Do not describe -std=c11 etc. as experimental in c.opt help text.
[gcc.git] / gcc / tree-chrec.c
1 /* Chains of recurrences.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements operations on chains of recurrences. Chains
22 of recurrences are used for modeling evolution functions of scalar
23 variables.
24 */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "alias.h"
30 #include "tree.h"
31 #include "options.h"
32 #include "fold-const.h"
33 #include "tree-pretty-print.h"
34 #include "backend.h"
35 #include "cfgloop.h"
36 #include "hard-reg-set.h"
37 #include "gimple-expr.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-chrec.h"
41 #include "dumpfile.h"
42 #include "params.h"
43 #include "tree-scalar-evolution.h"
44
45 /* Extended folder for chrecs. */
46
47 /* Determines whether CST is not a constant evolution. */
48
49 static inline bool
50 is_not_constant_evolution (const_tree cst)
51 {
52 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
53 }
54
55 /* Fold CODE for a polynomial function and a constant. */
56
57 static inline tree
58 chrec_fold_poly_cst (enum tree_code code,
59 tree type,
60 tree poly,
61 tree cst)
62 {
63 gcc_assert (poly);
64 gcc_assert (cst);
65 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
66 gcc_checking_assert (!is_not_constant_evolution (cst));
67 gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly)));
68
69 switch (code)
70 {
71 case PLUS_EXPR:
72 return build_polynomial_chrec
73 (CHREC_VARIABLE (poly),
74 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
75 CHREC_RIGHT (poly));
76
77 case MINUS_EXPR:
78 return build_polynomial_chrec
79 (CHREC_VARIABLE (poly),
80 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
81 CHREC_RIGHT (poly));
82
83 case MULT_EXPR:
84 return build_polynomial_chrec
85 (CHREC_VARIABLE (poly),
86 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
87 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
88
89 default:
90 return chrec_dont_know;
91 }
92 }
93
94 /* Fold the addition of two polynomial functions. */
95
96 static inline tree
97 chrec_fold_plus_poly_poly (enum tree_code code,
98 tree type,
99 tree poly0,
100 tree poly1)
101 {
102 tree left, right;
103 struct loop *loop0 = get_chrec_loop (poly0);
104 struct loop *loop1 = get_chrec_loop (poly1);
105 tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
106
107 gcc_assert (poly0);
108 gcc_assert (poly1);
109 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
110 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
111 if (POINTER_TYPE_P (chrec_type (poly0)))
112 gcc_checking_assert (ptrofftype_p (chrec_type (poly1))
113 && useless_type_conversion_p (type, chrec_type (poly0)));
114 else
115 gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly0))
116 && useless_type_conversion_p (type, chrec_type (poly1)));
117
118 /*
119 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
120 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
121 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
122 if (flow_loop_nested_p (loop0, loop1))
123 {
124 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
125 return build_polynomial_chrec
126 (CHREC_VARIABLE (poly1),
127 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
128 CHREC_RIGHT (poly1));
129 else
130 return build_polynomial_chrec
131 (CHREC_VARIABLE (poly1),
132 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
133 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
134 SCALAR_FLOAT_TYPE_P (type)
135 ? build_real (type, dconstm1)
136 : build_int_cst_type (type, -1)));
137 }
138
139 if (flow_loop_nested_p (loop1, loop0))
140 {
141 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
142 return build_polynomial_chrec
143 (CHREC_VARIABLE (poly0),
144 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
145 CHREC_RIGHT (poly0));
146 else
147 return build_polynomial_chrec
148 (CHREC_VARIABLE (poly0),
149 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
150 CHREC_RIGHT (poly0));
151 }
152
153 /* This function should never be called for chrecs of loops that
154 do not belong to the same loop nest. */
155 gcc_assert (loop0 == loop1);
156
157 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
158 {
159 left = chrec_fold_plus
160 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
161 right = chrec_fold_plus
162 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
163 }
164 else
165 {
166 left = chrec_fold_minus
167 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
168 right = chrec_fold_minus
169 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
170 }
171
172 if (chrec_zerop (right))
173 return left;
174 else
175 return build_polynomial_chrec
176 (CHREC_VARIABLE (poly0), left, right);
177 }
178
179 \f
180
181 /* Fold the multiplication of two polynomial functions. */
182
183 static inline tree
184 chrec_fold_multiply_poly_poly (tree type,
185 tree poly0,
186 tree poly1)
187 {
188 tree t0, t1, t2;
189 int var;
190 struct loop *loop0 = get_chrec_loop (poly0);
191 struct loop *loop1 = get_chrec_loop (poly1);
192
193 gcc_assert (poly0);
194 gcc_assert (poly1);
195 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
196 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
