IA MCU psABI support: changes to libraries
[gcc.git] / gcc / tree-chrec.c
1 /* Chains of recurrences.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements operations on chains of recurrences. Chains
22 of recurrences are used for modeling evolution functions of scalar
23 variables.
24 */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "options.h"
32 #include "tree.h"
33 #include "fold-const.h"
34 #include "tree-pretty-print.h"
35 #include "cfgloop.h"
36 #include "predict.h"
37 #include "tm.h"
38 #include "hard-reg-set.h"
39 #include "function.h"
40 #include "dominance.h"
41 #include "cfg.h"
42 #include "basic-block.h"
43 #include "gimple-expr.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "tree-chrec.h"
47 #include "dumpfile.h"
48 #include "params.h"
49 #include "tree-scalar-evolution.h"
50
51 /* Extended folder for chrecs. */
52
53 /* Determines whether CST is not a constant evolution. */
54
55 static inline bool
56 is_not_constant_evolution (const_tree cst)
57 {
58 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
59 }
60
61 /* Fold CODE for a polynomial function and a constant. */
62
63 static inline tree
64 chrec_fold_poly_cst (enum tree_code code,
65 tree type,
66 tree poly,
67 tree cst)
68 {
69 gcc_assert (poly);
70 gcc_assert (cst);
71 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
72 gcc_checking_assert (!is_not_constant_evolution (cst));
73 gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly)));
74
75 switch (code)
76 {
77 case PLUS_EXPR:
78 return build_polynomial_chrec
79 (CHREC_VARIABLE (poly),
80 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
81 CHREC_RIGHT (poly));
82
83 case MINUS_EXPR:
84 return build_polynomial_chrec
85 (CHREC_VARIABLE (poly),
86 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
87 CHREC_RIGHT (poly));
88
89 case MULT_EXPR:
90 return build_polynomial_chrec
91 (CHREC_VARIABLE (poly),
92 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
93 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
94
95 default:
96 return chrec_dont_know;
97 }
98 }
99
100 /* Fold the addition of two polynomial functions. */
101
102 static inline tree
103 chrec_fold_plus_poly_poly (enum tree_code code,
104 tree type,
105 tree poly0,
106 tree poly1)
107 {
108 tree left, right;
109 struct loop *loop0 = get_chrec_loop (poly0);
110 struct loop *loop1 = get_chrec_loop (poly1);
111 tree rtype = code == POINTER_PLUS_EXPR ? chrec_type (poly1) : type;
112
113 gcc_assert (poly0);
114 gcc_assert (poly1);
115 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
116 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
117 if (POINTER_TYPE_P (chrec_type (poly0)))
118 gcc_checking_assert (ptrofftype_p (chrec_type (poly1))
119 && useless_type_conversion_p (type, chrec_type (poly0)));
120 else
121 gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly0))
122 && useless_type_conversion_p (type, chrec_type (poly1)));
123
124 /*
125 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
126 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
127 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
128 if (flow_loop_nested_p (loop0, loop1))
129 {
130 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
131 return build_polynomial_chrec
132 (CHREC_VARIABLE (poly1),
133 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
134 CHREC_RIGHT (poly1));
135 else
136 return build_polynomial_chrec
137 (CHREC_VARIABLE (poly1),
138 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
139 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
140 SCALAR_FLOAT_TYPE_P (type)
141 ? build_real (type, dconstm1)
142 : build_int_cst_type (type, -1)));
143 }
144
145 if (flow_loop_nested_p (loop1, loop0))
146 {
147 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
148 return build_polynomial_chrec
149 (CHREC_VARIABLE (poly0),
150 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
151 CHREC_RIGHT (poly0));
152 else
153 return build_polynomial_chrec
154 (CHREC_VARIABLE (poly0),
155 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
156 CHREC_RIGHT (poly0));
157 }
158
159 /* This function should never be called for chrecs of loops that
160 do not belong to the same loop nest. */
161 gcc_assert (loop0 == loop1);
162
163 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
164 {
165 left = chrec_fold_plus
166 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
167 right = chrec_fold_plus
168 (rtype, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
169 }
170 else
171 {
172 left = chrec_fold_minus
173 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
174 right = chrec_fold_minus
175 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
176 }
177
178 if (chrec_zerop (right))
179 return left;
180 else
181 return build_polynomial_chrec
182 (CHREC_VARIABLE (poly0), left, right);
183 }
184
185 \f
186
187 /* Fold the multiplication of two polynomial functions. */
188
189 static inline tree
190 chrec_fold_multiply_poly_poly (tree type,
191 tree poly0,
192 tree poly1)
193 {
194 tree t0, t1, t2;
195 int var;
196 struct loop *loop0 = get_chrec_loop (poly0);
197 struct loop *loop1 = get_chrec_loop (poly1);
198
199 gcc_assert (poly0);
200 gcc_assert (poly1);
201 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
