re PR target/69894 (dependency of gcc-plugin.h not installed on aarch64-linux-gnu)
[gcc.git] / gcc / tree-dfa.c
1 /* Data flow functions for trees.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "tree-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "langhooks.h"
34 #include "gimple-iterator.h"
35 #include "gimple-walk.h"
36 #include "tree-dfa.h"
37
38 /* Build and maintain data flow information for trees. */
39
40 /* Counters used to display DFA and SSA statistics. */
41 struct dfa_stats_d
42 {
43 long num_defs;
44 long num_uses;
45 long num_phis;
46 long num_phi_args;
47 size_t max_num_phi_args;
48 long num_vdefs;
49 long num_vuses;
50 };
51
52
53 /* Local functions. */
54 static void collect_dfa_stats (struct dfa_stats_d *);
55
56
57 /*---------------------------------------------------------------------------
58 Dataflow analysis (DFA) routines
59 ---------------------------------------------------------------------------*/
60
61 /* Renumber all of the gimple stmt uids. */
62
63 void
64 renumber_gimple_stmt_uids (void)
65 {
66 basic_block bb;
67
68 set_gimple_stmt_max_uid (cfun, 0);
69 FOR_ALL_BB_FN (bb, cfun)
70 {
71 gimple_stmt_iterator bsi;
72 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
73 {
74 gimple *stmt = gsi_stmt (bsi);
75 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
76 }
77 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
78 {
79 gimple *stmt = gsi_stmt (bsi);
80 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
81 }
82 }
83 }
84
85 /* Like renumber_gimple_stmt_uids, but only do work on the basic blocks
86 in BLOCKS, of which there are N_BLOCKS. Also renumbers PHIs. */
87
88 void
89 renumber_gimple_stmt_uids_in_blocks (basic_block *blocks, int n_blocks)
90 {
91 int i;
92
93 set_gimple_stmt_max_uid (cfun, 0);
94 for (i = 0; i < n_blocks; i++)
95 {
96 basic_block bb = blocks[i];
97 gimple_stmt_iterator bsi;
98 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
99 {
100 gimple *stmt = gsi_stmt (bsi);
101 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
102 }
103 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
104 {
105 gimple *stmt = gsi_stmt (bsi);
106 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
107 }
108 }
109 }
110
111
112
113 /*---------------------------------------------------------------------------
114 Debugging functions
115 ---------------------------------------------------------------------------*/
116
117 /* Dump variable VAR and its may-aliases to FILE. */
118
119 void
120 dump_variable (FILE *file, tree var)
121 {
122 if (TREE_CODE (var) == SSA_NAME)
123 {
124 if (POINTER_TYPE_P (TREE_TYPE (var)))
125 dump_points_to_info_for (file, var);
126 var = SSA_NAME_VAR (var);
127 }
128
129 if (var == NULL_TREE)
130 {
131 fprintf (file, "<nil>");
132 return;
133 }
134
135 print_generic_expr (file, var, dump_flags);
136
137 fprintf (file, ", UID D.%u", (unsigned) DECL_UID (var));
138 if (DECL_PT_UID (var) != DECL_UID (var))
139 fprintf (file, ", PT-UID D.%u", (unsigned) DECL_PT_UID (var));
140
141 fprintf (file, ", ");
142 print_generic_expr (file, TREE_TYPE (var), dump_flags);
143
144 if (TREE_ADDRESSABLE (var))
145 fprintf (file, ", is addressable");
146
147 if (is_global_var (var))
148 fprintf (file, ", is global");
149
150 if (TREE_THIS_VOLATILE (var))
151 fprintf (file, ", is volatile");
152
153 if (cfun && ssa_default_def (cfun, var))
154 {
155 fprintf (file, ", default def: ");
156 print_generic_expr (file, ssa_default_def (cfun, var), dump_flags);
157 }
158
159 if (DECL_INITIAL (var))
160 {
161 fprintf (file, ", initial: ");
162 print_generic_expr (file, DECL_INITIAL (var), dump_flags);
163 }
164
165 fprintf (file, "\n");
166 }
167
168
169 /* Dump variable VAR and its may-aliases to stderr. */
