tree-data-ref.c (subscript_dependence_tester_1): Call free_conflict_function.
[gcc.git] / gcc / tree-complex.c
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "real.h"
27 #include "flags.h"
28 #include "tree-flow.h"
29 #include "tree-gimple.h"
30 #include "tree-iterator.h"
31 #include "tree-pass.h"
32 #include "tree-ssa-propagate.h"
33 #include "diagnostic.h"
34
35
36 /* For each complex ssa name, a lattice value. We're interested in finding
37 out whether a complex number is degenerate in some way, having only real
38 or only complex parts. */
39
40 typedef enum
41 {
42 UNINITIALIZED = 0,
43 ONLY_REAL = 1,
44 ONLY_IMAG = 2,
45 VARYING = 3
46 } complex_lattice_t;
47
48 #define PAIR(a, b) ((a) << 2 | (b))
49
50 DEF_VEC_I(complex_lattice_t);
51 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
52
53 static VEC(complex_lattice_t, heap) *complex_lattice_values;
54
55 /* For each complex variable, a pair of variables for the components exists in
56 the hashtable. */
57 static htab_t complex_variable_components;
58
59 /* For each complex SSA_NAME, a pair of ssa names for the components. */
60 static VEC(tree, heap) *complex_ssa_name_components;
61
62 /* Lookup UID in the complex_variable_components hashtable and return the
63 associated tree. */
64 static tree
65 cvc_lookup (unsigned int uid)
66 {
67 struct int_tree_map *h, in;
68 in.uid = uid;
69 h = htab_find_with_hash (complex_variable_components, &in, uid);
70 return h ? h->to : NULL;
71 }
72
73 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
74
75 static void
76 cvc_insert (unsigned int uid, tree to)
77 {
78 struct int_tree_map *h;
79 void **loc;
80
81 h = XNEW (struct int_tree_map);
82 h->uid = uid;
83 h->to = to;
84 loc = htab_find_slot_with_hash (complex_variable_components, h,
85 uid, INSERT);
86 *(struct int_tree_map **) loc = h;
87 }
88
89 /* Return true if T is not a zero constant. In the case of real values,
90 we're only interested in +0.0. */
91
92 static int
93 some_nonzerop (tree t)
94 {
95 int zerop = false;
96
97 if (TREE_CODE (t) == REAL_CST)
98 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
99 else if (TREE_CODE (t) == FIXED_CST)
100 zerop = fixed_zerop (t);
101 else if (TREE_CODE (t) == INTEGER_CST)
102 zerop = integer_zerop (t);
103
104 return !zerop;
105 }
106
107 /* Compute a lattice value from T. It may be a gimple_val, or, as a
108 special exception, a COMPLEX_EXPR. */
109
110 static complex_lattice_t
111 find_lattice_value (tree t)
112 {
113 tree real, imag;
114 int r, i;
115 complex_lattice_t ret;
116
117 switch (TREE_CODE (t))
118 {
119 case SSA_NAME:
120 return VEC_index (complex_lattice_t, complex_lattice_values,
121 SSA_NAME_VERSION (t));
122
123 case COMPLEX_CST:
124 real = TREE_REALPART (t);
125 imag = TREE_IMAGPART (t);
126 break;
127
128 case COMPLEX_EXPR:
129 real = TREE_OPERAND (t, 0);
130 imag = TREE_OPERAND (t, 1);
131 break;
132
133 default:
134 gcc_unreachable ();
135 }
136
137 r = some_nonzerop (real);
138 i = some_nonzerop (imag);
139 ret = r*ONLY_REAL + i*ONLY_IMAG;
140
141 /* ??? On occasion we could do better than mapping 0+0i to real, but we
142 certainly don't want to leave it UNINITIALIZED, which eventually gets
143 mapped to VARYING. */
144 if (ret == UNINITIALIZED)
145 ret = ONLY_REAL;
146
147 return ret;
148 }
149
150 /* Determine if LHS is something for which we're interested in seeing
151 simulation results. */
152
153 static bool
154 is_complex_reg (tree lhs)
155 {
156 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
157 }
158
159 /* Mark the incoming parameters to the function as VARYING. */
160
161 static void
162 init_parameter_lattice_values (void)
163 {
164 tree parm;
165
166 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
167 if (is_complex_reg (parm) && var_ann (parm) != NULL)
168 {
169 tree ssa_name = gimple_default_def (cfun, parm);
170 VEC_replace (complex_lattice_t, complex_lattice_values,
171 SSA_NAME_VERSION (ssa_name), VARYING);
172 }
173 }
174
175 /* Initialize DONT_SIMULATE_AGAIN for each stmt and phi. Return false if
176 we found no statements we want to simulate, and thus there's nothing for
177 the entire pass to do. */
178
179 static bool
180 init_dont_simulate_again (void)
181 {
182 basic_block bb;
183 block_stmt_iterator bsi;
184 tree phi;
185 bool saw_a_complex_op = false;
186
187 FOR_EACH_BB (bb)
188 {
189 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
190 DONT_SIMULATE_AGAIN (phi) = !is_complex_reg (PHI_RESULT (phi));
191
192 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
193 {
194 tree orig_stmt, stmt, rhs = NULL;
195 bool dsa;
196
197 orig_stmt = stmt = bsi_stmt (bsi);
198
199 /* Most control-altering statements must be initially
200 simulated, else we won't cover the entire cfg. */
201 dsa = !stmt_ends_bb_p (stmt);
202
203 switch (TREE_CODE (stmt))
204 {
205 case RETURN_EXPR:
206 /* We don't care what the lattice value of <retval> is,
207 since it's never used as an input to another computation. */
208 dsa = true;
209 stmt = TREE_OPERAND (stmt, 0);
210 if (!stmt || TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
211 break;
212 /* FALLTHRU */
213
214 case GIMPLE_MODIFY_STMT:
215 dsa = !is_complex_reg (GIMPLE_STMT_OPERAND (stmt, 0));
216 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
217 break;
218
219 case COND_EXPR:
220 rhs = TREE_OPERAND (stmt, 0);
221 break;
222
223 default:
224 break;
225 }
226
227 if (rhs)
228 switch (TREE_CODE (rhs))
229 {
230 case EQ_EXPR:
231 case NE_EXPR:
