gnatcmd.adb, [...] (Project_Search_Path): New type.
[gcc.git] / gcc / tree-chrec.c
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
25 */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "tree-pretty-print.h"
34 #include "cfgloop.h"
35 #include "tree-flow.h"
36 #include "tree-chrec.h"
37 #include "tree-pass.h"
38 #include "params.h"
39 #include "flags.h"
40 #include "tree-scalar-evolution.h"
41
42 \f
43
44 /* Extended folder for chrecs. */
45
46 /* Determines whether CST is not a constant evolution. */
47
48 static inline bool
49 is_not_constant_evolution (const_tree cst)
50 {
51 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
52 }
53
54 /* Fold CODE for a polynomial function and a constant. */
55
56 static inline tree
57 chrec_fold_poly_cst (enum tree_code code,
58 tree type,
59 tree poly,
60 tree cst)
61 {
62 gcc_assert (poly);
63 gcc_assert (cst);
64 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65 gcc_assert (!is_not_constant_evolution (cst));
66 gcc_assert (type == chrec_type (poly));
67
68 switch (code)
69 {
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
75
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
81
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
87
88 default:
89 return chrec_dont_know;
90 }
91 }
92
93 /* Fold the addition of two polynomial functions. */
94
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
100 {
101 tree left, right;
102 struct loop *loop0 = get_chrec_loop (poly0);
103 struct loop *loop1 = get_chrec_loop (poly1);
104 tree rtype = code == POINTER_PLUS_EXPR ? sizetype : type;
105
106 gcc_assert (poly0);
107 gcc_assert (poly1);
108 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
109 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
110 if (POINTER_TYPE_P (chrec_type (poly0)))
111 gcc_assert (chrec_type (poly1) == sizetype);
112 else
113 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
114 gcc_assert (type == chrec_type (poly0));
115
116 /*
117 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
118 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
119 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
120 if (flow_loop_nested_p (loop0, loop1))
121 {
122 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
123 return build_polynomial_chrec
124 (CHREC_VARIABLE (poly1),
125 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
126 CHREC_RIGHT (poly1));
127 else
128 return build_polynomial_chrec
129 (CHREC_VARIABLE (poly1),
130 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
131 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
132 SCALAR_FLOAT_TYPE_P (type)
133 ? build_real (type, dconstm1)
134 : build_int_cst_type (type, -1)));
135 }
136
137 if (flow_loop_nested_p (loop1, loop0))
138 {
139 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
140 return build_polynomial_chrec
141 (CHREC_VARIABLE (poly0),
142 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
143 CHREC_RIGHT (poly0));
144 else
145 return build_polynomial_chrec
146 (CHREC_VARIABLE (poly0),
147 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
148 CHREC_RIGHT (poly0));
149 }
150
151 /* This function should never be called for chrecs of loops that
152 do not belong to the same loop nest. */
153 gcc_assert (loop0 == loop1);
154
155 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
156 {
157 left = chrec_fold_plus
158 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
159 right = chrec_fold_plus
160 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
161 }
162 else
163 {
164 left = chrec_fold_minus
165 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
166 right = chrec_fold_minus
167 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
168 }
169
170 if (chrec_zerop (right))
171 return left;
172 else
173 return build_polynomial_chrec
174 (CHREC_VARIABLE (poly0), left, right);
175 }
176
177 \f
178
179 /* Fold the multiplication of two polynomial functions. */
180
181 static inline tree
182 chrec_fold_multiply_poly_poly (tree type,
183 tree poly0,
184 tree poly1)
185 {
186 tree t0, t1, t2;
187 int var;
188 struct loop *loop0 = get_chrec_loop (poly0);
189 struct loop *loop1 = get_chrec_loop (poly1);
190
191 gcc_assert (poly0);
192 gcc_assert (poly1);
193 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
194 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
195 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
196 gcc_assert (type == chrec_type (poly0));
197
198 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
199 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
200 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
201 if (flow_loop_nested_p (loop0, loop1))
202 /* poly0 is a constant wrt. poly1. */
203 return build_polynomial_chrec
204 (CHREC_VARIABLE (poly1),
205 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
206 CHREC_RIGHT (poly1));
207
208 if (flow_loop_nested_p (loop1, loop0))
