libitm.exp: Reorder lib loads into dependency order.
[gcc.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
23
24 #include "graphds.h"
25 #include "omega.h"
26 #include "tree-chrec.h"
27
28 /*
29 innermost_loop_behavior describes the evolution of the address of the memory
30 reference in the innermost enclosing loop. The address is expressed as
31 BASE + STEP * # of iteration, and base is further decomposed as the base
32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
33 constant offset (INIT). Examples, in loop nest
34
35 for (i = 0; i < 100; i++)
36 for (j = 3; j < 100; j++)
37
38 Example 1 Example 2
39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
40
41
42 innermost_loop_behavior
43 base_address &a p
44 offset i * D_i x
45 init 3 * D_j + offsetof (b) 28
46 step D_j 4
47
48 */
49 struct innermost_loop_behavior
50 {
51 tree base_address;
52 tree offset;
53 tree init;
54 tree step;
55
56 /* Alignment information. ALIGNED_TO is set to the largest power of two
57 that divides OFFSET. */
58 tree aligned_to;
59 };
60
61 /* Describes the evolutions of indices of the memory reference. The indices
62 are indices of the ARRAY_REFs, indexes in artificial dimensions
63 added for member selection of records and the operands of MEM_REFs.
64 BASE_OBJECT is the part of the reference that is loop-invariant
65 (note that this reference does not have to cover the whole object
66 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
67 not recommended to use BASE_OBJECT in any code generation).
68 For the examples above,
69
70 base_object: a *(p + x + 4B * j_0)
71 indices: {j_0, +, 1}_2 {16, +, 4}_2
72 4
73 {i_0, +, 1}_1
74 {j_0, +, 1}_2
75 */
76
77 struct indices
78 {
79 /* The object. */
80 tree base_object;
81
82 /* A list of chrecs. Access functions of the indices. */
83 vec<tree> access_fns;
84
85 /* Whether BASE_OBJECT is an access representing the whole object
86 or whether the access could not be constrained. */
87 bool unconstrained_base;
88 };
89
90 struct dr_alias
91 {
92 /* The alias information that should be used for new pointers to this
93 location. */
94 struct ptr_info_def *ptr_info;
95 };
96
97 /* An integer vector. A vector formally consists of an element of a vector
98 space. A vector space is a set that is closed under vector addition
99 and scalar multiplication. In this vector space, an element is a list of
100 integers. */
101 typedef int *lambda_vector;
102
103 /* An integer matrix. A matrix consists of m vectors of length n (IE
104 all vectors are the same length). */
105 typedef lambda_vector *lambda_matrix;
106
107 /* Each vector of the access matrix represents a linear access
108 function for a subscript. First elements correspond to the
109 leftmost indices, ie. for a[i][j] the first vector corresponds to
110 the subscript in "i". The elements of a vector are relative to
111 the loop nests in which the data reference is considered,
112 i.e. the vector is relative to the SCoP that provides the context
113 in which this data reference occurs.
