re PR tree-optimization/31995 (can't determine dependence between p->a[x+i] and p...
[gcc.git] / gcc / tree-chrec.c
1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
24 variables.
25 */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "ggc.h"
32 #include "tree.h"
33 #include "real.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-flow.h"
37 #include "tree-chrec.h"
38 #include "tree-pass.h"
39 #include "params.h"
40 #include "tree-scalar-evolution.h"
41
42 \f
43
44 /* Extended folder for chrecs. */
45
46 /* Determines whether CST is not a constant evolution. */
47
48 static inline bool
49 is_not_constant_evolution (tree cst)
50 {
51 return (TREE_CODE (cst) == POLYNOMIAL_CHREC);
52 }
53
54 /* Fold CODE for a polynomial function and a constant. */
55
56 static inline tree
57 chrec_fold_poly_cst (enum tree_code code,
58 tree type,
59 tree poly,
60 tree cst)
61 {
62 gcc_assert (poly);
63 gcc_assert (cst);
64 gcc_assert (TREE_CODE (poly) == POLYNOMIAL_CHREC);
65 gcc_assert (!is_not_constant_evolution (cst));
66 gcc_assert (type == chrec_type (poly));
67
68 switch (code)
69 {
70 case PLUS_EXPR:
71 return build_polynomial_chrec
72 (CHREC_VARIABLE (poly),
73 chrec_fold_plus (type, CHREC_LEFT (poly), cst),
74 CHREC_RIGHT (poly));
75
76 case MINUS_EXPR:
77 return build_polynomial_chrec
78 (CHREC_VARIABLE (poly),
79 chrec_fold_minus (type, CHREC_LEFT (poly), cst),
80 CHREC_RIGHT (poly));
81
82 case MULT_EXPR:
83 return build_polynomial_chrec
84 (CHREC_VARIABLE (poly),
85 chrec_fold_multiply (type, CHREC_LEFT (poly), cst),
86 chrec_fold_multiply (type, CHREC_RIGHT (poly), cst));
87
88 default:
89 return chrec_dont_know;
90 }
91 }
92
93 /* Fold the addition of two polynomial functions. */
94
95 static inline tree
96 chrec_fold_plus_poly_poly (enum tree_code code,
97 tree type,
98 tree poly0,
99 tree poly1)
100 {
101 tree left, right;
102 struct loop *loop0 = get_chrec_loop (poly0);
103 struct loop *loop1 = get_chrec_loop (poly1);
104
105 gcc_assert (poly0);
106 gcc_assert (poly1);
107 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
108 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
109 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
110 gcc_assert (type == chrec_type (poly0));
111
112 /*
113 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
114 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
115 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
116 if (flow_loop_nested_p (loop0, loop1))
117 {
118 if (code == PLUS_EXPR)
119 return build_polynomial_chrec
120 (CHREC_VARIABLE (poly1),
121 chrec_fold_plus (type, poly0, CHREC_LEFT (poly1)),
122 CHREC_RIGHT (poly1));
123 else
124 return build_polynomial_chrec
125 (CHREC_VARIABLE (poly1),
126 chrec_fold_minus (type, poly0, CHREC_LEFT (poly1)),
127 chrec_fold_multiply (type, CHREC_RIGHT (poly1),
128 SCALAR_FLOAT_TYPE_P (type)
129 ? build_real (type, dconstm1)
130 : build_int_cst_type (type, -1)));
131 }
132
133 if (flow_loop_nested_p (loop1, loop0))
134 {
135 if (code == PLUS_EXPR)
136 return build_polynomial_chrec
137 (CHREC_VARIABLE (poly0),
138 chrec_fold_plus (type, CHREC_LEFT (poly0), poly1),
139 CHREC_RIGHT (poly0));
140 else
141 return build_polynomial_chrec
142 (CHREC_VARIABLE (poly0),
143 chrec_fold_minus (type, CHREC_LEFT (poly0), poly1),
144 CHREC_RIGHT (poly0));
145 }
146
147 /* This function should never be called for chrecs of loops that
148 do not belong to the same loop nest. */
149 gcc_assert (loop0 == loop1);
150
151 if (code == PLUS_EXPR)
152 {
153 left = chrec_fold_plus
154 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
155 right = chrec_fold_plus
156 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
157 }
158 else
159 {
160 left = chrec_fold_minus
161 (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
162 right = chrec_fold_minus
163 (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
164 }
165
166 if (chrec_zerop (right))
167 return left;
168 else
169 return build_polynomial_chrec
170 (CHREC_VARIABLE (poly0), left, right);
171 }
172
173 \f
174
175 /* Fold the multiplication of two polynomial functions. */
176
177 static inline tree
178 chrec_fold_multiply_poly_poly (tree type,
179 tree poly0,
180 tree poly1)
181 {
182 tree t0, t1, t2;
183 int var;
184 struct loop *loop0 = get_chrec_loop (poly0);
185 struct loop *loop1 = get_chrec_loop (poly1);
186
187 gcc_assert (poly0);
188 gcc_assert (poly1);
189 gcc_assert (TREE_CODE (poly0) == POLYNOMIAL_CHREC);
190 gcc_assert (TREE_CODE (poly1) == POLYNOMIAL_CHREC);
191 gcc_assert (chrec_type (poly0) == chrec_type (poly1));
192 gcc_assert (type == chrec_type (poly0));
193
194 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
