don't use TYPE_ARG_TYPES in the Ada frontend
[gcc.git] / gcc / tree-data-ref.c
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass walks a given loop structure searching for array
23 references. The information about the array accesses is recorded
24 in DATA_REFERENCE structures.
25
26 The basic test for determining the dependences is:
27 given two access functions chrec1 and chrec2 to a same array, and
28 x and y two vectors from the iteration domain, the same element of
29 the array is accessed twice at iterations x and y if and only if:
30 | chrec1 (x) == chrec2 (y).
31
32 The goals of this analysis are:
33
34 - to determine the independence: the relation between two
35 independent accesses is qualified with the chrec_known (this
36 information allows a loop parallelization),
37
38 - when two data references access the same data, to qualify the
39 dependence relation with classic dependence representations:
40
41 - distance vectors
42 - direction vectors
43 - loop carried level dependence
44 - polyhedron dependence
45 or with the chains of recurrences based representation,
46
47 - to define a knowledge base for storing the data dependence
48 information,
49
50 - to define an interface to access this data.
51
52
53 Definitions:
54
55 - subscript: given two array accesses a subscript is the tuple
56 composed of the access functions for a given dimension. Example:
57 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
58 (f1, g1), (f2, g2), (f3, g3).
59
60 - Diophantine equation: an equation whose coefficients and
61 solutions are integer constants, for example the equation
62 | 3*x + 2*y = 1
63 has an integer solution x = 1 and y = -1.
64
65 References:
66
67 - "Advanced Compilation for High Performance Computing" by Randy
68 Allen and Ken Kennedy.
69 http://citeseer.ist.psu.edu/goff91practical.html
70
71 - "Loop Transformations for Restructuring Compilers - The Foundations"
72 by Utpal Banerjee.
73
74
75 */
76
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "gimple-pretty-print.h"
81 #include "tree-flow.h"
82 #include "cfgloop.h"
83 #include "tree-data-ref.h"
84 #include "tree-scalar-evolution.h"
85 #include "tree-pass.h"
86 #include "langhooks.h"
87
88 static struct datadep_stats
89 {
90 int num_dependence_tests;
91 int num_dependence_dependent;
92 int num_dependence_independent;
93 int num_dependence_undetermined;
94
95 int num_subscript_tests;
96 int num_subscript_undetermined;
97 int num_same_subscript_function;
98
99 int num_ziv;
100 int num_ziv_independent;
101 int num_ziv_dependent;
102 int num_ziv_unimplemented;
103
104 int num_siv;
105 int num_siv_independent;
106 int num_siv_dependent;
107 int num_siv_unimplemented;
108
109 int num_miv;
110 int num_miv_independent;
111 int num_miv_dependent;
112 int num_miv_unimplemented;
113 } dependence_stats;
114
115 static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
116 struct data_reference *,
117 struct data_reference *,
118 struct loop *);
119 /* Returns true iff A divides B. */
120
121 static inline bool
122 tree_fold_divides_p (const_tree a, const_tree b)
123 {
124 gcc_assert (TREE_CODE (a) == INTEGER_CST);
125 gcc_assert (TREE_CODE (b) == INTEGER_CST);
126 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
127 }
128
129 /* Returns true iff A divides B. */
130
131 static inline bool
132 int_divides_p (int a, int b)
133 {
134 return ((b % a) == 0);
135 }
136
137 \f
138
139 /* Dump into FILE all the data references from DATAREFS. */
140
141 void
142 dump_data_references (FILE *file, VEC (data_reference_p, heap) *datarefs)
143 {
144 unsigned int i;
145 struct data_reference *dr;
146
147 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
148 dump_data_reference (file, dr);
149 }
150
151 /* Dump into STDERR all the data references from DATAREFS. */
152
153 DEBUG_FUNCTION void
154 debug_data_references (VEC (data_reference_p, heap) *datarefs)
155 {
156 dump_data_references (stderr, datarefs);
157 }
158
159 /* Dump to STDERR all the dependence relations from DDRS. */
160
161 DEBUG_FUNCTION void
162 debug_data_dependence_relations (VEC (ddr_p, heap) *ddrs)
163 {
164 dump_data_dependence_relations (stderr, ddrs);
165 }
166
167 /* Dump into FILE all the dependence relations from DDRS. */
168
169 void
170 dump_data_dependence_relations (FILE *file,
171 VEC (ddr_p, heap) *ddrs)
172 {
173 unsigned int i;
174 struct data_dependence_relation *ddr;
175
176 FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
177 dump_data_dependence_relation (file, ddr);
178 }
179
180 /* Print to STDERR the data_reference DR. */
181
182 DEBUG_FUNCTION void
183 debug_data_reference (struct data_reference *dr)
184 {
185 dump_data_reference (stderr, dr);
186 }
187
188 /* Dump function for a DATA_REFERENCE structure. */
189
190 void
191 dump_data_reference (FILE *outf,
192 struct data_reference *dr)
193 {
194 unsigned int i;
195
196 fprintf (outf, "#(Data Ref: \n");
197 fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
198 fprintf (outf, "# stmt: ");
199 print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
200 fprintf (outf, "# ref: ");
201 print_generic_stmt (outf, DR_REF (dr), 0);
202 fprintf (outf, "# base_object: ");
203 print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
204
205 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
206 {
207 fprintf (outf, "# Access function %d: ", i);
208 print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
209 }
210 fprintf (outf, "#)\n");
211 }
212
213 /* Dumps the affine function described by FN to the file OUTF. */
214
215 static void
216 dump_affine_function (FILE *outf, affine_fn fn)
217 {
218 unsigned i;
219 tree coef;
220
221 print_generic_expr (outf, VEC_index (tree, fn, 0), TDF_SLIM);
222 for (i = 1; VEC_iterate (tree, fn, i, coef); i++)
223 {
224 fprintf (outf, " + ");
225 print_generic_expr (outf, coef, TDF_SLIM);
226 fprintf (outf, " * x_%u", i);
227 }
228 }
229
230 /* Dumps the conflict function CF to the file OUTF. */
231
232 static void
233 dump_conflict_function (FILE *outf, conflict_function *cf)
234 {
235 unsigned i;
236
237 if (cf->n == NO_DEPENDENCE)
238 fprintf (outf, "no dependence\n");
239 else if (cf->n == NOT_KNOWN)
240 fprintf (outf, "not known\n");
241 else
242 {
243 for (i = 0; i < cf->n; i++)
244 {
245 fprintf (outf, "[");
246 dump_affine_function (outf, cf->fns[i]);
247 fprintf (outf, "]\n");
248 }
249 }
250 }
251
252 /* Dump function for a SUBSCRIPT structure. */
253
254 void
255 dump_subscript (FILE *outf, struct subscript *subscript)
256 {
257 conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
258
259 fprintf (outf, "\n (subscript \n");
260 fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
261 dump_conflict_function (outf, cf);
262 if (CF_NONTRIVIAL_P (cf))
263 {
264 tree last_iteration = SUB_LAST_CONFLICT (subscript);
265 fprintf (outf, " last_conflict: ");
266 print_generic_stmt (outf, last_iteration, 0);
267 }
268
269 cf = SUB_CONFLICTS_IN_B (subscript);
270 fprintf (outf, " iterations_that_access_an_element_twice_in_B: ");
271 dump_conflict_function (outf, cf);
272 if (CF_NONTRIVIAL_P (cf))
273 {
274 tree last_iteration = SUB_LAST_CONFLICT (subscript);
275 fprintf (outf, " last_conflict: ");
276 print_generic_stmt (outf, last_iteration, 0);
277 }
278
279 fprintf (outf, " (Subscript distance: ");
280 print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
281 fprintf (outf, " )\n");
282 fprintf (outf, " )\n");
283 }
284
285 /* Print the classic direction vector DIRV to OUTF. */
286
287 void
288 print_direction_vector (FILE *outf,
289 lambda_vector dirv,
290 int length)
291 {
292 int eq;
293
294 for (eq = 0; eq < length; eq++)
295 {
296 enum data_dependence_direction dir = ((enum data_dependence_direction)
297 dirv[eq]);
298
299 switch (dir)
300 {
301 case dir_positive:
302 fprintf (outf, " +");
303 break;
304 case dir_negative:
305 fprintf (outf, " -");
306 break;
307 case dir_equal:
308 fprintf (outf, " =");
309 break;
310 case dir_positive_or_equal:
311 fprintf (outf, " +=");
312 break;
313 case dir_positive_or_negative:
314 fprintf (outf, " +-");
315 break;
316 case dir_negative_or_equal:
317 fprintf (outf, " -=");
318 break;
319 case dir_star:
320 fprintf (outf, " *");
321 break;
322 default:
323 fprintf (outf, "indep");
324 break;
325 }
326 }
327 fprintf (outf, "\n");
328 }
329
330 /* Print a vector of direction vectors. */
331
332 void
333 print_dir_vectors (FILE *outf, VEC (lambda_vector, heap) *dir_vects,
334 int length)
335 {
336 unsigned j;
337 lambda_vector v;
338
339 FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, v)
340 print_direction_vector (outf, v, length);
341 }
342
343 /* Print out a vector VEC of length N to OUTFILE. */
344
345 static inline void
346 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
347 {
348 int i;
349
350 for (i = 0; i < n; i++)
351 fprintf (outfile, "%3d ", vector[i]);
352 fprintf (outfile, "\n");
353 }
354
355 /* Print a vector of distance vectors. */
356
357 void
358 print_dist_vectors (FILE *outf, VEC (lambda_vector, heap) *dist_vects,
359 int length)
360 {
361 unsigned j;
362 lambda_vector v;
363
364 FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, v)
365 print_lambda_vector (outf, v, length);
366 }
367
368 /* Debug version. */
369
370 DEBUG_FUNCTION void
371 debug_data_dependence_relation (struct data_dependence_relation *ddr)
372 {
373 dump_data_dependence_relation (stderr, ddr);
374 }
375
376 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
377
378 void
379 dump_data_dependence_relation (FILE *outf,
380 struct data_dependence_relation *ddr)
381 {
382 struct data_reference *dra, *drb;
383
384 fprintf (outf, "(Data Dep: \n");
385
386 if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
387 {
388 if (ddr)
389 {
390 dra = DDR_A (ddr);
391 drb = DDR_B (ddr);
392 if (dra)
393 dump_data_reference (outf, dra);
394 else
395 fprintf (outf, " (nil)\n");
396 if (drb)
397 dump_data_reference (outf, drb);
398 else
399 fprintf (outf, " (nil)\n");
400 }
401 fprintf (outf, " (don't know)\n)\n");
402 return;
403 }
404
405 dra = DDR_A (ddr);
406 drb = DDR_B (ddr);
407 dump_data_reference (outf, dra);
408 dump_data_reference (outf, drb);
409
410 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
411 fprintf (outf, " (no dependence)\n");
412
413 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
414 {
415 unsigned int i;
416 struct loop *loopi;
417
418 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
419 {
420 fprintf (outf, " access_fn_A: ");
421 print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
422 fprintf (outf, " access_fn_B: ");
423 print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
424 dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
425 }
426
427 fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
428 fprintf (outf, " loop nest: (");
429 FOR_EACH_VEC_ELT (loop_p, DDR_LOOP_NEST (ddr), i, loopi)
430 fprintf (outf, "%d ", loopi->num);
431 fprintf (outf, ")\n");
432
433 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
434 {
435 fprintf (outf, " distance_vector: ");
436 print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
437 DDR_NB_LOOPS (ddr));
438 }
439
440 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
441 {
442 fprintf (outf, " direction_vector: ");
443 print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
444 DDR_NB_LOOPS (ddr));
445 }
446 }
447
448 fprintf (outf, ")\n");
449 }
450
451 /* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */
452
453 void
454 dump_data_dependence_direction (FILE *file,
455 enum data_dependence_direction dir)
456 {
457 switch (dir)
458 {
459 case dir_positive:
460 fprintf (file, "+");
461 break;
462
463 case dir_negative:
464 fprintf (file, "-");
465 break;
466
467 case dir_equal:
468 fprintf (file, "=");
469 break;
470
471 case dir_positive_or_negative:
472 fprintf (file, "+-");
473 break;
474
475 case dir_positive_or_equal:
476 fprintf (file, "+=");
477 break;
478
479 case dir_negative_or_equal:
480 fprintf (file, "-=");
481 break;
482
483 case dir_star:
484 fprintf (file, "*");
485 break;
486
487 default:
488 break;
489 }
490 }
491
492 /* Dumps the distance and direction vectors in FILE. DDRS contains
493 the dependence relations, and VECT_SIZE is the size of the
494 dependence vectors, or in other words the number of loops in the
495 considered nest. */
496
497 void
498 dump_dist_dir_vectors (FILE *file, VEC (ddr_p, heap) *ddrs)
499 {
500 unsigned int i, j;
501 struct data_dependence_relation *ddr;
502 lambda_vector v;
503
504 FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
505 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
506 {
507 FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), j, v)
508 {
509 fprintf (file, "DISTANCE_V (");
510 print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
511 fprintf (file, ")\n");
512 }
513
514 FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), j, v)
515 {
516 fprintf (file, "DIRECTION_V (");
517 print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
518 fprintf (file, ")\n");
519 }
520 }
521
522 fprintf (file, "\n\n");
523 }
524
525 /* Dumps the data dependence relations DDRS in FILE. */
526
527 void
528 dump_ddrs (FILE *file, VEC (ddr_p, heap) *ddrs)
529 {
530 unsigned int i;
531 struct data_dependence_relation *ddr;
532
533 FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
534 dump_data_dependence_relation (file, ddr);
535
536 fprintf (file, "\n\n");
537 }
538
539 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
540 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
541 constant of type ssizetype, and returns true. If we cannot do this
542 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
543 is returned. */
544
545 static bool
546 split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
547 tree *var, tree *off)
548 {
549 tree var0, var1;
550 tree off0, off1;
551 enum tree_code ocode = code;
552
553 *var = NULL_TREE;
554 *off = NULL_TREE;
555
556 switch (code)
557 {
558 case INTEGER_CST:
559 *var = build_int_cst (type, 0);
560 *off = fold_convert (ssizetype, op0);
561 return true;
562
563 case POINTER_PLUS_EXPR:
564 ocode = PLUS_EXPR;
565 /* FALLTHROUGH */
566 case PLUS_EXPR:
567 case MINUS_EXPR:
568 split_constant_offset (op0, &var0, &off0);
569 split_constant_offset (op1, &var1, &off1);
570 *var = fold_build2 (code, type, var0, var1);
571 *off = size_binop (ocode, off0, off1);
572 return true;
573
574 case MULT_EXPR:
575 if (TREE_CODE (op1) != INTEGER_CST)
576 return false;
577
578 split_constant_offset (op0, &var0, &off0);
579 *var = fold_build2 (MULT_EXPR, type, var0, op1);
580 *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
581 return true;
582
583 case ADDR_EXPR:
584 {
585 tree base, poffset;
586 HOST_WIDE_INT pbitsize, pbitpos;
587 enum machine_mode pmode;
588 int punsignedp, pvolatilep;
589
590 op0 = TREE_OPERAND (op0, 0);
591 if (!handled_component_p (op0))
592 return false;
593
594 base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset,
595 &pmode, &punsignedp, &pvolatilep, false);
596
597 if (pbitpos % BITS_PER_UNIT != 0)
598 return false;
599 base = build_fold_addr_expr (base);
600 off0 = ssize_int (pbitpos / BITS_PER_UNIT);
601
602 if (poffset)
603 {
604 split_constant_offset (poffset, &poffset, &off1);
605 off0 = size_binop (PLUS_EXPR, off0, off1);
606 if (POINTER_TYPE_P (TREE_TYPE (base)))
607 base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base),
608 base, fold_convert (sizetype, poffset));
609 else
610 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
611 fold_convert (TREE_TYPE (base), poffset));
612 }
613
614 var0 = fold_convert (type, base);
615
616 /* If variable length types are involved, punt, otherwise casts
617 might be converted into ARRAY_REFs in gimplify_conversion.
618 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
619 possibly no longer appears in current GIMPLE, might resurface.
620 This perhaps could run
621 if (CONVERT_EXPR_P (var0))
622 {
623 gimplify_conversion (&var0);
624 // Attempt to fill in any within var0 found ARRAY_REF's
625 // element size from corresponding op embedded ARRAY_REF,
626 // if unsuccessful, just punt.
627 } */
628 while (POINTER_TYPE_P (type))
629 type = TREE_TYPE (type);
630 if (int_size_in_bytes (type) < 0)
631 return false;
632
633 *var = var0;
634 *off = off0;
635 return true;
636 }
637
638 case SSA_NAME:
639 {
640 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
641 enum tree_code subcode;
642
643 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
644 return false;
645
646 var0 = gimple_assign_rhs1 (def_stmt);
647 subcode = gimple_assign_rhs_code (def_stmt);
648 var1 = gimple_assign_rhs2 (def_stmt);
649
650 return split_constant_offset_1 (type, var0, subcode, var1, var, off);
651 }
652 CASE_CONVERT:
653 {
654 /* We must not introduce undefined overflow, and we must not change the value.
655 Hence we're okay if the inner type doesn't overflow to start with
656 (pointer or signed), the outer type also is an integer or pointer
657 and the outer precision is at least as large as the inner. */
658 tree itype = TREE_TYPE (op0);
659 if ((POINTER_TYPE_P (itype)
660 || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
661 && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
662 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
663 {
664 split_constant_offset (op0, &var0, off);
665 *var = fold_convert (type, var0);
666 return true;
667 }
668 return false;
669 }
670
671 default:
672 return false;
673 }
674 }
675
676 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
677 will be ssizetype. */
678
679 void
680 split_constant_offset (tree exp, tree *var, tree *off)
681 {
682 tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
683 enum tree_code code;
684
685 *var = exp;
686 *off = ssize_int (0);
687 STRIP_NOPS (exp);
688
689 if (tree_is_chrec (exp))
690 return;
691
692 otype = TREE_TYPE (exp);
693 code = TREE_CODE (exp);
694 extract_ops_from_tree (exp, &code, &op0, &op1);
695 if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
696 {
697 *var = fold_convert (type, e);
698 *off = o;
699 }
700 }
701
702 /* Returns the address ADDR of an object in a canonical shape (without nop
703 casts, and with type of pointer to the object). */
704
705 static tree
706 canonicalize_base_object_address (tree addr)
707 {
708 tree orig = addr;
709
710 STRIP_NOPS (addr);
711
712 /* The base address may be obtained by casting from integer, in that case
713 keep the cast. */
714 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
715 return orig;
716
717 if (TREE_CODE (addr) != ADDR_EXPR)
718 return addr;
719
720 return build_fold_addr_expr (TREE_OPERAND (addr, 0));
721 }
722
723 /* Analyzes the behavior of the memory reference DR in the innermost loop or
724 basic block that contains it. Returns true if analysis succeed or false
725 otherwise. */
726
727 bool
728 dr_analyze_innermost (struct data_reference *dr)
729 {
730 gimple stmt = DR_STMT (dr);
731 struct loop *loop = loop_containing_stmt (stmt);
732 tree ref = DR_REF (dr);
733 HOST_WIDE_INT pbitsize, pbitpos;
734 tree base, poffset;
735 enum machine_mode pmode;
736 int punsignedp, pvolatilep;
737 affine_iv base_iv, offset_iv;
738 tree init, dinit, step;
739 bool in_loop = (loop && loop->num);
740
741 if (dump_file && (dump_flags & TDF_DETAILS))
742 fprintf (dump_file, "analyze_innermost: ");
743
744 base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset,
745 &pmode, &punsignedp, &pvolatilep, false);
746 gcc_assert (base != NULL_TREE);
747
748 if (pbitpos % BITS_PER_UNIT != 0)
749 {
750 if (dump_file && (dump_flags & TDF_DETAILS))
751 fprintf (dump_file, "failed: bit offset alignment.\n");
752 return false;
753 }
754
755 if (TREE_CODE (base) == MEM_REF)
756 {
757 if (!integer_zerop (TREE_OPERAND (base, 1)))
758 {
759 if (!poffset)
760 {
761 double_int moff = mem_ref_offset (base);
762 poffset = double_int_to_tree (sizetype, moff);
763 }
764 else
765 poffset = size_binop (PLUS_EXPR, poffset, TREE_OPERAND (base, 1));
766 }
767 base = TREE_OPERAND (base, 0);
768 }
769 else
770 base = build_fold_addr_expr (base);
771 if (in_loop)
772 {
773 if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
774 false))
775 {
776 if (dump_file && (dump_flags & TDF_DETAILS))
777 fprintf (dump_file, "failed: evolution of base is not affine.\n");
778 return false;
779 }
780 }
781 else
782 {
783 base_iv.base = base;
784 base_iv.step = ssize_int (0);
785 base_iv.no_overflow = true;
786 }
787
788 if (!poffset)
789 {
790 offset_iv.base = ssize_int (0);
791 offset_iv.step = ssize_int (0);
792 }
793 else
794 {
795 if (!in_loop)
796 {
797 offset_iv.base = poffset;
798 offset_iv.step = ssize_int (0);
799 }
800 else if (!simple_iv (loop, loop_containing_stmt (stmt),
801 poffset, &offset_iv, false))
802 {
803 if (dump_file && (dump_flags & TDF_DETAILS))
804 fprintf (dump_file, "failed: evolution of offset is not"
805 " affine.\n");
806 return false;
807 }
808 }
809
810 init = ssize_int (pbitpos / BITS_PER_UNIT);
811 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
812 init = size_binop (PLUS_EXPR, init, dinit);
813 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
814 init = size_binop (PLUS_EXPR, init, dinit);
815
816 step = size_binop (PLUS_EXPR,
817 fold_convert (ssizetype, base_iv.step),
818 fold_convert (ssizetype, offset_iv.step));
819
820 DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
821
822 DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
823 DR_INIT (dr) = init;
824 DR_STEP (dr) = step;
825
826 DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
827
828 if (dump_file && (dump_flags & TDF_DETAILS))
829 fprintf (dump_file, "success.\n");
830
831 return true;
832 }
833
834 /* Determines the base object and the list of indices of memory reference
835 DR, analyzed in LOOP and instantiated in loop nest NEST. */
836
837 static void
838 dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
839 {
840 VEC (tree, heap) *access_fns = NULL;
841 tree ref = unshare_expr (DR_REF (dr)), aref = ref, op;
842 tree base, off, access_fn = NULL_TREE;
843 basic_block before_loop = NULL;
844
845 if (nest)
846 before_loop = block_before_loop (nest);
847
848 while (handled_component_p (aref))
849 {
850 if (TREE_CODE (aref) == ARRAY_REF)
851 {
852 op = TREE_OPERAND (aref, 1);
853 if (nest)
854 {
855 access_fn = analyze_scalar_evolution (loop, op);
856 access_fn = instantiate_scev (before_loop, loop, access_fn);
857 VEC_safe_push (tree, heap, access_fns, access_fn);
858 }
859
860 TREE_OPERAND (aref, 1) = build_int_cst (TREE_TYPE (op), 0);
861 }
862
863 aref = TREE_OPERAND (aref, 0);
864 }
865
866 if (nest
867 && (INDIRECT_REF_P (aref)
868 || TREE_CODE (aref) == MEM_REF))
869 {
870 op = TREE_OPERAND (aref, 0);
871 access_fn = analyze_scalar_evolution (loop, op);
872 access_fn = instantiate_scev (before_loop, loop, access_fn);
873 base = initial_condition (access_fn);
874 split_constant_offset (base, &base, &off);
875 if (TREE_CODE (aref) == MEM_REF)
876 off = size_binop (PLUS_EXPR, off,
877 fold_convert (ssizetype, TREE_OPERAND (aref, 1)));
878 access_fn = chrec_replace_initial_condition (access_fn,
879 fold_convert (TREE_TYPE (base), off));
880
881 TREE_OPERAND (aref, 0) = base;
882 VEC_safe_push (tree, heap, access_fns, access_fn);
883 }
884
885 if (TREE_CODE (aref) == MEM_REF)
886 TREE_OPERAND (aref, 1)
887 = build_int_cst (TREE_TYPE (TREE_OPERAND (aref, 1)), 0);
888
889 if (TREE_CODE (ref) == MEM_REF
890 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR
891 && integer_zerop (TREE_OPERAND (ref, 1)))
892 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
893
894 /* For canonicalization purposes we'd like to strip all outermost
895 zero-offset component-refs.
