re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / tree-chrec.c
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
25 */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-flow.h"
37 #include "tree-chrec.h"
38 #include "tree-pass.h"
39 #include "params.h"
40 #include "tree-scalar-evolution.h"
41
42 \f
43
44 /* Extended folder for chrecs. */
45
46 /* Determines whether CST is not a constant evolution. */
47
48 static inline bool
49 is_not_constant_evolution (const_tree cst)
50 {
51 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
52 }
53
54 /* Fold CODE for a polynomial function and a constant. */
55
56 static inline tree
57 chrec_fold_poly_cst (enum tree_code code,
58 tree type,
59 tree poly,
60 tree cst)
61 {
62 gcc_assert (poly);
63 gcc_assert (cst);
64 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65 gcc_assert (!is_not_constant_evolution (cst));
66 gcc_assert (type == chrec_type (poly));
67
68 switch (code)
69 {
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
75
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
81
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
87
88 default:
89 return chrec_dont_know;
90 }
91 }
92
93 /* Fold the addition of two polynomial functions. */
94
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
100 {
101 tree left, right;
102 struct loop *loop0 = get_chrec_loop (poly0);
103 struct loop *loop1 = get_chrec_loop (poly1);
104 tree rtype = code == POINTER_PLUS_EXPR ? sizetype : type;
105
106 gcc_assert (poly0);
107 gcc_assert (poly1);
108 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
109 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
110 if (POINTER_TYPE_P (chrec_type (poly0)))
111 gcc_assert (chrec_type (poly1) == sizetype);
112 else
113 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
114 gcc_assert (type == chrec_type (poly0));
115
116 /*
117 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
118 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
119 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
120 if (flow_loop_nested_p (loop0, loop1))
121 {
122 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
123 return build_polynomial_chrec
124 (CHREC_VARIABLE (poly1),
125 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
126 CHREC_RIGHT (poly1));
127 else
128 return build_polynomial_chrec
129 (CHREC_VARIABLE (poly1),
130 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
131 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
132 SCALAR_FLOAT_TYPE_P (type)
133 ? build_real (type, dconstm1)
134 : build_int_cst_type (type, -1)));
135 }
136
137 if (flow_loop_nested_p (loop1, loop0))
138 {
139 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
140 return build_polynomial_chrec
141 (CHREC_VARIABLE (poly0),
142 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
143 CHREC_RIGHT (poly0));
144 else
145 return build_polynomial_chrec
146 (CHREC_VARIABLE (poly0),
147 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
148 CHREC_RIGHT (poly0));
149 }
150
151 /* This function should never be called for chrecs of loops that
152 do not belong to the same loop nest. */
153 gcc_assert (loop0 == loop1);
154
155 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
156 {
157 left = chrec_fold_plus
158 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
159 right = chrec_fold_plus
160 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
161 }
162 else
163 {
164 left = chrec_fold_minus
165 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
166 right = chrec_fold_minus
167 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
168 }
169
170 if (chrec_zerop (right))
171 return left;
172 else
173 return build_polynomial_chrec
174 (CHREC_VARIABLE (poly0), left, right);
175 }
176
177 \f
178
179 /* Fold the multiplication of two polynomial functions. */
180
181 static inline tree
182 chrec_fold_multiply_poly_poly (tree type,
183 tree poly0,
184 tree poly1)
185 {
186 tree t0, t1, t2;
187 int var;
188 struct loop *loop0 = get_chrec_loop (poly0);
189 struct loop *loop1 = get_chrec_loop (poly1);
190
191 gcc_assert (poly0);
192 gcc_assert (poly1);
193 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
194 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
195 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
196 gcc_assert (type == chrec_type (poly0));
197
198 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
199 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
200 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
201 if (flow_loop_nested_p (loop0, loop1))
202 /* poly0 is a constant wrt. poly1. */
203 return build_polynomial_chrec
204 (CHREC_VARIABLE (poly1),
