invoke.texi: Update copyright years.
[gcc.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
24
25 #include "graphds.h"
26 #include "omega.h"
27 #include "tree-chrec.h"
28
29 /*
30 innermost_loop_behavior describes the evolution of the address of the memory
31 reference in the innermost enclosing loop. The address is expressed as
32 BASE + STEP * # of iteration, and base is further decomposed as the base
33 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
34 constant offset (INIT). Examples, in loop nest
35
36 for (i = 0; i < 100; i++)
37 for (j = 3; j < 100; j++)
38
39 Example 1 Example 2
40 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41
42
43 innermost_loop_behavior
44 base_address &a p
45 offset i * D_i x
46 init 3 * D_j + offsetof (b) 28
47 step D_j 4
48
49 */
50 struct innermost_loop_behavior
51 {
52 tree base_address;
53 tree offset;
54 tree init;
55 tree step;
56
57 /* Alignment information. ALIGNED_TO is set to the largest power of two
58 that divides OFFSET. */
59 tree aligned_to;
60 };
61
62 /* Describes the evolutions of indices of the memory reference. The indices
63 are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
64 For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
65 (note that this reference does not have to be valid, if zero does not
66 belong to the range of the array; hence it is not recommended to use
67 BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
68 set to the loop-invariant part of the address of the object, except for
69 the constant offset. For the examples above,
70
71 base_object: a[0].b[0][0] *(p + x + 4B * j_0)
72 indices: {j_0, +, 1}_2 {16, +, 4}_2
73 {i_0, +, 1}_1
74 {j_0, +, 1}_2
75 */
76
77 struct indices
78 {
79 /* The object. */
80 tree base_object;
81
82 /* A list of chrecs. Access functions of the indices. */
83 VEC(tree,heap) *access_fns;
84 };
85
86 struct dr_alias
87 {
88 /* The alias information that should be used for new pointers to this
89 location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
90 struct ptr_info_def *ptr_info;
91
92 /* The set of virtual operands corresponding to this memory reference,
93 serving as a description of the alias information for the memory
94 reference. This could be eliminated if we had alias oracle. */
95 bitmap vops;
96 };
97
98 /* An integer vector. A vector formally consists of an element of a vector
99 space. A vector space is a set that is closed under vector addition
100 and scalar multiplication. In this vector space, an element is a list of
101 integers. */
102 typedef int *lambda_vector;
103 DEF_VEC_P(lambda_vector);
104 DEF_VEC_ALLOC_P(lambda_vector,heap);
105 DEF_VEC_ALLOC_P(lambda_vector,gc);
106
107 /* An integer matrix. A matrix consists of m vectors of length n (IE
108 all vectors are the same length). */
109 typedef lambda_vector *lambda_matrix;
110
111 /* Each vector of the access matrix represents a linear access
112 function for a subscript. First elements correspond to the
113 leftmost indices, ie. for a[i][j] the first vector corresponds to
114 the subscript in "i". The elements of a vector are relative to
115 the loop nests in which the data reference is considered,
116 i.e. the vector is relative to the SCoP that provides the context
117 in which this data reference occurs.