896 ??? For now simply handle zero-index array-refs. */
897 while (TREE_CODE (ref) == ARRAY_REF
898 && integer_zerop (TREE_OPERAND (ref, 1)))
899 ref = TREE_OPERAND (ref, 0);
900
901 DR_BASE_OBJECT (dr) = ref;
902 DR_ACCESS_FNS (dr) = access_fns;
903 }
904
905 /* Extracts the alias analysis information from the memory reference DR. */
906
907 static void
908 dr_analyze_alias (struct data_reference *dr)
909 {
910 tree ref = DR_REF (dr);
911 tree base = get_base_address (ref), addr;
912
913 if (INDIRECT_REF_P (base)
914 || TREE_CODE (base) == MEM_REF)
915 {
916 addr = TREE_OPERAND (base, 0);
917 if (TREE_CODE (addr) == SSA_NAME)
918 DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
919 }
920 }
921
922 /* Returns true if the address of DR is invariant. */
923
924 static bool
925 dr_address_invariant_p (struct data_reference *dr)
926 {
927 unsigned i;
928 tree idx;
929
930 FOR_EACH_VEC_ELT (tree, DR_ACCESS_FNS (dr), i, idx)
931 if (tree_contains_chrecs (idx, NULL))
932 return false;
933
934 return true;
935 }
936
937 /* Frees data reference DR. */
938
939 void
940 free_data_ref (data_reference_p dr)
941 {
942 VEC_free (tree, heap, DR_ACCESS_FNS (dr));
943 free (dr);
944 }
945
946 /* Analyzes memory reference MEMREF accessed in STMT. The reference
947 is read if IS_READ is true, write otherwise. Returns the
948 data_reference description of MEMREF. NEST is the outermost loop
949 in which the reference should be instantiated, LOOP is the loop in
950 which the data reference should be analyzed. */
951
952 struct data_reference *
953 create_data_ref (loop_p nest, loop_p loop, tree memref, gimple stmt,
954 bool is_read)
955 {
956 struct data_reference *dr;
957
958 if (dump_file && (dump_flags & TDF_DETAILS))
959 {
960 fprintf (dump_file, "Creating dr for ");
961 print_generic_expr (dump_file, memref, TDF_SLIM);
962 fprintf (dump_file, "\n");
963 }
964
965 dr = XCNEW (struct data_reference);
966 DR_STMT (dr) = stmt;
967 DR_REF (dr) = memref;
968 DR_IS_READ (dr) = is_read;
969
970 dr_analyze_innermost (dr);
971 dr_analyze_indices (dr, nest, loop);
972 dr_analyze_alias (dr);
973
974 if (dump_file && (dump_flags & TDF_DETAILS))
975 {
976 fprintf (dump_file, "\tbase_address: ");
977 print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
978 fprintf (dump_file, "\n\toffset from base address: ");
979 print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
980 fprintf (dump_file, "\n\tconstant offset from base address: ");
981 print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
982 fprintf (dump_file, "\n\tstep: ");
983 print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
984 fprintf (dump_file, "\n\taligned to: ");
985 print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
986 fprintf (dump_file, "\n\tbase_object: ");
987 print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
988 fprintf (dump_file, "\n");
989 }
990
991 return dr;
992 }
993
994 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
995 expressions. */
996 static bool
997 dr_equal_offsets_p1 (tree offset1, tree offset2)
998 {
999 bool res;
1000
1001 STRIP_NOPS (offset1);
1002 STRIP_NOPS (offset2);
1003
1004 if (offset1 == offset2)
1005 return true;
1006
1007 if (TREE_CODE (offset1) != TREE_CODE (offset2)
1008 || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
1009 return false;
1010
1011 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
1012 TREE_OPERAND (offset2, 0));
1013
1014 if (!res || !BINARY_CLASS_P (offset1))
1015 return res;
1016
1017 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
1018 TREE_OPERAND (offset2, 1));
1019
1020 return res;
1021 }
1022
1023 /* Check if DRA and DRB have equal offsets. */
1024 bool
1025 dr_equal_offsets_p (struct data_reference *dra,
1026 struct data_reference *drb)
1027 {
1028 tree offset1, offset2;
1029
1030 offset1 = DR_OFFSET (dra);
1031 offset2 = DR_OFFSET (drb);
1032
1033 return dr_equal_offsets_p1 (offset1, offset2);
1034 }
1035
1036 /* Returns true if FNA == FNB. */
1037
1038 static bool
1039 affine_function_equal_p (affine_fn fna, affine_fn fnb)
1040 {
1041 unsigned i, n = VEC_length (tree, fna);
1042
1043 if (n != VEC_length (tree, fnb))
1044 return false;
1045
1046 for (i = 0; i < n; i++)
1047 if (!operand_equal_p (VEC_index (tree, fna, i),
1048 VEC_index (tree, fnb, i), 0))
1049 return false;
1050
1051 return true;
1052 }
1053
1054 /* If all the functions in CF are the same, returns one of them,
1055 otherwise returns NULL. */
1056
1057 static affine_fn
1058 common_affine_function (conflict_function *cf)
1059 {
1060 unsigned i;
1061 affine_fn comm;
1062
1063 if (!CF_NONTRIVIAL_P (cf))
1064 return NULL;
1065
1066 comm = cf->fns[0];
1067
1068 for (i = 1; i < cf->n; i++)
1069 if (!affine_function_equal_p (comm, cf->fns[i]))
1070 return NULL;
1071
1072 return comm;
1073 }
1074
1075 /* Returns the base of the affine function FN. */
1076
1077 static tree
1078 affine_function_base (affine_fn fn)
1079 {
1080 return VEC_index (tree, fn, 0);
1081 }
1082
1083 /* Returns true if FN is a constant. */
1084
1085 static bool
1086 affine_function_constant_p (affine_fn fn)
1087 {
1088 unsigned i;
1089 tree coef;
1090
1091 for (i = 1; VEC_iterate (tree, fn, i, coef); i++)
1092 if (!integer_zerop (coef))
1093 return false;
1094
1095 return true;
1096 }
1097
1098 /* Returns true if FN is the zero constant function. */
1099
1100 static bool
1101 affine_function_zero_p (affine_fn fn)
1102 {
1103 return (integer_zerop (affine_function_base (fn))
1104 && affine_function_constant_p (fn));
1105 }
1106
1107 /* Returns a signed integer type with the largest precision from TA
1108 and TB. */
1109
1110 static tree
1111 signed_type_for_types (tree ta, tree tb)
1112 {
1113 if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
1114 return signed_type_for (ta);
1115 else
1116 return signed_type_for (tb);
1117 }
1118
1119 /* Applies operation OP on affine functions FNA and FNB, and returns the
1120 result. */
1121
1122 static affine_fn
1123 affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
1124 {
1125 unsigned i, n, m;
1126 affine_fn ret;
1127 tree coef;
1128
1129 if (VEC_length (tree, fnb) > VEC_length (tree, fna))
1130 {
1131 n = VEC_length (tree, fna);
1132 m = VEC_length (tree, fnb);
1133 }
1134 else
1135 {
1136 n = VEC_length (tree, fnb);
1137 m = VEC_length (tree, fna);
1138 }
1139
1140 ret = VEC_alloc (tree, heap, m);
1141 for (i = 0; i < n; i++)
1142 {
1143 tree type = signed_type_for_types (TREE_TYPE (VEC_index (tree, fna, i)),
1144 TREE_TYPE (VEC_index (tree, fnb, i)));
1145
1146 VEC_quick_push (tree, ret,
1147 fold_build2 (op, type,
1148 VEC_index (tree, fna, i),
1149 VEC_index (tree, fnb, i)));
1150 }
1151
1152 for (; VEC_iterate (tree, fna, i, coef); i++)
1153 VEC_quick_push (tree, ret,
1154 fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1155 coef, integer_zero_node));
1156 for (; VEC_iterate (tree, fnb, i, coef); i++)
1157 VEC_quick_push (tree, ret,
1158 fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1159 integer_zero_node, coef));
1160
1161 return ret;
1162 }
1163
1164 /* Returns the sum of affine functions FNA and FNB. */
1165
1166 static affine_fn
1167 affine_fn_plus (affine_fn fna, affine_fn fnb)
1168 {
1169 return affine_fn_op (PLUS_EXPR, fna, fnb);
1170 }
1171
1172 /* Returns the difference of affine functions FNA and FNB. */
1173
1174 static affine_fn
1175 affine_fn_minus (affine_fn fna, affine_fn fnb)
1176 {
1177 return affine_fn_op (MINUS_EXPR, fna, fnb);
1178 }
1179
1180 /* Frees affine function FN. */
1181
1182 static void
1183 affine_fn_free (affine_fn fn)
1184 {
1185 VEC_free (tree, heap, fn);
1186 }
1187
1188 /* Determine for each subscript in the data dependence relation DDR
1189 the distance. */
1190
1191 static void
1192 compute_subscript_distance (struct data_dependence_relation *ddr)
1193 {
1194 conflict_function *cf_a, *cf_b;
1195 affine_fn fn_a, fn_b, diff;
1196
1197 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1198 {
1199 unsigned int i;
1200
1201 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
1202 {
1203 struct subscript *subscript;
1204
1205 subscript = DDR_SUBSCRIPT (ddr, i);
1206 cf_a = SUB_CONFLICTS_IN_A (subscript);
1207 cf_b = SUB_CONFLICTS_IN_B (subscript);
1208
1209 fn_a = common_affine_function (cf_a);
1210 fn_b = common_affine_function (cf_b);
1211 if (!fn_a || !fn_b)
1212 {
1213 SUB_DISTANCE (subscript) = chrec_dont_know;
1214 return;
1215 }
1216 diff = affine_fn_minus (fn_a, fn_b);
1217
1218 if (affine_function_constant_p (diff))
1219 SUB_DISTANCE (subscript) = affine_function_base (diff);
1220 else
1221 SUB_DISTANCE (subscript) = chrec_dont_know;
1222
1223 affine_fn_free (diff);
1224 }
1225 }
1226 }
1227
1228 /* Returns the conflict function for "unknown". */
1229
1230 static conflict_function *
1231 conflict_fn_not_known (void)
1232 {
1233 conflict_function *fn = XCNEW (conflict_function);
1234 fn->n = NOT_KNOWN;
1235
1236 return fn;
1237 }
1238
1239 /* Returns the conflict function for "independent". */
1240
1241 static conflict_function *
1242 conflict_fn_no_dependence (void)
1243 {
1244 conflict_function *fn = XCNEW (conflict_function);
1245 fn->n = NO_DEPENDENCE;
1246
1247 return fn;
1248 }
1249
1250 /* Returns true if the address of OBJ is invariant in LOOP. */
1251
1252 static bool
1253 object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
1254 {
1255 while (handled_component_p (obj))
1256 {
1257 if (TREE_CODE (obj) == ARRAY_REF)
1258 {
1259 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1260 need to check the stride and the lower bound of the reference. */
1261 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1262 loop->num)
1263 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
1264 loop->num))
1265 return false;
1266 }
1267 else if (TREE_CODE (obj) == COMPONENT_REF)
1268 {
1269 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1270 loop->num))
1271 return false;
1272 }
1273 obj = TREE_OPERAND (obj, 0);
1274 }
1275
1276 if (!INDIRECT_REF_P (obj)
1277 && TREE_CODE (obj) != MEM_REF)
1278 return true;
1279
1280 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
1281 loop->num);
1282 }
1283
1284 /* Returns false if we can prove that data references A and B do not alias,
1285 true otherwise. */
1286
1287 bool
1288 dr_may_alias_p (const struct data_reference *a, const struct data_reference *b)
1289 {
1290 tree addr_a = DR_BASE_OBJECT (a);
1291 tree addr_b = DR_BASE_OBJECT (b);
1292
1293 if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
1294 return refs_output_dependent_p (addr_a, addr_b);
1295 else if (DR_IS_READ (a) && DR_IS_WRITE (b))
1296 return refs_anti_dependent_p (addr_a, addr_b);
1297 return refs_may_alias_p (addr_a, addr_b);
1298 }
1299
1300 static void compute_self_dependence (struct data_dependence_relation *);
1301
1302 /* Initialize a data dependence relation between data accesses A and
1303 B. NB_LOOPS is the number of loops surrounding the references: the
1304 size of the classic distance/direction vectors. */
1305
1306 static struct data_dependence_relation *
1307 initialize_data_dependence_relation (struct data_reference *a,
1308 struct data_reference *b,
1309 VEC (loop_p, heap) *loop_nest)
1310 {
1311 struct data_dependence_relation *res;
1312 unsigned int i;
1313
1314 res = XNEW (struct data_dependence_relation);
1315 DDR_A (res) = a;
1316 DDR_B (res) = b;
1317 DDR_LOOP_NEST (res) = NULL;
1318 DDR_REVERSED_P (res) = false;
1319 DDR_SUBSCRIPTS (res) = NULL;
1320 DDR_DIR_VECTS (res) = NULL;
1321 DDR_DIST_VECTS (res) = NULL;
1322
1323 if (a == NULL || b == NULL)
1324 {
1325 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1326 return res;
1327 }
1328
1329 /* If the data references do not alias, then they are independent. */
1330 if (!dr_may_alias_p (a, b))
1331 {
1332 DDR_ARE_DEPENDENT (res) = chrec_known;
1333 return res;
1334 }
1335
1336 /* When the references are exactly the same, don't spend time doing
1337 the data dependence tests, just initialize the ddr and return. */
1338 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
1339 {
1340 DDR_AFFINE_P (res) = true;
1341 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1342 DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
1343 DDR_LOOP_NEST (res) = loop_nest;
1344 DDR_INNER_LOOP (res) = 0;
1345 DDR_SELF_REFERENCE (res) = true;
1346 compute_self_dependence (res);
1347 return res;
1348 }
1349
1350 /* If the references do not access the same object, we do not know
1351 whether they alias or not. */
1352 if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
1353 {
1354 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1355 return res;
1356 }
1357
1358 /* If the base of the object is not invariant in the loop nest, we cannot
1359 analyze it. TODO -- in fact, it would suffice to record that there may
1360 be arbitrary dependences in the loops where the base object varies. */
1361 if (loop_nest
1362 && !object_address_invariant_in_loop_p (VEC_index (loop_p, loop_nest, 0),
1363 DR_BASE_OBJECT (a)))
1364 {
1365 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1366 return res;
1367 }
1368
1369 /* If the number of dimensions of the access to not agree we can have
1370 a pointer access to a component of the array element type and an
1371 array access while the base-objects are still the same. Punt. */
1372 if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
1373 {
1374 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1375 return res;
1376 }
1377
1378 DDR_AFFINE_P (res) = true;
1379 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1380 DDR_SUBSCRIPTS (res) = VEC_alloc (subscript_p, heap, DR_NUM_DIMENSIONS (a));
1381 DDR_LOOP_NEST (res) = loop_nest;
1382 DDR_INNER_LOOP (res) = 0;
1383 DDR_SELF_REFERENCE (res) = false;
1384
1385 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1386 {
1387 struct subscript *subscript;
1388
1389 subscript = XNEW (struct subscript);
1390 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1391 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1392 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1393 SUB_DISTANCE (subscript) = chrec_dont_know;
1394 VEC_safe_push (subscript_p, heap, DDR_SUBSCRIPTS (res), subscript);
1395 }
1396
1397 return res;
1398 }
1399
1400 /* Frees memory used by the conflict function F. */
1401
1402 static void
1403 free_conflict_function (conflict_function *f)
1404 {
1405 unsigned i;
1406
1407 if (CF_NONTRIVIAL_P (f))
1408 {
1409 for (i = 0; i < f->n; i++)
1410 affine_fn_free (f->fns[i]);
1411 }
1412 free (f);
1413 }
1414
1415 /* Frees memory used by SUBSCRIPTS. */
1416
1417 static void
1418 free_subscripts (VEC (subscript_p, heap) *subscripts)
1419 {
1420 unsigned i;
1421 subscript_p s;
1422
1423 FOR_EACH_VEC_ELT (subscript_p, subscripts, i, s)
1424 {
1425 free_conflict_function (s->conflicting_iterations_in_a);
1426 free_conflict_function (s->conflicting_iterations_in_b);
1427 free (s);
1428 }
1429 VEC_free (subscript_p, heap, subscripts);
1430 }
1431
1432 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1433 description. */
1434
1435 static inline void
1436 finalize_ddr_dependent (struct data_dependence_relation *ddr,
1437 tree chrec)
1438 {
1439 if (dump_file && (dump_flags & TDF_DETAILS))
1440 {
1441 fprintf (dump_file, "(dependence classified: ");
1442 print_generic_expr (dump_file, chrec, 0);
1443 fprintf (dump_file, ")\n");
1444 }
1445
1446 DDR_ARE_DEPENDENT (ddr) = chrec;
1447 free_subscripts (DDR_SUBSCRIPTS (ddr));
1448 DDR_SUBSCRIPTS (ddr) = NULL;
1449 }
1450
1451 /* The dependence relation DDR cannot be represented by a distance
1452 vector. */
1453
1454 static inline void
1455 non_affine_dependence_relation (struct data_dependence_relation *ddr)
1456 {
1457 if (dump_file && (dump_flags & TDF_DETAILS))
1458 fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
1459
1460 DDR_AFFINE_P (ddr) = false;
1461 }
1462
1463 \f
1464
1465 /* This section contains the classic Banerjee tests. */
1466
1467 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1468 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1469
1470 static inline bool
1471 ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1472 {
1473 return (evolution_function_is_constant_p (chrec_a)
1474 && evolution_function_is_constant_p (chrec_b));
1475 }
1476
1477 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
1478 variable, i.e., if the SIV (Single Index Variable) test is true. */
1479
1480 static bool
1481 siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1482 {
1483 if ((evolution_function_is_constant_p (chrec_a)
1484 && evolution_function_is_univariate_p (chrec_b))
1485 || (evolution_function_is_constant_p (chrec_b)
1486 && evolution_function_is_univariate_p (chrec_a)))
1487 return true;
1488
1489 if (evolution_function_is_univariate_p (chrec_a)
1490 && evolution_function_is_univariate_p (chrec_b))
1491 {
1492 switch (TREE_CODE (chrec_a))
1493 {
1494 case POLYNOMIAL_CHREC:
1495 switch (TREE_CODE (chrec_b))
1496 {
1497 case POLYNOMIAL_CHREC:
1498 if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
1499 return false;
1500
1501 default:
1502 return true;
1503 }
1504
1505 default:
1506 return true;
1507 }
1508 }
1509
1510 return false;
1511 }
1512
1513 /* Creates a conflict function with N dimensions. The affine functions
1514 in each dimension follow. */
1515
1516 static conflict_function *
1517 conflict_fn (unsigned n, ...)