209 /* poly1 is a constant wrt. poly0. */
210 return build_polynomial_chrec
211 (CHREC_VARIABLE (poly0),
212 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
213 CHREC_RIGHT (poly0));
214
215 gcc_assert (loop0 == loop1);
216
217 /* poly0 and poly1 are two polynomials in the same variable,
218 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
219
220 /* "a*c". */
221 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
222
223 /* "a*d + b*c". */
224 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
225 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
226 CHREC_RIGHT (poly0),
227 CHREC_LEFT (poly1)));
228 /* "b*d". */
229 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
230 /* "a*d + b*c + b*d". */
231 t1 = chrec_fold_plus (type, t1, t2);
232 /* "2*b*d". */
233 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
234 ? build_real (type, dconst2)
235 : build_int_cst (type, 2), t2);
236
237 var = CHREC_VARIABLE (poly0);
238 return build_polynomial_chrec (var, t0,
239 build_polynomial_chrec (var, t1, t2));
240 }
241
242 /* When the operands are automatically_generated_chrec_p, the fold has
243 to respect the semantics of the operands. */
244
245 static inline tree
246 chrec_fold_automatically_generated_operands (tree op0,
247 tree op1)
248 {
249 if (op0 == chrec_dont_know
250 || op1 == chrec_dont_know)
251 return chrec_dont_know;
252
253 if (op0 == chrec_known
254 || op1 == chrec_known)
255 return chrec_known;
256
257 if (op0 == chrec_not_analyzed_yet
258 || op1 == chrec_not_analyzed_yet)
259 return chrec_not_analyzed_yet;
260
261 /* The default case produces a safe result. */
262 return chrec_dont_know;
263 }
264
265 /* Fold the addition of two chrecs. */
266
267 static tree
268 chrec_fold_plus_1 (enum tree_code code, tree type,
269 tree op0, tree op1)
270 {
271 tree op1_type = code == POINTER_PLUS_EXPR ? sizetype : type;
272
273 if (automatically_generated_chrec_p (op0)
274 || automatically_generated_chrec_p (op1))
275 return chrec_fold_automatically_generated_operands (op0, op1);
276
277 switch (TREE_CODE (op0))
278 {
279 case POLYNOMIAL_CHREC:
280 switch (TREE_CODE (op1))
281 {
282 case POLYNOMIAL_CHREC:
283 return chrec_fold_plus_poly_poly (code, type, op0, op1);
284
285 CASE_CONVERT:
286 if (tree_contains_chrecs (op1, NULL))
287 return chrec_dont_know;
288
289 default:
290 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
291 return build_polynomial_chrec
292 (CHREC_VARIABLE (op0),
293 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
294 CHREC_RIGHT (op0));
295 else
296 return build_polynomial_chrec
297 (CHREC_VARIABLE (op0),
298 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
299 CHREC_RIGHT (op0));
300 }
301
302 CASE_CONVERT:
303 if (tree_contains_chrecs (op0, NULL))
304 return chrec_dont_know;
305
306 default:
307 switch (TREE_CODE (op1))
308 {
309 case POLYNOMIAL_CHREC:
310 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
311 return build_polynomial_chrec
312 (CHREC_VARIABLE (op1),
313 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
314 CHREC_RIGHT (op1));
315 else
316 return build_polynomial_chrec
317 (CHREC_VARIABLE (op1),
318 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
319 chrec_fold_multiply (type, CHREC_RIGHT (op1),
320 SCALAR_FLOAT_TYPE_P (type)
321 ? build_real (type, dconstm1)
322 : build_int_cst_type (type, -1)));
323
324 CASE_CONVERT:
325 if (tree_contains_chrecs (op1, NULL))
326 return chrec_dont_know;
327
328 default:
329 {
330 int size = 0;
331 if ((tree_contains_chrecs (op0, &size)
332 || tree_contains_chrecs (op1, &size))
333 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
334 return build2 (code, type, op0, op1);
335 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
336 return fold_build2 (code, type,
337 fold_convert (type, op0),
338 fold_convert (op1_type, op1));
339 else
340 return chrec_dont_know;
341 }
342 }
343 }
344 }
345
346 /* Fold the addition of two chrecs. */
347
348 tree
349 chrec_fold_plus (tree type,
350 tree op0,
351 tree op1)
352 {
353 enum tree_code code;
354 if (automatically_generated_chrec_p (op0)
355 || automatically_generated_chrec_p (op1))
356 return chrec_fold_automatically_generated_operands (op0, op1);
357
358 if (integer_zerop (op0))
359 return chrec_convert (type, op1, NULL);
360 if (integer_zerop (op1))
361 return chrec_convert (type, op0, NULL);
362
363 if (POINTER_TYPE_P (type))
364 code = POINTER_PLUS_EXPR;
365 else
366 code = PLUS_EXPR;
367
368 return chrec_fold_plus_1 (code, type, op0, op1);
369 }
370
371 /* Fold the subtraction of two chrecs. */
372
373 tree
374 chrec_fold_minus (tree type,
375 tree op0,
376 tree op1)
377 {
378 if (automatically_generated_chrec_p (op0)
379 || automatically_generated_chrec_p (op1))
380 return chrec_fold_automatically_generated_operands (op0, op1);
381
382 if (integer_zerop (op1))
383 return op0;
384
