avr.c: Move definition of TARGET macros to end of file.
[gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tree-flow.h"
28 #include "gimple.h"
29 #include "tree-iterator.h"
30 #include "tree-pass.h"
31 #include "tree-ssa-propagate.h"
32
33
34 /* For each complex ssa name, a lattice value. We're interested in finding
35 out whether a complex number is degenerate in some way, having only real
36 or only complex parts. */
37
38 enum
39 {
40 UNINITIALIZED = 0,
41 ONLY_REAL = 1,
42 ONLY_IMAG = 2,
43 VARYING = 3
44 };
45
46 /* The type complex_lattice_t holds combinations of the above
47 constants. */
48 typedef int complex_lattice_t;
49
50 #define PAIR(a, b) ((a) << 2 | (b))
51
52 DEF_VEC_I(complex_lattice_t);
53 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
54
55 static VEC(complex_lattice_t, heap) *complex_lattice_values;
56
57 /* For each complex variable, a pair of variables for the components exists in
58 the hashtable. */
59 static htab_t complex_variable_components;
60
61 /* For each complex SSA_NAME, a pair of ssa names for the components. */
62 static VEC(tree, heap) *complex_ssa_name_components;
63
64 /* Lookup UID in the complex_variable_components hashtable and return the
65 associated tree. */
66 static tree
67 cvc_lookup (unsigned int uid)
68 {
69 struct int_tree_map *h, in;
70 in.uid = uid;
71 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
72 return h ? h->to : NULL;
73 }
74
75 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
76
77 static void
78 cvc_insert (unsigned int uid, tree to)
79 {
80 struct int_tree_map *h;
81 void **loc;
82
83 h = XNEW (struct int_tree_map);
84 h->uid = uid;
85 h->to = to;
86 loc = htab_find_slot_with_hash (complex_variable_components, h,
87 uid, INSERT);
88 *(struct int_tree_map **) loc = h;
89 }
90
91 /* Return true if T is not a zero constant. In the case of real values,
92 we're only interested in +0.0. */
93
94 static int
95 some_nonzerop (tree t)
96 {
97 int zerop = false;
98
99 /* Operations with real or imaginary part of a complex number zero
100 cannot be treated the same as operations with a real or imaginary
101 operand if we care about the signs of zeros in the result. */
102 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
103 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
104 else if (TREE_CODE (t) == FIXED_CST)
105 zerop = fixed_zerop (t);
106 else if (TREE_CODE (t) == INTEGER_CST)
107 zerop = integer_zerop (t);
108
109 return !zerop;
110 }
111
112
113 /* Compute a lattice value from the components of a complex type REAL
114 and IMAG. */
115
116 static complex_lattice_t
117 find_lattice_value_parts (tree real, tree imag)
118 {
119 int r, i;
120 complex_lattice_t ret;
121
122 r = some_nonzerop (real);
123 i = some_nonzerop (imag);
124 ret = r * ONLY_REAL + i * ONLY_IMAG;
125
126 /* ??? On occasion we could do better than mapping 0+0i to real, but we
127 certainly don't want to leave it UNINITIALIZED, which eventually gets
128 mapped to VARYING. */
129 if (ret == UNINITIALIZED)
130 ret = ONLY_REAL;
131
132 return ret;
133 }
134
135
136 /* Compute a lattice value from gimple_val T. */
137
138 static complex_lattice_t
139 find_lattice_value (tree t)
140 {
141 tree real, imag;
142
143 switch (TREE_CODE (t))
144 {
145 case SSA_NAME:
146 return VEC_index (complex_lattice_t, complex_lattice_values,
147 SSA_NAME_VERSION (t));
148
149 case COMPLEX_CST:
150 real = TREE_REALPART (t);
151 imag = TREE_IMAGPART (t);
152 break;
153
154 default:
155 gcc_unreachable ();
156 }
157
158 return find_lattice_value_parts (real, imag);
159 }
160
161 /* Determine if LHS is something for which we're interested in seeing
162 simulation results. */
163
164 static bool
165 is_complex_reg (tree lhs)
166 {
167 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
168 }
169
170 /* Mark the incoming parameters to the function as VARYING. */
171
172 static void
173 init_parameter_lattice_values (void)
174 {
175 tree parm, ssa_name;
176
177 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
178 if (is_complex_reg (parm)
179 && var_ann (parm) != NULL
180 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
181 VEC_replace (complex_lattice_t, complex_lattice_values,
182 SSA_NAME_VERSION (ssa_name), VARYING);
183 }
184
185 /* Initialize simulation state for each statement. Return false if we
186 found no statements we want to simulate, and thus there's nothing
187 for the entire pass to do. */
188
189 static bool
190 init_dont_simulate_again (void)
191 {
192 basic_block bb;
193 gimple_stmt_iterator gsi;
194 gimple phi;
195 bool saw_a_complex_op = false;
196
197 FOR_EACH_BB (bb)
198 {
199 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
200 {
201 phi = gsi_stmt (gsi);
202 prop_set_simulate_again (phi,
203 is_complex_reg (gimple_phi_result (phi)));
204 }
205
206 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
207 {
208 gimple stmt;
209 tree op0, op1;
210 bool sim_again_p;
211
212 stmt = gsi_stmt (gsi);
213 op0 = op1 = NULL_TREE;
214
215 /* Most control-altering statements must be initially
216 simulated, else we won't cover the entire cfg. */
217 sim_again_p = stmt_ends_bb_p (stmt);
218
219 switch (gimple_code (stmt))
220 {
221 case GIMPLE_CALL:
222 if (gimple_call_lhs (stmt))
223 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
224 break;
