aarch64-simd.md (aarch64_simd_vec_<su>mult_lo_<mode>, [...]): Separate instruction...
[gcc.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
24
25 #include "graphds.h"
26 #include "omega.h"
27 #include "tree-chrec.h"
28
29 /*
30 innermost_loop_behavior describes the evolution of the address of the memory
31 reference in the innermost enclosing loop. The address is expressed as
32 BASE + STEP * # of iteration, and base is further decomposed as the base
33 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
34 constant offset (INIT). Examples, in loop nest
35
36 for (i = 0; i < 100; i++)
37 for (j = 3; j < 100; j++)
38
39 Example 1 Example 2
40 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41
42
43 innermost_loop_behavior
44 base_address &a p
45 offset i * D_i x
46 init 3 * D_j + offsetof (b) 28
47 step D_j 4
48
49 */
50 struct innermost_loop_behavior
51 {
52 tree base_address;
53 tree offset;
54 tree init;
55 tree step;
56
57 /* Alignment information. ALIGNED_TO is set to the largest power of two
58 that divides OFFSET. */
59 tree aligned_to;
60 };
61
62 /* Describes the evolutions of indices of the memory reference. The indices
63 are indices of the ARRAY_REFs, indexes in artificial dimensions
64 added for member selection of records and the operands of MEM_REFs.
65 BASE_OBJECT is the part of the reference that is loop-invariant
66 (note that this reference does not have to cover the whole object
67 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
68 not recommended to use BASE_OBJECT in any code generation).
69 For the examples above,
70
71 base_object: a *(p + x + 4B * j_0)
72 indices: {j_0, +, 1}_2 {16, +, 4}_2
73 4
74 {i_0, +, 1}_1
75 {j_0, +, 1}_2
76 */
77
78 struct indices
79 {
80 /* The object. */
81 tree base_object;
82
83 /* A list of chrecs. Access functions of the indices. */
84 vec<tree> access_fns;
85
86 /* Whether BASE_OBJECT is an access representing the whole object
87 or whether the access could not be constrained. */
88 bool unconstrained_base;
89 };
90
91 struct dr_alias
92 {
93 /* The alias information that should be used for new pointers to this
94 location. */
95 struct ptr_info_def *ptr_info;
96 };
97
98 /* An integer vector. A vector formally consists of an element of a vector
99 space. A vector space is a set that is closed under vector addition
100 and scalar multiplication. In this vector space, an element is a list of
101 integers. */
102 typedef int *lambda_vector;
103
104 /* An integer matrix. A matrix consists of m vectors of length n (IE
105 all vectors are the same length). */
106 typedef lambda_vector *lambda_matrix;
107
108 /* Each vector of the access matrix represents a linear access
109 function for a subscript. First elements correspond to the
110 leftmost indices, ie. for a[i][j] the first vector corresponds to
111 the subscript in "i". The elements of a vector are relative to
112 the loop nests in which the data reference is considered,
113 i.e. the vector is relative to the SCoP that provides the context
114 in which this data reference occurs.
