re PR tree-optimization/53081 (memcpy/memset loop recognition)
[gcc.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
24
25 #include "graphds.h"
26 #include "omega.h"
27 #include "tree-chrec.h"
28
29 /*
30 innermost_loop_behavior describes the evolution of the address of the memory
31 reference in the innermost enclosing loop. The address is expressed as
32 BASE + STEP * # of iteration, and base is further decomposed as the base
33 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
34 constant offset (INIT). Examples, in loop nest
35
36 for (i = 0; i < 100; i++)
37 for (j = 3; j < 100; j++)
38
39 Example 1 Example 2
40 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41
42
43 innermost_loop_behavior
44 base_address &a p
45 offset i * D_i x
46 init 3 * D_j + offsetof (b) 28
47 step D_j 4
48
49 */
50 struct innermost_loop_behavior
51 {
52 tree base_address;
53 tree offset;
54 tree init;
55 tree step;
56
57 /* Alignment information. ALIGNED_TO is set to the largest power of two
58 that divides OFFSET. */
59 tree aligned_to;
60 };
61
62 /* Describes the evolutions of indices of the memory reference. The indices
63 are indices of the ARRAY_REFs, indexes in artificial dimensions
64 added for member selection of records and the operands of MEM_REFs.
65 BASE_OBJECT is the part of the reference that is loop-invariant
66 (note that this reference does not have to cover the whole object
67 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
68 not recommended to use BASE_OBJECT in any code generation).
69 For the examples above,
70
71 base_object: a *(p + x + 4B * j_0)
72 indices: {j_0, +, 1}_2 {16, +, 4}_2
73 4
74 {i_0, +, 1}_1
75 {j_0, +, 1}_2
76 */
77
78 struct indices
79 {
80 /* The object. */
81 tree base_object;
82
83 /* A list of chrecs. Access functions of the indices. */
84 VEC(tree,heap) *access_fns;
85
86 /* Whether BASE_OBJECT is an access representing the whole object
87 or whether the access could not be constrained. */
88 bool unconstrained_base;
89 };
90
91 struct dr_alias
92 {
93 /* The alias information that should be used for new pointers to this
94 location. */
95 struct ptr_info_def *ptr_info;
96 };
97
98 /* An integer vector. A vector formally consists of an element of a vector
99 space. A vector space is a set that is closed under vector addition
100 and scalar multiplication. In this vector space, an element is a list of
101 integers. */
102 typedef int *lambda_vector;
103 DEF_VEC_P(lambda_vector);
104 DEF_VEC_ALLOC_P(lambda_vector,heap);
105 DEF_VEC_ALLOC_P(lambda_vector,gc);
106
107 /* An integer matrix. A matrix consists of m vectors of length n (IE
108 all vectors are the same length). */
109 typedef lambda_vector *lambda_matrix;
110
111 /* Each vector of the access matrix represents a linear access
112 function for a subscript. First elements correspond to the
113 leftmost indices, ie. for a[i][j] the first vector corresponds to
114 the subscript in "i". The elements of a vector are relative to
115 the loop nests in which the data reference is considered,
116 i.e. the vector is relative to the SCoP that provides the context
117 in which this data reference occurs.
