re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "real.h"
28 #include "flags.h"
29 #include "tree-flow.h"
30 #include "gimple.h"
31 #include "tree-iterator.h"
32 #include "tree-pass.h"
33 #include "tree-ssa-propagate.h"
34 #include "diagnostic.h"
35
36
37 /* For each complex ssa name, a lattice value. We're interested in finding
38 out whether a complex number is degenerate in some way, having only real
39 or only complex parts. */
40
41 enum
42 {
43 UNINITIALIZED = 0,
44 ONLY_REAL = 1,
45 ONLY_IMAG = 2,
46 VARYING = 3
47 };
48
49 /* The type complex_lattice_t holds combinations of the above
50 constants. */
51 typedef int complex_lattice_t;
52
53 #define PAIR(a, b) ((a) << 2 | (b))
54
55 DEF_VEC_I(complex_lattice_t);
56 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
57
58 static VEC(complex_lattice_t, heap) *complex_lattice_values;
59
60 /* For each complex variable, a pair of variables for the components exists in
61 the hashtable. */
62 static htab_t complex_variable_components;
63
64 /* For each complex SSA_NAME, a pair of ssa names for the components. */
65 static VEC(tree, heap) *complex_ssa_name_components;
66
67 /* Lookup UID in the complex_variable_components hashtable and return the
68 associated tree. */
69 static tree
70 cvc_lookup (unsigned int uid)
71 {
72 struct int_tree_map *h, in;
73 in.uid = uid;
74 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
75 return h ? h->to : NULL;
76 }
77
78 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
79
80 static void
81 cvc_insert (unsigned int uid, tree to)
82 {
83 struct int_tree_map *h;
84 void **loc;
85
86 h = XNEW (struct int_tree_map);
87 h->uid = uid;
88 h->to = to;
89 loc = htab_find_slot_with_hash (complex_variable_components, h,
90 uid, INSERT);
91 *(struct int_tree_map **) loc = h;
92 }
93
94 /* Return true if T is not a zero constant. In the case of real values,
95 we're only interested in +0.0. */
96
97 static int
98 some_nonzerop (tree t)
99 {
100 int zerop = false;
101
102 /* Operations with real or imaginary part of a complex number zero
103 cannot be treated the same as operations with a real or imaginary
104 operand if we care about the signs of zeros in the result. */
105 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
106 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
107 else if (TREE_CODE (t) == FIXED_CST)
108 zerop = fixed_zerop (t);
109 else if (TREE_CODE (t) == INTEGER_CST)
110 zerop = integer_zerop (t);
111
112 return !zerop;
113 }
114
115
116 /* Compute a lattice value from the components of a complex type REAL
117 and IMAG. */
118
119 static complex_lattice_t
120 find_lattice_value_parts (tree real, tree imag)
121 {
122 int r, i;
123 complex_lattice_t ret;
124
125 r = some_nonzerop (real);
126 i = some_nonzerop (imag);
127 ret = r * ONLY_REAL + i * ONLY_IMAG;
128
129 /* ??? On occasion we could do better than mapping 0+0i to real, but we
130 certainly don't want to leave it UNINITIALIZED, which eventually gets
131 mapped to VARYING. */
132 if (ret == UNINITIALIZED)
133 ret = ONLY_REAL;
134
135 return ret;
136 }
137
138
139 /* Compute a lattice value from gimple_val T. */
140
141 static complex_lattice_t
142 find_lattice_value (tree t)
143 {
144 tree real, imag;
145
146 switch (TREE_CODE (t))
147 {
148 case SSA_NAME:
149 return VEC_index (complex_lattice_t, complex_lattice_values,
150 SSA_NAME_VERSION (t));
151
152 case COMPLEX_CST:
153 real = TREE_REALPART (t);
154 imag = TREE_IMAGPART (t);
155 break;
156
157 default:
158 gcc_unreachable ();
159 }
160
161 return find_lattice_value_parts (real, imag);
162 }
163
164 /* Determine if LHS is something for which we're interested in seeing
165 simulation results. */
166
167 static bool
168 is_complex_reg (tree lhs)
169 {
170 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
171 }
172
173 /* Mark the incoming parameters to the function as VARYING. */
174
175 static void
176 init_parameter_lattice_values (void)
177 {
178 tree parm, ssa_name;
179
180 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
181 if (is_complex_reg (parm)
182 && var_ann (parm) != NULL
183 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
184 VEC_replace (complex_lattice_t, complex_lattice_values,
185 SSA_NAME_VERSION (ssa_name), VARYING);
186 }
187
188 /* Initialize simulation state for each statement. Return false if we
189 found no statements we want to simulate, and thus there's nothing
190 for the entire pass to do. */
191
192 static bool
193 init_dont_simulate_again (void)
194 {
195 basic_block bb;
196 gimple_stmt_iterator gsi;
197 gimple phi;
198 bool saw_a_complex_op = false;
199
200 FOR_EACH_BB (bb)
201 {
202 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
203 {
204 phi = gsi_stmt (gsi);
205 prop_set_simulate_again (phi,
206 is_complex_reg (gimple_phi_result (phi)));
207 }
208
209 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
210 {
211 gimple stmt;
212 tree op0, op1;
213 bool sim_again_p;
214
215 stmt = gsi_stmt (gsi);
216 op0 = op1 = NULL_TREE;
217
218 /* Most control-altering statements must be initially
219 simulated, else we won't cover the entire cfg. */
220 sim_again_p = stmt_ends_bb_p (stmt);
221
222 switch (gimple_code (stmt))
223 {
224 case GIMPLE_CALL:
225 if (gimple_call_lhs (stmt))
226 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
227 break;
228
