re PR tree-optimization/52406 (likely wrong code bug)
[gcc.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
24
25 #include "graphds.h"
26 #include "omega.h"
27 #include "tree-chrec.h"
28
29 /*
30 innermost_loop_behavior describes the evolution of the address of the memory
31 reference in the innermost enclosing loop. The address is expressed as
32 BASE + STEP * # of iteration, and base is further decomposed as the base
33 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
34 constant offset (INIT). Examples, in loop nest
35
36 for (i = 0; i < 100; i++)
37 for (j = 3; j < 100; j++)
38
39 Example 1 Example 2
40 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41
42
43 innermost_loop_behavior
44 base_address &a p
45 offset i * D_i x
46 init 3 * D_j + offsetof (b) 28
47 step D_j 4
48
49 */
50 struct innermost_loop_behavior
51 {
52 tree base_address;
53 tree offset;
54 tree init;
55 tree step;
56
57 /* Alignment information. ALIGNED_TO is set to the largest power of two
58 that divides OFFSET. */
59 tree aligned_to;
60 };
61
62 /* Describes the evolutions of indices of the memory reference. The indices
63 are indices of the ARRAY_REFs, indexes in artificial dimensions
64 added for member selection of records and the operands of MEM_REFs.
65 BASE_OBJECT is the part of the reference that is loop-invariant
66 (note that this reference does not have to cover the whole object
67 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
68 not recommended to use BASE_OBJECT in any code generation).
69 For the examples above,
70
71 base_object: a *(p + x + 4B * j_0)
72 indices: {j_0, +, 1}_2 {16, +, 4}_2
73 4
74 {i_0, +, 1}_1
75 {j_0, +, 1}_2
76 */
77
78 struct indices
79 {
80 /* The object. */
81 tree base_object;
82
83 /* A list of chrecs. Access functions of the indices. */
84 VEC(tree,heap) *access_fns;
85
86 /* Whether BASE_OBJECT is an access representing the whole object
87 or whether the access could not be constrained. */
88 bool unconstrained_base;
89 };
90
91 struct dr_alias
92 {
93 /* The alias information that should be used for new pointers to this
94 location. */
95 struct ptr_info_def *ptr_info;
96 };
97
98 /* An integer vector. A vector formally consists of an element of a vector
99 space. A vector space is a set that is closed under vector addition
100 and scalar multiplication. In this vector space, an element is a list of
101 integers. */
102 typedef int *lambda_vector;
103 DEF_VEC_P(lambda_vector);
104 DEF_VEC_ALLOC_P(lambda_vector,heap);
105 DEF_VEC_ALLOC_P(lambda_vector,gc);
106
107 /* An integer matrix. A matrix consists of m vectors of length n (IE
108 all vectors are the same length). */
109 typedef lambda_vector *lambda_matrix;
110
111 /* Each vector of the access matrix represents a linear access
112 function for a subscript. First elements correspond to the
113 leftmost indices, ie. for a[i][j] the first vector corresponds to
114 the subscript in "i". The elements of a vector are relative to
115 the loop nests in which the data reference is considered,
116 i.e. the vector is relative to the SCoP that provides the context
117 in which this data reference occurs.