225
226 case GIMPLE_ASSIGN:
227 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
228 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
229 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
230 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
231 else
232 op0 = gimple_assign_rhs1 (stmt);
233 if (gimple_num_ops (stmt) > 2)
234 op1 = gimple_assign_rhs2 (stmt);
235 break;
236
237 case GIMPLE_COND:
238 op0 = gimple_cond_lhs (stmt);
239 op1 = gimple_cond_rhs (stmt);
240 break;
241
242 default:
243 break;
244 }
245
246 if (op0 || op1)
247 switch (gimple_expr_code (stmt))
248 {
249 case EQ_EXPR:
250 case NE_EXPR:
251 case PLUS_EXPR:
252 case MINUS_EXPR:
253 case MULT_EXPR:
254 case TRUNC_DIV_EXPR:
255 case CEIL_DIV_EXPR:
256 case FLOOR_DIV_EXPR:
257 case ROUND_DIV_EXPR:
258 case RDIV_EXPR:
259 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
260 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
261 saw_a_complex_op = true;
262 break;
263
264 case NEGATE_EXPR:
265 case CONJ_EXPR:
266 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
267 saw_a_complex_op = true;
268 break;
269
270 case REALPART_EXPR:
271 case IMAGPART_EXPR:
272 /* The total store transformation performed during
273 gimplification creates such uninitialized loads
274 and we need to lower the statement to be able
275 to fix things up. */
276 if (TREE_CODE (op0) == SSA_NAME
277 && ssa_undefined_value_p (op0))
278 saw_a_complex_op = true;
279 break;
280
281 default:
282 break;
283 }
284
285 prop_set_simulate_again (stmt, sim_again_p);
286 }
287 }
288
289 return saw_a_complex_op;
290 }
291
292
293 /* Evaluate statement STMT against the complex lattice defined above. */
294
295 static enum ssa_prop_result
296 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
297 tree *result_p)
298 {
299 complex_lattice_t new_l, old_l, op1_l, op2_l;
300 unsigned int ver;
301 tree lhs;
302
303 lhs = gimple_get_lhs (stmt);
304 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
305 if (!lhs)
306 return SSA_PROP_VARYING;
307
308 /* These conditions should be satisfied due to the initial filter
309 set up in init_dont_simulate_again. */
310 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
311 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
312
313 *result_p = lhs;
314 ver = SSA_NAME_VERSION (lhs);
315 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
316
317 switch (gimple_expr_code (stmt))
318 {
319 case SSA_NAME:
320 case COMPLEX_CST:
321 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
322 break;
323
324 case COMPLEX_EXPR:
325 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
326 gimple_assign_rhs2 (stmt));
327 break;
328
329 case PLUS_EXPR:
330 case MINUS_EXPR:
331 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
332 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
333
334 /* We've set up the lattice values such that IOR neatly
335 models addition. */
336 new_l = op1_l | op2_l;
337 break;
338
339 case MULT_EXPR:
340 case RDIV_EXPR:
341 case TRUNC_DIV_EXPR:
342 case CEIL_DIV_EXPR:
343 case FLOOR_DIV_EXPR:
344 case ROUND_DIV_EXPR:
345 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
346 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
347
348 /* Obviously, if either varies, so does the result. */
349 if (op1_l == VARYING || op2_l == VARYING)
350 new_l = VARYING;
351 /* Don't prematurely promote variables if we've not yet seen
352 their inputs. */
353 else if (op1_l == UNINITIALIZED)
354 new_l = op2_l;
355 else if (op2_l == UNINITIALIZED)
356 new_l = op1_l;
357 else
358 {
359 /* At this point both numbers have only one component. If the
360 numbers are of opposite kind, the result is imaginary,
361 otherwise the result is real. The add/subtract translates
362 the real/imag from/to 0/1; the ^ performs the comparison. */
363 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
364
365 /* Don't allow the lattice value to flip-flop indefinitely. */
366 new_l |= old_l;
367 }
368 break;
369
370 case NEGATE_EXPR:
371 case CONJ_EXPR:
372 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
373 break;
374
375 default:
376 new_l = VARYING;
377 break;
378 }
379
380 /* If nothing changed this round, let the propagator know. */
381 if (new_l == old_l)
382 return SSA_PROP_NOT_INTERESTING;
383
384 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
385 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
386 }
387
388 /* Evaluate a PHI node against the complex lattice defined above. */
389
390 static enum ssa_prop_result
391 complex_visit_phi (gimple phi)
392 {
393 complex_lattice_t new_l, old_l;
394 unsigned int ver;
395 tree lhs;
396 int i;
397
398 lhs = gimple_phi_result (phi);
399
400 /* This condition should be satisfied due to the initial filter
401 set up in init_dont_simulate_again. */
402 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
403
404 /* We've set up the lattice values such that IOR neatly models PHI meet. */
405 new_l = UNINITIALIZED;
406 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
407 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
408
409 ver = SSA_NAME_VERSION (lhs);
410 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
411
412 if (new_l == old_l)
413 return SSA_PROP_NOT_INTERESTING;
414
415 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