229 case GIMPLE_ASSIGN:
230 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
231 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
232 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
233 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
234 else
235 op0 = gimple_assign_rhs1 (stmt);
236 if (gimple_num_ops (stmt) > 2)
237 op1 = gimple_assign_rhs2 (stmt);
238 break;
239
240 case GIMPLE_COND:
241 op0 = gimple_cond_lhs (stmt);
242 op1 = gimple_cond_rhs (stmt);
243 break;
244
245 default:
246 break;
247 }
248
249 if (op0 || op1)
250 switch (gimple_expr_code (stmt))
251 {
252 case EQ_EXPR:
253 case NE_EXPR:
254 case PLUS_EXPR:
255 case MINUS_EXPR:
256 case MULT_EXPR:
257 case TRUNC_DIV_EXPR:
258 case CEIL_DIV_EXPR:
259 case FLOOR_DIV_EXPR:
260 case ROUND_DIV_EXPR:
261 case RDIV_EXPR:
262 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
263 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
264 saw_a_complex_op = true;
265 break;
266
267 case NEGATE_EXPR:
268 case CONJ_EXPR:
269 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
270 saw_a_complex_op = true;
271 break;
272
273 case REALPART_EXPR:
274 case IMAGPART_EXPR:
275 /* The total store transformation performed during
276 gimplification creates such uninitialized loads
277 and we need to lower the statement to be able
278 to fix things up. */
279 if (TREE_CODE (op0) == SSA_NAME
280 && ssa_undefined_value_p (op0))
281 saw_a_complex_op = true;
282 break;
283
284 default:
285 break;
286 }
287
288 prop_set_simulate_again (stmt, sim_again_p);
289 }
290 }
291
292 return saw_a_complex_op;
293 }
294
295
296 /* Evaluate statement STMT against the complex lattice defined above. */
297
298 static enum ssa_prop_result
299 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
300 tree *result_p)
301 {
302 complex_lattice_t new_l, old_l, op1_l, op2_l;
303 unsigned int ver;
304 tree lhs;
305
306 lhs = gimple_get_lhs (stmt);
307 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
308 if (!lhs)
309 return SSA_PROP_VARYING;
310
311 /* These conditions should be satisfied due to the initial filter
312 set up in init_dont_simulate_again. */
313 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
314 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
315
316 *result_p = lhs;
317 ver = SSA_NAME_VERSION (lhs);
318 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
319
320 switch (gimple_expr_code (stmt))
321 {
322 case SSA_NAME:
323 case COMPLEX_CST:
324 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
325 break;
326
327 case COMPLEX_EXPR:
328 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
329 gimple_assign_rhs2 (stmt));
330 break;
331
332 case PLUS_EXPR:
333 case MINUS_EXPR:
334 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
335 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
336
337 /* We've set up the lattice values such that IOR neatly
338 models addition. */
339 new_l = op1_l | op2_l;
340 break;
341
342 case MULT_EXPR:
343 case RDIV_EXPR:
344 case TRUNC_DIV_EXPR:
345 case CEIL_DIV_EXPR:
346 case FLOOR_DIV_EXPR:
347 case ROUND_DIV_EXPR:
348 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
349 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
350
351 /* Obviously, if either varies, so does the result. */
352 if (op1_l == VARYING || op2_l == VARYING)
353 new_l = VARYING;
354 /* Don't prematurely promote variables if we've not yet seen
355 their inputs. */
356 else if (op1_l == UNINITIALIZED)
357 new_l = op2_l;
358 else if (op2_l == UNINITIALIZED)
359 new_l = op1_l;
360 else
361 {
362 /* At this point both numbers have only one component. If the
363 numbers are of opposite kind, the result is imaginary,
364 otherwise the result is real. The add/subtract translates
365 the real/imag from/to 0/1; the ^ performs the comparison. */
366 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
367
368 /* Don't allow the lattice value to flip-flop indefinitely. */
369 new_l |= old_l;
370 }
371 break;
372
373 case NEGATE_EXPR:
374 case CONJ_EXPR:
375 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
376 break;
377
378 default:
379 new_l = VARYING;
380 break;
381 }
382
383 /* If nothing changed this round, let the propagator know. */
384 if (new_l == old_l)
385 return SSA_PROP_NOT_INTERESTING;
386
387 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
388 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
389 }
390
391 /* Evaluate a PHI node against the complex lattice defined above. */
392
393 static enum ssa_prop_result
394 complex_visit_phi (gimple phi)
395 {
396 complex_lattice_t new_l, old_l;
397 unsigned int ver;
398 tree lhs;
399 int i;
400
401 lhs = gimple_phi_result (phi);
402
403 /* This condition should be satisfied due to the initial filter
404 set up in init_dont_simulate_again. */
405 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
406
407 /* We've set up the lattice values such that IOR neatly models PHI meet. */
408 new_l = UNINITIALIZED;
409 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
410 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
411
412 ver = SSA_NAME_VERSION (lhs);
413 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
414
415 if (new_l == old_l)
416 return SSA_PROP_NOT_INTERESTING;
417
418 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
419 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
