[ARM] Add ACLE 2.0 predefined marco __ARM_FEATURE_IDIV
[gcc.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
23
24 #include "graphds.h"
25 #include "omega.h"
26 #include "tree-chrec.h"
27
28 /*
29 innermost_loop_behavior describes the evolution of the address of the memory
30 reference in the innermost enclosing loop. The address is expressed as
31 BASE + STEP * # of iteration, and base is further decomposed as the base
32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
33 constant offset (INIT). Examples, in loop nest
34
35 for (i = 0; i < 100; i++)
36 for (j = 3; j < 100; j++)
37
38 Example 1 Example 2
39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
40
41
42 innermost_loop_behavior
43 base_address &a p
44 offset i * D_i x
45 init 3 * D_j + offsetof (b) 28
46 step D_j 4
47
48 */
49 struct innermost_loop_behavior
50 {
51 tree base_address;
52 tree offset;
53 tree init;
54 tree step;
55
56 /* Alignment information. ALIGNED_TO is set to the largest power of two
57 that divides OFFSET. */
58 tree aligned_to;
59 };
60
61 /* Describes the evolutions of indices of the memory reference. The indices
62 are indices of the ARRAY_REFs, indexes in artificial dimensions
63 added for member selection of records and the operands of MEM_REFs.
64 BASE_OBJECT is the part of the reference that is loop-invariant
65 (note that this reference does not have to cover the whole object
66 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
67 not recommended to use BASE_OBJECT in any code generation).
68 For the examples above,
69
70 base_object: a *(p + x + 4B * j_0)
71 indices: {j_0, +, 1}_2 {16, +, 4}_2
72 4
73 {i_0, +, 1}_1
74 {j_0, +, 1}_2
75 */
76
77 struct indices
78 {
79 /* The object. */
80 tree base_object;
81
82 /* A list of chrecs. Access functions of the indices. */
83 vec<tree> access_fns;
84 };
85
86 struct dr_alias
87 {
88 /* The alias information that should be used for new pointers to this
89 location. */
90 struct ptr_info_def *ptr_info;
91 };
92
93 /* An integer vector. A vector formally consists of an element of a vector
94 space. A vector space is a set that is closed under vector addition
95 and scalar multiplication. In this vector space, an element is a list of
96 integers. */
97 typedef int *lambda_vector;
98
99 /* An integer matrix. A matrix consists of m vectors of length n (IE
100 all vectors are the same length). */
101 typedef lambda_vector *lambda_matrix;
102
103 /* Each vector of the access matrix represents a linear access
104 function for a subscript. First elements correspond to the
105 leftmost indices, ie. for a[i][j] the first vector corresponds to
106 the subscript in "i". The elements of a vector are relative to
107 the loop nests in which the data reference is considered,
108 i.e. the vector is relative to the SCoP that provides the context
109 in which this data reference occurs.
110
111 For example, in
112
113 | loop_1
114 | loop_2
115 | a[i+3][2*j+n-1]
116
117 if "i" varies in loop_1 and "j" varies in loop_2, the access
118 matrix with respect to the loop nest {loop_1, loop_2} is:
119
120 | loop_1 loop_2 param_n cst
121 | 1 0 0 3
122 | 0 2 1 -1
123
124 whereas the access matrix with respect to loop_2 considers "i" as
125 a parameter:
126
127 | loop_2 param_i param_n cst
128 | 0 1 0 3
129 | 2 0 1 -1
130 */
131 struct access_matrix
132 {
133 vec<loop_p> loop_nest;
134 int nb_induction_vars;
135 vec<tree> parameters;
136 vec<lambda_vector, va_gc> *matrix;
137 };
138
139 #define AM_LOOP_NEST(M) (M)->loop_nest
140 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
141 #define AM_PARAMETERS(M) (M)->parameters
142 #define AM_MATRIX(M) (M)->matrix
143 #define AM_NB_PARAMETERS(M) (AM_PARAMETERS (M)).length ()
144 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
145 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
146 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) AM_MATRIX (M)[I]
147 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
148
149 /* Return the column in the access matrix of LOOP_NUM. */
150
151 static inline int
152 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
153 {
154 int i;
155 loop_p l;
156
157 for (i = 0; AM_LOOP_NEST (access_matrix).iterate (i, &l); i++)
158 if (l->num == loop_num)
159 return i;
160
161 gcc_unreachable ();
162 }
163
164 struct data_reference
165 {
166 /* A pointer to the statement that contains this DR. */
167 gimple stmt;
168
169 /* A pointer to the memory reference. */
170 tree ref;
171
172 /* Auxiliary info specific to a pass. */
173 void *aux;
174
175 /* True when the data reference is in RHS of a stmt. */
176 bool is_read;
177
178 /* Behavior of the memory reference in the innermost loop. */
179 struct innermost_loop_behavior innermost;
180
181 /* Subscripts of this data reference. */
182 struct indices indices;
183
184 /* Alias information for the data reference. */
185 struct dr_alias alias;
186
187 /* Matrix representation for the data access functions. */
188 struct access_matrix *access_matrix;
189 };
190