195 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
196 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
197 if (flow_loop_nested_p (loop0, loop1))
198 /* poly0 is a constant wrt. poly1. */
199 return build_polynomial_chrec
200 (CHREC_VARIABLE (poly1),
201 chrec_fold_multiply (type, CHREC_LEFT (poly1), poly0),
202 CHREC_RIGHT (poly1));
203
204 if (flow_loop_nested_p (loop1, loop0))
205 /* poly1 is a constant wrt. poly0. */
206 return build_polynomial_chrec
207 (CHREC_VARIABLE (poly0),
208 chrec_fold_multiply (type, CHREC_LEFT (poly0), poly1),
209 CHREC_RIGHT (poly0));
210
211 gcc_assert (loop0 == loop1);
212
213 /* poly0 and poly1 are two polynomials in the same variable,
214 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
215
216 /* "a*c". */
217 t0 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_LEFT (poly1));
218
219 /* "a*d + b*c + b*d". */
220 t1 = chrec_fold_multiply (type, CHREC_LEFT (poly0), CHREC_RIGHT (poly1));
221 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
222 CHREC_RIGHT (poly0),
223 CHREC_LEFT (poly1)));
224 t1 = chrec_fold_plus (type, t1, chrec_fold_multiply (type,
225 CHREC_RIGHT (poly0),
226 CHREC_RIGHT (poly1)));
227 /* "2*b*d". */
228 t2 = chrec_fold_multiply (type, CHREC_RIGHT (poly0), CHREC_RIGHT (poly1));
229 t2 = chrec_fold_multiply (type, SCALAR_FLOAT_TYPE_P (type)
230 ? build_real (type, dconst2)
231 : build_int_cst (type, 2), t2);
232
233 var = CHREC_VARIABLE (poly0);
234 return build_polynomial_chrec (var, t0,
235 build_polynomial_chrec (var, t1, t2));
236 }
237
238 /* When the operands are automatically_generated_chrec_p, the fold has
239 to respect the semantics of the operands. */
240
241 static inline tree
242 chrec_fold_automatically_generated_operands (tree op0,
243 tree op1)
244 {
245 if (op0 == chrec_dont_know
246 || op1 == chrec_dont_know)
247 return chrec_dont_know;
248
249 if (op0 == chrec_known
250 || op1 == chrec_known)
251 return chrec_known;
252
253 if (op0 == chrec_not_analyzed_yet
254 || op1 == chrec_not_analyzed_yet)
255 return chrec_not_analyzed_yet;
256
257 /* The default case produces a safe result. */
258 return chrec_dont_know;
259 }
260
261 /* Fold the addition of two chrecs. */
262
263 static tree
264 chrec_fold_plus_1 (enum tree_code code, tree type,
265 tree op0, tree op1)
266 {
267 if (automatically_generated_chrec_p (op0)
268 || automatically_generated_chrec_p (op1))
269 return chrec_fold_automatically_generated_operands (op0, op1);
270
271 switch (TREE_CODE (op0))
272 {
273 case POLYNOMIAL_CHREC:
274 switch (TREE_CODE (op1))
275 {
276 case POLYNOMIAL_CHREC:
277 return chrec_fold_plus_poly_poly (code, type, op0, op1);
278
279 default:
280 if (code == PLUS_EXPR)
281 return build_polynomial_chrec
282 (CHREC_VARIABLE (op0),
283 chrec_fold_plus (type, CHREC_LEFT (op0), op1),
284 CHREC_RIGHT (op0));
285 else
286 return build_polynomial_chrec
287 (CHREC_VARIABLE (op0),
288 chrec_fold_minus (type, CHREC_LEFT (op0), op1),
289 CHREC_RIGHT (op0));
290 }
291
292 default:
293 switch (TREE_CODE (op1))
294 {
295 case POLYNOMIAL_CHREC:
296 if (code == PLUS_EXPR)
297 return build_polynomial_chrec
298 (CHREC_VARIABLE (op1),
299 chrec_fold_plus (type, op0, CHREC_LEFT (op1)),
300 CHREC_RIGHT (op1));
301 else
302 return build_polynomial_chrec
303 (CHREC_VARIABLE (op1),
304 chrec_fold_minus (type, op0, CHREC_LEFT (op1)),
305 chrec_fold_multiply (type, CHREC_RIGHT (op1),
306 SCALAR_FLOAT_TYPE_P (type)
307 ? build_real (type, dconstm1)
308 : build_int_cst_type (type, -1)));
309
310 default:
311 {
312 int size = 0;
313 if ((tree_contains_chrecs (op0, &size)
314 || tree_contains_chrecs (op1, &size))
315 && size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
316 return build2 (code, type, op0, op1);
317 else if (size < PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
318 return fold_build2 (code, type,
319 fold_convert (type, op0),
320 fold_convert (type, op1));
321 else
322 return chrec_dont_know;
323 }
324 }
325 }
326 }
327
328 /* Fold the addition of two chrecs. */
329
330 tree
331 chrec_fold_plus (tree type,
332 tree op0,
333 tree op1)
334 {
335 if (automatically_generated_chrec_p (op0)
336 || automatically_generated_chrec_p (op1))
337 return chrec_fold_automatically_generated_operands (op0, op1);
338
339 if (integer_zerop (op0))
340 return op1;
341 if (integer_zerop (op1))
342 return op0;
343
344 return chrec_fold_plus_1 (PLUS_EXPR, type, op0, op1);
345 }
346
347 /* Fold the subtraction of two chrecs. */
348
349 tree
350 chrec_fold_minus (tree type,
351 tree op0,
352 tree op1)
353 {
354 if (automatically_generated_chrec_p (op0)
355 || automatically_generated_chrec_p (op1))
356 return chrec_fold_automatically_generated_operands (op0, op1);