420 }
421
422 /* Create one backing variable for a complex component of ORIG. */
423
424 static tree
425 create_one_component_var (tree type, tree orig, const char *prefix,
426 const char *suffix, enum tree_code code)
427 {
428 tree r = create_tmp_var (type, prefix);
429 add_referenced_var (r);
430
431 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
432 DECL_ARTIFICIAL (r) = 1;
433
434 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
435 {
436 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
437 tree inner_type;
438
439 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
440
441 inner_type = TREE_TYPE (TREE_TYPE (orig));
442 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
443 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
444 DECL_IGNORED_P (r) = 0;
445 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
446 }
447 else
448 {
449 DECL_IGNORED_P (r) = 1;
450 TREE_NO_WARNING (r) = 1;
451 }
452
453 return r;
454 }
455
456 /* Retrieve a value for a complex component of VAR. */
457
458 static tree
459 get_component_var (tree var, bool imag_p)
460 {
461 size_t decl_index = DECL_UID (var) * 2 + imag_p;
462 tree ret = cvc_lookup (decl_index);
463
464 if (ret == NULL)
465 {
466 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
467 imag_p ? "CI" : "CR",
468 imag_p ? "$imag" : "$real",
469 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
470 cvc_insert (decl_index, ret);
471 }
472
473 return ret;
474 }
475
476 /* Retrieve a value for a complex component of SSA_NAME. */
477
478 static tree
479 get_component_ssa_name (tree ssa_name, bool imag_p)
480 {
481 complex_lattice_t lattice = find_lattice_value (ssa_name);
482 size_t ssa_name_index;
483 tree ret;
484
485 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
486 {
487 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
488 if (SCALAR_FLOAT_TYPE_P (inner_type))
489 return build_real (inner_type, dconst0);
490 else
491 return build_int_cst (inner_type, 0);
492 }
493
494 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
495 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
496 if (ret == NULL)
497 {
498 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
499 ret = make_ssa_name (ret, NULL);
500
501 /* Copy some properties from the original. In particular, whether it
502 is used in an abnormal phi, and whether it's uninitialized. */
503 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
504 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
505 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
506 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
507 {
508 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
509 set_default_def (SSA_NAME_VAR (ret), ret);
510 }
511
512 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
513 }
514
515 return ret;
516 }
517
518 /* Set a value for a complex component of SSA_NAME, return a
519 gimple_seq of stuff that needs doing. */
520
521 static gimple_seq
522 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
523 {
524 complex_lattice_t lattice = find_lattice_value (ssa_name);
525 size_t ssa_name_index;
526 tree comp;
527 gimple last;
528 gimple_seq list;
529
530 /* We know the value must be zero, else there's a bug in our lattice
531 analysis. But the value may well be a variable known to contain
532 zero. We should be safe ignoring it. */
533 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
534 return NULL;
535
536 /* If we've already assigned an SSA_NAME to this component, then this
537 means that our walk of the basic blocks found a use before the set.
538 This is fine. Now we should create an initialization for the value
539 we created earlier. */
540 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
541 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
542 if (comp)
543 ;
544
545 /* If we've nothing assigned, and the value we're given is already stable,
546 then install that as the value for this SSA_NAME. This preemptively
547 copy-propagates the value, which avoids unnecessary memory allocation. */
548 else if (is_gimple_min_invariant (value)
549 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
550 {
551 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
552 return NULL;
553 }
554 else if (TREE_CODE (value) == SSA_NAME
555 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
556 {
557 /* Replace an anonymous base value with the variable from cvc_lookup.
558 This should result in better debug info. */
559 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
560 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
561 {
562 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
563 replace_ssa_name_symbol (value, comp);
564 }
565
566 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
567 return NULL;
568 }
569
570 /* Finally, we need to stabilize the result by installing the value into
571 a new ssa name. */
572 else
573 comp = get_component_ssa_name (ssa_name, imag_p);
574
575 /* Do all the work to assign VALUE to COMP. */
576 list = NULL;
577 value = force_gimple_operand (value, &list, false, NULL);
578 last = gimple_build_assign (comp, value);
579 gimple_seq_add_stmt (&list, last);
580 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
581
582 return list;
583 }
584
585 /* Extract the real or imaginary part of a complex variable or constant.