115
116 For example, in
117
118 | loop_1
119 | loop_2
120 | a[i+3][2*j+n-1]
121
122 if "i" varies in loop_1 and "j" varies in loop_2, the access
123 matrix with respect to the loop nest {loop_1, loop_2} is:
124
125 | loop_1 loop_2 param_n cst
126 | 1 0 0 3
127 | 0 2 1 -1
128
129 whereas the access matrix with respect to loop_2 considers "i" as
130 a parameter:
131
132 | loop_2 param_i param_n cst
133 | 0 1 0 3
134 | 2 0 1 -1
135 */
136 struct access_matrix
137 {
138 vec<loop_p> loop_nest;
139 int nb_induction_vars;
140 vec<tree> parameters;
141 vec<lambda_vector, va_gc> *matrix;
142 };
143
144 #define AM_LOOP_NEST(M) (M)->loop_nest
145 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
146 #define AM_PARAMETERS(M) (M)->parameters
147 #define AM_MATRIX(M) (M)->matrix
148 #define AM_NB_PARAMETERS(M) (AM_PARAMETERS(M)).length ()
149 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
150 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
151 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) AM_MATRIX (M)[I]
152 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
153
154 /* Return the column in the access matrix of LOOP_NUM. */
155
156 static inline int
157 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
158 {
159 int i;
160 loop_p l;
161
162 for (i = 0; AM_LOOP_NEST (access_matrix).iterate (i, &l); i++)
163 if (l->num == loop_num)
164 return i;
165
166 gcc_unreachable();
167 }
168
169 struct data_reference
170 {
171 /* A pointer to the statement that contains this DR. */
172 gimple stmt;
173
174 /* A pointer to the memory reference. */
175 tree ref;
176
177 /* Auxiliary info specific to a pass. */
178 void *aux;
179
180 /* True when the data reference is in RHS of a stmt. */
181 bool is_read;
182
183 /* Behavior of the memory reference in the innermost loop. */
184 struct innermost_loop_behavior innermost;
185
186 /* Subscripts of this data reference. */
187 struct indices indices;
188
189 /* Alias information for the data reference. */
190 struct dr_alias alias;
191
192 /* Matrix representation for the data access functions. */
193 struct access_matrix *access_matrix;
194 };
195
196 #define DR_STMT(DR) (DR)->stmt
197 #define DR_REF(DR) (DR)->ref
198 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
199 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
200 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
201 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
202 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
203 #define DR_IS_READ(DR) (DR)->is_read
204 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
205 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
206 #define DR_OFFSET(DR) (DR)->innermost.offset
207 #define DR_INIT(DR) (DR)->innermost.init
208 #define DR_STEP(DR) (DR)->innermost.step
209 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
210 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
211 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
212
213 typedef struct data_reference *data_reference_p;
214
215 enum data_dependence_direction {
216 dir_positive,
217 dir_negative,
218 dir_equal,
219 dir_positive_or_negative,
220 dir_positive_or_equal,
221 dir_negative_or_equal,
222 dir_star,
223 dir_independent
224 };
225
226 /* The description of the grid of iterations that overlap. At most
227 two loops are considered at the same time just now, hence at most
228 two functions are needed. For each of the functions, we store
229 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
230 where x, y, ... are variables. */
231
232 #define MAX_DIM 2
233
234 /* Special values of N. */
235 #define NO_DEPENDENCE 0
236 #define NOT_KNOWN (MAX_DIM + 1)
237 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
238 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
239 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
240
241 typedef vec<tree> affine_fn;
242
243 typedef struct
244 {
245 unsigned n;
246 affine_fn fns[MAX_DIM];
247 } conflict_function;
248
249 /* What is a subscript? Given two array accesses a subscript is the
250 tuple composed of the access functions for a given dimension.