202 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
203 gcc_checking_assert (useless_type_conversion_p (type, chrec_type (poly0))
204 && useless_type_conversion_p (type, chrec_type (poly1)));
205
206 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
207 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
208 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
209 if (flow_loop_nested_p (loop0, loop1))
210 /* poly0 is a constant wrt. poly1. */
211 return build_polynomial_chrec
212 (CHREC_VARIABLE (poly1),
213 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
214 CHREC_RIGHT (poly1));
215
216 if (flow_loop_nested_p (loop1, loop0))
217 /* poly1 is a constant wrt. poly0. */
218 return build_polynomial_chrec
219 (CHREC_VARIABLE (poly0),
220 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
221 CHREC_RIGHT (poly0));
222
223 gcc_assert (loop0 == loop1);
224
225 /* poly0 and poly1 are two polynomials in the same variable,
226 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
227
228 /* "a*c". */
229 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
230
231 /* "a*d + b*c". */
232 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
233 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
234 CHREC_RIGHT (poly0),
235 CHREC_LEFT (poly1)));
236 /* "b*d". */
237 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
238 /* "a*d + b*c + b*d". */
239 t1 = chrec_fold_plus (type, t1, t2);
240 /* "2*b*d". */
241 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
242 ? build_real (type, dconst2)
243 : build_int_cst (type, 2), t2);
244
245 var = CHREC_VARIABLE (poly0);
246 return build_polynomial_chrec (var, t0,
247 build_polynomial_chrec (var, t1, t2));
248 }
249
250 /* When the operands are automatically_generated_chrec_p, the fold has
251 to respect the semantics of the operands. */
252
253 static inline tree
254 chrec_fold_automatically_generated_operands (tree op0,
255 tree op1)
256 {
257 if (op0 == chrec_dont_know
258 || op1 == chrec_dont_know)
259 return chrec_dont_know;
260
261 if (op0 == chrec_known
262 || op1 == chrec_known)
263 return chrec_known;
264
265 if (op0 == chrec_not_analyzed_yet
266 || op1 == chrec_not_analyzed_yet)
267 return chrec_not_analyzed_yet;
268
269 /* The default case produces a safe result. */
270 return chrec_dont_know;
271 }
272
273 /* Fold the addition of two chrecs. */
274
275 static tree
276 chrec_fold_plus_1 (enum tree_code code, tree type,
277 tree op0, tree op1)
278 {
279 if (automatically_generated_chrec_p (op0)
280 || automatically_generated_chrec_p (op1))
281 return chrec_fold_automatically_generated_operands (op0, op1);
282
283 switch (TREE_CODE (op0))
284 {
285 case POLYNOMIAL_CHREC:
286 gcc_checking_assert
287 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
288 switch (TREE_CODE (op1))
289 {
290 case POLYNOMIAL_CHREC:
291 gcc_checking_assert
292 (!chrec_contains_symbols_defined_in_loop (op1,
293 CHREC_VARIABLE (op1)));
294 return chrec_fold_plus_poly_poly (code, type, op0, op1);
295
296 CASE_CONVERT:
297 if (tree_contains_chrecs (op1, NULL))
298 return chrec_dont_know;
299
300 default:
301 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
302 return build_polynomial_chrec
303 (CHREC_VARIABLE (op0),
304 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
305 CHREC_RIGHT (op0));
306 else
307 return build_polynomial_chrec
308 (CHREC_VARIABLE (op0),
309 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
310 CHREC_RIGHT (op0));
311 }
312
313 CASE_CONVERT:
314 if (tree_contains_chrecs (op0, NULL))
315 return chrec_dont_know;
316
317 default:
318 switch (TREE_CODE (op1))
319 {
320 case POLYNOMIAL_CHREC:
321 gcc_checking_assert
322 (!chrec_contains_symbols_defined_in_loop (op1,
323 CHREC_VARIABLE (op1)));
324 if (code == PLUS_EXPR || code == POINTER_PLUS_EXPR)
325 return build_polynomial_chrec
326 (CHREC_VARIABLE (op1),
327 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
328 CHREC_RIGHT (op1));
329 else
330 return build_polynomial_chrec
331 (CHREC_VARIABLE (op1),
332 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
333 chrec_fold_multiply (type, CHREC_RIGHT (op1),
334 SCALAR_FLOAT_TYPE_P (type)
335 ? build_real (type, dconstm1)
336 : build_int_cst_type (type, -1)));
337
338 CASE_CONVERT:
339 if (tree_contains_chrecs (op1, NULL))
340 return chrec_dont_know;
341
342 default:
343 {
344 int size = 0;
345 if ((tree_contains_chrecs (op0, &size)
346 || tree_contains_chrecs (op1, &size))
347 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
348 return build2 (code, type, op0, op1);
349 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
350 {
351 if (code == POINTER_PLUS_EXPR)
352 return fold_build_pointer_plus (fold_convert (type, op0),
353 op1);
354 else
355 return fold_build2 (code, type,
356 fold_convert (type, op0),
357 fold_convert (type, op1));
358 }
359 else
360 return chrec_dont_know;
361 }
362 }
363 }
364 }
365
366 /* Fold the addition of two chrecs. */
367
368 tree
369 chrec_fold_plus (tree type,
370 tree op0,
371 tree op1)
372 {
373 enum tree_code code;
374 if (automatically_generated_chrec_p (op0)
375 || automatically_generated_chrec_p (op1))
376 return chrec_fold_automatically_generated_operands (op0, op1);
377
378 if (integer_zerop (op0))
379 return chrec_convert (type, op1, NULL);