197 gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly0))
198 && useless_type_conversion_p (type, chrec_type (poly1)));
199
200 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
201 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
202 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
203 if (flow_loop_nested_p (loop0, loop1))
204 /* poly0 is a constant wrt. poly1. */
205 return build_polynomial_chrec
206 (CHREC_VARIABLE (poly1),
207 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
208 CHREC_RIGHT (poly1));
209
210 if (flow_loop_nested_p (loop1, loop0))
211 /* poly1 is a constant wrt. poly0. */
212 return build_polynomial_chrec
213 (CHREC_VARIABLE (poly0),
214 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
215 CHREC_RIGHT (poly0));
216
217 gcc_assert (loop0 == loop1);
218
219 /* poly0 and poly1 are two polynomials in the same variable,
220 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
221
222 /* "a*c". */
223 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
224
225 /* "a*d + b*c". */
226 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
227 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
228 CHREC_RIGHT (poly0),
229 CHREC_LEFT (poly1)));
230 /* "b*d". */
231 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
232 /* "a*d + b*c + b*d". */
233 t1 = chrec_fold_plus (type, t1, t2);
234 /* "2*b*d". */
235 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
236 ? build_real (type, dconst2)
237 : build_int_cst (type, 2), t2);
238
239 var = CHREC_VARIABLE (poly0);
240 return build_polynomial_chrec (var, t0,
241 build_polynomial_chrec (var, t1, t2));
242 }
243
244 /* When the operands are automatically_generated_chrec_p, the fold has
245 to respect the semantics of the operands. */
246
247 static inline tree
248 chrec_fold_automatically_generated_operands (tree op0,
249 tree op1)
250 {
251 if (op0 == chrec_dont_know
252 || op1 == chrec_dont_know)
253 return chrec_dont_know;
254
255 if (op0 == chrec_known
256 || op1 == chrec_known)
257 return chrec_known;
258
259 if (op0 == chrec_not_analyzed_yet
260 || op1 == chrec_not_analyzed_yet)
261 return chrec_not_analyzed_yet;
262
263 /* The default case produces a safe result. */
264 return chrec_dont_know;
265 }
266
267 /* Fold the addition of two chrecs. */
268
269 static tree
270 chrec_fold_plus_1 (enum tree_code code, tree type,
271 tree op0, tree op1)
272 {
273 if (automatically_generated_chrec_p (op0)
274 || automatically_generated_chrec_p (op1))
275 return chrec_fold_automatically_generated_operands (op0, op1);
276
277 switch (TREE_CODE (op0))
278 {
279 case POLYNOMIAL_CHREC:
280 gcc_checking_assert
281 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
282 switch (TREE_CODE (op1))
283 {
284 case POLYNOMIAL_CHREC:
285 gcc_checking_assert
286 (!chrec_contains_symbols_defined_in_loop (op1,
287 CHREC_VARIABLE (op1)));
288 return chrec_fold_plus_poly_poly (code, type, op0, op1);
289
290 CASE_CONVERT:
291 if (tree_contains_chrecs (op1, NULL))
292 return chrec_dont_know;
293
294 default:
295 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
296 return build_polynomial_chrec
297 (CHREC_VARIABLE (op0),
298 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
299 CHREC_RIGHT (op0));
300 else
301 return build_polynomial_chrec
302 (CHREC_VARIABLE (op0),
303 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
304 CHREC_RIGHT (op0));
305 }
306
307 CASE_CONVERT:
308 if (tree_contains_chrecs (op0, NULL))
309 return chrec_dont_know;
310
311 default:
312 switch (TREE_CODE (op1))
313 {
314 case POLYNOMIAL_CHREC:
315 gcc_checking_assert
316 (!chrec_contains_symbols_defined_in_loop (op1,
317 CHREC_VARIABLE (op1)));
318 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
319 return build_polynomial_chrec
320 (CHREC_VARIABLE (op1),
321 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
322 CHREC_RIGHT (op1));
323 else
324 return build_polynomial_chrec
325 (CHREC_VARIABLE (op1),
326 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
327 chrec_fold_multiply (type, CHREC_RIGHT (op1),
328 SCALAR_FLOAT_TYPE_P (type)
329 ? build_real (type, dconstm1)
330 : build_int_cst_type (type, -1)));
331
332 CASE_CONVERT:
333 if (tree_contains_chrecs (op1, NULL))
334 return chrec_dont_know;
335
336 default:
337 {
338 int size = 0;
339 if ((tree_contains_chrecs (op0, &size)
340 || tree_contains_chrecs (op1, &size))
341 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
342 return build2 (code, type, op0, op1);
343 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
344 {
345 if (code == POINTER_PLUS_EXPR)
346 return fold_build_pointer_plus (fold_convert (type, op0),
347 op1);
348 else
349 return fold_build2 (code, type,
350 fold_convert (type, op0),
351 fold_convert (type, op1));
352 }
353 else
354 return chrec_dont_know;
355 }
356 }
357 }
358 }
359
360 /* Fold the addition of two chrecs. */
361
362 tree
363 chrec_fold_plus (tree type,
364 tree op0,
365 tree op1)
366 {
367 enum tree_code code;
368 if (automatically_generated_chrec_p (op0)
369 || automatically_generated_chrec_p (op1))
370 return chrec_fold_automatically_generated_operands (op0, op1);
371
372 if (integer_zerop (op0))
373 return chrec_convert (type, op1, NULL);
374 if (integer_zerop (op1))