205 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
206 CHREC_RIGHT (poly1));
207
208 if (flow_loop_nested_p (loop1, loop0))
209 /* poly1 is a constant wrt. poly0. */
210 return build_polynomial_chrec
211 (CHREC_VARIABLE (poly0),
212 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
213 CHREC_RIGHT (poly0));
214
215 gcc_assert (loop0 == loop1);
216
217 /* poly0 and poly1 are two polynomials in the same variable,
218 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
219
220 /* "a*c". */
221 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
222
223 /* "a*d + b*c + b*d". */
224 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
225 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
226 CHREC_RIGHT (poly0),
227 CHREC_LEFT (poly1)));
228 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
229 CHREC_RIGHT (poly0),
230 CHREC_RIGHT (poly1)));
231 /* "2*b*d". */
232 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
233 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
234 ? build_real (type, dconst2)
235 : build_int_cst (type, 2), t2);
236
237 var = CHREC_VARIABLE (poly0);
238 return build_polynomial_chrec (var, t0,
239 build_polynomial_chrec (var, t1, t2));
240 }
241
242 /* When the operands are automatically_generated_chrec_p, the fold has
243 to respect the semantics of the operands. */
244
245 static inline tree
246 chrec_fold_automatically_generated_operands (tree op0,
247 tree op1)
248 {
249 if (op0 == chrec_dont_know
250 || op1 == chrec_dont_know)
251 return chrec_dont_know;
252
253 if (op0 == chrec_known
254 || op1 == chrec_known)
255 return chrec_known;
256
257 if (op0 == chrec_not_analyzed_yet
258 || op1 == chrec_not_analyzed_yet)
259 return chrec_not_analyzed_yet;
260
261 /* The default case produces a safe result. */
262 return chrec_dont_know;
263 }
264
265 /* Fold the addition of two chrecs. */
266
267 static tree
268 chrec_fold_plus_1 (enum tree_code code, tree type,
269 tree op0, tree op1)
270 {
271 tree op1_type = code == POINTER_PLUS_EXPR ? sizetype : type;
272
273 if (automatically_generated_chrec_p (op0)
274 || automatically_generated_chrec_p (op1))
275 return chrec_fold_automatically_generated_operands (op0, op1);
276
277 switch (TREE_CODE (op0))
278 {
279 case POLYNOMIAL_CHREC:
280 switch (TREE_CODE (op1))
281 {
282 case POLYNOMIAL_CHREC:
283 return chrec_fold_plus_poly_poly (code, type, op0, op1);
284
285 default:
286 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
287 return build_polynomial_chrec
288 (CHREC_VARIABLE (op0),
289 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
290 CHREC_RIGHT (op0));
291 else
292 return build_polynomial_chrec
293 (CHREC_VARIABLE (op0),
294 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
295 CHREC_RIGHT (op0));
296 }
297
298 default:
299 switch (TREE_CODE (op1))
300 {
301 case POLYNOMIAL_CHREC:
302 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
303 return build_polynomial_chrec
304 (CHREC_VARIABLE (op1),
305 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
306 CHREC_RIGHT (op1));
307 else
308 return build_polynomial_chrec
309 (CHREC_VARIABLE (op1),
310 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
311 chrec_fold_multiply (type, CHREC_RIGHT (op1),
312 SCALAR_FLOAT_TYPE_P (type)
313 ? build_real (type, dconstm1)
314 : build_int_cst_type (type, -1)));
315
316 default:
317 {
318 int size = 0;
319 if ((tree_contains_chrecs (op0, &size)
320 || tree_contains_chrecs (op1, &size))
321 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
322 return build2 (code, type, op0, op1);
323 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
324 return fold_build2 (code, type,
325 fold_convert (type, op0),
326 fold_convert (op1_type, op1));
327 else
328 return chrec_dont_know;
329 }
330 }
331 }
332 }
333
334 /* Fold the addition of two chrecs. */
335
336 tree
337 chrec_fold_plus (tree type,
338 tree op0,
339 tree op1)
340 {
341 enum tree_code code;
342 if (automatically_generated_chrec_p (op0)
343 || automatically_generated_chrec_p (op1))
344 return chrec_fold_automatically_generated_operands (op0, op1);
345
346 if (integer_zerop (op0))
347 return chrec_convert (type, op1, NULL);
348 if (integer_zerop (op1))
349 return chrec_convert (type, op0, NULL);
350
351 if (POINTER_TYPE_P (type))
352 code = POINTER_PLUS_EXPR;
353 else
354 code = PLUS_EXPR;
355
356 return chrec_fold_plus_1 (code, type, op0, op1);
357 }
358
359 /* Fold the subtraction of two chrecs. */
360
361 tree
362 chrec_fold_minus (tree type,
363 tree op0,
364 tree op1)
365 {
366 if (automatically_generated_chrec_p (op0)
367 || automatically_generated_chrec_p (op1))
368 return chrec_fold_automatically_generated_operands (op0, op1);