118
119 For example, in
120
121 | loop_1
122 | loop_2
123 | a[i+3][2*j+n-1]
124
125 if "i" varies in loop_1 and "j" varies in loop_2, the access
126 matrix with respect to the loop nest {loop_1, loop_2} is:
127
128 | loop_1 loop_2 param_n cst
129 | 1 0 0 3
130 | 0 2 1 -1
131
132 whereas the access matrix with respect to loop_2 considers "i" as
133 a parameter:
134
135 | loop_2 param_i param_n cst
136 | 0 1 0 3
137 | 2 0 1 -1
138 */
139 struct access_matrix
140 {
141 VEC (loop_p, heap) *loop_nest;
142 int nb_induction_vars;
143 VEC (tree, heap) *parameters;
144 VEC (lambda_vector, gc) *matrix;
145 };
146
147 #define AM_LOOP_NEST(M) (M)->loop_nest
148 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
149 #define AM_PARAMETERS(M) (M)->parameters
150 #define AM_MATRIX(M) (M)->matrix
151 #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
152 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
153 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
154 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
155 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
156
157 /* Return the column in the access matrix of LOOP_NUM. */
158
159 static inline int
160 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
161 {
162 int i;
163 loop_p l;
164
165 for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
166 if (l->num == loop_num)
167 return i;
168
169 gcc_unreachable();
170 }
171
172 struct data_reference
173 {
174 /* A pointer to the statement that contains this DR. */
175 gimple stmt;
176
177 /* A pointer to the memory reference. */
178 tree ref;
179
180 /* Auxiliary info specific to a pass. */
181 void *aux;
182
183 /* True when the data reference is in RHS of a stmt. */
184 bool is_read;
185
186 /* Behavior of the memory reference in the innermost loop. */
187 struct innermost_loop_behavior innermost;
188
189 /* Subscripts of this data reference. */
190 struct indices indices;
191
192 /* Alias information for the data reference. */
193 struct dr_alias alias;
194
195 /* Matrix representation for the data access functions. */
196 struct access_matrix *access_matrix;
197 };
198
199 #define DR_STMT(DR) (DR)->stmt
200 #define DR_REF(DR) (DR)->ref
201 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
202 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
203 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
204 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
205 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
206 #define DR_IS_READ(DR) (DR)->is_read
207 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
208 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
209 #define DR_OFFSET(DR) (DR)->innermost.offset
210 #define DR_INIT(DR) (DR)->innermost.init
211 #define DR_STEP(DR) (DR)->innermost.step
212 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
213 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
214 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
215
216 typedef struct data_reference *data_reference_p;
217 DEF_VEC_P(data_reference_p);
218 DEF_VEC_ALLOC_P (data_reference_p, heap);
219
220 enum data_dependence_direction {
221 dir_positive,
222 dir_negative,
223 dir_equal,
224 dir_positive_or_negative,
225 dir_positive_or_equal,
226 dir_negative_or_equal,
227 dir_star,
228 dir_independent
229 };
230
231 /* The description of the grid of iterations that overlap. At most
232 two loops are considered at the same time just now, hence at most
233 two functions are needed. For each of the functions, we store
234 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
235 where x, y, ... are variables. */
236
237 #define MAX_DIM 2
238
239 /* Special values of N. */
240 #define NO_DEPENDENCE 0
241 #define NOT_KNOWN (MAX_DIM + 1)
242 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
243 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
244 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
245
246 typedef VEC (tree, heap) *affine_fn;
247
248 typedef struct
249 {
250 unsigned n;
251 affine_fn fns[MAX_DIM];
252 } conflict_function;
253
254 /* What is a subscript? Given two array accesses a subscript is the
255 tuple composed of the access functions for a given dimension.