357
358 if (integer_zerop (op1))
359 return op0;
360
361 return chrec_fold_plus_1 (MINUS_EXPR, type, op0, op1);
362 }
363
364 /* Fold the multiplication of two chrecs. */
365
366 tree
367 chrec_fold_multiply (tree type,
368 tree op0,
369 tree op1)
370 {
371 if (automatically_generated_chrec_p (op0)
372 || automatically_generated_chrec_p (op1))
373 return chrec_fold_automatically_generated_operands (op0, op1);
374
375 switch (TREE_CODE (op0))
376 {
377 case POLYNOMIAL_CHREC:
378 switch (TREE_CODE (op1))
379 {
380 case POLYNOMIAL_CHREC:
381 return chrec_fold_multiply_poly_poly (type, op0, op1);
382
383 default:
384 if (integer_onep (op1))
385 return op0;
386 if (integer_zerop (op1))
387 return build_int_cst (type, 0);
388
389 return build_polynomial_chrec
390 (CHREC_VARIABLE (op0),
391 chrec_fold_multiply (type, CHREC_LEFT (op0), op1),
392 chrec_fold_multiply (type, CHREC_RIGHT (op0), op1));
393 }
394
395 default:
396 if (integer_onep (op0))
397 return op1;
398
399 if (integer_zerop (op0))
400 return build_int_cst (type, 0);
401
402 switch (TREE_CODE (op1))
403 {
404 case POLYNOMIAL_CHREC:
405 return build_polynomial_chrec
406 (CHREC_VARIABLE (op1),
407 chrec_fold_multiply (type, CHREC_LEFT (op1), op0),
408 chrec_fold_multiply (type, CHREC_RIGHT (op1), op0));
409
410 default:
411 if (integer_onep (op1))
412 return op0;
413 if (integer_zerop (op1))
414 return build_int_cst (type, 0);
415 return fold_build2 (MULT_EXPR, type, op0, op1);
416 }
417 }
418 }
419
420 \f
421
422 /* Operations. */
423
424 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
425 calculation overflows, otherwise return C(n,k) with type TYPE. */
426
427 static tree
428 tree_fold_binomial (tree type, tree n, unsigned int k)
429 {
430 unsigned HOST_WIDE_INT lidx, lnum, ldenom, lres, ldum;
431 HOST_WIDE_INT hidx, hnum, hdenom, hres, hdum;
432 unsigned int i;
433 tree res;
434
435 /* Handle the most frequent cases. */
436 if (k == 0)
437 return build_int_cst (type, 1);
438 if (k == 1)
439 return fold_convert (type, n);
440
441 /* Check that k <= n. */
442 if (TREE_INT_CST_HIGH (n) == 0
443 && TREE_INT_CST_LOW (n) < k)
444 return NULL_TREE;
445
446 /* Numerator = n. */
447 lnum = TREE_INT_CST_LOW (n);
448 hnum = TREE_INT_CST_HIGH (n);
449
450 /* Denominator = 2. */
451 ldenom = 2;
452 hdenom = 0;
453
454 /* Index = Numerator-1. */
455 if (lnum == 0)
456 {
457 hidx = hnum - 1;
458 lidx = ~ (unsigned HOST_WIDE_INT) 0;
459 }
460 else
461 {
462 hidx = hnum;
463 lidx = lnum - 1;
464 }
465
466 /* Numerator = Numerator*Index = n*(n-1). */
467 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
468 return NULL_TREE;
469
470 for (i = 3; i <= k; i++)
471 {
472 /* Index--. */
473 if (lidx == 0)
474 {
475 hidx--;
476 lidx = ~ (unsigned HOST_WIDE_INT) 0;
477 }
478 else
479 lidx--;
480
481 /* Numerator *= Index. */
482 if (mul_double (lnum, hnum, lidx, hidx, &lnum, &hnum))
483 return NULL_TREE;
484
485 /* Denominator *= i. */
486 mul_double (ldenom, hdenom, i, 0, &ldenom, &hdenom);
487 }
488
489 /* Result = Numerator / Denominator. */
490 div_and_round_double (EXACT_DIV_EXPR, 1, lnum, hnum, ldenom, hdenom,
491 &lres, &hres, &ldum, &hdum);
492
493 res = build_int_cst_wide (type, lres, hres);
494 return int_fits_type_p (res, type) ? res : NULL_TREE;
495 }
496
497 /* Helper function. Use the Newton's interpolating formula for
498 evaluating the value of the evolution function. */
499
500 static tree
501 chrec_evaluate (unsigned var, tree chrec, tree n, unsigned int k)
502 {
503 tree arg0, arg1, binomial_n_k;
504 tree type = TREE_TYPE (chrec);
505 struct loop *var_loop = get_loop (var);
506
507 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
508 && flow_loop_nested_p (var_loop, get_chrec_loop (chrec)))
509 chrec = CHREC_LEFT (chrec);
510
511 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
512 && CHREC_VARIABLE (chrec) == var)
513 {
514 arg0 = chrec_evaluate (var, CHREC_RIGHT (chrec), n, k + 1);
515 if (arg0 == chrec_dont_know)
516 return chrec_dont_know;
517 binomial_n_k = tree_fold_binomial (type, n, k);
518 if (!binomial_n_k)
519 return chrec_dont_know;
520 arg1 = fold_build2 (MULT_EXPR, type,
521 CHREC_LEFT (chrec), binomial_n_k);
522 return chrec_fold_plus (type, arg0, arg1);
523 }
524
525 binomial_n_k = tree_fold_binomial (type, n, k);
526 if (!binomial_n_k)
527 return chrec_dont_know;
528
529 return fold_build2 (MULT_EXPR, type, chrec, binomial_n_k);
530 }
531
532 /* Evaluates "CHREC (X)" when the varying variable is VAR.
533 Example: Given the following parameters,
534
535 var = 1
536 chrec = {3, +, 4}_1
537 x = 10
538
539 The result is given by the Newton's interpolating formula:
540 3 * \binom{10}{0} + 4 * \binom{10}{1}.
