rs6000.c (rs6000_expand_vector_set): Adjust for little endian.
[gcc.git] / gcc / tree-chrec.c
1 /* Chains of recurrences.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements operations on chains of recurrences. Chains
22 of recurrences are used for modeling evolution functions of scalar
23 variables.
24 */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "tree-pretty-print.h"
31 #include "cfgloop.h"
32 #include "gimple.h"
33 #include "tree-ssa-loop-ivopts.h"
34 #include "tree-ssa-loop-niter.h"
35 #include "tree-chrec.h"
36 #include "dumpfile.h"
37 #include "params.h"
38 #include "tree-scalar-evolution.h"
39
40 /* Extended folder for chrecs. */
41
42 /* Determines whether CST is not a constant evolution. */
43
44 static inline bool
45 is_not_constant_evolution (const_tree cst)
46 {
47 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
48 }
49
50 /* Fold CODE for a polynomial function and a constant. */
51
52 static inline tree
53 chrec_fold_poly_cst (enum tree_code code,
54 tree type,
55 tree poly,
56 tree cst)
57 {
58 gcc_assert (poly);
59 gcc_assert (cst);
60 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
61 gcc_assert (!is_not_constant_evolution (cst));
62 gcc_assert (type == chrec_type (poly));
63
64 switch (code)
65 {
66 case PLUS_EXPR:
67 return build_polynomial_chrec
68 (CHREC_VARIABLE (poly),
69 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
70 CHREC_RIGHT (poly));
71
72 case MINUS_EXPR:
73 return build_polynomial_chrec
74 (CHREC_VARIABLE (poly),
75 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
76 CHREC_RIGHT (poly));
77
78 case MULT_EXPR:
79 return build_polynomial_chrec
80 (CHREC_VARIABLE (poly),
81 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
82 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
83
84 default:
85 return chrec_dont_know;
86 }
87 }
88
89 /* Fold the addition of two polynomial functions. */
90
91 static inline tree
92 chrec_fold_plus_poly_poly (enum tree_code code,
93 tree type,
94 tree poly0,
95 tree poly1)
96 {
97 tree left, right;
98 struct loop *loop0 = get_chrec_loop (poly0);
99 struct loop *loop1 = get_chrec_loop (poly1);
100 tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
101
102 gcc_assert (poly0);
103 gcc_assert (poly1);
104 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
105 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
106 if (POINTER_TYPE_P (chrec_type (poly0)))
107 gcc_assert (ptrofftype_p (chrec_type (poly1)));
108 else
109 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
110 gcc_assert (type == chrec_type (poly0));
111
112 /*
113 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
114 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
115 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
116 if (flow_loop_nested_p (loop0, loop1))
117 {
118 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
119 return build_polynomial_chrec
120 (CHREC_VARIABLE (poly1),
121 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
122 CHREC_RIGHT (poly1));
123 else
124 return build_polynomial_chrec
125 (CHREC_VARIABLE (poly1),
126 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
127 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
128 SCALAR_FLOAT_TYPE_P (type)
129 ? build_real (type, dconstm1)
130 : build_int_cst_type (type, -1)));
131 }
132
133 if (flow_loop_nested_p (loop1, loop0))
134 {
135 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
136 return build_polynomial_chrec
137 (CHREC_VARIABLE (poly0),
138 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
139 CHREC_RIGHT (poly0));
140 else
141 return build_polynomial_chrec
142 (CHREC_VARIABLE (poly0),
143 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
144 CHREC_RIGHT (poly0));
145 }
146
147 /* This function should never be called for chrecs of loops that
148 do not belong to the same loop nest. */
149 gcc_assert (loop0 == loop1);
150
151 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
152 {
153 left = chrec_fold_plus
154 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
155 right = chrec_fold_plus
156 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
157 }
158 else
159 {
160 left = chrec_fold_minus
161 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
162 right = chrec_fold_minus
163 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
164 }
165
166 if (chrec_zerop (right))
167 return left;
168 else
169 return build_polynomial_chrec
170 (CHREC_VARIABLE (poly0), left, right);
171 }
172
173 \f
174
175 /* Fold the multiplication of two polynomial functions. */
176
177 static inline tree
178 chrec_fold_multiply_poly_poly (tree type,
179 tree poly0,
180 tree poly1)
181 {
182 tree t0, t1, t2;
183 int var;
184 struct loop *loop0 = get_chrec_loop (poly0);
185 struct loop *loop1 = get_chrec_loop (poly1);
186
187 gcc_assert (poly0);
188 gcc_assert (poly1);
189 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
190 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
191 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
192 gcc_assert (type == chrec_type (poly0));
193
194 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
195 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