1518 {
1519 unsigned i;
1520 conflict_function *ret = XCNEW (conflict_function);
1521 va_list ap;
1522
1523 gcc_assert (0 < n && n <= MAX_DIM);
1524 va_start(ap, n);
1525
1526 ret->n = n;
1527 for (i = 0; i < n; i++)
1528 ret->fns[i] = va_arg (ap, affine_fn);
1529 va_end(ap);
1530
1531 return ret;
1532 }
1533
1534 /* Returns constant affine function with value CST. */
1535
1536 static affine_fn
1537 affine_fn_cst (tree cst)
1538 {
1539 affine_fn fn = VEC_alloc (tree, heap, 1);
1540 VEC_quick_push (tree, fn, cst);
1541 return fn;
1542 }
1543
1544 /* Returns affine function with single variable, CST + COEF * x_DIM. */
1545
1546 static affine_fn
1547 affine_fn_univar (tree cst, unsigned dim, tree coef)
1548 {
1549 affine_fn fn = VEC_alloc (tree, heap, dim + 1);
1550 unsigned i;
1551
1552 gcc_assert (dim > 0);
1553 VEC_quick_push (tree, fn, cst);
1554 for (i = 1; i < dim; i++)
1555 VEC_quick_push (tree, fn, integer_zero_node);
1556 VEC_quick_push (tree, fn, coef);
1557 return fn;
1558 }
1559
1560 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1561 *OVERLAPS_B are initialized to the functions that describe the
1562 relation between the elements accessed twice by CHREC_A and
1563 CHREC_B. For k >= 0, the following property is verified:
1564
1565 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1566
1567 static void
1568 analyze_ziv_subscript (tree chrec_a,
1569 tree chrec_b,
1570 conflict_function **overlaps_a,
1571 conflict_function **overlaps_b,
1572 tree *last_conflicts)
1573 {
1574 tree type, difference;
1575 dependence_stats.num_ziv++;
1576
1577 if (dump_file && (dump_flags & TDF_DETAILS))
1578 fprintf (dump_file, "(analyze_ziv_subscript \n");
1579
1580 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1581 chrec_a = chrec_convert (type, chrec_a, NULL);
1582 chrec_b = chrec_convert (type, chrec_b, NULL);
1583 difference = chrec_fold_minus (type, chrec_a, chrec_b);
1584
1585 switch (TREE_CODE (difference))
1586 {
1587 case INTEGER_CST:
1588 if (integer_zerop (difference))
1589 {
1590 /* The difference is equal to zero: the accessed index
1591 overlaps for each iteration in the loop. */
1592 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1593 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1594 *last_conflicts = chrec_dont_know;
1595 dependence_stats.num_ziv_dependent++;
1596 }
1597 else
1598 {
1599 /* The accesses do not overlap. */
1600 *overlaps_a = conflict_fn_no_dependence ();
1601 *overlaps_b = conflict_fn_no_dependence ();
1602 *last_conflicts = integer_zero_node;
1603 dependence_stats.num_ziv_independent++;
1604 }
1605 break;
1606
1607 default:
1608 /* We're not sure whether the indexes overlap. For the moment,
1609 conservatively answer "don't know". */
1610 if (dump_file && (dump_flags & TDF_DETAILS))
1611 fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
1612
1613 *overlaps_a = conflict_fn_not_known ();
1614 *overlaps_b = conflict_fn_not_known ();
1615 *last_conflicts = chrec_dont_know;
1616 dependence_stats.num_ziv_unimplemented++;
1617 break;
1618 }
1619
1620 if (dump_file && (dump_flags & TDF_DETAILS))
1621 fprintf (dump_file, ")\n");
1622 }
1623
1624 /* Sets NIT to the estimated number of executions of the statements in
1625 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
1626 large as the number of iterations. If we have no reliable estimate,
1627 the function returns false, otherwise returns true. */
1628
1629 bool
1630 estimated_loop_iterations (struct loop *loop, bool conservative,
1631 double_int *nit)
1632 {
1633 estimate_numbers_of_iterations_loop (loop, true);
1634 if (conservative)
1635 {
1636 if (!loop->any_upper_bound)
1637 return false;
1638
1639 *nit = loop->nb_iterations_upper_bound;
1640 }
1641 else
1642 {
1643 if (!loop->any_estimate)
1644 return false;
1645
1646 *nit = loop->nb_iterations_estimate;
1647 }
1648
1649 return true;
1650 }
1651
1652 /* Similar to estimated_loop_iterations, but returns the estimate only
1653 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1654 on the number of iterations of LOOP could not be derived, returns -1. */
1655
1656 HOST_WIDE_INT
1657 estimated_loop_iterations_int (struct loop *loop, bool conservative)
1658 {
1659 double_int nit;
1660 HOST_WIDE_INT hwi_nit;
1661
1662 if (!estimated_loop_iterations (loop, conservative, &nit))
1663 return -1;
1664
1665 if (!double_int_fits_in_shwi_p (nit))
1666 return -1;
1667 hwi_nit = double_int_to_shwi (nit);
1668
1669 return hwi_nit < 0 ? -1 : hwi_nit;
1670 }
1671
1672 /* Similar to estimated_loop_iterations, but returns the estimate as a tree,
1673 and only if it fits to the int type. If this is not the case, or the
1674 estimate on the number of iterations of LOOP could not be derived, returns
1675 chrec_dont_know. */
1676
1677 static tree
1678 estimated_loop_iterations_tree (struct loop *loop, bool conservative)
1679 {
1680 double_int nit;
1681 tree type;
1682
1683 if (!estimated_loop_iterations (loop, conservative, &nit))
1684 return chrec_dont_know;
1685
1686 type = lang_hooks.types.type_for_size (INT_TYPE_SIZE, true);
1687 if (!double_int_fits_to_tree_p (type, nit))
1688 return chrec_dont_know;
1689
1690 return double_int_to_tree (type, nit);
1691 }
1692
1693 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1694 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1695 *OVERLAPS_B are initialized to the functions that describe the
1696 relation between the elements accessed twice by CHREC_A and
1697 CHREC_B. For k >= 0, the following property is verified:
1698
1699 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1700
1701 static void
1702 analyze_siv_subscript_cst_affine (tree chrec_a,
1703 tree chrec_b,
1704 conflict_function **overlaps_a,
1705 conflict_function **overlaps_b,
1706 tree *last_conflicts)
1707 {
1708 bool value0, value1, value2;
1709 tree type, difference, tmp;
1710
1711 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1712 chrec_a = chrec_convert (type, chrec_a, NULL);
1713 chrec_b = chrec_convert (type, chrec_b, NULL);
1714 difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
1715
1716 if (!chrec_is_positive (initial_condition (difference), &value0))
1717 {
1718 if (dump_file && (dump_flags & TDF_DETAILS))
1719 fprintf (dump_file, "siv test failed: chrec is not positive.\n");
1720
1721 dependence_stats.num_siv_unimplemented++;
1722 *overlaps_a = conflict_fn_not_known ();
1723 *overlaps_b = conflict_fn_not_known ();
1724 *last_conflicts = chrec_dont_know;
1725 return;
1726 }
1727 else
1728 {
1729 if (value0 == false)
1730 {
1731 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
1732 {
1733 if (dump_file && (dump_flags & TDF_DETAILS))
1734 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1735
1736 *overlaps_a = conflict_fn_not_known ();
1737 *overlaps_b = conflict_fn_not_known ();
1738 *last_conflicts = chrec_dont_know;
1739 dependence_stats.num_siv_unimplemented++;
1740 return;
1741 }
1742 else
1743 {
1744 if (value1 == true)
1745 {
1746 /* Example:
1747 chrec_a = 12
1748 chrec_b = {10, +, 1}
1749 */
1750
1751 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1752 {
1753 HOST_WIDE_INT numiter;
1754 struct loop *loop = get_chrec_loop (chrec_b);
1755
1756 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1757 tmp = fold_build2 (EXACT_DIV_EXPR, type,
1758 fold_build1 (ABS_EXPR, type, difference),
1759 CHREC_RIGHT (chrec_b));
1760 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1761 *last_conflicts = integer_one_node;
1762
1763
1764 /* Perform weak-zero siv test to see if overlap is
1765 outside the loop bounds. */
1766 numiter = estimated_loop_iterations_int (loop, false);
1767
1768 if (numiter >= 0
1769 && compare_tree_int (tmp, numiter) > 0)
1770 {
1771 free_conflict_function (*overlaps_a);
1772 free_conflict_function (*overlaps_b);
1773 *overlaps_a = conflict_fn_no_dependence ();
1774 *overlaps_b = conflict_fn_no_dependence ();
1775 *last_conflicts = integer_zero_node;
1776 dependence_stats.num_siv_independent++;
1777 return;
1778 }
1779 dependence_stats.num_siv_dependent++;
1780 return;
1781 }
1782
1783 /* When the step does not divide the difference, there are
1784 no overlaps. */
1785 else
1786 {
1787 *overlaps_a = conflict_fn_no_dependence ();
1788 *overlaps_b = conflict_fn_no_dependence ();
1789 *last_conflicts = integer_zero_node;
1790 dependence_stats.num_siv_independent++;
1791 return;
1792 }
1793 }
1794
1795 else
1796 {
1797 /* Example:
1798 chrec_a = 12
1799 chrec_b = {10, +, -1}
1800
1801 In this case, chrec_a will not overlap with chrec_b. */
1802 *overlaps_a = conflict_fn_no_dependence ();
1803 *overlaps_b = conflict_fn_no_dependence ();
1804 *last_conflicts = integer_zero_node;
1805 dependence_stats.num_siv_independent++;
1806 return;
1807 }
1808 }
1809 }
1810 else
1811 {
1812 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
1813 {
1814 if (dump_file && (dump_flags & TDF_DETAILS))
1815 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1816
1817 *overlaps_a = conflict_fn_not_known ();
1818 *overlaps_b = conflict_fn_not_known ();
1819 *last_conflicts = chrec_dont_know;
1820 dependence_stats.num_siv_unimplemented++;
1821 return;
1822 }
1823 else
1824 {
1825 if (value2 == false)
1826 {
1827 /* Example:
1828 chrec_a = 3
1829 chrec_b = {10, +, -1}
1830 */
1831 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1832 {
1833 HOST_WIDE_INT numiter;
1834 struct loop *loop = get_chrec_loop (chrec_b);
1835
1836 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1837 tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
1838 CHREC_RIGHT (chrec_b));
1839 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1840 *last_conflicts = integer_one_node;
1841
1842 /* Perform weak-zero siv test to see if overlap is
1843 outside the loop bounds. */
1844 numiter = estimated_loop_iterations_int (loop, false);
1845
1846 if (numiter >= 0
1847 && compare_tree_int (tmp, numiter) > 0)
1848 {
1849 free_conflict_function (*overlaps_a);
1850 free_conflict_function (*overlaps_b);
1851 *overlaps_a = conflict_fn_no_dependence ();
1852 *overlaps_b = conflict_fn_no_dependence ();
1853 *last_conflicts = integer_zero_node;
1854 dependence_stats.num_siv_independent++;
1855 return;
1856 }
1857 dependence_stats.num_siv_dependent++;
1858 return;
1859 }
1860
1861 /* When the step does not divide the difference, there
1862 are no overlaps. */
1863 else
1864 {
1865 *overlaps_a = conflict_fn_no_dependence ();
1866 *overlaps_b = conflict_fn_no_dependence ();
1867 *last_conflicts = integer_zero_node;
1868 dependence_stats.num_siv_independent++;
1869 return;
1870 }
1871 }
1872 else
1873 {
1874 /* Example:
1875 chrec_a = 3
1876 chrec_b = {4, +, 1}
1877
1878 In this case, chrec_a will not overlap with chrec_b. */
1879 *overlaps_a = conflict_fn_no_dependence ();
1880 *overlaps_b = conflict_fn_no_dependence ();
1881 *last_conflicts = integer_zero_node;
1882 dependence_stats.num_siv_independent++;
1883 return;
1884 }
1885 }
1886 }
1887 }
1888 }
1889
1890 /* Helper recursive function for initializing the matrix A. Returns
1891 the initial value of CHREC. */
1892
1893 static tree
1894 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
1895 {
1896 gcc_assert (chrec);
1897
1898 switch (TREE_CODE (chrec))
1899 {
1900 case POLYNOMIAL_CHREC:
1901 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
1902
1903 A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
1904 return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
1905
1906 case PLUS_EXPR:
1907 case MULT_EXPR:
1908 case MINUS_EXPR:
1909 {
1910 tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
1911 tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
1912
1913 return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
1914 }
1915
1916 case NOP_EXPR:
1917 {
1918 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
1919 return chrec_convert (chrec_type (chrec), op, NULL);
1920 }
1921
1922 case BIT_NOT_EXPR:
1923 {
1924 /* Handle ~X as -1 - X. */
1925 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
1926 return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
1927 build_int_cst (TREE_TYPE (chrec), -1), op);
1928 }
1929
1930 case INTEGER_CST:
1931 return chrec;
1932
1933 default:
1934 gcc_unreachable ();
1935 return NULL_TREE;
1936 }
1937 }
1938
1939 #define FLOOR_DIV(x,y) ((x) / (y))
1940
1941 /* Solves the special case of the Diophantine equation:
1942 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
1943
1944 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
1945 number of iterations that loops X and Y run. The overlaps will be
1946 constructed as evolutions in dimension DIM. */
1947
1948 static void
1949 compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
1950 affine_fn *overlaps_a,
1951 affine_fn *overlaps_b,
1952 tree *last_conflicts, int dim)
1953 {
1954 if (((step_a > 0 && step_b > 0)
1955 || (step_a < 0 && step_b < 0)))
1956 {
1957 int step_overlaps_a, step_overlaps_b;
1958 int gcd_steps_a_b, last_conflict, tau2;
1959
1960 gcd_steps_a_b = gcd (step_a, step_b);
1961 step_overlaps_a = step_b / gcd_steps_a_b;
1962 step_overlaps_b = step_a / gcd_steps_a_b;
1963
1964 if (niter > 0)
1965 {
1966 tau2 = FLOOR_DIV (niter, step_overlaps_a);
1967 tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
1968 last_conflict = tau2;
1969 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
1970 }
1971 else
1972 *last_conflicts = chrec_dont_know;
1973
1974 *overlaps_a = affine_fn_univar (integer_zero_node, dim,
1975 build_int_cst (NULL_TREE,
1976 step_overlaps_a));
1977 *overlaps_b = affine_fn_univar (integer_zero_node, dim,
1978 build_int_cst (NULL_TREE,
1979 step_overlaps_b));
1980 }
1981
1982 else
1983 {
1984 *overlaps_a = affine_fn_cst (integer_zero_node);
1985 *overlaps_b = affine_fn_cst (integer_zero_node);
1986 *last_conflicts = integer_zero_node;
1987 }
1988 }
1989
1990 /* Solves the special case of a Diophantine equation where CHREC_A is
1991 an affine bivariate function, and CHREC_B is an affine univariate
1992 function. For example,
1993
1994 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
1995
1996 has the following overlapping functions:
1997
1998 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
1999 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2000 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2001
2002 FORNOW: This is a specialized implementation for a case occurring in
2003 a common benchmark. Implement the general algorithm. */
2004
2005 static void
2006 compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
2007 conflict_function **overlaps_a,
2008 conflict_function **overlaps_b,
2009 tree *last_conflicts)
2010 {
2011 bool xz_p, yz_p, xyz_p;
2012 int step_x, step_y, step_z;
2013 HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
2014 affine_fn overlaps_a_xz, overlaps_b_xz;
2015 affine_fn overlaps_a_yz, overlaps_b_yz;
2016 affine_fn overlaps_a_xyz, overlaps_b_xyz;
2017 affine_fn ova1, ova2, ovb;
2018 tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
2019
2020 step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
2021 step_y = int_cst_value (CHREC_RIGHT (chrec_a));
2022 step_z = int_cst_value (CHREC_RIGHT (chrec_b));
2023
2024 niter_x =
2025 estimated_loop_iterations_int (get_chrec_loop (CHREC_LEFT (chrec_a)),
2026 false);
2027 niter_y = estimated_loop_iterations_int (get_chrec_loop (chrec_a), false);
2028 niter_z = estimated_loop_iterations_int (get_chrec_loop (chrec_b), false);
2029
2030 if (niter_x < 0 || niter_y < 0 || niter_z < 0)
2031 {
2032 if (dump_file && (dump_flags & TDF_DETAILS))
2033 fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
2034
2035 *overlaps_a = conflict_fn_not_known ();
2036 *overlaps_b = conflict_fn_not_known ();
2037 *last_conflicts = chrec_dont_know;
2038 return;
2039 }
2040
2041 niter = MIN (niter_x, niter_z);
2042 compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
2043 &overlaps_a_xz,
2044 &overlaps_b_xz,
2045 &last_conflicts_xz, 1);
2046 niter = MIN (niter_y, niter_z);
2047 compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
2048 &overlaps_a_yz,
2049 &overlaps_b_yz,
2050 &last_conflicts_yz, 2);
2051 niter = MIN (niter_x, niter_z);
2052 niter = MIN (niter_y, niter);
2053 compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
2054 &overlaps_a_xyz,
2055 &overlaps_b_xyz,
2056 &last_conflicts_xyz, 3);
2057
2058 xz_p = !integer_zerop (last_conflicts_xz);
2059 yz_p = !integer_zerop (last_conflicts_yz);
2060 xyz_p = !integer_zerop (last_conflicts_xyz);
2061
2062 if (xz_p || yz_p || xyz_p)
2063 {
2064 ova1 = affine_fn_cst (integer_zero_node);
2065 ova2 = affine_fn_cst (integer_zero_node);
2066 ovb = affine_fn_cst (integer_zero_node);
2067 if (xz_p)
2068 {
2069 affine_fn t0 = ova1;
2070 affine_fn t2 = ovb;
2071
2072 ova1 = affine_fn_plus (ova1, overlaps_a_xz);
2073 ovb = affine_fn_plus (ovb, overlaps_b_xz);
2074 affine_fn_free (t0);
2075 affine_fn_free (t2);
2076 *last_conflicts = last_conflicts_xz;
2077 }
2078 if (yz_p)
2079 {
2080 affine_fn t0 = ova2;
2081 affine_fn t2 = ovb;
2082
2083 ova2 = affine_fn_plus (ova2, overlaps_a_yz);
2084 ovb = affine_fn_plus (ovb, overlaps_b_yz);
2085 affine_fn_free (t0);
2086 affine_fn_free (t2);
2087 *last_conflicts = last_conflicts_yz;
2088 }
2089 if (xyz_p)
2090 {
2091 affine_fn t0 = ova1;
2092 affine_fn t2 = ova2;
2093 affine_fn t4 = ovb;
2094
2095 ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
2096 ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
2097 ovb = affine_fn_plus (ovb, overlaps_b_xyz);
2098 affine_fn_free (t0);
2099 affine_fn_free (t2);
2100 affine_fn_free (t4);
2101 *last_conflicts = last_conflicts_xyz;
2102 }
2103 *overlaps_a = conflict_fn (2, ova1, ova2);
2104 *overlaps_b = conflict_fn (1, ovb);
2105 }
2106 else
2107 {
2108 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2109 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2110 *last_conflicts = integer_zero_node;
2111 }
2112
2113 affine_fn_free (overlaps_a_xz);
2114 affine_fn_free (overlaps_b_xz);
2115 affine_fn_free (overlaps_a_yz);
2116 affine_fn_free (overlaps_b_yz);
2117 affine_fn_free (overlaps_a_xyz);
2118 affine_fn_free (overlaps_b_xyz);
2119 }
2120
2121 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2122
2123 static void
2124 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
2125 int size)
2126 {
2127 memcpy (vec2, vec1, size * sizeof (*vec1));
2128 }
2129
2130 /* Copy the elements of M x N matrix MAT1 to MAT2. */
2131
2132 static void
2133 lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
2134 int m, int n)
2135 {
2136 int i;
2137
2138 for (i = 0; i < m; i++)
2139 lambda_vector_copy (mat1[i], mat2[i], n);
2140 }
2141
2142 /* Store the N x N identity matrix in MAT. */
2143
2144 static void
2145 lambda_matrix_id (lambda_matrix mat, int size)
2146 {
2147 int i, j;
2148
2149 for (i = 0; i < size; i++)
2150 for (j = 0; j < size; j++)
2151 mat[i][j] = (i == j) ? 1 : 0;
2152 }
2153
2154 /* Return the first nonzero element of vector VEC1 between START and N.
2155 We must have START <= N. Returns N if VEC1 is the zero vector. */
2156
2157 static int
2158 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
2159 {
2160 int j = start;
2161 while (j < n && vec1[j] == 0)
2162 j++;
2163 return j;
2164 }
2165
2166 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2167 R2 = R2 + CONST1 * R1. */
2168
2169 static void
2170 lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
2171 {
2172 int i;
2173
2174 if (const1 == 0)
2175 return;
2176
2177 for (i = 0; i < n; i++)
2178 mat[r2][i] += const1 * mat[r1][i];
2179 }
2180
2181 /* Swap rows R1 and R2 in matrix MAT. */
2182
2183 static void
2184 lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
2185 {
2186 lambda_vector row;
2187
2188 row = mat[r1];
2189 mat[r1] = mat[r2];
2190 mat[r2] = row;
2191 }
2192
2193 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
2194 and store the result in VEC2. */
2195
2196 static void
2197 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
2198 int size, int const1)
2199 {
2200 int i;
2201
2202 if (const1 == 0)
2203 lambda_vector_clear (vec2, size);
2204 else
2205 for (i = 0; i < size; i++)
2206 vec2[i] = const1 * vec1[i];
2207 }
2208
2209 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
2210
2211 static void
2212 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
2213 int size)
2214 {
2215 lambda_vector_mult_const (vec1, vec2, size, -1);
2216 }
2217
2218 /* Negate row R1 of matrix MAT which has N columns. */
2219
2220 static void
2221 lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
2222 {
2223 lambda_vector_negate (mat[r1], mat[r1], n);
2224 }
2225
2226 /* Return true if two vectors are equal. */
2227
2228 static bool
2229 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
2230 {
2231 int i;
2232 for (i = 0; i < size; i++)
2233 if (vec1[i] != vec2[i])
2234 return false;
2235 return true;
2236 }
2237
2238 /* Given an M x N integer matrix A, this function determines an M x
2239 M unimodular matrix U, and an M x N echelon matrix S such that
2240 "U.A = S". This decomposition is also known as "right Hermite".