541 */
542
543 tree
544 chrec_apply (unsigned var,
545 tree chrec,
546 tree x)
547 {
548 tree type = chrec_type (chrec);
549 tree res = chrec_dont_know;
550
551 if (automatically_generated_chrec_p (chrec)
552 || automatically_generated_chrec_p (x)
553
554 /* When the symbols are defined in an outer loop, it is possible
555 to symbolically compute the apply, since the symbols are
556 constants with respect to the varying loop. */
557 || chrec_contains_symbols_defined_in_loop (chrec, var))
558 return chrec_dont_know;
559
560 if (dump_file && (dump_flags & TDF_DETAILS))
561 fprintf (dump_file, "(chrec_apply \n");
562
563 if (TREE_CODE (x) == INTEGER_CST && SCALAR_FLOAT_TYPE_P (type))
564 x = build_real_from_int_cst (type, x);
565
566 if (evolution_function_is_affine_p (chrec))
567 {
568 /* "{a, +, b} (x)" -> "a + b*x". */
569 x = chrec_convert (type, x, NULL_TREE);
570 res = chrec_fold_multiply (type, CHREC_RIGHT (chrec), x);
571 if (!integer_zerop (CHREC_LEFT (chrec)))
572 res = chrec_fold_plus (type, CHREC_LEFT (chrec), res);
573 }
574
575 else if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
576 res = chrec;
577
578 else if (TREE_CODE (x) == INTEGER_CST
579 && tree_int_cst_sgn (x) == 1)
580 /* testsuite/.../ssa-chrec-38.c. */
581 res = chrec_evaluate (var, chrec, x, 0);
582 else
583 res = chrec_dont_know;
584
585 if (dump_file && (dump_flags & TDF_DETAILS))
586 {
587 fprintf (dump_file, " (varying_loop = %d\n", var);
588 fprintf (dump_file, ")\n (chrec = ");
589 print_generic_expr (dump_file, chrec, 0);
590 fprintf (dump_file, ")\n (x = ");
591 print_generic_expr (dump_file, x, 0);
592 fprintf (dump_file, ")\n (res = ");
593 print_generic_expr (dump_file, res, 0);
594 fprintf (dump_file, "))\n");
595 }
596
597 return res;
598 }
599
600 /* Replaces the initial condition in CHREC with INIT_COND. */
601
602 tree
603 chrec_replace_initial_condition (tree chrec,
604 tree init_cond)
605 {
606 if (automatically_generated_chrec_p (chrec))
607 return chrec;
608
609 gcc_assert (chrec_type (chrec) == chrec_type (init_cond));
610
611 switch (TREE_CODE (chrec))
612 {
613 case POLYNOMIAL_CHREC:
614 return build_polynomial_chrec
615 (CHREC_VARIABLE (chrec),
616 chrec_replace_initial_condition (CHREC_LEFT (chrec), init_cond),
617 CHREC_RIGHT (chrec));
618
619 default:
620 return init_cond;
621 }
622 }
623
624 /* Returns the initial condition of a given CHREC. */
625
626 tree
627 initial_condition (tree chrec)
628 {
629 if (automatically_generated_chrec_p (chrec))
630 return chrec;
631
632 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
633 return initial_condition (CHREC_LEFT (chrec));
634 else
635 return chrec;
636 }
637
638 /* Returns a univariate function that represents the evolution in
639 LOOP_NUM. Mask the evolution of any other loop. */
640
641 tree
642 hide_evolution_in_other_loops_than_loop (tree chrec,
643 unsigned loop_num)
644 {
645 struct loop *loop = get_loop (loop_num), *chloop;
646 if (automatically_generated_chrec_p (chrec))
647 return chrec;
648
649 switch (TREE_CODE (chrec))
650 {
651 case POLYNOMIAL_CHREC:
652 chloop = get_chrec_loop (chrec);
653
654 if (chloop == loop)
655 return build_polynomial_chrec
656 (loop_num,
657 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
658 loop_num),
659 CHREC_RIGHT (chrec));
660
661 else if (flow_loop_nested_p (chloop, loop))
662 /* There is no evolution in this loop. */
663 return initial_condition (chrec);
664
665 else
666 {
667 gcc_assert (flow_loop_nested_p (loop, chloop));
668 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec),
669 loop_num);
670 }
671
672 default:
673 return chrec;
674 }
675 }
676
677 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
678 true, otherwise returns the initial condition in LOOP_NUM. */
679
680 static tree
681 chrec_component_in_loop_num (tree chrec,
682 unsigned loop_num,
683 bool right)
684 {
685 tree component;
686 struct loop *loop = get_loop (loop_num), *chloop;
687
688 if (automatically_generated_chrec_p (chrec))
689 return chrec;
690
691 switch (TREE_CODE (chrec))
692 {
693 case POLYNOMIAL_CHREC:
694 chloop = get_chrec_loop (chrec);
695
696 if (chloop == loop)
697 {
698 if (right)
699 component = CHREC_RIGHT (chrec);
700 else
701 component = CHREC_LEFT (chrec);
702
703 if (TREE_CODE (CHREC_LEFT (chrec)) != POLYNOMIAL_CHREC
704 || CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec))
705 return component;
706
707 else
708 return build_polynomial_chrec
709 (loop_num,
710 chrec_component_in_loop_num (CHREC_LEFT (chrec),
711 loop_num,
712 right),
713 component);
714 }
715
716 else if (flow_loop_nested_p (chloop, loop))
717 /* There is no evolution part in this loop. */
718 return NULL_TREE;
719
720 else
721 {
722 gcc_assert (flow_loop_nested_p (loop, chloop));
723 return chrec_component_in_loop_num (CHREC_LEFT (chrec),
724 loop_num,
725 right);
726 }
727
728 default:
729 if (right)
730 return NULL_TREE;
731 else
732 return chrec;
733 }
734 }
735
736 /* Returns the evolution part in LOOP_NUM. Example: the call
737 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
738 {1, +, 2}_1 */
739
740 tree
741 evolution_part_in_loop_num (tree chrec,
742 unsigned loop_num)
743 {