118
119 For example, in
120
121 | loop_1
122 | loop_2
123 | a[i+3][2*j+n-1]
124
125 if "i" varies in loop_1 and "j" varies in loop_2, the access
126 matrix with respect to the loop nest {loop_1, loop_2} is:
127
128 | loop_1 loop_2 param_n cst
129 | 1 0 0 3
130 | 0 2 1 -1
131
132 whereas the access matrix with respect to loop_2 considers "i" as
133 a parameter:
134
135 | loop_2 param_i param_n cst
136 | 0 1 0 3
137 | 2 0 1 -1
138 */
139 struct access_matrix
140 {
141 VEC (loop_p, heap) *loop_nest;
142 int nb_induction_vars;
143 VEC (tree, heap) *parameters;
144 VEC (lambda_vector, gc) *matrix;
145 };
146
147 #define AM_LOOP_NEST(M) (M)->loop_nest
148 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
149 #define AM_PARAMETERS(M) (M)->parameters
150 #define AM_MATRIX(M) (M)->matrix
151 #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
152 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
153 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
154 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
155 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
156
157 /* Return the column in the access matrix of LOOP_NUM. */
158
159 static inline int
160 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
161 {
162 int i;
163 loop_p l;
164
165 for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
166 if (l->num == loop_num)
167 return i;
168
169 gcc_unreachable();
170 }
171
172 int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
173
174 struct data_reference
175 {
176 /* A pointer to the statement that contains this DR. */
177 gimple stmt;
178
179 /* A pointer to the memory reference. */
180 tree ref;
181
182 /* Auxiliary info specific to a pass. */
183 void *aux;
184
185 /* True when the data reference is in RHS of a stmt. */
186 bool is_read;
187
188 /* Behavior of the memory reference in the innermost loop. */
189 struct innermost_loop_behavior innermost;
190
191 /* Subscripts of this data reference. */
192 struct indices indices;
193
194 /* Alias information for the data reference. */
195 struct dr_alias alias;
196
197 /* Matrix representation for the data access functions. */
198 struct access_matrix *access_matrix;
199 };
200
201 #define DR_STMT(DR) (DR)->stmt
202 #define DR_REF(DR) (DR)->ref
203 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
204 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
205 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
206 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
207 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
208 #define DR_IS_READ(DR) (DR)->is_read
209 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
210 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
211 #define DR_OFFSET(DR) (DR)->innermost.offset
212 #define DR_INIT(DR) (DR)->innermost.init
213 #define DR_STEP(DR) (DR)->innermost.step
214 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
215 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
216 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
217
218 typedef struct data_reference *data_reference_p;
219 DEF_VEC_P(data_reference_p);
220 DEF_VEC_ALLOC_P (data_reference_p, heap);
221
222 enum data_dependence_direction {
223 dir_positive,
224 dir_negative,
225 dir_equal,
226 dir_positive_or_negative,
227 dir_positive_or_equal,
228 dir_negative_or_equal,
229 dir_star,
230 dir_independent
231 };
232
233 /* The description of the grid of iterations that overlap. At most
234 two loops are considered at the same time just now, hence at most
235 two functions are needed. For each of the functions, we store
236 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
237 where x, y, ... are variables. */
238
239 #define MAX_DIM 2
240
241 /* Special values of N. */
242 #define NO_DEPENDENCE 0
243 #define NOT_KNOWN (MAX_DIM + 1)
244 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
245 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
246 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
247
248 typedef VEC (tree, heap) *affine_fn;
249
250 typedef struct
251 {
252 unsigned n;
253 affine_fn fns[MAX_DIM];
254 } conflict_function;
255
256 /* What is a subscript? Given two array accesses a subscript is the
257 tuple composed of the access functions for a given dimension.
258 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
259 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
260 are stored in the data_dependence_relation structure under the form
261 of an array of subscripts. */
262
263 struct subscript
264 {
265 /* A description of the iterations for which the elements are
266 accessed twice. */
267 conflict_function *conflicting_iterations_in_a;
268 conflict_function *conflicting_iterations_in_b;
269
270 /* This field stores the information about the iteration domain
271 validity of the dependence relation. */
272 tree last_conflict;
273
274 /* Distance from the iteration that access a conflicting element in
275 A to the iteration that access this same conflicting element in
276 B. The distance is a tree scalar expression, i.e. a constant or a