232 rhs = TREE_OPERAND (rhs, 0);
233 /* FALLTHRU */
234
235 case PLUS_EXPR:
236 case MINUS_EXPR:
237 case MULT_EXPR:
238 case TRUNC_DIV_EXPR:
239 case CEIL_DIV_EXPR:
240 case FLOOR_DIV_EXPR:
241 case ROUND_DIV_EXPR:
242 case RDIV_EXPR:
243 case NEGATE_EXPR:
244 case CONJ_EXPR:
245 if (TREE_CODE (TREE_TYPE (rhs)) == COMPLEX_TYPE)
246 saw_a_complex_op = true;
247 break;
248
249 case REALPART_EXPR:
250 case IMAGPART_EXPR:
251 /* The total store transformation performed during
252 gimplification creates such uninitialized loads
253 and we need to lower the statement to be able
254 to fix things up. */
255 if (TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
256 && ssa_undefined_value_p (TREE_OPERAND (rhs, 0)))
257 saw_a_complex_op = true;
258 break;
259
260 default:
261 break;
262 }
263
264 DONT_SIMULATE_AGAIN (orig_stmt) = dsa;
265 }
266 }
267
268 return saw_a_complex_op;
269 }
270
271
272 /* Evaluate statement STMT against the complex lattice defined above. */
273
274 static enum ssa_prop_result
275 complex_visit_stmt (tree stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
276 tree *result_p)
277 {
278 complex_lattice_t new_l, old_l, op1_l, op2_l;
279 unsigned int ver;
280 tree lhs, rhs;
281
282 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
283 return SSA_PROP_VARYING;
284
285 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
286 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
287
288 /* These conditions should be satisfied due to the initial filter
289 set up in init_dont_simulate_again. */
290 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
291 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
292
293 *result_p = lhs;
294 ver = SSA_NAME_VERSION (lhs);
295 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
296
297 switch (TREE_CODE (rhs))
298 {
299 case SSA_NAME:
300 case COMPLEX_EXPR:
301 case COMPLEX_CST:
302 new_l = find_lattice_value (rhs);
303 break;
304
305 case PLUS_EXPR:
306 case MINUS_EXPR:
307 op1_l = find_lattice_value (TREE_OPERAND (rhs, 0));
308 op2_l = find_lattice_value (TREE_OPERAND (rhs, 1));
309
310 /* We've set up the lattice values such that IOR neatly
311 models addition. */
312 new_l = op1_l | op2_l;
313 break;
314
315 case MULT_EXPR:
316 case RDIV_EXPR:
317 case TRUNC_DIV_EXPR:
318 case CEIL_DIV_EXPR:
319 case FLOOR_DIV_EXPR:
320 case ROUND_DIV_EXPR:
321 op1_l = find_lattice_value (TREE_OPERAND (rhs, 0));
322 op2_l = find_lattice_value (TREE_OPERAND (rhs, 1));
323
324 /* Obviously, if either varies, so does the result. */
325 if (op1_l == VARYING || op2_l == VARYING)
326 new_l = VARYING;
327 /* Don't prematurely promote variables if we've not yet seen
328 their inputs. */
329 else if (op1_l == UNINITIALIZED)
330 new_l = op2_l;
331 else if (op2_l == UNINITIALIZED)
332 new_l = op1_l;
333 else
334 {
335 /* At this point both numbers have only one component. If the
336 numbers are of opposite kind, the result is imaginary,
337 otherwise the result is real. The add/subtract translates
338 the real/imag from/to 0/1; the ^ performs the comparison. */
339 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
340
341 /* Don't allow the lattice value to flip-flop indefinitely. */
342 new_l |= old_l;
343 }
344 break;
345
346 case NEGATE_EXPR:
347 case CONJ_EXPR:
348 new_l = find_lattice_value (TREE_OPERAND (rhs, 0));
349 break;
350
351 default:
352 new_l = VARYING;
353 break;
354 }
355
356 /* If nothing changed this round, let the propagator know. */
357 if (new_l == old_l)
358 return SSA_PROP_NOT_INTERESTING;
359
360 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
361 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
362 }
363
364 /* Evaluate a PHI node against the complex lattice defined above. */
365
366 static enum ssa_prop_result
367 complex_visit_phi (tree phi)
368 {
369 complex_lattice_t new_l, old_l;
370 unsigned int ver;
371 tree lhs;
372 int i;
373
374 lhs = PHI_RESULT (phi);
375
376 /* This condition should be satisfied due to the initial filter
377 set up in init_dont_simulate_again. */
378 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
379
380 /* We've set up the lattice values such that IOR neatly models PHI meet. */
381 new_l = UNINITIALIZED;
382 for (i = PHI_NUM_ARGS (phi) - 1; i >= 0; --i)
383 new_l |= find_lattice_value (PHI_ARG_DEF (phi, i));
384
385 ver = SSA_NAME_VERSION (lhs);
386 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
387
388 if (new_l == old_l)
389 return SSA_PROP_NOT_INTERESTING;
390
391 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
392 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
393 }
394
395 /* Create one backing variable for a complex component of ORIG. */
396
397 static tree
398 create_one_component_var (tree type, tree orig, const char *prefix,
399 const char *suffix, enum tree_code code)
400 {
401 tree r = create_tmp_var (type, prefix);
402 add_referenced_var (r);
403
404 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
405 DECL_ARTIFICIAL (r) = 1;
406
407 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
408 {
409 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
410 tree inner_type;
411
412 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
413
414 inner_type = TREE_TYPE (TREE_TYPE (orig));
415 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
416 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
417 DECL_IGNORED_P (r) = 0;
418 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
419 }
420 else
421 {
422 DECL_IGNORED_P (r) = 1;