416 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
417 }
418
419 /* Create one backing variable for a complex component of ORIG. */
420
421 static tree
422 create_one_component_var (tree type, tree orig, const char *prefix,
423 const char *suffix, enum tree_code code)
424 {
425 tree r = create_tmp_var (type, prefix);
426 add_referenced_var (r);
427
428 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
429 DECL_ARTIFICIAL (r) = 1;
430
431 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
432 {
433 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
434
435 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
436
437 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
438 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
439 DECL_IGNORED_P (r) = 0;
440 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
441 }
442 else
443 {
444 DECL_IGNORED_P (r) = 1;
445 TREE_NO_WARNING (r) = 1;
446 }
447
448 return r;
449 }
450
451 /* Retrieve a value for a complex component of VAR. */
452
453 static tree
454 get_component_var (tree var, bool imag_p)
455 {
456 size_t decl_index = DECL_UID (var) * 2 + imag_p;
457 tree ret = cvc_lookup (decl_index);
458
459 if (ret == NULL)
460 {
461 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
462 imag_p ? "CI" : "CR",
463 imag_p ? "$imag" : "$real",
464 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
465 cvc_insert (decl_index, ret);
466 }
467
468 return ret;
469 }
470
471 /* Retrieve a value for a complex component of SSA_NAME. */
472
473 static tree
474 get_component_ssa_name (tree ssa_name, bool imag_p)
475 {
476 complex_lattice_t lattice = find_lattice_value (ssa_name);
477 size_t ssa_name_index;
478 tree ret;
479
480 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
481 {
482 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
483 if (SCALAR_FLOAT_TYPE_P (inner_type))
484 return build_real (inner_type, dconst0);
485 else
486 return build_int_cst (inner_type, 0);
487 }
488
489 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
490 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
491 if (ret == NULL)
492 {
493 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
494 ret = make_ssa_name (ret, NULL);
495
496 /* Copy some properties from the original. In particular, whether it
497 is used in an abnormal phi, and whether it's uninitialized. */
498 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
499 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
500 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
501 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
502 {
503 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
504 set_default_def (SSA_NAME_VAR (ret), ret);
505 }
506
507 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
508 }
509
510 return ret;
511 }
512
513 /* Set a value for a complex component of SSA_NAME, return a
514 gimple_seq of stuff that needs doing. */
515
516 static gimple_seq
517 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
518 {
519 complex_lattice_t lattice = find_lattice_value (ssa_name);
520 size_t ssa_name_index;
521 tree comp;
522 gimple last;
523 gimple_seq list;
524
525 /* We know the value must be zero, else there's a bug in our lattice
526 analysis. But the value may well be a variable known to contain
527 zero. We should be safe ignoring it. */
528 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
529 return NULL;
530
531 /* If we've already assigned an SSA_NAME to this component, then this
532 means that our walk of the basic blocks found a use before the set.
533 This is fine. Now we should create an initialization for the value
534 we created earlier. */
535 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
536 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
537 if (comp)
538 ;
539
540 /* If we've nothing assigned, and the value we're given is already stable,
541 then install that as the value for this SSA_NAME. This preemptively
542 copy-propagates the value, which avoids unnecessary memory allocation. */
543 else if (is_gimple_min_invariant (value)
544 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
545 {
546 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
547 return NULL;
548 }
549 else if (TREE_CODE (value) == SSA_NAME
550 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
551 {
552 /* Replace an anonymous base value with the variable from cvc_lookup.
553 This should result in better debug info. */
554 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
555 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
556 {
557 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
558 replace_ssa_name_symbol (value, comp);
559 }
560
561 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
562 return NULL;
563 }
564
565 /* Finally, we need to stabilize the result by installing the value into
566 a new ssa name. */
567 else
568 comp = get_component_ssa_name (ssa_name, imag_p);
569
570 /* Do all the work to assign VALUE to COMP. */
571 list = NULL;
572 value = force_gimple_operand (value, &list, false, NULL);
573 last = gimple_build_assign (comp, value);
574 gimple_seq_add_stmt (&list, last);
575 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
576
577 return list;
578 }
579
580 /* Extract the real or imaginary part of a complex variable or constant.