586 Make sure that it's a proper gimple_val and gimplify it if not.
587 Emit any new code before gsi. */
588
589 static tree
590 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
591 bool gimple_p)
592 {
593 switch (TREE_CODE (t))
594 {
595 case COMPLEX_CST:
596 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
597
598 case COMPLEX_EXPR:
599 gcc_unreachable ();
600
601 case VAR_DECL:
602 case RESULT_DECL:
603 case PARM_DECL:
604 case INDIRECT_REF:
605 case COMPONENT_REF:
606 case ARRAY_REF:
607 {
608 tree inner_type = TREE_TYPE (TREE_TYPE (t));
609
610 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
611 inner_type, unshare_expr (t));
612
613 if (gimple_p)
614 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
615 GSI_SAME_STMT);
616
617 return t;
618 }
619
620 case SSA_NAME:
621 return get_component_ssa_name (t, imagpart_p);
622
623 default:
624 gcc_unreachable ();
625 }
626 }
627
628 /* Update the complex components of the ssa name on the lhs of STMT. */
629
630 static void
631 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
632 tree i)
633 {
634 tree lhs;
635 gimple_seq list;
636
637 lhs = gimple_get_lhs (stmt);
638
639 list = set_component_ssa_name (lhs, false, r);
640 if (list)
641 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
642
643 list = set_component_ssa_name (lhs, true, i);
644 if (list)
645 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
646 }
647
648 static void
649 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
650 {
651 gimple_seq list;
652
653 list = set_component_ssa_name (lhs, false, r);
654 if (list)
655 gsi_insert_seq_on_edge (e, list);
656
657 list = set_component_ssa_name (lhs, true, i);
658 if (list)
659 gsi_insert_seq_on_edge (e, list);
660 }
661
662
663 /* Update an assignment to a complex variable in place. */
664
665 static void
666 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
667 {
668 gimple_stmt_iterator orig_si = *gsi;
669
670 if (gimple_in_ssa_p (cfun))
671 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
672
673 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
674 update_stmt (gsi_stmt (orig_si));
675 }
676
677
678 /* Generate code at the entry point of the function to initialize the
679 component variables for a complex parameter. */
680
681 static void
682 update_parameter_components (void)
683 {
684 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
685 tree parm;
686
687 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
688 {
689 tree type = TREE_TYPE (parm);
690 tree ssa_name, r, i;
691
692 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
693 continue;
694
695 type = TREE_TYPE (type);
696 ssa_name = gimple_default_def (cfun, parm);
697 if (!ssa_name)
698 continue;
699
700 r = build1 (REALPART_EXPR, type, ssa_name);
701 i = build1 (IMAGPART_EXPR, type, ssa_name);
702 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
703 }
704 }
705
706 /* Generate code to set the component variables of a complex variable
707 to match the PHI statements in block BB. */
708
709 static void
710 update_phi_components (basic_block bb)
711 {
712 gimple_stmt_iterator gsi;
713
714 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
715 {
716 gimple phi = gsi_stmt (gsi);
717
718 if (is_complex_reg (gimple_phi_result (phi)))
719 {
720 tree lr, li;
721 gimple pr = NULL, pi = NULL;
722 unsigned int i, n;
723
724 lr = get_component_ssa_name (gimple_phi_result (phi), false);
725 if (TREE_CODE (lr) == SSA_NAME)
726 {
727 pr = create_phi_node (lr, bb);
728 SSA_NAME_DEF_STMT (lr) = pr;
729 }
730
731 li = get_component_ssa_name (gimple_phi_result (phi), true);
732 if (TREE_CODE (li) == SSA_NAME)
733 {
734 pi = create_phi_node (li, bb);
735 SSA_NAME_DEF_STMT (li) = pi;
736 }
737
738 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
739 {
740 tree comp, arg = gimple_phi_arg_def (phi, i);
741 if (pr)
742 {
743 comp = extract_component (NULL, arg, false, false);
744 SET_PHI_ARG_DEF (pr, i, comp);
745 }
746 if (pi)
747 {
748 comp = extract_component (NULL, arg, true, false);
749 SET_PHI_ARG_DEF (pi, i, comp);
750 }
751 }
752 }
753 }
754 }
755
756 /* Expand a complex move to scalars. */
757
758 static void
759 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
760 {
761 tree inner_type = TREE_TYPE (type);
762 tree r, i, lhs, rhs;
763 gimple stmt = gsi_stmt (*gsi);
764
765 if (is_gimple_assign (stmt))
766 {
767 lhs = gimple_assign_lhs (stmt);
768 if (gimple_num_ops (stmt) == 2)
769 rhs = gimple_assign_rhs1 (stmt);
770 else
771 rhs = NULL_TREE;
772 }
773 else if (is_gimple_call (stmt))
774 {
775 lhs = gimple_call_lhs (stmt);
776 rhs = NULL_TREE;
777 }
778 else
779 gcc_unreachable ();
780
781 if (TREE_CODE (lhs) == SSA_NAME)
782 {
783 if (is_ctrl_altering_stmt (stmt))
784 {
785 edge_iterator ei;
786 edge e;
787
788 /* The value is not assigned on the exception edges, so we need not
789 concern ourselves there. We do need to update on the fallthru
790 edge. Find it. */
791 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
792 if (e->flags & EDGE_FALLTHRU)
793 goto found_fallthru;
794 gcc_unreachable ();
795 found_fallthru:
796
797 r = build1 (REALPART_EXPR, inner_type, lhs);
798 i = build1 (IMAGPART_EXPR, inner_type, lhs);
799 update_complex_components_on_edge (e, lhs, r, i);
800 }
801 else if (is_gimple_call (stmt)
802 || gimple_has_side_effects (stmt)
803 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
804 {
805 r = build1 (REALPART_EXPR, inner_type, lhs);
806 i = build1 (IMAGPART_EXPR, inner_type, lhs);
807 update_complex_components (gsi, stmt, r, i);
808 }
809 else
810 {
811 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
812 {
813 r = extract_component (gsi, rhs, 0, true);
814 i = extract_component (gsi, rhs, 1, true);
815 }
816 else
817 {
818 r = gimple_assign_rhs1 (stmt);
819 i = gimple_assign_rhs2 (stmt);
820 }
821 update_complex_assignment (gsi, r, i);
822 }
823 }
824 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
825 {
826 tree x;
827 gimple t;
828
829 r = extract_component (gsi, rhs, 0, false);
830 i = extract_component (gsi, rhs, 1, false);
831
832 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
833 t = gimple_build_assign (x, r);