369
370 if (integer_zerop (op1))
371 return op0;
372
373 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
374 }
375
376 /* Fold the multiplication of two chrecs. */
377
378 tree
379 chrec_fold_multiply (tree type,
380 tree op0,
381 tree op1)
382 {
383 if (automatically_generated_chrec_p (op0)
384 || automatically_generated_chrec_p (op1))
385 return chrec_fold_automatically_generated_operands (op0, op1);
386
387 switch (TREE_CODE (op0))
388 {
389 case POLYNOMIAL_CHREC:
390 switch (TREE_CODE (op1))
391 {
392 case POLYNOMIAL_CHREC:
393 return chrec_fold_multiply_poly_poly (type, op0, op1);
394
395 default:
396 if (integer_onep (op1))
397 return op0;
398 if (integer_zerop (op1))
399 return build_int_cst (type, 0);
400
401 return build_polynomial_chrec
402 (CHREC_VARIABLE (op0),
403 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
404 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
405 }
406
407 default:
408 if (integer_onep (op0))
409 return op1;
410
411 if (integer_zerop (op0))
412 return build_int_cst (type, 0);
413
414 switch (TREE_CODE (op1))
415 {
416 case POLYNOMIAL_CHREC:
417 return build_polynomial_chrec
418 (CHREC_VARIABLE (op1),
419 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
420 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
421
422 default:
423 if (integer_onep (op1))
424 return op0;
425 if (integer_zerop (op1))
426 return build_int_cst (type, 0);
427 return fold_build2 (MULT_EXPR, type, op0, op1);
428 }
429 }
430 }
431
432 \f
433
434 /* Operations. */
435
436 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
437 calculation overflows, otherwise return C(n,k) with type TYPE. */
438
439 static tree
440 tree_fold_binomial (tree type, tree n, unsigned int k)
441 {
442 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
443 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
444 unsigned int i;
445 tree res;
446
447 /* Handle the most frequent cases. */
448 if (k == 0)
449 return build_int_cst (type, 1);
450 if (k == 1)
451 return fold_convert (type, n);
452
453 /* Check that k <= n. */
454 if (TREE_INT_CST_HIGH (n) == 0
455 && TREE_INT_CST_LOW (n) < k)
456 return NULL_TREE;
457
458 /* Numerator = n. */
459 lnum = TREE_INT_CST_LOW (n);
460 hnum = TREE_INT_CST_HIGH (n);
461
462 /* Denominator = 2. */
463 ldenom = 2;
464 hdenom = 0;
465
466 /* Index = Numerator-1. */
467 if (lnum == 0)
468 {
469 hidx = hnum - 1;
470 lidx = ~ (unsigned HOST_WIDE_INT) 0;
471 }
472 else
473 {
474 hidx = hnum;
475 lidx = lnum - 1;
476 }
477
478 /* Numerator = Numerator*Index = n*(n-1). */
479 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
480 return NULL_TREE;
481
482 for (i = 3; i <= k; i++)
483 {
484 /* Index--. */
485 if (lidx == 0)
486 {
487 hidx--;
488 lidx = ~ (unsigned HOST_WIDE_INT) 0;
489 }
490 else
491 lidx--;
492
493 /* Numerator *= Index. */
494 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
495 return NULL_TREE;
496
497 /* Denominator *= i. */
498 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
499 }
500
501 /* Result = Numerator / Denominator. */
502 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
503 &lres, &hres, &ldum, &hdum);
504
505 res = build_int_cst_wide (type, lres, hres);
506 return int_fits_type_p (res, type) ? res : NULL_TREE;
507 }
508
509 /* Helper function. Use the Newton's interpolating formula for
510 evaluating the value of the evolution function. */
511
512 static tree
513 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
514 {
515 tree arg0, arg1, binomial_n_k;
516 tree type = TREE_TYPE (chrec);
517 struct loop *var_loop = get_loop (var);
518
519 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
520 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
521 chrec = CHREC_LEFT (chrec);
522
523 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
524 && CHREC_VARIABLE (chrec) == var)
525 {
526 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
527 if (arg1 == chrec_dont_know)
528 return chrec_dont_know;
529 binomial_n_k = tree_fold_binomial (type, n, k);
530 if (!binomial_n_k)
531 return chrec_dont_know;
532 arg0 = fold_build2 (MULT_EXPR, type,
533 CHREC_LEFT (chrec), binomial_n_k);
534 return chrec_fold_plus (type, arg0, arg1);
535 }
536
537 binomial_n_k = tree_fold_binomial (type, n, k);
538 if (!binomial_n_k)
539 return chrec_dont_know;
540
541 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
542 }
543
544 /* Evaluates "CHREC (X)" when the varying variable is VAR.
545 Example: Given the following parameters,
546
547 var = 1
548 chrec = {3, +, 4}_1
549 x = 10
550
551 The result is given by the Newton's interpolating formula:
552 3 * \binom{10}{0} + 4 * \binom{10}{1}.