581 Make sure that it's a proper gimple_val and gimplify it if not.
582 Emit any new code before gsi. */
583
584 static tree
585 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
586 bool gimple_p)
587 {
588 switch (TREE_CODE (t))
589 {
590 case COMPLEX_CST:
591 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
592
593 case COMPLEX_EXPR:
594 gcc_unreachable ();
595
596 case VAR_DECL:
597 case RESULT_DECL:
598 case PARM_DECL:
599 case COMPONENT_REF:
600 case ARRAY_REF:
601 case VIEW_CONVERT_EXPR:
602 case MEM_REF:
603 {
604 tree inner_type = TREE_TYPE (TREE_TYPE (t));
605
606 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
607 inner_type, unshare_expr (t));
608
609 if (gimple_p)
610 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
611 GSI_SAME_STMT);
612
613 return t;
614 }
615
616 case SSA_NAME:
617 return get_component_ssa_name (t, imagpart_p);
618
619 default:
620 gcc_unreachable ();
621 }
622 }
623
624 /* Update the complex components of the ssa name on the lhs of STMT. */
625
626 static void
627 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
628 tree i)
629 {
630 tree lhs;
631 gimple_seq list;
632
633 lhs = gimple_get_lhs (stmt);
634
635 list = set_component_ssa_name (lhs, false, r);
636 if (list)
637 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
638
639 list = set_component_ssa_name (lhs, true, i);
640 if (list)
641 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
642 }
643
644 static void
645 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
646 {
647 gimple_seq list;
648
649 list = set_component_ssa_name (lhs, false, r);
650 if (list)
651 gsi_insert_seq_on_edge (e, list);
652
653 list = set_component_ssa_name (lhs, true, i);
654 if (list)
655 gsi_insert_seq_on_edge (e, list);
656 }
657
658
659 /* Update an assignment to a complex variable in place. */
660
661 static void
662 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
663 {
664 gimple_stmt_iterator orig_si = *gsi;
665 gimple stmt;
666
667 if (gimple_in_ssa_p (cfun))
668 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
669
670 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
671 stmt = gsi_stmt (orig_si);
672 update_stmt (stmt);
673 if (maybe_clean_eh_stmt (stmt))
674 gimple_purge_dead_eh_edges (gimple_bb (stmt));
675 }
676
677
678 /* Generate code at the entry point of the function to initialize the
679 component variables for a complex parameter. */
680
681 static void
682 update_parameter_components (void)
683 {
684 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
685 tree parm;
686
687 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = DECL_CHAIN (parm))
688 {
689 tree type = TREE_TYPE (parm);
690 tree ssa_name, r, i;
691
692 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
693 continue;
694
695 type = TREE_TYPE (type);
696 ssa_name = gimple_default_def (cfun, parm);
697 if (!ssa_name)
698 continue;
699
700 r = build1 (REALPART_EXPR, type, ssa_name);
701 i = build1 (IMAGPART_EXPR, type, ssa_name);
702 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
703 }
704 }
705
706 /* Generate code to set the component variables of a complex variable
707 to match the PHI statements in block BB. */
708
709 static void
710 update_phi_components (basic_block bb)
711 {
712 gimple_stmt_iterator gsi;
713
714 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
715 {
716 gimple phi = gsi_stmt (gsi);
717
718 if (is_complex_reg (gimple_phi_result (phi)))
719 {
720 tree lr, li;
721 gimple pr = NULL, pi = NULL;
722 unsigned int i, n;
723
724 lr = get_component_ssa_name (gimple_phi_result (phi), false);
725 if (TREE_CODE (lr) == SSA_NAME)
726 {
727 pr = create_phi_node (lr, bb);
728 SSA_NAME_DEF_STMT (lr) = pr;
729 }
730
731 li = get_component_ssa_name (gimple_phi_result (phi), true);
732 if (TREE_CODE (li) == SSA_NAME)
733 {
734 pi = create_phi_node (li, bb);
735 SSA_NAME_DEF_STMT (li) = pi;
736 }
737
738 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
739 {
740 tree comp, arg = gimple_phi_arg_def (phi, i);
741 if (pr)
742 {
743 comp = extract_component (NULL, arg, false, false);
744 SET_PHI_ARG_DEF (pr, i, comp);
745 }
746 if (pi)
747 {
748 comp = extract_component (NULL, arg, true, false);
749 SET_PHI_ARG_DEF (pi, i, comp);
750 }
751 }
752 }
753 }
754 }
755
756 /* Expand a complex move to scalars. */
757
758 static void
759 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
760 {
761 tree inner_type = TREE_TYPE (type);
762 tree r, i, lhs, rhs;
763 gimple stmt = gsi_stmt (*gsi);
764
765 if (is_gimple_assign (stmt))
766 {
767 lhs = gimple_assign_lhs (stmt);
768 if (gimple_num_ops (stmt) == 2)
769 rhs = gimple_assign_rhs1 (stmt);
770 else
771 rhs = NULL_TREE;
772 }
773 else if (is_gimple_call (stmt))
774 {
775 lhs = gimple_call_lhs (stmt);
776 rhs = NULL_TREE;
777 }
778 else
779 gcc_unreachable ();
780
781 if (TREE_CODE (lhs) == SSA_NAME)
782 {
783 if (is_ctrl_altering_stmt (stmt))
784 {
785 edge e;
786
787 /* The value is not assigned on the exception edges, so we need not
788 concern ourselves there. We do need to update on the fallthru
789 edge. Find it. */
790 e = find_fallthru_edge (gsi_bb (*gsi)->succs);
791 if (!e)
792 gcc_unreachable ();
793
794 r = build1 (REALPART_EXPR, inner_type, lhs);
795 i = build1 (IMAGPART_EXPR, inner_type, lhs);
796 update_complex_components_on_edge (e, lhs, r, i);
797 }
798 else if (is_gimple_call (stmt)
799 || gimple_has_side_effects (stmt)
800 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
801 {
802 r = build1 (REALPART_EXPR, inner_type, lhs);
803 i = build1 (IMAGPART_EXPR, inner_type, lhs);
804 update_complex_components (gsi, stmt, r, i);
805 }
806 else
807 {
808 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
809 {
810 r = extract_component (gsi, rhs, 0, true);
811 i = extract_component (gsi, rhs, 1, true);
812 }
813 else
814 {
815 r = gimple_assign_rhs1 (stmt);
816 i = gimple_assign_rhs2 (stmt);
817 }
818 update_complex_assignment (gsi, r, i);
819 }
820 }
821 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
822 {
823 tree x;
824 gimple t;
825
826 r = extract_component (gsi, rhs, 0, false);
827 i = extract_component (gsi, rhs, 1, false);
828
829 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