251 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
252 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
253 are stored in the data_dependence_relation structure under the form
254 of an array of subscripts. */
255
256 struct subscript
257 {
258 /* A description of the iterations for which the elements are
259 accessed twice. */
260 conflict_function *conflicting_iterations_in_a;
261 conflict_function *conflicting_iterations_in_b;
262
263 /* This field stores the information about the iteration domain
264 validity of the dependence relation. */
265 tree last_conflict;
266
267 /* Distance from the iteration that access a conflicting element in
268 A to the iteration that access this same conflicting element in
269 B. The distance is a tree scalar expression, i.e. a constant or a
270 symbolic expression, but certainly not a chrec function. */
271 tree distance;
272 };
273
274 typedef struct subscript *subscript_p;
275
276 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
277 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
278 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
279 #define SUB_DISTANCE(SUB) SUB->distance
280
281 /* A data_dependence_relation represents a relation between two
282 data_references A and B. */
283
284 struct data_dependence_relation
285 {
286
287 struct data_reference *a;
288 struct data_reference *b;
289
290 /* A "yes/no/maybe" field for the dependence relation:
291
292 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
293 relation between A and B, and the description of this relation
294 is given in the SUBSCRIPTS array,
295
296 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
297 SUBSCRIPTS is empty,
298
299 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
300 but the analyzer cannot be more specific. */
301 tree are_dependent;
302
303 /* For each subscript in the dependence test, there is an element in
304 this array. This is the attribute that labels the edge A->B of
305 the data_dependence_relation. */
306 vec<subscript_p> subscripts;
307
308 /* The analyzed loop nest. */
309 vec<loop_p> loop_nest;
310
311 /* The classic direction vector. */
312 vec<lambda_vector> dir_vects;
313
314 /* The classic distance vector. */
315 vec<lambda_vector> dist_vects;
316
317 /* An index in loop_nest for the innermost loop that varies for
318 this data dependence relation. */
319 unsigned inner_loop;
320
321 /* Is the dependence reversed with respect to the lexicographic order? */
322 bool reversed_p;
323
324 /* When the dependence relation is affine, it can be represented by
325 a distance vector. */
326 bool affine_p;
327
328 /* Set to true when the dependence relation is on the same data
329 access. */
330 bool self_reference_p;
331 };
332
333 typedef struct data_dependence_relation *ddr_p;
334
335 #define DDR_A(DDR) DDR->a
336 #define DDR_B(DDR) DDR->b
337 #define DDR_AFFINE_P(DDR) DDR->affine_p
338 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
339 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
340 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
341 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
342
343 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
344 /* The size of the direction/distance vectors: the number of loops in
345 the loop nest. */
346 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
347 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
348 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
349
350 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
351 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
352 #define DDR_NUM_DIST_VECTS(DDR) \
353 (DDR_DIST_VECTS (DDR).length ())
354 #define DDR_NUM_DIR_VECTS(DDR) \
355 (DDR_DIR_VECTS (DDR).length ())
356 #define DDR_DIR_VECT(DDR, I) \
357 DDR_DIR_VECTS (DDR)[I]
358 #define DDR_DIST_VECT(DDR, I) \
359 DDR_DIST_VECTS (DDR)[I]
360 #define DDR_REVERSED_P(DDR) DDR->reversed_p
361
362 \f
363 bool dr_analyze_innermost (struct data_reference *, struct loop *);
364 extern bool compute_data_dependences_for_loop (struct loop *, bool,
365 vec<loop_p> *,
366 vec<data_reference_p> *,
367 vec<ddr_p> *);
368 extern bool compute_data_dependences_for_bb (basic_block, bool,
369 vec<data_reference_p> *,
370 vec<ddr_p> *);
371 extern void debug_ddrs (vec<ddr_p> );
372 extern void dump_data_reference (FILE *, struct data_reference *);
373 extern void debug_data_reference (struct data_reference *);
374 extern void debug_data_references (vec<data_reference_p> );
375 extern void debug_data_dependence_relation (struct data_dependence_relation *);
376 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
377 extern void debug_data_dependence_relations (vec<ddr_p> );
378 extern void free_dependence_relation (struct data_dependence_relation *);