196 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
197 if (flow_loop_nested_p (loop0, loop1))
198 /* poly0 is a constant wrt. poly1. */
199 return build_polynomial_chrec
200 (CHREC_VARIABLE (poly1),
201 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
202 CHREC_RIGHT (poly1));
203
204 if (flow_loop_nested_p (loop1, loop0))
205 /* poly1 is a constant wrt. poly0. */
206 return build_polynomial_chrec
207 (CHREC_VARIABLE (poly0),
208 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
209 CHREC_RIGHT (poly0));
210
211 gcc_assert (loop0 == loop1);
212
213 /* poly0 and poly1 are two polynomials in the same variable,
214 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
215
216 /* "a*c". */
217 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
218
219 /* "a*d + b*c". */
220 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
221 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
222 CHREC_RIGHT (poly0),
223 CHREC_LEFT (poly1)));
224 /* "b*d". */
225 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
226 /* "a*d + b*c + b*d". */
227 t1 = chrec_fold_plus (type, t1, t2);
228 /* "2*b*d". */
229 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
230 ? build_real (type, dconst2)
231 : build_int_cst (type, 2), t2);
232
233 var = CHREC_VARIABLE (poly0);
234 return build_polynomial_chrec (var, t0,
235 build_polynomial_chrec (var, t1, t2));
236 }
237
238 /* When the operands are automatically_generated_chrec_p, the fold has
239 to respect the semantics of the operands. */
240
241 static inline tree
242 chrec_fold_automatically_generated_operands (tree op0,
243 tree op1)
244 {
245 if (op0 == chrec_dont_know
246 || op1 == chrec_dont_know)
247 return chrec_dont_know;
248
249 if (op0 == chrec_known
250 || op1 == chrec_known)
251 return chrec_known;
252
253 if (op0 == chrec_not_analyzed_yet
254 || op1 == chrec_not_analyzed_yet)
255 return chrec_not_analyzed_yet;
256
257 /* The default case produces a safe result. */
258 return chrec_dont_know;
259 }
260
261 /* Fold the addition of two chrecs. */
262
263 static tree
264 chrec_fold_plus_1 (enum tree_code code, tree type,
265 tree op0, tree op1)
266 {
267 if (automatically_generated_chrec_p (op0)
268 || automatically_generated_chrec_p (op1))
269 return chrec_fold_automatically_generated_operands (op0, op1);
270
271 switch (TREE_CODE (op0))
272 {
273 case POLYNOMIAL_CHREC:
274 gcc_checking_assert
275 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
276 switch (TREE_CODE (op1))
277 {
278 case POLYNOMIAL_CHREC:
279 gcc_checking_assert
280 (!chrec_contains_symbols_defined_in_loop (op1,
281 CHREC_VARIABLE (op1)));
282 return chrec_fold_plus_poly_poly (code, type, op0, op1);
283
284 CASE_CONVERT:
285 if (tree_contains_chrecs (op1, NULL))
286 return chrec_dont_know;
287
288 default:
289 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
290 return build_polynomial_chrec
291 (CHREC_VARIABLE (op0),
292 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
293 CHREC_RIGHT (op0));
294 else
295 return build_polynomial_chrec
296 (CHREC_VARIABLE (op0),
297 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
298 CHREC_RIGHT (op0));
299 }
300
301 CASE_CONVERT:
302 if (tree_contains_chrecs (op0, NULL))
303 return chrec_dont_know;
304
305 default:
306 switch (TREE_CODE (op1))
307 {
308 case POLYNOMIAL_CHREC:
309 gcc_checking_assert
310 (!chrec_contains_symbols_defined_in_loop (op1,
311 CHREC_VARIABLE (op1)));
312 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
313 return build_polynomial_chrec
314 (CHREC_VARIABLE (op1),
315 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
316 CHREC_RIGHT (op1));
317 else
318 return build_polynomial_chrec
319 (CHREC_VARIABLE (op1),
320 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
321 chrec_fold_multiply (type, CHREC_RIGHT (op1),
322 SCALAR_FLOAT_TYPE_P (type)
323 ? build_real (type, dconstm1)
324 : build_int_cst_type (type, -1)));
325
326 CASE_CONVERT:
327 if (tree_contains_chrecs (op1, NULL))
328 return chrec_dont_know;
329
330 default:
331 {
332 int size = 0;
333 if ((tree_contains_chrecs (op0, &size)
334 || tree_contains_chrecs (op1, &size))
335 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
336 return build2 (code, type, op0, op1);
337 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
338 {
339 if (code == POINTER_PLUS_EXPR)
340 return fold_build_pointer_plus (fold_convert (type, op0),
341 op1);
342 else
343 return fold_build2 (code, type,
344 fold_convert (type, op0),
345 fold_convert (type, op1));
346 }
347 else
348 return chrec_dont_know;
349 }
350 }
351 }
352 }
353
354 /* Fold the addition of two chrecs. */
355
356 tree
357 chrec_fold_plus (tree type,
358 tree op0,
359 tree op1)
360 {
361 enum tree_code code;
362 if (automatically_generated_chrec_p (op0)
363 || automatically_generated_chrec_p (op1))
364 return chrec_fold_automatically_generated_operands (op0, op1);
365
366 if (integer_zerop (op0))
367 return chrec_convert (type, op1, NULL);
368 if (integer_zerop (op1))
369 return chrec_convert (type, op0, NULL);
370
371 if (POINTER_TYPE_P (type))
372 code = POINTER_PLUS_EXPR;
373 else
374 code = PLUS_EXPR;
375
376 return chrec_fold_plus_1 (code, type, op0, op1);