834 gsi_insert_before (gsi, t, GSI_SAME_STMT);
835
836 if (stmt == gsi_stmt (*gsi))
837 {
838 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
839 gimple_assign_set_lhs (stmt, x);
840 gimple_assign_set_rhs1 (stmt, i);
841 }
842 else
843 {
844 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
845 t = gimple_build_assign (x, i);
846 gsi_insert_before (gsi, t, GSI_SAME_STMT);
847
848 stmt = gsi_stmt (*gsi);
849 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
850 gimple_return_set_retval (stmt, lhs);
851 }
852
853 update_stmt (stmt);
854 }
855 }
856
857 /* Expand complex addition to scalars:
858 a + b = (ar + br) + i(ai + bi)
859 a - b = (ar - br) + i(ai + bi)
860 */
861
862 static void
863 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
864 tree ar, tree ai, tree br, tree bi,
865 enum tree_code code,
866 complex_lattice_t al, complex_lattice_t bl)
867 {
868 tree rr, ri;
869
870 switch (PAIR (al, bl))
871 {
872 case PAIR (ONLY_REAL, ONLY_REAL):
873 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
874 ri = ai;
875 break;
876
877 case PAIR (ONLY_REAL, ONLY_IMAG):
878 rr = ar;
879 if (code == MINUS_EXPR)
880 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
881 else
882 ri = bi;
883 break;
884
885 case PAIR (ONLY_IMAG, ONLY_REAL):
886 if (code == MINUS_EXPR)
887 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
888 else
889 rr = br;
890 ri = ai;
891 break;
892
893 case PAIR (ONLY_IMAG, ONLY_IMAG):
894 rr = ar;
895 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
896 break;
897
898 case PAIR (VARYING, ONLY_REAL):
899 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
900 ri = ai;
901 break;
902
903 case PAIR (VARYING, ONLY_IMAG):
904 rr = ar;
905 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
906 break;
907
908 case PAIR (ONLY_REAL, VARYING):
909 if (code == MINUS_EXPR)
910 goto general;
911 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
912 ri = bi;
913 break;
914
915 case PAIR (ONLY_IMAG, VARYING):
916 if (code == MINUS_EXPR)
917 goto general;
918 rr = br;
919 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
920 break;
921
922 case PAIR (VARYING, VARYING):
923 general:
924 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
925 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
926 break;
927
928 default:
929 gcc_unreachable ();
930 }
931
932 update_complex_assignment (gsi, rr, ri);
933 }
934
935 /* Expand a complex multiplication or division to a libcall to the c99
936 compliant routines. */
937
938 static void
939 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
940 tree br, tree bi, enum tree_code code)
941 {
942 enum machine_mode mode;
943 enum built_in_function bcode;
944 tree fn, type, lhs;
945 gimple old_stmt, stmt;
946
947 old_stmt = gsi_stmt (*gsi);
948 lhs = gimple_assign_lhs (old_stmt);
949 type = TREE_TYPE (lhs);
950
951 mode = TYPE_MODE (type);
952 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
953
954 if (code == MULT_EXPR)
955 bcode = ((enum built_in_function)
956 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
957 else if (code == RDIV_EXPR)
958 bcode = ((enum built_in_function)
959 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
960 else
961 gcc_unreachable ();
962 fn = built_in_decls[bcode];
963
964 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
965 gimple_call_set_lhs (stmt, lhs);
966 update_stmt (stmt);
967 gsi_replace (gsi, stmt, false);
968
969 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
970 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
971
972 if (gimple_in_ssa_p (cfun))
973 {
974 type = TREE_TYPE (type);
975 update_complex_components (gsi, stmt,
976 build1 (REALPART_EXPR, type, lhs),
977 build1 (IMAGPART_EXPR, type, lhs));
978 SSA_NAME_DEF_STMT (lhs) = stmt;
979 }
980 }
981
982 /* Expand complex multiplication to scalars:
983 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
984 */
985
986 static void
987 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
988 tree ar, tree ai, tree br, tree bi,
989 complex_lattice_t al, complex_lattice_t bl)
990 {
991 tree rr, ri;
992
993 if (al < bl)
994 {
995 complex_lattice_t tl;
996 rr = ar, ar = br, br = rr;
997 ri = ai, ai = bi, bi = ri;
998 tl = al, al = bl, bl = tl;
999 }
1000
1001 switch (PAIR (al, bl))
1002 {
1003 case PAIR (ONLY_REAL, ONLY_REAL):
1004 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1005 ri = ai;
1006 break;
1007
1008 case PAIR (ONLY_IMAG, ONLY_REAL):
1009 rr = ar;
1010 if (TREE_CODE (ai) == REAL_CST
1011 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1012 ri = br;
1013 else
1014 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1015 break;
1016
1017 case PAIR (ONLY_IMAG, ONLY_IMAG):
1018 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1019 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1020 ri = ar;
1021 break;
1022
1023 case PAIR (VARYING, ONLY_REAL):
1024 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1025 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1026 break;
1027
1028 case PAIR (VARYING, ONLY_IMAG):
1029 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1030 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1031 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1032 break;
1033
1034 case PAIR (VARYING, VARYING):
1035 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1036 {
1037 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1038 return;
1039 }
1040 else
1041 {
1042 tree t1, t2, t3, t4;
1043
1044 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1045 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1046 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1047
1048 /* Avoid expanding redundant multiplication for the common
1049 case of squaring a complex number. */
1050 if (ar == br && ai == bi)
1051 t4 = t3;
1052 else
1053 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1054
1055 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1056 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1057 }
1058 break;
1059
1060 default:
1061 gcc_unreachable ();
1062 }
1063
1064 update_complex_assignment (gsi, rr, ri);
1065 }
1066
1067 /* Expand complex division to scalars, straightforward algorithm.