553 */
554
555 tree
556 chrec_apply (unsigned var,
557 tree chrec,
558 tree x)
559 {
560 tree type = chrec_type (chrec);
561 tree res = chrec_dont_know;
562
563 if (automatically_generated_chrec_p (chrec)
564 || automatically_generated_chrec_p (x)
565
566 /* When the symbols are defined in an outer loop, it is possible
567 to symbolically compute the apply, since the symbols are
568 constants with respect to the varying loop. */
569 || chrec_contains_symbols_defined_in_loop (chrec, var))
570 return chrec_dont_know;
571
572 if (dump_file && (dump_flags & TDF_DETAILS))
573 fprintf (dump_file, "(chrec_apply \n");
574
575 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
576 x = build_real_from_int_cst (type, x);
577
578 if (evolution_function_is_affine_p (chrec))
579 {
580 /* "{a, +, b} (x)" -> "a + b*x". */
581 x = chrec_convert_rhs (type, x, NULL);
582 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
583 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
584 }
585
586 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
587 res = chrec;
588
589 else if (TREE_CODE (x) == INTEGER_CST
590 && tree_int_cst_sgn (x) == 1)
591 /* testsuite/.../ssa-chrec-38.c. */
592 res = chrec_evaluate (var, chrec, x, 0);
593 else
594 res = chrec_dont_know;
595
596 if (dump_file && (dump_flags & TDF_DETAILS))
597 {
598 fprintf (dump_file, " (varying_loop = %d\n", var);
599 fprintf (dump_file, ")\n (chrec = ");
600 print_generic_expr (dump_file, chrec, 0);
601 fprintf (dump_file, ")\n (x = ");
602 print_generic_expr (dump_file, x, 0);
603 fprintf (dump_file, ")\n (res = ");
604 print_generic_expr (dump_file, res, 0);
605 fprintf (dump_file, "))\n");
606 }
607
608 return res;
609 }
610
611 /* Replaces the initial condition in CHREC with INIT_COND. */
612
613 tree
614 chrec_replace_initial_condition (tree chrec,
615 tree init_cond)
616 {
617 if (automatically_generated_chrec_p (chrec))
618 return chrec;
619
620 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
621
622 switch (TREE_CODE (chrec))
623 {
624 case POLYNOMIAL_CHREC:
625 return build_polynomial_chrec
626 (CHREC_VARIABLE (chrec),
627 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
628 CHREC_RIGHT (chrec));
629
630 default:
631 return init_cond;
632 }
633 }
634
635 /* Returns the initial condition of a given CHREC. */
636
637 tree
638 initial_condition (tree chrec)
639 {
640 if (automatically_generated_chrec_p (chrec))
641 return chrec;
642
643 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
644 return initial_condition (CHREC_LEFT (chrec));
645 else
646 return chrec;
647 }
648
649 /* Returns a univariate function that represents the evolution in
650 LOOP_NUM. Mask the evolution of any other loop. */
651
652 tree
653 hide_evolution_in_other_loops_than_loop (tree chrec,
654 unsigned loop_num)
655 {
656 struct loop *loop = get_loop (loop_num), *chloop;
657 if (automatically_generated_chrec_p (chrec))
658 return chrec;
659
660 switch (TREE_CODE (chrec))
661 {
662 case POLYNOMIAL_CHREC:
663 chloop = get_chrec_loop (chrec);
664
665 if (chloop == loop)
666 return build_polynomial_chrec
667 (loop_num,
668 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
669 loop_num),
670 CHREC_RIGHT (chrec));
671
672 else if (flow_loop_nested_p (chloop, loop))
673 /* There is no evolution in this loop. */
674 return initial_condition (chrec);
675
676 else
677 {
678 gcc_assert (flow_loop_nested_p (loop, chloop));
679 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
680 loop_num);
681 }
682
683 default:
684 return chrec;
685 }
686 }
687
688 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
689 true, otherwise returns the initial condition in LOOP_NUM. */
690
691 static tree
692 chrec_component_in_loop_num (tree chrec,
693 unsigned loop_num,
694 bool right)
695 {
696 tree component;
697 struct loop *loop = get_loop (loop_num), *chloop;
698
699 if (automatically_generated_chrec_p (chrec))
700 return chrec;
701
702 switch (TREE_CODE (chrec))
703 {
704 case POLYNOMIAL_CHREC:
705 chloop = get_chrec_loop (chrec);
706
707 if (chloop == loop)
708 {
709 if (right)
710 component = CHREC_RIGHT (chrec);
711 else
712 component = CHREC_LEFT (chrec);
713
714 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
715 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
716 return component;
717
718 else
719 return build_polynomial_chrec
720 (loop_num,
721 chrec_component_in_loop_num (CHREC_LEFT (chrec),
722 loop_num,
723 right),
724 component);
725 }
726
727 else if (flow_loop_nested_p (chloop, loop))
728 /* There is no evolution part in this loop. */
729 return NULL_TREE;
730
731 else
732 {
733 gcc_assert (flow_loop_nested_p (loop, chloop));
734 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
735 loop_num,
736 right);
737 }
738
739 default:
740 if (right)
741 return NULL_TREE;
742 else
743 return chrec;
744 }
745 }
746
747 /* Returns the evolution part in LOOP_NUM. Example: the call
748 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
749 {1, +, 2}_1 */
750
751 tree
752 evolution_part_in_loop_num (tree chrec,
753 unsigned loop_num)
754 {
755 return chrec_component_in_loop_num (chrec, loop_num, true);
756 }
757
758 /* Returns the initial condition in LOOP_NUM. Example: the call