377 }
378
379 /* Fold the subtraction of two chrecs. */
380
381 tree
382 chrec_fold_minus (tree type,
383 tree op0,
384 tree op1)
385 {
386 if (automatically_generated_chrec_p (op0)
387 || automatically_generated_chrec_p (op1))
388 return chrec_fold_automatically_generated_operands (op0, op1);
389
390 if (integer_zerop (op1))
391 return op0;
392
393 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
394 }
395
396 /* Fold the multiplication of two chrecs. */
397
398 tree
399 chrec_fold_multiply (tree type,
400 tree op0,
401 tree op1)
402 {
403 if (automatically_generated_chrec_p (op0)
404 || automatically_generated_chrec_p (op1))
405 return chrec_fold_automatically_generated_operands (op0, op1);
406
407 switch (TREE_CODE (op0))
408 {
409 case POLYNOMIAL_CHREC:
410 gcc_checking_assert
411 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
412 switch (TREE_CODE (op1))
413 {
414 case POLYNOMIAL_CHREC:
415 gcc_checking_assert
416 (!chrec_contains_symbols_defined_in_loop (op1,
417 CHREC_VARIABLE (op1)));
418 return chrec_fold_multiply_poly_poly (type, op0, op1);
419
420 CASE_CONVERT:
421 if (tree_contains_chrecs (op1, NULL))
422 return chrec_dont_know;
423
424 default:
425 if (integer_onep (op1))
426 return op0;
427 if (integer_zerop (op1))
428 return build_int_cst (type, 0);
429
430 return build_polynomial_chrec
431 (CHREC_VARIABLE (op0),
432 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
433 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
434 }
435
436 CASE_CONVERT:
437 if (tree_contains_chrecs (op0, NULL))
438 return chrec_dont_know;
439
440 default:
441 if (integer_onep (op0))
442 return op1;
443
444 if (integer_zerop (op0))
445 return build_int_cst (type, 0);
446
447 switch (TREE_CODE (op1))
448 {
449 case POLYNOMIAL_CHREC:
450 gcc_checking_assert
451 (!chrec_contains_symbols_defined_in_loop (op1,
452 CHREC_VARIABLE (op1)));
453 return build_polynomial_chrec
454 (CHREC_VARIABLE (op1),
455 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
456 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
457
458 CASE_CONVERT:
459 if (tree_contains_chrecs (op1, NULL))
460 return chrec_dont_know;
461
462 default:
463 if (integer_onep (op1))
464 return op0;
465 if (integer_zerop (op1))
466 return build_int_cst (type, 0);
467 return fold_build2 (MULT_EXPR, type, op0, op1);
468 }
469 }
470 }
471
472 \f
473
474 /* Operations. */
475
476 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
477 calculation overflows, otherwise return C(n,k) with type TYPE. */
478
479 static tree
480 tree_fold_binomial (tree type, tree n, unsigned int k)
481 {
482 double_int num, denom, idx, di_res;
483 bool overflow;
484 unsigned int i;
485 tree res;
486
487 /* Handle the most frequent cases. */
488 if (k == 0)
489 return build_int_cst (type, 1);
490 if (k == 1)
491 return fold_convert (type, n);
492
493 /* Numerator = n. */
494 num = TREE_INT_CST (n);
495
496 /* Check that k <= n. */
497 if (num.ult (double_int::from_uhwi (k)))
498 return NULL_TREE;
499
500 /* Denominator = 2. */
501 denom = double_int::from_uhwi (2);
502
503 /* Index = Numerator-1. */
504 idx = num - double_int_one;
505
506 /* Numerator = Numerator*Index = n*(n-1). */
507 num = num.mul_with_sign (idx, false, &overflow);
508 if (overflow)
509 return NULL_TREE;
510
511 for (i = 3; i <= k; i++)
512 {
513 /* Index--. */
514 --idx;
515
516 /* Numerator *= Index. */
517 num = num.mul_with_sign (idx, false, &overflow);
518 if (overflow)
519 return NULL_TREE;
520
521 /* Denominator *= i. */
522 denom *= double_int::from_uhwi (i);
523 }
524
525 /* Result = Numerator / Denominator. */
526 di_res = num.div (denom, true, EXACT_DIV_EXPR);
527 res = build_int_cst_wide (type, di_res.low, di_res.high);
528 return int_fits_type_p (res, type) ? res : NULL_TREE;
529 }
530
531 /* Helper function. Use the Newton's interpolating formula for
532 evaluating the value of the evolution function. */
533
534 static tree
535 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
536 {
537 tree arg0, arg1, binomial_n_k;
538 tree type = TREE_TYPE (chrec);
539 struct loop *var_loop = get_loop (cfun, var);
540
541 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
542 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
543 chrec = CHREC_LEFT (chrec);
544
545 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
546 && CHREC_VARIABLE (chrec) == var)
547 {
548 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
549 if (arg1 == chrec_dont_know)
550 return chrec_dont_know;
551 binomial_n_k = tree_fold_binomial (type, n, k);
552 if (!binomial_n_k)
553 return chrec_dont_know;
554 arg0 = fold_build2 (MULT_EXPR, type,
555 CHREC_LEFT (chrec), binomial_n_k);
556 return chrec_fold_plus (type, arg0, arg1);
557 }
558
559 binomial_n_k = tree_fold_binomial (type, n, k);
560 if (!binomial_n_k)
561 return chrec_dont_know;
562
563 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
564 }
565
566 /* Evaluates "CHREC (X)" when the varying variable is VAR.
567 Example: Given the following parameters,
568
569 var = 1
570 chrec = {3, +, 4}_1
571 x = 10
572
573 The result is given by the Newton's interpolating formula:
574 3 * \binom{10}{0} + 4 * \binom{10}{1}.