1068 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1069 t = br*br + bi*bi
1070 */
1071
1072 static void
1073 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1074 tree ar, tree ai, tree br, tree bi,
1075 enum tree_code code)
1076 {
1077 tree rr, ri, div, t1, t2, t3;
1078
1079 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1080 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1081 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1082
1083 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1084 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1085 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1086 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1087
1088 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1089 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1090 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1091 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1092
1093 update_complex_assignment (gsi, rr, ri);
1094 }
1095
1096 /* Expand complex division to scalars, modified algorithm to minimize
1097 overflow with wide input ranges. */
1098
1099 static void
1100 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1101 tree ar, tree ai, tree br, tree bi,
1102 enum tree_code code)
1103 {
1104 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1105 basic_block bb_cond, bb_true, bb_false, bb_join;
1106 gimple stmt;
1107
1108 /* Examine |br| < |bi|, and branch. */
1109 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1110 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1111 compare = fold_build2 (LT_EXPR, boolean_type_node, t1, t2);
1112 STRIP_NOPS (compare);
1113
1114 bb_cond = bb_true = bb_false = bb_join = NULL;
1115 rr = ri = tr = ti = NULL;
1116 if (!TREE_CONSTANT (compare))
1117 {
1118 edge e;
1119 gimple stmt;
1120 tree cond, tmp;
1121
1122 tmp = create_tmp_var (boolean_type_node, NULL);
1123 stmt = gimple_build_assign (tmp, compare);
1124 if (gimple_in_ssa_p (cfun))
1125 {
1126 tmp = make_ssa_name (tmp, stmt);
1127 gimple_assign_set_lhs (stmt, tmp);
1128 }
1129
1130 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1131
1132 cond = fold_build2 (EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1133 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1134 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1135
1136 /* Split the original block, and create the TRUE and FALSE blocks. */
1137 e = split_block (gsi_bb (*gsi), stmt);
1138 bb_cond = e->src;
1139 bb_join = e->dest;
1140 bb_true = create_empty_bb (bb_cond);
1141 bb_false = create_empty_bb (bb_true);
1142
1143 /* Wire the blocks together. */
1144 e->flags = EDGE_TRUE_VALUE;
1145 redirect_edge_succ (e, bb_true);
1146 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1147 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1148 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1149
1150 /* Update dominance info. Note that bb_join's data was
1151 updated by split_block. */
1152 if (dom_info_available_p (CDI_DOMINATORS))
1153 {
1154 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1155 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1156 }
1157
1158 rr = make_rename_temp (inner_type, NULL);
1159 ri = make_rename_temp (inner_type, NULL);
1160 }
1161
1162 /* In the TRUE branch, we compute
1163 ratio = br/bi;
1164 div = (br * ratio) + bi;
1165 tr = (ar * ratio) + ai;
1166 ti = (ai * ratio) - ar;
1167 tr = tr / div;
1168 ti = ti / div; */
1169 if (bb_true || integer_nonzerop (compare))
1170 {
1171 if (bb_true)
1172 {
1173 *gsi = gsi_last_bb (bb_true);
1174 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1175 }
1176
1177 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1178
1179 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1180 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1181
1182 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1183 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1184
1185 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1186 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1187
1188 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1189 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1190
1191 if (bb_true)
1192 {
1193 stmt = gimple_build_assign (rr, tr);
1194 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1195 stmt = gimple_build_assign (ri, ti);
1196 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1197 gsi_remove (gsi, true);
1198 }
1199 }
1200
1201 /* In the FALSE branch, we compute
1202 ratio = d/c;
1203 divisor = (d * ratio) + c;
1204 tr = (b * ratio) + a;
1205 ti = b - (a * ratio);
1206 tr = tr / div;
1207 ti = ti / div; */
1208 if (bb_false || integer_zerop (compare))
1209 {
1210 if (bb_false)
1211 {
1212 *gsi = gsi_last_bb (bb_false);
1213 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1214 }
1215
1216 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1217
1218 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1219 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1220
1221 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1222 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1223
1224 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1225 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1226
1227 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1228 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1229
1230 if (bb_false)
1231 {
1232 stmt = gimple_build_assign (rr, tr);
1233 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1234 stmt = gimple_build_assign (ri, ti);
1235 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1236 gsi_remove (gsi, true);
1237 }
1238 }
1239
1240 if (bb_join)