385 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
386 }
387
388 /* Fold the multiplication of two chrecs. */
389
390 tree
391 chrec_fold_multiply (tree type,
392 tree op0,
393 tree op1)
394 {
395 if (automatically_generated_chrec_p (op0)
396 || automatically_generated_chrec_p (op1))
397 return chrec_fold_automatically_generated_operands (op0, op1);
398
399 switch (TREE_CODE (op0))
400 {
401 case POLYNOMIAL_CHREC:
402 switch (TREE_CODE (op1))
403 {
404 case POLYNOMIAL_CHREC:
405 return chrec_fold_multiply_poly_poly (type, op0, op1);
406
407 CASE_CONVERT:
408 if (tree_contains_chrecs (op1, NULL))
409 return chrec_dont_know;
410
411 default:
412 if (integer_onep (op1))
413 return op0;
414 if (integer_zerop (op1))
415 return build_int_cst (type, 0);
416
417 return build_polynomial_chrec
418 (CHREC_VARIABLE (op0),
419 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
420 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
421 }
422
423 CASE_CONVERT:
424 if (tree_contains_chrecs (op0, NULL))
425 return chrec_dont_know;
426
427 default:
428 if (integer_onep (op0))
429 return op1;
430
431 if (integer_zerop (op0))
432 return build_int_cst (type, 0);
433
434 switch (TREE_CODE (op1))
435 {
436 case POLYNOMIAL_CHREC:
437 return build_polynomial_chrec
438 (CHREC_VARIABLE (op1),
439 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
440 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
441
442 CASE_CONVERT:
443 if (tree_contains_chrecs (op1, NULL))
444 return chrec_dont_know;
445
446 default:
447 if (integer_onep (op1))
448 return op0;
449 if (integer_zerop (op1))
450 return build_int_cst (type, 0);
451 return fold_build2 (MULT_EXPR, type, op0, op1);
452 }
453 }
454 }
455
456 \f
457
458 /* Operations. */
459
460 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
461 calculation overflows, otherwise return C(n,k) with type TYPE. */
462
463 static tree
464 tree_fold_binomial (tree type, tree n, unsigned int k)
465 {
466 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
467 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
468 unsigned int i;
469 tree res;
470
471 /* Handle the most frequent cases. */
472 if (k == 0)
473 return build_int_cst (type, 1);
474 if (k == 1)
475 return fold_convert (type, n);
476
477 /* Check that k <= n. */
478 if (TREE_INT_CST_HIGH (n) == 0
479 && TREE_INT_CST_LOW (n) < k)
480 return NULL_TREE;
481
482 /* Numerator = n. */
483 lnum = TREE_INT_CST_LOW (n);
484 hnum = TREE_INT_CST_HIGH (n);
485
486 /* Denominator = 2. */
487 ldenom = 2;
488 hdenom = 0;
489
490 /* Index = Numerator-1. */
491 if (lnum == 0)
492 {
493 hidx = hnum - 1;
494 lidx = ~ (unsigned HOST_WIDE_INT) 0;
495 }
496 else
497 {
498 hidx = hnum;
499 lidx = lnum - 1;
500 }
501
502 /* Numerator = Numerator*Index = n*(n-1). */
503 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
504 return NULL_TREE;
505
506 for (i = 3; i <= k; i++)
507 {
508 /* Index--. */
509 if (lidx == 0)
510 {
511 hidx--;
512 lidx = ~ (unsigned HOST_WIDE_INT) 0;
513 }
514 else
515 lidx--;
516
517 /* Numerator *= Index. */
518 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
519 return NULL_TREE;
520
521 /* Denominator *= i. */
522 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
523 }
524
525 /* Result = Numerator / Denominator. */
526 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
527 &lres, &hres, &ldum, &hdum);
528
529 res = build_int_cst_wide (type, lres, hres);
530 return int_fits_type_p (res, type) ? res : NULL_TREE;
531 }
532
533 /* Helper function. Use the Newton's interpolating formula for
534 evaluating the value of the evolution function. */
535
536 static tree
537 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
538 {
539 tree arg0, arg1, binomial_n_k;
540 tree type = TREE_TYPE (chrec);
541 struct loop *var_loop = get_loop (var);
542
543 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
544 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
545 chrec = CHREC_LEFT (chrec);
546
547 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
548 && CHREC_VARIABLE (chrec) == var)
549 {
550 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
551 if (arg1 == chrec_dont_know)
552 return chrec_dont_know;
553 binomial_n_k = tree_fold_binomial (type, n, k);
554 if (!binomial_n_k)
555 return chrec_dont_know;
556 arg0 = fold_build2 (MULT_EXPR, type,
557 CHREC_LEFT (chrec), binomial_n_k);
558 return chrec_fold_plus (type, arg0, arg1);
559 }
560
561 binomial_n_k = tree_fold_binomial (type, n, k);
562 if (!binomial_n_k)
563 return chrec_dont_know;
564
565 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
566 }
567
568 /* Evaluates "CHREC (X)" when the varying variable is VAR.
569 Example: Given the following parameters,
570
571 var = 1
572 chrec = {3, +, 4}_1
573 x = 10
574
575 The result is given by the Newton's interpolating formula:
576 3 * \binom{10}{0} + 4 * \binom{10}{1}.