170
171 DEBUG_FUNCTION void
172 debug_variable (tree var)
173 {
174 dump_variable (stderr, var);
175 }
176
177
178 /* Dump various DFA statistics to FILE. */
179
180 void
181 dump_dfa_stats (FILE *file)
182 {
183 struct dfa_stats_d dfa_stats;
184
185 unsigned long size, total = 0;
186 const char * const fmt_str = "%-30s%-13s%12s\n";
187 const char * const fmt_str_1 = "%-30s%13lu%11lu%c\n";
188 const char * const fmt_str_3 = "%-43s%11lu%c\n";
189 const char *funcname
190 = lang_hooks.decl_printable_name (current_function_decl, 2);
191
192 collect_dfa_stats (&dfa_stats);
193
194 fprintf (file, "\nDFA Statistics for %s\n\n", funcname);
195
196 fprintf (file, "---------------------------------------------------------\n");
197 fprintf (file, fmt_str, "", " Number of ", "Memory");
198 fprintf (file, fmt_str, "", " instances ", "used ");
199 fprintf (file, "---------------------------------------------------------\n");
200
201 size = dfa_stats.num_uses * sizeof (tree *);
202 total += size;
203 fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
204 SCALE (size), LABEL (size));
205
206 size = dfa_stats.num_defs * sizeof (tree *);
207 total += size;
208 fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
209 SCALE (size), LABEL (size));
210
211 size = dfa_stats.num_vuses * sizeof (tree *);
212 total += size;
213 fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
214 SCALE (size), LABEL (size));
215
216 size = dfa_stats.num_vdefs * sizeof (tree *);
217 total += size;
218 fprintf (file, fmt_str_1, "VDEF operands", dfa_stats.num_vdefs,
219 SCALE (size), LABEL (size));
220
221 size = dfa_stats.num_phis * sizeof (struct gphi);
222 total += size;
223 fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
224 SCALE (size), LABEL (size));
225
226 size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
227 total += size;
228 fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
229 SCALE (size), LABEL (size));
230
231 fprintf (file, "---------------------------------------------------------\n");
232 fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data", SCALE (total),
233 LABEL (total));
234 fprintf (file, "---------------------------------------------------------\n");
235 fprintf (file, "\n");
236
237 if (dfa_stats.num_phis)
238 fprintf (file, "Average number of arguments per PHI node: %.1f (max: %ld)\n",
239 (float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
240 (long) dfa_stats.max_num_phi_args);
241
242 fprintf (file, "\n");
243 }
244
245
246 /* Dump DFA statistics on stderr. */
247
248 DEBUG_FUNCTION void
249 debug_dfa_stats (void)
250 {
251 dump_dfa_stats (stderr);
252 }
253
254
255 /* Collect DFA statistics and store them in the structure pointed to by
256 DFA_STATS_P. */
257
258 static void
259 collect_dfa_stats (struct dfa_stats_d *dfa_stats_p ATTRIBUTE_UNUSED)
260 {
261 basic_block bb;
262
263 gcc_assert (dfa_stats_p);
264
265 memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));
266
267 /* Walk all the statements in the function counting references. */
268 FOR_EACH_BB_FN (bb, cfun)
269 {
270 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
271 gsi_next (&si))
272 {
273 gphi *phi = si.phi ();
274 dfa_stats_p->num_phis++;
275 dfa_stats_p->num_phi_args += gimple_phi_num_args (phi);
276 if (gimple_phi_num_args (phi) > dfa_stats_p->max_num_phi_args)
277 dfa_stats_p->max_num_phi_args = gimple_phi_num_args (phi);
278 }
279
280 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
281 gsi_next (&si))
282 {
283 gimple *stmt = gsi_stmt (si);
284 dfa_stats_p->num_defs += NUM_SSA_OPERANDS (stmt, SSA_OP_DEF);
285 dfa_stats_p->num_uses += NUM_SSA_OPERANDS (stmt, SSA_OP_USE);
286 dfa_stats_p->num_vdefs += gimple_vdef (stmt) ? 1 : 0;