423 TREE_NO_WARNING (r) = 1;
424 }
425
426 return r;
427 }
428
429 /* Retrieve a value for a complex component of VAR. */
430
431 static tree
432 get_component_var (tree var, bool imag_p)
433 {
434 size_t decl_index = DECL_UID (var) * 2 + imag_p;
435 tree ret = cvc_lookup (decl_index);
436
437 if (ret == NULL)
438 {
439 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
440 imag_p ? "CI" : "CR",
441 imag_p ? "$imag" : "$real",
442 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
443 cvc_insert (decl_index, ret);
444 }
445
446 return ret;
447 }
448
449 /* Retrieve a value for a complex component of SSA_NAME. */
450
451 static tree
452 get_component_ssa_name (tree ssa_name, bool imag_p)
453 {
454 complex_lattice_t lattice = find_lattice_value (ssa_name);
455 size_t ssa_name_index;
456 tree ret;
457
458 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
459 {
460 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
461 if (SCALAR_FLOAT_TYPE_P (inner_type))
462 return build_real (inner_type, dconst0);
463 else
464 return build_int_cst (inner_type, 0);
465 }
466
467 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
468 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
469 if (ret == NULL)
470 {
471 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
472 ret = make_ssa_name (ret, NULL);
473
474 /* Copy some properties from the original. In particular, whether it
475 is used in an abnormal phi, and whether it's uninitialized. */
476 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
477 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
478 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
479 && IS_EMPTY_STMT (SSA_NAME_DEF_STMT (ssa_name)))
480 {
481 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
482 set_default_def (SSA_NAME_VAR (ret), ret);
483 }
484
485 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
486 }
487
488 return ret;
489 }
490
491 /* Set a value for a complex component of SSA_NAME, return a STMT_LIST of
492 stuff that needs doing. */
493
494 static tree
495 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
496 {
497 complex_lattice_t lattice = find_lattice_value (ssa_name);
498 size_t ssa_name_index;
499 tree comp, list, last;
500
501 /* We know the value must be zero, else there's a bug in our lattice
502 analysis. But the value may well be a variable known to contain
503 zero. We should be safe ignoring it. */
504 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
505 return NULL;
506
507 /* If we've already assigned an SSA_NAME to this component, then this
508 means that our walk of the basic blocks found a use before the set.
509 This is fine. Now we should create an initialization for the value
510 we created earlier. */
511 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
512 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
513 if (comp)
514 ;
515
516 /* If we've nothing assigned, and the value we're given is already stable,
517 then install that as the value for this SSA_NAME. This preemptively
518 copy-propagates the value, which avoids unnecessary memory allocation. */
519 else if (is_gimple_min_invariant (value))
520 {
521 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
522 return NULL;
523 }
524 else if (TREE_CODE (value) == SSA_NAME
525 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
526 {
527 /* Replace an anonymous base value with the variable from cvc_lookup.
528 This should result in better debug info. */
529 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
530 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
531 {
532 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
533 replace_ssa_name_symbol (value, comp);
534 }
535
536 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
537 return NULL;
538 }
539
540 /* Finally, we need to stabilize the result by installing the value into
541 a new ssa name. */
542 else
543 comp = get_component_ssa_name (ssa_name, imag_p);
544
545 /* Do all the work to assign VALUE to COMP. */
546 value = force_gimple_operand (value, &list, false, NULL);
547 last = build_gimple_modify_stmt (comp, value);
548 append_to_statement_list (last, &list);
549
550 gcc_assert (SSA_NAME_DEF_STMT (comp) == NULL);
551 SSA_NAME_DEF_STMT (comp) = last;
552
553 return list;
554 }
555
556 /* Extract the real or imaginary part of a complex variable or constant.
557 Make sure that it's a proper gimple_val and gimplify it if not.
558 Emit any new code before BSI. */
559
560 static tree
561 extract_component (block_stmt_iterator *bsi, tree t, bool imagpart_p,
562 bool gimple_p)
563 {
564 switch (TREE_CODE (t))
565 {
566 case COMPLEX_CST:
567 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
568
569 case COMPLEX_EXPR:
570 return TREE_OPERAND (t, imagpart_p);
571
572 case VAR_DECL:
573 case RESULT_DECL:
574 case PARM_DECL:
575 case INDIRECT_REF:
576 case COMPONENT_REF:
577 case ARRAY_REF:
578 {
579 tree inner_type = TREE_TYPE (TREE_TYPE (t));
580
581 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
582 inner_type, unshare_expr (t));
583
584 if (gimple_p)
585 t = gimplify_val (bsi, inner_type, t);
586
587 return t;
588 }
589
590 case SSA_NAME:
591 return get_component_ssa_name (t, imagpart_p);
592
593 default:
594 gcc_unreachable ();
595 }
596 }
597
598 /* Update the complex components of the ssa name on the lhs of STMT. */
599
600 static void
601 update_complex_components (block_stmt_iterator *bsi, tree stmt, tree r, tree i)
602 {