114
115 For example, in
116
117 | loop_1
118 | loop_2
119 | a[i+3][2*j+n-1]
120
121 if "i" varies in loop_1 and "j" varies in loop_2, the access
122 matrix with respect to the loop nest {loop_1, loop_2} is:
123
124 | loop_1 loop_2 param_n cst
125 | 1 0 0 3
126 | 0 2 1 -1
127
128 whereas the access matrix with respect to loop_2 considers "i" as
129 a parameter:
130
131 | loop_2 param_i param_n cst
132 | 0 1 0 3
133 | 2 0 1 -1
134 */
135 struct access_matrix
136 {
137 vec<loop_p> loop_nest;
138 int nb_induction_vars;
139 vec<tree> parameters;
140 vec<lambda_vector, va_gc> *matrix;
141 };
142
143 #define AM_LOOP_NEST(M) (M)->loop_nest
144 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
145 #define AM_PARAMETERS(M) (M)->parameters
146 #define AM_MATRIX(M) (M)->matrix
147 #define AM_NB_PARAMETERS(M) (AM_PARAMETERS(M)).length ()
148 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
149 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
150 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) AM_MATRIX (M)[I]
151 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
152
153 /* Return the column in the access matrix of LOOP_NUM. */
154
155 static inline int
156 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
157 {
158 int i;
159 loop_p l;
160
161 for (i = 0; AM_LOOP_NEST (access_matrix).iterate (i, &l); i++)
162 if (l->num == loop_num)
163 return i;
164
165 gcc_unreachable();
166 }
167
168 struct data_reference
169 {
170 /* A pointer to the statement that contains this DR. */
171 gimple stmt;
172
173 /* A pointer to the memory reference. */
174 tree ref;
175
176 /* Auxiliary info specific to a pass. */
177 void *aux;
178
179 /* True when the data reference is in RHS of a stmt. */
180 bool is_read;
181
182 /* Behavior of the memory reference in the innermost loop. */
183 struct innermost_loop_behavior innermost;
184
185 /* Subscripts of this data reference. */
186 struct indices indices;
187
188 /* Alias information for the data reference. */
189 struct dr_alias alias;
190
191 /* Matrix representation for the data access functions. */
192 struct access_matrix *access_matrix;
193 };
194
195 #define DR_STMT(DR) (DR)->stmt
196 #define DR_REF(DR) (DR)->ref
197 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
198 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
199 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
200 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
201 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
202 #define DR_IS_READ(DR) (DR)->is_read
203 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
204 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
205 #define DR_OFFSET(DR) (DR)->innermost.offset
206 #define DR_INIT(DR) (DR)->innermost.init
207 #define DR_STEP(DR) (DR)->innermost.step
208 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
209 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
210 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
211
212 typedef struct data_reference *data_reference_p;
213
214 enum data_dependence_direction {
215 dir_positive,
216 dir_negative,
217 dir_equal,
218 dir_positive_or_negative,
219 dir_positive_or_equal,
220 dir_negative_or_equal,
221 dir_star,
222 dir_independent
223 };
224
225 /* The description of the grid of iterations that overlap. At most
226 two loops are considered at the same time just now, hence at most
227 two functions are needed. For each of the functions, we store
228 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
229 where x, y, ... are variables. */
230
231 #define MAX_DIM 2
232
233 /* Special values of N. */
234 #define NO_DEPENDENCE 0
235 #define NOT_KNOWN (MAX_DIM + 1)
236 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
237 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
238 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
239
240 typedef vec<tree> affine_fn;
241
242 typedef struct
243 {
244 unsigned n;
245 affine_fn fns[MAX_DIM];
246 } conflict_function;
247
248 /* What is a subscript? Given two array accesses a subscript is the
249 tuple composed of the access functions for a given dimension.
250 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
251 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
252 are stored in the data_dependence_relation structure under the form
253 of an array of subscripts. */
254
255 struct subscript
256 {
257 /* A description of the iterations for which the elements are
258 accessed twice. */
259 conflict_function *conflicting_iterations_in_a;
260 conflict_function *conflicting_iterations_in_b;
261
262 /* This field stores the information about the iteration domain
263 validity of the dependence relation. */