577 */
578
579 tree
580 chrec_apply (unsigned var,
581 tree chrec,
582 tree x)
583 {
584 tree type = chrec_type (chrec);
585 tree res = chrec_dont_know;
586
587 if (automatically_generated_chrec_p (chrec)
588 || automatically_generated_chrec_p (x)
589
590 /* When the symbols are defined in an outer loop, it is possible
591 to symbolically compute the apply, since the symbols are
592 constants with respect to the varying loop. */
593 || chrec_contains_symbols_defined_in_loop (chrec, var))
594 return chrec_dont_know;
595
596 if (dump_file && (dump_flags & TDF_DETAILS))
597 fprintf (dump_file, "(chrec_apply \n");
598
599 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
600 x = build_real_from_int_cst (type, x);
601
602 switch (TREE_CODE (chrec))
603 {
604 case POLYNOMIAL_CHREC:
605 if (evolution_function_is_affine_p (chrec))
606 {
607 if (CHREC_VARIABLE (chrec) != var)
608 return build_polynomial_chrec
609 (CHREC_VARIABLE (chrec),
610 chrec_apply (var, CHREC_LEFT (chrec), x),
611 chrec_apply (var, CHREC_RIGHT (chrec), x));
612
613 /* "{a, +, b} (x)" -> "a + b*x". */
614 x = chrec_convert_rhs (type, x, NULL);
615 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
616 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
617 }
618 else if (TREE_CODE (x) == INTEGER_CST
619 && tree_int_cst_sgn (x) == 1)
620 /* testsuite/.../ssa-chrec-38.c. */
621 res = chrec_evaluate (var, chrec, x, 0);
622 else
623 res = chrec_dont_know;
624 break;
625
626 CASE_CONVERT:
627 res = chrec_convert (TREE_TYPE (chrec),
628 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
629 NULL);
630 break;
631
632 default:
633 res = chrec;
634 break;
635 }
636
637 if (dump_file && (dump_flags & TDF_DETAILS))
638 {
639 fprintf (dump_file, " (varying_loop = %d\n", var);
640 fprintf (dump_file, ")\n (chrec = ");
641 print_generic_expr (dump_file, chrec, 0);
642 fprintf (dump_file, ")\n (x = ");
643 print_generic_expr (dump_file, x, 0);
644 fprintf (dump_file, ")\n (res = ");
645 print_generic_expr (dump_file, res, 0);
646 fprintf (dump_file, "))\n");
647 }
648
649 return res;
650 }
651
652 /* For a given CHREC and an induction variable map IV_MAP that maps
653 (loop->num, expr) for every loop number of the current_loops an
654 expression, calls chrec_apply when the expression is not NULL. */
655
656 tree
657 chrec_apply_map (tree chrec, VEC (tree, heap) *iv_map)
658 {
659 int i;
660 tree expr;
661
662 FOR_EACH_VEC_ELT (tree, iv_map, i, expr)
663 if (expr)
664 chrec = chrec_apply (i, chrec, expr);
665
666 return chrec;
667 }
668
669 /* Replaces the initial condition in CHREC with INIT_COND. */
670
671 tree
672 chrec_replace_initial_condition (tree chrec,
673 tree init_cond)
674 {
675 if (automatically_generated_chrec_p (chrec))
676 return chrec;
677
678 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
679
680 switch (TREE_CODE (chrec))
681 {
682 case POLYNOMIAL_CHREC:
683 return build_polynomial_chrec
684 (CHREC_VARIABLE (chrec),
685 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
686 CHREC_RIGHT (chrec));
687
688 default:
689 return init_cond;
690 }
691 }
692
693 /* Returns the initial condition of a given CHREC. */
694
695 tree
696 initial_condition (tree chrec)
697 {
698 if (automatically_generated_chrec_p (chrec))
699 return chrec;
700
701 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
702 return initial_condition (CHREC_LEFT (chrec));
703 else
704 return chrec;
705 }
706
707 /* Returns a univariate function that represents the evolution in
708 LOOP_NUM. Mask the evolution of any other loop. */
709
710 tree
711 hide_evolution_in_other_loops_than_loop (tree chrec,
712 unsigned loop_num)
713 {
714 struct loop *loop = get_loop (loop_num), *chloop;
715 if (automatically_generated_chrec_p (chrec))
716 return chrec;
717
718 switch (TREE_CODE (chrec))
719 {
720 case POLYNOMIAL_CHREC:
721 chloop = get_chrec_loop (chrec);
722
723 if (chloop == loop)
724 return build_polynomial_chrec
725 (loop_num,
726 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
727 loop_num),
728 CHREC_RIGHT (chrec));
729
730 else if (flow_loop_nested_p (chloop, loop))
731 /* There is no evolution in this loop. */
732 return initial_condition (chrec);
733
734 else
735 {
736 gcc_assert (flow_loop_nested_p (loop, chloop));
737 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
738 loop_num);
739 }
740
741 default:
742 return chrec;
743 }
744 }
745
746 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
747 true, otherwise returns the initial condition in LOOP_NUM. */
748
749 static tree
750 chrec_component_in_loop_num (tree chrec,
751 unsigned loop_num,
752 bool right)
753 {
754 tree component;
755 struct loop *loop = get_loop (loop_num), *chloop;
756
757 if (automatically_generated_chrec_p (chrec))
758 return chrec;
759
760 switch (TREE_CODE (chrec))
761 {
762 case POLYNOMIAL_CHREC:
763 chloop = get_chrec_loop (chrec);
764
765 if (chloop == loop)
766 {
767 if (right)
768 component = CHREC_RIGHT (chrec);
769 else
770 component = CHREC_LEFT (chrec);
771
772 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
773 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
774 return component;
775
776 else
777 return build_polynomial_chrec
778 (loop_num,
779 chrec_component_in_loop_num (CHREC_LEFT (chrec),
780 loop_num,
781 right),
782 component);
783 }
784