830 t = gimple_build_assign (x, r);
831 gsi_insert_before (gsi, t, GSI_SAME_STMT);
832
833 if (stmt == gsi_stmt (*gsi))
834 {
835 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
836 gimple_assign_set_lhs (stmt, x);
837 gimple_assign_set_rhs1 (stmt, i);
838 }
839 else
840 {
841 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
842 t = gimple_build_assign (x, i);
843 gsi_insert_before (gsi, t, GSI_SAME_STMT);
844
845 stmt = gsi_stmt (*gsi);
846 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
847 gimple_return_set_retval (stmt, lhs);
848 }
849
850 update_stmt (stmt);
851 }
852 }
853
854 /* Expand complex addition to scalars:
855 a + b = (ar + br) + i(ai + bi)
856 a - b = (ar - br) + i(ai + bi)
857 */
858
859 static void
860 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
861 tree ar, tree ai, tree br, tree bi,
862 enum tree_code code,
863 complex_lattice_t al, complex_lattice_t bl)
864 {
865 tree rr, ri;
866
867 switch (PAIR (al, bl))
868 {
869 case PAIR (ONLY_REAL, ONLY_REAL):
870 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
871 ri = ai;
872 break;
873
874 case PAIR (ONLY_REAL, ONLY_IMAG):
875 rr = ar;
876 if (code == MINUS_EXPR)
877 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
878 else
879 ri = bi;
880 break;
881
882 case PAIR (ONLY_IMAG, ONLY_REAL):
883 if (code == MINUS_EXPR)
884 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
885 else
886 rr = br;
887 ri = ai;
888 break;
889
890 case PAIR (ONLY_IMAG, ONLY_IMAG):
891 rr = ar;
892 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
893 break;
894
895 case PAIR (VARYING, ONLY_REAL):
896 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
897 ri = ai;
898 break;
899
900 case PAIR (VARYING, ONLY_IMAG):
901 rr = ar;
902 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
903 break;
904
905 case PAIR (ONLY_REAL, VARYING):
906 if (code == MINUS_EXPR)
907 goto general;
908 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
909 ri = bi;
910 break;
911
912 case PAIR (ONLY_IMAG, VARYING):
913 if (code == MINUS_EXPR)
914 goto general;
915 rr = br;
916 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
917 break;
918
919 case PAIR (VARYING, VARYING):
920 general:
921 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
922 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
923 break;
924
925 default:
926 gcc_unreachable ();
927 }
928
929 update_complex_assignment (gsi, rr, ri);
930 }
931
932 /* Expand a complex multiplication or division to a libcall to the c99
933 compliant routines. */
934
935 static void
936 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
937 tree br, tree bi, enum tree_code code)
938 {
939 enum machine_mode mode;
940 enum built_in_function bcode;
941 tree fn, type, lhs;
942 gimple old_stmt, stmt;
943
944 old_stmt = gsi_stmt (*gsi);
945 lhs = gimple_assign_lhs (old_stmt);
946 type = TREE_TYPE (lhs);
947
948 mode = TYPE_MODE (type);
949 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
950
951 if (code == MULT_EXPR)
952 bcode = ((enum built_in_function)
953 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
954 else if (code == RDIV_EXPR)
955 bcode = ((enum built_in_function)
956 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
957 else
958 gcc_unreachable ();
959 fn = builtin_decl_explicit (bcode);
960
961 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
962 gimple_call_set_lhs (stmt, lhs);
963 update_stmt (stmt);
964 gsi_replace (gsi, stmt, false);
965
966 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
967 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
968
969 if (gimple_in_ssa_p (cfun))
970 {
971 type = TREE_TYPE (type);
972 update_complex_components (gsi, stmt,
973 build1 (REALPART_EXPR, type, lhs),
974 build1 (IMAGPART_EXPR, type, lhs));
975 SSA_NAME_DEF_STMT (lhs) = stmt;
976 }
977 }
978
979 /* Expand complex multiplication to scalars:
980 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
981 */
982
983 static void
984 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
985 tree ar, tree ai, tree br, tree bi,
986 complex_lattice_t al, complex_lattice_t bl)
987 {
988 tree rr, ri;
989
990 if (al < bl)
991 {
992 complex_lattice_t tl;
993 rr = ar, ar = br, br = rr;
994 ri = ai, ai = bi, bi = ri;
995 tl = al, al = bl, bl = tl;
996 }
997
998 switch (PAIR (al, bl))
999 {
1000 case PAIR (ONLY_REAL, ONLY_REAL):
1001 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1002 ri = ai;
1003 break;
1004
1005 case PAIR (ONLY_IMAG, ONLY_REAL):
1006 rr = ar;
1007 if (TREE_CODE (ai) == REAL_CST
1008 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1009 ri = br;
1010 else
1011 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1012 break;
1013
1014 case PAIR (ONLY_IMAG, ONLY_IMAG):
1015 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1016 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1017 ri = ar;
1018 break;
1019
1020 case PAIR (VARYING, ONLY_REAL):
1021 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1022 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1023 break;
1024
1025 case PAIR (VARYING, ONLY_IMAG):
1026 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1027 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1028 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1029 break;
1030
1031 case PAIR (VARYING, VARYING):
1032 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1033 {
1034 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1035 return;
1036 }
1037 else
1038 {
1039 tree t1, t2, t3, t4;
1040
1041 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1042 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1043 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1044
1045 /* Avoid expanding redundant multiplication for the common
1046 case of squaring a complex number. */
1047 if (ar == br && ai == bi)
1048 t4 = t3;
1049 else
1050 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1051
1052 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1053 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1054 }
1055 break;
1056
1057 default:
1058 gcc_unreachable ();
1059 }
1060
1061 update_complex_assignment (gsi, rr, ri);
1062 }
1063
1064 /* Keep this algorithm in sync with fold-const.c:const_binop().