256 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
257 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
258 are stored in the data_dependence_relation structure under the form
259 of an array of subscripts. */
260
261 struct subscript
262 {
263 /* A description of the iterations for which the elements are
264 accessed twice. */
265 conflict_function *conflicting_iterations_in_a;
266 conflict_function *conflicting_iterations_in_b;
267
268 /* This field stores the information about the iteration domain
269 validity of the dependence relation. */
270 tree last_conflict;
271
272 /* Distance from the iteration that access a conflicting element in
273 A to the iteration that access this same conflicting element in
274 B. The distance is a tree scalar expression, i.e. a constant or a
275 symbolic expression, but certainly not a chrec function. */
276 tree distance;
277 };
278
279 typedef struct subscript *subscript_p;
280 DEF_VEC_P(subscript_p);
281 DEF_VEC_ALLOC_P (subscript_p, heap);
282
283 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
284 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
285 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
286 #define SUB_DISTANCE(SUB) SUB->distance
287
288 /* A data_dependence_relation represents a relation between two
289 data_references A and B. */
290
291 struct data_dependence_relation
292 {
293
294 struct data_reference *a;
295 struct data_reference *b;
296
297 /* A "yes/no/maybe" field for the dependence relation:
298
299 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
300 relation between A and B, and the description of this relation
301 is given in the SUBSCRIPTS array,
302
303 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
304 SUBSCRIPTS is empty,
305
306 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
307 but the analyzer cannot be more specific. */
308 tree are_dependent;
309
310 /* For each subscript in the dependence test, there is an element in
311 this array. This is the attribute that labels the edge A->B of
312 the data_dependence_relation. */
313 VEC (subscript_p, heap) *subscripts;
314
315 /* The analyzed loop nest. */
316 VEC (loop_p, heap) *loop_nest;
317
318 /* The classic direction vector. */
319 VEC (lambda_vector, heap) *dir_vects;
320
321 /* The classic distance vector. */
322 VEC (lambda_vector, heap) *dist_vects;
323
324 /* An index in loop_nest for the innermost loop that varies for
325 this data dependence relation. */
326 unsigned inner_loop;
327
328 /* Is the dependence reversed with respect to the lexicographic order? */
329 bool reversed_p;
330
331 /* When the dependence relation is affine, it can be represented by
332 a distance vector. */
333 bool affine_p;
334
335 /* Set to true when the dependence relation is on the same data
336 access. */
337 bool self_reference_p;
338 };
339
340 typedef struct data_dependence_relation *ddr_p;
341 DEF_VEC_P(ddr_p);
342 DEF_VEC_ALLOC_P(ddr_p,heap);
343
344 #define DDR_A(DDR) DDR->a
345 #define DDR_B(DDR) DDR->b
346 #define DDR_AFFINE_P(DDR) DDR->affine_p
347 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
348 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
349 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
350 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
351
352 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
353 /* The size of the direction/distance vectors: the number of loops in
354 the loop nest. */
355 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
356 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
357 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
358
359 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
360 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
361 #define DDR_NUM_DIST_VECTS(DDR) \
362 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
363 #define DDR_NUM_DIR_VECTS(DDR) \
364 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
365 #define DDR_DIR_VECT(DDR, I) \
366 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
367 #define DDR_DIST_VECT(DDR, I) \
368 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
369 #define DDR_REVERSED_P(DDR) DDR->reversed_p
370
371 \f
372 bool dr_analyze_innermost (struct data_reference *, struct loop *);
373 extern bool compute_data_dependences_for_loop (struct loop *, bool,
374 VEC (loop_p, heap) **,
375 VEC (data_reference_p, heap) **,
376 VEC (ddr_p, heap) **);
377 extern bool compute_data_dependences_for_bb (basic_block, bool,
378 VEC (data_reference_p, heap) **,
379 VEC (ddr_p, heap) **);
380 extern void debug_ddrs (VEC (ddr_p, heap) *);
381 extern void dump_data_reference (FILE *, struct data_reference *);
382 extern void debug_data_reference (struct data_reference *);
383 extern void debug_data_references (VEC (data_reference_p, heap) *);
384 extern void debug_data_dependence_relation (struct data_dependence_relation *);
385 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
386 extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
387 extern void free_dependence_relation (struct data_dependence_relation *);
388 extern void free_dependence_relations (VEC (ddr_p, heap) *);
389 extern void free_data_ref (data_reference_p);
390 extern void free_data_refs (VEC (data_reference_p, heap) *);
391 extern bool find_data_references_in_stmt (struct loop *, gimple,
392 VEC (data_reference_p, heap) **);
393 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
394 VEC (data_reference_p, heap) **);
395 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
396 extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
397 extern struct data_dependence_relation *initialize_data_dependence_relation
398 (struct data_reference *, struct data_reference *, VEC (loop_p, heap) *);
399 extern void compute_self_dependence (struct data_dependence_relation *);
400 extern bool compute_all_dependences (VEC (data_reference_p, heap) *,
401 VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
402 bool);