785 else if (flow_loop_nested_p (chloop, loop))
786 /* There is no evolution part in this loop. */
787 return NULL_TREE;
788
789 else
790 {
791 gcc_assert (flow_loop_nested_p (loop, chloop));
792 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
793 loop_num,
794 right);
795 }
796
797 default:
798 if (right)
799 return NULL_TREE;
800 else
801 return chrec;
802 }
803 }
804
805 /* Returns the evolution part in LOOP_NUM. Example: the call
806 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
807 {1, +, 2}_1 */
808
809 tree
810 evolution_part_in_loop_num (tree chrec,
811 unsigned loop_num)
812 {
813 return chrec_component_in_loop_num (chrec, loop_num, true);
814 }
815
816 /* Returns the initial condition in LOOP_NUM. Example: the call
817 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
818 {0, +, 1}_1 */
819
820 tree
821 initial_condition_in_loop_num (tree chrec,
822 unsigned loop_num)
823 {
824 return chrec_component_in_loop_num (chrec, loop_num, false);
825 }
826
827 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
828 This function is essentially used for setting the evolution to
829 chrec_dont_know, for example after having determined that it is
830 impossible to say how many times a loop will execute. */
831
832 tree
833 reset_evolution_in_loop (unsigned loop_num,
834 tree chrec,
835 tree new_evol)
836 {
837 struct loop *loop = get_loop (loop_num);
838
839 if (POINTER_TYPE_P (chrec_type (chrec)))
840 gcc_assert (sizetype == chrec_type (new_evol));
841 else
842 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
843
844 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
845 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
846 {
847 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
848 new_evol);
849 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
850 new_evol);
851 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
852 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
853 left, right);
854 }
855
856 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
857 && CHREC_VARIABLE (chrec) == loop_num)
858 chrec = CHREC_LEFT (chrec);
859
860 return build_polynomial_chrec (loop_num, chrec, new_evol);
861 }
862
863 /* Merges two evolution functions that were found by following two
864 alternate paths of a conditional expression. */
865
866 tree
867 chrec_merge (tree chrec1,
868 tree chrec2)
869 {
870 if (chrec1 == chrec_dont_know
871 || chrec2 == chrec_dont_know)
872 return chrec_dont_know;
873
874 if (chrec1 == chrec_known
875 || chrec2 == chrec_known)
876 return chrec_known;
877
878 if (chrec1 == chrec_not_analyzed_yet)
879 return chrec2;
880 if (chrec2 == chrec_not_analyzed_yet)
881 return chrec1;
882
883 if (eq_evolutions_p (chrec1, chrec2))
884 return chrec1;
885
886 return chrec_dont_know;
887 }
888
889 \f
890
891 /* Observers. */
892
893 /* Helper function for is_multivariate_chrec. */
894
895 static bool
896 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
897 {
898 if (chrec == NULL_TREE)
899 return false;
900
901 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
902 {
903 if (CHREC_VARIABLE (chrec) != rec_var)
904 return true;
905 else
906 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
907 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
908 }
909 else
910 return false;
911 }
912
913 /* Determine whether the given chrec is multivariate or not. */
914
915 bool
916 is_multivariate_chrec (const_tree chrec)
917 {
918 if (chrec == NULL_TREE)
919 return false;
920
921 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
922 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
923 CHREC_VARIABLE (chrec))
924 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
925 CHREC_VARIABLE (chrec)));
926 else
927 return false;
928 }
929
930 /* Determines whether the chrec contains symbolic names or not. */
931
932 bool
933 chrec_contains_symbols (const_tree chrec)
934 {
935 int i, n;
936
937 if (chrec == NULL_TREE)
938 return false;
939
940 if (TREE_CODE (chrec) == SSA_NAME
941 || TREE_CODE (chrec) == VAR_DECL
942 || TREE_CODE (chrec) == PARM_DECL
943 || TREE_CODE (chrec) == FUNCTION_DECL
944 || TREE_CODE (chrec) == LABEL_DECL
945 || TREE_CODE (chrec) == RESULT_DECL
946 || TREE_CODE (chrec) == FIELD_DECL)
947 return true;
948
949 n = TREE_OPERAND_LENGTH (chrec);
950 for (i = 0; i < n; i++)
951 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
952 return true;
953 return false;
954 }
955
956 /* Determines whether the chrec contains undetermined coefficients. */
957
958 bool
959 chrec_contains_undetermined (const_tree chrec)
960 {
961 int i, n;
962
963 if (chrec == chrec_dont_know)
964 return true;
965
966 if (chrec == NULL_TREE)
967 return false;
968
969 n = TREE_OPERAND_LENGTH (chrec);
970 for (i = 0; i < n; i++)
971 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
972 return true;
973 return false;
974 }
975
976 /* Determines whether the tree EXPR contains chrecs, and increment
977 SIZE if it is not a NULL pointer by an estimation of the depth of
978 the tree. */
979
980 bool
981 tree_contains_chrecs (const_tree expr, int *size)
982 {
983 int i, n;
984
985 if (expr == NULL_TREE)
986 return false;
987
988 if (size)
989 (*size)++;
990
991 if (tree_is_chrec (expr))
992 return true;
993
994 n = TREE_OPERAND_LENGTH (expr);
995 for (i = 0; i < n; i++)