118
119 For example, in
120
121 | loop_1
122 | loop_2
123 | a[i+3][2*j+n-1]
124
125 if "i" varies in loop_1 and "j" varies in loop_2, the access
126 matrix with respect to the loop nest {loop_1, loop_2} is:
127
128 | loop_1 loop_2 param_n cst
129 | 1 0 0 3
130 | 0 2 1 -1
131
132 whereas the access matrix with respect to loop_2 considers "i" as
133 a parameter:
134
135 | loop_2 param_i param_n cst
136 | 0 1 0 3
137 | 2 0 1 -1
138 */
139 struct access_matrix
140 {
141 VEC (loop_p, heap) *loop_nest;
142 int nb_induction_vars;
143 VEC (tree, heap) *parameters;
144 VEC (lambda_vector, gc) *matrix;
145 };
146
147 #define AM_LOOP_NEST(M) (M)->loop_nest
148 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
149 #define AM_PARAMETERS(M) (M)->parameters
150 #define AM_MATRIX(M) (M)->matrix
151 #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
152 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
153 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
154 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
155 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
156
157 /* Return the column in the access matrix of LOOP_NUM. */
158
159 static inline int
160 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
161 {
162 int i;
163 loop_p l;
164
165 for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
166 if (l->num == loop_num)
167 return i;
168
169 gcc_unreachable();
170 }
171
172 int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
173
174 struct data_reference
175 {
176 /* A pointer to the statement that contains this DR. */
177 gimple stmt;
178
179 /* A pointer to the memory reference. */
180 tree ref;
181
182 /* Auxiliary info specific to a pass. */
183 void *aux;
184
185 /* True when the data reference is in RHS of a stmt. */
186 bool is_read;
187
188 /* Behavior of the memory reference in the innermost loop. */
189 struct innermost_loop_behavior innermost;
190
191 /* Subscripts of this data reference. */
192 struct indices indices;
193
194 /* Alias information for the data reference. */
195 struct dr_alias alias;
196
197 /* Matrix representation for the data access functions. */
198 struct access_matrix *access_matrix;
199 };
200
201 #define DR_STMT(DR) (DR)->stmt
202 #define DR_REF(DR) (DR)->ref
203 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
204 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
205 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
206 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
207 #define DR_IS_READ(DR) (DR)->is_read
208 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
209 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
210 #define DR_OFFSET(DR) (DR)->innermost.offset
211 #define DR_INIT(DR) (DR)->innermost.init
212 #define DR_STEP(DR) (DR)->innermost.step
213 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
214 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
215 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
216
217 typedef struct data_reference *data_reference_p;
218 DEF_VEC_P(data_reference_p);
219 DEF_VEC_ALLOC_P (data_reference_p, heap);
220
221 enum data_dependence_direction {
222 dir_positive,
223 dir_negative,
224 dir_equal,
225 dir_positive_or_negative,
226 dir_positive_or_equal,
227 dir_negative_or_equal,
228 dir_star,
229 dir_independent
230 };
231
232 /* The description of the grid of iterations that overlap. At most
233 two loops are considered at the same time just now, hence at most
234 two functions are needed. For each of the functions, we store
235 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
236 where x, y, ... are variables. */
237
238 #define MAX_DIM 2
239
240 /* Special values of N. */
241 #define NO_DEPENDENCE 0
242 #define NOT_KNOWN (MAX_DIM + 1)
243 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
244 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
245 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
246
247 typedef VEC (tree, heap) *affine_fn;
248
249 typedef struct
250 {
251 unsigned n;
252 affine_fn fns[MAX_DIM];
253 } conflict_function;
254
255 /* What is a subscript? Given two array accesses a subscript is the
256 tuple composed of the access functions for a given dimension.
257 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
258 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
259 are stored in the data_dependence_relation structure under the form
260 of an array of subscripts. */
261
262 struct subscript
263 {
264 /* A description of the iterations for which the elements are
265 accessed twice. */
266 conflict_function *conflicting_iterations_in_a;
267 conflict_function *conflicting_iterations_in_b;
268
269 /* This field stores the information about the iteration domain
270 validity of the dependence relation. */
271 tree last_conflict;
272
273 /* Distance from the iteration that access a conflicting element in
274 A to the iteration that access this same conflicting element in
275 B. The distance is a tree scalar expression, i.e. a constant or a
276 symbolic expression, but certainly not a chrec function. */