375 return chrec_convert (type, op0, NULL);
376
377 if (POINTER_TYPE_P (type))
378 code = POINTER_PLUS_EXPR;
379 else
380 code = PLUS_EXPR;
381
382 return chrec_fold_plus_1 (code, type, op0, op1);
383 }
384
385 /* Fold the subtraction of two chrecs. */
386
387 tree
388 chrec_fold_minus (tree type,
389 tree op0,
390 tree op1)
391 {
392 if (automatically_generated_chrec_p (op0)
393 || automatically_generated_chrec_p (op1))
394 return chrec_fold_automatically_generated_operands (op0, op1);
395
396 if (integer_zerop (op1))
397 return op0;
398
399 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
400 }
401
402 /* Fold the multiplication of two chrecs. */
403
404 tree
405 chrec_fold_multiply (tree type,
406 tree op0,
407 tree op1)
408 {
409 if (automatically_generated_chrec_p (op0)
410 || automatically_generated_chrec_p (op1))
411 return chrec_fold_automatically_generated_operands (op0, op1);
412
413 switch (TREE_CODE (op0))
414 {
415 case POLYNOMIAL_CHREC:
416 gcc_checking_assert
417 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
418 switch (TREE_CODE (op1))
419 {
420 case POLYNOMIAL_CHREC:
421 gcc_checking_assert
422 (!chrec_contains_symbols_defined_in_loop (op1,
423 CHREC_VARIABLE (op1)));
424 return chrec_fold_multiply_poly_poly (type, op0, op1);
425
426 CASE_CONVERT:
427 if (tree_contains_chrecs (op1, NULL))
428 return chrec_dont_know;
429
430 default:
431 if (integer_onep (op1))
432 return op0;
433 if (integer_zerop (op1))
434 return build_int_cst (type, 0);
435
436 return build_polynomial_chrec
437 (CHREC_VARIABLE (op0),
438 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
439 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
440 }
441
442 CASE_CONVERT:
443 if (tree_contains_chrecs (op0, NULL))
444 return chrec_dont_know;
445
446 default:
447 if (integer_onep (op0))
448 return op1;
449
450 if (integer_zerop (op0))
451 return build_int_cst (type, 0);
452
453 switch (TREE_CODE (op1))
454 {
455 case POLYNOMIAL_CHREC:
456 gcc_checking_assert
457 (!chrec_contains_symbols_defined_in_loop (op1,
458 CHREC_VARIABLE (op1)));
459 return build_polynomial_chrec
460 (CHREC_VARIABLE (op1),
461 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
462 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
463
464 CASE_CONVERT:
465 if (tree_contains_chrecs (op1, NULL))
466 return chrec_dont_know;
467
468 default:
469 if (integer_onep (op1))
470 return op0;
471 if (integer_zerop (op1))
472 return build_int_cst (type, 0);
473 return fold_build2 (MULT_EXPR, type, op0, op1);
474 }
475 }
476 }
477
478 \f
479
480 /* Operations. */
481
482 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
483 calculation overflows, otherwise return C(n,k) with type TYPE. */
484
485 static tree
486 tree_fold_binomial (tree type, tree n, unsigned int k)
487 {
488 bool overflow;
489 unsigned int i;
490 tree res;
491
492 /* Handle the most frequent cases. */
493 if (k == 0)
494 return build_int_cst (type, 1);
495 if (k == 1)
496 return fold_convert (type, n);
497
498 /* Check that k <= n. */
499 if (wi::ltu_p (n, k))
500 return NULL_TREE;
501
502 /* Denominator = 2. */
503 wide_int denom = wi::two (TYPE_PRECISION (TREE_TYPE (n)));
504
505 /* Index = Numerator-1. */
506 wide_int idx = wi::sub (n, 1);
507
508 /* Numerator = Numerator*Index = n*(n-1). */
509 wide_int num = wi::smul (n, idx, &overflow);
510 if (overflow)
511 return NULL_TREE;
512
513 for (i = 3; i <= k; i++)
514 {
515 /* Index--. */
516 --idx;
517
518 /* Numerator *= Index. */
519 num = wi::smul (num, idx, &overflow);
520 if (overflow)
521 return NULL_TREE;
522
523 /* Denominator *= i. */
524 denom *= i;
525 }
526
527 /* Result = Numerator / Denominator. */
528 wide_int di_res = wi::udiv_trunc (num, denom);
529 res = wide_int_to_tree (type, di_res);
530 return int_fits_type_p (res, type) ? res : NULL_TREE;
531 }
532
533 /* Helper function. Use the Newton's interpolating formula for
534 evaluating the value of the evolution function. */
535
536 static tree
537 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
538 {
539 tree arg0, arg1, binomial_n_k;
540 tree type = TREE_TYPE (chrec);
541 struct loop *var_loop = get_loop (cfun, var);
542
543 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
544 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
545 chrec = CHREC_LEFT (chrec);
546
547 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
548 && CHREC_VARIABLE (chrec) == var)
549 {
550 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
551 if (arg1 == chrec_dont_know)
552 return chrec_dont_know;
553 binomial_n_k = tree_fold_binomial (type, n, k);
554 if (!binomial_n_k)
555 return chrec_dont_know;
556 arg0 = fold_build2 (MULT_EXPR, type,
557 CHREC_LEFT (chrec), binomial_n_k);
558 return chrec_fold_plus (type, arg0, arg1);
559 }
560
561 binomial_n_k = tree_fold_binomial (type, n, k);
562 if (!binomial_n_k)
563 return chrec_dont_know;
564
565 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
566 }
567
568 /* Evaluates "CHREC (X)" when the varying variable is VAR.
569 Example: Given the following parameters,
570
571 var = 1
572 chrec = {3, +, 4}_1
573 x = 10
574
575 The result is given by the Newton's interpolating formula:
576 3 * \binom{10}{0} + 4 * \binom{10}{1}.