575 */
576
577 tree
578 chrec_apply (unsigned var,
579 tree chrec,
580 tree x)
581 {
582 tree type = chrec_type (chrec);
583 tree res = chrec_dont_know;
584
585 if (automatically_generated_chrec_p (chrec)
586 || automatically_generated_chrec_p (x)
587
588 /* When the symbols are defined in an outer loop, it is possible
589 to symbolically compute the apply, since the symbols are
590 constants with respect to the varying loop. */
591 || chrec_contains_symbols_defined_in_loop (chrec, var))
592 return chrec_dont_know;
593
594 if (dump_file && (dump_flags & TDF_SCEV))
595 fprintf (dump_file, "(chrec_apply \n");
596
597 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
598 x = build_real_from_int_cst (type, x);
599
600 switch (TREE_CODE (chrec))
601 {
602 case POLYNOMIAL_CHREC:
603 if (evolution_function_is_affine_p (chrec))
604 {
605 if (CHREC_VARIABLE (chrec) != var)
606 return build_polynomial_chrec
607 (CHREC_VARIABLE (chrec),
608 chrec_apply (var, CHREC_LEFT (chrec), x),
609 chrec_apply (var, CHREC_RIGHT (chrec), x));
610
611 /* "{a, +, b} (x)" -> "a + b*x". */
612 x = chrec_convert_rhs (type, x, NULL);
613 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
614 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
615 }
616 else if (TREE_CODE (x) == INTEGER_CST
617 && tree_int_cst_sgn (x) == 1)
618 /* testsuite/.../ssa-chrec-38.c. */
619 res = chrec_evaluate (var, chrec, x, 0);
620 else
621 res = chrec_dont_know;
622 break;
623
624 CASE_CONVERT:
625 res = chrec_convert (TREE_TYPE (chrec),
626 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
627 NULL);
628 break;
629
630 default:
631 res = chrec;
632 break;
633 }
634
635 if (dump_file && (dump_flags & TDF_SCEV))
636 {
637 fprintf (dump_file, " (varying_loop = %d\n", var);
638 fprintf (dump_file, ")\n (chrec = ");
639 print_generic_expr (dump_file, chrec, 0);
640 fprintf (dump_file, ")\n (x = ");
641 print_generic_expr (dump_file, x, 0);
642 fprintf (dump_file, ")\n (res = ");
643 print_generic_expr (dump_file, res, 0);
644 fprintf (dump_file, "))\n");
645 }
646
647 return res;
648 }
649
650 /* For a given CHREC and an induction variable map IV_MAP that maps
651 (loop->num, expr) for every loop number of the current_loops an
652 expression, calls chrec_apply when the expression is not NULL. */
653
654 tree
655 chrec_apply_map (tree chrec, vec<tree> iv_map)
656 {
657 int i;
658 tree expr;
659
660 FOR_EACH_VEC_ELT (iv_map, i, expr)
661 if (expr)
662 chrec = chrec_apply (i, chrec, expr);
663
664 return chrec;
665 }
666
667 /* Replaces the initial condition in CHREC with INIT_COND. */
668
669 tree
670 chrec_replace_initial_condition (tree chrec,
671 tree init_cond)
672 {
673 if (automatically_generated_chrec_p (chrec))
674 return chrec;
675
676 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
677
678 switch (TREE_CODE (chrec))
679 {
680 case POLYNOMIAL_CHREC:
681 return build_polynomial_chrec
682 (CHREC_VARIABLE (chrec),
683 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
684 CHREC_RIGHT (chrec));
685
686 default:
687 return init_cond;
688 }
689 }
690
691 /* Returns the initial condition of a given CHREC. */
692
693 tree
694 initial_condition (tree chrec)
695 {
696 if (automatically_generated_chrec_p (chrec))
697 return chrec;
698
699 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
700 return initial_condition (CHREC_LEFT (chrec));
701 else
702 return chrec;
703 }
704
705 /* Returns a univariate function that represents the evolution in
706 LOOP_NUM. Mask the evolution of any other loop. */
707
708 tree
709 hide_evolution_in_other_loops_than_loop (tree chrec,
710 unsigned loop_num)
711 {
712 struct loop *loop = get_loop (cfun, loop_num), *chloop;
713 if (automatically_generated_chrec_p (chrec))
714 return chrec;
715
716 switch (TREE_CODE (chrec))
717 {
718 case POLYNOMIAL_CHREC:
719 chloop = get_chrec_loop (chrec);
720
721 if (chloop == loop)
722 return build_polynomial_chrec
723 (loop_num,
724 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
725 loop_num),
726 CHREC_RIGHT (chrec));
727
728 else if (flow_loop_nested_p (chloop, loop))
729 /* There is no evolution in this loop. */
730 return initial_condition (chrec);
731
732 else
733 {
734 gcc_assert (flow_loop_nested_p (loop, chloop));
735 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
736 loop_num);
737 }
738
739 default:
740 return chrec;
741 }
742 }
743
744 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
745 true, otherwise returns the initial condition in LOOP_NUM. */
746
747 static tree
748 chrec_component_in_loop_num (tree chrec,
749 unsigned loop_num,
750 bool right)
751 {
752 tree component;
753 struct loop *loop = get_loop (cfun, loop_num), *chloop;
754
755 if (automatically_generated_chrec_p (chrec))
756 return chrec;
757
758 switch (TREE_CODE (chrec))
759 {
760 case POLYNOMIAL_CHREC:
761 chloop = get_chrec_loop (chrec);
762
763 if (chloop == loop)
764 {
765 if (right)
766 component = CHREC_RIGHT (chrec);
767 else
768 component = CHREC_LEFT (chrec);
769
770 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
771 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
772 return component;
773
774 else
775 return build_polynomial_chrec
776 (loop_num,
777 chrec_component_in_loop_num (CHREC_LEFT (chrec),
778 loop_num,
779 right),
780 component);
781 }
782
783 else if (flow_loop_nested_p (chloop, loop))
784 /* There is no evolution part in this loop. */
785 return NULL_TREE;
786
787 else
788 {
789 gcc_assert (flow_loop_nested_p (loop, chloop));
790 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