277 tree distance;
278 };
279
280 typedef struct subscript *subscript_p;
281 DEF_VEC_P(subscript_p);
282 DEF_VEC_ALLOC_P (subscript_p, heap);
283
284 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
285 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
286 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
287 #define SUB_DISTANCE(SUB) SUB->distance
288
289 /* A data_dependence_relation represents a relation between two
290 data_references A and B. */
291
292 struct data_dependence_relation
293 {
294
295 struct data_reference *a;
296 struct data_reference *b;
297
298 /* A "yes/no/maybe" field for the dependence relation:
299
300 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
301 relation between A and B, and the description of this relation
302 is given in the SUBSCRIPTS array,
303
304 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
305 SUBSCRIPTS is empty,
306
307 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
308 but the analyzer cannot be more specific. */
309 tree are_dependent;
310
311 /* For each subscript in the dependence test, there is an element in
312 this array. This is the attribute that labels the edge A->B of
313 the data_dependence_relation. */
314 VEC (subscript_p, heap) *subscripts;
315
316 /* The analyzed loop nest. */
317 VEC (loop_p, heap) *loop_nest;
318
319 /* The classic direction vector. */
320 VEC (lambda_vector, heap) *dir_vects;
321
322 /* The classic distance vector. */
323 VEC (lambda_vector, heap) *dist_vects;
324
325 /* An index in loop_nest for the innermost loop that varies for
326 this data dependence relation. */
327 unsigned inner_loop;
328
329 /* Is the dependence reversed with respect to the lexicographic order? */
330 bool reversed_p;
331
332 /* When the dependence relation is affine, it can be represented by
333 a distance vector. */
334 bool affine_p;
335
336 /* Set to true when the dependence relation is on the same data
337 access. */
338 bool self_reference_p;
339 };
340
341 typedef struct data_dependence_relation *ddr_p;
342 DEF_VEC_P(ddr_p);
343 DEF_VEC_ALLOC_P(ddr_p,heap);
344
345 #define DDR_A(DDR) DDR->a
346 #define DDR_B(DDR) DDR->b
347 #define DDR_AFFINE_P(DDR) DDR->affine_p
348 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
349 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
350 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
351 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
352
353 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
354 /* The size of the direction/distance vectors: the number of loops in
355 the loop nest. */
356 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
357 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
358 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
359
360 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
361 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
362 #define DDR_NUM_DIST_VECTS(DDR) \
363 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
364 #define DDR_NUM_DIR_VECTS(DDR) \
365 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
366 #define DDR_DIR_VECT(DDR, I) \
367 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
368 #define DDR_DIST_VECT(DDR, I) \
369 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
370 #define DDR_REVERSED_P(DDR) DDR->reversed_p
371
372 \f
373
374 /* Describes a location of a memory reference. */
375
376 typedef struct data_ref_loc_d
377 {
378 /* Position of the memory reference. */
379 tree *pos;
380
381 /* True if the memory reference is read. */
382 bool is_read;
383 } data_ref_loc;
384
385 DEF_VEC_O (data_ref_loc);
386 DEF_VEC_ALLOC_O (data_ref_loc, heap);
387
388 bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
389 bool dr_analyze_innermost (struct data_reference *, struct loop *);
390 extern bool compute_data_dependences_for_loop (struct loop *, bool,
391 VEC (loop_p, heap) **,
392 VEC (data_reference_p, heap) **,
393 VEC (ddr_p, heap) **);
394 extern bool compute_data_dependences_for_bb (basic_block, bool,
395 VEC (data_reference_p, heap) **,
396 VEC (ddr_p, heap) **);
397 extern void print_direction_vector (FILE *, lambda_vector, int);
398 extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
399 extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
400 extern void dump_subscript (FILE *, struct subscript *);
401 extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
402 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
403 extern void dump_data_reference (FILE *, struct data_reference *);
404 extern void debug_data_reference (struct data_reference *);
405 extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
406 extern void debug_data_references (VEC (data_reference_p, heap) *);
407 extern void debug_data_dependence_relation (struct data_dependence_relation *);
408 extern void dump_data_dependence_relation (FILE *,
409 struct data_dependence_relation *);
410 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
411 extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