380 if (integer_zerop (op1))
381 return chrec_convert (type, op0, NULL);
382
383 if (POINTER_TYPE_P (type))
384 code = POINTER_PLUS_EXPR;
385 else
386 code = PLUS_EXPR;
387
388 return chrec_fold_plus_1 (code, type, op0, op1);
389 }
390
391 /* Fold the subtraction of two chrecs. */
392
393 tree
394 chrec_fold_minus (tree type,
395 tree op0,
396 tree op1)
397 {
398 if (automatically_generated_chrec_p (op0)
399 || automatically_generated_chrec_p (op1))
400 return chrec_fold_automatically_generated_operands (op0, op1);
401
402 if (integer_zerop (op1))
403 return op0;
404
405 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
406 }
407
408 /* Fold the multiplication of two chrecs. */
409
410 tree
411 chrec_fold_multiply (tree type,
412 tree op0,
413 tree op1)
414 {
415 if (automatically_generated_chrec_p (op0)
416 || automatically_generated_chrec_p (op1))
417 return chrec_fold_automatically_generated_operands (op0, op1);
418
419 switch (TREE_CODE (op0))
420 {
421 case POLYNOMIAL_CHREC:
422 gcc_checking_assert
423 (!chrec_contains_symbols_defined_in_loop (op0, CHREC_VARIABLE (op0)));
424 switch (TREE_CODE (op1))
425 {
426 case POLYNOMIAL_CHREC:
427 gcc_checking_assert
428 (!chrec_contains_symbols_defined_in_loop (op1,
429 CHREC_VARIABLE (op1)));
430 return chrec_fold_multiply_poly_poly (type, op0, op1);
431
432 CASE_CONVERT:
433 if (tree_contains_chrecs (op1, NULL))
434 return chrec_dont_know;
435
436 default:
437 if (integer_onep (op1))
438 return op0;
439 if (integer_zerop (op1))
440 return build_int_cst (type, 0);
441
442 return build_polynomial_chrec
443 (CHREC_VARIABLE (op0),
444 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
445 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
446 }
447
448 CASE_CONVERT:
449 if (tree_contains_chrecs (op0, NULL))
450 return chrec_dont_know;
451
452 default:
453 if (integer_onep (op0))
454 return op1;
455
456 if (integer_zerop (op0))
457 return build_int_cst (type, 0);
458
459 switch (TREE_CODE (op1))
460 {
461 case POLYNOMIAL_CHREC:
462 gcc_checking_assert
463 (!chrec_contains_symbols_defined_in_loop (op1,
464 CHREC_VARIABLE (op1)));
465 return build_polynomial_chrec
466 (CHREC_VARIABLE (op1),
467 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
468 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
469
470 CASE_CONVERT:
471 if (tree_contains_chrecs (op1, NULL))
472 return chrec_dont_know;
473
474 default:
475 if (integer_onep (op1))
476 return op0;
477 if (integer_zerop (op1))
478 return build_int_cst (type, 0);
479 return fold_build2 (MULT_EXPR, type, op0, op1);
480 }
481 }
482 }
483
484 \f
485
486 /* Operations. */
487
488 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
489 calculation overflows, otherwise return C(n,k) with type TYPE. */
490
491 static tree
492 tree_fold_binomial (tree type, tree n, unsigned int k)
493 {
494 bool overflow;
495 unsigned int i;
496 tree res;
497
498 /* Handle the most frequent cases. */
499 if (k == 0)
500 return build_int_cst (type, 1);
501 if (k == 1)
502 return fold_convert (type, n);
503
504 /* Check that k <= n. */
505 if (wi::ltu_p (n, k))
506 return NULL_TREE;
507
508 /* Denominator = 2. */
509 wide_int denom = wi::two (TYPE_PRECISION (TREE_TYPE (n)));
510
511 /* Index = Numerator-1. */
512 wide_int idx = wi::sub (n, 1);
513
514 /* Numerator = Numerator*Index = n*(n-1). */
515 wide_int num = wi::smul (n, idx, &overflow);
516 if (overflow)
517 return NULL_TREE;
518
519 for (i = 3; i <= k; i++)
520 {
521 /* Index--. */
522 --idx;
523
524 /* Numerator *= Index. */
525 num = wi::smul (num, idx, &overflow);
526 if (overflow)
527 return NULL_TREE;
528
529 /* Denominator *= i. */
530 denom *= i;
531 }
532
533 /* Result = Numerator / Denominator. */
534 wide_int di_res = wi::udiv_trunc (num, denom);
535 res = wide_int_to_tree (type, di_res);
536 return int_fits_type_p (res, type) ? res : NULL_TREE;
537 }
538
539 /* Helper function. Use the Newton's interpolating formula for
540 evaluating the value of the evolution function. */
541
542 static tree
543 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
544 {
545 tree arg0, arg1, binomial_n_k;
546 tree type = TREE_TYPE (chrec);
547 struct loop *var_loop = get_loop (cfun, var);
548
549 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
550 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
551 chrec = CHREC_LEFT (chrec);
552
553 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
554 && CHREC_VARIABLE (chrec) == var)
555 {
556 arg1 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
557 if (arg1 == chrec_dont_know)
558 return chrec_dont_know;
559 binomial_n_k = tree_fold_binomial (type, n, k);
560 if (!binomial_n_k)
561 return chrec_dont_know;
562 arg0 = fold_build2 (MULT_EXPR, type,
563 CHREC_LEFT (chrec), binomial_n_k);
564 return chrec_fold_plus (type, arg0, arg1);
565 }
566
567 binomial_n_k = tree_fold_binomial (type, n, k);
568 if (!binomial_n_k)
569 return chrec_dont_know;
570
571 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
572 }
573
574 /* Evaluates "CHREC (X)" when the varying variable is VAR.
575 Example: Given the following parameters,
576
577 var = 1
578 chrec = {3, +, 4}_1
579 x = 10
580
581 The result is given by the Newton's interpolating formula:
582 3 * \binom{10}{0} + 4 * \binom{10}{1}.