603 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
604 tree list;
605
606 list = set_component_ssa_name (lhs, false, r);
607 if (list)
608 bsi_insert_after (bsi, list, BSI_CONTINUE_LINKING);
609
610 list = set_component_ssa_name (lhs, true, i);
611 if (list)
612 bsi_insert_after (bsi, list, BSI_CONTINUE_LINKING);
613 }
614
615 static void
616 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
617 {
618 tree list;
619
620 list = set_component_ssa_name (lhs, false, r);
621 if (list)
622 bsi_insert_on_edge (e, list);
623
624 list = set_component_ssa_name (lhs, true, i);
625 if (list)
626 bsi_insert_on_edge (e, list);
627 }
628
629 /* Update an assignment to a complex variable in place. */
630
631 static void
632 update_complex_assignment (block_stmt_iterator *bsi, tree r, tree i)
633 {
634 tree stmt, mod;
635 tree type;
636
637 mod = stmt = bsi_stmt (*bsi);
638 if (TREE_CODE (stmt) == RETURN_EXPR)
639 mod = TREE_OPERAND (mod, 0);
640 else if (gimple_in_ssa_p (cfun))
641 update_complex_components (bsi, stmt, r, i);
642
643 type = TREE_TYPE (GIMPLE_STMT_OPERAND (mod, 1));
644 GIMPLE_STMT_OPERAND (mod, 1) = build2 (COMPLEX_EXPR, type, r, i);
645 update_stmt (stmt);
646 }
647
648 /* Generate code at the entry point of the function to initialize the
649 component variables for a complex parameter. */
650
651 static void
652 update_parameter_components (void)
653 {
654 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
655 tree parm;
656
657 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
658 {
659 tree type = TREE_TYPE (parm);
660 tree ssa_name, r, i;
661
662 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
663 continue;
664
665 type = TREE_TYPE (type);
666 ssa_name = gimple_default_def (cfun, parm);
667 if (!ssa_name)
668 continue;
669
670 r = build1 (REALPART_EXPR, type, ssa_name);
671 i = build1 (IMAGPART_EXPR, type, ssa_name);
672 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
673 }
674 }
675
676 /* Generate code to set the component variables of a complex variable
677 to match the PHI statements in block BB. */
678
679 static void
680 update_phi_components (basic_block bb)
681 {
682 tree phi;
683
684 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
685 if (is_complex_reg (PHI_RESULT (phi)))
686 {
687 tree lr, li, pr = NULL, pi = NULL;
688 unsigned int i, n;
689
690 lr = get_component_ssa_name (PHI_RESULT (phi), false);
691 if (TREE_CODE (lr) == SSA_NAME)
692 {
693 pr = create_phi_node (lr, bb);
694 SSA_NAME_DEF_STMT (lr) = pr;
695 }
696
697 li = get_component_ssa_name (PHI_RESULT (phi), true);
698 if (TREE_CODE (li) == SSA_NAME)
699 {
700 pi = create_phi_node (li, bb);
701 SSA_NAME_DEF_STMT (li) = pi;
702 }
703
704 for (i = 0, n = PHI_NUM_ARGS (phi); i < n; ++i)
705 {
706 tree comp, arg = PHI_ARG_DEF (phi, i);
707 if (pr)
708 {
709 comp = extract_component (NULL, arg, false, false);
710 SET_PHI_ARG_DEF (pr, i, comp);
711 }
712 if (pi)
713 {
714 comp = extract_component (NULL, arg, true, false);
715 SET_PHI_ARG_DEF (pi, i, comp);
716 }
717 }
718 }
719 }
720
721 /* Mark each virtual op in STMT for ssa update. */
722
723 static void
724 update_all_vops (tree stmt)
725 {
726 ssa_op_iter iter;
727 tree sym;
728
729 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
730 {
731 if (TREE_CODE (sym) == SSA_NAME)
732 sym = SSA_NAME_VAR (sym);
733 mark_sym_for_renaming (sym);
734 }
735 }
736
737 /* Expand a complex move to scalars. */
738
739 static void
740 expand_complex_move (block_stmt_iterator *bsi, tree stmt, tree type,
741 tree lhs, tree rhs)
742 {
743 tree inner_type = TREE_TYPE (type);
744 tree r, i;
745
746 if (TREE_CODE (lhs) == SSA_NAME)
747 {
748 if (is_ctrl_altering_stmt (bsi_stmt (*bsi)))
749 {
750 edge_iterator ei;
751 edge e;
752
753 /* The value is not assigned on the exception edges, so we need not
754 concern ourselves there. We do need to update on the fallthru
755 edge. Find it. */
756 FOR_EACH_EDGE (e, ei, bsi->bb->succs)
757 if (e->flags & EDGE_FALLTHRU)
758 goto found_fallthru;
759 gcc_unreachable ();
760 found_fallthru:
761
762 r = build1 (REALPART_EXPR, inner_type, lhs);
763 i = build1 (IMAGPART_EXPR, inner_type, lhs);
764 update_complex_components_on_edge (e, lhs, r, i);
765 }
766 else if (TREE_CODE (rhs) == CALL_EXPR || TREE_SIDE_EFFECTS (rhs))
767 {
768 r = build1 (REALPART_EXPR, inner_type, lhs);
769 i = build1 (IMAGPART_EXPR, inner_type, lhs);
770 update_complex_components (bsi, stmt, r, i);
771 }
772 else
773 {
774 update_all_vops (bsi_stmt (*bsi));
775 r = extract_component (bsi, rhs, 0, true);
776 i = extract_component (bsi, rhs, 1, true);
777 update_complex_assignment (bsi, r, i);
778 }
779 }
780 else if (TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
781 {
782 tree x;
783
784 r = extract_component (bsi, rhs, 0, false);
785 i = extract_component (bsi, rhs, 1, false);
786
787 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
788 x = build_gimple_modify_stmt (x, r);
789 bsi_insert_before (bsi, x, BSI_SAME_STMT);
790
791 if (stmt == bsi_stmt (*bsi))
792 {
793 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
794 GIMPLE_STMT_OPERAND (stmt, 0) = x;
795 GIMPLE_STMT_OPERAND (stmt, 1) = i;
796 }
797 else
798 {
799 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
800 x = build_gimple_modify_stmt (x, i);
801 bsi_insert_before (bsi, x, BSI_SAME_STMT);
802
803 stmt = bsi_stmt (*bsi);
804 gcc_assert (TREE_CODE (stmt) == RETURN_EXPR);
805 GIMPLE_STMT_OPERAND (stmt, 0) = lhs;
806 }
807
808 update_all_vops (stmt);
809 update_stmt (stmt);