791 loop_num,
792 right);
793 }
794
795 default:
796 if (right)
797 return NULL_TREE;
798 else
799 return chrec;
800 }
801 }
802
803 /* Returns the evolution part in LOOP_NUM. Example: the call
804 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
805 {1, +, 2}_1 */
806
807 tree
808 evolution_part_in_loop_num (tree chrec,
809 unsigned loop_num)
810 {
811 return chrec_component_in_loop_num (chrec, loop_num, true);
812 }
813
814 /* Returns the initial condition in LOOP_NUM. Example: the call
815 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
816 {0, +, 1}_1 */
817
818 tree
819 initial_condition_in_loop_num (tree chrec,
820 unsigned loop_num)
821 {
822 return chrec_component_in_loop_num (chrec, loop_num, false);
823 }
824
825 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
826 This function is essentially used for setting the evolution to
827 chrec_dont_know, for example after having determined that it is
828 impossible to say how many times a loop will execute. */
829
830 tree
831 reset_evolution_in_loop (unsigned loop_num,
832 tree chrec,
833 tree new_evol)
834 {
835 struct loop *loop = get_loop (cfun, loop_num);
836
837 if (POINTER_TYPE_P (chrec_type (chrec)))
838 gcc_assert (ptrofftype_p (chrec_type (new_evol)));
839 else
840 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
841
842 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
843 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
844 {
845 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
846 new_evol);
847 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
848 new_evol);
849 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
850 CHREC_VAR (chrec), left, right);
851 }
852
853 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
854 && CHREC_VARIABLE (chrec) == loop_num)
855 chrec = CHREC_LEFT (chrec);
856
857 return build_polynomial_chrec (loop_num, chrec, new_evol);
858 }
859
860 /* Merges two evolution functions that were found by following two
861 alternate paths of a conditional expression. */
862
863 tree
864 chrec_merge (tree chrec1,
865 tree chrec2)
866 {
867 if (chrec1 == chrec_dont_know
868 || chrec2 == chrec_dont_know)
869 return chrec_dont_know;
870
871 if (chrec1 == chrec_known
872 || chrec2 == chrec_known)
873 return chrec_known;
874
875 if (chrec1 == chrec_not_analyzed_yet)
876 return chrec2;
877 if (chrec2 == chrec_not_analyzed_yet)
878 return chrec1;
879
880 if (eq_evolutions_p (chrec1, chrec2))
881 return chrec1;
882
883 return chrec_dont_know;
884 }
885
886 \f
887
888 /* Observers. */
889
890 /* Helper function for is_multivariate_chrec. */
891
892 static bool
893 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
894 {
895 if (chrec == NULL_TREE)
896 return false;
897
898 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
899 {
900 if (CHREC_VARIABLE (chrec) != rec_var)
901 return true;
902 else
903 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
904 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
905 }
906 else
907 return false;
908 }
909
910 /* Determine whether the given chrec is multivariate or not. */
911
912 bool
913 is_multivariate_chrec (const_tree chrec)
914 {
915 if (chrec == NULL_TREE)
916 return false;
917
918 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
919 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
920 CHREC_VARIABLE (chrec))
921 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
922 CHREC_VARIABLE (chrec)));
923 else
924 return false;
925 }
926
927 /* Determines whether the chrec contains symbolic names or not. */
928
929 bool
930 chrec_contains_symbols (const_tree chrec)
931 {
932 int i, n;
933
934 if (chrec == NULL_TREE)
935 return false;
936
937 if (TREE_CODE (chrec) == SSA_NAME
938 || TREE_CODE (chrec) == VAR_DECL
939 || TREE_CODE (chrec) == PARM_DECL
940 || TREE_CODE (chrec) == FUNCTION_DECL
941 || TREE_CODE (chrec) == LABEL_DECL
942 || TREE_CODE (chrec) == RESULT_DECL
943 || TREE_CODE (chrec) == FIELD_DECL)
944 return true;
945
946 n = TREE_OPERAND_LENGTH (chrec);
947 for (i = 0; i < n; i++)
948 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
949 return true;
950 return false;
951 }
952
953 /* Determines whether the chrec contains undetermined coefficients. */
954
955 bool
956 chrec_contains_undetermined (const_tree chrec)
957 {
958 int i, n;
959
960 if (chrec == chrec_dont_know)
961 return true;
962
963 if (chrec == NULL_TREE)
964 return false;
965
966 n = TREE_OPERAND_LENGTH (chrec);
967 for (i = 0; i < n; i++)
968 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
969 return true;
970 return false;
971 }
972
973 /* Determines whether the tree EXPR contains chrecs, and increment
974 SIZE if it is not a NULL pointer by an estimation of the depth of
975 the tree. */
976
977 bool
978 tree_contains_chrecs (const_tree expr, int *size)
979 {
980 int i, n;
981
982 if (expr == NULL_TREE)
983 return false;
984
985 if (size)
986 (*size)++;
987
988 if (tree_is_chrec (expr))
989 return true;
990
991 n = TREE_OPERAND_LENGTH (expr);
992 for (i = 0; i < n; i++)
993 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
994 return true;
995 return false;
996 }
997
998 /* Recursive helper function. */
999
1000 static bool
1001 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1002 {
1003 if (evolution_function_is_constant_p (chrec))
1004 return true;
1005
1006 if (TREE_CODE (chrec) == SSA_NAME
1007 && (loopnum == 0
1008 || expr_invariant_in_loop_p (get_loop (cfun, loopnum), chrec)))
1009 return true;
1010
1011 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1012 {