2241
2242 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2243 Restructuring Compilers" Utpal Banerjee. */
2244
2245 static void
2246 lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
2247 lambda_matrix S, lambda_matrix U)
2248 {
2249 int i, j, i0 = 0;
2250
2251 lambda_matrix_copy (A, S, m, n);
2252 lambda_matrix_id (U, m);
2253
2254 for (j = 0; j < n; j++)
2255 {
2256 if (lambda_vector_first_nz (S[j], m, i0) < m)
2257 {
2258 ++i0;
2259 for (i = m - 1; i >= i0; i--)
2260 {
2261 while (S[i][j] != 0)
2262 {
2263 int sigma, factor, a, b;
2264
2265 a = S[i-1][j];
2266 b = S[i][j];
2267 sigma = (a * b < 0) ? -1: 1;
2268 a = abs (a);
2269 b = abs (b);
2270 factor = sigma * (a / b);
2271
2272 lambda_matrix_row_add (S, n, i, i-1, -factor);
2273 lambda_matrix_row_exchange (S, i, i-1);
2274
2275 lambda_matrix_row_add (U, m, i, i-1, -factor);
2276 lambda_matrix_row_exchange (U, i, i-1);
2277 }
2278 }
2279 }
2280 }
2281 }
2282
2283 /* Determines the overlapping elements due to accesses CHREC_A and
2284 CHREC_B, that are affine functions. This function cannot handle
2285 symbolic evolution functions, ie. when initial conditions are
2286 parameters, because it uses lambda matrices of integers. */
2287
2288 static void
2289 analyze_subscript_affine_affine (tree chrec_a,
2290 tree chrec_b,
2291 conflict_function **overlaps_a,
2292 conflict_function **overlaps_b,
2293 tree *last_conflicts)
2294 {
2295 unsigned nb_vars_a, nb_vars_b, dim;
2296 HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
2297 lambda_matrix A, U, S;
2298 struct obstack scratch_obstack;
2299
2300 if (eq_evolutions_p (chrec_a, chrec_b))
2301 {
2302 /* The accessed index overlaps for each iteration in the
2303 loop. */
2304 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2305 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2306 *last_conflicts = chrec_dont_know;
2307 return;
2308 }
2309 if (dump_file && (dump_flags & TDF_DETAILS))
2310 fprintf (dump_file, "(analyze_subscript_affine_affine \n");
2311
2312 /* For determining the initial intersection, we have to solve a
2313 Diophantine equation. This is the most time consuming part.
2314
2315 For answering to the question: "Is there a dependence?" we have
2316 to prove that there exists a solution to the Diophantine
2317 equation, and that the solution is in the iteration domain,
2318 i.e. the solution is positive or zero, and that the solution
2319 happens before the upper bound loop.nb_iterations. Otherwise
2320 there is no dependence. This function outputs a description of
2321 the iterations that hold the intersections. */
2322
2323 nb_vars_a = nb_vars_in_chrec (chrec_a);
2324 nb_vars_b = nb_vars_in_chrec (chrec_b);
2325
2326 gcc_obstack_init (&scratch_obstack);
2327
2328 dim = nb_vars_a + nb_vars_b;
2329 U = lambda_matrix_new (dim, dim, &scratch_obstack);
2330 A = lambda_matrix_new (dim, 1, &scratch_obstack);
2331 S = lambda_matrix_new (dim, 1, &scratch_obstack);
2332
2333 init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
2334 init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
2335 gamma = init_b - init_a;
2336
2337 /* Don't do all the hard work of solving the Diophantine equation
2338 when we already know the solution: for example,
2339 | {3, +, 1}_1
2340 | {3, +, 4}_2
2341 | gamma = 3 - 3 = 0.
2342 Then the first overlap occurs during the first iterations:
2343 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2344 */
2345 if (gamma == 0)
2346 {
2347 if (nb_vars_a == 1 && nb_vars_b == 1)
2348 {
2349 HOST_WIDE_INT step_a, step_b;
2350 HOST_WIDE_INT niter, niter_a, niter_b;
2351 affine_fn ova, ovb;
2352
2353 niter_a = estimated_loop_iterations_int (get_chrec_loop (chrec_a),
2354 false);
2355 niter_b = estimated_loop_iterations_int (get_chrec_loop (chrec_b),
2356 false);
2357 niter = MIN (niter_a, niter_b);
2358 step_a = int_cst_value (CHREC_RIGHT (chrec_a));
2359 step_b = int_cst_value (CHREC_RIGHT (chrec_b));
2360
2361 compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
2362 &ova, &ovb,
2363 last_conflicts, 1);
2364 *overlaps_a = conflict_fn (1, ova);
2365 *overlaps_b = conflict_fn (1, ovb);
2366 }
2367
2368 else if (nb_vars_a == 2 && nb_vars_b == 1)
2369 compute_overlap_steps_for_affine_1_2
2370 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
2371
2372 else if (nb_vars_a == 1 && nb_vars_b == 2)
2373 compute_overlap_steps_for_affine_1_2
2374 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
2375
2376 else
2377 {
2378 if (dump_file && (dump_flags & TDF_DETAILS))
2379 fprintf (dump_file, "affine-affine test failed: too many variables.\n");
2380 *overlaps_a = conflict_fn_not_known ();
2381 *overlaps_b = conflict_fn_not_known ();
2382 *last_conflicts = chrec_dont_know;
2383 }
2384 goto end_analyze_subs_aa;
2385 }
2386
2387 /* U.A = S */
2388 lambda_matrix_right_hermite (A, dim, 1, S, U);
2389
2390 if (S[0][0] < 0)
2391 {
2392 S[0][0] *= -1;
2393 lambda_matrix_row_negate (U, dim, 0);
2394 }
2395 gcd_alpha_beta = S[0][0];
2396
2397 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2398 but that is a quite strange case. Instead of ICEing, answer
2399 don't know. */
2400 if (gcd_alpha_beta == 0)
2401 {
2402 *overlaps_a = conflict_fn_not_known ();
2403 *overlaps_b = conflict_fn_not_known ();
2404 *last_conflicts = chrec_dont_know;
2405 goto end_analyze_subs_aa;
2406 }
2407
2408 /* The classic "gcd-test". */
2409 if (!int_divides_p (gcd_alpha_beta, gamma))
2410 {
2411 /* The "gcd-test" has determined that there is no integer
2412 solution, i.e. there is no dependence. */
2413 *overlaps_a = conflict_fn_no_dependence ();
2414 *overlaps_b = conflict_fn_no_dependence ();
2415 *last_conflicts = integer_zero_node;
2416 }
2417
2418 /* Both access functions are univariate. This includes SIV and MIV cases. */
2419 else if (nb_vars_a == 1 && nb_vars_b == 1)
2420 {
2421 /* Both functions should have the same evolution sign. */
2422 if (((A[0][0] > 0 && -A[1][0] > 0)
2423 || (A[0][0] < 0 && -A[1][0] < 0)))
2424 {
2425 /* The solutions are given by:
2426 |
2427 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2428 | [u21 u22] [y0]
2429
2430 For a given integer t. Using the following variables,
2431
2432 | i0 = u11 * gamma / gcd_alpha_beta
2433 | j0 = u12 * gamma / gcd_alpha_beta
2434 | i1 = u21
2435 | j1 = u22
2436
2437 the solutions are:
2438
2439 | x0 = i0 + i1 * t,
2440 | y0 = j0 + j1 * t. */
2441 HOST_WIDE_INT i0, j0, i1, j1;
2442
2443 i0 = U[0][0] * gamma / gcd_alpha_beta;
2444 j0 = U[0][1] * gamma / gcd_alpha_beta;
2445 i1 = U[1][0];
2446 j1 = U[1][1];
2447
2448 if ((i1 == 0 && i0 < 0)
2449 || (j1 == 0 && j0 < 0))
2450 {
2451 /* There is no solution.
2452 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2453 falls in here, but for the moment we don't look at the
2454 upper bound of the iteration domain. */
2455 *overlaps_a = conflict_fn_no_dependence ();
2456 *overlaps_b = conflict_fn_no_dependence ();
2457 *last_conflicts = integer_zero_node;
2458 goto end_analyze_subs_aa;
2459 }
2460
2461 if (i1 > 0 && j1 > 0)
2462 {
2463 HOST_WIDE_INT niter_a = estimated_loop_iterations_int
2464 (get_chrec_loop (chrec_a), false);
2465 HOST_WIDE_INT niter_b = estimated_loop_iterations_int
2466 (get_chrec_loop (chrec_b), false);
2467 HOST_WIDE_INT niter = MIN (niter_a, niter_b);
2468
2469 /* (X0, Y0) is a solution of the Diophantine equation:
2470 "chrec_a (X0) = chrec_b (Y0)". */
2471 HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
2472 CEIL (-j0, j1));
2473 HOST_WIDE_INT x0 = i1 * tau1 + i0;
2474 HOST_WIDE_INT y0 = j1 * tau1 + j0;
2475
2476 /* (X1, Y1) is the smallest positive solution of the eq
2477 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2478 first conflict occurs. */
2479 HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
2480 HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
2481 HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
2482
2483 if (niter > 0)
2484 {
2485 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
2486 FLOOR_DIV (niter - j0, j1));
2487 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
2488
2489 /* If the overlap occurs outside of the bounds of the
2490 loop, there is no dependence. */
2491 if (x1 >= niter || y1 >= niter)
2492 {
2493 *overlaps_a = conflict_fn_no_dependence ();
2494 *overlaps_b = conflict_fn_no_dependence ();
2495 *last_conflicts = integer_zero_node;
2496 goto end_analyze_subs_aa;
2497 }
2498 else
2499 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2500 }
2501 else
2502 *last_conflicts = chrec_dont_know;
2503
2504 *overlaps_a
2505 = conflict_fn (1,
2506 affine_fn_univar (build_int_cst (NULL_TREE, x1),
2507 1,
2508 build_int_cst (NULL_TREE, i1)));
2509 *overlaps_b
2510 = conflict_fn (1,
2511 affine_fn_univar (build_int_cst (NULL_TREE, y1),
2512 1,
2513 build_int_cst (NULL_TREE, j1)));
2514 }
2515 else
2516 {
2517 /* FIXME: For the moment, the upper bound of the
2518 iteration domain for i and j is not checked. */
2519 if (dump_file && (dump_flags & TDF_DETAILS))
2520 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2521 *overlaps_a = conflict_fn_not_known ();
2522 *overlaps_b = conflict_fn_not_known ();
2523 *last_conflicts = chrec_dont_know;
2524 }
2525 }
2526 else
2527 {
2528 if (dump_file && (dump_flags & TDF_DETAILS))
2529 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2530 *overlaps_a = conflict_fn_not_known ();
2531 *overlaps_b = conflict_fn_not_known ();
2532 *last_conflicts = chrec_dont_know;
2533 }
2534 }
2535 else
2536 {
2537 if (dump_file && (dump_flags & TDF_DETAILS))
2538 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2539 *overlaps_a = conflict_fn_not_known ();
2540 *overlaps_b = conflict_fn_not_known ();
2541 *last_conflicts = chrec_dont_know;
2542 }
2543
2544 end_analyze_subs_aa:
2545 obstack_free (&scratch_obstack, NULL);
2546 if (dump_file && (dump_flags & TDF_DETAILS))
2547 {
2548 fprintf (dump_file, " (overlaps_a = ");
2549 dump_conflict_function (dump_file, *overlaps_a);
2550 fprintf (dump_file, ")\n (overlaps_b = ");
2551 dump_conflict_function (dump_file, *overlaps_b);
2552 fprintf (dump_file, ")\n");
2553 fprintf (dump_file, ")\n");
2554 }
2555 }
2556
2557 /* Returns true when analyze_subscript_affine_affine can be used for
2558 determining the dependence relation between chrec_a and chrec_b,
2559 that contain symbols. This function modifies chrec_a and chrec_b
2560 such that the analysis result is the same, and such that they don't
2561 contain symbols, and then can safely be passed to the analyzer.
2562
2563 Example: The analysis of the following tuples of evolutions produce
2564 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2565 vs. {0, +, 1}_1
2566
2567 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2568 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2569 */
2570
2571 static bool
2572 can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
2573 {
2574 tree diff, type, left_a, left_b, right_b;
2575
2576 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
2577 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
2578 /* FIXME: For the moment not handled. Might be refined later. */
2579 return false;
2580
2581 type = chrec_type (*chrec_a);
2582 left_a = CHREC_LEFT (*chrec_a);
2583 left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
2584 diff = chrec_fold_minus (type, left_a, left_b);
2585
2586 if (!evolution_function_is_constant_p (diff))
2587 return false;
2588
2589 if (dump_file && (dump_flags & TDF_DETAILS))
2590 fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
2591
2592 *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
2593 diff, CHREC_RIGHT (*chrec_a));
2594 right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
2595 *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
2596 build_int_cst (type, 0),
2597 right_b);
2598 return true;
2599 }
2600
2601 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2602 *OVERLAPS_B are initialized to the functions that describe the
2603 relation between the elements accessed twice by CHREC_A and
2604 CHREC_B. For k >= 0, the following property is verified:
2605
2606 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2607
2608 static void
2609 analyze_siv_subscript (tree chrec_a,
2610 tree chrec_b,
2611 conflict_function **overlaps_a,
2612 conflict_function **overlaps_b,
2613 tree *last_conflicts,
2614 int loop_nest_num)
2615 {
2616 dependence_stats.num_siv++;
2617
2618 if (dump_file && (dump_flags & TDF_DETAILS))
2619 fprintf (dump_file, "(analyze_siv_subscript \n");
2620
2621 if (evolution_function_is_constant_p (chrec_a)
2622 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2623 analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
2624 overlaps_a, overlaps_b, last_conflicts);
2625
2626 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2627 && evolution_function_is_constant_p (chrec_b))
2628 analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
2629 overlaps_b, overlaps_a, last_conflicts);
2630
2631 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2632 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2633 {
2634 if (!chrec_contains_symbols (chrec_a)
2635 && !chrec_contains_symbols (chrec_b))
2636 {
2637 analyze_subscript_affine_affine (chrec_a, chrec_b,
2638 overlaps_a, overlaps_b,
2639 last_conflicts);
2640
2641 if (CF_NOT_KNOWN_P (*overlaps_a)
2642 || CF_NOT_KNOWN_P (*overlaps_b))
2643 dependence_stats.num_siv_unimplemented++;
2644 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2645 || CF_NO_DEPENDENCE_P (*overlaps_b))
2646 dependence_stats.num_siv_independent++;
2647 else
2648 dependence_stats.num_siv_dependent++;
2649 }
2650 else if (can_use_analyze_subscript_affine_affine (&chrec_a,
2651 &chrec_b))
2652 {
2653 analyze_subscript_affine_affine (chrec_a, chrec_b,
2654 overlaps_a, overlaps_b,
2655 last_conflicts);
2656
2657 if (CF_NOT_KNOWN_P (*overlaps_a)
2658 || CF_NOT_KNOWN_P (*overlaps_b))
2659 dependence_stats.num_siv_unimplemented++;
2660 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2661 || CF_NO_DEPENDENCE_P (*overlaps_b))
2662 dependence_stats.num_siv_independent++;
2663 else
2664 dependence_stats.num_siv_dependent++;
2665 }
2666 else
2667 goto siv_subscript_dontknow;
2668 }
2669
2670 else
2671 {
2672 siv_subscript_dontknow:;
2673 if (dump_file && (dump_flags & TDF_DETAILS))
2674 fprintf (dump_file, "siv test failed: unimplemented.\n");
2675 *overlaps_a = conflict_fn_not_known ();
2676 *overlaps_b = conflict_fn_not_known ();
2677 *last_conflicts = chrec_dont_know;
2678 dependence_stats.num_siv_unimplemented++;
2679 }
2680
2681 if (dump_file && (dump_flags & TDF_DETAILS))
2682 fprintf (dump_file, ")\n");
2683 }
2684
2685 /* Returns false if we can prove that the greatest common divisor of the steps
2686 of CHREC does not divide CST, false otherwise. */
2687
2688 static bool
2689 gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
2690 {
2691 HOST_WIDE_INT cd = 0, val;
2692 tree step;
2693
2694 if (!host_integerp (cst, 0))
2695 return true;
2696 val = tree_low_cst (cst, 0);
2697
2698 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
2699 {
2700 step = CHREC_RIGHT (chrec);
2701 if (!host_integerp (step, 0))
2702 return true;
2703 cd = gcd (cd, tree_low_cst (step, 0));
2704 chrec = CHREC_LEFT (chrec);
2705 }
2706
2707 return val % cd == 0;
2708 }
2709
2710 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
2711 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2712 functions that describe the relation between the elements accessed
2713 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2714 is verified:
2715
2716 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2717
2718 static void
2719 analyze_miv_subscript (tree chrec_a,
2720 tree chrec_b,
2721 conflict_function **overlaps_a,
2722 conflict_function **overlaps_b,
2723 tree *last_conflicts,
2724 struct loop *loop_nest)
2725 {
2726 tree type, difference;
2727
2728 dependence_stats.num_miv++;
2729 if (dump_file && (dump_flags & TDF_DETAILS))
2730 fprintf (dump_file, "(analyze_miv_subscript \n");
2731
2732 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2733 chrec_a = chrec_convert (type, chrec_a, NULL);
2734 chrec_b = chrec_convert (type, chrec_b, NULL);
2735 difference = chrec_fold_minus (type, chrec_a, chrec_b);
2736
2737 if (eq_evolutions_p (chrec_a, chrec_b))
2738 {
2739 /* Access functions are the same: all the elements are accessed
2740 in the same order. */
2741 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2742 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2743 *last_conflicts = estimated_loop_iterations_tree
2744 (get_chrec_loop (chrec_a), true);
2745 dependence_stats.num_miv_dependent++;
2746 }
2747
2748 else if (evolution_function_is_constant_p (difference)
2749 /* For the moment, the following is verified:
2750 evolution_function_is_affine_multivariate_p (chrec_a,
2751 loop_nest->num) */
2752 && !gcd_of_steps_may_divide_p (chrec_a, difference))
2753 {
2754 /* testsuite/.../ssa-chrec-33.c
2755 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2756
2757 The difference is 1, and all the evolution steps are multiples
2758 of 2, consequently there are no overlapping elements. */
2759 *overlaps_a = conflict_fn_no_dependence ();
2760 *overlaps_b = conflict_fn_no_dependence ();
2761 *last_conflicts = integer_zero_node;
2762 dependence_stats.num_miv_independent++;
2763 }
2764
2765 else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
2766 && !chrec_contains_symbols (chrec_a)
2767 && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
2768 && !chrec_contains_symbols (chrec_b))
2769 {
2770 /* testsuite/.../ssa-chrec-35.c
2771 {0, +, 1}_2 vs. {0, +, 1}_3
2772 the overlapping elements are respectively located at iterations:
2773 {0, +, 1}_x and {0, +, 1}_x,
2774 in other words, we have the equality:
2775 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
2776
2777 Other examples:
2778 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
2779 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
2780
2781 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
2782 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
2783 */
2784 analyze_subscript_affine_affine (chrec_a, chrec_b,
2785 overlaps_a, overlaps_b, last_conflicts);
2786
2787 if (CF_NOT_KNOWN_P (*overlaps_a)
2788 || CF_NOT_KNOWN_P (*overlaps_b))
2789 dependence_stats.num_miv_unimplemented++;
2790 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2791 || CF_NO_DEPENDENCE_P (*overlaps_b))
2792 dependence_stats.num_miv_independent++;
2793 else
2794 dependence_stats.num_miv_dependent++;
2795 }
2796
2797 else
2798 {
2799 /* When the analysis is too difficult, answer "don't know". */
2800 if (dump_file && (dump_flags & TDF_DETAILS))
2801 fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
2802
2803 *overlaps_a = conflict_fn_not_known ();
2804 *overlaps_b = conflict_fn_not_known ();
2805 *last_conflicts = chrec_dont_know;
2806 dependence_stats.num_miv_unimplemented++;
2807 }
2808
2809 if (dump_file && (dump_flags & TDF_DETAILS))
2810 fprintf (dump_file, ")\n");
2811 }
2812
2813 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
2814 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
2815 OVERLAP_ITERATIONS_B are initialized with two functions that
2816 describe the iterations that contain conflicting elements.
