1] to unsigned, the values on left side
1131 are 254, 255, 0, 1, ..., but those on the right side are
1132 254, 255, 256, 257, ...
1133 2) In case that we must also preserve the fact that signed ivs do not
1134 overflow, we must additionally check that the new iv does not wrap.
1135 For example, unsigned char [125, +, 1] casted to signed char could
1136 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1137 which would confuse optimizers that assume that this does not
1138 happen. */
1139 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1140
1141 enforce_overflow_semantics = (use_overflow_semantics
1142 && nowrap_type_p (type));
1143 if (enforce_overflow_semantics)
1144 {
1145 /* We can avoid checking whether the result overflows in the following
1146 cases:
1147
1148 -- must_check_src_overflow is true, and the range of TYPE is superset
1149 of the range of CT -- i.e., in all cases except if CT signed and
1150 TYPE unsigned.
1151 -- both CT and TYPE have the same precision and signedness, and we
1152 verify instead that the source does not overflow (this may be
1153 easier than verifying it for the result, as we may use the
1154 information about the semantics of overflow in CT). */
1155 if (must_check_src_overflow)
1156 {
1157 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1158 must_check_rslt_overflow = true;
1159 else
1160 must_check_rslt_overflow = false;
1161 }
1162 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1163 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1164 {
1165 must_check_rslt_overflow = false;
1166 must_check_src_overflow = true;
1167 }
1168 else
1169 must_check_rslt_overflow = true;
1170 }
1171 else
1172 must_check_rslt_overflow = false;
1173
1174 if (must_check_src_overflow
1175 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1176 use_overflow_semantics))
1177 return false;
1178
1179 new_base = chrec_convert_1 (type, *base, at_stmt,
1180 use_overflow_semantics);
1181 /* The step must be sign extended, regardless of the signedness
1182 of CT and TYPE. This only needs to be handled specially when
1183 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1184 (with values 100, 99, 98, ...) from becoming signed or unsigned
1185 [100, +, 255] with values 100, 355, ...; the sign-extension is
1186 performed by default when CT is signed. */
1187 new_step = *step;
1188 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1189 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1190 use_overflow_semantics);
1191 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1192
1193 if (automatically_generated_chrec_p (new_base)
1194 || automatically_generated_chrec_p (new_step))
1195 return false;
1196
1197 if (must_check_rslt_overflow
1198 /* Note that in this case we cannot use the fact that signed variables
1199 do not overflow, as this is what we are verifying for the new iv. */
1200 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1201 return false;
1202
1203 *base = new_base;
1204 *step = new_step;
1205 return true;
1206 }
1207 \f
1208
1209 /* Convert CHREC for the right hand side of a CREC.
1210 The increment for a pointer type is always sizetype. */
1211 tree
1212 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1213 {
1214 if (POINTER_TYPE_P (type))
1215 type = sizetype;
1216 return chrec_convert (type, chrec, at_stmt);
1217 }
1218
1219 /* Convert CHREC to TYPE. When the analyzer knows the context in
1220 which the CHREC is built, it sets AT_STMT to the statement that
1221 contains the definition of the analyzed variable, otherwise the
1222 conversion is less accurate: the information is used for
1223 determining a more accurate estimation of the number of iterations.
1224 By default AT_STMT could be safely set to NULL_TREE.
1225
1226 The following rule is always true: TREE_TYPE (chrec) ==
1227 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1228 An example of what could happen when adding two chrecs and the type
1229 of the CHREC_RIGHT is different than CHREC_LEFT is:
1230
1231 {(uint) 0, +, (uchar) 10} +
1232 {(uint) 0, +, (uchar) 250}
1233
1234 that would produce a wrong result if CHREC_RIGHT is not (uint):
1235
1236 {(uint) 0, +, (uchar) 4}
1237
1238 instead of
1239
1240 {(uint) 0, +, (uint) 260}
1241 */
1242
1243 tree
1244 chrec_convert (tree type, tree chrec, gimple at_stmt)
1245 {
1246 return chrec_convert_1 (type, chrec, at_stmt, true);
1247 }
1248
1249 /* Convert CHREC to TYPE. When the analyzer knows the context in
1250 which the CHREC is built, it sets AT_STMT to the statement that
1251 contains the definition of the analyzed variable, otherwise the
1252 conversion is less accurate: the information is used for
1253 determining a more accurate estimation of the number of iterations.
1254 By default AT_STMT could be safely set to NULL_TREE.
1255
1256 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1257 the rules for overflow of the given language apply (e.g., that signed
1258 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1259 tests, but also to enforce that the result follows them. */
1260
1261 static tree
1262 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1263 bool use_overflow_semantics)
1264 {
1265 tree ct, res;
1266 tree base, step;
1267 struct loop *loop;
1268
1269 if (automatically_generated_chrec_p (chrec))
1270 return chrec;
1271
1272 ct = chrec_type (chrec);
1273 if (ct == type)
1274 return chrec;
1275
1276 if (!evolution_function_is_affine_p (chrec))
1277 goto keep_cast;
1278
1279 loop = get_chrec_loop (chrec);
1280 base = CHREC_LEFT (chrec);
1281 step = CHREC_RIGHT (chrec);
1282
1283 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1284 use_overflow_semantics))
1285 return build_polynomial_chrec (loop->num, base, step);
1286
1287 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1288 keep_cast:
1289 res = fold_convert (type, chrec);
1290
1291 /* Don't propagate overflows. */
1292 if (CONSTANT_CLASS_P (res))
1293 TREE_OVERFLOW (res) = 0;
1294
1295 /* But reject constants that don't fit in their type after conversion.