379 extern void free_dependence_relations (vec<ddr_p> );
380 extern void free_data_ref (data_reference_p);
381 extern void free_data_refs (vec<data_reference_p> );
382 extern bool find_data_references_in_stmt (struct loop *, gimple,
383 vec<data_reference_p> *);
384 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
385 vec<data_reference_p> *);
386 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
387 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
388 extern struct data_dependence_relation *initialize_data_dependence_relation
389 (struct data_reference *, struct data_reference *, vec<loop_p>);
390 extern void compute_affine_dependence (struct data_dependence_relation *,
391 loop_p);
392 extern void compute_self_dependence (struct data_dependence_relation *);
393 extern bool compute_all_dependences (vec<data_reference_p> ,
394 vec<ddr_p> *,
395 vec<loop_p>, bool);
396 extern tree find_data_references_in_bb (struct loop *, basic_block,
397 vec<data_reference_p> *);
398
399 extern bool dr_may_alias_p (const struct data_reference *,
400 const struct data_reference *, bool);
401 extern bool dr_equal_offsets_p (struct data_reference *,
402 struct data_reference *);
403
404
405 /* Return true when the base objects of data references A and B are
406 the same memory object. */
407
408 static inline bool
409 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
410 {
411 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
412 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
413 }
414
415 /* Return true when the data references A and B are accessing the same
416 memory object with the same access functions. */
417
418 static inline bool
419 same_data_refs (data_reference_p a, data_reference_p b)
420 {
421 unsigned int i;
422
423 /* The references are exactly the same. */
424 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
425 return true;
426
427 if (!same_data_refs_base_objects (a, b))
428 return false;
429
430 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
431 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
432 return false;
433
434 return true;
435 }
436
437 /* Return true when the DDR contains two data references that have the
438 same access functions. */
439
440 static inline bool
441 same_access_functions (const struct data_dependence_relation *ddr)
442 {
443 unsigned i;
444
445 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
446 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
447 DR_ACCESS_FN (DDR_B (ddr), i)))
448 return false;
449
450 return true;
451 }
452
453 /* Return true when DDR is an anti-dependence relation. */
454
455 static inline bool
456 ddr_is_anti_dependent (ddr_p ddr)
457 {
458 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
459 && DR_IS_READ (DDR_A (ddr))
460 && DR_IS_WRITE (DDR_B (ddr))
461 && !same_access_functions (ddr));
462 }
463
464 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
465
466 static inline bool
467 ddrs_have_anti_deps (vec<ddr_p> dependence_relations)
468 {
469 unsigned i;
470 ddr_p ddr;
471
472 for (i = 0; dependence_relations.iterate (i, &ddr); i++)
473 if (ddr_is_anti_dependent (ddr))
474 return true;
475
476 return false;
477 }
478
479 /* Returns the dependence level for a vector DIST of size LENGTH.
480 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
481 to the sequence of statements, not carried by any loop. */
482
483 static inline unsigned
484 dependence_level (lambda_vector dist_vect, int length)
485 {
486 int i;
487
488 for (i = 0; i < length; i++)
489 if (dist_vect[i] != 0)
490 return i + 1;
491
492 return 0;
493 }
494
495 /* Return the dependence level for the DDR relation. */
496
497 static inline unsigned
498 ddr_dependence_level (ddr_p ddr)
499 {
500 unsigned vector;
501 unsigned level = 0;
502
503 if (DDR_DIST_VECTS (ddr).exists ())
504 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
505
506 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
507 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
508 DDR_NB_LOOPS (ddr)));
509 return level;
510 }
511
512 \f
513
514 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
515 typedef struct rdg_vertex
516 {
517 /* The statement represented by this vertex. */
518 gimple stmt;
519
520 /* Vector of data-references in this statement. */
521 vec<data_reference_p> datarefs;
522
523 /* True when the statement contains a write to memory. */
524 bool has_mem_write;
525
526 /* True when the statement contains a read from memory. */
527 bool has_mem_reads;
528 } *rdg_vertex_p;
529
530 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
531 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
532 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