2817
2818 Remark: For an integer k >= 0, the following equality is true:
2819
2820 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
2821 */
2822
2823 static void
2824 analyze_overlapping_iterations (tree chrec_a,
2825 tree chrec_b,
2826 conflict_function **overlap_iterations_a,
2827 conflict_function **overlap_iterations_b,
2828 tree *last_conflicts, struct loop *loop_nest)
2829 {
2830 unsigned int lnn = loop_nest->num;
2831
2832 dependence_stats.num_subscript_tests++;
2833
2834 if (dump_file && (dump_flags & TDF_DETAILS))
2835 {
2836 fprintf (dump_file, "(analyze_overlapping_iterations \n");
2837 fprintf (dump_file, " (chrec_a = ");
2838 print_generic_expr (dump_file, chrec_a, 0);
2839 fprintf (dump_file, ")\n (chrec_b = ");
2840 print_generic_expr (dump_file, chrec_b, 0);
2841 fprintf (dump_file, ")\n");
2842 }
2843
2844 if (chrec_a == NULL_TREE
2845 || chrec_b == NULL_TREE
2846 || chrec_contains_undetermined (chrec_a)
2847 || chrec_contains_undetermined (chrec_b))
2848 {
2849 dependence_stats.num_subscript_undetermined++;
2850
2851 *overlap_iterations_a = conflict_fn_not_known ();
2852 *overlap_iterations_b = conflict_fn_not_known ();
2853 }
2854
2855 /* If they are the same chrec, and are affine, they overlap
2856 on every iteration. */
2857 else if (eq_evolutions_p (chrec_a, chrec_b)
2858 && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
2859 || operand_equal_p (chrec_a, chrec_b, 0)))
2860 {
2861 dependence_stats.num_same_subscript_function++;
2862 *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2863 *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2864 *last_conflicts = chrec_dont_know;
2865 }
2866
2867 /* If they aren't the same, and aren't affine, we can't do anything
2868 yet. */
2869 else if ((chrec_contains_symbols (chrec_a)
2870 || chrec_contains_symbols (chrec_b))
2871 && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
2872 || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
2873 {
2874 dependence_stats.num_subscript_undetermined++;
2875 *overlap_iterations_a = conflict_fn_not_known ();
2876 *overlap_iterations_b = conflict_fn_not_known ();
2877 }
2878
2879 else if (ziv_subscript_p (chrec_a, chrec_b))
2880 analyze_ziv_subscript (chrec_a, chrec_b,
2881 overlap_iterations_a, overlap_iterations_b,
2882 last_conflicts);
2883
2884 else if (siv_subscript_p (chrec_a, chrec_b))
2885 analyze_siv_subscript (chrec_a, chrec_b,
2886 overlap_iterations_a, overlap_iterations_b,
2887 last_conflicts, lnn);
2888
2889 else
2890 analyze_miv_subscript (chrec_a, chrec_b,
2891 overlap_iterations_a, overlap_iterations_b,
2892 last_conflicts, loop_nest);
2893
2894 if (dump_file && (dump_flags & TDF_DETAILS))
2895 {
2896 fprintf (dump_file, " (overlap_iterations_a = ");
2897 dump_conflict_function (dump_file, *overlap_iterations_a);
2898 fprintf (dump_file, ")\n (overlap_iterations_b = ");
2899 dump_conflict_function (dump_file, *overlap_iterations_b);
2900 fprintf (dump_file, ")\n");
2901 fprintf (dump_file, ")\n");
2902 }
2903 }
2904
2905 /* Helper function for uniquely inserting distance vectors. */
2906
2907 static void
2908 save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
2909 {
2910 unsigned i;
2911 lambda_vector v;
2912
2913 FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, v)
2914 if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
2915 return;
2916
2917 VEC_safe_push (lambda_vector, heap, DDR_DIST_VECTS (ddr), dist_v);
2918 }
2919
2920 /* Helper function for uniquely inserting direction vectors. */
2921
2922 static void
2923 save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
2924 {
2925 unsigned i;
2926 lambda_vector v;
2927
2928 FOR_EACH_VEC_ELT (lambda_vector, DDR_DIR_VECTS (ddr), i, v)
2929 if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
2930 return;
2931
2932 VEC_safe_push (lambda_vector, heap, DDR_DIR_VECTS (ddr), dir_v);
2933 }
2934
2935 /* Add a distance of 1 on all the loops outer than INDEX. If we
2936 haven't yet determined a distance for this outer loop, push a new
2937 distance vector composed of the previous distance, and a distance
2938 of 1 for this outer loop. Example:
2939
2940 | loop_1
2941 | loop_2
2942 | A[10]
2943 | endloop_2
2944 | endloop_1
2945
2946 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
2947 save (0, 1), then we have to save (1, 0). */
2948
2949 static void
2950 add_outer_distances (struct data_dependence_relation *ddr,
2951 lambda_vector dist_v, int index)
2952 {
2953 /* For each outer loop where init_v is not set, the accesses are
2954 in dependence of distance 1 in the loop. */
2955 while (--index >= 0)
2956 {
2957 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
2958 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
2959 save_v[index] = 1;
2960 save_dist_v (ddr, save_v);
2961 }
2962 }
2963
2964 /* Return false when fail to represent the data dependence as a
2965 distance vector. INIT_B is set to true when a component has been
2966 added to the distance vector DIST_V. INDEX_CARRY is then set to
2967 the index in DIST_V that carries the dependence. */
2968
2969 static bool
2970 build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
2971 struct data_reference *ddr_a,
2972 struct data_reference *ddr_b,
2973 lambda_vector dist_v, bool *init_b,
2974 int *index_carry)
2975 {
2976 unsigned i;
2977 lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
2978
2979 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
2980 {
2981 tree access_fn_a, access_fn_b;
2982 struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
2983
2984 if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
2985 {
2986 non_affine_dependence_relation (ddr);
2987 return false;
2988 }
2989
2990 access_fn_a = DR_ACCESS_FN (ddr_a, i);
2991 access_fn_b = DR_ACCESS_FN (ddr_b, i);
2992
2993 if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
2994 && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
2995 {
2996 int dist, index;
2997 int var_a = CHREC_VARIABLE (access_fn_a);
2998 int var_b = CHREC_VARIABLE (access_fn_b);
2999
3000 if (var_a != var_b
3001 || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3002 {
3003 non_affine_dependence_relation (ddr);
3004 return false;
3005 }
3006
3007 dist = int_cst_value (SUB_DISTANCE (subscript));
3008 index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
3009 *index_carry = MIN (index, *index_carry);
3010
3011 /* This is the subscript coupling test. If we have already
3012 recorded a distance for this loop (a distance coming from
3013 another subscript), it should be the same. For example,
3014 in the following code, there is no dependence:
3015
3016 | loop i = 0, N, 1
3017 | T[i+1][i] = ...
3018 | ... = T[i][i]
3019 | endloop
3020 */
3021 if (init_v[index] != 0 && dist_v[index] != dist)
3022 {
3023 finalize_ddr_dependent (ddr, chrec_known);
3024 return false;
3025 }
3026
3027 dist_v[index] = dist;
3028 init_v[index] = 1;
3029 *init_b = true;
3030 }
3031 else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
3032 {
3033 /* This can be for example an affine vs. constant dependence
3034 (T[i] vs. T[3]) that is not an affine dependence and is
3035 not representable as a distance vector. */
3036 non_affine_dependence_relation (ddr);
3037 return false;
3038 }
3039 }
3040
3041 return true;
3042 }
3043
3044 /* Return true when the DDR contains only constant access functions. */
3045
3046 static bool
3047 constant_access_functions (const struct data_dependence_relation *ddr)
3048 {
3049 unsigned i;
3050
3051 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3052 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
3053 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
3054 return false;
3055
3056 return true;
3057 }
3058
3059 /* Helper function for the case where DDR_A and DDR_B are the same
3060 multivariate access function with a constant step. For an example
3061 see pr34635-1.c. */
3062
3063 static void
3064 add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
3065 {
3066 int x_1, x_2;
3067 tree c_1 = CHREC_LEFT (c_2);
3068 tree c_0 = CHREC_LEFT (c_1);
3069 lambda_vector dist_v;
3070 int v1, v2, cd;
3071
3072 /* Polynomials with more than 2 variables are not handled yet. When
3073 the evolution steps are parameters, it is not possible to
3074 represent the dependence using classical distance vectors. */
3075 if (TREE_CODE (c_0) != INTEGER_CST
3076 || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
3077 || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
3078 {
3079 DDR_AFFINE_P (ddr) = false;
3080 return;
3081 }
3082
3083 x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
3084 x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
3085
3086 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3087 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3088 v1 = int_cst_value (CHREC_RIGHT (c_1));
3089 v2 = int_cst_value (CHREC_RIGHT (c_2));
3090 cd = gcd (v1, v2);
3091 v1 /= cd;
3092 v2 /= cd;
3093
3094 if (v2 < 0)
3095 {
3096 v2 = -v2;
3097 v1 = -v1;
3098 }
3099
3100 dist_v[x_1] = v2;
3101 dist_v[x_2] = -v1;
3102 save_dist_v (ddr, dist_v);
3103
3104 add_outer_distances (ddr, dist_v, x_1);
3105 }
3106
3107 /* Helper function for the case where DDR_A and DDR_B are the same
3108 access functions. */
3109
3110 static void
3111 add_other_self_distances (struct data_dependence_relation *ddr)
3112 {
3113 lambda_vector dist_v;
3114 unsigned i;
3115 int index_carry = DDR_NB_LOOPS (ddr);
3116
3117 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3118 {
3119 tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
3120
3121 if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
3122 {
3123 if (!evolution_function_is_univariate_p (access_fun))
3124 {
3125 if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
3126 {
3127 DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
3128 return;
3129 }
3130
3131 access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
3132
3133 if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
3134 add_multivariate_self_dist (ddr, access_fun);
3135 else
3136 /* The evolution step is not constant: it varies in
3137 the outer loop, so this cannot be represented by a
3138 distance vector. For example in pr34635.c the
3139 evolution is {0, +, {0, +, 4}_1}_2. */
3140 DDR_AFFINE_P (ddr) = false;
3141
3142 return;
3143 }
3144
3145 index_carry = MIN (index_carry,
3146 index_in_loop_nest (CHREC_VARIABLE (access_fun),
3147 DDR_LOOP_NEST (ddr)));
3148 }
3149 }
3150
3151 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3152 add_outer_distances (ddr, dist_v, index_carry);
3153 }
3154
3155 static void
3156 insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
3157 {
3158 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3159
3160 dist_v[DDR_INNER_LOOP (ddr)] = 1;
3161 save_dist_v (ddr, dist_v);
3162 }
3163
3164 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
3165 is the case for example when access functions are the same and
3166 equal to a constant, as in:
3167
3168 | loop_1
3169 | A[3] = ...
3170 | ... = A[3]
3171 | endloop_1
3172
3173 in which case the distance vectors are (0) and (1). */
3174
3175 static void
3176 add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
3177 {
3178 unsigned i, j;
3179
3180 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3181 {
3182 subscript_p sub = DDR_SUBSCRIPT (ddr, i);
3183 conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
3184 conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
3185
3186 for (j = 0; j < ca->n; j++)
3187 if (affine_function_zero_p (ca->fns[j]))
3188 {
3189 insert_innermost_unit_dist_vector (ddr);
3190 return;
3191 }
3192
3193 for (j = 0; j < cb->n; j++)
3194 if (affine_function_zero_p (cb->fns[j]))
3195 {
3196 insert_innermost_unit_dist_vector (ddr);
3197 return;
3198 }
3199 }
3200 }
3201
3202 /* Compute the classic per loop distance vector. DDR is the data
3203 dependence relation to build a vector from. Return false when fail
3204 to represent the data dependence as a distance vector. */
3205
3206 static bool
3207 build_classic_dist_vector (struct data_dependence_relation *ddr,
3208 struct loop *loop_nest)
3209 {
3210 bool init_b = false;
3211 int index_carry = DDR_NB_LOOPS (ddr);
3212 lambda_vector dist_v;
3213
3214 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
3215 return false;
3216
3217 if (same_access_functions (ddr))
3218 {
3219 /* Save the 0 vector. */
3220 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3221 save_dist_v (ddr, dist_v);
3222
3223 if (constant_access_functions (ddr))
3224 add_distance_for_zero_overlaps (ddr);
3225
3226 if (DDR_NB_LOOPS (ddr) > 1)
3227 add_other_self_distances (ddr);
3228
3229 return true;
3230 }
3231
3232 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3233 if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
3234 dist_v, &init_b, &index_carry))
3235 return false;
3236
3237 /* Save the distance vector if we initialized one. */
3238 if (init_b)
3239 {
3240 /* Verify a basic constraint: classic distance vectors should
3241 always be lexicographically positive.
3242
3243 Data references are collected in the order of execution of
3244 the program, thus for the following loop
3245
3246 | for (i = 1; i < 100; i++)
3247 | for (j = 1; j < 100; j++)
3248 | {
3249 | t = T[j+1][i-1]; // A
3250 | T[j][i] = t + 2; // B
3251 | }
3252
3253 references are collected following the direction of the wind:
3254 A then B. The data dependence tests are performed also
3255 following this order, such that we're looking at the distance
3256 separating the elements accessed by A from the elements later
3257 accessed by B. But in this example, the distance returned by
3258 test_dep (A, B) is lexicographically negative (-1, 1), that
3259 means that the access A occurs later than B with respect to
3260 the outer loop, ie. we're actually looking upwind. In this
3261 case we solve test_dep (B, A) looking downwind to the
3262 lexicographically positive solution, that returns the
3263 distance vector (1, -1). */
3264 if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
3265 {
3266 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3267 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3268 loop_nest))
3269 return false;
3270 compute_subscript_distance (ddr);
3271 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3272 save_v, &init_b, &index_carry))
3273 return false;
3274 save_dist_v (ddr, save_v);
3275 DDR_REVERSED_P (ddr) = true;
3276
3277 /* In this case there is a dependence forward for all the
3278 outer loops:
3279
3280 | for (k = 1; k < 100; k++)
3281 | for (i = 1; i < 100; i++)
3282 | for (j = 1; j < 100; j++)
3283 | {
3284 | t = T[j+1][i-1]; // A
3285 | T[j][i] = t + 2; // B
3286 | }
3287
3288 the vectors are:
3289 (0, 1, -1)
3290 (1, 1, -1)
3291 (1, -1, 1)
3292 */
3293 if (DDR_NB_LOOPS (ddr) > 1)
3294 {
3295 add_outer_distances (ddr, save_v, index_carry);
3296 add_outer_distances (ddr, dist_v, index_carry);
3297 }
3298 }
3299 else
3300 {
3301 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3302 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3303
3304 if (DDR_NB_LOOPS (ddr) > 1)
3305 {
3306 lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3307
3308 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
3309 DDR_A (ddr), loop_nest))
3310 return false;
3311 compute_subscript_distance (ddr);
3312 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3313 opposite_v, &init_b,
3314 &index_carry))
3315 return false;
3316
3317 save_dist_v (ddr, save_v);
3318 add_outer_distances (ddr, dist_v, index_carry);
3319 add_outer_distances (ddr, opposite_v, index_carry);
3320 }
3321 else
3322 save_dist_v (ddr, save_v);
3323 }
3324 }
3325 else
3326 {
3327 /* There is a distance of 1 on all the outer loops: Example:
3328 there is a dependence of distance 1 on loop_1 for the array A.
3329
3330 | loop_1
3331 | A[5] = ...
3332 | endloop
3333 */
3334 add_outer_distances (ddr, dist_v,
3335 lambda_vector_first_nz (dist_v,
3336 DDR_NB_LOOPS (ddr), 0));
3337 }
3338
3339 if (dump_file && (dump_flags & TDF_DETAILS))
3340 {
3341 unsigned i;
3342
3343 fprintf (dump_file, "(build_classic_dist_vector\n");
3344 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3345 {
3346 fprintf (dump_file, " dist_vector = (");
3347 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
3348 DDR_NB_LOOPS (ddr));
3349 fprintf (dump_file, " )\n");
3350 }
3351 fprintf (dump_file, ")\n");
3352 }
3353
3354 return true;
3355 }
3356
3357 /* Return the direction for a given distance.
3358 FIXME: Computing dir this way is suboptimal, since dir can catch
3359 cases that dist is unable to represent. */
3360
3361 static inline enum data_dependence_direction
3362 dir_from_dist (int dist)
3363 {
3364 if (dist > 0)
3365 return dir_positive;
3366 else if (dist < 0)
3367 return dir_negative;
3368 else
3369 return dir_equal;
3370 }
3371
3372 /* Compute the classic per loop direction vector. DDR is the data
3373 dependence relation to build a vector from. */
3374
3375 static void
3376 build_classic_dir_vector (struct data_dependence_relation *ddr)
3377 {
3378 unsigned i, j;
3379 lambda_vector dist_v;
3380
3381 FOR_EACH_VEC_ELT (lambda_vector, DDR_DIST_VECTS (ddr), i, dist_v)
3382 {
3383 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3384
3385 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3386 dir_v[j] = dir_from_dist (dist_v[j]);
3387
3388 save_dir_v (ddr, dir_v);
3389 }
3390 }
3391
3392 /* Helper function. Returns true when there is a dependence between
3393 data references DRA and DRB. */
3394
3395 static bool
3396 subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
3397 struct data_reference *dra,
3398 struct data_reference *drb,
3399 struct loop *loop_nest)
3400 {
3401 unsigned int i;
3402 tree last_conflicts;
3403 struct subscript *subscript;
3404
3405 for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
3406 i++)
3407 {
3408 conflict_function *overlaps_a, *overlaps_b;
3409
3410 analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
3411 DR_ACCESS_FN (drb, i),
3412 &overlaps_a, &overlaps_b,
3413 &last_conflicts, loop_nest);
3414
3415 if (CF_NOT_KNOWN_P (overlaps_a)
3416 || CF_NOT_KNOWN_P (overlaps_b))
3417 {
3418 finalize_ddr_dependent (ddr, chrec_dont_know);
3419 dependence_stats.num_dependence_undetermined++;
3420 free_conflict_function (overlaps_a);
3421 free_conflict_function (overlaps_b);
3422 return false;
3423 }
3424
3425 else if (CF_NO_DEPENDENCE_P (overlaps_a)
3426 || CF_NO_DEPENDENCE_P (overlaps_b))
3427 {
3428 finalize_ddr_dependent (ddr, chrec_known);
3429 dependence_stats.num_dependence_independent++;
3430 free_conflict_function (overlaps_a);
3431 free_conflict_function (overlaps_b);
3432 return false;
3433 }
3434
3435 else
3436 {
3437 if (SUB_CONFLICTS_IN_A (subscript))
3438 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
3439 if (SUB_CONFLICTS_IN_B (subscript))
3440 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
3441
3442 SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
3443 SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
3444 SUB_LAST_CONFLICT (subscript) = last_conflicts;
3445 }
3446 }
3447
3448 return true;
3449 }
3450
3451 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
3452
3453 static void
3454 subscript_dependence_tester (struct data_dependence_relation *ddr,
3455 struct loop *loop_nest)
3456 {
3457
3458 if (dump_file && (dump_flags & TDF_DETAILS))
3459 fprintf (dump_file, "(subscript_dependence_tester \n");
3460
3461 if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
3462 dependence_stats.num_dependence_dependent++;
3463
3464 compute_subscript_distance (ddr);
3465 if (build_classic_dist_vector (ddr, loop_nest))
3466 build_classic_dir_vector (ddr);
3467
3468 if (dump_file && (dump_flags & TDF_DETAILS))
3469 fprintf (dump_file, ")\n");
3470 }
3471
3472 /* Returns true when all the access functions of A are affine or
3473 constant with respect to LOOP_NEST. */
3474
3475 static bool
3476 access_functions_are_affine_or_constant_p (const struct data_reference *a,
3477 const struct loop *loop_nest)
3478 {
3479 unsigned int i;
3480 VEC(tree,heap) *fns = DR_ACCESS_FNS (a);
3481 tree t;
3482
3483 FOR_EACH_VEC_ELT (tree, fns, i, t)
3484 if (!evolution_function_is_invariant_p (t, loop_nest->num)
3485 && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
3486 return false;
3487
3488 return true;
3489 }
3490
3491 /* Initializes an equation for an OMEGA problem using the information
3492 contained in the ACCESS_FUN. Returns true when the operation
3493 succeeded.
3494
3495 PB is the omega constraint system.
3496 EQ is the number of the equation to be initialized.
3497 OFFSET is used for shifting the variables names in the constraints:
3498 a constrain is composed of 2 * the number of variables surrounding
3499 dependence accesses. OFFSET is set either to 0 for the first n variables,
3500 then it is set to n.
3501 ACCESS_FUN is expected to be an affine chrec. */
3502
3503 static bool
3504 init_omega_eq_with_af (omega_pb pb, unsigned eq,
3505 unsigned int offset, tree access_fun,
3506 struct data_dependence_relation *ddr)
3507 {
3508 switch (TREE_CODE (access_fun))
3509 {
3510 case POLYNOMIAL_CHREC:
3511 {
3512 tree left = CHREC_LEFT (access_fun);
3513 tree right = CHREC_RIGHT (access_fun);
3514 int var = CHREC_VARIABLE (access_fun);
3515 unsigned var_idx;
3516
3517 if (TREE_CODE (right) != INTEGER_CST)
3518 return false;
3519
3520 var_idx = index_in_loop_nest (var, DDR_LOOP_NEST (ddr));
3521 pb->eqs[eq].coef[offset + var_idx + 1] = int_cst_value (right);
3522
3523 /* Compute the innermost loop index. */
3524 DDR_INNER_LOOP (ddr) = MAX (DDR_INNER_LOOP (ddr), var_idx);
3525
3526 if (offset == 0)
3527 pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1]
3528 += int_cst_value (right);
3529
3530 switch (TREE_CODE (left))
3531 {
3532 case POLYNOMIAL_CHREC:
3533 return init_omega_eq_with_af (pb, eq, offset, left, ddr);
3534
3535 case INTEGER_CST:
3536 pb->eqs[eq].coef[0] += int_cst_value (left);
3537 return true;
3538
3539 default:
3540 return false;
3541 }
3542 }
3543
3544 case INTEGER_CST:
3545 pb->eqs[eq].coef[0] += int_cst_value (access_fun);
3546 return true;
3547
3548 default:
3549 return false;
3550 }
3551 }
3552
3553 /* As explained in the comments preceding init_omega_for_ddr, we have
3554 to set up a system for each loop level, setting outer loops
3555 variation to zero, and current loop variation to positive or zero.