1013 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1014 || flow_loop_nested_p (get_loop (cfun, loopnum),
1015 get_chrec_loop (chrec))
1016 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1017 loopnum)
1018 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1019 loopnum))
1020 return false;
1021 return true;
1022 }
1023
1024 switch (TREE_OPERAND_LENGTH (chrec))
1025 {
1026 case 2:
1027 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1028 loopnum))
1029 return false;
1030
1031 case 1:
1032 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1033 loopnum))
1034 return false;
1035 return true;
1036
1037 default:
1038 return false;
1039 }
1040
1041 return false;
1042 }
1043
1044 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1045
1046 bool
1047 evolution_function_is_invariant_p (tree chrec, int loopnum)
1048 {
1049 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1050 }
1051
1052 /* Determine whether the given tree is an affine multivariate
1053 evolution. */
1054
1055 bool
1056 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1057 {
1058 if (chrec == NULL_TREE)
1059 return false;
1060
1061 switch (TREE_CODE (chrec))
1062 {
1063 case POLYNOMIAL_CHREC:
1064 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1065 {
1066 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1067 return true;
1068 else
1069 {
1070 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1071 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1072 != CHREC_VARIABLE (chrec)
1073 && evolution_function_is_affine_multivariate_p
1074 (CHREC_RIGHT (chrec), loopnum))
1075 return true;
1076 else
1077 return false;
1078 }
1079 }
1080 else
1081 {
1082 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1083 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1084 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1085 && evolution_function_is_affine_multivariate_p
1086 (CHREC_LEFT (chrec), loopnum))
1087 return true;
1088 else
1089 return false;
1090 }
1091
1092 default:
1093 return false;
1094 }
1095 }
1096
1097 /* Determine whether the given tree is a function in zero or one
1098 variables. */
1099
1100 bool
1101 evolution_function_is_univariate_p (const_tree chrec)
1102 {
1103 if (chrec == NULL_TREE)
1104 return true;
1105
1106 switch (TREE_CODE (chrec))
1107 {
1108 case POLYNOMIAL_CHREC:
1109 switch (TREE_CODE (CHREC_LEFT (chrec)))
1110 {
1111 case POLYNOMIAL_CHREC:
1112 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1113 return false;
1114 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1115 return false;
1116 break;
1117
1118 default:
1119 if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
1120 return false;
1121 break;
1122 }
1123
1124 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1125 {
1126 case POLYNOMIAL_CHREC:
1127 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1128 return false;
1129 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1130 return false;
1131 break;
1132
1133 default:
1134 if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
1135 return false;
1136 break;
1137 }
1138
1139 default:
1140 return true;
1141 }
1142 }
1143
1144 /* Returns the number of variables of CHREC. Example: the call
1145 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1146
1147 unsigned
1148 nb_vars_in_chrec (tree chrec)
1149 {
1150 if (chrec == NULL_TREE)
1151 return 0;
1152
1153 switch (TREE_CODE (chrec))
1154 {
1155 case POLYNOMIAL_CHREC:
1156 return 1 + nb_vars_in_chrec
1157 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1158
1159 default:
1160 return 0;
1161 }
1162 }
1163
1164 static tree chrec_convert_1 (tree, tree, gimple, bool);
1165
1166 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1167 the scev corresponds to. AT_STMT is the statement at that the scev is
1168 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1169 the rules for overflow of the given language apply (e.g., that signed
1170 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1171 tests, but also to enforce that the result follows them. Returns true if the
1172 conversion succeeded, false otherwise. */
1173
1174 bool
1175 convert_affine_scev (struct loop *loop, tree type,
1176 tree *base, tree *step, gimple at_stmt,
1177 bool use_overflow_semantics)
1178 {
1179 tree ct = TREE_TYPE (*step);
1180 bool enforce_overflow_semantics;
1181 bool must_check_src_overflow, must_check_rslt_overflow;
1182 tree new_base, new_step;
1183 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1184
1185 /* In general,
1186 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1187 but we must check some assumptions.
1188
1189 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1190 of CT is smaller than the precision of TYPE. For example, when we
1191 cast unsigned char [254, +, 1] to unsigned, the values on left side
1192 are 254, 255, 0, 1, ..., but those on the right side are
1193 254, 255, 256, 257, ...
1194 2) In case that we must also preserve the fact that signed ivs do not
1195 overflow, we must additionally check that the new iv does not wrap.
1196 For example, unsigned char [125, +, 1] casted to signed char could
1197 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1198 which would confuse optimizers that assume that this does not
1199 happen. */
1200 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1201
1202 enforce_overflow_semantics = (use_overflow_semantics
1203 && nowrap_type_p (type));
1204 if (enforce_overflow_semantics)
1205 {
1206 /* We can avoid checking whether the result overflows in the following
1207 cases:
1208
1209 -- must_check_src_overflow is true, and the range of TYPE is superset
1210 of the range of CT -- i.e., in all cases except if CT signed and
1211 TYPE unsigned.
1212 -- both CT and TYPE have the same precision and signedness, and we
1213 verify instead that the source does not overflow (this may be
1214 easier than verifying it for the result, as we may use the
1215 information about the semantics of overflow in CT). */
1216 if (must_check_src_overflow)
1217 {
1218 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1219 must_check_rslt_overflow = true;
1220 else
1221 must_check_rslt_overflow = false;
1222 }
1223 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1224 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1225 {
1226 must_check_rslt_overflow = false;
1227 must_check_src_overflow = true;
1228 }
1229 else
1230 must_check_rslt_overflow = true;
1231 }
1232 else
1233 must_check_rslt_overflow = false;
1234
1235 if (must_check_src_overflow
1236 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1237 use_overflow_semantics))
1238 return false;
1239
1240 new_base = chrec_convert_1 (type, *base, at_stmt,
1241 use_overflow_semantics);
1242 /* The step must be sign extended, regardless of the signedness
1243 of CT and TYPE. This only needs to be handled specially when
1244 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1245 (with values 100, 99, 98, ...) from becoming signed or unsigned
1246 [100, +, 255] with values 100, 355, ...; the sign-extension is
1247 performed by default when CT is signed. */
1248 new_step = *step;
1249 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1250 {
1251 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1252 new_step = chrec_convert_1 (signed_ct, new_step, at_stmt,
1253 use_overflow_semantics);
1254 }
1255 new_step = chrec_convert_1 (step_type, new_step, at_stmt, use_overflow_semantics);
1256
1257 if (automatically_generated_chrec_p (new_base)
1258 || automatically_generated_chrec_p (new_step))
1259 return false;
1260
1261 if (must_check_rslt_overflow
1262 /* Note that in this case we cannot use the fact that signed variables
1263 do not overflow, as this is what we are verifying for the new iv. */
1264 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1265 return false;
1266
1267 *base = new_base;
1268 *step = new_step;
1269 return true;
1270 }
1271 \f
1272
1273 /* Convert CHREC for the right hand side of a CHREC.
1274 The increment for a pointer type is always sizetype. */
1275
1276 tree
1277 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1278 {
1279 if (POINTER_TYPE_P (type))
1280 type = sizetype;
1281
1282 return chrec_convert (type, chrec, at_stmt);
1283 }
1284
1285 /* Convert CHREC to TYPE. When the analyzer knows the context in
1286 which the CHREC is built, it sets AT_STMT to the statement that
1287 contains the definition of the analyzed variable, otherwise the
1288 conversion is less accurate: the information is used for
1289 determining a more accurate estimation of the number of iterations.
1290 By default AT_STMT could be safely set to NULL_TREE.
1291
1292 The following rule is always true: TREE_TYPE (chrec) ==
1293 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1294 An example of what could happen when adding two chrecs and the type
1295 of the CHREC_RIGHT is different than CHREC_LEFT is:
1296
1297 {(uint) 0, +, (uchar) 10} +
1298 {(uint) 0, +, (uchar) 250}
1299
1300 that would produce a wrong result if CHREC_RIGHT is not (uint):
1301
1302 {(uint) 0, +, (uchar) 4}
1303
1304 instead of
1305
1306 {(uint) 0, +, (uint) 260}
1307 */
1308
1309 tree
1310 chrec_convert (tree type, tree chrec, gimple at_stmt)
1311 {
1312 return chrec_convert_1 (type, chrec, at_stmt, true);
1313 }
1314
1315 /* Convert CHREC to TYPE. When the analyzer knows the context in
1316 which the CHREC is built, it sets AT_STMT to the statement that
1317 contains the definition of the analyzed variable, otherwise the
1318 conversion is less accurate: the information is used for
1319 determining a more accurate estimation of the number of iterations.
1320 By default AT_STMT could be safely set to NULL_TREE.
1321
1322 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1323 the rules for overflow of the given language apply (e.g., that signed
1324 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1325 tests, but also to enforce that the result follows them. */
1326
1327 static tree
1328 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1329 bool use_overflow_semantics)
1330 {
1331 tree ct, res;
1332 tree base, step;
1333 struct loop *loop;
1334
1335 if (automatically_generated_chrec_p (chrec))
1336 return chrec;
1337
1338 ct = chrec_type (chrec);
1339 if (ct == type)
1340 return chrec;
1341
1342 if (!evolution_function_is_affine_p (chrec))
1343 goto keep_cast;
1344
1345 loop = get_chrec_loop (chrec);
1346 base = CHREC_LEFT (chrec);
1347 step = CHREC_RIGHT (chrec);
1348
1349 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1350 use_overflow_semantics))
1351 return build_polynomial_chrec (loop->num, base, step);
1352
1353 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1354 keep_cast:
1355 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1356 may be more expensive. We do want to perform this optimization here
1357 though for canonicalization reasons. */
1358 if (use_overflow_semantics
1359 && (TREE_CODE (chrec) == PLUS_EXPR
1360 || TREE_CODE (chrec) == MINUS_EXPR)
1361 && TREE_CODE (type) == INTEGER_TYPE
1362 && TREE_CODE (ct) == INTEGER_TYPE
1363 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1364 && TYPE_OVERFLOW_UNDEFINED (ct))
1365 res = fold_build2 (TREE_CODE (chrec), type,
1366 fold_convert (type, TREE_OPERAND (chrec, 0)),
1367 fold_convert (type, TREE_OPERAND (chrec, 1)));
1368 /* Similar perform the trick that (signed char)((int)x + 2) can be
1369 narrowed to (signed char)((unsigned char)x + 2). */
1370 else if (use_overflow_semantics
1371 && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1372 && TREE_CODE (ct) == INTEGER_TYPE
1373 && TREE_CODE (type) == INTEGER_TYPE
1374 && TYPE_OVERFLOW_UNDEFINED (type)
1375 && TYPE_PRECISION (type) < TYPE_PRECISION (ct))
1376 {
1377 tree utype = unsigned_type_for (type);
1378 res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
1379 fold_convert (utype,
1380 CHREC_LEFT (chrec)),
1381 fold_convert (utype,
1382 CHREC_RIGHT (chrec)));
1383 res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics);
1384 }
1385 else
1386 res = fold_convert (type, chrec);
1387
1388 /* Don't propagate overflows. */
1389 if (CONSTANT_CLASS_P (res))
1390 TREE_OVERFLOW (res) = 0;
1391
1392 /* But reject constants that don't fit in their type after conversion.