533 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
534 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
535 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
536 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
537 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
538
539 void debug_rdg_vertex (struct graph *, int);
540 void debug_rdg_component (struct graph *, int);
541 void dump_rdg (FILE *, struct graph *);
542 void debug_rdg (struct graph *);
543 int rdg_vertex_for_stmt (struct graph *, gimple);
544
545 /* Data dependence type. */
546
547 enum rdg_dep_type
548 {
549 /* Read After Write (RAW). */
550 flow_dd = 'f',
551
552 /* Write After Read (WAR). */
553 anti_dd = 'a',
554
555 /* Write After Write (WAW). */
556 output_dd = 'o',
557
558 /* Read After Read (RAR). */
559 input_dd = 'i'
560 };
561
562 /* Dependence information attached to an edge of the RDG. */
563
564 typedef struct rdg_edge
565 {
566 /* Type of the dependence. */
567 enum rdg_dep_type type;
568
569 /* Levels of the dependence: the depth of the loops that carry the
570 dependence. */
571 unsigned level;
572
573 /* Dependence relation between data dependences, NULL when one of
574 the vertices is a scalar. */
575 ddr_p relation;
576 } *rdg_edge_p;
577
578 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
579 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
580 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
581
582 struct graph *build_rdg (struct loop *,
583 vec<loop_p> *,
584 vec<ddr_p> *,
585 vec<data_reference_p> *);
586 struct graph *build_empty_rdg (int);
587 void free_rdg (struct graph *);
588
589 /* Return the index of the variable VAR in the LOOP_NEST array. */
590
591 static inline int
592 index_in_loop_nest (int var, vec<loop_p> loop_nest)
593 {
594 struct loop *loopi;
595 int var_index;
596
597 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
598 var_index++)
599 if (loopi->num == var)
600 break;
601
602 return var_index;
603 }
604
605 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
606
607 /* Returns true when the data reference DR the form "A[i] = ..."
608 with a stride equal to its unit type size. */
609
610 static inline bool
611 adjacent_dr_p (struct data_reference *dr)
612 {
613 /* If this is a bitfield store bail out. */
614 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
615 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
616 return false;
617
618 if (!DR_STEP (dr)
619 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
620 return false;
621
622 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
623 DR_STEP (dr)),
624 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
625 }
626
627 /* In tree-data-ref.c */
628 void split_constant_offset (tree , tree *, tree *);
629
630 /* Strongly connected components of the reduced data dependence graph. */
631
632 typedef struct rdg_component
633 {
634 int num;
635 vec<int> vertices;
636 } *rdgc;
637
638
639
640 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
641
642 static inline int
643 lambda_vector_gcd (lambda_vector vector, int size)
644 {
645 int i;
646 int gcd1 = 0;
647
648 if (size > 0)
649 {
650 gcd1 = vector[0];
651 for (i = 1; i < size; i++)
652 gcd1 = gcd (gcd1, vector[i]);
653 }
654 return gcd1;
655 }
656
657 /* Allocate a new vector of given SIZE. */
658
659 static inline lambda_vector
660 lambda_vector_new (int size)
661 {
662 return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
663 }
664
665 /* Clear out vector VEC1 of length SIZE. */
666
667 static inline void
668 lambda_vector_clear (lambda_vector vec1, int size)
669 {
670 memset (vec1, 0, size * sizeof (*vec1));
671 }
672
673 /* Returns true when the vector V is lexicographically positive, in
674 other words, when the first nonzero element is positive. */
675
676 static inline bool
677 lambda_vector_lexico_pos (lambda_vector v,
678 unsigned n)
679 {
680 unsigned i;
681 for (i = 0; i < n; i++)
682 {
683 if (v[i] == 0)
684 continue;
685 if (v[i] < 0)
686 return false;
687 if (v[i] > 0)
688 return true;
689 }
690 return true;
691 }
692
693 /* Return true if vector VEC1 of length SIZE is the zero vector. */
694
695 static inline bool
696 lambda_vector_zerop (lambda_vector vec1, int size)
697 {
698 int i;
699 for (i = 0; i < size; i++)
700 if (vec1[i] != 0)
701 return false;
702 return true;
703 }
704
705 /* Allocate a matrix of M rows x N cols. */
706
707 static inline lambda_matrix
708 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
709 {
710 lambda_matrix mat;
711 int i;
712
713 mat = (lambda_matrix) obstack_alloc (lambda_obstack,
714 sizeof (lambda_vector *) * m);
715
716 for (i = 0; i < m; i++)
717 mat[i] = lambda_vector_new (n);
718
719 return mat;
720 }
721
722 #endif /* GCC_TREE_DATA_REF_H */