264 tree last_conflict;
265
266 /* Distance from the iteration that access a conflicting element in
267 A to the iteration that access this same conflicting element in
268 B. The distance is a tree scalar expression, i.e. a constant or a
269 symbolic expression, but certainly not a chrec function. */
270 tree distance;
271 };
272
273 typedef struct subscript *subscript_p;
274
275 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
276 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
277 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
278 #define SUB_DISTANCE(SUB) SUB->distance
279
280 /* A data_dependence_relation represents a relation between two
281 data_references A and B. */
282
283 struct data_dependence_relation
284 {
285
286 struct data_reference *a;
287 struct data_reference *b;
288
289 /* A "yes/no/maybe" field for the dependence relation:
290
291 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
292 relation between A and B, and the description of this relation
293 is given in the SUBSCRIPTS array,
294
295 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
296 SUBSCRIPTS is empty,
297
298 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
299 but the analyzer cannot be more specific. */
300 tree are_dependent;
301
302 /* For each subscript in the dependence test, there is an element in
303 this array. This is the attribute that labels the edge A->B of
304 the data_dependence_relation. */
305 vec<subscript_p> subscripts;
306
307 /* The analyzed loop nest. */
308 vec<loop_p> loop_nest;
309
310 /* The classic direction vector. */
311 vec<lambda_vector> dir_vects;
312
313 /* The classic distance vector. */
314 vec<lambda_vector> dist_vects;
315
316 /* An index in loop_nest for the innermost loop that varies for
317 this data dependence relation. */
318 unsigned inner_loop;
319
320 /* Is the dependence reversed with respect to the lexicographic order? */
321 bool reversed_p;
322
323 /* When the dependence relation is affine, it can be represented by
324 a distance vector. */
325 bool affine_p;
326
327 /* Set to true when the dependence relation is on the same data
328 access. */
329 bool self_reference_p;
330 };
331
332 typedef struct data_dependence_relation *ddr_p;
333
334 #define DDR_A(DDR) DDR->a
335 #define DDR_B(DDR) DDR->b
336 #define DDR_AFFINE_P(DDR) DDR->affine_p
337 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
338 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
339 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
340 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
341
342 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
343 /* The size of the direction/distance vectors: the number of loops in
344 the loop nest. */
345 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
346 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
347 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
348
349 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
350 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
351 #define DDR_NUM_DIST_VECTS(DDR) \
352 (DDR_DIST_VECTS (DDR).length ())
353 #define DDR_NUM_DIR_VECTS(DDR) \
354 (DDR_DIR_VECTS (DDR).length ())
355 #define DDR_DIR_VECT(DDR, I) \
356 DDR_DIR_VECTS (DDR)[I]
357 #define DDR_DIST_VECT(DDR, I) \
358 DDR_DIST_VECTS (DDR)[I]
359 #define DDR_REVERSED_P(DDR) DDR->reversed_p
360
361 \f
362 bool dr_analyze_innermost (struct data_reference *, struct loop *);
363 extern bool compute_data_dependences_for_loop (struct loop *, bool,
364 vec<loop_p> *,
365 vec<data_reference_p> *,
366 vec<ddr_p> *);
367 extern bool compute_data_dependences_for_bb (basic_block, bool,
368 vec<data_reference_p> *,
369 vec<ddr_p> *);
370 extern void debug_ddrs (vec<ddr_p> );
371 extern void dump_data_reference (FILE *, struct data_reference *);
372 extern void debug (data_reference &ref);
373 extern void debug (data_reference *ptr);
374 extern void debug_data_reference (struct data_reference *);
375 extern void debug_data_references (vec<data_reference_p> );
376 extern void debug (vec<data_reference_p> &ref);
377 extern void debug (vec<data_reference_p> *ptr);
378 extern void debug_data_dependence_relation (struct data_dependence_relation *);
379 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
380 extern void debug (vec<ddr_p> &ref);
381 extern void debug (vec<ddr_p> *ptr);
382 extern void debug_data_dependence_relations (vec<ddr_p> );
383 extern void free_dependence_relation (struct data_dependence_relation *);
384 extern void free_dependence_relations (vec<ddr_p> );
385 extern void free_data_ref (data_reference_p);
386 extern void free_data_refs (vec<data_reference_p> );