403 extern tree find_data_references_in_bb (struct loop *, basic_block,
404 VEC (data_reference_p, heap) **);
405
406 extern bool dr_may_alias_p (const struct data_reference *,
407 const struct data_reference *, bool);
408 extern bool dr_equal_offsets_p (struct data_reference *,
409 struct data_reference *);
410
411
412 /* Return true when the base objects of data references A and B are
413 the same memory object. */
414
415 static inline bool
416 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
417 {
418 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
419 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
420 }
421
422 /* Return true when the data references A and B are accessing the same
423 memory object with the same access functions. */
424
425 static inline bool
426 same_data_refs (data_reference_p a, data_reference_p b)
427 {
428 unsigned int i;
429
430 /* The references are exactly the same. */
431 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
432 return true;
433
434 if (!same_data_refs_base_objects (a, b))
435 return false;
436
437 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
438 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
439 return false;
440
441 return true;
442 }
443
444 /* Return true when the DDR contains two data references that have the
445 same access functions. */
446
447 static inline bool
448 same_access_functions (const struct data_dependence_relation *ddr)
449 {
450 unsigned i;
451
452 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
453 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
454 DR_ACCESS_FN (DDR_B (ddr), i)))
455 return false;
456
457 return true;
458 }
459
460 /* Return true when DDR is an anti-dependence relation. */
461
462 static inline bool
463 ddr_is_anti_dependent (ddr_p ddr)
464 {
465 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
466 && DR_IS_READ (DDR_A (ddr))
467 && DR_IS_WRITE (DDR_B (ddr))
468 && !same_access_functions (ddr));
469 }
470
471 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
472
473 static inline bool
474 ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
475 {
476 unsigned i;
477 ddr_p ddr;
478
479 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
480 if (ddr_is_anti_dependent (ddr))
481 return true;
482
483 return false;
484 }
485
486 /* Returns the dependence level for a vector DIST of size LENGTH.
487 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
488 to the sequence of statements, not carried by any loop. */
489
490 static inline unsigned
491 dependence_level (lambda_vector dist_vect, int length)
492 {
493 int i;
494
495 for (i = 0; i < length; i++)
496 if (dist_vect[i] != 0)
497 return i + 1;
498
499 return 0;
500 }
501
502 /* Return the dependence level for the DDR relation. */
503
504 static inline unsigned
505 ddr_dependence_level (ddr_p ddr)
506 {
507 unsigned vector;
508 unsigned level = 0;
509
510 if (DDR_DIST_VECTS (ddr))
511 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
512
513 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
514 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
515 DDR_NB_LOOPS (ddr)));
516 return level;
517 }
518
519 \f
520
521 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
522 typedef struct rdg_vertex
523 {
524 /* The statement represented by this vertex. */
525 gimple stmt;
526
527 /* Vector of data-references in this statement. */
528 VEC(data_reference_p, heap) *datarefs;
529
530 /* True when the statement contains a write to memory. */
531 bool has_mem_write;
532
533 /* True when the statement contains a read from memory. */
534 bool has_mem_reads;
535 } *rdg_vertex_p;
536
537 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
538 #define RDGV_DATAREFS(V) ((struct rdg_vertex *) ((V)->data))->datarefs
539 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
540 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
541 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
542 #define RDG_DATAREFS(RDG, I) RDGV_DATAREFS (&(RDG->vertices[I]))
543 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
544 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
545
546 void debug_rdg_vertex (struct graph *, int);
547 void debug_rdg_component (struct graph *, int);
548 void dump_rdg (FILE *, struct graph *);
549 void debug_rdg (struct graph *);
550 int rdg_vertex_for_stmt (struct graph *, gimple);
551
552 /* Data dependence type. */
553
554 enum rdg_dep_type
555 {
556 /* Read After Write (RAW). */
557 flow_dd = 'f',
558
559 /* Write After Read (WAR). */
560 anti_dd = 'a',
561
562 /* Write After Write (WAW). */
563 output_dd = 'o',
564
565 /* Read After Read (RAR). */
566 input_dd = 'i'
567 };
568
569 /* Dependence information attached to an edge of the RDG. */
570
571 typedef struct rdg_edge
572 {
573 /* Type of the dependence. */
574 enum rdg_dep_type type;
575
576 /* Levels of the dependence: the depth of the loops that carry the
577 dependence. */
578 unsigned level;
579
580 /* Dependence relation between data dependences, NULL when one of
581 the vertices is a scalar. */
582 ddr_p relation;
583 } *rdg_edge_p;
584
585 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
586 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
587 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
588
589 struct graph *build_rdg (struct loop *,
590 VEC (loop_p, heap) **,
591 VEC (ddr_p, heap) **,
592 VEC (data_reference_p, heap) **);
593 struct graph *build_empty_rdg (int);
594 void free_rdg (struct graph *);
595
596 /* Return the index of the variable VAR in the LOOP_NEST array. */
597
598 static inline int
599 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
600 {
601 struct loop *loopi;
602 int var_index;
603
604 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
605 var_index++)
606 if (loopi->num == var)
607 break;
608
609 return var_index;
610 }
611
612 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
613
614 /* Returns true when the data reference DR the form "A[i] = ..."