744 return chrec_component_in_loop_num (chrec, loop_num, true);
745 }
746
747 /* Returns the initial condition in LOOP_NUM. Example: the call
748 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
749 {0, +, 1}_1 */
750
751 tree
752 initial_condition_in_loop_num (tree chrec,
753 unsigned loop_num)
754 {
755 return chrec_component_in_loop_num (chrec, loop_num, false);
756 }
757
758 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
759 This function is essentially used for setting the evolution to
760 chrec_dont_know, for example after having determined that it is
761 impossible to say how many times a loop will execute. */
762
763 tree
764 reset_evolution_in_loop (unsigned loop_num,
765 tree chrec,
766 tree new_evol)
767 {
768 struct loop *loop = get_loop (loop_num);
769
770 gcc_assert (chrec_type (chrec) == chrec_type (new_evol));
771
772 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC
773 && flow_loop_nested_p (loop, get_chrec_loop (chrec)))
774 {
775 tree left = reset_evolution_in_loop (loop_num, CHREC_LEFT (chrec),
776 new_evol);
777 tree right = reset_evolution_in_loop (loop_num, CHREC_RIGHT (chrec),
778 new_evol);
779 return build3 (POLYNOMIAL_CHREC, TREE_TYPE (left),
780 build_int_cst (NULL_TREE, CHREC_VARIABLE (chrec)),
781 left, right);
782 }
783
784 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC
785 && CHREC_VARIABLE (chrec) == loop_num)
786 chrec = CHREC_LEFT (chrec);
787
788 return build_polynomial_chrec (loop_num, chrec, new_evol);
789 }
790
791 /* Merges two evolution functions that were found by following two
792 alternate paths of a conditional expression. */
793
794 tree
795 chrec_merge (tree chrec1,
796 tree chrec2)
797 {
798 if (chrec1 == chrec_dont_know
799 || chrec2 == chrec_dont_know)
800 return chrec_dont_know;
801
802 if (chrec1 == chrec_known
803 || chrec2 == chrec_known)
804 return chrec_known;
805
806 if (chrec1 == chrec_not_analyzed_yet)
807 return chrec2;
808 if (chrec2 == chrec_not_analyzed_yet)
809 return chrec1;
810
811 if (eq_evolutions_p (chrec1, chrec2))
812 return chrec1;
813
814 return chrec_dont_know;
815 }
816
817 \f
818
819 /* Observers. */
820
821 /* Helper function for is_multivariate_chrec. */
822
823 static bool
824 is_multivariate_chrec_rec (tree chrec, unsigned int rec_var)
825 {
826 if (chrec == NULL_TREE)
827 return false;
828
829 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
830 {
831 if (CHREC_VARIABLE (chrec) != rec_var)
832 return true;
833 else
834 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec), rec_var)
835 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec), rec_var));
836 }
837 else
838 return false;
839 }
840
841 /* Determine whether the given chrec is multivariate or not. */
842
843 bool
844 is_multivariate_chrec (tree chrec)
845 {
846 if (chrec == NULL_TREE)
847 return false;
848
849 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
850 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec),
851 CHREC_VARIABLE (chrec))
852 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec),
853 CHREC_VARIABLE (chrec)));
854 else
855 return false;
856 }
857
858 /* Determines whether the chrec contains symbolic names or not. */
859
860 bool
861 chrec_contains_symbols (tree chrec)
862 {
863 int i, n;
864
865 if (chrec == NULL_TREE)
866 return false;
867
868 if (TREE_CODE (chrec) == SSA_NAME
869 || TREE_CODE (chrec) == VAR_DECL
870 || TREE_CODE (chrec) == PARM_DECL
871 || TREE_CODE (chrec) == FUNCTION_DECL
872 || TREE_CODE (chrec) == LABEL_DECL
873 || TREE_CODE (chrec) == RESULT_DECL
874 || TREE_CODE (chrec) == FIELD_DECL)
875 return true;
876
877 n = TREE_OPERAND_LENGTH (chrec);
878 for (i = 0; i < n; i++)
879 if (chrec_contains_symbols (TREE_OPERAND (chrec, i)))
880 return true;
881 return false;
882 }
883
884 /* Determines whether the chrec contains undetermined coefficients. */
885
886 bool
887 chrec_contains_undetermined (tree chrec)
888 {
889 int i, n;
890
891 if (chrec == chrec_dont_know)
892 return true;
893
894 if (chrec == NULL_TREE)
895 return false;
896
897 n = TREE_OPERAND_LENGTH (chrec);
898 for (i = 0; i < n; i++)
899 if (chrec_contains_undetermined (TREE_OPERAND (chrec, i)))
900 return true;
901 return false;
902 }
903
904 /* Determines whether the tree EXPR contains chrecs, and increment
905 SIZE if it is not a NULL pointer by an estimation of the depth of
906 the tree. */
907
908 bool
909 tree_contains_chrecs (tree expr, int *size)
910 {
911 int i, n;
912
913 if (expr == NULL_TREE)
914 return false;
915
916 if (size)
917 (*size)++;
918
919 if (tree_is_chrec (expr))
920 return true;
921
922 n = TREE_OPERAND_LENGTH (expr);
923 for (i = 0; i < n; i++)
924 if (tree_contains_chrecs (TREE_OPERAND (expr, i), size))
925 return true;
926 return false;
927 }
928
929 /* Recursive helper function. */
930
931 static bool
932 evolution_function_is_invariant_rec_p (tree chrec, int loopnum)
933 {
934 if (evolution_function_is_constant_p (chrec))
935 return true;
936
937 if (TREE_CODE (chrec) == SSA_NAME
938 && expr_invariant_in_loop_p (get_loop (loopnum), chrec))
939 return true;
940
941 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
942 {
943 if (CHREC_VARIABLE (chrec) == (unsigned) loopnum