583 */
584
585 tree
586 chrec_apply (unsigned var,
587 tree chrec,
588 tree x)
589 {
590 tree type = chrec_type (chrec);
591 tree res = chrec_dont_know;
592
593 if (automatically_generated_chrec_p (chrec)
594 || automatically_generated_chrec_p (x)
595
596 /* When the symbols are defined in an outer loop, it is possible
597 to symbolically compute the apply, since the symbols are
598 constants with respect to the varying loop. */
599 || chrec_contains_symbols_defined_in_loop (chrec, var))
600 return chrec_dont_know;
601
602 if (dump_file && (dump_flags & TDF_SCEV))
603 fprintf (dump_file, "(chrec_apply \n");
604
605 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
606 x = build_real_from_int_cst (type, x);
607
608 switch (TREE_CODE (chrec))
609 {
610 case POLYNOMIAL_CHREC:
611 if (evolution_function_is_affine_p (chrec))
612 {
613 if (CHREC_VARIABLE (chrec) != var)
614 return build_polynomial_chrec
615 (CHREC_VARIABLE (chrec),
616 chrec_apply (var, CHREC_LEFT (chrec), x),
617 chrec_apply (var, CHREC_RIGHT (chrec), x));
618
619 /* "{a, +, b} (x)" -> "a + b*x". */
620 x = chrec_convert_rhs (type, x, NULL);
621 res = chrec_fold_multiply (TREE_TYPE (x), CHREC_RIGHT (chrec), x);
622 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
623 }
624 else if (TREE_CODE (x) == INTEGER_CST
625 && tree_int_cst_sgn (x) == 1)
626 /* testsuite/.../ssa-chrec-38.c. */
627 res = chrec_evaluate (var, chrec, x, 0);
628 else
629 res = chrec_dont_know;
630 break;
631
632 CASE_CONVERT:
633 res = chrec_convert (TREE_TYPE (chrec),
634 chrec_apply (var, TREE_OPERAND (chrec, 0), x),
635 NULL);
636 break;
637
638 default:
639 res = chrec;
640 break;
641 }
642
643 if (dump_file && (dump_flags & TDF_SCEV))
644 {
645 fprintf (dump_file, " (varying_loop = %d\n", var);
646 fprintf (dump_file, ")\n (chrec = ");
647 print_generic_expr (dump_file, chrec, 0);
648 fprintf (dump_file, ")\n (x = ");
649 print_generic_expr (dump_file, x, 0);
650 fprintf (dump_file, ")\n (res = ");
651 print_generic_expr (dump_file, res, 0);
652 fprintf (dump_file, "))\n");
653 }
654
655 return res;
656 }
657
658 /* For a given CHREC and an induction variable map IV_MAP that maps
659 (loop->num, expr) for every loop number of the current_loops an
660 expression, calls chrec_apply when the expression is not NULL. */
661
662 tree
663 chrec_apply_map (tree chrec, vec<tree> iv_map)
664 {
665 int i;
666 tree expr;
667
668 FOR_EACH_VEC_ELT (iv_map, i, expr)
669 if (expr)
670 chrec = chrec_apply (i, chrec, expr);
671
672 return chrec;
673 }
674
675 /* Replaces the initial condition in CHREC with INIT_COND. */
676
677 tree
678 chrec_replace_initial_condition (tree chrec,
679 tree init_cond)
680 {
681 if (automatically_generated_chrec_p (chrec))
682 return chrec;
683
684 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
685
686 switch (TREE_CODE (chrec))
687 {
688 case POLYNOMIAL_CHREC:
689 return build_polynomial_chrec
690 (CHREC_VARIABLE (chrec),
691 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
692 CHREC_RIGHT (chrec));
693
694 default:
695 return init_cond;
696 }
697 }
698
699 /* Returns the initial condition of a given CHREC. */
700
701 tree
702 initial_condition (tree chrec)
703 {
704 if (automatically_generated_chrec_p (chrec))
705 return chrec;
706
707 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
708 return initial_condition (CHREC_LEFT (chrec));
709 else
710 return chrec;
711 }
712
713 /* Returns a univariate function that represents the evolution in
714 LOOP_NUM. Mask the evolution of any other loop. */
715
716 tree
717 hide_evolution_in_other_loops_than_loop (tree chrec,
718 unsigned loop_num)
719 {
720 struct loop *loop = get_loop (cfun, loop_num), *chloop;
721 if (automatically_generated_chrec_p (chrec))
722 return chrec;
723
724 switch (TREE_CODE (chrec))
725 {
726 case POLYNOMIAL_CHREC:
727 chloop = get_chrec_loop (chrec);
728
729 if (chloop == loop)
730 return build_polynomial_chrec
731 (loop_num,
732 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
733 loop_num),
734 CHREC_RIGHT (chrec));
735
736 else if (flow_loop_nested_p (chloop, loop))
737 /* There is no evolution in this loop. */
738 return initial_condition (chrec);
739
740 else
741 {
742 gcc_assert (flow_loop_nested_p (loop, chloop));
743 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
744 loop_num);
745 }
746
747 default:
748 return chrec;
749 }
750 }
751
752 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
753 true, otherwise returns the initial condition in LOOP_NUM. */
754
755 static tree
756 chrec_component_in_loop_num (tree chrec,
757 unsigned loop_num,
758 bool right)
759 {
760 tree component;
761 struct loop *loop = get_loop (cfun, loop_num), *chloop;
762
763 if (automatically_generated_chrec_p (chrec))
764 return chrec;
765
766 switch (TREE_CODE (chrec))
767 {
768 case POLYNOMIAL_CHREC:
769 chloop = get_chrec_loop (chrec);
770
771 if (chloop == loop)
772 {
773 if (right)
774 component = CHREC_RIGHT (chrec);
775 else
776 component = CHREC_LEFT (chrec);
777
778 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
779 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
780 return component;
781
782 else
783 return build_polynomial_chrec
784 (loop_num,
785 chrec_component_in_loop_num (CHREC_LEFT (chrec),
786 loop_num,
787 right),
788 component);
789 }
790
791 else if (flow_loop_nested_p (chloop, loop))
792 /* There is no evolution part in this loop. */
793 return NULL_TREE;
794
795 else
796 {
797 gcc_assert (flow_loop_nested_p (loop, chloop));
798 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
799 loop_num,
800 right);
801 }
802
803 default:
804 if (right)
805 return NULL_TREE;
806 else
807 return chrec;
808 }
809 }
810
811 /* Returns the evolution part in LOOP_NUM. Example: the call
812 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
813 {1, +, 2}_1 */
814
815 tree
816 evolution_part_in_loop_num (tree chrec,
817 unsigned loop_num)
818 {
819 return chrec_component_in_loop_num (chrec, loop_num, true);
820 }
821
822 /* Returns the initial condition in LOOP_NUM. Example: the call
823 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
824 {0, +, 1}_1 */
825
826 tree
827 initial_condition_in_loop_num (tree chrec,
828 unsigned loop_num)
829 {
830 return chrec_component_in_loop_num (chrec, loop_num, false);
831 }
832
833 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
834 This function is essentially used for setting the evolution to
835 chrec_dont_know, for example after having determined that it is
836 impossible to say how many times a loop will execute. */
837
838 tree