996 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
997 return true;
998 return false;
999 }
1000
1001 /* Recursive helper function. */
1002
1003 static bool
1004 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1005 {
1006 if (evolution_function_is_constant_p (chrec))
1007 return true;
1008
1009 if (TREE_CODE (chrec) == SSA_NAME
1010 && (loopnum == 0
1011 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
1012 return true;
1013
1014 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1015 {
1016 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1017 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1018 loopnum)
1019 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1020 loopnum))
1021 return false;
1022 return true;
1023 }
1024
1025 switch (TREE_OPERAND_LENGTH (chrec))
1026 {
1027 case 2:
1028 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1029 loopnum))
1030 return false;
1031
1032 case 1:
1033 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1034 loopnum))
1035 return false;
1036 return true;
1037
1038 default:
1039 return false;
1040 }
1041
1042 return false;
1043 }
1044
1045 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1046
1047 bool
1048 evolution_function_is_invariant_p (tree chrec, int loopnum)
1049 {
1050 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1051 }
1052
1053 /* Determine whether the given tree is an affine multivariate
1054 evolution. */
1055
1056 bool
1057 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1058 {
1059 if (chrec == NULL_TREE)
1060 return false;
1061
1062 switch (TREE_CODE (chrec))
1063 {
1064 case POLYNOMIAL_CHREC:
1065 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1066 {
1067 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1068 return true;
1069 else
1070 {
1071 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1072 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1073 != CHREC_VARIABLE (chrec)
1074 && evolution_function_is_affine_multivariate_p
1075 (CHREC_RIGHT (chrec), loopnum))
1076 return true;
1077 else
1078 return false;
1079 }
1080 }
1081 else
1082 {
1083 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1084 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1085 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1086 && evolution_function_is_affine_multivariate_p
1087 (CHREC_LEFT (chrec), loopnum))
1088 return true;
1089 else
1090 return false;
1091 }
1092
1093 default:
1094 return false;
1095 }
1096 }
1097
1098 /* Determine whether the given tree is a function in zero or one
1099 variables. */
1100
1101 bool
1102 evolution_function_is_univariate_p (const_tree chrec)
1103 {
1104 if (chrec == NULL_TREE)
1105 return true;
1106
1107 switch (TREE_CODE (chrec))
1108 {
1109 case POLYNOMIAL_CHREC:
1110 switch (TREE_CODE (CHREC_LEFT (chrec)))
1111 {
1112 case POLYNOMIAL_CHREC:
1113 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1114 return false;
1115 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1116 return false;
1117 break;
1118
1119 default:
1120 break;
1121 }
1122
1123 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1124 {
1125 case POLYNOMIAL_CHREC:
1126 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1127 return false;
1128 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1129 return false;
1130 break;
1131
1132 default:
1133 break;
1134 }
1135
1136 default:
1137 return true;
1138 }
1139 }
1140
1141 /* Returns the number of variables of CHREC. Example: the call
1142 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1143
1144 unsigned
1145 nb_vars_in_chrec (tree chrec)
1146 {
1147 if (chrec == NULL_TREE)
1148 return 0;
1149
1150 switch (TREE_CODE (chrec))
1151 {
1152 case POLYNOMIAL_CHREC:
1153 return 1 + nb_vars_in_chrec
1154 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1155
1156 default:
1157 return 0;
1158 }
1159 }
1160
1161 static tree chrec_convert_1 (tree, tree, gimple, bool);
1162
1163 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1164 the scev corresponds to. AT_STMT is the statement at that the scev is
1165 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1166 the rules for overflow of the given language apply (e.g., that signed
1167 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1168 tests, but also to enforce that the result follows them. Returns true if the
1169 conversion succeeded, false otherwise. */
1170
1171 bool
1172 convert_affine_scev (struct loop *loop, tree type,
1173 tree *base, tree *step, gimple at_stmt,
1174 bool use_overflow_semantics)
1175 {
1176 tree ct = TREE_TYPE (*step);
1177 bool enforce_overflow_semantics;
1178 bool must_check_src_overflow, must_check_rslt_overflow;
1179 tree new_base, new_step;
1180 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1181
1182 /* In general,
1183 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1184 but we must check some assumptions.
1185
1186 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1187 of CT is smaller than the precision of TYPE. For example, when we
1188 cast unsigned char [254, +, 1] to unsigned, the values on left side
1189 are 254, 255, 0, 1, ..., but those on the right side are
1190 254, 255, 256, 257, ...
1191 2) In case that we must also preserve the fact that signed ivs do not
1192 overflow, we must additionally check that the new iv does not wrap.