287 dfa_stats_p->num_vuses += gimple_vuse (stmt) ? 1 : 0;
288 }
289 }
290 }
291
292
293 /*---------------------------------------------------------------------------
294 Miscellaneous helpers
295 ---------------------------------------------------------------------------*/
296
297 /* Lookup VAR UID in the default_defs hashtable and return the associated
298 variable. */
299
300 tree
301 ssa_default_def (struct function *fn, tree var)
302 {
303 struct tree_decl_minimal ind;
304 struct tree_ssa_name in;
305 gcc_assert (TREE_CODE (var) == VAR_DECL
306 || TREE_CODE (var) == PARM_DECL
307 || TREE_CODE (var) == RESULT_DECL);
308 in.var = (tree)&ind;
309 ind.uid = DECL_UID (var);
310 return DEFAULT_DEFS (fn)->find_with_hash ((tree)&in, DECL_UID (var));
311 }
312
313 /* Insert the pair VAR's UID, DEF into the default_defs hashtable
314 of function FN. */
315
316 void
317 set_ssa_default_def (struct function *fn, tree var, tree def)
318 {
319 struct tree_decl_minimal ind;
320 struct tree_ssa_name in;
321
322 gcc_assert (TREE_CODE (var) == VAR_DECL
323 || TREE_CODE (var) == PARM_DECL
324 || TREE_CODE (var) == RESULT_DECL);
325 in.var = (tree)&ind;
326 ind.uid = DECL_UID (var);
327 if (!def)
328 {
329 tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
330 DECL_UID (var),
331 NO_INSERT);
332 if (loc)
333 {
334 SSA_NAME_IS_DEFAULT_DEF (*(tree *)loc) = false;
335 DEFAULT_DEFS (fn)->clear_slot (loc);
336 }
337 return;
338 }
339 gcc_assert (TREE_CODE (def) == SSA_NAME && SSA_NAME_VAR (def) == var);
340 tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
341 DECL_UID (var), INSERT);
342
343 /* Default definition might be changed by tail call optimization. */
344 if (*loc)
345 SSA_NAME_IS_DEFAULT_DEF (*loc) = false;
346
347 /* Mark DEF as the default definition for VAR. */
348 *loc = def;
349 SSA_NAME_IS_DEFAULT_DEF (def) = true;
350 }
351
352 /* Retrieve or create a default definition for VAR. */
353
354 tree
355 get_or_create_ssa_default_def (struct function *fn, tree var)
356 {
357 tree ddef = ssa_default_def (fn, var);
358 if (ddef == NULL_TREE)
359 {
360 ddef = make_ssa_name_fn (fn, var, gimple_build_nop ());
361 set_ssa_default_def (fn, var, ddef);
362 }
363 return ddef;
364 }
365
366
367 /* If EXP is a handled component reference for a structure, return the
368 base variable. The access range is delimited by bit positions *POFFSET and
369 *POFFSET + *PMAX_SIZE. The access size is *PSIZE bits. If either
370 *PSIZE or *PMAX_SIZE is -1, they could not be determined. If *PSIZE
371 and *PMAX_SIZE are equal, the access is non-variable. If *PREVERSE is
372 true, the storage order of the reference is reversed. */
373
374 tree
375 get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
376 HOST_WIDE_INT *psize,
377 HOST_WIDE_INT *pmax_size,
378 bool *preverse)
379 {
380 offset_int bitsize = -1;
381 offset_int maxsize;
382 tree size_tree = NULL_TREE;
383 offset_int bit_offset = 0;
384 bool seen_variable_array_ref = false;
385
386 /* First get the final access size and the storage order from just the
387 outermost expression. */
388 if (TREE_CODE (exp) == COMPONENT_REF)
389 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
390 else if (TREE_CODE (exp) == BIT_FIELD_REF)
391 size_tree = TREE_OPERAND (exp, 1);
392 else if (!VOID_TYPE_P (TREE_TYPE (exp)))
393 {
394 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
395 if (mode == BLKmode)
396 size_tree = TYPE_SIZE (TREE_TYPE (exp));
397 else
398 bitsize = int (GET_MODE_BITSIZE (mode));
399 }
400 if (size_tree != NULL_TREE
401 && TREE_CODE (size_tree) == INTEGER_CST)
402 bitsize = wi::to_offset (size_tree);
403
404 *preverse = reverse_storage_order_for_component_p (exp);
405
406 /* Initially, maxsize is the same as the accessed element size.