810 }
811 }
812
813 /* Expand complex addition to scalars:
814 a + b = (ar + br) + i(ai + bi)
815 a - b = (ar - br) + i(ai + bi)
816 */
817
818 static void
819 expand_complex_addition (block_stmt_iterator *bsi, tree inner_type,
820 tree ar, tree ai, tree br, tree bi,
821 enum tree_code code,
822 complex_lattice_t al, complex_lattice_t bl)
823 {
824 tree rr, ri;
825
826 switch (PAIR (al, bl))
827 {
828 case PAIR (ONLY_REAL, ONLY_REAL):
829 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
830 ri = ai;
831 break;
832
833 case PAIR (ONLY_REAL, ONLY_IMAG):
834 rr = ar;
835 if (code == MINUS_EXPR)
836 ri = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ai, bi);
837 else
838 ri = bi;
839 break;
840
841 case PAIR (ONLY_IMAG, ONLY_REAL):
842 if (code == MINUS_EXPR)
843 rr = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ar, br);
844 else
845 rr = br;
846 ri = ai;
847 break;
848
849 case PAIR (ONLY_IMAG, ONLY_IMAG):
850 rr = ar;
851 ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
852 break;
853
854 case PAIR (VARYING, ONLY_REAL):
855 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
856 ri = ai;
857 break;
858
859 case PAIR (VARYING, ONLY_IMAG):
860 rr = ar;
861 ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
862 break;
863
864 case PAIR (ONLY_REAL, VARYING):
865 if (code == MINUS_EXPR)
866 goto general;
867 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
868 ri = bi;
869 break;
870
871 case PAIR (ONLY_IMAG, VARYING):
872 if (code == MINUS_EXPR)
873 goto general;
874 rr = br;
875 ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
876 break;
877
878 case PAIR (VARYING, VARYING):
879 general:
880 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
881 ri = gimplify_build2 (bsi, code, inner_type, ai, bi);
882 break;
883
884 default:
885 gcc_unreachable ();
886 }
887
888 update_complex_assignment (bsi, rr, ri);
889 }
890
891 /* Expand a complex multiplication or division to a libcall to the c99
892 compliant routines. */
893
894 static void
895 expand_complex_libcall (block_stmt_iterator *bsi, tree ar, tree ai,
896 tree br, tree bi, enum tree_code code)
897 {
898 enum machine_mode mode;
899 enum built_in_function bcode;
900 tree fn, stmt, type;
901
902 stmt = bsi_stmt (*bsi);
903 type = TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 1));
904
905 mode = TYPE_MODE (type);
906 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
907 if (code == MULT_EXPR)
908 bcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
909 else if (code == RDIV_EXPR)
910 bcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
911 else
912 gcc_unreachable ();
913 fn = built_in_decls[bcode];
914
915 GIMPLE_STMT_OPERAND (stmt, 1) = build_call_expr (fn, 4, ar, ai, br, bi);
916 update_stmt (stmt);
917
918 if (gimple_in_ssa_p (cfun))
919 {
920 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
921 type = TREE_TYPE (type);
922 update_complex_components (bsi, stmt,
923 build1 (REALPART_EXPR, type, lhs),
924 build1 (IMAGPART_EXPR, type, lhs));
925 }
926 }
927
928 /* Expand complex multiplication to scalars:
929 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
930 */
931
932 static void
933 expand_complex_multiplication (block_stmt_iterator *bsi, tree inner_type,
934 tree ar, tree ai, tree br, tree bi,
935 complex_lattice_t al, complex_lattice_t bl)
936 {
937 tree rr, ri;
938
939 if (al < bl)
940 {
941 complex_lattice_t tl;
942 rr = ar, ar = br, br = rr;
943 ri = ai, ai = bi, bi = ri;
944 tl = al, al = bl, bl = tl;
945 }
946
947 switch (PAIR (al, bl))
948 {
949 case PAIR (ONLY_REAL, ONLY_REAL):
950 rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
951 ri = ai;
952 break;
953
954 case PAIR (ONLY_IMAG, ONLY_REAL):
955 rr = ar;
956 if (TREE_CODE (ai) == REAL_CST
957 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
958 ri = br;
959 else
960 ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
961 break;
962
963 case PAIR (ONLY_IMAG, ONLY_IMAG):
964 rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
965 rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, rr);
966 ri = ar;
967 break;
968
969 case PAIR (VARYING, ONLY_REAL):
970 rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
971 ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
972 break;
973
974 case PAIR (VARYING, ONLY_IMAG):
975 rr = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
976 rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, rr);
977 ri = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi);
978 break;
979
980 case PAIR (VARYING, VARYING):
981 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
982 {
983 expand_complex_libcall (bsi, ar, ai, br, bi, MULT_EXPR);
984 return;
985 }
986 else
987 {
988 tree t1, t2, t3, t4;
989
990 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
991 t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
992 t3 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi);
993
994 /* Avoid expanding redundant multiplication for the common
995 case of squaring a complex number. */
996 if (ar == br && ai == bi)
997 t4 = t3;
998 else
999 t4 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
1000
1001 rr = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, t2);
1002 ri = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t3, t4);
1003 }
1004 break;
1005
1006 default:
1007 gcc_unreachable ();
1008 }
1009
1010 update_complex_assignment (bsi, rr, ri);
1011 }
1012
1013 /* Expand complex division to scalars, straightforward algorithm.