615 with a stride equal to its unit type size. */
616
617 static inline bool
618 adjacent_dr_p (struct data_reference *dr)
619 {
620 /* If this is a bitfield store bail out. */
621 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
622 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
623 return false;
624
625 if (!DR_STEP (dr)
626 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
627 return false;
628
629 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
630 DR_STEP (dr)),
631 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
632 }
633
634 /* In tree-data-ref.c */
635 void split_constant_offset (tree , tree *, tree *);
636
637 /* Strongly connected components of the reduced data dependence graph. */
638
639 typedef struct rdg_component
640 {
641 int num;
642 VEC (int, heap) *vertices;
643 } *rdgc;
644
645 DEF_VEC_P (rdgc);
646 DEF_VEC_ALLOC_P (rdgc, heap);
647
648 DEF_VEC_P (bitmap);
649 DEF_VEC_ALLOC_P (bitmap, heap);
650
651 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
652
653 static inline int
654 lambda_vector_gcd (lambda_vector vector, int size)
655 {
656 int i;
657 int gcd1 = 0;
658
659 if (size > 0)
660 {
661 gcd1 = vector[0];
662 for (i = 1; i < size; i++)
663 gcd1 = gcd (gcd1, vector[i]);
664 }
665 return gcd1;
666 }
667
668 /* Allocate a new vector of given SIZE. */
669
670 static inline lambda_vector
671 lambda_vector_new (int size)
672 {
673 return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
674 }
675
676 /* Clear out vector VEC1 of length SIZE. */
677
678 static inline void
679 lambda_vector_clear (lambda_vector vec1, int size)
680 {
681 memset (vec1, 0, size * sizeof (*vec1));
682 }
683
684 /* Returns true when the vector V is lexicographically positive, in
685 other words, when the first nonzero element is positive. */
686
687 static inline bool
688 lambda_vector_lexico_pos (lambda_vector v,
689 unsigned n)
690 {
691 unsigned i;
692 for (i = 0; i < n; i++)
693 {
694 if (v[i] == 0)
695 continue;
696 if (v[i] < 0)
697 return false;
698 if (v[i] > 0)
699 return true;
700 }
701 return true;
702 }
703
704 /* Return true if vector VEC1 of length SIZE is the zero vector. */
705
706 static inline bool
707 lambda_vector_zerop (lambda_vector vec1, int size)
708 {
709 int i;
710 for (i = 0; i < size; i++)
711 if (vec1[i] != 0)
712 return false;
713 return true;
714 }
715
716 /* Allocate a matrix of M rows x N cols. */
717
718 static inline lambda_matrix
719 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
720 {
721 lambda_matrix mat;
722 int i;
723
724 mat = (lambda_matrix) obstack_alloc (lambda_obstack,
725 sizeof (lambda_vector *) * m);
726
727 for (i = 0; i < m; i++)
728 mat[i] = lambda_vector_new (n);
729
730 return mat;
731 }
732
733 #endif /* GCC_TREE_DATA_REF_H */