412 extern void dump_data_dependence_direction (FILE *,
413 enum data_dependence_direction);
414 extern void free_dependence_relation (struct data_dependence_relation *);
415 extern void free_dependence_relations (VEC (ddr_p, heap) *);
416 extern void free_data_ref (data_reference_p);
417 extern void free_data_refs (VEC (data_reference_p, heap) *);
418 extern bool find_data_references_in_stmt (struct loop *, gimple,
419 VEC (data_reference_p, heap) **);
420 extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
421 VEC (data_reference_p, heap) **);
422 struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
423 extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
424 extern struct data_dependence_relation *initialize_data_dependence_relation
425 (struct data_reference *, struct data_reference *, VEC (loop_p, heap) *);
426 extern void compute_self_dependence (struct data_dependence_relation *);
427 extern bool compute_all_dependences (VEC (data_reference_p, heap) *,
428 VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
429 bool);
430 extern tree find_data_references_in_bb (struct loop *, basic_block,
431 VEC (data_reference_p, heap) **);
432
433 extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
434 extern bool dr_may_alias_p (const struct data_reference *,
435 const struct data_reference *, bool);
436 extern bool dr_equal_offsets_p (struct data_reference *,
437 struct data_reference *);
438
439
440 /* Return true when the base objects of data references A and B are
441 the same memory object. */
442
443 static inline bool
444 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
445 {
446 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
447 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
448 }
449
450 /* Return true when the data references A and B are accessing the same
451 memory object with the same access functions. */
452
453 static inline bool
454 same_data_refs (data_reference_p a, data_reference_p b)
455 {
456 unsigned int i;
457
458 /* The references are exactly the same. */
459 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
460 return true;
461
462 if (!same_data_refs_base_objects (a, b))
463 return false;
464
465 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
466 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
467 return false;
468
469 return true;
470 }
471
472 /* Return true when the DDR contains two data references that have the
473 same access functions. */
474
475 static inline bool
476 same_access_functions (const struct data_dependence_relation *ddr)
477 {
478 unsigned i;
479
480 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
481 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
482 DR_ACCESS_FN (DDR_B (ddr), i)))
483 return false;
484
485 return true;
486 }
487
488 /* Return true when DDR is an anti-dependence relation. */
489
490 static inline bool
491 ddr_is_anti_dependent (ddr_p ddr)
492 {
493 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
494 && DR_IS_READ (DDR_A (ddr))
495 && DR_IS_WRITE (DDR_B (ddr))
496 && !same_access_functions (ddr));
497 }
498
499 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
500
501 static inline bool
502 ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
503 {
504 unsigned i;
505 ddr_p ddr;
506
507 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
508 if (ddr_is_anti_dependent (ddr))
509 return true;
510
511 return false;
512 }
513
514 /* Returns the dependence level for a vector DIST of size LENGTH.
515 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
516 to the sequence of statements, not carried by any loop. */
517
518 static inline unsigned
519 dependence_level (lambda_vector dist_vect, int length)
520 {
521 int i;
522
523 for (i = 0; i < length; i++)
524 if (dist_vect[i] != 0)
525 return i + 1;
526
527 return 0;
528 }
529
530 /* Return the dependence level for the DDR relation. */
531
532 static inline unsigned
533 ddr_dependence_level (ddr_p ddr)
534 {
535 unsigned vector;
536 unsigned level = 0;
537
538 if (DDR_DIST_VECTS (ddr))
539 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
540
541 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
542 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
543 DDR_NB_LOOPS (ddr)));
544 return level;
545 }
546
547 \f
548
549 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
550 typedef struct rdg_vertex
551 {
552 /* The statement represented by this vertex. */
553 gimple stmt;
554
555 /* True when the statement contains a write to memory. */
556 bool has_mem_write;
557
558 /* True when the statement contains a read from memory. */
559 bool has_mem_reads;
560 } *rdg_vertex_p;
561
562 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
563 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
564 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
565 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
566 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
567 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
568
569 void dump_rdg_vertex (FILE *, struct graph *, int);