407 In the following it will only grow (or become -1). */
408 maxsize = bitsize;
409
410 /* Compute cumulative bit-offset for nested component-refs and array-refs,
411 and find the ultimate containing object. */
412 while (1)
413 {
414 switch (TREE_CODE (exp))
415 {
416 case BIT_FIELD_REF:
417 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
418 break;
419
420 case COMPONENT_REF:
421 {
422 tree field = TREE_OPERAND (exp, 1);
423 tree this_offset = component_ref_field_offset (exp);
424
425 if (this_offset && TREE_CODE (this_offset) == INTEGER_CST)
426 {
427 offset_int woffset = wi::lshift (wi::to_offset (this_offset),
428 LOG2_BITS_PER_UNIT);
429 woffset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
430 bit_offset += woffset;
431
432 /* If we had seen a variable array ref already and we just
433 referenced the last field of a struct or a union member
434 then we have to adjust maxsize by the padding at the end
435 of our field. */
436 if (seen_variable_array_ref && maxsize != -1)
437 {
438 tree stype = TREE_TYPE (TREE_OPERAND (exp, 0));
439 tree next = DECL_CHAIN (field);
440 while (next && TREE_CODE (next) != FIELD_DECL)
441 next = DECL_CHAIN (next);
442 if (!next
443 || TREE_CODE (stype) != RECORD_TYPE)
444 {
445 tree fsize = DECL_SIZE_UNIT (field);
446 tree ssize = TYPE_SIZE_UNIT (stype);
447 if (fsize == NULL
448 || TREE_CODE (fsize) != INTEGER_CST
449 || ssize == NULL
450 || TREE_CODE (ssize) != INTEGER_CST)
451 maxsize = -1;
452 else
453 {
454 offset_int tem = (wi::to_offset (ssize)
455 - wi::to_offset (fsize));
456 tem = wi::lshift (tem, LOG2_BITS_PER_UNIT);
457 tem -= woffset;
458 maxsize += tem;
459 }
460 }
461 }
462 }
463 else
464 {
465 tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
466 /* We need to adjust maxsize to the whole structure bitsize.
467 But we can subtract any constant offset seen so far,
468 because that would get us out of the structure otherwise. */
469 if (maxsize != -1
470 && csize
471 && TREE_CODE (csize) == INTEGER_CST)
472 maxsize = wi::to_offset (csize) - bit_offset;
473 else
474 maxsize = -1;
475 }
476 }
477 break;
478
479 case ARRAY_REF:
480 case ARRAY_RANGE_REF:
481 {
482 tree index = TREE_OPERAND (exp, 1);
483 tree low_bound, unit_size;
484
485 /* If the resulting bit-offset is constant, track it. */
486 if (TREE_CODE (index) == INTEGER_CST
487 && (low_bound = array_ref_low_bound (exp),
488 TREE_CODE (low_bound) == INTEGER_CST)
489 && (unit_size = array_ref_element_size (exp),
490 TREE_CODE (unit_size) == INTEGER_CST))
491 {
492 offset_int woffset
493 = wi::sext (wi::to_offset (index) - wi::to_offset (low_bound),
494 TYPE_PRECISION (TREE_TYPE (index)));
495 woffset *= wi::to_offset (unit_size);
496 woffset = wi::lshift (woffset, LOG2_BITS_PER_UNIT);
497 bit_offset += woffset;
498
499 /* An array ref with a constant index up in the structure
500 hierarchy will constrain the size of any variable array ref
501 lower in the access hierarchy. */
502 seen_variable_array_ref = false;
503 }
504 else
505 {
506 tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
507 /* We need to adjust maxsize to the whole array bitsize.