1193 For example, unsigned char [125, +, 1] casted to signed char could
1194 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1195 which would confuse optimizers that assume that this does not
1196 happen. */
1197 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1198
1199 enforce_overflow_semantics = (use_overflow_semantics
1200 && nowrap_type_p (type));
1201 if (enforce_overflow_semantics)
1202 {
1203 /* We can avoid checking whether the result overflows in the following
1204 cases:
1205
1206 -- must_check_src_overflow is true, and the range of TYPE is superset
1207 of the range of CT -- i.e., in all cases except if CT signed and
1208 TYPE unsigned.
1209 -- both CT and TYPE have the same precision and signedness, and we
1210 verify instead that the source does not overflow (this may be
1211 easier than verifying it for the result, as we may use the
1212 information about the semantics of overflow in CT). */
1213 if (must_check_src_overflow)
1214 {
1215 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1216 must_check_rslt_overflow = true;
1217 else
1218 must_check_rslt_overflow = false;
1219 }
1220 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1221 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1222 {
1223 must_check_rslt_overflow = false;
1224 must_check_src_overflow = true;
1225 }
1226 else
1227 must_check_rslt_overflow = true;
1228 }
1229 else
1230 must_check_rslt_overflow = false;
1231
1232 if (must_check_src_overflow
1233 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1234 use_overflow_semantics))
1235 return false;
1236
1237 new_base = chrec_convert_1 (type, *base, at_stmt,
1238 use_overflow_semantics);
1239 /* The step must be sign extended, regardless of the signedness
1240 of CT and TYPE. This only needs to be handled specially when
1241 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1242 (with values 100, 99, 98, ...) from becoming signed or unsigned
1243 [100, +, 255] with values 100, 355, ...; the sign-extension is
1244 performed by default when CT is signed. */
1245 new_step = *step;
1246 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1247 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1248 use_overflow_semantics);
1249 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1250
1251 if (automatically_generated_chrec_p (new_base)
1252 || automatically_generated_chrec_p (new_step))
1253 return false;
1254
1255 if (must_check_rslt_overflow
1256 /* Note that in this case we cannot use the fact that signed variables
1257 do not overflow, as this is what we are verifying for the new iv. */
1258 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1259 return false;
1260
1261 *base = new_base;
1262 *step = new_step;
1263 return true;
1264 }
1265 \f
1266
1267 /* Convert CHREC for the right hand side of a CHREC.
1268 The increment for a pointer type is always sizetype. */
1269
1270 tree
1271 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1272 {
1273 if (POINTER_TYPE_P (type))
1274 type = sizetype;
1275
1276 return chrec_convert (type, chrec, at_stmt);
1277 }
1278
1279 /* Convert CHREC to TYPE. When the analyzer knows the context in
1280 which the CHREC is built, it sets AT_STMT to the statement that
1281 contains the definition of the analyzed variable, otherwise the
1282 conversion is less accurate: the information is used for
1283 determining a more accurate estimation of the number of iterations.
1284 By default AT_STMT could be safely set to NULL_TREE.
1285
1286 The following rule is always true: TREE_TYPE (chrec) ==
1287 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1288 An example of what could happen when adding two chrecs and the type
1289 of the CHREC_RIGHT is different than CHREC_LEFT is:
1290
1291 {(uint) 0, +, (uchar) 10} +
1292 {(uint) 0, +, (uchar) 250}
1293
1294 that would produce a wrong result if CHREC_RIGHT is not (uint):
1295
1296 {(uint) 0, +, (uchar) 4}
1297
1298 instead of
1299
1300 {(uint) 0, +, (uint) 260}
1301 */
1302
1303 tree
1304 chrec_convert (tree type, tree chrec, gimple at_stmt)
1305 {
1306 return chrec_convert_1 (type, chrec, at_stmt, true);
1307 }
1308
1309 /* Convert CHREC to TYPE. When the analyzer knows the context in
1310 which the CHREC is built, it sets AT_STMT to the statement that
1311 contains the definition of the analyzed variable, otherwise the
1312 conversion is less accurate: the information is used for
1313 determining a more accurate estimation of the number of iterations.
1314 By default AT_STMT could be safely set to NULL_TREE.
1315
1316 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1317 the rules for overflow of the given language apply (e.g., that signed
1318 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1319 tests, but also to enforce that the result follows them. */
1320
1321 static tree
1322 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1323 bool use_overflow_semantics)
1324 {
1325 tree ct, res;
1326 tree base, step;
1327 struct loop *loop;
1328
1329 if (automatically_generated_chrec_p (chrec))
1330 return chrec;
1331
1332 ct = chrec_type (chrec);
1333 if (ct == type)
1334 return chrec;
1335
1336 if (!evolution_function_is_affine_p (chrec))
1337 goto keep_cast;
1338
1339 loop = get_chrec_loop (chrec);
1340 base = CHREC_LEFT (chrec);
1341 step = CHREC_RIGHT (chrec);
1342
1343 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1344 use_overflow_semantics))
1345 return build_polynomial_chrec (loop->num, base, step);
1346
1347 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1348 keep_cast:
1349 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1350 may be more expensive. We do want to perform this optimization here
1351 though for canonicalization reasons. */
1352 if (use_overflow_semantics
1353 && (TREE_CODE (chrec) == PLUS_EXPR
1354 || TREE_CODE (chrec) == MINUS_EXPR)
1355 && TREE_CODE (type) == INTEGER_TYPE
1356 && TREE_CODE (ct) == INTEGER_TYPE
1357 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1358 && TYPE_OVERFLOW_UNDEFINED (ct))
1359 res = fold_build2 (TREE_CODE (chrec), type,
1360 fold_convert (type, TREE_OPERAND (chrec, 0)),
1361 fold_convert (type, TREE_OPERAND (chrec, 1)));
1362 else
1363 res = fold_convert (type, chrec);
1364
1365 /* Don't propagate overflows. */
1366 if (CONSTANT_CLASS_P (res))
1367 TREE_OVERFLOW (res) = 0;
1368
1369 /* But reject constants that don't fit in their type after conversion.