3556 Save each lexico positive distance vector. */
3557
3558 static void
3559 omega_extract_distance_vectors (omega_pb pb,
3560 struct data_dependence_relation *ddr)
3561 {
3562 int eq, geq;
3563 unsigned i, j;
3564 struct loop *loopi, *loopj;
3565 enum omega_result res;
3566
3567 /* Set a new problem for each loop in the nest. The basis is the
3568 problem that we have initialized until now. On top of this we
3569 add new constraints. */
3570 for (i = 0; i <= DDR_INNER_LOOP (ddr)
3571 && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
3572 {
3573 int dist = 0;
3574 omega_pb copy = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr),
3575 DDR_NB_LOOPS (ddr));
3576
3577 omega_copy_problem (copy, pb);
3578
3579 /* For all the outer loops "loop_j", add "dj = 0". */
3580 for (j = 0;
3581 j < i && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), j, loopj); j++)
3582 {
3583 eq = omega_add_zero_eq (copy, omega_black);
3584 copy->eqs[eq].coef[j + 1] = 1;
3585 }
3586
3587 /* For "loop_i", add "0 <= di". */
3588 geq = omega_add_zero_geq (copy, omega_black);
3589 copy->geqs[geq].coef[i + 1] = 1;
3590
3591 /* Reduce the constraint system, and test that the current
3592 problem is feasible. */
3593 res = omega_simplify_problem (copy);
3594 if (res == omega_false
3595 || res == omega_unknown
3596 || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
3597 goto next_problem;
3598
3599 for (eq = 0; eq < copy->num_subs; eq++)
3600 if (copy->subs[eq].key == (int) i + 1)
3601 {
3602 dist = copy->subs[eq].coef[0];
3603 goto found_dist;
3604 }
3605
3606 if (dist == 0)
3607 {
3608 /* Reinitialize problem... */
3609 omega_copy_problem (copy, pb);
3610 for (j = 0;
3611 j < i && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), j, loopj); j++)
3612 {
3613 eq = omega_add_zero_eq (copy, omega_black);
3614 copy->eqs[eq].coef[j + 1] = 1;
3615 }
3616
3617 /* ..., but this time "di = 1". */
3618 eq = omega_add_zero_eq (copy, omega_black);
3619 copy->eqs[eq].coef[i + 1] = 1;
3620 copy->eqs[eq].coef[0] = -1;
3621
3622 res = omega_simplify_problem (copy);
3623 if (res == omega_false
3624 || res == omega_unknown
3625 || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
3626 goto next_problem;
3627
3628 for (eq = 0; eq < copy->num_subs; eq++)
3629 if (copy->subs[eq].key == (int) i + 1)
3630 {
3631 dist = copy->subs[eq].coef[0];
3632 goto found_dist;
3633 }
3634 }
3635
3636 found_dist:;
3637 /* Save the lexicographically positive distance vector. */
3638 if (dist >= 0)
3639 {
3640 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3641 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3642
3643 dist_v[i] = dist;
3644
3645 for (eq = 0; eq < copy->num_subs; eq++)
3646 if (copy->subs[eq].key > 0)
3647 {
3648 dist = copy->subs[eq].coef[0];
3649 dist_v[copy->subs[eq].key - 1] = dist;
3650 }
3651
3652 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3653 dir_v[j] = dir_from_dist (dist_v[j]);
3654
3655 save_dist_v (ddr, dist_v);
3656 save_dir_v (ddr, dir_v);
3657 }
3658
3659 next_problem:;
3660 omega_free_problem (copy);
3661 }
3662 }
3663
3664 /* This is called for each subscript of a tuple of data references:
3665 insert an equality for representing the conflicts. */
3666
3667 static bool
3668 omega_setup_subscript (tree access_fun_a, tree access_fun_b,
3669 struct data_dependence_relation *ddr,
3670 omega_pb pb, bool *maybe_dependent)
3671 {
3672 int eq;
3673 tree type = signed_type_for_types (TREE_TYPE (access_fun_a),
3674 TREE_TYPE (access_fun_b));
3675 tree fun_a = chrec_convert (type, access_fun_a, NULL);
3676 tree fun_b = chrec_convert (type, access_fun_b, NULL);
3677 tree difference = chrec_fold_minus (type, fun_a, fun_b);
3678 tree minus_one;
3679
3680 /* When the fun_a - fun_b is not constant, the dependence is not
3681 captured by the classic distance vector representation. */
3682 if (TREE_CODE (difference) != INTEGER_CST)
3683 return false;
3684
3685 /* ZIV test. */
3686 if (ziv_subscript_p (fun_a, fun_b) && !integer_zerop (difference))
3687 {
3688 /* There is no dependence. */
3689 *maybe_dependent = false;
3690 return true;
3691 }
3692
3693 minus_one = build_int_cst (type, -1);
3694 fun_b = chrec_fold_multiply (type, fun_b, minus_one);
3695
3696 eq = omega_add_zero_eq (pb, omega_black);
3697 if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr)
3698 || !init_omega_eq_with_af (pb, eq, 0, fun_b, ddr))
3699 /* There is probably a dependence, but the system of
3700 constraints cannot be built: answer "don't know". */
3701 return false;
3702
3703 /* GCD test. */
3704 if (DDR_NB_LOOPS (ddr) != 0 && pb->eqs[eq].coef[0]
3705 && !int_divides_p (lambda_vector_gcd
3706 ((lambda_vector) &(pb->eqs[eq].coef[1]),
3707 2 * DDR_NB_LOOPS (ddr)),
3708 pb->eqs[eq].coef[0]))
3709 {
3710 /* There is no dependence. */
3711 *maybe_dependent = false;
3712 return true;
3713 }
3714
3715 return true;
3716 }
3717
3718 /* Helper function, same as init_omega_for_ddr but specialized for
3719 data references A and B. */
3720
3721 static bool
3722 init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
3723 struct data_dependence_relation *ddr,
3724 omega_pb pb, bool *maybe_dependent)
3725 {
3726 unsigned i;
3727 int ineq;
3728 struct loop *loopi;
3729 unsigned nb_loops = DDR_NB_LOOPS (ddr);
3730
3731 /* Insert an equality per subscript. */
3732 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3733 {
3734 if (!omega_setup_subscript (DR_ACCESS_FN (dra, i), DR_ACCESS_FN (drb, i),
3735 ddr, pb, maybe_dependent))
3736 return false;
3737 else if (*maybe_dependent == false)
3738 {
3739 /* There is no dependence. */
3740 DDR_ARE_DEPENDENT (ddr) = chrec_known;
3741 return true;
3742 }
3743 }
3744
3745 /* Insert inequalities: constraints corresponding to the iteration
3746 domain, i.e. the loops surrounding the references "loop_x" and
3747 the distance variables "dx". The layout of the OMEGA
3748 representation is as follows:
3749 - coef[0] is the constant
3750 - coef[1..nb_loops] are the protected variables that will not be
3751 removed by the solver: the "dx"
3752 - coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x".
3753 */
3754 for (i = 0; i <= DDR_INNER_LOOP (ddr)
3755 && VEC_iterate (loop_p, DDR_LOOP_NEST (ddr), i, loopi); i++)
3756 {
3757 HOST_WIDE_INT nbi = estimated_loop_iterations_int (loopi, false);
3758
3759 /* 0 <= loop_x */
3760 ineq = omega_add_zero_geq (pb, omega_black);
3761 pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
3762
3763 /* 0 <= loop_x + dx */
3764 ineq = omega_add_zero_geq (pb, omega_black);
3765 pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
3766 pb->geqs[ineq].coef[i + 1] = 1;
3767
3768 if (nbi != -1)
3769 {
3770 /* loop_x <= nb_iters */
3771 ineq = omega_add_zero_geq (pb, omega_black);
3772 pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
3773 pb->geqs[ineq].coef[0] = nbi;
3774
3775 /* loop_x + dx <= nb_iters */
3776 ineq = omega_add_zero_geq (pb, omega_black);
3777 pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
3778 pb->geqs[ineq].coef[i + 1] = -1;
3779 pb->geqs[ineq].coef[0] = nbi;
3780
3781 /* A step "dx" bigger than nb_iters is not feasible, so
3782 add "0 <= nb_iters + dx", */
3783 ineq = omega_add_zero_geq (pb, omega_black);
3784 pb->geqs[ineq].coef[i + 1] = 1;
3785 pb->geqs[ineq].coef[0] = nbi;
3786 /* and "dx <= nb_iters". */
3787 ineq = omega_add_zero_geq (pb, omega_black);
3788 pb->geqs[ineq].coef[i + 1] = -1;
3789 pb->geqs[ineq].coef[0] = nbi;
3790 }
3791 }
3792
3793 omega_extract_distance_vectors (pb, ddr);
3794
3795 return true;
3796 }
3797
3798 /* Sets up the Omega dependence problem for the data dependence
3799 relation DDR. Returns false when the constraint system cannot be
3800 built, ie. when the test answers "don't know". Returns true
3801 otherwise, and when independence has been proved (using one of the
3802 trivial dependence test), set MAYBE_DEPENDENT to false, otherwise
3803 set MAYBE_DEPENDENT to true.
3804
3805 Example: for setting up the dependence system corresponding to the
3806 conflicting accesses
3807
3808 | loop_i
3809 | loop_j
3810 | A[i, i+1] = ...
3811 | ... A[2*j, 2*(i + j)]
3812 | endloop_j
3813 | endloop_i
3814
3815 the following constraints come from the iteration domain:
3816
3817 0 <= i <= Ni
3818 0 <= i + di <= Ni
3819 0 <= j <= Nj
3820 0 <= j + dj <= Nj
3821
3822 where di, dj are the distance variables. The constraints
3823 representing the conflicting elements are:
3824
3825 i = 2 * (j + dj)
3826 i + 1 = 2 * (i + di + j + dj)
3827
3828 For asking that the resulting distance vector (di, dj) be
3829 lexicographically positive, we insert the constraint "di >= 0". If
3830 "di = 0" in the solution, we fix that component to zero, and we
3831 look at the inner loops: we set a new problem where all the outer
3832 loop distances are zero, and fix this inner component to be
3833 positive. When one of the components is positive, we save that
3834 distance, and set a new problem where the distance on this loop is
3835 zero, searching for other distances in the inner loops. Here is
3836 the classic example that illustrates that we have to set for each
3837 inner loop a new problem:
3838
3839 | loop_1
3840 | loop_2
3841 | A[10]
3842 | endloop_2
3843 | endloop_1
3844
3845 we have to save two distances (1, 0) and (0, 1).
3846
3847 Given two array references, refA and refB, we have to set the
3848 dependence problem twice, refA vs. refB and refB vs. refA, and we
3849 cannot do a single test, as refB might occur before refA in the
3850 inner loops, and the contrary when considering outer loops: ex.
3851
3852 | loop_0
3853 | loop_1
3854 | loop_2
3855 | T[{1,+,1}_2][{1,+,1}_1] // refA
3856 | T[{2,+,1}_2][{0,+,1}_1] // refB
3857 | endloop_2
3858 | endloop_1
3859 | endloop_0
3860
3861 refB touches the elements in T before refA, and thus for the same
3862 loop_0 refB precedes refA: ie. the distance vector (0, 1, -1)
3863 but for successive loop_0 iterations, we have (1, -1, 1)
3864
3865 The Omega solver expects the distance variables ("di" in the
3866 previous example) to come first in the constraint system (as
3867 variables to be protected, or "safe" variables), the constraint
3868 system is built using the following layout:
3869
3870 "cst | distance vars | index vars".
3871 */
3872
3873 static bool
3874 init_omega_for_ddr (struct data_dependence_relation *ddr,
3875 bool *maybe_dependent)
3876 {
3877 omega_pb pb;
3878 bool res = false;
3879
3880 *maybe_dependent = true;
3881
3882 if (same_access_functions (ddr))
3883 {
3884 unsigned j;
3885 lambda_vector dir_v;
3886
3887 /* Save the 0 vector. */
3888 save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
3889 dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3890 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3891 dir_v[j] = dir_equal;
3892 save_dir_v (ddr, dir_v);
3893
3894 /* Save the dependences carried by outer loops. */
3895 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
3896 res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
3897 maybe_dependent);
3898 omega_free_problem (pb);
3899 return res;
3900 }
3901
3902 /* Omega expects the protected variables (those that have to be kept
3903 after elimination) to appear first in the constraint system.
3904 These variables are the distance variables. In the following
3905 initialization we declare NB_LOOPS safe variables, and the total
3906 number of variables for the constraint system is 2*NB_LOOPS. */
3907 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
3908 res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
3909 maybe_dependent);
3910 omega_free_problem (pb);
3911
3912 /* Stop computation if not decidable, or no dependence. */
3913 if (res == false || *maybe_dependent == false)
3914 return res;
3915
3916 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
3917 res = init_omega_for_ddr_1 (DDR_B (ddr), DDR_A (ddr), ddr, pb,
3918 maybe_dependent);
3919 omega_free_problem (pb);
3920
3921 return res;
3922 }
3923
3924 /* Return true when DDR contains the same information as that stored
3925 in DIR_VECTS and in DIST_VECTS, return false otherwise. */
3926
3927 static bool
3928 ddr_consistent_p (FILE *file,
3929 struct data_dependence_relation *ddr,
3930 VEC (lambda_vector, heap) *dist_vects,
3931 VEC (lambda_vector, heap) *dir_vects)
3932 {
3933 unsigned int i, j;
3934
3935 /* If dump_file is set, output there. */
3936 if (dump_file && (dump_flags & TDF_DETAILS))
3937 file = dump_file;
3938
3939 if (VEC_length (lambda_vector, dist_vects) != DDR_NUM_DIST_VECTS (ddr))
3940 {
3941 lambda_vector b_dist_v;
3942 fprintf (file, "\n(Number of distance vectors differ: Banerjee has %d, Omega has %d.\n",
3943 VEC_length (lambda_vector, dist_vects),
3944 DDR_NUM_DIST_VECTS (ddr));
3945
3946 fprintf (file, "Banerjee dist vectors:\n");
3947 FOR_EACH_VEC_ELT (lambda_vector, dist_vects, i, b_dist_v)
3948 print_lambda_vector (file, b_dist_v, DDR_NB_LOOPS (ddr));
3949
3950 fprintf (file, "Omega dist vectors:\n");
3951 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3952 print_lambda_vector (file, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr));
3953
3954 fprintf (file, "data dependence relation:\n");
3955 dump_data_dependence_relation (file, ddr);
3956
3957 fprintf (file, ")\n");
3958 return false;
3959 }
3960
3961 if (VEC_length (lambda_vector, dir_vects) != DDR_NUM_DIR_VECTS (ddr))
3962 {
3963 fprintf (file, "\n(Number of direction vectors differ: Banerjee has %d, Omega has %d.)\n",
3964 VEC_length (lambda_vector, dir_vects),
3965 DDR_NUM_DIR_VECTS (ddr));
3966 return false;
3967 }
3968
3969 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3970 {
3971 lambda_vector a_dist_v;
3972 lambda_vector b_dist_v = DDR_DIST_VECT (ddr, i);
3973
3974 /* Distance vectors are not ordered in the same way in the DDR
3975 and in the DIST_VECTS: search for a matching vector. */
3976 FOR_EACH_VEC_ELT (lambda_vector, dist_vects, j, a_dist_v)
3977 if (lambda_vector_equal (a_dist_v, b_dist_v, DDR_NB_LOOPS (ddr)))
3978 break;
3979
3980 if (j == VEC_length (lambda_vector, dist_vects))
3981 {
3982 fprintf (file, "\n(Dist vectors from the first dependence analyzer:\n");
3983 print_dist_vectors (file, dist_vects, DDR_NB_LOOPS (ddr));
3984 fprintf (file, "not found in Omega dist vectors:\n");
3985 print_dist_vectors (file, DDR_DIST_VECTS (ddr), DDR_NB_LOOPS (ddr));
3986 fprintf (file, "data dependence relation:\n");
3987 dump_data_dependence_relation (file, ddr);
3988 fprintf (file, ")\n");
3989 }
3990 }
3991
3992 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
3993 {
3994 lambda_vector a_dir_v;
3995 lambda_vector b_dir_v = DDR_DIR_VECT (ddr, i);
3996
3997 /* Direction vectors are not ordered in the same way in the DDR
3998 and in the DIR_VECTS: search for a matching vector. */
3999 FOR_EACH_VEC_ELT (lambda_vector, dir_vects, j, a_dir_v)
4000 if (lambda_vector_equal (a_dir_v, b_dir_v, DDR_NB_LOOPS (ddr)))
4001 break;
4002
4003 if (j == VEC_length (lambda_vector, dist_vects))
4004 {
4005 fprintf (file, "\n(Dir vectors from the first dependence analyzer:\n");
4006 print_dir_vectors (file, dir_vects, DDR_NB_LOOPS (ddr));
4007 fprintf (file, "not found in Omega dir vectors:\n");
4008 print_dir_vectors (file, DDR_DIR_VECTS (ddr), DDR_NB_LOOPS (ddr));
4009 fprintf (file, "data dependence relation:\n");
4010 dump_data_dependence_relation (file, ddr);
4011 fprintf (file, ")\n");
4012 }
4013 }
4014
4015 return true;
4016 }
4017
4018 /* This computes the affine dependence relation between A and B with
4019 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
4020 independence between two accesses, while CHREC_DONT_KNOW is used
4021 for representing the unknown relation.