1065
1066 Expand complex division to scalars, straightforward algorithm.
1067 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1068 t = br*br + bi*bi
1069 */
1070
1071 static void
1072 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1073 tree ar, tree ai, tree br, tree bi,
1074 enum tree_code code)
1075 {
1076 tree rr, ri, div, t1, t2, t3;
1077
1078 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1079 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1080 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1081
1082 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1083 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1084 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1085 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1086
1087 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1088 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1089 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1090 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1091
1092 update_complex_assignment (gsi, rr, ri);
1093 }
1094
1095 /* Keep this algorithm in sync with fold-const.c:const_binop().
1096
1097 Expand complex division to scalars, modified algorithm to minimize
1098 overflow with wide input ranges. */
1099
1100 static void
1101 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1102 tree ar, tree ai, tree br, tree bi,
1103 enum tree_code code)
1104 {
1105 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1106 basic_block bb_cond, bb_true, bb_false, bb_join;
1107 gimple stmt;
1108
1109 /* Examine |br| < |bi|, and branch. */
1110 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1111 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1112 compare = fold_build2_loc (gimple_location (gsi_stmt (*gsi)),
1113 LT_EXPR, boolean_type_node, t1, t2);
1114 STRIP_NOPS (compare);
1115
1116 bb_cond = bb_true = bb_false = bb_join = NULL;
1117 rr = ri = tr = ti = NULL;
1118 if (TREE_CODE (compare) != INTEGER_CST)
1119 {
1120 edge e;
1121 gimple stmt;
1122 tree cond, tmp;
1123
1124 tmp = create_tmp_var (boolean_type_node, NULL);
1125 stmt = gimple_build_assign (tmp, compare);
1126 if (gimple_in_ssa_p (cfun))
1127 {
1128 tmp = make_ssa_name (tmp, stmt);
1129 gimple_assign_set_lhs (stmt, tmp);
1130 }
1131
1132 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1133
1134 cond = fold_build2_loc (gimple_location (stmt),
1135 EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1136 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1137 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1138
1139 /* Split the original block, and create the TRUE and FALSE blocks. */
1140 e = split_block (gsi_bb (*gsi), stmt);
1141 bb_cond = e->src;
1142 bb_join = e->dest;
1143 bb_true = create_empty_bb (bb_cond);
1144 bb_false = create_empty_bb (bb_true);
1145
1146 /* Wire the blocks together. */
1147 e->flags = EDGE_TRUE_VALUE;
1148 redirect_edge_succ (e, bb_true);
1149 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1150 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1151 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1152
1153 /* Update dominance info. Note that bb_join's data was
1154 updated by split_block. */
1155 if (dom_info_available_p (CDI_DOMINATORS))
1156 {
1157 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1158 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1159 }
1160
1161 rr = make_rename_temp (inner_type, NULL);
1162 ri = make_rename_temp (inner_type, NULL);
1163 }
1164
1165 /* In the TRUE branch, we compute
1166 ratio = br/bi;
1167 div = (br * ratio) + bi;
1168 tr = (ar * ratio) + ai;
1169 ti = (ai * ratio) - ar;
1170 tr = tr / div;
1171 ti = ti / div; */
1172 if (bb_true || integer_nonzerop (compare))
1173 {
1174 if (bb_true)
1175 {
1176 *gsi = gsi_last_bb (bb_true);
1177 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1178 }
1179
1180 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1181
1182 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1183 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1184
1185 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1186 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1187
1188 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1189 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1190
1191 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1192 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1193
1194 if (bb_true)
1195 {
1196 stmt = gimple_build_assign (rr, tr);
1197 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1198 stmt = gimple_build_assign (ri, ti);
1199 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1200 gsi_remove (gsi, true);
1201 }
1202 }
1203
1204 /* In the FALSE branch, we compute
1205 ratio = d/c;
1206 divisor = (d * ratio) + c;
1207 tr = (b * ratio) + a;
1208 ti = b - (a * ratio);
1209 tr = tr / div;
1210 ti = ti / div; */
1211 if (bb_false || integer_zerop (compare))
1212 {
1213 if (bb_false)
1214 {
1215 *gsi = gsi_last_bb (bb_false);
1216 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1217 }
1218
1219 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1220
1221 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1222 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1223
1224 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1225 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1226
1227 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1228 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1229
1230 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1231 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1232