839 reset_evolution_in_loop (unsigned loop_num,
840 tree chrec,
841 tree new_evol)
842 {
843 struct loop *loop = get_loop (cfun, loop_num);
844
845 if (POINTER_TYPE_P (chrec_type (chrec)))
846 gcc_assert (ptrofftype_p (chrec_type (new_evol)));
847 else
848 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
849
850 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
851 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
852 {
853 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
854 new_evol);
855 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
856 new_evol);
857 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
858 CHREC_VAR (chrec), left, right);
859 }
860
861 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
862 && CHREC_VARIABLE (chrec) == loop_num)
863 chrec = CHREC_LEFT (chrec);
864
865 return build_polynomial_chrec (loop_num, chrec, new_evol);
866 }
867
868 /* Merges two evolution functions that were found by following two
869 alternate paths of a conditional expression. */
870
871 tree
872 chrec_merge (tree chrec1,
873 tree chrec2)
874 {
875 if (chrec1 == chrec_dont_know
876 || chrec2 == chrec_dont_know)
877 return chrec_dont_know;
878
879 if (chrec1 == chrec_known
880 || chrec2 == chrec_known)
881 return chrec_known;
882
883 if (chrec1 == chrec_not_analyzed_yet)
884 return chrec2;
885 if (chrec2 == chrec_not_analyzed_yet)
886 return chrec1;
887
888 if (eq_evolutions_p (chrec1, chrec2))
889 return chrec1;
890
891 return chrec_dont_know;
892 }
893
894 \f
895
896 /* Observers. */
897
898 /* Helper function for is_multivariate_chrec. */
899
900 static bool
901 is_multivariate_chrec_rec (const_tree chrec, unsigned int rec_var)
902 {
903 if (chrec == NULL_TREE)
904 return false;
905
906 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
907 {
908 if (CHREC_VARIABLE (chrec) != rec_var)
909 return true;
910 else
911 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
912 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
913 }
914 else
915 return false;
916 }
917
918 /* Determine whether the given chrec is multivariate or not. */
919
920 bool
921 is_multivariate_chrec (const_tree chrec)
922 {
923 if (chrec == NULL_TREE)
924 return false;
925
926 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
927 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
928 CHREC_VARIABLE (chrec))
929 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
930 CHREC_VARIABLE (chrec)));
931 else
932 return false;
933 }
934
935 /* Determines whether the chrec contains symbolic names or not. */
936
937 bool
938 chrec_contains_symbols (const_tree chrec)
939 {
940 int i, n;
941
942 if (chrec == NULL_TREE)
943 return false;
944
945 if (TREE_CODE (chrec) == SSA_NAME
946 || TREE_CODE (chrec) == VAR_DECL
947 || TREE_CODE (chrec) == PARM_DECL
948 || TREE_CODE (chrec) == FUNCTION_DECL
949 || TREE_CODE (chrec) == LABEL_DECL
950 || TREE_CODE (chrec) == RESULT_DECL
951 || TREE_CODE (chrec) == FIELD_DECL)
952 return true;
953
954 n = TREE_OPERAND_LENGTH (chrec);
955 for (i = 0; i < n; i++)
956 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
957 return true;
958 return false;
959 }
960
961 /* Determines whether the chrec contains undetermined coefficients. */
962
963 bool
964 chrec_contains_undetermined (const_tree chrec)
965 {
966 int i, n;
967
968 if (chrec == chrec_dont_know)
969 return true;
970
971 if (chrec == NULL_TREE)
972 return false;
973
974 n = TREE_OPERAND_LENGTH (chrec);
975 for (i = 0; i < n; i++)
976 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
977 return true;
978 return false;
979 }
980
981 /* Determines whether the tree EXPR contains chrecs, and increment
982 SIZE if it is not a NULL pointer by an estimation of the depth of
983 the tree. */
984
985 bool
986 tree_contains_chrecs (const_tree expr, int *size)
987 {
988 int i, n;
989
990 if (expr == NULL_TREE)
991 return false;
992
993 if (size)
994 (*size)++;
995
996 if (tree_is_chrec (expr))
997 return true;
998
999 n = TREE_OPERAND_LENGTH (expr);
1000 for (i = 0; i < n; i++)
1001 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
1002 return true;
1003 return false;
1004 }
1005
1006 /* Recursive helper function. */
1007
1008 static bool
1009 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
1010 {
1011 if (evolution_function_is_constant_p (chrec))
1012 return true;
1013
1014 if (TREE_CODE (chrec) == SSA_NAME
1015 && (loopnum == 0
1016 || expr_invariant_in_loop_p (get_loop (cfun, loopnum), chrec)))
1017 return true;
1018
1019 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
1020 {
1021 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
1022 || flow_loop_nested_p (get_loop (cfun, loopnum),
1023 get_chrec_loop (chrec))
1024 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
1025 loopnum)
1026 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
1027 loopnum))
1028 return false;
1029 return true;
1030 }
1031
1032 switch (TREE_OPERAND_LENGTH (chrec))
1033 {
1034 case 2:
1035 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
1036 loopnum))
1037 return false;
1038
1039 case 1:
1040 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
1041 loopnum))
1042 return false;
1043 return true;
1044
1045 default:
1046 return false;
1047 }
1048
1049 return false;
1050 }
1051
1052 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
1053
1054 bool
1055 evolution_function_is_invariant_p (tree chrec, int loopnum)
1056 {
1057 return evolution_function_is_invariant_rec_p (chrec, loopnum);
1058 }
1059
1060 /* Determine whether the given tree is an affine multivariate
1061 evolution. */
1062
1063 bool
1064 evolution_function_is_affine_multivariate_p (const_tree chrec, int loopnum)
1065 {
1066 if (chrec == NULL_TREE)
1067 return false;
1068
1069 switch (TREE_CODE (chrec))
1070 {
1071 case POLYNOMIAL_CHREC:
1072 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
1073 {
1074 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1075 return true;
1076 else
1077 {
1078 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1079 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1080 != CHREC_VARIABLE (chrec)
1081 && evolution_function_is_affine_multivariate_p
1082 (CHREC_RIGHT (chrec), loopnum))
1083 return true;
1084 else
1085 return false;
1086 }
1087 }
1088 else
1089 {
1090 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1091 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1092 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1093 && evolution_function_is_affine_multivariate_p
1094 (CHREC_LEFT (chrec), loopnum))
1095 return true;
1096 else
1097 return false;
1098 }