577 */
578
579 tree
580 chrec_apply (unsigned var,
581 tree chrec,
582 tree x)
583 {
584 tree type = chrec_type (chrec);
585 tree res = chrec_dont_know;
586
587 if (automatically_generated_chrec_p (chrec)
588 || automatically_generated_chrec_p (x)
589
590 /* When the symbols are defined in an outer loop, it is possible
591 to symbolically compute the apply, since the symbols are
592 constants with respect to the varying loop. */
593 || chrec_contains_symbols_defined_in_loop (chrec, var))
594 return chrec_dont_know;
595
596 if (dump_file && (dump_flags & TDF_SCEV))
597 fprintf (dump_file, "(chrec_apply \n");
598
599 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
600 x = build_real_from_int_cst (type, x);
601
602 switch (TREE_CODE (chrec))
603 {
604 case POLYNOMIAL_CHREC:
605 if (evolution_function_is_affine_p (chrec))
606 {
607 if (CHREC_VARIABLE (chrec) != var)
608 return build_polynomial_chrec
609 (CHREC_VARIABLE (chrec),
610 chrec_apply (var, CHREC_LEFT (chrec), x),
611 chrec_apply (var, CHREC_RIGHT (chrec), x));
612
613 /* "{a, +, b} (x)" -> "a + b*x". */
614 x = chrec_convert_rhs (type, x, NULL);
615 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
616 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
617 }
618 else if (TREE_CODE (x) == INTEGER_CST
619 && tree_int_cst_sgn (x) == 1)
620 /* testsuite/.../ssa-chrec-38.c. */
621 res = chrec_evaluate (var, chrec, x, 0);
622 else
623 res = chrec_dont_know;
624 break;
625
626 CASE_CONVERT:
627 res = chrec_convert (TREE_TYPE (chrec),
628 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
629 NULL);
630 break;
631
632 default:
633 res = chrec;
634 break;
635 }
636
637 if (dump_file && (dump_flags & TDF_SCEV))
638 {
639 fprintf (dump_file, " (varying_loop = %d\n", var);
640 fprintf (dump_file, ")\n (chrec = ");
641 print_generic_expr (dump_file, chrec, 0);
642 fprintf (dump_file, ")\n (x = ");
643 print_generic_expr (dump_file, x, 0);
644 fprintf (dump_file, ")\n (res = ");
645 print_generic_expr (dump_file, res, 0);
646 fprintf (dump_file, "))\n");
647 }
648
649 return res;
650 }
651
652 /* For a given CHREC and an induction variable map IV_MAP that maps
653 (loop->num, expr) for every loop number of the current_loops an
654 expression, calls chrec_apply when the expression is not NULL. */
655
656 tree
657 chrec_apply_map (tree chrec, vec<tree> iv_map)
658 {
659 int i;
660 tree expr;
661
662 FOR_EACH_VEC_ELT (iv_map, i, expr)
663 if (expr)
664 chrec = chrec_apply (i, chrec, expr);
665
666 return chrec;
667 }
668
669 /* Replaces the initial condition in CHREC with INIT_COND. */
670
671 tree
672 chrec_replace_initial_condition (tree chrec,
673 tree init_cond)
674 {
675 if (automatically_generated_chrec_p (chrec))
676 return chrec;
677
678 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
679
680 switch (TREE_CODE (chrec))
681 {
682 case POLYNOMIAL_CHREC:
683 return build_polynomial_chrec
684 (CHREC_VARIABLE (chrec),
685 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
686 CHREC_RIGHT (chrec));
687
688 default:
689 return init_cond;
690 }
691 }
692
693 /* Returns the initial condition of a given CHREC. */
694
695 tree
696 initial_condition (tree chrec)
697 {
698 if (automatically_generated_chrec_p (chrec))
699 return chrec;
700
701 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
702 return initial_condition (CHREC_LEFT (chrec));
703 else
704 return chrec;
705 }
706
707 /* Returns a univariate function that represents the evolution in
708 LOOP_NUM. Mask the evolution of any other loop. */
709
710 tree
711 hide_evolution_in_other_loops_than_loop (tree chrec,
712 unsigned loop_num)
713 {
714 struct loop *loop = get_loop (cfun, loop_num), *chloop;
715 if (automatically_generated_chrec_p (chrec))
716 return chrec;
717
718 switch (TREE_CODE (chrec))
719 {
720 case POLYNOMIAL_CHREC:
721 chloop = get_chrec_loop (chrec);
722
723 if (chloop == loop)
724 return build_polynomial_chrec
725 (loop_num,
726 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
727 loop_num),
728 CHREC_RIGHT (chrec));
729
730 else if (flow_loop_nested_p (chloop, loop))
731 /* There is no evolution in this loop. */
732 return initial_condition (chrec);
733
734 else
735 {
736 gcc_assert (flow_loop_nested_p (loop, chloop));
737 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
738 loop_num);
739 }
740
741 default:
742 return chrec;
743 }
744 }
745
746 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
747 true, otherwise returns the initial condition in LOOP_NUM. */
748
749 static tree
750 chrec_component_in_loop_num (tree chrec,
751 unsigned loop_num,
752 bool right)
753 {
754 tree component;
755 struct loop *loop = get_loop (cfun, loop_num), *chloop;
756
757 if (automatically_generated_chrec_p (chrec))
758 return chrec;
759
760 switch (TREE_CODE (chrec))
761 {
762 case POLYNOMIAL_CHREC:
763 chloop = get_chrec_loop (chrec);
764
765 if (chloop == loop)
766 {
767 if (right)
768 component = CHREC_RIGHT (chrec);
769 else
770 component = CHREC_LEFT (chrec);
771
772 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
773 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
774 return component;
775
776 else
777 return build_polynomial_chrec
778 (loop_num,
779 chrec_component_in_loop_num (CHREC_LEFT (chrec),
780 loop_num,
781 right),
782 component);
783 }
784
785 else if (flow_loop_nested_p (chloop, loop))
786 /* There is no evolution part in this loop. */
787 return NULL_TREE;
788
789 else
790 {
791 gcc_assert (flow_loop_nested_p (loop, chloop));
792 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
793 loop_num,
794 right);
795 }
796
797 default:
798 if (right)
799 return NULL_TREE;
800 else
801 return chrec;
802 }
803 }
804
805 /* Returns the evolution part in LOOP_NUM. Example: the call
806 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
807 {1, +, 2}_1 */
808
809 tree
810 evolution_part_in_loop_num (tree chrec,
811 unsigned loop_num)
812 {
813 return chrec_component_in_loop_num (chrec, loop_num, true);
814 }
815
816 /* Returns the initial condition in LOOP_NUM. Example: the call
817 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
818 {0, +, 1}_1 */
819
820 tree
821 initial_condition_in_loop_num (tree chrec,
822 unsigned loop_num)
823 {
824 return chrec_component_in_loop_num (chrec, loop_num, false);
825 }
826
827 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