1393 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1394 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1395 and can cause problems later when computing niters of loops. Note
1396 that we don't do the check before converting because we don't want
1397 to reject conversions of negative chrecs to unsigned types. */
1398 if (TREE_CODE (res) == INTEGER_CST
1399 && TREE_CODE (type) == INTEGER_TYPE
1400 && !int_fits_type_p (res, type))
1401 res = chrec_dont_know;
1402
1403 return res;
1404 }
1405
1406 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1407 chrec if something else than what chrec_convert would do happens, NULL_TREE
1408 otherwise. */
1409
1410 tree
1411 chrec_convert_aggressive (tree type, tree chrec)
1412 {
1413 tree inner_type, left, right, lc, rc, rtype;
1414
1415 if (automatically_generated_chrec_p (chrec)
1416 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1417 return NULL_TREE;
1418
1419 inner_type = TREE_TYPE (chrec);
1420 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1421 return NULL_TREE;
1422
1423 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1424
1425 left = CHREC_LEFT (chrec);
1426 right = CHREC_RIGHT (chrec);
1427 lc = chrec_convert_aggressive (type, left);
1428 if (!lc)
1429 lc = chrec_convert (type, left, NULL);
1430 rc = chrec_convert_aggressive (rtype, right);
1431 if (!rc)
1432 rc = chrec_convert (rtype, right, NULL);
1433
1434 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1435 }
1436
1437 /* Returns true when CHREC0 == CHREC1. */
1438
1439 bool
1440 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1441 {
1442 if (chrec0 == NULL_TREE
1443 || chrec1 == NULL_TREE
1444 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1445 return false;
1446
1447 if (chrec0 == chrec1)
1448 return true;
1449
1450 switch (TREE_CODE (chrec0))
1451 {
1452 case INTEGER_CST:
1453 return operand_equal_p (chrec0, chrec1, 0);
1454
1455 case POLYNOMIAL_CHREC:
1456 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1457 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1458 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1459
1460 case PLUS_EXPR:
1461 case MULT_EXPR:
1462 case MINUS_EXPR:
1463 case POINTER_PLUS_EXPR:
1464 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1465 TREE_OPERAND (chrec1, 0))
1466 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1467 TREE_OPERAND (chrec1, 1));
1468
1469 default:
1470 return false;
1471 }
1472 }
1473
1474 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1475 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1476 which of these cases happens. */
1477
1478 enum ev_direction
1479 scev_direction (const_tree chrec)
1480 {
1481 const_tree step;
1482
1483 if (!evolution_function_is_affine_p (chrec))
1484 return EV_DIR_UNKNOWN;
1485
1486 step = CHREC_RIGHT (chrec);
1487 if (TREE_CODE (step) != INTEGER_CST)
1488 return EV_DIR_UNKNOWN;
1489
1490 if (tree_int_cst_sign_bit (step))
1491 return EV_DIR_DECREASES;
1492 else
1493 return EV_DIR_GROWS;
1494 }
1495
1496 /* Iterates over all the components of SCEV, and calls CBCK. */
1497
1498 void
1499 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1500 {
1501 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1502 {
1503 case 3:
1504 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1505
1506 case 2:
1507 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1508
1509 case 1:
1510 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1511
1512 default:
1513 cbck (scev, data);
1514 break;
1515 }
1516 }
1517
1518 /* Returns true when the operation can be part of a linear
1519 expression. */
1520
1521 static inline bool
1522 operator_is_linear (tree scev)
1523 {
1524 switch (TREE_CODE (scev))
1525 {
1526 case INTEGER_CST:
1527 case POLYNOMIAL_CHREC:
1528 case PLUS_EXPR:
1529 case POINTER_PLUS_EXPR:
1530 case MULT_EXPR:
1531 case MINUS_EXPR:
1532 case NEGATE_EXPR:
1533 case SSA_NAME:
1534 case NON_LVALUE_EXPR:
1535 case BIT_NOT_EXPR:
1536 CASE_CONVERT:
1537 return true;
1538
1539 default:
1540 return false;
1541 }
1542 }
1543
1544 /* Return true when SCEV is a linear expression. Linear expressions
1545 can contain additions, substractions and multiplications.
1546 Multiplications are restricted to constant scaling: "cst * x". */
1547
1548 bool
1549 scev_is_linear_expression (tree scev)
1550 {
1551 if (scev == NULL
1552 || !operator_is_linear (scev))
1553 return false;
1554
1555 if (TREE_CODE (scev) == MULT_EXPR)
1556 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1557 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1558
1559 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1560 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1561 return false;
1562
1563 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1564 {
1565 case 3:
1566 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1567 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1568 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1569
1570 case 2:
1571 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1572 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1573
1574 case 1:
1575 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1576
1577 case 0:
1578 return true;
1579
1580 default:
1581 return false;
1582 }
1583 }
1584
1585 /* Determines whether the expression CHREC contains only interger consts
1586 in the right parts. */
1587
1588 bool
1589 evolution_function_right_is_integer_cst (const_tree chrec)
1590 {
1591 if (chrec == NULL_TREE)
1592 return false;
1593
1594 switch (TREE_CODE (chrec))
1595 {
1596 case INTEGER_CST:
1597 return true;
1598
1599 case POLYNOMIAL_CHREC:
1600 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1601 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1602 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1603
1604 CASE_CONVERT:
1605 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1606
1607 default:
1608 return false;
1609 }
1610 }