1233 if (bb_false)
1234 {
1235 stmt = gimple_build_assign (rr, tr);
1236 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1237 stmt = gimple_build_assign (ri, ti);
1238 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1239 gsi_remove (gsi, true);
1240 }
1241 }
1242
1243 if (bb_join)
1244 *gsi = gsi_start_bb (bb_join);
1245 else
1246 rr = tr, ri = ti;
1247
1248 update_complex_assignment (gsi, rr, ri);
1249 }
1250
1251 /* Expand complex division to scalars. */
1252
1253 static void
1254 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1255 tree ar, tree ai, tree br, tree bi,
1256 enum tree_code code,
1257 complex_lattice_t al, complex_lattice_t bl)
1258 {
1259 tree rr, ri;
1260
1261 switch (PAIR (al, bl))
1262 {
1263 case PAIR (ONLY_REAL, ONLY_REAL):
1264 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1265 ri = ai;
1266 break;
1267
1268 case PAIR (ONLY_REAL, ONLY_IMAG):
1269 rr = ai;
1270 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1271 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1272 break;
1273
1274 case PAIR (ONLY_IMAG, ONLY_REAL):
1275 rr = ar;
1276 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1277 break;
1278
1279 case PAIR (ONLY_IMAG, ONLY_IMAG):
1280 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1281 ri = ar;
1282 break;
1283
1284 case PAIR (VARYING, ONLY_REAL):
1285 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1286 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1287 break;
1288
1289 case PAIR (VARYING, ONLY_IMAG):
1290 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1291 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1292 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1293
1294 case PAIR (ONLY_REAL, VARYING):
1295 case PAIR (ONLY_IMAG, VARYING):
1296 case PAIR (VARYING, VARYING):
1297 switch (flag_complex_method)
1298 {
1299 case 0:
1300 /* straightforward implementation of complex divide acceptable. */
1301 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1302 break;
1303
1304 case 2:
1305 if (SCALAR_FLOAT_TYPE_P (inner_type))
1306 {
1307 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1308 break;
1309 }
1310 /* FALLTHRU */
1311
1312 case 1:
1313 /* wide ranges of inputs must work for complex divide. */
1314 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1315 break;
1316
1317 default:
1318 gcc_unreachable ();
1319 }
1320 return;
1321
1322 default:
1323 gcc_unreachable ();
1324 }
1325
1326 update_complex_assignment (gsi, rr, ri);
1327 }
1328
1329 /* Expand complex negation to scalars:
1330 -a = (-ar) + i(-ai)
1331 */
1332
1333 static void
1334 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1335 tree ar, tree ai)
1336 {
1337 tree rr, ri;
1338
1339 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1340 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1341
1342 update_complex_assignment (gsi, rr, ri);
1343 }
1344
1345 /* Expand complex conjugate to scalars:
1346 ~a = (ar) + i(-ai)
1347 */
1348
1349 static void
1350 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1351 tree ar, tree ai)
1352 {
1353 tree ri;
1354
1355 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1356
1357 update_complex_assignment (gsi, ar, ri);
1358 }
1359
1360 /* Expand complex comparison (EQ or NE only). */
1361
1362 static void
1363 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1364 tree br, tree bi, enum tree_code code)
1365 {
1366 tree cr, ci, cc, type;
1367 gimple stmt;
1368
1369 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1370 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1371 cc = gimplify_build2 (gsi,
1372 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1373 boolean_type_node, cr, ci);
1374
1375 stmt = gsi_stmt (*gsi);
1376
1377 switch (gimple_code (stmt))
1378 {
1379 case GIMPLE_RETURN:
1380 type = TREE_TYPE (gimple_return_retval (stmt));
1381 gimple_return_set_retval (stmt, fold_convert (type, cc));
1382 break;
1383
1384 case GIMPLE_ASSIGN:
1385 type = TREE_TYPE (gimple_assign_lhs (stmt));
1386 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1387 stmt = gsi_stmt (*gsi);
1388 break;
1389
1390 case GIMPLE_COND:
1391 gimple_cond_set_code (stmt, EQ_EXPR);
1392 gimple_cond_set_lhs (stmt, cc);
1393 gimple_cond_set_rhs (stmt, boolean_true_node);
1394 break;
1395
1396 default:
1397 gcc_unreachable ();
1398 }
1399
1400 update_stmt (stmt);
1401 }
1402
1403
1404 /* Process one statement. If we identify a complex operation, expand it. */
1405
1406 static void
1407 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1408 {
1409 gimple stmt = gsi_stmt (*gsi);
1410 tree type, inner_type, lhs;
1411 tree ac, ar, ai, bc, br, bi;
1412 complex_lattice_t al, bl;
1413 enum tree_code code;
1414
1415 lhs = gimple_get_lhs (stmt);
1416 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1417 return;
1418
1419 type = TREE_TYPE (gimple_op (stmt, 0));
1420 code = gimple_expr_code (stmt);
1421
1422 /* Initial filter for operations we handle. */
1423 switch (code)
1424 {
1425 case PLUS_EXPR:
1426 case MINUS_EXPR:
1427 case MULT_EXPR:
1428 case TRUNC_DIV_EXPR:
1429 case CEIL_DIV_EXPR:
1430 case FLOOR_DIV_EXPR:
1431 case ROUND_DIV_EXPR:
1432 case RDIV_EXPR:
1433 case NEGATE_EXPR:
1434 case CONJ_EXPR:
1435 if (TREE_CODE (type) != COMPLEX_TYPE)
1436 return;
1437 inner_type = TREE_TYPE (type);
1438 break;
1439
1440 case EQ_EXPR:
1441 case NE_EXPR:
1442 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1443 subocde, so we need to access the operands using gimple_op. */
1444 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1445 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1446 return;