191 #define DR_STMT(DR) (DR)->stmt
192 #define DR_REF(DR) (DR)->ref
193 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
194 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
195 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
196 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
197 #define DR_IS_READ(DR) (DR)->is_read
198 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
199 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
200 #define DR_OFFSET(DR) (DR)->innermost.offset
201 #define DR_INIT(DR) (DR)->innermost.init
202 #define DR_STEP(DR) (DR)->innermost.step
203 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
204 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
205 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
206
207 typedef struct data_reference *data_reference_p;
208
209 enum data_dependence_direction {
210 dir_positive,
211 dir_negative,
212 dir_equal,
213 dir_positive_or_negative,
214 dir_positive_or_equal,
215 dir_negative_or_equal,
216 dir_star,
217 dir_independent
218 };
219
220 /* The description of the grid of iterations that overlap. At most
221 two loops are considered at the same time just now, hence at most
222 two functions are needed. For each of the functions, we store
223 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
224 where x, y, ... are variables. */
225
226 #define MAX_DIM 2
227
228 /* Special values of N. */
229 #define NO_DEPENDENCE 0
230 #define NOT_KNOWN (MAX_DIM + 1)
231 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
232 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
233 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
234
235 typedef vec<tree> affine_fn;
236
237 struct conflict_function
238 {
239 unsigned n;
240 affine_fn fns[MAX_DIM];
241 };
242
243 /* What is a subscript? Given two array accesses a subscript is the
244 tuple composed of the access functions for a given dimension.
245 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
246 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
247 are stored in the data_dependence_relation structure under the form
248 of an array of subscripts. */
249
250 struct subscript
251 {
252 /* A description of the iterations for which the elements are
253 accessed twice. */
254 conflict_function *conflicting_iterations_in_a;
255 conflict_function *conflicting_iterations_in_b;
256
257 /* This field stores the information about the iteration domain
258 validity of the dependence relation. */
259 tree last_conflict;
260
261 /* Distance from the iteration that access a conflicting element in
262 A to the iteration that access this same conflicting element in
263 B. The distance is a tree scalar expression, i.e. a constant or a
264 symbolic expression, but certainly not a chrec function. */
265 tree distance;
266 };
267
268 typedef struct subscript *subscript_p;
269
270 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
271 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
272 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
273 #define SUB_DISTANCE(SUB) SUB->distance
274
275 /* A data_dependence_relation represents a relation between two
276 data_references A and B. */
277
278 struct data_dependence_relation
279 {
280
281 struct data_reference *a;
282 struct data_reference *b;
283
284 /* A "yes/no/maybe" field for the dependence relation:
285
286 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
287 relation between A and B, and the description of this relation
288 is given in the SUBSCRIPTS array,
289
290 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
291 SUBSCRIPTS is empty,
292
293 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
294 but the analyzer cannot be more specific. */
295 tree are_dependent;
296
297 /* For each subscript in the dependence test, there is an element in
298 this array. This is the attribute that labels the edge A->B of
299 the data_dependence_relation. */
300 vec<subscript_p> subscripts;
301
302 /* The analyzed loop nest. */
303 vec<loop_p> loop_nest;
304
305 /* The classic direction vector. */
306 vec<lambda_vector> dir_vects;
307
308 /* The classic distance vector. */
309 vec<lambda_vector> dist_vects;
310
311 /* An index in loop_nest for the innermost loop that varies for
312 this data dependence relation. */
313 unsigned inner_loop;
314
315 /* Is the dependence reversed with respect to the lexicographic order? */
316 bool reversed_p;
317
318 /* When the dependence relation is affine, it can be represented by
319 a distance vector. */
320 bool affine_p;
321
322 /* Set to true when the dependence relation is on the same data
323 access. */
324 bool self_reference_p;
325 };
326
327 typedef struct data_dependence_relation *ddr_p;
328
329 #define DDR_A(DDR) DDR->a
330 #define DDR_B(DDR) DDR->b
331 #define DDR_AFFINE_P(DDR) DDR->affine_p
332 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
333 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
334 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
335 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