759 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
760 {0, +, 1}_1 */
761
762 tree
763 initial_condition_in_loop_num (tree chrec,
764 unsigned loop_num)
765 {
766 return chrec_component_in_loop_num (chrec, loop_num, false);
767 }
768
769 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
770 This function is essentially used for setting the evolution to
771 chrec_dont_know, for example after having determined that it is
772 impossible to say how many times a loop will execute. */
773
774 tree
775 reset_evolution_in_loop (unsigned loop_num,
776 tree chrec,
777 tree new_evol)
778 {
779 struct loop *loop = get_loop (loop_num);
780
781 if (POINTER_TYPE_P (chrec_type (chrec)))
782 gcc_assert (sizetype == chrec_type (new_evol));
783 else
784 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
785
786 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
787 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
788 {
789 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
790 new_evol);
791 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
792 new_evol);
793 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
794 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
795 left, right);
796 }
797
798 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
799 && CHREC_VARIABLE (chrec) == loop_num)
800 chrec = CHREC_LEFT (chrec);
801
802 return build_polynomial_chrec (loop_num, chrec, new_evol);
803 }
804
805 /* Merges two evolution functions that were found by following two
806 alternate paths of a conditional expression. */
807
808 tree
809 chrec_merge (tree chrec1,
810 tree chrec2)
811 {
812 if (chrec1 == chrec_dont_know
813 || chrec2 == chrec_dont_know)
814 return chrec_dont_know;
815
816 if (chrec1 == chrec_known
817 || chrec2 == chrec_known)
818 return chrec_known;
819
820 if (chrec1 == chrec_not_analyzed_yet)
821 return chrec2;
822 if (chrec2 == chrec_not_analyzed_yet)
823 return chrec1;
824
825 if (eq_evolutions_p (chrec1, chrec2))
826 return chrec1;
827
828 return chrec_dont_know;
829 }
830
831 \f
832
833 /* Observers. */
834
835 /* Helper function for is_multivariate_chrec. */
836
837 static bool
838 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
839 {
840 if (chrec == NULL_TREE)
841 return false;
842
843 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
844 {
845 if (CHREC_VARIABLE (chrec) != rec_var)
846 return true;
847 else
848 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
849 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
850 }
851 else
852 return false;
853 }
854
855 /* Determine whether the given chrec is multivariate or not. */
856
857 bool
858 is_multivariate_chrec (const_tree chrec)
859 {
860 if (chrec == NULL_TREE)
861 return false;
862
863 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
864 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
865 CHREC_VARIABLE (chrec))
866 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
867 CHREC_VARIABLE (chrec)));
868 else
869 return false;
870 }
871
872 /* Determines whether the chrec contains symbolic names or not. */
873
874 bool
875 chrec_contains_symbols (const_tree chrec)
876 {
877 int i, n;
878
879 if (chrec == NULL_TREE)
880 return false;
881
882 if (TREE_CODE (chrec) == SSA_NAME
883 || TREE_CODE (chrec) == VAR_DECL
884 || TREE_CODE (chrec) == PARM_DECL
885 || TREE_CODE (chrec) == FUNCTION_DECL
886 || TREE_CODE (chrec) == LABEL_DECL
887 || TREE_CODE (chrec) == RESULT_DECL
888 || TREE_CODE (chrec) == FIELD_DECL)
889 return true;
890
891 n = TREE_OPERAND_LENGTH (chrec);
892 for (i = 0; i < n; i++)
893 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
894 return true;
895 return false;
896 }
897
898 /* Determines whether the chrec contains undetermined coefficients. */
899
900 bool
901 chrec_contains_undetermined (const_tree chrec)
902 {
903 int i, n;
904
905 if (chrec == chrec_dont_know)
906 return true;
907
908 if (chrec == NULL_TREE)
909 return false;
910
911 n = TREE_OPERAND_LENGTH (chrec);
912 for (i = 0; i < n; i++)
913 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
914 return true;
915 return false;
916 }
917
918 /* Determines whether the tree EXPR contains chrecs, and increment
919 SIZE if it is not a NULL pointer by an estimation of the depth of
920 the tree. */
921
922 bool
923 tree_contains_chrecs (const_tree expr, int *size)
924 {
925 int i, n;
926
927 if (expr == NULL_TREE)
928 return false;
929
930 if (size)
931 (*size)++;
932
933 if (tree_is_chrec (expr))
934 return true;
935
936 n = TREE_OPERAND_LENGTH (expr);
937 for (i = 0; i < n; i++)
938 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
939 return true;
940 return false;
941 }
942
943 /* Recursive helper function. */
944
945 static bool
946 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
947 {
948 if (evolution_function_is_constant_p (chrec))
949 return true;
950
951 if (TREE_CODE (chrec) == SSA_NAME
952 && (loopnum == 0
953 || expr_invariant_in_loop_p (get_loop (loopnum), chrec)))
954 return true;
955
956 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
957 {
958 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
959 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
960 loopnum)
961 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