1447 break;
1448
1449 default:
1450 {
1451 tree rhs;
1452
1453 /* GIMPLE_COND may also fallthru here, but we do not need to
1454 do anything with it. */
1455 if (gimple_code (stmt) == GIMPLE_COND)
1456 return;
1457
1458 if (TREE_CODE (type) == COMPLEX_TYPE)
1459 expand_complex_move (gsi, type);
1460 else if (is_gimple_assign (stmt)
1461 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1462 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1463 && TREE_CODE (lhs) == SSA_NAME)
1464 {
1465 rhs = gimple_assign_rhs1 (stmt);
1466 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1467 gimple_assign_rhs_code (stmt)
1468 == IMAGPART_EXPR,
1469 false);
1470 gimple_assign_set_rhs_from_tree (gsi, rhs);
1471 stmt = gsi_stmt (*gsi);
1472 update_stmt (stmt);
1473 }
1474 }
1475 return;
1476 }
1477
1478 /* Extract the components of the two complex values. Make sure and
1479 handle the common case of the same value used twice specially. */
1480 if (is_gimple_assign (stmt))
1481 {
1482 ac = gimple_assign_rhs1 (stmt);
1483 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1484 }
1485 /* GIMPLE_CALL can not get here. */
1486 else
1487 {
1488 ac = gimple_cond_lhs (stmt);
1489 bc = gimple_cond_rhs (stmt);
1490 }
1491
1492 ar = extract_component (gsi, ac, false, true);
1493 ai = extract_component (gsi, ac, true, true);
1494
1495 if (ac == bc)
1496 br = ar, bi = ai;
1497 else if (bc)
1498 {
1499 br = extract_component (gsi, bc, 0, true);
1500 bi = extract_component (gsi, bc, 1, true);
1501 }
1502 else
1503 br = bi = NULL_TREE;
1504
1505 if (gimple_in_ssa_p (cfun))
1506 {
1507 al = find_lattice_value (ac);
1508 if (al == UNINITIALIZED)
1509 al = VARYING;
1510
1511 if (TREE_CODE_CLASS (code) == tcc_unary)
1512 bl = UNINITIALIZED;
1513 else if (ac == bc)
1514 bl = al;
1515 else
1516 {
1517 bl = find_lattice_value (bc);
1518 if (bl == UNINITIALIZED)
1519 bl = VARYING;
1520 }
1521 }
1522 else
1523 al = bl = VARYING;
1524
1525 switch (code)
1526 {
1527 case PLUS_EXPR:
1528 case MINUS_EXPR:
1529 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1530 break;
1531
1532 case MULT_EXPR:
1533 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1534 break;
1535
1536 case TRUNC_DIV_EXPR:
1537 case CEIL_DIV_EXPR:
1538 case FLOOR_DIV_EXPR:
1539 case ROUND_DIV_EXPR:
1540 case RDIV_EXPR:
1541 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1542 break;
1543
1544 case NEGATE_EXPR:
1545 expand_complex_negation (gsi, inner_type, ar, ai);
1546 break;
1547
1548 case CONJ_EXPR:
1549 expand_complex_conjugate (gsi, inner_type, ar, ai);
1550 break;
1551
1552 case EQ_EXPR:
1553 case NE_EXPR:
1554 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1555 break;
1556
1557 default:
1558 gcc_unreachable ();
1559 }
1560 }
1561
1562 \f
1563 /* Entry point for complex operation lowering during optimization. */
1564
1565 static unsigned int
1566 tree_lower_complex (void)
1567 {
1568 int old_last_basic_block;
1569 gimple_stmt_iterator gsi;
1570 basic_block bb;
1571
1572 if (!init_dont_simulate_again ())
1573 return 0;
1574
1575 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1576 VEC_safe_grow_cleared (complex_lattice_t, heap,
1577 complex_lattice_values, num_ssa_names);
1578
1579 init_parameter_lattice_values ();
1580 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1581
1582 complex_variable_components = htab_create (10, int_tree_map_hash,
1583 int_tree_map_eq, free);
1584
1585 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1586 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1587 2 * num_ssa_names);
1588
1589 update_parameter_components ();
1590
1591 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1592 old_last_basic_block = last_basic_block;
1593 FOR_EACH_BB (bb)
1594 {
1595 if (bb->index >= old_last_basic_block)
1596 continue;
1597
1598 update_phi_components (bb);
1599 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1600 expand_complex_operations_1 (&gsi);
1601 }
1602
1603 gsi_commit_edge_inserts ();
1604
1605 htab_delete (complex_variable_components);
1606 VEC_free (tree, heap, complex_ssa_name_components);
1607 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1608 return 0;
1609 }
1610
1611 struct gimple_opt_pass pass_lower_complex =
1612 {
1613 {
1614 GIMPLE_PASS,
1615 "cplxlower", /* name */
1616 0, /* gate */
1617 tree_lower_complex, /* execute */
1618 NULL, /* sub */
1619 NULL, /* next */
1620 0, /* static_pass_number */
1621 TV_NONE, /* tv_id */
1622 PROP_ssa, /* properties_required */
1623 PROP_gimple_lcx, /* properties_provided */
1624 0, /* properties_destroyed */
1625 0, /* todo_flags_start */
1626 TODO_ggc_collect
1627 | TODO_update_ssa
1628 | TODO_verify_stmts /* todo_flags_finish */
1629 }
1630 };
1631
1632 \f
1633 static bool
1634 gate_no_optimization (void)
1635 {
1636 /* With errors, normal optimization passes are not run. If we don't
1637 lower complex operations at all, rtl expansion will abort. */
1638 return !(cfun->curr_properties & PROP_gimple_lcx);
1639 }
1640
1641 struct gimple_opt_pass pass_lower_complex_O0 =
1642 {
1643 {
1644 GIMPLE_PASS,
1645 "cplxlower0", /* name */
1646 gate_no_optimization, /* gate */
1647 tree_lower_complex, /* execute */
1648 NULL, /* sub */
1649 NULL, /* next */
1650 0, /* static_pass_number */
1651 TV_NONE, /* tv_id */
1652 PROP_cfg, /* properties_required */
1653 PROP_gimple_lcx, /* properties_provided */
1654 0, /* properties_destroyed */
1655 0, /* todo_flags_start */
1656 TODO_ggc_collect
1657 | TODO_update_ssa
1658 | TODO_verify_stmts /* todo_flags_finish */
1659 }
1660 };