944 || !evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec),
945 loopnum)
946 || !evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec),
947 loopnum))
948 return false;
949 return true;
950 }
951
952 switch (TREE_OPERAND_LENGTH (chrec))
953 {
954 case 2:
955 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 1),
956 loopnum))
957 return false;
958
959 case 1:
960 if (!evolution_function_is_invariant_rec_p (TREE_OPERAND (chrec, 0),
961 loopnum))
962 return false;
963 return true;
964
965 default:
966 return false;
967 }
968
969 return false;
970 }
971
972 /* Return true if CHREC is invariant in loop LOOPNUM, false otherwise. */
973
974 bool
975 evolution_function_is_invariant_p (tree chrec, int loopnum)
976 {
977 if (evolution_function_is_constant_p (chrec))
978 return true;
979
980 if (current_loops != NULL)
981 return evolution_function_is_invariant_rec_p (chrec, loopnum);
982
983 return false;
984 }
985
986 /* Determine whether the given tree is an affine multivariate
987 evolution. */
988
989 bool
990 evolution_function_is_affine_multivariate_p (tree chrec, int loopnum)
991 {
992 if (chrec == NULL_TREE)
993 return false;
994
995 switch (TREE_CODE (chrec))
996 {
997 case POLYNOMIAL_CHREC:
998 if (evolution_function_is_invariant_rec_p (CHREC_LEFT (chrec), loopnum))
999 {
1000 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum))
1001 return true;
1002 else
1003 {
1004 if (TREE_CODE (CHREC_RIGHT (chrec)) == POLYNOMIAL_CHREC
1005 && CHREC_VARIABLE (CHREC_RIGHT (chrec))
1006 != CHREC_VARIABLE (chrec)
1007 && evolution_function_is_affine_multivariate_p
1008 (CHREC_RIGHT (chrec), loopnum))
1009 return true;
1010 else
1011 return false;
1012 }
1013 }
1014 else
1015 {
1016 if (evolution_function_is_invariant_rec_p (CHREC_RIGHT (chrec), loopnum)
1017 && TREE_CODE (CHREC_LEFT (chrec)) == POLYNOMIAL_CHREC
1018 && CHREC_VARIABLE (CHREC_LEFT (chrec)) != CHREC_VARIABLE (chrec)
1019 && evolution_function_is_affine_multivariate_p
1020 (CHREC_LEFT (chrec), loopnum))
1021 return true;
1022 else
1023 return false;
1024 }
1025
1026 default:
1027 return false;
1028 }
1029 }
1030
1031 /* Determine whether the given tree is a function in zero or one
1032 variables. */
1033
1034 bool
1035 evolution_function_is_univariate_p (tree chrec)
1036 {
1037 if (chrec == NULL_TREE)
1038 return true;
1039
1040 switch (TREE_CODE (chrec))
1041 {
1042 case POLYNOMIAL_CHREC:
1043 switch (TREE_CODE (CHREC_LEFT (chrec)))
1044 {
1045 case POLYNOMIAL_CHREC:
1046 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_LEFT (chrec)))
1047 return false;
1048 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec)))
1049 return false;
1050 break;
1051
1052 default:
1053 break;
1054 }
1055
1056 switch (TREE_CODE (CHREC_RIGHT (chrec)))
1057 {
1058 case POLYNOMIAL_CHREC:
1059 if (CHREC_VARIABLE (chrec) != CHREC_VARIABLE (CHREC_RIGHT (chrec)))
1060 return false;
1061 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec)))
1062 return false;
1063 break;
1064
1065 default:
1066 break;
1067 }
1068
1069 default:
1070 return true;
1071 }
1072 }
1073
1074 /* Returns the number of variables of CHREC. Example: the call
1075 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
1076
1077 unsigned
1078 nb_vars_in_chrec (tree chrec)
1079 {
1080 if (chrec == NULL_TREE)
1081 return 0;
1082
1083 switch (TREE_CODE (chrec))
1084 {
1085 case POLYNOMIAL_CHREC:
1086 return 1 + nb_vars_in_chrec
1087 (initial_condition_in_loop_num (chrec, CHREC_VARIABLE (chrec)));
1088
1089 default:
1090 return 0;
1091 }
1092 }
1093
1094 /* Returns true if TYPE is a type in that we cannot directly perform
1095 arithmetics, even though it is a scalar type. */
1096
1097 static bool
1098 avoid_arithmetics_in_type_p (tree type)
1099 {
1100 /* Ada frontend uses subtypes -- an arithmetic cannot be directly performed
1101 in the subtype, but a base type must be used, and the result then can
1102 be casted to the subtype. */
1103 if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != NULL_TREE)
1104 return true;
1105
1106 return false;
1107 }
1108
1109 static tree chrec_convert_1 (tree, tree, tree, bool);
1110
1111 /* Converts BASE and STEP of affine scev to TYPE. LOOP is the loop whose iv
1112 the scev corresponds to. AT_STMT is the statement at that the scev is
1113 evaluated. USE_OVERFLOW_SEMANTICS is true if this function should assume that
1114 the rules for overflow of the given language apply (e.g., that signed
1115 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1116 tests, but also to enforce that the result follows them. Returns true if the
1117 conversion succeeded, false otherwise. */
1118
1119 bool
1120 convert_affine_scev (struct loop *loop, tree type,
1121 tree *base, tree *step, tree at_stmt,
1122 bool use_overflow_semantics)
1123 {
1124 tree ct = TREE_TYPE (*step);
1125 bool enforce_overflow_semantics;
1126 bool must_check_src_overflow, must_check_rslt_overflow;
1127 tree new_base, new_step;
1128
1129 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1130 if (avoid_arithmetics_in_type_p (type))
1131 return false;
1132
1133 /* In general,
1134 (TYPE) (BASE + STEP * i) = (TYPE) BASE + (TYPE -- sign extend) STEP * i,
1135 but we must check some assumptions.