1099
1100 default:
1101 return false;
1102 }
1103 }
1104
1105 /* Determine whether the given tree is a function in zero or one
1106 variables. */
1107
1108 bool
1109 evolution_function_is_univariate_p (const_tree chrec)
1110 {
1111 if (chrec == NULL_TREE)
1112 return true;
1113
1114 switch (TREE_CODE (chrec))
1115 {
1116 case POLYNOMIAL_CHREC:
1117 switch (TREE_CODE (CHREC_LEFT (chrec)))
1118 {
1119 case POLYNOMIAL_CHREC:
1120 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1121 return false;
1122 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1123 return false;
1124 break;
1125
1126 default:
1127 if (tree_contains_chrecs (CHREC_LEFT (chrec), NULL))
1128 return false;
1129 break;
1130 }
1131
1132 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1133 {
1134 case POLYNOMIAL_CHREC:
1135 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1136 return false;
1137 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1138 return false;
1139 break;
1140
1141 default:
1142 if (tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
1143 return false;
1144 break;
1145 }
1146
1147 default:
1148 return true;
1149 }
1150 }
1151
1152 /* Returns the number of variables of CHREC. Example: the call
1153 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1154
1155 unsigned
1156 nb_vars_in_chrec (tree chrec)
1157 {
1158 if (chrec == NULL_TREE)
1159 return 0;
1160
1161 switch (TREE_CODE (chrec))
1162 {
1163 case POLYNOMIAL_CHREC:
1164 return 1 + nb_vars_in_chrec
1165 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1166
1167 default:
1168 return 0;
1169 }
1170 }
1171
1172 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1173 the scev corresponds to. AT_STMT is the statement at that the scev is
1174 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1175 the rules for overflow of the given language apply (e.g., that signed
1176 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1177 tests, but also to enforce that the result follows them. Returns true if the
1178 conversion succeeded, false otherwise. */
1179
1180 bool
1181 convert_affine_scev (struct loop *loop, tree type,
1182 tree *base, tree *step, gimple at_stmt,
1183 bool use_overflow_semantics)
1184 {
1185 tree ct = TREE_TYPE (*step);
1186 bool enforce_overflow_semantics;
1187 bool must_check_src_overflow, must_check_rslt_overflow;
1188 tree new_base, new_step;
1189 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1190
1191 /* In general,
1192 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1193 but we must check some assumptions.
1194
1195 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1196 of CT is smaller than the precision of TYPE. For example, when we
1197 cast unsigned char [254, +, 1] to unsigned, the values on left side
1198 are 254, 255, 0, 1, ..., but those on the right side are
1199 254, 255, 256, 257, ...
1200 2) In case that we must also preserve the fact that signed ivs do not
1201 overflow, we must additionally check that the new iv does not wrap.
1202 For example, unsigned char [125, +, 1] casted to signed char could
1203 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1204 which would confuse optimizers that assume that this does not
1205 happen. */
1206 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1207
1208 enforce_overflow_semantics = (use_overflow_semantics
1209 && nowrap_type_p (type));
1210 if (enforce_overflow_semantics)
1211 {
1212 /* We can avoid checking whether the result overflows in the following
1213 cases:
1214
1215 -- must_check_src_overflow is true, and the range of TYPE is superset
1216 of the range of CT -- i.e., in all cases except if CT signed and
1217 TYPE unsigned.
1218 -- both CT and TYPE have the same precision and signedness, and we
1219 verify instead that the source does not overflow (this may be
1220 easier than verifying it for the result, as we may use the
1221 information about the semantics of overflow in CT). */
1222 if (must_check_src_overflow)
1223 {
1224 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1225 must_check_rslt_overflow = true;
1226 else
1227 must_check_rslt_overflow = false;
1228 }
1229 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1230 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1231 {
1232 must_check_rslt_overflow = false;
1233 must_check_src_overflow = true;
1234 }
1235 else
1236 must_check_rslt_overflow = true;
1237 }
1238 else
1239 must_check_rslt_overflow = false;
1240
1241 if (must_check_src_overflow
1242 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1243 use_overflow_semantics))
1244 return false;
1245
1246 new_base = chrec_convert (type, *base, at_stmt, use_overflow_semantics);
1247 /* The step must be sign extended, regardless of the signedness
1248 of CT and TYPE. This only needs to be handled specially when
1249 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1250 (with values 100, 99, 98, ...) from becoming signed or unsigned
1251 [100, +, 255] with values 100, 355, ...; the sign-extension is
1252 performed by default when CT is signed. */
1253 new_step = *step;
1254 if (TYPE_PRECISION (step_type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1255 {
1256 tree signed_ct = build_nonstandard_integer_type (TYPE_PRECISION (ct), 0);
1257 new_step = chrec_convert (signed_ct, new_step, at_stmt,
1258 use_overflow_semantics);
1259 }
1260 new_step = chrec_convert (step_type, new_step, at_stmt,
1261 use_overflow_semantics);
1262
1263 if (automatically_generated_chrec_p (new_base)
1264 || automatically_generated_chrec_p (new_step))
1265 return false;
1266
1267 if (must_check_rslt_overflow
1268 /* Note that in this case we cannot use the fact that signed variables
1269 do not overflow, as this is what we are verifying for the new iv. */
1270 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1271 return false;
1272
1273 *base = new_base;
1274 *step = new_step;
1275 return true;
1276 }
1277 \f
1278
1279 /* Convert CHREC for the right hand side of a CHREC.
1280 The increment for a pointer type is always sizetype. */
1281
1282 tree
1283 chrec_convert_rhs (tree type, tree chrec, gimple at_stmt)
1284 {
1285 if (POINTER_TYPE_P (type))
1286 type = sizetype;
1287
1288 return chrec_convert (type, chrec, at_stmt);
1289 }
1290
1291 /* Convert CHREC to TYPE. When the analyzer knows the context in
1292 which the CHREC is built, it sets AT_STMT to the statement that
1293 contains the definition of the analyzed variable, otherwise the
1294 conversion is less accurate: the information is used for
1295 determining a more accurate estimation of the number of iterations.