570 void debug_rdg_vertex (struct graph *, int);
571 void dump_rdg_component (FILE *, struct graph *, int, bitmap);
572 void debug_rdg_component (struct graph *, int);
573 void dump_rdg (FILE *, struct graph *);
574 void debug_rdg (struct graph *);
575 int rdg_vertex_for_stmt (struct graph *, gimple);
576
577 /* Data dependence type. */
578
579 enum rdg_dep_type
580 {
581 /* Read After Write (RAW). */
582 flow_dd = 'f',
583
584 /* Write After Read (WAR). */
585 anti_dd = 'a',
586
587 /* Write After Write (WAW). */
588 output_dd = 'o',
589
590 /* Read After Read (RAR). */
591 input_dd = 'i'
592 };
593
594 /* Dependence information attached to an edge of the RDG. */
595
596 typedef struct rdg_edge
597 {
598 /* Type of the dependence. */
599 enum rdg_dep_type type;
600
601 /* Levels of the dependence: the depth of the loops that carry the
602 dependence. */
603 unsigned level;
604
605 /* Dependence relation between data dependences, NULL when one of
606 the vertices is a scalar. */
607 ddr_p relation;
608 } *rdg_edge_p;
609
610 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
611 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
612 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
613
614 struct graph *build_rdg (struct loop *,
615 VEC (loop_p, heap) **,
616 VEC (ddr_p, heap) **,
617 VEC (data_reference_p, heap) **);
618 struct graph *build_empty_rdg (int);
619 void free_rdg (struct graph *);
620
621 /* Return the index of the variable VAR in the LOOP_NEST array. */
622
623 static inline int
624 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
625 {
626 struct loop *loopi;
627 int var_index;
628
629 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
630 var_index++)
631 if (loopi->num == var)
632 break;
633
634 return var_index;
635 }
636
637 void stores_from_loop (struct loop *, VEC (gimple, heap) **);
638 void stores_zero_from_loop (struct loop *, VEC (gimple, heap) **);
639 void remove_similar_memory_refs (VEC (gimple, heap) **);
640 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
641 bool have_similar_memory_accesses (gimple, gimple);
642 bool stmt_with_adjacent_zero_store_dr_p (gimple);
643
644 /* Returns true when STRIDE is equal in absolute value to the size of
645 the unit type of TYPE. */
646
647 static inline bool
648 stride_of_unit_type_p (tree stride, tree type)
649 {
650 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (stride),
651 stride),
652 TYPE_SIZE_UNIT (type));
653 }
654
655 /* Determines whether RDG vertices V1 and V2 access to similar memory
656 locations, in which case they have to be in the same partition. */
657
658 static inline bool
659 rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
660 {
661 return have_similar_memory_accesses (RDG_STMT (rdg, v1),
662 RDG_STMT (rdg, v2));
663 }
664
665 /* In tree-data-ref.c */
666 void split_constant_offset (tree , tree *, tree *);
667
668 /* Strongly connected components of the reduced data dependence graph. */
669
670 typedef struct rdg_component
671 {
672 int num;
673 VEC (int, heap) *vertices;
674 } *rdgc;
675
676 DEF_VEC_P (rdgc);
677 DEF_VEC_ALLOC_P (rdgc, heap);
678
679 DEF_VEC_P (bitmap);
680 DEF_VEC_ALLOC_P (bitmap, heap);
681
682 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
683
684 static inline int
685 lambda_vector_gcd (lambda_vector vector, int size)
686 {
687 int i;
688 int gcd1 = 0;
689
690 if (size > 0)
691 {
692 gcd1 = vector[0];
693 for (i = 1; i < size; i++)
694 gcd1 = gcd (gcd1, vector[i]);
695 }
696 return gcd1;
697 }
698
699 /* Allocate a new vector of given SIZE. */
700
701 static inline lambda_vector
702 lambda_vector_new (int size)
703 {
704 return (lambda_vector) ggc_alloc_cleared_atomic (sizeof (int) * size);
705 }
706
707 /* Clear out vector VEC1 of length SIZE. */
708
709 static inline void
710 lambda_vector_clear (lambda_vector vec1, int size)
711 {
712 memset (vec1, 0, size * sizeof (*vec1));
713 }
714
715 /* Returns true when the vector V is lexicographically positive, in
716 other words, when the first nonzero element is positive. */
717
718 static inline bool
719 lambda_vector_lexico_pos (lambda_vector v,
720 unsigned n)
721 {
722 unsigned i;
723 for (i = 0; i < n; i++)
724 {
725 if (v[i] == 0)
726 continue;
727 if (v[i] < 0)
728 return false;
729 if (v[i] > 0)
730 return true;
731 }
732 return true;
733 }
734
735 /* Return true if vector VEC1 of length SIZE is the zero vector. */
736
737 static inline bool
738 lambda_vector_zerop (lambda_vector vec1, int size)
739 {
740 int i;
741 for (i = 0; i < size; i++)
742 if (vec1[i] != 0)
743 return false;
744 return true;
745 }
746
747 /* Allocate a matrix of M rows x N cols. */
748
749 static inline lambda_matrix
750 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
751 {
752 lambda_matrix mat;
753 int i;
754
755 mat = (lambda_matrix) obstack_alloc (lambda_obstack,
756 sizeof (lambda_vector *) * m);
757
758 for (i = 0; i < m; i++)
759 mat[i] = lambda_vector_new (n);
760
761 return mat;
762 }
763
764 #endif /* GCC_TREE_DATA_REF_H */