1014 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1015 t = br*br + bi*bi
1016 */
1017
1018 static void
1019 expand_complex_div_straight (block_stmt_iterator *bsi, tree inner_type,
1020 tree ar, tree ai, tree br, tree bi,
1021 enum tree_code code)
1022 {
1023 tree rr, ri, div, t1, t2, t3;
1024
1025 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, br, br);
1026 t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, bi, bi);
1027 div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, t2);
1028
1029 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, br);
1030 t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, bi);
1031 t3 = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, t2);
1032 rr = gimplify_build2 (bsi, code, inner_type, t3, div);
1033
1034 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, br);
1035 t2 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, bi);
1036 t3 = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, t2);
1037 ri = gimplify_build2 (bsi, code, inner_type, t3, div);
1038
1039 update_complex_assignment (bsi, rr, ri);
1040 }
1041
1042 /* Expand complex division to scalars, modified algorithm to minimize
1043 overflow with wide input ranges. */
1044
1045 static void
1046 expand_complex_div_wide (block_stmt_iterator *bsi, tree inner_type,
1047 tree ar, tree ai, tree br, tree bi,
1048 enum tree_code code)
1049 {
1050 tree rr, ri, ratio, div, t1, t2, tr, ti, cond;
1051 basic_block bb_cond, bb_true, bb_false, bb_join;
1052
1053 /* Examine |br| < |bi|, and branch. */
1054 t1 = gimplify_build1 (bsi, ABS_EXPR, inner_type, br);
1055 t2 = gimplify_build1 (bsi, ABS_EXPR, inner_type, bi);
1056 cond = fold_build2 (LT_EXPR, boolean_type_node, t1, t2);
1057 STRIP_NOPS (cond);
1058
1059 bb_cond = bb_true = bb_false = bb_join = NULL;
1060 rr = ri = tr = ti = NULL;
1061 if (!TREE_CONSTANT (cond))
1062 {
1063 edge e;
1064
1065 cond = build3 (COND_EXPR, void_type_node, cond, NULL_TREE, NULL_TREE);
1066 bsi_insert_before (bsi, cond, BSI_SAME_STMT);
1067
1068 /* Split the original block, and create the TRUE and FALSE blocks. */
1069 e = split_block (bsi->bb, cond);
1070 bb_cond = e->src;
1071 bb_join = e->dest;
1072 bb_true = create_empty_bb (bb_cond);
1073 bb_false = create_empty_bb (bb_true);
1074
1075 /* Wire the blocks together. */
1076 e->flags = EDGE_TRUE_VALUE;
1077 redirect_edge_succ (e, bb_true);
1078 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1079 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1080 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1081
1082 /* Update dominance info. Note that bb_join's data was
1083 updated by split_block. */
1084 if (dom_info_available_p (CDI_DOMINATORS))
1085 {
1086 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1087 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1088 }
1089
1090 rr = make_rename_temp (inner_type, NULL);
1091 ri = make_rename_temp (inner_type, NULL);
1092 }
1093
1094 /* In the TRUE branch, we compute
1095 ratio = br/bi;
1096 div = (br * ratio) + bi;
1097 tr = (ar * ratio) + ai;
1098 ti = (ai * ratio) - ar;
1099 tr = tr / div;
1100 ti = ti / div; */
1101 if (bb_true || integer_nonzerop (cond))
1102 {
1103 if (bb_true)
1104 {
1105 *bsi = bsi_last (bb_true);
1106 bsi_insert_after (bsi, build_empty_stmt (), BSI_NEW_STMT);
1107 }
1108
1109 ratio = gimplify_build2 (bsi, code, inner_type, br, bi);
1110
1111 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, br, ratio);
1112 div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, bi);
1113
1114 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, ratio);
1115 tr = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, ai);
1116
1117 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, ratio);
1118 ti = gimplify_build2 (bsi, MINUS_EXPR, inner_type, t1, ar);
1119
1120 tr = gimplify_build2 (bsi, code, inner_type, tr, div);
1121 ti = gimplify_build2 (bsi, code, inner_type, ti, div);
1122
1123 if (bb_true)
1124 {
1125 t1 = build_gimple_modify_stmt (rr, tr);
1126 bsi_insert_before (bsi, t1, BSI_SAME_STMT);
1127 t1 = build_gimple_modify_stmt (ri, ti);
1128 bsi_insert_before (bsi, t1, BSI_SAME_STMT);
1129 bsi_remove (bsi, true);
1130 }
1131 }
1132
1133 /* In the FALSE branch, we compute
1134 ratio = d/c;
1135 divisor = (d * ratio) + c;
1136 tr = (b * ratio) + a;
1137 ti = b - (a * ratio);
1138 tr = tr / div;
1139 ti = ti / div; */
1140 if (bb_false || integer_zerop (cond))
1141 {
1142 if (bb_false)
1143 {
1144 *bsi = bsi_last (bb_false);
1145 bsi_insert_after (bsi, build_empty_stmt (), BSI_NEW_STMT);
1146 }
1147
1148 ratio = gimplify_build2 (bsi, code, inner_type, bi, br);
1149
1150 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, bi, ratio);
1151 div = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, br);
1152
1153 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ai, ratio);
1154 tr = gimplify_build2 (bsi, PLUS_EXPR, inner_type, t1, ar);
1155
1156 t1 = gimplify_build2 (bsi, MULT_EXPR, inner_type, ar, ratio);
1157 ti = gimplify_build2 (bsi, MINUS_EXPR, inner_type, ai, t1);
1158
1159 tr = gimplify_build2 (bsi, code, inner_type, tr, div);
1160 ti = gimplify_build2 (bsi, code, inner_type, ti, div);
1161
1162 if (bb_false)
1163 {
1164 t1 = build_gimple_modify_stmt (rr, tr);
1165 bsi_insert_before (bsi, t1, BSI_SAME_STMT);
1166 t1 = build_gimple_modify_stmt (ri, ti);
1167 bsi_insert_before (bsi, t1, BSI_SAME_STMT);
1168 bsi_remove (bsi, true);
1169 }
1170 }
1171
1172 if (bb_join)
1173 *bsi = bsi_start (bb_join);
1174 else
1175 rr = tr, ri = ti;
1176
1177 update_complex_assignment (bsi, rr, ri);