1296 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1297 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1298 and can cause problems later when computing niters of loops. Note
1299 that we don't do the check before converting because we don't want
1300 to reject conversions of negative chrecs to unsigned types. */
1301 if (TREE_CODE (res) == INTEGER_CST
1302 && TREE_CODE (type) == INTEGER_TYPE
1303 && !int_fits_type_p (res, type))
1304 res = chrec_dont_know;
1305
1306 return res;
1307 }
1308
1309 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1310 chrec if something else than what chrec_convert would do happens, NULL_TREE
1311 otherwise. */
1312
1313 tree
1314 chrec_convert_aggressive (tree type, tree chrec)
1315 {
1316 tree inner_type, left, right, lc, rc, rtype;
1317
1318 if (automatically_generated_chrec_p (chrec)
1319 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1320 return NULL_TREE;
1321
1322 inner_type = TREE_TYPE (chrec);
1323 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1324 return NULL_TREE;
1325
1326 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1327
1328 left = CHREC_LEFT (chrec);
1329 right = CHREC_RIGHT (chrec);
1330 lc = chrec_convert_aggressive (type, left);
1331 if (!lc)
1332 lc = chrec_convert (type, left, NULL);
1333 rc = chrec_convert_aggressive (rtype, right);
1334 if (!rc)
1335 rc = chrec_convert (rtype, right, NULL);
1336
1337 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1338 }
1339
1340 /* Returns true when CHREC0 == CHREC1. */
1341
1342 bool
1343 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1344 {
1345 if (chrec0 == NULL_TREE
1346 || chrec1 == NULL_TREE
1347 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1348 return false;
1349
1350 if (chrec0 == chrec1)
1351 return true;
1352
1353 switch (TREE_CODE (chrec0))
1354 {
1355 case INTEGER_CST:
1356 return operand_equal_p (chrec0, chrec1, 0);
1357
1358 case POLYNOMIAL_CHREC:
1359 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1360 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1361 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1362 default:
1363 return false;
1364 }
1365 }
1366
1367 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1368 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1369 which of these cases happens. */
1370
1371 enum ev_direction
1372 scev_direction (const_tree chrec)
1373 {
1374 const_tree step;
1375
1376 if (!evolution_function_is_affine_p (chrec))
1377 return EV_DIR_UNKNOWN;
1378
1379 step = CHREC_RIGHT (chrec);
1380 if (TREE_CODE (step) != INTEGER_CST)
1381 return EV_DIR_UNKNOWN;
1382
1383 if (tree_int_cst_sign_bit (step))
1384 return EV_DIR_DECREASES;
1385 else
1386 return EV_DIR_GROWS;
1387 }
1388
1389 /* Iterates over all the components of SCEV, and calls CBCK. */
1390
1391 void
1392 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1393 {
1394 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1395 {
1396 case 3:
1397 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1398
1399 case 2:
1400 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1401
1402 case 1:
1403 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1404
1405 default:
1406 cbck (scev, data);
1407 break;
1408 }
1409 }
1410
1411 /* Returns true when the operation can be part of a linear
1412 expression. */
1413
1414 static inline bool
1415 operator_is_linear (tree scev)
1416 {
1417 switch (TREE_CODE (scev))
1418 {
1419 case INTEGER_CST:
1420 case POLYNOMIAL_CHREC:
1421 case PLUS_EXPR:
1422 case POINTER_PLUS_EXPR:
1423 case MULT_EXPR:
1424 case MINUS_EXPR:
1425 case NEGATE_EXPR:
1426 case SSA_NAME:
1427 case NON_LVALUE_EXPR:
1428 CASE_CONVERT:
1429 return true;
1430
1431 default:
1432 return false;
1433 }
1434 }
1435
1436 /* Return true when SCEV is a linear expression. Linear expressions
1437 can contain additions, substractions and multiplications.
1438 Multiplications are restricted to constant scaling: "cst * x". */
1439
1440 bool
1441 scev_is_linear_expression (tree scev)
1442 {
1443 if (scev == NULL
1444 || !operator_is_linear (scev))
1445 return false;
1446
1447 if (TREE_CODE (scev) == MULT_EXPR)
1448 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1449 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1450
1451 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1452 {
1453 case 3:
1454 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1455 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1456 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1457
1458 case 2:
1459 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1460 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1461
1462 case 1:
1463 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1464
1465 case 0:
1466 return true;
1467
1468 default:
1469 return false;
1470 }
1471 }