1241 *gsi = gsi_start_bb (bb_join);
1242 else
1243 rr = tr, ri = ti;
1244
1245 update_complex_assignment (gsi, rr, ri);
1246 }
1247
1248 /* Expand complex division to scalars. */
1249
1250 static void
1251 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1252 tree ar, tree ai, tree br, tree bi,
1253 enum tree_code code,
1254 complex_lattice_t al, complex_lattice_t bl)
1255 {
1256 tree rr, ri;
1257
1258 switch (PAIR (al, bl))
1259 {
1260 case PAIR (ONLY_REAL, ONLY_REAL):
1261 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1262 ri = ai;
1263 break;
1264
1265 case PAIR (ONLY_REAL, ONLY_IMAG):
1266 rr = ai;
1267 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1268 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1269 break;
1270
1271 case PAIR (ONLY_IMAG, ONLY_REAL):
1272 rr = ar;
1273 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1274 break;
1275
1276 case PAIR (ONLY_IMAG, ONLY_IMAG):
1277 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1278 ri = ar;
1279 break;
1280
1281 case PAIR (VARYING, ONLY_REAL):
1282 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1283 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1284 break;
1285
1286 case PAIR (VARYING, ONLY_IMAG):
1287 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1288 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1289 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1290
1291 case PAIR (ONLY_REAL, VARYING):
1292 case PAIR (ONLY_IMAG, VARYING):
1293 case PAIR (VARYING, VARYING):
1294 switch (flag_complex_method)
1295 {
1296 case 0:
1297 /* straightforward implementation of complex divide acceptable. */
1298 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1299 break;
1300
1301 case 2:
1302 if (SCALAR_FLOAT_TYPE_P (inner_type))
1303 {
1304 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1305 break;
1306 }
1307 /* FALLTHRU */
1308
1309 case 1:
1310 /* wide ranges of inputs must work for complex divide. */
1311 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1312 break;
1313
1314 default:
1315 gcc_unreachable ();
1316 }
1317 return;
1318
1319 default:
1320 gcc_unreachable ();
1321 }
1322
1323 update_complex_assignment (gsi, rr, ri);
1324 }
1325
1326 /* Expand complex negation to scalars:
1327 -a = (-ar) + i(-ai)
1328 */
1329
1330 static void
1331 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1332 tree ar, tree ai)
1333 {
1334 tree rr, ri;
1335
1336 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1337 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1338
1339 update_complex_assignment (gsi, rr, ri);
1340 }
1341
1342 /* Expand complex conjugate to scalars:
1343 ~a = (ar) + i(-ai)
1344 */
1345
1346 static void
1347 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1348 tree ar, tree ai)
1349 {
1350 tree ri;
1351
1352 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1353
1354 update_complex_assignment (gsi, ar, ri);
1355 }
1356
1357 /* Expand complex comparison (EQ or NE only). */
1358
1359 static void
1360 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1361 tree br, tree bi, enum tree_code code)
1362 {
1363 tree cr, ci, cc, type;
1364 gimple stmt;
1365
1366 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1367 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1368 cc = gimplify_build2 (gsi,
1369 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1370 boolean_type_node, cr, ci);
1371
1372 stmt = gsi_stmt (*gsi);
1373
1374 switch (gimple_code (stmt))
1375 {
1376 case GIMPLE_RETURN:
1377 type = TREE_TYPE (gimple_return_retval (stmt));
1378 gimple_return_set_retval (stmt, fold_convert (type, cc));
1379 break;
1380
1381 case GIMPLE_ASSIGN:
1382 type = TREE_TYPE (gimple_assign_lhs (stmt));
1383 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1384 stmt = gsi_stmt (*gsi);
1385 break;
1386
1387 case GIMPLE_COND:
1388 gimple_cond_set_code (stmt, EQ_EXPR);
1389 gimple_cond_set_lhs (stmt, cc);
1390 gimple_cond_set_rhs (stmt, boolean_true_node);
1391 break;
1392
1393 default:
1394 gcc_unreachable ();
1395 }
1396
1397 update_stmt (stmt);
1398 }
1399
1400
1401 /* Process one statement. If we identify a complex operation, expand it. */
1402
1403 static void
1404 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1405 {
1406 gimple stmt = gsi_stmt (*gsi);
1407 tree type, inner_type, lhs;
1408 tree ac, ar, ai, bc, br, bi;
1409 complex_lattice_t al, bl;
1410 enum tree_code code;
1411
1412 lhs = gimple_get_lhs (stmt);
1413 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1414 return;
1415
1416 type = TREE_TYPE (gimple_op (stmt, 0));
1417 code = gimple_expr_code (stmt);
1418
1419 /* Initial filter for operations we handle. */
1420 switch (code)
1421 {
1422 case PLUS_EXPR:
1423 case MINUS_EXPR:
1424 case MULT_EXPR:
1425 case TRUNC_DIV_EXPR:
1426 case CEIL_DIV_EXPR:
1427 case FLOOR_DIV_EXPR:
1428 case ROUND_DIV_EXPR:
1429 case RDIV_EXPR:
1430 case NEGATE_EXPR:
1431 case CONJ_EXPR:
1432 if (TREE_CODE (type) != COMPLEX_TYPE)
1433 return;
1434 inner_type = TREE_TYPE (type);
1435 break;
1436
1437 case EQ_EXPR:
1438 case NE_EXPR:
1439 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1440 subocde, so we need to access the operands using gimple_op. */
1441 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1442 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1443 return;
1444 break;
1445
1446 default:
1447 {
1448 tree rhs;
1449
1450 /* GIMPLE_COND may also fallthru here, but we do not need to
1451 do anything with it. */
1452 if (gimple_code (stmt) == GIMPLE_COND)
1453 return;
1454
1455 if (TREE_CODE (type) == COMPLEX_TYPE)
1456 expand_complex_move (gsi, type);
1457 else if (is_gimple_assign (stmt)