508 But we can subtract any constant offset seen so far,
509 because that would get us outside of the array otherwise. */
510 if (maxsize != -1
511 && asize
512 && TREE_CODE (asize) == INTEGER_CST)
513 maxsize = wi::to_offset (asize) - bit_offset;
514 else
515 maxsize = -1;
516
517 /* Remember that we have seen an array ref with a variable
518 index. */
519 seen_variable_array_ref = true;
520 }
521 }
522 break;
523
524 case REALPART_EXPR:
525 break;
526
527 case IMAGPART_EXPR:
528 bit_offset += bitsize;
529 break;
530
531 case VIEW_CONVERT_EXPR:
532 break;
533
534 case TARGET_MEM_REF:
535 /* Via the variable index or index2 we can reach the
536 whole object. Still hand back the decl here. */
537 if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR
538 && (TMR_INDEX (exp) || TMR_INDEX2 (exp)))
539 {
540 exp = TREE_OPERAND (TMR_BASE (exp), 0);
541 bit_offset = 0;
542 maxsize = -1;
543 goto done;
544 }
545 /* Fallthru. */
546 case MEM_REF:
547 /* We need to deal with variable arrays ending structures such as
548 struct { int length; int a[1]; } x; x.a[d]
549 struct { struct { int a; int b; } a[1]; } x; x.a[d].a
550 struct { struct { int a[1]; } a[1]; } x; x.a[0][d], x.a[d][0]
551 struct { int len; union { int a[1]; struct X x; } u; } x; x.u.a[d]
552 where we do not know maxsize for variable index accesses to
553 the array. The simplest way to conservatively deal with this
554 is to punt in the case that offset + maxsize reaches the
555 base type boundary. This needs to include possible trailing
556 padding that is there for alignment purposes. */
557 if (seen_variable_array_ref
558 && maxsize != -1
559 && (TYPE_SIZE (TREE_TYPE (exp)) == NULL_TREE
560 || TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
561 || (bit_offset + maxsize
562 == wi::to_offset (TYPE_SIZE (TREE_TYPE (exp))))))
563 maxsize = -1;
564
565 /* Hand back the decl for MEM[&decl, off]. */
566 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
567 {
568 if (integer_zerop (TREE_OPERAND (exp, 1)))
569 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
570 else
571 {
572 offset_int off = mem_ref_offset (exp);
573 off = wi::lshift (off, LOG2_BITS_PER_UNIT);
574 off += bit_offset;
575 if (wi::fits_shwi_p (off))
576 {
577 bit_offset = off;
578 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
579 }
580 }
581 }
582 goto done;
583
584 default:
585 goto done;
586 }
587
588 exp = TREE_OPERAND (exp, 0);
589 }
590
591 done:
592 if (!wi::fits_shwi_p (bitsize) || wi::neg_p (bitsize))
593 {
594 *poffset = 0;
595 *psize = -1;
596 *pmax_size = -1;
597
598 return exp;
599 }
600
601 *psize = bitsize.to_shwi ();
602
603 if (!wi::fits_shwi_p (bit_offset))
604 {
605 *poffset = 0;
606 *pmax_size = -1;
607
608 return exp;
609 }
610
611 /* In case of a decl or constant base object we can do better. */
612
613 if (DECL_P (exp))
614 {
615 /* If maxsize is unknown adjust it according to the size of the
616 base decl. */
617 if (maxsize == -1
618 && DECL_SIZE (exp)
619 && TREE_CODE (DECL_SIZE (exp)) == INTEGER_CST)
620 maxsize = wi::to_offset (DECL_SIZE (exp)) - bit_offset;
621 }
622 else if (CONSTANT_CLASS_P (exp))
623 {
624 /* If maxsize is unknown adjust it according to the size of the
625 base type constant. */
626 if (maxsize == -1
627 && TYPE_SIZE (TREE_TYPE (exp))
628 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST)
629 maxsize = (wi::to_offset (TYPE_SIZE (TREE_TYPE (exp)))
630 - bit_offset);
631 }
632
633 /* ??? Due to negative offsets in ARRAY_REF we can end up with
634 negative bit_offset here. We might want to store a zero offset
635 in this case. */
636 *poffset = bit_offset.to_shwi ();
637 if (!wi::fits_shwi_p (maxsize) || wi::neg_p (maxsize))
638 *pmax_size = -1;
639 else
640 *pmax_size = maxsize.to_shwi ();
641
642 return exp;
643 }
644
645 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
646 denotes the starting address of the memory access EXP.