1296 By default AT_STMT could be safely set to NULL_TREE.
1297
1298 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1299 the rules for overflow of the given language apply (e.g., that signed
1300 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1301 tests, but also to enforce that the result follows them. */
1302
1303 static tree
1304 chrec_convert_1 (tree type, tree chrec, gimple at_stmt,
1305 bool use_overflow_semantics)
1306 {
1307 tree ct, res;
1308 tree base, step;
1309 struct loop *loop;
1310
1311 if (automatically_generated_chrec_p (chrec))
1312 return chrec;
1313
1314 ct = chrec_type (chrec);
1315 if (useless_type_conversion_p (type, ct))
1316 return chrec;
1317
1318 if (!evolution_function_is_affine_p (chrec))
1319 goto keep_cast;
1320
1321 loop = get_chrec_loop (chrec);
1322 base = CHREC_LEFT (chrec);
1323 step = CHREC_RIGHT (chrec);
1324
1325 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1326 use_overflow_semantics))
1327 return build_polynomial_chrec (loop->num, base, step);
1328
1329 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1330 keep_cast:
1331 /* Fold will not canonicalize (long)(i - 1) to (long)i - 1 because that
1332 may be more expensive. We do want to perform this optimization here
1333 though for canonicalization reasons. */
1334 if (use_overflow_semantics
1335 && (TREE_CODE (chrec) == PLUS_EXPR
1336 || TREE_CODE (chrec) == MINUS_EXPR)
1337 && TREE_CODE (type) == INTEGER_TYPE
1338 && TREE_CODE (ct) == INTEGER_TYPE
1339 && TYPE_PRECISION (type) > TYPE_PRECISION (ct)
1340 && TYPE_OVERFLOW_UNDEFINED (ct))
1341 res = fold_build2 (TREE_CODE (chrec), type,
1342 fold_convert (type, TREE_OPERAND (chrec, 0)),
1343 fold_convert (type, TREE_OPERAND (chrec, 1)));
1344 /* Similar perform the trick that (signed char)((int)x + 2) can be
1345 narrowed to (signed char)((unsigned char)x + 2). */
1346 else if (use_overflow_semantics
1347 && TREE_CODE (chrec) == POLYNOMIAL_CHREC
1348 && TREE_CODE (ct) == INTEGER_TYPE
1349 && TREE_CODE (type) == INTEGER_TYPE
1350 && TYPE_OVERFLOW_UNDEFINED (type)
1351 && TYPE_PRECISION (type) < TYPE_PRECISION (ct))
1352 {
1353 tree utype = unsigned_type_for (type);
1354 res = build_polynomial_chrec (CHREC_VARIABLE (chrec),
1355 fold_convert (utype,
1356 CHREC_LEFT (chrec)),
1357 fold_convert (utype,
1358 CHREC_RIGHT (chrec)));
1359 res = chrec_convert_1 (type, res, at_stmt, use_overflow_semantics);
1360 }
1361 else
1362 res = fold_convert (type, chrec);
1363
1364 /* Don't propagate overflows. */
1365 if (CONSTANT_CLASS_P (res))
1366 TREE_OVERFLOW (res) = 0;
1367
1368 /* But reject constants that don't fit in their type after conversion.
1369 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1370 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1371 and can cause problems later when computing niters of loops. Note
1372 that we don't do the check before converting because we don't want
1373 to reject conversions of negative chrecs to unsigned types. */
1374 if (TREE_CODE (res) == INTEGER_CST
1375 && TREE_CODE (type) == INTEGER_TYPE
1376 && !int_fits_type_p (res, type))
1377 res = chrec_dont_know;
1378
1379 return res;
1380 }
1381
1382 /* Convert CHREC to TYPE. When the analyzer knows the context in
1383 which the CHREC is built, it sets AT_STMT to the statement that
1384 contains the definition of the analyzed variable, otherwise the
1385 conversion is less accurate: the information is used for
1386 determining a more accurate estimation of the number of iterations.
1387 By default AT_STMT could be safely set to NULL_TREE.
1388
1389 The following rule is always true: TREE_TYPE (chrec) ==
1390 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1391 An example of what could happen when adding two chrecs and the type
1392 of the CHREC_RIGHT is different than CHREC_LEFT is:
1393
1394 {(uint) 0, +, (uchar) 10} +
1395 {(uint) 0, +, (uchar) 250}
1396
1397 that would produce a wrong result if CHREC_RIGHT is not (uint):
1398
1399 {(uint) 0, +, (uchar) 4}
1400
1401 instead of
1402
1403 {(uint) 0, +, (uint) 260}
1404
1405 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1406 the rules for overflow of the given language apply (e.g., that signed
1407 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1408 tests, but also to enforce that the result follows them. */
1409
1410 tree
1411 chrec_convert (tree type, tree chrec, gimple at_stmt,
1412 bool use_overflow_semantics)
1413 {
1414 return chrec_convert_1 (type, chrec, at_stmt, use_overflow_semantics);
1415 }
1416
1417 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1418 chrec if something else than what chrec_convert would do happens, NULL_TREE
1419 otherwise. This function set TRUE to variable pointed by FOLD_CONVERSIONS
1420 if the result chrec may overflow. */
1421
1422 tree
1423 chrec_convert_aggressive (tree type, tree chrec, bool *fold_conversions)
1424 {
1425 tree inner_type, left, right, lc, rc, rtype;
1426
1427 gcc_assert (fold_conversions != NULL);
1428
1429 if (automatically_generated_chrec_p (chrec)
1430 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1431 return NULL_TREE;
1432
1433 inner_type = TREE_TYPE (chrec);
1434 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1435 return NULL_TREE;
1436
1437 if (useless_type_conversion_p (type, inner_type))
1438 return NULL_TREE;
1439
1440 if (!*fold_conversions && evolution_function_is_affine_p (chrec))