1370 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1371 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1372 and can cause problems later when computing niters of loops. Note
1373 that we don't do the check before converting because we don't want
1374 to reject conversions of negative chrecs to unsigned types. */
1375 if (TREE_CODE (res) == INTEGER_CST
1376 && TREE_CODE (type) == INTEGER_TYPE
1377 && !int_fits_type_p (res, type))
1378 res = chrec_dont_know;
1379
1380 return res;
1381 }
1382
1383 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1384 chrec if something else than what chrec_convert would do happens, NULL_TREE
1385 otherwise. */
1386
1387 tree
1388 chrec_convert_aggressive (tree type, tree chrec)
1389 {
1390 tree inner_type, left, right, lc, rc, rtype;
1391
1392 if (automatically_generated_chrec_p (chrec)
1393 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1394 return NULL_TREE;
1395
1396 inner_type = TREE_TYPE (chrec);
1397 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1398 return NULL_TREE;
1399
1400 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1401
1402 left = CHREC_LEFT (chrec);
1403 right = CHREC_RIGHT (chrec);
1404 lc = chrec_convert_aggressive (type, left);
1405 if (!lc)
1406 lc = chrec_convert (type, left, NULL);
1407 rc = chrec_convert_aggressive (rtype, right);
1408 if (!rc)
1409 rc = chrec_convert (rtype, right, NULL);
1410
1411 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1412 }
1413
1414 /* Returns true when CHREC0 == CHREC1. */
1415
1416 bool
1417 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1418 {
1419 if (chrec0 == NULL_TREE
1420 || chrec1 == NULL_TREE
1421 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1422 return false;
1423
1424 if (chrec0 == chrec1)
1425 return true;
1426
1427 switch (TREE_CODE (chrec0))
1428 {
1429 case INTEGER_CST:
1430 return operand_equal_p (chrec0, chrec1, 0);
1431
1432 case POLYNOMIAL_CHREC:
1433 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1434 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1435 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1436 default:
1437 return false;
1438 }
1439 }
1440
1441 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1442 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1443 which of these cases happens. */
1444
1445 enum ev_direction
1446 scev_direction (const_tree chrec)
1447 {
1448 const_tree step;
1449
1450 if (!evolution_function_is_affine_p (chrec))
1451 return EV_DIR_UNKNOWN;
1452
1453 step = CHREC_RIGHT (chrec);
1454 if (TREE_CODE (step) != INTEGER_CST)
1455 return EV_DIR_UNKNOWN;
1456
1457 if (tree_int_cst_sign_bit (step))
1458 return EV_DIR_DECREASES;
1459 else
1460 return EV_DIR_GROWS;
1461 }
1462
1463 /* Iterates over all the components of SCEV, and calls CBCK. */
1464
1465 void
1466 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1467 {
1468 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1469 {
1470 case 3:
1471 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1472
1473 case 2:
1474 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1475
1476 case 1:
1477 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1478
1479 default:
1480 cbck (scev, data);
1481 break;
1482 }
1483 }
1484
1485 /* Returns true when the operation can be part of a linear
1486 expression. */
1487
1488 static inline bool
1489 operator_is_linear (tree scev)
1490 {
1491 switch (TREE_CODE (scev))
1492 {
1493 case INTEGER_CST:
1494 case POLYNOMIAL_CHREC:
1495 case PLUS_EXPR:
1496 case POINTER_PLUS_EXPR:
1497 case MULT_EXPR:
1498 case MINUS_EXPR:
1499 case NEGATE_EXPR:
1500 case SSA_NAME:
1501 case NON_LVALUE_EXPR:
1502 case BIT_NOT_EXPR:
1503 CASE_CONVERT:
1504 return true;
1505
1506 default:
1507 return false;
1508 }
1509 }
1510
1511 /* Return true when SCEV is a linear expression. Linear expressions
1512 can contain additions, substractions and multiplications.
1513 Multiplications are restricted to constant scaling: "cst * x". */
1514
1515 bool
1516 scev_is_linear_expression (tree scev)
1517 {
1518 if (scev == NULL
1519 || !operator_is_linear (scev))
1520 return false;
1521
1522 if (TREE_CODE (scev) == MULT_EXPR)
1523 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1524 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1525
1526 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1527 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1528 return false;
1529
1530 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1531 {
1532 case 3:
1533 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1534 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1535 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1536
1537 case 2:
1538 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1539 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1540
1541 case 1:
1542 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1543
1544 case 0:
1545 return true;
1546
1547 default:
1548 return false;
1549 }
1550 }
1551
1552 /* Determines whether the expression CHREC contains only interger consts
1553 in the right parts. */
1554
1555 bool
1556 evolution_function_right_is_integer_cst (const_tree chrec)
1557 {
1558 if (chrec == NULL_TREE)
1559 return false;
1560
1561 switch (TREE_CODE (chrec))
1562 {
1563 case INTEGER_CST:
1564 return true;
1565
1566 case POLYNOMIAL_CHREC:
1567 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1568 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1569 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1570
1571 CASE_CONVERT:
1572 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1573
1574 default:
1575 return false;
1576 }
1577 }
1578