277 symbolic expression, but certainly not a chrec function. */
278 tree distance;
279 };
280
281 typedef struct subscript *subscript_p;
282 DEF_VEC_P(subscript_p);
283 DEF_VEC_ALLOC_P (subscript_p, heap);
284
285 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
286 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
287 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
288 #define SUB_DISTANCE(SUB) SUB->distance
289
290 /* A data_dependence_relation represents a relation between two
291 data_references A and B. */
292
293 struct data_dependence_relation
294 {
295
296 struct data_reference *a;
297 struct data_reference *b;
298
299 /* A "yes/no/maybe" field for the dependence relation:
300
301 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
302 relation between A and B, and the description of this relation
303 is given in the SUBSCRIPTS array,
304
305 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
306 SUBSCRIPTS is empty,
307
308 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
309 but the analyzer cannot be more specific. */
310 tree are_dependent;
311
312 /* For each subscript in the dependence test, there is an element in
313 this array. This is the attribute that labels the edge A->B of
314 the data_dependence_relation. */
315 VEC (subscript_p, heap) *subscripts;
316
317 /* The analyzed loop nest. */
318 VEC (loop_p, heap) *loop_nest;
319
320 /* The classic direction vector. */
321 VEC (lambda_vector, heap) *dir_vects;
322
323 /* The classic distance vector. */
324 VEC (lambda_vector, heap) *dist_vects;
325
326 /* An index in loop_nest for the innermost loop that varies for
327 this data dependence relation. */
328 unsigned inner_loop;
329
330 /* Is the dependence reversed with respect to the lexicographic order? */
331 bool reversed_p;
332
333 /* When the dependence relation is affine, it can be represented by
334 a distance vector. */
335 bool affine_p;
336
337 /* Set to true when the dependence relation is on the same data
338 access. */
339 bool self_reference_p;
340 };
341
342 typedef struct data_dependence_relation *ddr_p;
343 DEF_VEC_P(ddr_p);
344 DEF_VEC_ALLOC_P(ddr_p,heap);
345
346 #define DDR_A(DDR) DDR->a
347 #define DDR_B(DDR) DDR->b
348 #define DDR_AFFINE_P(DDR) DDR->affine_p
349 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
350 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
351 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
352 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
353
354 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
355 /* The size of the direction/distance vectors: the number of loops in
356 the loop nest. */
357 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
358 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
359 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
360
361 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
362 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
363 #define DDR_NUM_DIST_VECTS(DDR) \
364 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
365 #define DDR_NUM_DIR_VECTS(DDR) \
366 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
367 #define DDR_DIR_VECT(DDR, I) \
368 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
369 #define DDR_DIST_VECT(DDR, I) \
370 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
371 #define DDR_REVERSED_P(DDR) DDR->reversed_p
372
373 \f
374
375 /* Describes a location of a memory reference. */
376
377 typedef struct data_ref_loc_d
378 {
379 /* Position of the memory reference. */
380 tree *pos;
381
382 /* True if the memory reference is read. */
383 bool is_read;
384 } data_ref_loc;
385
386 DEF_VEC_O (data_ref_loc);
387 DEF_VEC_ALLOC_O (data_ref_loc, heap);
388
389 bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
390 bool dr_analyze_innermost (struct data_reference *, struct loop *);
391 extern bool compute_data_dependences_for_loop (struct loop *, bool,
392 VEC (loop_p, heap) **,
393 VEC (data_reference_p, heap) **,
394 VEC (ddr_p, heap) **);
395 extern bool compute_data_dependences_for_bb (basic_block, bool,
396 VEC (data_reference_p, heap) **,
397 VEC (ddr_p, heap) **);
398 extern void print_direction_vector (FILE *, lambda_vector, int);
399 extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
400 extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
401 extern void dump_subscript (FILE *, struct subscript *);
402 extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
403 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
404 extern void dump_data_reference (FILE *, struct data_reference *);
405 extern void debug_data_reference (struct data_reference *);
406 extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
407 extern void debug_data_references (VEC (data_reference_p, heap) *);
408 extern void debug_data_dependence_relation (struct data_dependence_relation *);
409 extern void dump_data_dependence_relation (FILE *,
410 struct data_dependence_relation *);
411 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