962 loopnum))
963 return false;
964 return true;
965 }
966
967 switch (TREE_OPERAND_LENGTH (chrec))
968 {
969 case 2:
970 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
971 loopnum))
972 return false;
973
974 case 1:
975 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
976 loopnum))
977 return false;
978 return true;
979
980 default:
981 return false;
982 }
983
984 return false;
985 }
986
987 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
988
989 bool
990 evolution_function_is_invariant_p (tree chrec, int loopnum)
991 {
992 return evolution_function_is_invariant_rec_p (chrec, loopnum);
993 }
994
995 /* Determine whether the given tree is an affine multivariate
996 evolution. */
997
998 bool
999 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1000 {
1001 if (chrec == NULL_TREE)
1002 return false;
1003
1004 switch (TREE_CODE (chrec))
1005 {
1006 case POLYNOMIAL_CHREC:
1007 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1008 {
1009 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1010 return true;
1011 else
1012 {
1013 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1014 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1015 != CHREC_VARIABLE (chrec)
1016 && evolution_function_is_affine_multivariate_p
1017 (CHREC_RIGHT (chrec), loopnum))
1018 return true;
1019 else
1020 return false;
1021 }
1022 }
1023 else
1024 {
1025 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1026 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1027 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1028 && evolution_function_is_affine_multivariate_p
1029 (CHREC_LEFT (chrec), loopnum))
1030 return true;
1031 else
1032 return false;
1033 }
1034
1035 default:
1036 return false;
1037 }
1038 }
1039
1040 /* Determine whether the given tree is a function in zero or one
1041 variables. */
1042
1043 bool
1044 evolution_function_is_univariate_p (const_tree chrec)
1045 {
1046 if (chrec == NULL_TREE)
1047 return true;
1048
1049 switch (TREE_CODE (chrec))
1050 {
1051 case POLYNOMIAL_CHREC:
1052 switch (TREE_CODE (CHREC_LEFT (chrec)))
1053 {
1054 case POLYNOMIAL_CHREC:
1055 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1056 return false;
1057 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1058 return false;
1059 break;
1060
1061 default:
1062 break;
1063 }
1064
1065 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1066 {
1067 case POLYNOMIAL_CHREC:
1068 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1069 return false;
1070 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1071 return false;
1072 break;
1073
1074 default:
1075 break;
1076 }
1077
1078 default:
1079 return true;
1080 }
1081 }
1082
1083 /* Returns the number of variables of CHREC. Example: the call
1084 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1085
1086 unsigned
1087 nb_vars_in_chrec (tree chrec)
1088 {
1089 if (chrec == NULL_TREE)
1090 return 0;
1091
1092 switch (TREE_CODE (chrec))
1093 {
1094 case POLYNOMIAL_CHREC:
1095 return 1 + nb_vars_in_chrec
1096 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1097
1098 default:
1099 return 0;
1100 }
1101 }
1102
1103 /* Returns true if TYPE is a type in that we cannot directly perform
1104 arithmetics, even though it is a scalar type. */
1105
1106 static bool
1107 avoid_arithmetics_in_type_p (const_tree type)
1108 {
1109 /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
1110 in the subtype, but a base type must be used, and the result then can
1111 be casted to the subtype. */
1112 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
1113 return true;
1114
1115 return false;
1116 }
1117
1118 static tree chrec_convert_1 (tree, tree, gimple, bool);
1119
1120 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1121 the scev corresponds to. AT_STMT is the statement at that the scev is
1122 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1123 the rules for overflow of the given language apply (e.g., that signed
1124 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1125 tests, but also to enforce that the result follows them. Returns true if the
1126 conversion succeeded, false otherwise. */
1127
1128 bool
1129 convert_affine_scev (struct loop *loop, tree type,
1130 tree *base, tree *step, gimple at_stmt,
1131 bool use_overflow_semantics)
1132 {
1133 tree ct = TREE_TYPE (*step);
1134 bool enforce_overflow_semantics;
1135 bool must_check_src_overflow, must_check_rslt_overflow;
1136 tree new_base, new_step;
1137 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1138
1139 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1140 if (avoid_arithmetics_in_type_p (type))
1141 return false;
1142
1143 /* In general,
1144 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1145 but we must check some assumptions.
1146
1147 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1148 of CT is smaller than the precision of TYPE. For example, when we
1149 cast unsigned char [254, +, 1] to unsigned, the values on left side
1150 are 254, 255, 0, 1, ..., but those on the right side are
1151 254, 255, 256, 257, ...
1152 2) In case that we must also preserve the fact that signed ivs do not
1153 overflow, we must additionally check that the new iv does not wrap.