387 extern bool find_data_references_in_stmt (struct loop *, gimple,
388 vec<data_reference_p> *);
389 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
390 vec<data_reference_p> *);
391 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
392 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
393 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
394 extern struct data_dependence_relation *initialize_data_dependence_relation
395 (struct data_reference *, struct data_reference *, vec<loop_p>);
396 extern void compute_affine_dependence (struct data_dependence_relation *,
397 loop_p);
398 extern void compute_self_dependence (struct data_dependence_relation *);
399 extern bool compute_all_dependences (vec<data_reference_p> ,
400 vec<ddr_p> *,
401 vec<loop_p>, bool);
402 extern tree find_data_references_in_bb (struct loop *, basic_block,
403 vec<data_reference_p> *);
404
405 extern bool dr_may_alias_p (const struct data_reference *,
406 const struct data_reference *, bool);
407 extern bool dr_equal_offsets_p (struct data_reference *,
408 struct data_reference *);
409
410
411 /* Return true when the base objects of data references A and B are
412 the same memory object. */
413
414 static inline bool
415 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
416 {
417 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
418 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
419 }
420
421 /* Return true when the data references A and B are accessing the same
422 memory object with the same access functions. */
423
424 static inline bool
425 same_data_refs (data_reference_p a, data_reference_p b)
426 {
427 unsigned int i;
428
429 /* The references are exactly the same. */
430 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
431 return true;
432
433 if (!same_data_refs_base_objects (a, b))
434 return false;
435
436 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
437 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
438 return false;
439
440 return true;
441 }
442
443 /* Return true when the DDR contains two data references that have the
444 same access functions. */
445
446 static inline bool
447 same_access_functions (const struct data_dependence_relation *ddr)
448 {
449 unsigned i;
450
451 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
452 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
453 DR_ACCESS_FN (DDR_B (ddr), i)))
454 return false;
455
456 return true;
457 }
458
459 /* Return true when DDR is an anti-dependence relation. */
460
461 static inline bool
462 ddr_is_anti_dependent (ddr_p ddr)
463 {
464 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
465 && DR_IS_READ (DDR_A (ddr))
466 && DR_IS_WRITE (DDR_B (ddr))
467 && !same_access_functions (ddr));
468 }
469
470 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
471
472 static inline bool
473 ddrs_have_anti_deps (vec<ddr_p> dependence_relations)
474 {
475 unsigned i;
476 ddr_p ddr;
477
478 for (i = 0; dependence_relations.iterate (i, &ddr); i++)
479 if (ddr_is_anti_dependent (ddr))
480 return true;
481
482 return false;
483 }
484
485 /* Returns the dependence level for a vector DIST of size LENGTH.
486 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
487 to the sequence of statements, not carried by any loop. */
488
489 static inline unsigned
490 dependence_level (lambda_vector dist_vect, int length)
491 {
492 int i;
493
494 for (i = 0; i < length; i++)
495 if (dist_vect[i] != 0)
496 return i + 1;
497
498 return 0;
499 }
500
501 /* Return the dependence level for the DDR relation. */
502
503 static inline unsigned
504 ddr_dependence_level (ddr_p ddr)
505 {
506 unsigned vector;
507 unsigned level = 0;
508
509 if (DDR_DIST_VECTS (ddr).exists ())
510 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
511
512 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
513 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
514 DDR_NB_LOOPS (ddr)));
515 return level;
516 }
517
518 \f
519
520 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
521 typedef struct rdg_vertex
522 {
523 /* The statement represented by this vertex. */
524 gimple stmt;
525
526 /* Vector of data-references in this statement. */
527 vec<data_reference_p> datarefs;
528
529 /* True when the statement contains a write to memory. */
530 bool has_mem_write;
531
532 /* True when the statement contains a read from memory. */
533 bool has_mem_reads;
534 } *rdg_vertex_p;
535
536 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
537 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
538 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
539 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
540 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