4022
4023 Note that it is possible to stop the computation of the dependence
4024 relation the first time we detect a CHREC_KNOWN element for a given
4025 subscript. */
4026
4027 static void
4028 compute_affine_dependence (struct data_dependence_relation *ddr,
4029 struct loop *loop_nest)
4030 {
4031 struct data_reference *dra = DDR_A (ddr);
4032 struct data_reference *drb = DDR_B (ddr);
4033
4034 if (dump_file && (dump_flags & TDF_DETAILS))
4035 {
4036 fprintf (dump_file, "(compute_affine_dependence\n");
4037 fprintf (dump_file, " (stmt_a = \n");
4038 print_gimple_stmt (dump_file, DR_STMT (dra), 0, 0);
4039 fprintf (dump_file, ")\n (stmt_b = \n");
4040 print_gimple_stmt (dump_file, DR_STMT (drb), 0, 0);
4041 fprintf (dump_file, ")\n");
4042 }
4043
4044 /* Analyze only when the dependence relation is not yet known. */
4045 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
4046 && !DDR_SELF_REFERENCE (ddr))
4047 {
4048 dependence_stats.num_dependence_tests++;
4049
4050 if (access_functions_are_affine_or_constant_p (dra, loop_nest)
4051 && access_functions_are_affine_or_constant_p (drb, loop_nest))
4052 {
4053 if (flag_check_data_deps)
4054 {
4055 /* Compute the dependences using the first algorithm. */
4056 subscript_dependence_tester (ddr, loop_nest);
4057
4058 if (dump_file && (dump_flags & TDF_DETAILS))
4059 {
4060 fprintf (dump_file, "\n\nBanerjee Analyzer\n");
4061 dump_data_dependence_relation (dump_file, ddr);
4062 }
4063
4064 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4065 {
4066 bool maybe_dependent;
4067 VEC (lambda_vector, heap) *dir_vects, *dist_vects;
4068
4069 /* Save the result of the first DD analyzer. */
4070 dist_vects = DDR_DIST_VECTS (ddr);
4071 dir_vects = DDR_DIR_VECTS (ddr);
4072
4073 /* Reset the information. */
4074 DDR_DIST_VECTS (ddr) = NULL;
4075 DDR_DIR_VECTS (ddr) = NULL;
4076
4077 /* Compute the same information using Omega. */
4078 if (!init_omega_for_ddr (ddr, &maybe_dependent))
4079 goto csys_dont_know;
4080
4081 if (dump_file && (dump_flags & TDF_DETAILS))
4082 {
4083 fprintf (dump_file, "Omega Analyzer\n");
4084 dump_data_dependence_relation (dump_file, ddr);
4085 }
4086
4087 /* Check that we get the same information. */
4088 if (maybe_dependent)
4089 gcc_assert (ddr_consistent_p (stderr, ddr, dist_vects,
4090 dir_vects));
4091 }
4092 }
4093 else
4094 subscript_dependence_tester (ddr, loop_nest);
4095 }
4096
4097 /* As a last case, if the dependence cannot be determined, or if
4098 the dependence is considered too difficult to determine, answer
4099 "don't know". */
4100 else
4101 {
4102 csys_dont_know:;
4103 dependence_stats.num_dependence_undetermined++;
4104
4105 if (dump_file && (dump_flags & TDF_DETAILS))
4106 {
4107 fprintf (dump_file, "Data ref a:\n");
4108 dump_data_reference (dump_file, dra);
4109 fprintf (dump_file, "Data ref b:\n");
4110 dump_data_reference (dump_file, drb);
4111 fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
4112 }
4113 finalize_ddr_dependent (ddr, chrec_dont_know);
4114 }
4115 }
4116
4117 if (dump_file && (dump_flags & TDF_DETAILS))
4118 fprintf (dump_file, ")\n");
4119 }
4120
4121 /* This computes the dependence relation for the same data
4122 reference into DDR. */
4123
4124 static void
4125 compute_self_dependence (struct data_dependence_relation *ddr)
4126 {
4127 unsigned int i;
4128 struct subscript *subscript;
4129
4130 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
4131 return;
4132
4133 for (i = 0; VEC_iterate (subscript_p, DDR_SUBSCRIPTS (ddr), i, subscript);
4134 i++)
4135 {
4136 if (SUB_CONFLICTS_IN_A (subscript))
4137 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
4138 if (SUB_CONFLICTS_IN_B (subscript))
4139 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
4140
4141 /* The accessed index overlaps for each iteration. */
4142 SUB_CONFLICTS_IN_A (subscript)
4143 = conflict_fn (1, affine_fn_cst (integer_zero_node));
4144 SUB_CONFLICTS_IN_B (subscript)
4145 = conflict_fn (1, affine_fn_cst (integer_zero_node));
4146 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
4147 }
4148
4149 /* The distance vector is the zero vector. */
4150 save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
4151 save_dir_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
4152 }
4153
4154 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
4155 the data references in DATAREFS, in the LOOP_NEST. When
4156 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
4157 relations. */
4158
4159 void
4160 compute_all_dependences (VEC (data_reference_p, heap) *datarefs,
4161 VEC (ddr_p, heap) **dependence_relations,
4162 VEC (loop_p, heap) *loop_nest,
4163 bool compute_self_and_rr)
4164 {
4165 struct data_dependence_relation *ddr;
4166 struct data_reference *a, *b;
4167 unsigned int i, j;
4168
4169 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a)
4170 for (j = i + 1; VEC_iterate (data_reference_p, datarefs, j, b); j++)
4171 if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
4172 {
4173 ddr = initialize_data_dependence_relation (a, b, loop_nest);
4174 VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
4175 if (loop_nest)
4176 compute_affine_dependence (ddr, VEC_index (loop_p, loop_nest, 0));
4177 }
4178
4179 if (compute_self_and_rr)
4180 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, a)
4181 {
4182 ddr = initialize_data_dependence_relation (a, a, loop_nest);
4183 VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
4184 compute_self_dependence (ddr);
4185 }
4186 }
4187
4188 /* Stores the locations of memory references in STMT to REFERENCES. Returns
4189 true if STMT clobbers memory, false otherwise. */
4190
4191 bool
4192 get_references_in_stmt (gimple stmt, VEC (data_ref_loc, heap) **references)
4193 {
4194 bool clobbers_memory = false;
4195 data_ref_loc *ref;
4196 tree *op0, *op1;
4197 enum gimple_code stmt_code = gimple_code (stmt);
4198
4199 *references = NULL;
4200
4201 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
4202 Calls have side-effects, except those to const or pure
4203 functions. */
4204 if ((stmt_code == GIMPLE_CALL
4205 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
4206 || (stmt_code == GIMPLE_ASM
4207 && gimple_asm_volatile_p (stmt)))
4208 clobbers_memory = true;
4209
4210 if (!gimple_vuse (stmt))
4211 return clobbers_memory;
4212
4213 if (stmt_code == GIMPLE_ASSIGN)
4214 {
4215 tree base;
4216 op0 = gimple_assign_lhs_ptr (stmt);
4217 op1 = gimple_assign_rhs1_ptr (stmt);
4218
4219 if (DECL_P (*op1)
4220 || (REFERENCE_CLASS_P (*op1)
4221 && (base = get_base_address (*op1))
4222 && TREE_CODE (base) != SSA_NAME))
4223 {
4224 ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
4225 ref->pos = op1;
4226 ref->is_read = true;
4227 }
4228
4229 if (DECL_P (*op0)
4230 || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
4231 {
4232 ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
4233 ref->pos = op0;
4234 ref->is_read = false;
4235 }
4236 }
4237 else if (stmt_code == GIMPLE_CALL)
4238 {
4239 unsigned i, n = gimple_call_num_args (stmt);
4240
4241 for (i = 0; i < n; i++)
4242 {
4243 op0 = gimple_call_arg_ptr (stmt, i);
4244
4245 if (DECL_P (*op0)
4246 || (REFERENCE_CLASS_P (*op0) && get_base_address (*op0)))
4247 {
4248 ref = VEC_safe_push (data_ref_loc, heap, *references, NULL);
4249 ref->pos = op0;
4250 ref->is_read = true;
4251 }
4252 }
4253 }
4254
4255 return clobbers_memory;
4256 }
4257
4258 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
4259 reference, returns false, otherwise returns true. NEST is the outermost
4260 loop of the loop nest in which the references should be analyzed. */
4261
4262 bool
4263 find_data_references_in_stmt (struct loop *nest, gimple stmt,
4264 VEC (data_reference_p, heap) **datarefs)
4265 {
4266 unsigned i;
4267 VEC (data_ref_loc, heap) *references;
4268 data_ref_loc *ref;
4269 bool ret = true;
4270 data_reference_p dr;
4271
4272 if (get_references_in_stmt (stmt, &references))
4273 {
4274 VEC_free (data_ref_loc, heap, references);
4275 return false;
4276 }
4277
4278 FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref)
4279 {
4280 dr = create_data_ref (nest, loop_containing_stmt (stmt),
4281 *ref->pos, stmt, ref->is_read);
4282 gcc_assert (dr != NULL);
4283
4284 /* FIXME -- data dependence analysis does not work correctly for objects
4285 with invariant addresses in loop nests. Let us fail here until the
4286 problem is fixed. */
4287 if (dr_address_invariant_p (dr) && nest)
4288 {
4289 free_data_ref (dr);
4290 if (dump_file && (dump_flags & TDF_DETAILS))
4291 fprintf (dump_file, "\tFAILED as dr address is invariant\n");
4292 ret = false;
4293 break;
4294 }
4295
4296 VEC_safe_push (data_reference_p, heap, *datarefs, dr);
4297 }
4298 VEC_free (data_ref_loc, heap, references);
4299 return ret;
4300 }
4301
4302 /* Stores the data references in STMT to DATAREFS. If there is an
4303 unanalyzable reference, returns false, otherwise returns true.
4304 NEST is the outermost loop of the loop nest in which the references
4305 should be instantiated, LOOP is the loop in which the references
4306 should be analyzed. */
4307
4308 bool
4309 graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple stmt,
4310 VEC (data_reference_p, heap) **datarefs)
4311 {
4312 unsigned i;
4313 VEC (data_ref_loc, heap) *references;
4314 data_ref_loc *ref;
4315 bool ret = true;
4316 data_reference_p dr;
4317
4318 if (get_references_in_stmt (stmt, &references))
4319 {
4320 VEC_free (data_ref_loc, heap, references);
4321 return false;
4322 }
4323
4324 FOR_EACH_VEC_ELT (data_ref_loc, references, i, ref)
4325 {
4326 dr = create_data_ref (nest, loop, *ref->pos, stmt, ref->is_read);
4327 gcc_assert (dr != NULL);
4328 VEC_safe_push (data_reference_p, heap, *datarefs, dr);
4329 }
4330
4331 VEC_free (data_ref_loc, heap, references);
4332 return ret;
4333 }
4334
4335 /* Search the data references in LOOP, and record the information into
4336 DATAREFS. Returns chrec_dont_know when failing to analyze a
4337 difficult case, returns NULL_TREE otherwise. */
4338
4339 tree
4340 find_data_references_in_bb (struct loop *loop, basic_block bb,
4341 VEC (data_reference_p, heap) **datarefs)
4342 {
4343 gimple_stmt_iterator bsi;
4344
4345 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4346 {
4347 gimple stmt = gsi_stmt (bsi);
4348
4349 if (!find_data_references_in_stmt (loop, stmt, datarefs))
4350 {
4351 struct data_reference *res;
4352 res = XCNEW (struct data_reference);
4353 VEC_safe_push (data_reference_p, heap, *datarefs, res);
4354
4355 return chrec_dont_know;
4356 }
4357 }
4358
4359 return NULL_TREE;
4360 }
4361
4362 /* Search the data references in LOOP, and record the information into
4363 DATAREFS. Returns chrec_dont_know when failing to analyze a
4364 difficult case, returns NULL_TREE otherwise.
4365
4366 TODO: This function should be made smarter so that it can handle address
4367 arithmetic as if they were array accesses, etc. */
4368
4369 tree
4370 find_data_references_in_loop (struct loop *loop,
4371 VEC (data_reference_p, heap) **datarefs)
4372 {
4373 basic_block bb, *bbs;
4374 unsigned int i;
4375
4376 bbs = get_loop_body_in_dom_order (loop);
4377
4378 for (i = 0; i < loop->num_nodes; i++)
4379 {
4380 bb = bbs[i];
4381
4382 if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
4383 {
4384 free (bbs);
4385 return chrec_dont_know;
4386 }
4387 }
4388 free (bbs);
4389
4390 return NULL_TREE;
4391 }
4392
4393 /* Recursive helper function. */
4394
4395 static bool
4396 find_loop_nest_1 (struct loop *loop, VEC (loop_p, heap) **loop_nest)
4397 {
4398 /* Inner loops of the nest should not contain siblings. Example:
4399 when there are two consecutive loops,
4400
4401 | loop_0
4402 | loop_1
4403 | A[{0, +, 1}_1]
4404 | endloop_1
4405 | loop_2
4406 | A[{0, +, 1}_2]
4407 | endloop_2
4408 | endloop_0
4409
4410 the dependence relation cannot be captured by the distance
4411 abstraction. */
4412 if (loop->next)
4413 return false;
4414
4415 VEC_safe_push (loop_p, heap, *loop_nest, loop);
4416 if (loop->inner)
4417 return find_loop_nest_1 (loop->inner, loop_nest);
4418 return true;
4419 }
4420
4421 /* Return false when the LOOP is not well nested. Otherwise return
4422 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4423 contain the loops from the outermost to the innermost, as they will
4424 appear in the classic distance vector. */
4425
4426 bool
4427 find_loop_nest (struct loop *loop, VEC (loop_p, heap) **loop_nest)
4428 {
4429 VEC_safe_push (loop_p, heap, *loop_nest, loop);
4430 if (loop->inner)
4431 return find_loop_nest_1 (loop->inner, loop_nest);
4432 return true;
4433 }
4434
4435 /* Returns true when the data dependences have been computed, false otherwise.
4436 Given a loop nest LOOP, the following vectors are returned:
4437 DATAREFS is initialized to all the array elements contained in this loop,
4438 DEPENDENCE_RELATIONS contains the relations between the data references.
4439 Compute read-read and self relations if
4440 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4441
4442 bool
4443 compute_data_dependences_for_loop (struct loop *loop,
4444 bool compute_self_and_read_read_dependences,
4445 VEC (loop_p, heap) **loop_nest,
4446 VEC (data_reference_p, heap) **datarefs,
4447 VEC (ddr_p, heap) **dependence_relations)
4448 {
4449 bool res = true;
4450
4451 memset (&dependence_stats, 0, sizeof (dependence_stats));
4452
4453 /* If the loop nest is not well formed, or one of the data references
4454 is not computable, give up without spending time to compute other
4455 dependences. */
4456 if (!loop
4457 || !find_loop_nest (loop, loop_nest)
4458 || find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
4459 {
4460 struct data_dependence_relation *ddr;
4461
4462 /* Insert a single relation into dependence_relations:
4463 chrec_dont_know. */
4464 ddr = initialize_data_dependence_relation (NULL, NULL, *loop_nest);
4465 VEC_safe_push (ddr_p, heap, *dependence_relations, ddr);
4466 res = false;
4467 }
4468 else
4469 compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
4470 compute_self_and_read_read_dependences);
4471
4472 if (dump_file && (dump_flags & TDF_STATS))
4473 {
4474 fprintf (dump_file, "Dependence tester statistics:\n");
4475
4476 fprintf (dump_file, "Number of dependence tests: %d\n",
4477 dependence_stats.num_dependence_tests);
4478 fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
4479 dependence_stats.num_dependence_dependent);
4480 fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
4481 dependence_stats.num_dependence_independent);
4482 fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
4483 dependence_stats.num_dependence_undetermined);
4484
4485 fprintf (dump_file, "Number of subscript tests: %d\n",
4486 dependence_stats.num_subscript_tests);
4487 fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
4488 dependence_stats.num_subscript_undetermined);
4489 fprintf (dump_file, "Number of same subscript function: %d\n",
4490 dependence_stats.num_same_subscript_function);
4491
4492 fprintf (dump_file, "Number of ziv tests: %d\n",
4493 dependence_stats.num_ziv);
4494 fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
4495 dependence_stats.num_ziv_dependent);
4496 fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
4497 dependence_stats.num_ziv_independent);
4498 fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
4499 dependence_stats.num_ziv_unimplemented);
4500
4501 fprintf (dump_file, "Number of siv tests: %d\n",
4502 dependence_stats.num_siv);
4503 fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
4504 dependence_stats.num_siv_dependent);
4505 fprintf (dump_file, "Number of siv tests returning independent: %d\n",
4506 dependence_stats.num_siv_independent);
4507 fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
4508 dependence_stats.num_siv_unimplemented);
4509
4510 fprintf (dump_file, "Number of miv tests: %d\n",
4511 dependence_stats.num_miv);
4512 fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
4513 dependence_stats.num_miv_dependent);
4514 fprintf (dump_file, "Number of miv tests returning independent: %d\n",
4515 dependence_stats.num_miv_independent);
4516 fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
4517 dependence_stats.num_miv_unimplemented);
4518 }
4519
4520 return res;
4521 }
4522
4523 /* Returns true when the data dependences for the basic block BB have been
4524 computed, false otherwise.
4525 DATAREFS is initialized to all the array elements contained in this basic
4526 block, DEPENDENCE_RELATIONS contains the relations between the data
4527 references. Compute read-read and self relations if
4528 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4529 bool
4530 compute_data_dependences_for_bb (basic_block bb,
4531 bool compute_self_and_read_read_dependences,
4532 VEC (data_reference_p, heap) **datarefs,
4533 VEC (ddr_p, heap) **dependence_relations)
4534 {
4535 if (find_data_references_in_bb (NULL, bb, datarefs) == chrec_dont_know)
4536 return false;
4537
4538 compute_all_dependences (*datarefs, dependence_relations, NULL,
4539 compute_self_and_read_read_dependences);
4540 return true;
4541 }
4542
4543 /* Entry point (for testing only). Analyze all the data references
4544 and the dependence relations in LOOP.
4545
4546 The data references are computed first.
4547
4548 A relation on these nodes is represented by a complete graph. Some
4549 of the relations could be of no interest, thus the relations can be
4550 computed on demand.
4551
4552 In the following function we compute all the relations. This is
4553 just a first implementation that is here for:
4554 - for showing how to ask for the dependence relations,
4555 - for the debugging the whole dependence graph,
4556 - for the dejagnu testcases and maintenance.