336
337 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
338 /* The size of the direction/distance vectors: the number of loops in
339 the loop nest. */
340 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
341 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
342 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
343
344 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
345 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
346 #define DDR_NUM_DIST_VECTS(DDR) \
347 (DDR_DIST_VECTS (DDR).length ())
348 #define DDR_NUM_DIR_VECTS(DDR) \
349 (DDR_DIR_VECTS (DDR).length ())
350 #define DDR_DIR_VECT(DDR, I) \
351 DDR_DIR_VECTS (DDR)[I]
352 #define DDR_DIST_VECT(DDR, I) \
353 DDR_DIST_VECTS (DDR)[I]
354 #define DDR_REVERSED_P(DDR) DDR->reversed_p
355
356 \f
357 bool dr_analyze_innermost (struct data_reference *, struct loop *);
358 extern bool compute_data_dependences_for_loop (struct loop *, bool,
359 vec<loop_p> *,
360 vec<data_reference_p> *,
361 vec<ddr_p> *);
362 extern bool compute_data_dependences_for_bb (basic_block, bool,
363 vec<data_reference_p> *,
364 vec<ddr_p> *);
365 extern void debug_ddrs (vec<ddr_p> );
366 extern void dump_data_reference (FILE *, struct data_reference *);
367 extern void debug (data_reference &ref);
368 extern void debug (data_reference *ptr);
369 extern void debug_data_reference (struct data_reference *);
370 extern void debug_data_references (vec<data_reference_p> );
371 extern void debug (vec<data_reference_p> &ref);
372 extern void debug (vec<data_reference_p> *ptr);
373 extern void debug_data_dependence_relation (struct data_dependence_relation *);
374 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
375 extern void debug (vec<ddr_p> &ref);
376 extern void debug (vec<ddr_p> *ptr);
377 extern void debug_data_dependence_relations (vec<ddr_p> );
378 extern void free_dependence_relation (struct data_dependence_relation *);
379 extern void free_dependence_relations (vec<ddr_p> );
380 extern void free_data_ref (data_reference_p);
381 extern void free_data_refs (vec<data_reference_p> );
382 extern bool find_data_references_in_stmt (struct loop *, gimple,
383 vec<data_reference_p> *);
384 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
385 vec<data_reference_p> *);
386 tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
387 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
388 extern bool find_loop_nest (struct loop *, vec<loop_p> *);
389 extern struct data_dependence_relation *initialize_data_dependence_relation
390 (struct data_reference *, struct data_reference *, vec<loop_p>);
391 extern void compute_affine_dependence (struct data_dependence_relation *,
392 loop_p);
393 extern void compute_self_dependence (struct data_dependence_relation *);
394 extern bool compute_all_dependences (vec<data_reference_p> ,
395 vec<ddr_p> *,
396 vec<loop_p>, bool);
397 extern tree find_data_references_in_bb (struct loop *, basic_block,
398 vec<data_reference_p> *);
399
400 extern bool dr_may_alias_p (const struct data_reference *,
401 const struct data_reference *, bool);
402 extern bool dr_equal_offsets_p (struct data_reference *,
403 struct data_reference *);
404 extern void tree_check_data_deps (void);
405
406
407 /* Return true when the base objects of data references A and B are
408 the same memory object. */
409
410 static inline bool
411 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
412 {
413 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
414 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
415 }
416
417 /* Return true when the data references A and B are accessing the same
418 memory object with the same access functions. */
419
420 static inline bool
421 same_data_refs (data_reference_p a, data_reference_p b)
422 {
423 unsigned int i;
424
425 /* The references are exactly the same. */
426 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
427 return true;
428
429 if (!same_data_refs_base_objects (a, b))
430 return false;
431
432 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
433 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
434 return false;
435
436 return true;
437 }
438
439 /* Return true when the DDR contains two data references that have the
440 same access functions. */
441
442 static inline bool
443 same_access_functions (const struct data_dependence_relation *ddr)
444 {
445 unsigned i;
446
447 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
448 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
449 DR_ACCESS_FN (DDR_B (ddr), i)))
450 return false;
451
452 return true;
453 }
454
455 /* Returns true when all the dependences are computable. */
456
457 inline bool
458 known_dependences_p (vec<ddr_p> dependence_relations)
459 {
460 ddr_p ddr;
461 unsigned int i;
462
463 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
464 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
465 return false;
466
467 return true;
468 }
469
470 /* Returns the dependence level for a vector DIST of size LENGTH.