828 This function is essentially used for setting the evolution to
829 chrec_dont_know, for example after having determined that it is
830 impossible to say how many times a loop will execute. */
831
832 tree
833 reset_evolution_in_loop (unsigned loop_num,
834 tree chrec,
835 tree new_evol)
836 {
837 struct loop *loop = get_loop (cfun, loop_num);
838
839 if (POINTER_TYPE_P (chrec_type (chrec)))
840 gcc_assert (ptrofftype_p (chrec_type (new_evol)));
841 else
842 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
843
844 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
845 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
846 {
847 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
848 new_evol);
849 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
850 new_evol);
851 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
852 CHREC_VAR (chrec), left, right);
853 }
854
855 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
856 && CHREC_VARIABLE (chrec) == loop_num)
857 chrec = CHREC_LEFT (chrec);
858
859 return build_polynomial_chrec (loop_num, chrec, new_evol);
860 }
861
862 /* Merges two evolution functions that were found by following two
863 alternate paths of a conditional expression. */
864
865 tree
866 chrec_merge (tree chrec1,
867 tree chrec2)
868 {
869 if (chrec1 == chrec_dont_know
870 || chrec2 == chrec_dont_know)
871 return chrec_dont_know;
872
873 if (chrec1 == chrec_known
874 || chrec2 == chrec_known)
875 return chrec_known;
876
877 if (chrec1 == chrec_not_analyzed_yet)
878 return chrec2;
879 if (chrec2 == chrec_not_analyzed_yet)
880 return chrec1;
881
882 if (eq_evolutions_p (chrec1, chrec2))
883 return chrec1;
884
885 return chrec_dont_know;
886 }
887
888 \f
889
890 /* Observers. */
891
892 /* Helper function for is_multivariate_chrec. */
893
894 static bool
895 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
896 {
897 if (chrec == NULL_TREE)
898 return false;
899
900 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
901 {
902 if (CHREC_VARIABLE (chrec) != rec_var)
903 return true;
904 else
905 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
906 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
907 }
908 else
909 return false;
910 }
911
912 /* Determine whether the given chrec is multivariate or not. */
913
914 bool
915 is_multivariate_chrec (const_tree chrec)
916 {
917 if (chrec == NULL_TREE)
918 return false;
919
920 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
921 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
922 CHREC_VARIABLE (chrec))
923 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
924 CHREC_VARIABLE (chrec)));
925 else
926 return false;
927 }
928
929 /* Determines whether the chrec contains symbolic names or not. */
930
931 bool
932 chrec_contains_symbols (const_tree chrec)
933 {
934 int i, n;
935
936 if (chrec == NULL_TREE)
937 return false;
938
939 if (TREE_CODE (chrec) == SSA_NAME
940 || TREE_CODE (chrec) == VAR_DECL
941 || TREE_CODE (chrec) == PARM_DECL
942 || TREE_CODE (chrec) == FUNCTION_DECL
943 || TREE_CODE (chrec) == LABEL_DECL
944 || TREE_CODE (chrec) == RESULT_DECL
945 || TREE_CODE (chrec) == FIELD_DECL)
946 return true;
947
948 n = TREE_OPERAND_LENGTH (chrec);
949 for (i = 0; i < n; i++)
950 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
951 return true;
952 return false;
953 }
954
955 /* Determines whether the chrec contains undetermined coefficients. */
956
957 bool
958 chrec_contains_undetermined (const_tree chrec)
959 {
960 int i, n;
961
962 if (chrec == chrec_dont_know)
963 return true;
964
965 if (chrec == NULL_TREE)
966 return false;
967
968 n = TREE_OPERAND_LENGTH (chrec);
969 for (i = 0; i < n; i++)
970 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
971 return true;
972 return false;
973 }
974
975 /* Determines whether the tree EXPR contains chrecs, and increment
976 SIZE if it is not a NULL pointer by an estimation of the depth of
977 the tree. */
978
979 bool
980 tree_contains_chrecs (const_tree expr, int *size)
981 {
982 int i, n;
983
984 if (expr == NULL_TREE)
985 return false;
986
987 if (size)
988 (*size)++;
989
990 if (tree_is_chrec (expr))
991 return true;
992
993 n = TREE_OPERAND_LENGTH (expr);
994 for (i = 0; i < n; i++)
995 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
996 return true;
997 return false;
998 }
999
1000 /* Recursive helper function. */
1001
1002 static bool
1003 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1004 {
1005 if (evolution_function_is_constant_p (chrec))
1006 return true;
1007
1008 if (TREE_CODE (chrec) == SSA_NAME
1009 && (loopnum == 0
1010 || expr_invariant_in_loop_p (get_loop (cfun, loopnum), chrec)))
1011 return true;
1012
1013 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1014 {
1015 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1016 || flow_loop_nested_p (get_loop (cfun, loopnum),
1017 get_chrec_loop (chrec))
1018 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1019 loopnum)
1020 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1021 loopnum))
1022 return false;
1023 return true;
1024 }
1025
1026 switch (TREE_OPERAND_LENGTH (chrec))
1027 {
1028 case 2:
1029 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1030 loopnum))
1031 return false;
1032
1033 case 1:
1034 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1035 loopnum))
1036 return false;
1037 return true;
1038
1039 default:
1040 return false;
1041 }
1042
1043 return false;
1044 }
1045
1046 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1047
1048 bool
1049 evolution_function_is_invariant_p (tree chrec, int loopnum)
1050 {
1051 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1052 }
1053
1054 /* Determine whether the given tree is an affine multivariate
1055 evolution. */
1056
1057 bool
1058 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1059 {
1060 if (chrec == NULL_TREE)
1061 return false;
1062
1063 switch (TREE_CODE (chrec))
1064 {
1065 case POLYNOMIAL_CHREC:
1066 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1067 {
1068 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1069 return true;
1070 else
1071 {
1072 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1073 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1074 != CHREC_VARIABLE (chrec)
1075 && evolution_function_is_affine_multivariate_p