4557
4558 It is possible to ask only for a part of the graph, avoiding to
4559 compute the whole dependence graph. The computed dependences are
4560 stored in a knowledge base (KB) such that later queries don't
4561 recompute the same information. The implementation of this KB is
4562 transparent to the optimizer, and thus the KB can be changed with a
4563 more efficient implementation, or the KB could be disabled. */
4564 static void
4565 analyze_all_data_dependences (struct loop *loop)
4566 {
4567 unsigned int i;
4568 int nb_data_refs = 10;
4569 VEC (data_reference_p, heap) *datarefs =
4570 VEC_alloc (data_reference_p, heap, nb_data_refs);
4571 VEC (ddr_p, heap) *dependence_relations =
4572 VEC_alloc (ddr_p, heap, nb_data_refs * nb_data_refs);
4573 VEC (loop_p, heap) *loop_nest = VEC_alloc (loop_p, heap, 3);
4574
4575 /* Compute DDs on the whole function. */
4576 compute_data_dependences_for_loop (loop, false, &loop_nest, &datarefs,
4577 &dependence_relations);
4578
4579 if (dump_file)
4580 {
4581 dump_data_dependence_relations (dump_file, dependence_relations);
4582 fprintf (dump_file, "\n\n");
4583
4584 if (dump_flags & TDF_DETAILS)
4585 dump_dist_dir_vectors (dump_file, dependence_relations);
4586
4587 if (dump_flags & TDF_STATS)
4588 {
4589 unsigned nb_top_relations = 0;
4590 unsigned nb_bot_relations = 0;
4591 unsigned nb_chrec_relations = 0;
4592 struct data_dependence_relation *ddr;
4593
4594 FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
4595 {
4596 if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
4597 nb_top_relations++;
4598
4599 else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
4600 nb_bot_relations++;
4601
4602 else
4603 nb_chrec_relations++;
4604 }
4605
4606 gather_stats_on_scev_database ();
4607 }
4608 }
4609
4610 VEC_free (loop_p, heap, loop_nest);
4611 free_dependence_relations (dependence_relations);
4612 free_data_refs (datarefs);
4613 }
4614
4615 /* Computes all the data dependences and check that the results of
4616 several analyzers are the same. */
4617
4618 void
4619 tree_check_data_deps (void)
4620 {
4621 loop_iterator li;
4622 struct loop *loop_nest;
4623
4624 FOR_EACH_LOOP (li, loop_nest, 0)
4625 analyze_all_data_dependences (loop_nest);
4626 }
4627
4628 /* Free the memory used by a data dependence relation DDR. */
4629
4630 void
4631 free_dependence_relation (struct data_dependence_relation *ddr)
4632 {
4633 if (ddr == NULL)
4634 return;
4635
4636 if (DDR_SUBSCRIPTS (ddr))
4637 free_subscripts (DDR_SUBSCRIPTS (ddr));
4638 if (DDR_DIST_VECTS (ddr))
4639 VEC_free (lambda_vector, heap, DDR_DIST_VECTS (ddr));
4640 if (DDR_DIR_VECTS (ddr))
4641 VEC_free (lambda_vector, heap, DDR_DIR_VECTS (ddr));
4642
4643 free (ddr);
4644 }
4645
4646 /* Free the memory used by the data dependence relations from
4647 DEPENDENCE_RELATIONS. */
4648
4649 void
4650 free_dependence_relations (VEC (ddr_p, heap) *dependence_relations)
4651 {
4652 unsigned int i;
4653 struct data_dependence_relation *ddr;
4654
4655 FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
4656 if (ddr)
4657 free_dependence_relation (ddr);
4658
4659 VEC_free (ddr_p, heap, dependence_relations);
4660 }
4661
4662 /* Free the memory used by the data references from DATAREFS. */
4663
4664 void
4665 free_data_refs (VEC (data_reference_p, heap) *datarefs)
4666 {
4667 unsigned int i;
4668 struct data_reference *dr;
4669
4670 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
4671 free_data_ref (dr);
4672 VEC_free (data_reference_p, heap, datarefs);
4673 }
4674
4675 \f
4676
4677 /* Dump vertex I in RDG to FILE. */
4678
4679 void
4680 dump_rdg_vertex (FILE *file, struct graph *rdg, int i)
4681 {
4682 struct vertex *v = &(rdg->vertices[i]);
4683 struct graph_edge *e;
4684
4685 fprintf (file, "(vertex %d: (%s%s) (in:", i,
4686 RDG_MEM_WRITE_STMT (rdg, i) ? "w" : "",
4687 RDG_MEM_READS_STMT (rdg, i) ? "r" : "");
4688
4689 if (v->pred)
4690 for (e = v->pred; e; e = e->pred_next)
4691 fprintf (file, " %d", e->src);
4692
4693 fprintf (file, ") (out:");
4694
4695 if (v->succ)
4696 for (e = v->succ; e; e = e->succ_next)
4697 fprintf (file, " %d", e->dest);
4698
4699 fprintf (file, ")\n");
4700 print_gimple_stmt (file, RDGV_STMT (v), 0, TDF_VOPS|TDF_MEMSYMS);
4701 fprintf (file, ")\n");
4702 }
4703
4704 /* Call dump_rdg_vertex on stderr. */
4705
4706 DEBUG_FUNCTION void
4707 debug_rdg_vertex (struct graph *rdg, int i)
4708 {
4709 dump_rdg_vertex (stderr, rdg, i);
4710 }
4711
4712 /* Dump component C of RDG to FILE. If DUMPED is non-null, set the
4713 dumped vertices to that bitmap. */
4714
4715 void dump_rdg_component (FILE *file, struct graph *rdg, int c, bitmap dumped)
4716 {
4717 int i;
4718
4719 fprintf (file, "(%d\n", c);
4720
4721 for (i = 0; i < rdg->n_vertices; i++)
4722 if (rdg->vertices[i].component == c)
4723 {
4724 if (dumped)
4725 bitmap_set_bit (dumped, i);
4726
4727 dump_rdg_vertex (file, rdg, i);
4728 }
4729
4730 fprintf (file, ")\n");
4731 }
4732
4733 /* Call dump_rdg_vertex on stderr. */
4734
4735 DEBUG_FUNCTION void
4736 debug_rdg_component (struct graph *rdg, int c)
4737 {
4738 dump_rdg_component (stderr, rdg, c, NULL);
4739 }
4740
4741 /* Dump the reduced dependence graph RDG to FILE. */
4742
4743 void
4744 dump_rdg (FILE *file, struct graph *rdg)
4745 {
4746 int i;
4747 bitmap dumped = BITMAP_ALLOC (NULL);
4748
4749 fprintf (file, "(rdg\n");
4750
4751 for (i = 0; i < rdg->n_vertices; i++)
4752 if (!bitmap_bit_p (dumped, i))
4753 dump_rdg_component (file, rdg, rdg->vertices[i].component, dumped);
4754
4755 fprintf (file, ")\n");
4756 BITMAP_FREE (dumped);
4757 }
4758
4759 /* Call dump_rdg on stderr. */
4760
4761 DEBUG_FUNCTION void
4762 debug_rdg (struct graph *rdg)
4763 {
4764 dump_rdg (stderr, rdg);
4765 }
4766
4767 static void
4768 dot_rdg_1 (FILE *file, struct graph *rdg)
4769 {
4770 int i;
4771
4772 fprintf (file, "digraph RDG {\n");
4773
4774 for (i = 0; i < rdg->n_vertices; i++)
4775 {
4776 struct vertex *v = &(rdg->vertices[i]);
4777 struct graph_edge *e;
4778
4779 /* Highlight reads from memory. */
4780 if (RDG_MEM_READS_STMT (rdg, i))
4781 fprintf (file, "%d [style=filled, fillcolor=green]\n", i);
4782
4783 /* Highlight stores to memory. */
4784 if (RDG_MEM_WRITE_STMT (rdg, i))
4785 fprintf (file, "%d [style=filled, fillcolor=red]\n", i);
4786
4787 if (v->succ)
4788 for (e = v->succ; e; e = e->succ_next)
4789 switch (RDGE_TYPE (e))
4790 {
4791 case input_dd:
4792 fprintf (file, "%d -> %d [label=input] \n", i, e->dest);
4793 break;
4794
4795 case output_dd:
4796 fprintf (file, "%d -> %d [label=output] \n", i, e->dest);
4797 break;
4798
4799 case flow_dd:
4800 /* These are the most common dependences: don't print these. */
4801 fprintf (file, "%d -> %d \n", i, e->dest);
4802 break;
4803
4804 case anti_dd:
4805 fprintf (file, "%d -> %d [label=anti] \n", i, e->dest);
4806 break;
4807
4808 default:
4809 gcc_unreachable ();
4810 }
4811 }
4812
4813 fprintf (file, "}\n\n");
4814 }
4815
4816 /* Display the Reduced Dependence Graph using dotty. */
4817 extern void dot_rdg (struct graph *);
4818
4819 DEBUG_FUNCTION void
4820 dot_rdg (struct graph *rdg)
4821 {
4822 /* When debugging, enable the following code. This cannot be used
4823 in production compilers because it calls "system". */
4824 #if 0
4825 FILE *file = fopen ("/tmp/rdg.dot", "w");
4826 gcc_assert (file != NULL);
4827
4828 dot_rdg_1 (file, rdg);
4829 fclose (file);
4830
4831 system ("dotty /tmp/rdg.dot &");
4832 #else
4833 dot_rdg_1 (stderr, rdg);
4834 #endif
4835 }
4836
4837 /* This structure is used for recording the mapping statement index in
4838 the RDG. */
4839
4840 struct GTY(()) rdg_vertex_info
4841 {
4842 gimple stmt;
4843 int index;
4844 };
4845
4846 /* Returns the index of STMT in RDG. */
4847
4848 int
4849 rdg_vertex_for_stmt (struct graph *rdg, gimple stmt)
4850 {
4851 struct rdg_vertex_info rvi, *slot;
4852
4853 rvi.stmt = stmt;
4854 slot = (struct rdg_vertex_info *) htab_find (rdg->indices, &rvi);
4855
4856 if (!slot)
4857 return -1;
4858
4859 return slot->index;
4860 }
4861
4862 /* Creates an edge in RDG for each distance vector from DDR. The
4863 order that we keep track of in the RDG is the order in which
4864 statements have to be executed. */
4865
4866 static void
4867 create_rdg_edge_for_ddr (struct graph *rdg, ddr_p ddr)
4868 {
4869 struct graph_edge *e;
4870 int va, vb;
4871 data_reference_p dra = DDR_A (ddr);
4872 data_reference_p drb = DDR_B (ddr);
4873 unsigned level = ddr_dependence_level (ddr);
4874
4875 /* For non scalar dependences, when the dependence is REVERSED,
4876 statement B has to be executed before statement A. */
4877 if (level > 0
4878 && !DDR_REVERSED_P (ddr))
4879 {
4880 data_reference_p tmp = dra;
4881 dra = drb;
4882 drb = tmp;
4883 }
4884
4885 va = rdg_vertex_for_stmt (rdg, DR_STMT (dra));
4886 vb = rdg_vertex_for_stmt (rdg, DR_STMT (drb));
4887
4888 if (va < 0 || vb < 0)
4889 return;
4890
4891 e = add_edge (rdg, va, vb);
4892 e->data = XNEW (struct rdg_edge);
4893
4894 RDGE_LEVEL (e) = level;
4895 RDGE_RELATION (e) = ddr;
4896
4897 /* Determines the type of the data dependence. */
4898 if (DR_IS_READ (dra) && DR_IS_READ (drb))
4899 RDGE_TYPE (e) = input_dd;
4900 else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
4901 RDGE_TYPE (e) = output_dd;
4902 else if (DR_IS_WRITE (dra) && DR_IS_READ (drb))
4903 RDGE_TYPE (e) = flow_dd;
4904 else if (DR_IS_READ (dra) && DR_IS_WRITE (drb))
4905 RDGE_TYPE (e) = anti_dd;
4906 }
4907
4908 /* Creates dependence edges in RDG for all the uses of DEF. IDEF is
4909 the index of DEF in RDG. */
4910
4911 static void
4912 create_rdg_edges_for_scalar (struct graph *rdg, tree def, int idef)
4913 {
4914 use_operand_p imm_use_p;
4915 imm_use_iterator iterator;
4916
4917 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, def)
4918 {
4919 struct graph_edge *e;
4920 int use = rdg_vertex_for_stmt (rdg, USE_STMT (imm_use_p));
4921
4922 if (use < 0)
4923 continue;
4924
4925 e = add_edge (rdg, idef, use);
4926 e->data = XNEW (struct rdg_edge);
4927 RDGE_TYPE (e) = flow_dd;
4928 RDGE_RELATION (e) = NULL;
4929 }
4930 }
4931
4932 /* Creates the edges of the reduced dependence graph RDG. */
4933
4934 static void
4935 create_rdg_edges (struct graph *rdg, VEC (ddr_p, heap) *ddrs)
4936 {
4937 int i;
4938 struct data_dependence_relation *ddr;
4939 def_operand_p def_p;
4940 ssa_op_iter iter;
4941
4942 FOR_EACH_VEC_ELT (ddr_p, ddrs, i, ddr)
4943 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4944 create_rdg_edge_for_ddr (rdg, ddr);
4945
4946 for (i = 0; i < rdg->n_vertices; i++)
4947 FOR_EACH_PHI_OR_STMT_DEF (def_p, RDG_STMT (rdg, i),
4948 iter, SSA_OP_DEF)
4949 create_rdg_edges_for_scalar (rdg, DEF_FROM_PTR (def_p), i);
4950 }
4951
4952 /* Build the vertices of the reduced dependence graph RDG. */
4953
4954 void
4955 create_rdg_vertices (struct graph *rdg, VEC (gimple, heap) *stmts)
4956 {
4957 int i, j;
4958 gimple stmt;
4959
4960 FOR_EACH_VEC_ELT (gimple, stmts, i, stmt)
4961 {
4962 VEC (data_ref_loc, heap) *references;
4963 data_ref_loc *ref;
4964 struct vertex *v = &(rdg->vertices[i]);
4965 struct rdg_vertex_info *rvi = XNEW (struct rdg_vertex_info);
4966 struct rdg_vertex_info **slot;
4967
4968 rvi->stmt = stmt;
4969 rvi->index = i;
4970 slot = (struct rdg_vertex_info **) htab_find_slot (rdg->indices, rvi, INSERT);
4971
4972 if (!*slot)
4973 *slot = rvi;
4974 else
4975 free (rvi);
4976
4977 v->data = XNEW (struct rdg_vertex);
4978 RDG_STMT (rdg, i) = stmt;
4979
4980 RDG_MEM_WRITE_STMT (rdg, i) = false;
4981 RDG_MEM_READS_STMT (rdg, i) = false;
4982 if (gimple_code (stmt) == GIMPLE_PHI)
4983 continue;
4984
4985 get_references_in_stmt (stmt, &references);
4986 FOR_EACH_VEC_ELT (data_ref_loc, references, j, ref)
4987 if (!ref->is_read)
4988 RDG_MEM_WRITE_STMT (rdg, i) = true;
4989 else
4990 RDG_MEM_READS_STMT (rdg, i) = true;
4991
4992 VEC_free (data_ref_loc, heap, references);
4993 }
4994 }
4995
4996 /* Initialize STMTS with all the statements of LOOP. When
4997 INCLUDE_PHIS is true, include also the PHI nodes. The order in
4998 which we discover statements is important as
4999 generate_loops_for_partition is using the same traversal for
5000 identifying statements. */
5001
5002 static void
5003 stmts_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
5004 {
5005 unsigned int i;
5006 basic_block *bbs = get_loop_body_in_dom_order (loop);
5007
5008 for (i = 0; i < loop->num_nodes; i++)
5009 {
5010 basic_block bb = bbs[i];
5011 gimple_stmt_iterator bsi;
5012 gimple stmt;
5013
5014 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
5015 VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi));
5016
5017 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
5018 {
5019 stmt = gsi_stmt (bsi);
5020 if (gimple_code (stmt) != GIMPLE_LABEL)
5021 VEC_safe_push (gimple, heap, *stmts, stmt);
5022 }
5023 }
5024
5025 free (bbs);
5026 }
5027
5028 /* Returns true when all the dependences are computable. */
5029
5030 static bool
5031 known_dependences_p (VEC (ddr_p, heap) *dependence_relations)
5032 {
5033 ddr_p ddr;
5034 unsigned int i;
5035
5036 FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
5037 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
5038 return false;
5039
5040 return true;
5041 }
5042
5043 /* Computes a hash function for element ELT. */
5044
5045 static hashval_t
5046 hash_stmt_vertex_info (const void *elt)
5047 {
5048 const struct rdg_vertex_info *const rvi =
5049 (const struct rdg_vertex_info *) elt;
5050 gimple stmt = rvi->stmt;
5051
5052 return htab_hash_pointer (stmt);
5053 }
5054
5055 /* Compares database elements E1 and E2. */
5056
5057 static int
5058 eq_stmt_vertex_info (const void *e1, const void *e2)
5059 {
5060 const struct rdg_vertex_info *elt1 = (const struct rdg_vertex_info *) e1;
5061 const struct rdg_vertex_info *elt2 = (const struct rdg_vertex_info *) e2;
5062
5063 return elt1->stmt == elt2->stmt;
5064 }
5065
5066 /* Free the element E. */
5067
5068 static void
5069 hash_stmt_vertex_del (void *e)
5070 {
5071 free (e);
5072 }
5073
5074 /* Build the Reduced Dependence Graph (RDG) with one vertex per
5075 statement of the loop nest, and one edge per data dependence or
5076 scalar dependence. */
5077
5078 struct graph *
5079 build_empty_rdg (int n_stmts)
5080 {
5081 int nb_data_refs = 10;
5082 struct graph *rdg = new_graph (n_stmts);
5083
5084 rdg->indices = htab_create (nb_data_refs, hash_stmt_vertex_info,
5085 eq_stmt_vertex_info, hash_stmt_vertex_del);
5086 return rdg;
5087 }
5088
5089 /* Build the Reduced Dependence Graph (RDG) with one vertex per
5090 statement of the loop nest, and one edge per data dependence or
5091 scalar dependence. */
5092
5093 struct graph *
5094 build_rdg (struct loop *loop,
5095 VEC (loop_p, heap) **loop_nest,
5096 VEC (ddr_p, heap) **dependence_relations,
5097 VEC (data_reference_p, heap) **datarefs)
5098 {
5099 struct graph *rdg = NULL;
5100 VEC (gimple, heap) *stmts = VEC_alloc (gimple, heap, 10);
5101
5102 compute_data_dependences_for_loop (loop, false, loop_nest, datarefs,
5103 dependence_relations);
5104
5105 if (known_dependences_p (*dependence_relations))
5106 {
5107 stmts_from_loop (loop, &stmts);
5108 rdg = build_empty_rdg (VEC_length (gimple, stmts));
5109 create_rdg_vertices (rdg, stmts);
5110 create_rdg_edges (rdg, *dependence_relations);
5111 }
5112
5113 VEC_free (gimple, heap, stmts);
5114 return rdg;
5115 }
5116
5117 /* Free the reduced dependence graph RDG. */
5118
5119 void
5120 free_rdg (struct graph *rdg)
5121 {
5122 int i;
5123
5124 for (i = 0; i < rdg->n_vertices; i++)
5125 {
5126 struct vertex *v = &(rdg->vertices[i]);
5127 struct graph_edge *e;
5128
5129 for (e = v->succ; e; e = e->succ_next)
5130 free (e->data);
5131
5132 free (v->data);
5133 }
5134
5135 htab_delete (rdg->indices);
5136 free_graph (rdg);
5137 }
5138
5139 /* Initialize STMTS with all the statements of LOOP that contain a
5140 store to memory. */
5141
5142 void
5143 stores_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
5144 {
5145 unsigned int i;
5146 basic_block *bbs = get_loop_body_in_dom_order (loop);
5147
5148 for (i = 0; i < loop->num_nodes; i++)
5149 {
5150 basic_block bb = bbs[i];
5151 gimple_stmt_iterator bsi;
5152
5153 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
5154 if (gimple_vdef (gsi_stmt (bsi)))
5155 VEC_safe_push (gimple, heap, *stmts, gsi_stmt (bsi));
5156 }
5157
5158 free (bbs);
5159 }
5160
5161 /* Returns true when the statement at STMT is of the form "A[i] = 0"
5162 that contains a data reference on its LHS with a stride of the same
5163 size as its unit type. */
5164
5165 bool
5166 stmt_with_adjacent_zero_store_dr_p (gimple stmt)
5167 {
5168 tree op0, op1;
5169 bool res;
5170 struct data_reference *dr;
5171
5172 if (!stmt
5173 || !gimple_vdef (stmt)
5174 || !is_gimple_assign (stmt)
5175 || !gimple_assign_single_p (stmt)
5176 || !(op1 = gimple_assign_rhs1 (stmt))
5177 || !(integer_zerop (op1) || real_zerop (op1)))
5178 return false;
5179
5180 dr = XCNEW (struct data_reference);
5181 op0 = gimple_assign_lhs (stmt);
5182
5183 DR_STMT (dr) = stmt;
5184 DR_REF (dr) = op0;
5185
5186 res = dr_analyze_innermost (dr)
5187 && stride_of_unit_type_p (DR_STEP (dr), TREE_TYPE (op0));
5188
5189 free_data_ref (dr);
5190 return res;
5191 }
5192
5193 /* Initialize STMTS with all the statements of LOOP that contain a
5194 store to memory of the form "A[i] = 0". */
5195
5196 void
5197 stores_zero_from_loop (struct loop *loop, VEC (gimple, heap) **stmts)
5198 {
5199 unsigned int i;
5200 basic_block bb;
5201 gimple_stmt_iterator si;
5202 gimple stmt;
5203 basic_block *bbs = get_loop_body_in_dom_order (loop);
5204
5205 for (i = 0; i < loop->num_nodes; i++)
5206 for (bb = bbs[i], si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5207 if ((stmt = gsi_stmt (si))
5208 && stmt_with_adjacent_zero_store_dr_p (stmt))
5209 VEC_safe_push (gimple, heap, *stmts, gsi_stmt (si));
5210
5211 free (bbs);
5212 }
5213
5214 /* For a data reference REF, return the declaration of its base
5215 address or NULL_TREE if the base is not determined. */
5216
5217 static inline tree
5218 ref_base_address (gimple stmt, data_ref_loc *ref)
5219 {
5220 tree base = NULL_TREE;
5221 tree base_address;
5222 struct data_reference *dr = XCNEW (struct data_reference);
5223
5224 DR_STMT (dr) = stmt;
5225 DR_REF (dr) = *ref->pos;
5226 dr_analyze_innermost (dr);
5227 base_address = DR_BASE_ADDRESS (dr);
5228
5229 if (!base_address)
5230 goto end;
5231
5232 switch (TREE_CODE (base_address))
5233 {
5234 case ADDR_EXPR:
5235 base = TREE_OPERAND (base_address, 0);
5236 break;
5237
5238 default:
5239 base = base_address;
5240 break;
5241 }
5242
5243 end:
5244 free_data_ref (dr);
5245 return base;
5246 }
5247
5248 /* Determines whether the statement from vertex V of the RDG has a
5249 definition used outside the loop that contains this statement. */
5250
5251 bool
5252 rdg_defs_used_in_other_loops_p (struct graph *rdg, int v)
5253 {
5254 gimple stmt = RDG_STMT (rdg, v);
5255 struct loop *loop = loop_containing_stmt (stmt);
5256 use_operand_p imm_use_p;
5257 imm_use_iterator iterator;
5258 ssa_op_iter it;
5259 def_operand_p def_p;
5260
5261 if (!loop)
5262 return true;
5263
5264 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, it, SSA_OP_DEF)
5265 {
5266 FOR_EACH_IMM_USE_FAST (imm_use_p, iterator, DEF_FROM_PTR (def_p))
5267 {
5268 if (loop_containing_stmt (USE_STMT (imm_use_p)) != loop)
5269 return true;
5270 }
5271 }
5272
5273 return false;
5274 }
5275
5276 /* Determines whether statements S1 and S2 access to similar memory
5277 locations. Two memory accesses are considered similar when they
5278 have the same base address declaration, i.e. when their
5279 ref_base_address is the same. */
5280
5281 bool
5282 have_similar_memory_accesses (gimple s1, gimple s2)
5283 {
5284 bool res = false;
5285 unsigned i, j;
5286 VEC (data_ref_loc, heap) *refs1, *refs2;
5287 data_ref_loc *ref1, *ref2;
5288
5289 get_references_in_stmt (s1, &refs1);
5290 get_references_in_stmt (s2, &refs2);
5291
5292 FOR_EACH_VEC_ELT (data_ref_loc, refs1, i, ref1)
5293 {
5294 tree base1 = ref_base_address (s1, ref1);
5295
5296 if (base1)
5297 FOR_EACH_VEC_ELT (data_ref_loc, refs2, j, ref2)
5298 if (base1 == ref_base_address (s2, ref2))
5299 {
5300 res = true;
5301 goto end;
5302 }
5303 }
5304
5305 end:
5306 VEC_free (data_ref_loc, heap, refs1);
5307 VEC_free (data_ref_loc, heap, refs2);
5308 return res;
5309 }
5310
5311 /* Helper function for the hashtab. */
5312
5313 static int
5314 have_similar_memory_accesses_1 (const void *s1, const void *s2)
5315 {
5316 return have_similar_memory_accesses (CONST_CAST_GIMPLE ((const_gimple) s1),
5317 CONST_CAST_GIMPLE ((const_gimple) s2));
5318 }
5319
5320 /* Helper function for the hashtab. */
5321
5322 static hashval_t
5323 ref_base_address_1 (const void *s)
5324 {
5325 gimple stmt = CONST_CAST_GIMPLE ((const_gimple) s);
5326 unsigned i;
5327 VEC (data_ref_loc, heap) *refs;
5328 data_ref_loc *ref;
5329 hashval_t res = 0;
5330
5331 get_references_in_stmt (stmt, &refs);
5332
5333 FOR_EACH_VEC_ELT (data_ref_loc, refs, i, ref)
5334 if (!ref->is_read)
5335 {
5336 res = htab_hash_pointer (ref_base_address (stmt, ref));
5337 break;
5338 }
5339
5340 VEC_free (data_ref_loc, heap, refs);
5341 return res;
5342 }
5343
5344 /* Try to remove duplicated write data references from STMTS. */
5345
5346 void
5347 remove_similar_memory_refs (VEC (gimple, heap) **stmts)
5348 {
5349 unsigned i;
5350 gimple stmt;
5351 htab_t seen = htab_create (VEC_length (gimple, *stmts), ref_base_address_1,
5352 have_similar_memory_accesses_1, NULL);
5353
5354 for (i = 0; VEC_iterate (gimple, *stmts, i, stmt); )
5355 {
5356 void **slot;
5357
5358 slot = htab_find_slot (seen, stmt, INSERT);
5359
5360 if (*slot)
5361 VEC_ordered_remove (gimple, *stmts, i);
5362 else
5363 {
5364 *slot = (void *) stmt;
5365 i++;
5366 }
5367 }
5368
5369 htab_delete (seen);
5370 }
5371
5372 /* Returns the index of PARAMETER in the parameters vector of the
5373 ACCESS_MATRIX. If PARAMETER does not exist return -1. */
5374
5375 int
5376 access_matrix_get_index_for_parameter (tree parameter,
5377 struct access_matrix *access_matrix)
5378 {
5379 int i;
5380 VEC (tree,heap) *lambda_parameters = AM_PARAMETERS (access_matrix);
5381 tree lambda_parameter;
5382
5383 FOR_EACH_VEC_ELT (tree, lambda_parameters, i, lambda_parameter)
5384 if (lambda_parameter == parameter)
5385 return i + AM_NB_INDUCTION_VARS (access_matrix);
5386
5387 return -1;
5388 }