541 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
542 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
543 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
544
545 void debug_rdg_vertex (struct graph *, int);
546 void debug_rdg_component (struct graph *, int);
547 void dump_rdg (FILE *, struct graph *);
548 void debug_rdg (struct graph *);
549 int rdg_vertex_for_stmt (struct graph *, gimple);
550
551 /* Data dependence type. */
552
553 enum rdg_dep_type
554 {
555 /* Read After Write (RAW). */
556 flow_dd = 'f',
557
558 /* Write After Read (WAR). */
559 anti_dd = 'a',
560
561 /* Write After Write (WAW). */
562 output_dd = 'o',
563
564 /* Read After Read (RAR). */
565 input_dd = 'i'
566 };
567
568 /* Dependence information attached to an edge of the RDG. */
569
570 typedef struct rdg_edge
571 {
572 /* Type of the dependence. */
573 enum rdg_dep_type type;
574
575 /* Levels of the dependence: the depth of the loops that carry the
576 dependence. */
577 unsigned level;
578
579 /* Dependence relation between data dependences, NULL when one of
580 the vertices is a scalar. */
581 ddr_p relation;
582 } *rdg_edge_p;
583
584 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
585 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
586 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
587
588 struct graph *build_rdg (struct loop *,
589 vec<loop_p> *,
590 vec<ddr_p> *,
591 vec<data_reference_p> *);
592 struct graph *build_empty_rdg (int);
593 void free_rdg (struct graph *);
594
595 /* Return the index of the variable VAR in the LOOP_NEST array. */
596
597 static inline int
598 index_in_loop_nest (int var, vec<loop_p> loop_nest)
599 {
600 struct loop *loopi;
601 int var_index;
602
603 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
604 var_index++)
605 if (loopi->num == var)
606 break;
607
608 return var_index;
609 }
610
611 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
612
613 /* Returns true when the data reference DR the form "A[i] = ..."
614 with a stride equal to its unit type size. */
615
616 static inline bool
617 adjacent_dr_p (struct data_reference *dr)
618 {
619 /* If this is a bitfield store bail out. */
620 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
621 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
622 return false;
623
624 if (!DR_STEP (dr)
625 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
626 return false;
627
628 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
629 DR_STEP (dr)),
630 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
631 }
632
633 /* In tree-data-ref.c */
634 void split_constant_offset (tree , tree *, tree *);
635
636 /* Strongly connected components of the reduced data dependence graph. */
637
638 typedef struct rdg_component
639 {
640 int num;
641 vec<int> vertices;
642 } *rdgc;
643
644
645
646 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
647
648 static inline int
649 lambda_vector_gcd (lambda_vector vector, int size)
650 {
651 int i;
652 int gcd1 = 0;
653
654 if (size > 0)
655 {
656 gcd1 = vector[0];
657 for (i = 1; i < size; i++)
658 gcd1 = gcd (gcd1, vector[i]);
659 }
660 return gcd1;
661 }
662
663 /* Allocate a new vector of given SIZE. */
664
665 static inline lambda_vector
666 lambda_vector_new (int size)
667 {
668 return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
669 }
670
671 /* Clear out vector VEC1 of length SIZE. */
672
673 static inline void
674 lambda_vector_clear (lambda_vector vec1, int size)
675 {
676 memset (vec1, 0, size * sizeof (*vec1));
677 }
678
679 /* Returns true when the vector V is lexicographically positive, in
680 other words, when the first nonzero element is positive. */
681
682 static inline bool
683 lambda_vector_lexico_pos (lambda_vector v,
684 unsigned n)
685 {
686 unsigned i;
687 for (i = 0; i < n; i++)
688 {
689 if (v[i] == 0)
690 continue;
691 if (v[i] < 0)
692 return false;
693 if (v[i] > 0)
694 return true;
695 }
696 return true;
697 }
698
699 /* Return true if vector VEC1 of length SIZE is the zero vector. */
700
701 static inline bool
702 lambda_vector_zerop (lambda_vector vec1, int size)
703 {
704 int i;
705 for (i = 0; i < size; i++)
706 if (vec1[i] != 0)
707 return false;
708 return true;
709 }
710
711 /* Allocate a matrix of M rows x N cols. */
712
713 static inline lambda_matrix
714 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
715 {
716 lambda_matrix mat;
717 int i;
718
719 mat = (lambda_matrix) obstack_alloc (lambda_obstack,
720 sizeof (lambda_vector *) * m);
721
722 for (i = 0; i < m; i++)
723 mat[i] = lambda_vector_new (n);
724
725 return mat;
726 }
727
728 #endif /* GCC_TREE_DATA_REF_H */