1076 (CHREC_RIGHT (chrec), loopnum))
1077 return true;
1078 else
1079 return false;
1080 }
1081 }
1082 else
1083 {
1084 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1085 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1086 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1087 && evolution_function_is_affine_multivariate_p
1088 (CHREC_LEFT (chrec), loopnum))
1089 return true;
1090 else
1091 return false;
1092 }
1093
1094 default:
1095 return false;
1096 }
1097 }
1098
1099 /* Determine whether the given tree is a function in zero or one
1100 variables. */
1101
1102 bool
1103 evolution_function_is_univariate_p (const_tree chrec)
1104 {
1105 if (chrec == NULL_TREE)
1106 return true;
1107
1108 switch (TREE_CODE (chrec))
1109 {
1110 case POLYNOMIAL_CHREC:
1111 switch (TREE_CODE (CHREC_LEFT (chrec)))
1112 {
1113 case POLYNOMIAL_CHREC:
1114 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1115 return false;
1116 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1117 return false;
1118 break;
1119
1120 default:
1121 if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
1122 return false;
1123 break;
1124 }
1125
1126 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1127 {
1128 case POLYNOMIAL_CHREC:
1129 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1130 return false;
1131 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1132 return false;
1133 break;
1134
1135 default:
1136 if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
1137 return false;
1138 break;
1139 }
1140
1141 default:
1142 return true;
1143 }
1144 }
1145
1146 /* Returns the number of variables of CHREC. Example: the call
1147 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1148
1149 unsigned
1150 nb_vars_in_chrec (tree chrec)
1151 {
1152 if (chrec == NULL_TREE)
1153 return 0;
1154
1155 switch (TREE_CODE (chrec))
1156 {
1157 case POLYNOMIAL_CHREC:
1158 return 1 + nb_vars_in_chrec
1159 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1160
1161 default:
1162 return 0;
1163 }
1164 }
1165
1166 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1167 the scev corresponds to. AT_STMT is the statement at that the scev is
1168 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1169 the rules for overflow of the given language apply (e.g., that signed
1170 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1171 tests, but also to enforce that the result follows them. Returns true if the
1172 conversion succeeded, false otherwise. */
1173
1174 bool
1175 convert_affine_scev (struct loop *loop, tree type,
1176 tree *base, tree *step, gimple *at_stmt,
1177 bool use_overflow_semantics)
1178 {
1179 tree ct = TREE_TYPE (*step);
1180 bool enforce_overflow_semantics;
1181 bool must_check_src_overflow, must_check_rslt_overflow;
1182 tree new_base, new_step;
1183 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1184
1185 /* In general,
1186 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1187 but we must check some assumptions.
1188
1189 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1190 of CT is smaller than the precision of TYPE. For example, when we
1191 cast unsigned char [254, +, 1] to unsigned, the values on left side
1192 are 254, 255, 0, 1, ..., but those on the right side are
1193 254, 255, 256, 257, ...
1194 2) In case that we must also preserve the fact that signed ivs do not
1195 overflow, we must additionally check that the new iv does not wrap.
1196 For example, unsigned char [125, +, 1] casted to signed char could
1197 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1198 which would confuse optimizers that assume that this does not
1199 happen. */
1200 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1201
1202 enforce_overflow_semantics = (use_overflow_semantics
1203 && nowrap_type_p (type));
1204 if (enforce_overflow_semantics)
1205 {
1206 /* We can avoid checking whether the result overflows in the following
1207 cases:
1208
1209 -- must_check_src_overflow is true, and the range of TYPE is superset
1210 of the range of CT -- i.e., in all cases except if CT signed and
1211 TYPE unsigned.
1212 -- both CT and TYPE have the same precision and signedness, and we
1213 verify instead that the source does not overflow (this may be
1214 easier than verifying it for the result, as we may use the
1215 information about the semantics of overflow in CT). */
1216 if (must_check_src_overflow)
1217 {
1218 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1219 must_check_rslt_overflow = true;
1220 else
1221 must_check_rslt_overflow = false;
1222 }
1223 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1224 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1225 {
1226 must_check_rslt_overflow = false;
1227 must_check_src_overflow = true;
1228 }
1229 else
1230 must_check_rslt_overflow = true;
1231 }
1232 else
1233 must_check_rslt_overflow = false;
1234
1235 if (must_check_src_overflow
1236 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1237 use_overflow_semantics))
1238 return false;
1239
1240 new_base = chrec_convert (type, *base, at_stmt, use_overflow_semantics);
1241 /* The step must be sign extended, regardless of the signedness
1242 of CT and TYPE. This only needs to be handled specially when
1243 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1244 (with values 100, 99, 98, ...) from becoming signed or unsigned
1245 [100, +, 255] with values 100, 355, ...; the sign-extension is
1246 performed by default when CT is signed. */
1247 new_step = *step;
1248 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1249 {
1250 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1251 new_step = chrec_convert (signed_ct, new_step, at_stmt,
1252 use_overflow_semantics);
1253 }
1254 new_step = chrec_convert (step_type, new_step, at_stmt,
1255 use_overflow_semantics);
1256
1257 if (automatically_generated_chrec_p (new_base)
1258 || automatically_generated_chrec_p (new_step))
1259 return false;
1260
1261 if (must_check_rslt_overflow
1262 /* Note that in this case we cannot use the fact that signed variables
1263 do not overflow, as this is what we are verifying for the new iv. */
1264 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1265 return false;
1266
1267 *base = new_base;
1268 *step = new_step;
1269 return true;
1270 }
1271 \f
1272
1273 /* Convert CHREC for the right hand side of a CHREC.