1178 }
1179
1180 /* Expand complex division to scalars. */
1181
1182 static void
1183 expand_complex_division (block_stmt_iterator *bsi, tree inner_type,
1184 tree ar, tree ai, tree br, tree bi,
1185 enum tree_code code,
1186 complex_lattice_t al, complex_lattice_t bl)
1187 {
1188 tree rr, ri;
1189
1190 switch (PAIR (al, bl))
1191 {
1192 case PAIR (ONLY_REAL, ONLY_REAL):
1193 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
1194 ri = ai;
1195 break;
1196
1197 case PAIR (ONLY_REAL, ONLY_IMAG):
1198 rr = ai;
1199 ri = gimplify_build2 (bsi, code, inner_type, ar, bi);
1200 ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ri);
1201 break;
1202
1203 case PAIR (ONLY_IMAG, ONLY_REAL):
1204 rr = ar;
1205 ri = gimplify_build2 (bsi, code, inner_type, ai, br);
1206 break;
1207
1208 case PAIR (ONLY_IMAG, ONLY_IMAG):
1209 rr = gimplify_build2 (bsi, code, inner_type, ai, bi);
1210 ri = ar;
1211 break;
1212
1213 case PAIR (VARYING, ONLY_REAL):
1214 rr = gimplify_build2 (bsi, code, inner_type, ar, br);
1215 ri = gimplify_build2 (bsi, code, inner_type, ai, br);
1216 break;
1217
1218 case PAIR (VARYING, ONLY_IMAG):
1219 rr = gimplify_build2 (bsi, code, inner_type, ai, bi);
1220 ri = gimplify_build2 (bsi, code, inner_type, ar, bi);
1221 ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ri);
1222
1223 case PAIR (ONLY_REAL, VARYING):
1224 case PAIR (ONLY_IMAG, VARYING):
1225 case PAIR (VARYING, VARYING):
1226 switch (flag_complex_method)
1227 {
1228 case 0:
1229 /* straightforward implementation of complex divide acceptable. */
1230 expand_complex_div_straight (bsi, inner_type, ar, ai, br, bi, code);
1231 break;
1232
1233 case 2:
1234 if (SCALAR_FLOAT_TYPE_P (inner_type))
1235 {
1236 expand_complex_libcall (bsi, ar, ai, br, bi, code);
1237 break;
1238 }
1239 /* FALLTHRU */
1240
1241 case 1:
1242 /* wide ranges of inputs must work for complex divide. */
1243 expand_complex_div_wide (bsi, inner_type, ar, ai, br, bi, code);
1244 break;
1245
1246 default:
1247 gcc_unreachable ();
1248 }
1249 return;
1250
1251 default:
1252 gcc_unreachable ();
1253 }
1254
1255 update_complex_assignment (bsi, rr, ri);
1256 }
1257
1258 /* Expand complex negation to scalars:
1259 -a = (-ar) + i(-ai)
1260 */
1261
1262 static void
1263 expand_complex_negation (block_stmt_iterator *bsi, tree inner_type,
1264 tree ar, tree ai)
1265 {
1266 tree rr, ri;
1267
1268 rr = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ar);
1269 ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ai);
1270
1271 update_complex_assignment (bsi, rr, ri);
1272 }
1273
1274 /* Expand complex conjugate to scalars:
1275 ~a = (ar) + i(-ai)
1276 */
1277
1278 static void
1279 expand_complex_conjugate (block_stmt_iterator *bsi, tree inner_type,
1280 tree ar, tree ai)
1281 {
1282 tree ri;
1283
1284 ri = gimplify_build1 (bsi, NEGATE_EXPR, inner_type, ai);
1285
1286 update_complex_assignment (bsi, ar, ri);
1287 }
1288
1289 /* Expand complex comparison (EQ or NE only). */
1290
1291 static void
1292 expand_complex_comparison (block_stmt_iterator *bsi, tree ar, tree ai,
1293 tree br, tree bi, enum tree_code code)
1294 {
1295 tree cr, ci, cc, stmt, expr, type;
1296
1297 cr = gimplify_build2 (bsi, code, boolean_type_node, ar, br);
1298 ci = gimplify_build2 (bsi, code, boolean_type_node, ai, bi);
1299 cc = gimplify_build2 (bsi,
1300 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1301 boolean_type_node, cr, ci);
1302
1303 stmt = expr = bsi_stmt (*bsi);
1304
1305 switch (TREE_CODE (stmt))
1306 {
1307 case RETURN_EXPR:
1308 expr = TREE_OPERAND (stmt, 0);
1309 /* FALLTHRU */
1310 case GIMPLE_MODIFY_STMT:
1311 type = TREE_TYPE (GIMPLE_STMT_OPERAND (expr, 1));
1312 GIMPLE_STMT_OPERAND (expr, 1) = fold_convert (type, cc);
1313 break;
1314 case COND_EXPR:
1315 TREE_OPERAND (stmt, 0) = cc;
1316 break;
1317 default:
1318 gcc_unreachable ();
1319 }
1320
1321 update_stmt (stmt);
1322 }
1323
1324 /* Process one statement. If we identify a complex operation, expand it. */
1325
1326 static void
1327 expand_complex_operations_1 (block_stmt_iterator *bsi)
1328 {
1329 tree stmt = bsi_stmt (*bsi);
1330 tree rhs, type, inner_type;
1331 tree ac, ar, ai, bc, br, bi;
1332 complex_lattice_t al, bl;
1333 enum tree_code code;
1334
1335 switch (TREE_CODE (stmt))
1336 {
1337 case RETURN_EXPR:
1338 stmt = TREE_OPERAND (stmt, 0);
1339 if (!stmt)
1340 return;
1341 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
1342 return;
1343 /* FALLTHRU */
1344
1345 case GIMPLE_MODIFY_STMT:
1346 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1347 break;
1348
1349 case COND_EXPR:
1350 rhs = TREE_OPERAND (stmt, 0);
1351 break;
1352
1353 default:
1354 return;
1355 }
1356
1357 type = TREE_TYPE (rhs);
1358 code = TREE_CODE (rhs);
1359
1360 /* Initial filter for operations we handle. */
1361 switch (code)
1362 {
1363 case PLUS_EXPR:
1364 case MINUS_EXPR:
1365 case MULT_EXPR:
1366 case TRUNC_DIV_EXPR:
1367 case CEIL_DIV_EXPR:
1368 case FLOOR_DIV_EXPR:
1369 case ROUND_DIV_EXPR:
1370 case RDIV_EXPR:
1371 case NEGATE_EXPR:
1372 case CONJ_EXPR:
1373 if (TREE_CODE (type) != COMPLEX_TYPE)
1374 return;
1375 inner_type = TREE_TYPE (type);
1376 break;
1377
1378 case EQ_EXPR:
1379 case NE_EXPR:
1380 inner_type = TREE_TYPE (TREE_OPERAND (rhs, 1));
1381 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1382 return;
1383 break;
1384
1385 default:
1386 {
1387 tree lhs, rhs;
1388
1389 /* COND_EXPR may also fallthru here, but we do not need to do anything
1390 with it. */
1391 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
1392 return;
1393
1394 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