1441 {
1442 tree base, step;
1443 struct loop *loop;
1444
1445 loop = get_chrec_loop (chrec);
1446 base = CHREC_LEFT (chrec);
1447 step = CHREC_RIGHT (chrec);
1448 if (convert_affine_scev (loop, type, &base, &step, NULL, true))
1449 return build_polynomial_chrec (loop->num, base, step);
1450 }
1451 rtype = POINTER_TYPE_P (type) ? sizetype : type;
1452
1453 left = CHREC_LEFT (chrec);
1454 right = CHREC_RIGHT (chrec);
1455 lc = chrec_convert_aggressive (type, left, fold_conversions);
1456 if (!lc)
1457 lc = chrec_convert (type, left, NULL);
1458 rc = chrec_convert_aggressive (rtype, right, fold_conversions);
1459 if (!rc)
1460 rc = chrec_convert (rtype, right, NULL);
1461
1462 *fold_conversions = true;
1463
1464 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1465 }
1466
1467 /* Returns true when CHREC0 == CHREC1. */
1468
1469 bool
1470 eq_evolutions_p (const_tree chrec0, const_tree chrec1)
1471 {
1472 if (chrec0 == NULL_TREE
1473 || chrec1 == NULL_TREE
1474 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1475 return false;
1476
1477 if (chrec0 == chrec1)
1478 return true;
1479
1480 switch (TREE_CODE (chrec0))
1481 {
1482 case INTEGER_CST:
1483 return operand_equal_p (chrec0, chrec1, 0);
1484
1485 case POLYNOMIAL_CHREC:
1486 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1487 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1488 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1489
1490 case PLUS_EXPR:
1491 case MULT_EXPR:
1492 case MINUS_EXPR:
1493 case POINTER_PLUS_EXPR:
1494 return eq_evolutions_p (TREE_OPERAND (chrec0, 0),
1495 TREE_OPERAND (chrec1, 0))
1496 && eq_evolutions_p (TREE_OPERAND (chrec0, 1),
1497 TREE_OPERAND (chrec1, 1));
1498
1499 default:
1500 return false;
1501 }
1502 }
1503
1504 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1505 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1506 which of these cases happens. */
1507
1508 enum ev_direction
1509 scev_direction (const_tree chrec)
1510 {
1511 const_tree step;
1512
1513 if (!evolution_function_is_affine_p (chrec))
1514 return EV_DIR_UNKNOWN;
1515
1516 step = CHREC_RIGHT (chrec);
1517 if (TREE_CODE (step) != INTEGER_CST)
1518 return EV_DIR_UNKNOWN;
1519
1520 if (tree_int_cst_sign_bit (step))
1521 return EV_DIR_DECREASES;
1522 else
1523 return EV_DIR_GROWS;
1524 }
1525
1526 /* Iterates over all the components of SCEV, and calls CBCK. */
1527
1528 void
1529 for_each_scev_op (tree *scev, bool (*cbck) (tree *, void *), void *data)
1530 {
1531 switch (TREE_CODE_LENGTH (TREE_CODE (*scev)))
1532 {
1533 case 3:
1534 for_each_scev_op (&TREE_OPERAND (*scev, 2), cbck, data);
1535
1536 case 2:
1537 for_each_scev_op (&TREE_OPERAND (*scev, 1), cbck, data);
1538
1539 case 1:
1540 for_each_scev_op (&TREE_OPERAND (*scev, 0), cbck, data);
1541
1542 default:
1543 cbck (scev, data);
1544 break;
1545 }
1546 }
1547
1548 /* Returns true when the operation can be part of a linear
1549 expression. */
1550
1551 static inline bool
1552 operator_is_linear (tree scev)
1553 {
1554 switch (TREE_CODE (scev))
1555 {
1556 case INTEGER_CST:
1557 case POLYNOMIAL_CHREC:
1558 case PLUS_EXPR:
1559 case POINTER_PLUS_EXPR:
1560 case MULT_EXPR:
1561 case MINUS_EXPR:
1562 case NEGATE_EXPR:
1563 case SSA_NAME:
1564 case NON_LVALUE_EXPR:
1565 case BIT_NOT_EXPR:
1566 CASE_CONVERT:
1567 return true;
1568
1569 default:
1570 return false;
1571 }
1572 }
1573
1574 /* Return true when SCEV is a linear expression. Linear expressions
1575 can contain additions, substractions and multiplications.
1576 Multiplications are restricted to constant scaling: "cst * x". */
1577
1578 bool
1579 scev_is_linear_expression (tree scev)
1580 {
1581 if (scev == NULL
1582 || !operator_is_linear (scev))
1583 return false;
1584
1585 if (TREE_CODE (scev) == MULT_EXPR)
1586 return !(tree_contains_chrecs (TREE_OPERAND (scev, 0), NULL)
1587 && tree_contains_chrecs (TREE_OPERAND (scev, 1), NULL));
1588
1589 if (TREE_CODE (scev) == POLYNOMIAL_CHREC
1590 && !evolution_function_is_affine_multivariate_p (scev, CHREC_VARIABLE (scev)))
1591 return false;
1592
1593 switch (TREE_CODE_LENGTH (TREE_CODE (scev)))
1594 {
1595 case 3:
1596 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1597 && scev_is_linear_expression (TREE_OPERAND (scev, 1))
1598 && scev_is_linear_expression (TREE_OPERAND (scev, 2));
1599
1600 case 2:
1601 return scev_is_linear_expression (TREE_OPERAND (scev, 0))
1602 && scev_is_linear_expression (TREE_OPERAND (scev, 1));
1603
1604 case 1:
1605 return scev_is_linear_expression (TREE_OPERAND (scev, 0));
1606
1607 case 0:
1608 return true;
1609
1610 default:
1611 return false;
1612 }
1613 }
1614
1615 /* Determines whether the expression CHREC contains only interger consts
1616 in the right parts. */
1617
1618 bool
1619 evolution_function_right_is_integer_cst (const_tree chrec)
1620 {
1621 if (chrec == NULL_TREE)
1622 return false;
1623
1624 switch (TREE_CODE (chrec))
1625 {
1626 case INTEGER_CST:
1627 return true;
1628
1629 case POLYNOMIAL_CHREC:
1630 return TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST
1631 && (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
1632 || evolution_function_right_is_integer_cst (CHREC_LEFT (chrec)));
1633
1634 CASE_CONVERT:
1635 return evolution_function_right_is_integer_cst (TREE_OPERAND (chrec, 0));
1636
1637 default:
1638 return false;
1639 }
1640 }