1274 The increment for a pointer type is always sizetype. */
1275
1276 tree
1277 chrec_convert_rhs (tree type, tree chrec, gimple *at_stmt)
1278 {
1279 if (POINTER_TYPE_P (type))
1280 type = sizetype;
1281
1282 return chrec_convert (type, chrec, at_stmt);
1283 }
1284
1285 /* Convert CHREC to TYPE. When the analyzer knows the context in
1286 which the CHREC is built, it sets AT_STMT to the statement that
1287 contains the definition of the analyzed variable, otherwise the
1288 conversion is less accurate: the information is used for
1289 determining a more accurate estimation of the number of iterations.
1290 By default AT_STMT could be safely set to NULL_TREE.
1291
1292 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1293 the rules for overflow of the given language apply (e.g., that signed
1294 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1295 tests, but also to enforce that the result follows them. */
1296
1297 static tree
1298 chrec_convert_1 (tree type, tree chrec, gimple *at_stmt,
1299 bool use_overflow_semantics)
1300 {
1301 tree ct, res;
1302 tree base, step;
1303 struct loop *loop;
1304
1305 if (automatically_generated_chrec_p (chrec))
1306 return chrec;
1307
1308 ct = chrec_type (chrec);
1309 if (useless_type_conversion_p (type, ct))
1310 return chrec;
1311
1312 if (!evolution_function_is_affine_p (chrec))
1313 goto keep_cast;
1314
1315 loop = get_chrec_loop (chrec);
1316 base = CHREC_LEFT (chrec);
1317 step = CHREC_RIGHT (chrec);
1318
1319 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1320 use_overflow_semantics))
1321 return build_polynomial_chrec (loop->num, base, step);
1322
1323 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1324 keep_cast:
1325 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1326 may be more expensive. We do want to perform this optimization here
1327 though for canonicalization reasons. */
1328 if (use_overflow_semantics
1329 && (TREE_CODE (chrec) == PLUS_EXPR
1330 || TREE_CODE (chrec) == MINUS_EXPR)
1331 && TREE_CODE (type) == INTEGER_TYPE
1332 && TREE_CODE (ct) == INTEGER_TYPE
1333 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1334 && TYPE_OVERFLOW_UNDEFINED (ct))
1335 res = fold_build2 (TREE_CODE (chrec), type,
1336 fold_convert (type, TREE_OPERAND (chrec, 0)),
1337 fold_convert (type, TREE_OPERAND (chrec, 1)));
1338 /* Similar perform the trick that (signed char)((int)x + 2) can be
1339 narrowed to (signed char)((unsigned char)x + 2). */
1340 else if (use_overflow_semantics
1341 && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1342 && TREE_CODE (ct) == INTEGER_TYPE
1343 && TREE_CODE (type) == INTEGER_TYPE
1344 && TYPE_OVERFLOW_UNDEFINED (type)
1345 && TYPE_PRECISION (type) < TYPE_PRECISION (ct))
1346 {
1347 tree utype = unsigned_type_for (type);
1348 res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
1349 fold_convert (utype,
1350 CHREC_LEFT (chrec)),
1351 fold_convert (utype,
1352 CHREC_RIGHT (chrec)));
1353 res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics);
1354 }
1355 else
1356 res = fold_convert (type, chrec);
1357
1358 /* Don't propagate overflows. */
1359 if (CONSTANT_CLASS_P (res))
1360 TREE_OVERFLOW (res) = 0;
1361
1362 /* But reject constants that don't fit in their type after conversion.
1363 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1364 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1365 and can cause problems later when computing niters of loops. Note
1366 that we don't do the check before converting because we don't want
1367 to reject conversions of negative chrecs to unsigned types. */
1368 if (TREE_CODE (res) == INTEGER_CST
1369 && TREE_CODE (type) == INTEGER_TYPE
1370 && !int_fits_type_p (res, type))
1371 res = chrec_dont_know;
1372
1373 return res;
1374 }
1375
1376 /* Convert CHREC to TYPE. When the analyzer knows the context in
1377 which the CHREC is built, it sets AT_STMT to the statement that
1378 contains the definition of the analyzed variable, otherwise the
1379 conversion is less accurate: the information is used for
1380 determining a more accurate estimation of the number of iterations.