1154 For example, unsigned char [125, +, 1] casted to signed char could
1155 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1156 which would confuse optimizers that assume that this does not
1157 happen. */
1158 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1159
1160 enforce_overflow_semantics = (use_overflow_semantics
1161 && nowrap_type_p (type));
1162 if (enforce_overflow_semantics)
1163 {
1164 /* We can avoid checking whether the result overflows in the following
1165 cases:
1166
1167 -- must_check_src_overflow is true, and the range of TYPE is superset
1168 of the range of CT -- i.e., in all cases except if CT signed and
1169 TYPE unsigned.
1170 -- both CT and TYPE have the same precision and signedness, and we
1171 verify instead that the source does not overflow (this may be
1172 easier than verifying it for the result, as we may use the
1173 information about the semantics of overflow in CT). */
1174 if (must_check_src_overflow)
1175 {
1176 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1177 must_check_rslt_overflow = true;
1178 else
1179 must_check_rslt_overflow = false;
1180 }
1181 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1182 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1183 {
1184 must_check_rslt_overflow = false;
1185 must_check_src_overflow = true;
1186 }
1187 else
1188 must_check_rslt_overflow = true;
1189 }
1190 else
1191 must_check_rslt_overflow = false;
1192
1193 if (must_check_src_overflow
1194 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1195 use_overflow_semantics))
1196 return false;
1197
1198 new_base = chrec_convert_1 (type, *base, at_stmt,
1199 use_overflow_semantics);
1200 /* The step must be sign extended, regardless of the signedness
1201 of CT and TYPE. This only needs to be handled specially when
1202 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1203 (with values 100, 99, 98, ...) from becoming signed or unsigned
1204 [100, +, 255] with values 100, 355, ...; the sign-extension is
1205 performed by default when CT is signed. */
1206 new_step = *step;
1207 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1208 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1209 use_overflow_semantics);
1210 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1211
1212 if (automatically_generated_chrec_p (new_base)
1213 || automatically_generated_chrec_p (new_step))
1214 return false;
1215
1216 if (must_check_rslt_overflow
1217 /* Note that in this case we cannot use the fact that signed variables
1218 do not overflow, as this is what we are verifying for the new iv. */
1219 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1220 return false;
1221
1222 *base = new_base;
1223 *step = new_step;
1224 return true;
1225 }
1226 \f
1227
1228 /* Convert CHREC for the right hand side of a CREC.
1229 The increment for a pointer type is always sizetype. */
1230 tree
1231 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1232 {
1233 if (POINTER_TYPE_P (type))
1234 type = sizetype;
1235 return chrec_convert (type, chrec, at_stmt);
1236 }
1237
1238 /* Convert CHREC to TYPE. When the analyzer knows the context in
1239 which the CHREC is built, it sets AT_STMT to the statement that
1240 contains the definition of the analyzed variable, otherwise the
1241 conversion is less accurate: the information is used for
1242 determining a more accurate estimation of the number of iterations.
1243 By default AT_STMT could be safely set to NULL_TREE.
1244
1245 The following rule is always true: TREE_TYPE (chrec) ==
1246 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1247 An example of what could happen when adding two chrecs and the type
1248 of the CHREC_RIGHT is different than CHREC_LEFT is:
1249
1250 {(uint) 0, +, (uchar) 10} +
1251 {(uint) 0, +, (uchar) 250}
1252
1253 that would produce a wrong result if CHREC_RIGHT is not (uint):
1254
1255 {(uint) 0, +, (uchar) 4}
1256
1257 instead of
1258
1259 {(uint) 0, +, (uint) 260}
1260 */
1261
1262 tree
1263 chrec_convert (tree type, tree chrec, gimple at_stmt)
1264 {
1265 return chrec_convert_1 (type, chrec, at_stmt, true);
1266 }
1267
1268 /* Convert CHREC to TYPE. When the analyzer knows the context in
1269 which the CHREC is built, it sets AT_STMT to the statement that
1270 contains the definition of the analyzed variable, otherwise the
1271 conversion is less accurate: the information is used for
1272 determining a more accurate estimation of the number of iterations.
1273 By default AT_STMT could be safely set to NULL_TREE.
1274
1275 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1276 the rules for overflow of the given language apply (e.g., that signed
1277 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1278 tests, but also to enforce that the result follows them. */
1279
1280 static tree
1281 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1282 bool use_overflow_semantics)
1283 {
1284 tree ct, res;
1285 tree base, step;
1286 struct loop *loop;
1287
1288 if (automatically_generated_chrec_p (chrec))
1289 return chrec;
1290
1291 ct = chrec_type (chrec);
1292 if (ct == type)
1293 return chrec;
1294
1295 if (!evolution_function_is_affine_p (chrec))
1296 goto keep_cast;
1297
1298 loop = get_chrec_loop (chrec);
1299 base = CHREC_LEFT (chrec);
1300 step = CHREC_RIGHT (chrec);
1301
1302 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1303 use_overflow_semantics))
1304 return build_polynomial_chrec (loop->num, base, step);
1305
1306 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1307 keep_cast:
1308 res = fold_convert (type, chrec);
1309
1310 /* Don't propagate overflows. */
1311 if (CONSTANT_CLASS_P (res))
1312 TREE_OVERFLOW (res) = 0;
1313
1314 /* But reject constants that don't fit in their type after conversion.