412 extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
413 extern void dump_data_dependence_direction (FILE *,
414 enum data_dependence_direction);
415 extern void free_dependence_relation (struct data_dependence_relation *);
416 extern void free_dependence_relations (VEC (ddr_p, heap) *);
417 extern void free_data_ref (data_reference_p);
418 extern void free_data_refs (VEC (data_reference_p, heap) *);
419 extern bool find_data_references_in_stmt (struct loop *, gimple,
420 VEC (data_reference_p, heap) **);
421 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
422 VEC (data_reference_p, heap) **);
423 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
424 extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
425 extern struct data_dependence_relation *initialize_data_dependence_relation
426 (struct data_reference *, struct data_reference *, VEC (loop_p, heap) *);
427 extern void compute_self_dependence (struct data_dependence_relation *);
428 extern bool compute_all_dependences (VEC (data_reference_p, heap) *,
429 VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
430 bool);
431 extern tree find_data_references_in_bb (struct loop *, basic_block,
432 VEC (data_reference_p, heap) **);
433
434 extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
435 extern bool dr_may_alias_p (const struct data_reference *,
436 const struct data_reference *, bool);
437 extern bool dr_equal_offsets_p (struct data_reference *,
438 struct data_reference *);
439
440
441 /* Return true when the base objects of data references A and B are
442 the same memory object. */
443
444 static inline bool
445 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
446 {
447 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
448 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
449 }
450
451 /* Return true when the data references A and B are accessing the same
452 memory object with the same access functions. */
453
454 static inline bool
455 same_data_refs (data_reference_p a, data_reference_p b)
456 {
457 unsigned int i;
458
459 /* The references are exactly the same. */
460 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
461 return true;
462
463 if (!same_data_refs_base_objects (a, b))
464 return false;
465
466 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
467 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
468 return false;
469
470 return true;
471 }
472
473 /* Return true when the DDR contains two data references that have the
474 same access functions. */
475
476 static inline bool
477 same_access_functions (const struct data_dependence_relation *ddr)
478 {
479 unsigned i;
480
481 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
482 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
483 DR_ACCESS_FN (DDR_B (ddr), i)))
484 return false;
485
486 return true;
487 }
488
489 /* Return true when DDR is an anti-dependence relation. */
490
491 static inline bool
492 ddr_is_anti_dependent (ddr_p ddr)
493 {
494 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
495 && DR_IS_READ (DDR_A (ddr))
496 && DR_IS_WRITE (DDR_B (ddr))
497 && !same_access_functions (ddr));
498 }
499
500 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
501
502 static inline bool
503 ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
504 {
505 unsigned i;
506 ddr_p ddr;
507
508 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
509 if (ddr_is_anti_dependent (ddr))
510 return true;
511
512 return false;
513 }
514
515 /* Returns the dependence level for a vector DIST of size LENGTH.
516 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
517 to the sequence of statements, not carried by any loop. */
518
519 static inline unsigned
520 dependence_level (lambda_vector dist_vect, int length)
521 {
522 int i;
523
524 for (i = 0; i < length; i++)
525 if (dist_vect[i] != 0)
526 return i + 1;
527
528 return 0;
529 }
530
531 /* Return the dependence level for the DDR relation. */
532
533 static inline unsigned
534 ddr_dependence_level (ddr_p ddr)
535 {
536 unsigned vector;
537 unsigned level = 0;
538
539 if (DDR_DIST_VECTS (ddr))
540 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
541
542 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
543 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
544 DDR_NB_LOOPS (ddr)));
545 return level;
546 }
547
548 \f
549
550 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
551 typedef struct rdg_vertex
552 {
553 /* The statement represented by this vertex. */
554 gimple stmt;
555
556 /* True when the statement contains a write to memory. */
557 bool has_mem_write;
558
559 /* True when the statement contains a read from memory. */
560 bool has_mem_reads;
561 } *rdg_vertex_p;
562
563 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
564 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
565 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
566 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
567 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
568 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
569