1381 By default AT_STMT could be safely set to NULL_TREE.
1382
1383 The following rule is always true: TREE_TYPE (chrec) ==
1384 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1385 An example of what could happen when adding two chrecs and the type
1386 of the CHREC_RIGHT is different than CHREC_LEFT is:
1387
1388 {(uint) 0, +, (uchar) 10} +
1389 {(uint) 0, +, (uchar) 250}
1390
1391 that would produce a wrong result if CHREC_RIGHT is not (uint):
1392
1393 {(uint) 0, +, (uchar) 4}
1394
1395 instead of
1396
1397 {(uint) 0, +, (uint) 260}
1398
1399 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1400 the rules for overflow of the given language apply (e.g., that signed
1401 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1402 tests, but also to enforce that the result follows them. */
1403
1404 tree
1405 chrec_convert (tree type, tree chrec, gimple *at_stmt,
1406 bool use_overflow_semantics)
1407 {
1408 return chrec_convert_1 (type, chrec, at_stmt, use_overflow_semantics);
1409 }
1410
1411 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1412 chrec if something else than what chrec_convert would do happens, NULL_TREE
1413 otherwise. This function set TRUE to variable pointed by FOLD_CONVERSIONS
1414 if the result chrec may overflow. */
1415
1416 tree
1417 chrec_convert_aggressive (tree type, tree chrec, bool *fold_conversions)
1418 {
1419 tree inner_type, left, right, lc, rc, rtype;
1420
1421 gcc_assert (fold_conversions != NULL);
1422
1423 if (automatically_generated_chrec_p (chrec)
1424 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1425 return NULL_TREE;
1426
1427 inner_type = TREE_TYPE (chrec);
1428 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1429 return NULL_TREE;
1430
1431 if (useless_type_conversion_p (type, inner_type))
1432 return NULL_TREE;
1433
1434 if (!*fold_conversions && evolution_function_is_affine_p (chrec))
1435 {
1436 tree base, step;
1437 struct loop *loop;
1438
1439 loop = get_chrec_loop (chrec);
1440 base = CHREC_LEFT (chrec);
1441 step = CHREC_RIGHT (chrec);
1442 if (convert_affine_scev (loop, type, &base, &step, NULL, true))
1443 return build_polynomial_chrec (loop->num, base, step);
1444 }
1445 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1446
1447 left = CHREC_LEFT (chrec);
1448 right = CHREC_RIGHT (chrec);
1449 lc = chrec_convert_aggressive (type, left, fold_conversions);
1450 if (!lc)
1451 lc = chrec_convert (type, left, NULL);
1452 rc = chrec_convert_aggressive (rtype, right, fold_conversions);
1453 if (!rc)
1454 rc = chrec_convert (rtype, right, NULL);
1455
1456 *fold_conversions = true;
1457
1458 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1459 }
1460
1461 /* Returns true when CHREC0 == CHREC1. */
1462
1463 bool
1464 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1465 {
1466 if (chrec0 == NULL_TREE
1467 || chrec1 == NULL_TREE
1468 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1469 return false;
1470
1471 if (chrec0 == chrec1)
1472 return true;
1473
1474 switch (TREE_CODE (chrec0))
1475 {
1476 case INTEGER_CST:
1477 return operand_equal_p (chrec0, chrec1, 0);
1478
1479 case POLYNOMIAL_CHREC:
1480 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1481 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1482 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1483
1484 case PLUS_EXPR:
1485 case MULT_EXPR:
1486 case MINUS_EXPR:
1487 case POINTER_PLUS_EXPR:
1488 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1489 TREE_OPERAND (chrec1, 0))
1490 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1491 TREE_OPERAND (chrec1, 1));
1492
1493 default:
1494 return false;
1495 }
1496 }
1497
1498 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1499 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1500 which of these cases happens. */
1501
1502 enum ev_direction
1503 scev_direction (const_tree chrec)
1504 {
1505 const_tree step;
1506
1507 if (!evolution_function_is_affine_p (chrec))
1508 return EV_DIR_UNKNOWN;
1509
1510 step = CHREC_RIGHT (chrec);
1511 if (TREE_CODE (step) != INTEGER_CST)
1512 return EV_DIR_UNKNOWN;
1513
1514 if (tree_int_cst_sign_bit (step))
1515 return EV_DIR_DECREASES;
1516 else
1517 return EV_DIR_GROWS;
1518 }
1519
1520 /* Iterates over all the components of SCEV, and calls CBCK. */
1521
1522 void
1523 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1524 {
1525 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1526 {
1527 case 3:
1528 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1529
1530 case 2:
1531 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1532
1533 case 1:
1534 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1535
1536 default:
1537 cbck (scev, data);
1538 break;
1539 }
1540 }
1541
1542 /* Returns true when the operation can be part of a linear
1543 expression. */
1544
1545 static inline bool
1546 operator_is_linear (tree scev)
1547 {
1548 switch (TREE_CODE (scev))
1549 {
1550 case INTEGER_CST:
1551 case POLYNOMIAL_CHREC:
1552 case PLUS_EXPR:
1553 case POINTER_PLUS_EXPR:
1554 case MULT_EXPR:
1555 case MINUS_EXPR:
1556 case NEGATE_EXPR:
1557 case SSA_NAME:
1558 case NON_LVALUE_EXPR:
1559 case BIT_NOT_EXPR:
1560 CASE_CONVERT:
1561 return true;
1562
1563 default:
1564 return false;
1565 }
1566 }
1567
1568 /* Return true when SCEV is a linear expression. Linear expressions
1569 can contain additions, substractions and multiplications.
1570 Multiplications are restricted to constant scaling: "cst * x". */
1571
1572 bool
1573 scev_is_linear_expression (tree scev)
1574 {
1575 if (scev == NULL
1576 || !operator_is_linear (scev))
1577 return false;
1578
1579 if (TREE_CODE (scev) == MULT_EXPR)
1580 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1581 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1582
1583 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1584 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1585 return false;
1586
1587 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1588 {
1589 case 3:
1590 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1591 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1592 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1593
1594 case 2:
1595 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1596 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1597
1598 case 1:
1599 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1600
1601 case 0:
1602 return true;
1603
1604 default:
1605 return false;
1606 }
1607 }
1608
1609 /* Determines whether the expression CHREC contains only interger consts
1610 in the right parts. */
1611
1612 bool
1613 evolution_function_right_is_integer_cst (const_tree chrec)
1614 {
1615 if (chrec == NULL_TREE)
1616 return false;
1617
1618 switch (TREE_CODE (chrec))
1619 {
1620 case INTEGER_CST:
1621 return true;
1622
1623 case POLYNOMIAL_CHREC:
1624 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1625 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1626 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1627
1628 CASE_CONVERT:
1629 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1630
1631 default:
1632 return false;
1633 }
1634 }