471 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
472 to the sequence of statements, not carried by any loop. */
473
474 static inline unsigned
475 dependence_level (lambda_vector dist_vect, int length)
476 {
477 int i;
478
479 for (i = 0; i < length; i++)
480 if (dist_vect[i] != 0)
481 return i + 1;
482
483 return 0;
484 }
485
486 /* Return the dependence level for the DDR relation. */
487
488 static inline unsigned
489 ddr_dependence_level (ddr_p ddr)
490 {
491 unsigned vector;
492 unsigned level = 0;
493
494 if (DDR_DIST_VECTS (ddr).exists ())
495 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
496
497 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
498 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
499 DDR_NB_LOOPS (ddr)));
500 return level;
501 }
502
503 /* Return the index of the variable VAR in the LOOP_NEST array. */
504
505 static inline int
506 index_in_loop_nest (int var, vec<loop_p> loop_nest)
507 {
508 struct loop *loopi;
509 int var_index;
510
511 for (var_index = 0; loop_nest.iterate (var_index, &loopi);
512 var_index++)
513 if (loopi->num == var)
514 break;
515
516 return var_index;
517 }
518
519 /* Returns true when the data reference DR the form "A[i] = ..."
520 with a stride equal to its unit type size. */
521
522 static inline bool
523 adjacent_dr_p (struct data_reference *dr)
524 {
525 /* If this is a bitfield store bail out. */
526 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
527 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
528 return false;
529
530 if (!DR_STEP (dr)
531 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
532 return false;
533
534 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
535 DR_STEP (dr)),
536 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
537 }
538
539 void split_constant_offset (tree , tree *, tree *);
540
541 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
542
543 static inline int
544 lambda_vector_gcd (lambda_vector vector, int size)
545 {
546 int i;
547 int gcd1 = 0;
548
549 if (size > 0)
550 {
551 gcd1 = vector[0];
552 for (i = 1; i < size; i++)
553 gcd1 = gcd (gcd1, vector[i]);
554 }
555 return gcd1;
556 }
557
558 /* Allocate a new vector of given SIZE. */
559
560 static inline lambda_vector
561 lambda_vector_new (int size)
562 {
563 return ggc_cleared_vec_alloc<int> (size);
564 }
565
566 /* Clear out vector VEC1 of length SIZE. */
567
568 static inline void
569 lambda_vector_clear (lambda_vector vec1, int size)
570 {
571 memset (vec1, 0, size * sizeof (*vec1));
572 }
573
574 /* Returns true when the vector V is lexicographically positive, in
575 other words, when the first nonzero element is positive. */
576
577 static inline bool
578 lambda_vector_lexico_pos (lambda_vector v,
579 unsigned n)
580 {
581 unsigned i;
582 for (i = 0; i < n; i++)
583 {
584 if (v[i] == 0)
585 continue;
586 if (v[i] < 0)
587 return false;
588 if (v[i] > 0)
589 return true;
590 }
591 return true;
592 }
593
594 /* Return true if vector VEC1 of length SIZE is the zero vector. */
595
596 static inline bool
597 lambda_vector_zerop (lambda_vector vec1, int size)
598 {
599 int i;
600 for (i = 0; i < size; i++)
601 if (vec1[i] != 0)
602 return false;
603 return true;
604 }
605
606 /* Allocate a matrix of M rows x N cols. */
607
608 static inline lambda_matrix
609 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
610 {
611 lambda_matrix mat;
612 int i;
613
614 mat = (lambda_matrix) obstack_alloc (lambda_obstack,
615 sizeof (lambda_vector *) * m);
616
617 for (i = 0; i < m; i++)
618 mat[i] = lambda_vector_new (n);
619
620 return mat;
621 }
622
623 #endif /* GCC_TREE_DATA_REF_H */