1136
1137 1) If [BASE, +, STEP] wraps, the equation is not valid when precision
1138 of CT is smaller than the precision of TYPE. For example, when we
1139 cast unsigned char [254, +, 1] to unsigned, the values on left side
1140 are 254, 255, 0, 1, ..., but those on the right side are
1141 254, 255, 256, 257, ...
1142 2) In case that we must also preserve the fact that signed ivs do not
1143 overflow, we must additionally check that the new iv does not wrap.
1144 For example, unsigned char [125, +, 1] casted to signed char could
1145 become a wrapping variable with values 125, 126, 127, -128, -127, ...,
1146 which would confuse optimizers that assume that this does not
1147 happen. */
1148 must_check_src_overflow = TYPE_PRECISION (ct) < TYPE_PRECISION (type);
1149
1150 enforce_overflow_semantics = (use_overflow_semantics
1151 && nowrap_type_p (type));
1152 if (enforce_overflow_semantics)
1153 {
1154 /* We can avoid checking whether the result overflows in the following
1155 cases:
1156
1157 -- must_check_src_overflow is true, and the range of TYPE is superset
1158 of the range of CT -- i.e., in all cases except if CT signed and
1159 TYPE unsigned.
1160 -- both CT and TYPE have the same precision and signedness, and we
1161 verify instead that the source does not overflow (this may be
1162 easier than verifying it for the result, as we may use the
1163 information about the semantics of overflow in CT). */
1164 if (must_check_src_overflow)
1165 {
1166 if (TYPE_UNSIGNED (type) && !TYPE_UNSIGNED (ct))
1167 must_check_rslt_overflow = true;
1168 else
1169 must_check_rslt_overflow = false;
1170 }
1171 else if (TYPE_UNSIGNED (ct) == TYPE_UNSIGNED (type)
1172 && TYPE_PRECISION (ct) == TYPE_PRECISION (type))
1173 {
1174 must_check_rslt_overflow = false;
1175 must_check_src_overflow = true;
1176 }
1177 else
1178 must_check_rslt_overflow = true;
1179 }
1180 else
1181 must_check_rslt_overflow = false;
1182
1183 if (must_check_src_overflow
1184 && scev_probably_wraps_p (*base, *step, at_stmt, loop,
1185 use_overflow_semantics))
1186 return false;
1187
1188 new_base = chrec_convert_1 (type, *base, at_stmt,
1189 use_overflow_semantics);
1190 /* The step must be sign extended, regardless of the signedness
1191 of CT and TYPE. This only needs to be handled specially when
1192 CT is unsigned -- to avoid e.g. unsigned char [100, +, 255]
1193 (with values 100, 99, 98, ...) from becoming signed or unsigned
1194 [100, +, 255] with values 100, 355, ...; the sign-extension is
1195 performed by default when CT is signed. */
1196 new_step = *step;
1197 if (TYPE_PRECISION (type) > TYPE_PRECISION (ct) && TYPE_UNSIGNED (ct))
1198 new_step = chrec_convert_1 (signed_type_for (ct), new_step, at_stmt,
1199 use_overflow_semantics);
1200 new_step = chrec_convert_1 (type, new_step, at_stmt, use_overflow_semantics);
1201
1202 if (automatically_generated_chrec_p (new_base)
1203 || automatically_generated_chrec_p (new_step))
1204 return false;
1205
1206 if (must_check_rslt_overflow
1207 /* Note that in this case we cannot use the fact that signed variables
1208 do not overflow, as this is what we are verifying for the new iv. */
1209 && scev_probably_wraps_p (new_base, new_step, at_stmt, loop, false))
1210 return false;
1211
1212 *base = new_base;
1213 *step = new_step;
1214 return true;
1215 }
1216 \f
1217
1218 /* Convert CHREC to TYPE. When the analyzer knows the context in
1219 which the CHREC is built, it sets AT_STMT to the statement that
1220 contains the definition of the analyzed variable, otherwise the
1221 conversion is less accurate: the information is used for
1222 determining a more accurate estimation of the number of iterations.
1223 By default AT_STMT could be safely set to NULL_TREE.
1224
1225 The following rule is always true: TREE_TYPE (chrec) ==
1226 TREE_TYPE (CHREC_LEFT (chrec)) == TREE_TYPE (CHREC_RIGHT (chrec)).
1227 An example of what could happen when adding two chrecs and the type
1228 of the CHREC_RIGHT is different than CHREC_LEFT is:
1229
1230 {(uint) 0, +, (uchar) 10} +
1231 {(uint) 0, +, (uchar) 250}
1232
1233 that would produce a wrong result if CHREC_RIGHT is not (uint):
1234
1235 {(uint) 0, +, (uchar) 4}
1236
1237 instead of
1238
1239 {(uint) 0, +, (uint) 260}
1240 */
1241
1242 tree
1243 chrec_convert (tree type, tree chrec, tree at_stmt)
1244 {
1245 return chrec_convert_1 (type, chrec, at_stmt, true);
1246 }
1247
1248 /* Convert CHREC to TYPE. When the analyzer knows the context in
1249 which the CHREC is built, it sets AT_STMT to the statement that
1250 contains the definition of the analyzed variable, otherwise the
1251 conversion is less accurate: the information is used for
1252 determining a more accurate estimation of the number of iterations.