1458 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1459 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1460 && TREE_CODE (lhs) == SSA_NAME)
1461 {
1462 rhs = gimple_assign_rhs1 (stmt);
1463 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1464 gimple_assign_rhs_code (stmt)
1465 == IMAGPART_EXPR,
1466 false);
1467 gimple_assign_set_rhs_from_tree (gsi, rhs);
1468 stmt = gsi_stmt (*gsi);
1469 update_stmt (stmt);
1470 }
1471 }
1472 return;
1473 }
1474
1475 /* Extract the components of the two complex values. Make sure and
1476 handle the common case of the same value used twice specially. */
1477 if (is_gimple_assign (stmt))
1478 {
1479 ac = gimple_assign_rhs1 (stmt);
1480 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1481 }
1482 /* GIMPLE_CALL can not get here. */
1483 else
1484 {
1485 ac = gimple_cond_lhs (stmt);
1486 bc = gimple_cond_rhs (stmt);
1487 }
1488
1489 ar = extract_component (gsi, ac, false, true);
1490 ai = extract_component (gsi, ac, true, true);
1491
1492 if (ac == bc)
1493 br = ar, bi = ai;
1494 else if (bc)
1495 {
1496 br = extract_component (gsi, bc, 0, true);
1497 bi = extract_component (gsi, bc, 1, true);
1498 }
1499 else
1500 br = bi = NULL_TREE;
1501
1502 if (gimple_in_ssa_p (cfun))
1503 {
1504 al = find_lattice_value (ac);
1505 if (al == UNINITIALIZED)
1506 al = VARYING;
1507
1508 if (TREE_CODE_CLASS (code) == tcc_unary)
1509 bl = UNINITIALIZED;
1510 else if (ac == bc)
1511 bl = al;
1512 else
1513 {
1514 bl = find_lattice_value (bc);
1515 if (bl == UNINITIALIZED)
1516 bl = VARYING;
1517 }
1518 }
1519 else
1520 al = bl = VARYING;
1521
1522 switch (code)
1523 {
1524 case PLUS_EXPR:
1525 case MINUS_EXPR:
1526 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1527 break;
1528
1529 case MULT_EXPR:
1530 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1531 break;
1532
1533 case TRUNC_DIV_EXPR:
1534 case CEIL_DIV_EXPR:
1535 case FLOOR_DIV_EXPR:
1536 case ROUND_DIV_EXPR:
1537 case RDIV_EXPR:
1538 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1539 break;
1540
1541 case NEGATE_EXPR:
1542 expand_complex_negation (gsi, inner_type, ar, ai);
1543 break;
1544
1545 case CONJ_EXPR:
1546 expand_complex_conjugate (gsi, inner_type, ar, ai);
1547 break;
1548
1549 case EQ_EXPR:
1550 case NE_EXPR:
1551 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1552 break;
1553
1554 default:
1555 gcc_unreachable ();
1556 }
1557 }
1558
1559 \f
1560 /* Entry point for complex operation lowering during optimization. */
1561
1562 static unsigned int
1563 tree_lower_complex (void)
1564 {
1565 int old_last_basic_block;
1566 gimple_stmt_iterator gsi;
1567 basic_block bb;
1568
1569 if (!init_dont_simulate_again ())
1570 return 0;
1571
1572 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1573 VEC_safe_grow_cleared (complex_lattice_t, heap,
1574 complex_lattice_values, num_ssa_names);
1575
1576 init_parameter_lattice_values ();
1577 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1578
1579 complex_variable_components = htab_create (10, int_tree_map_hash,
1580 int_tree_map_eq, free);
1581
1582 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1583 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1584 2 * num_ssa_names);
1585
1586 update_parameter_components ();
1587
1588 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1589 old_last_basic_block = last_basic_block;
1590 FOR_EACH_BB (bb)
1591 {
1592 if (bb->index >= old_last_basic_block)
1593 continue;
1594
1595 update_phi_components (bb);
1596 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1597 expand_complex_operations_1 (&gsi);
1598 }
1599
1600 gsi_commit_edge_inserts ();
1601
1602 htab_delete (complex_variable_components);
1603 VEC_free (tree, heap, complex_ssa_name_components);
1604 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1605 return 0;
1606 }
1607
1608 struct gimple_opt_pass pass_lower_complex =
1609 {
1610 {
1611 GIMPLE_PASS,
1612 "cplxlower", /* name */
1613 0, /* gate */
1614 tree_lower_complex, /* execute */
1615 NULL, /* sub */
1616 NULL, /* next */
1617 0, /* static_pass_number */
1618 TV_NONE, /* tv_id */
1619 PROP_ssa, /* properties_required */
1620 0, /* properties_provided */
1621 0, /* properties_destroyed */
1622 0, /* todo_flags_start */
1623 TODO_dump_func
1624 | TODO_ggc_collect
1625 | TODO_update_ssa
1626 | TODO_verify_stmts /* todo_flags_finish */
1627 }
1628 };
1629
1630 \f
1631 /* Entry point for complex operation lowering without optimization. */
1632
1633 static unsigned int
1634 tree_lower_complex_O0 (void)
1635 {
1636 int old_last_basic_block = last_basic_block;
1637 gimple_stmt_iterator gsi;
1638 basic_block bb;
1639
1640 FOR_EACH_BB (bb)
1641 {
1642 if (bb->index >= old_last_basic_block)
1643 continue;
1644
1645 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1646 expand_complex_operations_1 (&gsi);
1647 }
1648 return 0;
1649 }
1650
1651 static bool
1652 gate_no_optimization (void)
1653 {
1654 /* With errors, normal optimization passes are not run. If we don't
1655 lower complex operations at all, rtl expansion will abort. */
1656 return optimize == 0 || sorrycount || errorcount;
1657 }
1658
1659 struct gimple_opt_pass pass_lower_complex_O0 =
1660 {
1661 {
1662 GIMPLE_PASS,
1663 "cplxlower0", /* name */
1664 gate_no_optimization, /* gate */
1665 tree_lower_complex_O0, /* execute */
1666 NULL, /* sub */
1667 NULL, /* next */
1668 0, /* static_pass_number */
1669 TV_NONE, /* tv_id */
1670 PROP_cfg, /* properties_required */
1671 0, /* properties_provided */
1672 0, /* properties_destroyed */
1673 0, /* todo_flags_start */
1674 TODO_dump_func | TODO_ggc_collect
1675 | TODO_verify_stmts, /* todo_flags_finish */
1676 }
1677 };