570 void dump_rdg_vertex (FILE *, struct graph *, int);
571 void debug_rdg_vertex (struct graph *, int);
572 void dump_rdg_component (FILE *, struct graph *, int, bitmap);
573 void debug_rdg_component (struct graph *, int);
574 void dump_rdg (FILE *, struct graph *);
575 void debug_rdg (struct graph *);
576 int rdg_vertex_for_stmt (struct graph *, gimple);
577
578 /* Data dependence type. */
579
580 enum rdg_dep_type
581 {
582 /* Read After Write (RAW). */
583 flow_dd = 'f',
584
585 /* Write After Read (WAR). */
586 anti_dd = 'a',
587
588 /* Write After Write (WAW). */
589 output_dd = 'o',
590
591 /* Read After Read (RAR). */
592 input_dd = 'i'
593 };
594
595 /* Dependence information attached to an edge of the RDG. */
596
597 typedef struct rdg_edge
598 {
599 /* Type of the dependence. */
600 enum rdg_dep_type type;
601
602 /* Levels of the dependence: the depth of the loops that carry the
603 dependence. */
604 unsigned level;
605
606 /* Dependence relation between data dependences, NULL when one of
607 the vertices is a scalar. */
608 ddr_p relation;
609 } *rdg_edge_p;
610
611 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
612 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
613 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
614
615 struct graph *build_rdg (struct loop *,
616 VEC (loop_p, heap) **,
617 VEC (ddr_p, heap) **,
618 VEC (data_reference_p, heap) **);
619 struct graph *build_empty_rdg (int);
620 void free_rdg (struct graph *);
621
622 /* Return the index of the variable VAR in the LOOP_NEST array. */
623
624 static inline int
625 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
626 {
627 struct loop *loopi;
628 int var_index;
629
630 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
631 var_index++)
632 if (loopi->num == var)
633 break;
634
635 return var_index;
636 }
637
638 void stores_from_loop (struct loop *, VEC (gimple, heap) **);
639 void stores_zero_from_loop (struct loop *, VEC (gimple, heap) **);
640 void remove_similar_memory_refs (VEC (gimple, heap) **);
641 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
642 bool have_similar_memory_accesses (gimple, gimple);
643 bool stmt_with_adjacent_zero_store_dr_p (gimple);
644
645 /* Returns true when STRIDE is equal in absolute value to the size of
646 the unit type of TYPE. */
647
648 static inline bool
649 stride_of_unit_type_p (tree stride, tree type)
650 {
651 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (stride),
652 stride),
653 TYPE_SIZE_UNIT (type));
654 }
655
656 /* Determines whether RDG vertices V1 and V2 access to similar memory
657 locations, in which case they have to be in the same partition. */
658
659 static inline bool
660 rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
661 {
662 return have_similar_memory_accesses (RDG_STMT (rdg, v1),
663 RDG_STMT (rdg, v2));
664 }
665
666 /* In tree-data-ref.c */
667 void split_constant_offset (tree , tree *, tree *);
668
669 /* Strongly connected components of the reduced data dependence graph. */
670
671 typedef struct rdg_component
672 {
673 int num;
674 VEC (int, heap) *vertices;
675 } *rdgc;
676
677 DEF_VEC_P (rdgc);
678 DEF_VEC_ALLOC_P (rdgc, heap);
679
680 DEF_VEC_P (bitmap);
681 DEF_VEC_ALLOC_P (bitmap, heap);
682
683 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
684
685 static inline int
686 lambda_vector_gcd (lambda_vector vector, int size)
687 {
688 int i;
689 int gcd1 = 0;
690
691 if (size > 0)
692 {
693 gcd1 = vector[0];
694 for (i = 1; i < size; i++)
695 gcd1 = gcd (gcd1, vector[i]);
696 }
697 return gcd1;
698 }
699
700 /* Allocate a new vector of given SIZE. */
701
702 static inline lambda_vector
703 lambda_vector_new (int size)
704 {
705 return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
706 }
707
708 /* Clear out vector VEC1 of length SIZE. */
709
710 static inline void
711 lambda_vector_clear (lambda_vector vec1, int size)
712 {
713 memset (vec1, 0, size * sizeof (*vec1));
714 }
715
716 /* Returns true when the vector V is lexicographically positive, in
717 other words, when the first nonzero element is positive. */
718
719 static inline bool
720 lambda_vector_lexico_pos (lambda_vector v,
721 unsigned n)
722 {
723 unsigned i;
724 for (i = 0; i < n; i++)
725 {
726 if (v[i] == 0)
727 continue;
728 if (v[i] < 0)
729 return false;
730 if (v[i] > 0)
731 return true;
732 }
733 return true;
734 }
735
736 /* Return true if vector VEC1 of length SIZE is the zero vector. */
737
738 static inline bool
739 lambda_vector_zerop (lambda_vector vec1, int size)
740 {
741 int i;
742 for (i = 0; i < size; i++)
743 if (vec1[i] != 0)
744 return false;
745 return true;
746 }
747
748 /* Allocate a matrix of M rows x N cols. */
749
750 static inline lambda_matrix
751 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
752 {
753 lambda_matrix mat;
754 int i;
755
756 mat = (lambda_matrix) obstack_alloc (lambda_obstack,
757 sizeof (lambda_vector *) * m);
758
759 for (i = 0; i < m; i++)
760 mat[i] = lambda_vector_new (n);
761
762 return mat;
763 }
764
765 #endif /* GCC_TREE_DATA_REF_H */