1395 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1396
1397 if (TREE_CODE (type) == COMPLEX_TYPE)
1398 expand_complex_move (bsi, stmt, type, lhs, rhs);
1399 else if ((TREE_CODE (rhs) == REALPART_EXPR
1400 || TREE_CODE (rhs) == IMAGPART_EXPR)
1401 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
1402 {
1403 GENERIC_TREE_OPERAND (stmt, 1)
1404 = extract_component (bsi, TREE_OPERAND (rhs, 0),
1405 TREE_CODE (rhs) == IMAGPART_EXPR, false);
1406 update_stmt (stmt);
1407 }
1408 }
1409 return;
1410 }
1411
1412 /* Extract the components of the two complex values. Make sure and
1413 handle the common case of the same value used twice specially. */
1414 ac = TREE_OPERAND (rhs, 0);
1415 ar = extract_component (bsi, ac, 0, true);
1416 ai = extract_component (bsi, ac, 1, true);
1417
1418 if (TREE_CODE_CLASS (code) == tcc_unary)
1419 bc = br = bi = NULL;
1420 else
1421 {
1422 bc = TREE_OPERAND (rhs, 1);
1423 if (ac == bc)
1424 br = ar, bi = ai;
1425 else
1426 {
1427 br = extract_component (bsi, bc, 0, true);
1428 bi = extract_component (bsi, bc, 1, true);
1429 }
1430 }
1431
1432 if (gimple_in_ssa_p (cfun))
1433 {
1434 al = find_lattice_value (ac);
1435 if (al == UNINITIALIZED)
1436 al = VARYING;
1437
1438 if (TREE_CODE_CLASS (code) == tcc_unary)
1439 bl = UNINITIALIZED;
1440 else if (ac == bc)
1441 bl = al;
1442 else
1443 {
1444 bl = find_lattice_value (bc);
1445 if (bl == UNINITIALIZED)
1446 bl = VARYING;
1447 }
1448 }
1449 else
1450 al = bl = VARYING;
1451
1452 switch (code)
1453 {
1454 case PLUS_EXPR:
1455 case MINUS_EXPR:
1456 expand_complex_addition (bsi, inner_type, ar, ai, br, bi, code, al, bl);
1457 break;
1458
1459 case MULT_EXPR:
1460 expand_complex_multiplication (bsi, inner_type, ar, ai, br, bi, al, bl);
1461 break;
1462
1463 case TRUNC_DIV_EXPR:
1464 case CEIL_DIV_EXPR:
1465 case FLOOR_DIV_EXPR:
1466 case ROUND_DIV_EXPR:
1467 case RDIV_EXPR:
1468 expand_complex_division (bsi, inner_type, ar, ai, br, bi, code, al, bl);
1469 break;
1470
1471 case NEGATE_EXPR:
1472 expand_complex_negation (bsi, inner_type, ar, ai);
1473 break;
1474
1475 case CONJ_EXPR:
1476 expand_complex_conjugate (bsi, inner_type, ar, ai);
1477 break;
1478
1479 case EQ_EXPR:
1480 case NE_EXPR:
1481 expand_complex_comparison (bsi, ar, ai, br, bi, code);
1482 break;
1483
1484 default:
1485 gcc_unreachable ();
1486 }
1487 }
1488
1489 \f
1490 /* Entry point for complex operation lowering during optimization. */
1491
1492 static unsigned int
1493 tree_lower_complex (void)
1494 {
1495 int old_last_basic_block;
1496 block_stmt_iterator bsi;
1497 basic_block bb;
1498
1499 if (!init_dont_simulate_again ())
1500 return 0;
1501
1502 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1503 VEC_safe_grow_cleared (complex_lattice_t, heap,
1504 complex_lattice_values, num_ssa_names);
1505
1506 init_parameter_lattice_values ();
1507 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1508
1509 complex_variable_components = htab_create (10, int_tree_map_hash,
1510 int_tree_map_eq, free);
1511
1512 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1513 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1514 2 * num_ssa_names);
1515
1516 update_parameter_components ();
1517
1518 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1519 old_last_basic_block = last_basic_block;
1520 FOR_EACH_BB (bb)
1521 {
1522 if (bb->index >= old_last_basic_block)
1523 continue;
1524 update_phi_components (bb);
1525 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1526 expand_complex_operations_1 (&bsi);
1527 }
1528
1529 bsi_commit_edge_inserts ();
1530
1531 htab_delete (complex_variable_components);
1532 VEC_free (tree, heap, complex_ssa_name_components);
1533 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1534 return 0;
1535 }
1536
1537 struct tree_opt_pass pass_lower_complex =
1538 {
1539 "cplxlower", /* name */
1540 0, /* gate */
1541 tree_lower_complex, /* execute */
1542 NULL, /* sub */
1543 NULL, /* next */
1544 0, /* static_pass_number */
1545 0, /* tv_id */
1546 PROP_ssa, /* properties_required */
1547 0, /* properties_provided */
1548 0, /* properties_destroyed */
1549 0, /* todo_flags_start */
1550 TODO_dump_func
1551 | TODO_ggc_collect
1552 | TODO_update_ssa
1553 | TODO_verify_stmts, /* todo_flags_finish */
1554 0 /* letter */
1555 };
1556
1557 \f
1558 /* Entry point for complex operation lowering without optimization. */
1559
1560 static unsigned int
1561 tree_lower_complex_O0 (void)
1562 {
1563 int old_last_basic_block = last_basic_block;
1564 block_stmt_iterator bsi;
1565 basic_block bb;
1566
1567 FOR_EACH_BB (bb)
1568 {
1569 if (bb->index >= old_last_basic_block)
1570 continue;
1571 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1572 expand_complex_operations_1 (&bsi);
1573 }
1574 return 0;
1575 }
1576
1577 static bool
1578 gate_no_optimization (void)
1579 {
1580 /* With errors, normal optimization passes are not run. If we don't
1581 lower complex operations at all, rtl expansion will abort. */
1582 return optimize == 0 || sorrycount || errorcount;
1583 }
1584
1585 struct tree_opt_pass pass_lower_complex_O0 =
1586 {
1587 "cplxlower0", /* name */
1588 gate_no_optimization, /* gate */
1589 tree_lower_complex_O0, /* execute */
1590 NULL, /* sub */
1591 NULL, /* next */
1592 0, /* static_pass_number */
1593 0, /* tv_id */
1594 PROP_cfg, /* properties_required */
1595 0, /* properties_provided */
1596 0, /* properties_destroyed */
1597 0, /* todo_flags_start */
1598 TODO_dump_func | TODO_ggc_collect
1599 | TODO_verify_stmts, /* todo_flags_finish */
1600 0 /* letter */
1601 };