1315 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1316 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1317 and can cause problems later when computing niters of loops. Note
1318 that we don't do the check before converting because we don't want
1319 to reject conversions of negative chrecs to unsigned types. */
1320 if (TREE_CODE (res) == INTEGER_CST
1321 && TREE_CODE (type) == INTEGER_TYPE
1322 && !int_fits_type_p (res, type))
1323 res = chrec_dont_know;
1324
1325 return res;
1326 }
1327
1328 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1329 chrec if something else than what chrec_convert would do happens, NULL_TREE
1330 otherwise. */
1331
1332 tree
1333 chrec_convert_aggressive (tree type, tree chrec)
1334 {
1335 tree inner_type, left, right, lc, rc, rtype;
1336
1337 if (automatically_generated_chrec_p (chrec)
1338 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1339 return NULL_TREE;
1340
1341 inner_type = TREE_TYPE (chrec);
1342 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1343 return NULL_TREE;
1344
1345 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1346 if (avoid_arithmetics_in_type_p (type))
1347 return NULL_TREE;
1348
1349 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1350
1351 left = CHREC_LEFT (chrec);
1352 right = CHREC_RIGHT (chrec);
1353 lc = chrec_convert_aggressive (type, left);
1354 if (!lc)
1355 lc = chrec_convert (type, left, NULL);
1356 rc = chrec_convert_aggressive (rtype, right);
1357 if (!rc)
1358 rc = chrec_convert (rtype, right, NULL);
1359
1360 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1361 }
1362
1363 /* Returns true when CHREC0 == CHREC1. */
1364
1365 bool
1366 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1367 {
1368 if (chrec0 == NULL_TREE
1369 || chrec1 == NULL_TREE
1370 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1371 return false;
1372
1373 if (chrec0 == chrec1)
1374 return true;
1375
1376 switch (TREE_CODE (chrec0))
1377 {
1378 case INTEGER_CST:
1379 return operand_equal_p (chrec0, chrec1, 0);
1380
1381 case POLYNOMIAL_CHREC:
1382 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1383 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1384 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1385 default:
1386 return false;
1387 }
1388 }
1389
1390 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1391 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1392 which of these cases happens. */
1393
1394 enum ev_direction
1395 scev_direction (const_tree chrec)
1396 {
1397 const_tree step;
1398
1399 if (!evolution_function_is_affine_p (chrec))
1400 return EV_DIR_UNKNOWN;
1401
1402 step = CHREC_RIGHT (chrec);
1403 if (TREE_CODE (step) != INTEGER_CST)
1404 return EV_DIR_UNKNOWN;
1405
1406 if (tree_int_cst_sign_bit (step))
1407 return EV_DIR_DECREASES;
1408 else
1409 return EV_DIR_GROWS;
1410 }
1411
1412 /* Iterates over all the components of SCEV, and calls CBCK. */
1413
1414 void
1415 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1416 {
1417 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1418 {
1419 case 3:
1420 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1421
1422 case 2:
1423 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1424
1425 case 1:
1426 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1427
1428 default:
1429 cbck (scev, data);
1430 break;
1431 }
1432 }
1433
1434 /* Returns true when the operation can be part of a linear
1435 expression. */
1436
1437 static inline bool
1438 operator_is_linear (tree scev)
1439 {
1440 switch (TREE_CODE (scev))
1441 {
1442 case INTEGER_CST:
1443 case POLYNOMIAL_CHREC:
1444 case PLUS_EXPR:
1445 case POINTER_PLUS_EXPR:
1446 case MULT_EXPR:
1447 case MINUS_EXPR:
1448 case NEGATE_EXPR:
1449 case SSA_NAME:
1450 case NON_LVALUE_EXPR:
1451 CASE_CONVERT:
1452 return true;
1453
1454 default:
1455 return false;
1456 }
1457 }
1458
1459 /* Return true when SCEV is a linear expression. Linear expressions
1460 can contain additions, substractions and multiplications.
1461 Multiplications are restricted to constant scaling: "cst * x". */
1462
1463 bool
1464 scev_is_linear_expression (tree scev)
1465 {
1466 if (scev == NULL
1467 || !operator_is_linear (scev))
1468 return false;
1469
1470 if (TREE_CODE (scev) == MULT_EXPR)
1471 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1472 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1473
1474 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1475 {
1476 case 3:
1477 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1478 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1479 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1480
1481 case 2:
1482 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1483 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1484
1485 case 1:
1486 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1487
1488 case 0:
1489 return true;
1490
1491 default:
1492 return false;
1493 }
1494 }