1253 By default AT_STMT could be safely set to NULL_TREE.
1254
1255 USE_OVERFLOW_SEMANTICS is true if this function should assume that
1256 the rules for overflow of the given language apply (e.g., that signed
1257 arithmetics in C does not overflow) -- i.e., to use them to avoid unnecessary
1258 tests, but also to enforce that the result follows them. */
1259
1260 static tree
1261 chrec_convert_1 (tree type, tree chrec, tree at_stmt,
1262 bool use_overflow_semantics)
1263 {
1264 tree ct, res;
1265 tree base, step;
1266 struct loop *loop;
1267
1268 if (automatically_generated_chrec_p (chrec))
1269 return chrec;
1270
1271 ct = chrec_type (chrec);
1272 if (ct == type)
1273 return chrec;
1274
1275 if (!evolution_function_is_affine_p (chrec))
1276 goto keep_cast;
1277
1278 loop = get_chrec_loop (chrec);
1279 base = CHREC_LEFT (chrec);
1280 step = CHREC_RIGHT (chrec);
1281
1282 if (convert_affine_scev (loop, type, &base, &step, at_stmt,
1283 use_overflow_semantics))
1284 return build_polynomial_chrec (loop->num, base, step);
1285
1286 /* If we cannot propagate the cast inside the chrec, just keep the cast. */
1287 keep_cast:
1288 res = fold_convert (type, chrec);
1289
1290 /* Don't propagate overflows. */
1291 if (CONSTANT_CLASS_P (res))
1292 TREE_OVERFLOW (res) = 0;
1293
1294 /* But reject constants that don't fit in their type after conversion.
1295 This can happen if TYPE_MIN_VALUE or TYPE_MAX_VALUE are not the
1296 natural values associated with TYPE_PRECISION and TYPE_UNSIGNED,
1297 and can cause problems later when computing niters of loops. Note
1298 that we don't do the check before converting because we don't want
1299 to reject conversions of negative chrecs to unsigned types. */
1300 if (TREE_CODE (res) == INTEGER_CST
1301 && TREE_CODE (type) == INTEGER_TYPE
1302 && !int_fits_type_p (res, type))
1303 res = chrec_dont_know;
1304
1305 return res;
1306 }
1307
1308 /* Convert CHREC to TYPE, without regard to signed overflows. Returns the new
1309 chrec if something else than what chrec_convert would do happens, NULL_TREE
1310 otherwise. */
1311
1312 tree
1313 chrec_convert_aggressive (tree type, tree chrec)
1314 {
1315 tree inner_type, left, right, lc, rc;
1316
1317 if (automatically_generated_chrec_p (chrec)
1318 || TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1319 return NULL_TREE;
1320
1321 inner_type = TREE_TYPE (chrec);
1322 if (TYPE_PRECISION (type) > TYPE_PRECISION (inner_type))
1323 return NULL_TREE;
1324
1325 /* If we cannot perform arithmetic in TYPE, avoid creating an scev. */
1326 if (avoid_arithmetics_in_type_p (type))
1327 return NULL_TREE;
1328
1329 left = CHREC_LEFT (chrec);
1330 right = CHREC_RIGHT (chrec);
1331 lc = chrec_convert_aggressive (type, left);
1332 if (!lc)
1333 lc = chrec_convert (type, left, NULL_TREE);
1334 rc = chrec_convert_aggressive (type, right);
1335 if (!rc)
1336 rc = chrec_convert (type, right, NULL_TREE);
1337
1338 return build_polynomial_chrec (CHREC_VARIABLE (chrec), lc, rc);
1339 }
1340
1341 /* Returns true when CHREC0 == CHREC1. */
1342
1343 bool
1344 eq_evolutions_p (tree chrec0,
1345 tree chrec1)
1346 {
1347 if (chrec0 == NULL_TREE
1348 || chrec1 == NULL_TREE
1349 || TREE_CODE (chrec0) != TREE_CODE (chrec1))
1350 return false;
1351
1352 if (chrec0 == chrec1)
1353 return true;
1354
1355 switch (TREE_CODE (chrec0))
1356 {
1357 case INTEGER_CST:
1358 return operand_equal_p (chrec0, chrec1, 0);
1359
1360 case POLYNOMIAL_CHREC:
1361 return (CHREC_VARIABLE (chrec0) == CHREC_VARIABLE (chrec1)
1362 && eq_evolutions_p (CHREC_LEFT (chrec0), CHREC_LEFT (chrec1))
1363 && eq_evolutions_p (CHREC_RIGHT (chrec0), CHREC_RIGHT (chrec1)));
1364 default:
1365 return false;
1366 }
1367 }
1368
1369 /* Returns EV_GROWS if CHREC grows (assuming that it does not overflow),
1370 EV_DECREASES if it decreases, and EV_UNKNOWN if we cannot determine
1371 which of these cases happens. */
1372
1373 enum ev_direction
1374 scev_direction (tree chrec)
1375 {
1376 tree step;
1377
1378 if (!evolution_function_is_affine_p (chrec))
1379 return EV_DIR_UNKNOWN;
1380
1381 step = CHREC_RIGHT (chrec);
1382 if (TREE_CODE (step) != INTEGER_CST)
1383 return EV_DIR_UNKNOWN;
1384
1385 if (tree_int_cst_sign_bit (step))
1386 return EV_DIR_DECREASES;
1387 else
1388 return EV_DIR_GROWS;
1389 }