647 Returns NULL_TREE if the offset is not constant or any component
648 is not BITS_PER_UNIT-aligned.
649 VALUEIZE if non-NULL is used to valueize SSA names. It should return
650 its argument or a constant if the argument is known to be constant. */
651
652 tree
653 get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
654 tree (*valueize) (tree))
655 {
656 HOST_WIDE_INT byte_offset = 0;
657
658 /* Compute cumulative byte-offset for nested component-refs and array-refs,
659 and find the ultimate containing object. */
660 while (1)
661 {
662 switch (TREE_CODE (exp))
663 {
664 case BIT_FIELD_REF:
665 {
666 HOST_WIDE_INT this_off = TREE_INT_CST_LOW (TREE_OPERAND (exp, 2));
667 if (this_off % BITS_PER_UNIT)
668 return NULL_TREE;
669 byte_offset += this_off / BITS_PER_UNIT;
670 }
671 break;
672
673 case COMPONENT_REF:
674 {
675 tree field = TREE_OPERAND (exp, 1);
676 tree this_offset = component_ref_field_offset (exp);
677 HOST_WIDE_INT hthis_offset;
678
679 if (!this_offset
680 || TREE_CODE (this_offset) != INTEGER_CST
681 || (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
682 % BITS_PER_UNIT))
683 return NULL_TREE;
684
685 hthis_offset = TREE_INT_CST_LOW (this_offset);
686 hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
687 / BITS_PER_UNIT);
688 byte_offset += hthis_offset;
689 }
690 break;
691
692 case ARRAY_REF:
693 case ARRAY_RANGE_REF:
694 {
695 tree index = TREE_OPERAND (exp, 1);
696 tree low_bound, unit_size;
697
698 if (valueize
699 && TREE_CODE (index) == SSA_NAME)
700 index = (*valueize) (index);
701
702 /* If the resulting bit-offset is constant, track it. */
703 if (TREE_CODE (index) == INTEGER_CST
704 && (low_bound = array_ref_low_bound (exp),
705 TREE_CODE (low_bound) == INTEGER_CST)
706 && (unit_size = array_ref_element_size (exp),
707 TREE_CODE (unit_size) == INTEGER_CST))
708 {
709 offset_int woffset
710 = wi::sext (wi::to_offset (index) - wi::to_offset (low_bound),
711 TYPE_PRECISION (TREE_TYPE (index)));
712 woffset *= wi::to_offset (unit_size);
713 byte_offset += woffset.to_shwi ();
714 }
715 else
716 return NULL_TREE;
717 }
718 break;
719
720 case REALPART_EXPR:
721 break;
722
723 case IMAGPART_EXPR:
724 byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
725 break;
726
727 case VIEW_CONVERT_EXPR:
728 break;
729
730 case MEM_REF:
731 {
732 tree base = TREE_OPERAND (exp, 0);
733 if (valueize
734 && TREE_CODE (base) == SSA_NAME)
735 base = (*valueize) (base);
736
737 /* Hand back the decl for MEM[&decl, off]. */
738 if (TREE_CODE (base) == ADDR_EXPR)
739 {
740 if (!integer_zerop (TREE_OPERAND (exp, 1)))
741 {
742 offset_int off = mem_ref_offset (exp);
743 byte_offset += off.to_short_addr ();
744 }
745 exp = TREE_OPERAND (base, 0);
746 }
747 goto done;
748 }
749
750 case TARGET_MEM_REF:
751 {
752 tree base = TREE_OPERAND (exp, 0);
753 if (valueize
754 && TREE_CODE (base) == SSA_NAME)
755 base = (*valueize) (base);
756
757 /* Hand back the decl for MEM[&decl, off]. */
758 if (TREE_CODE (base) == ADDR_EXPR)
759 {
760 if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
761 return NULL_TREE;
762 if (!integer_zerop (TMR_OFFSET (exp)))
763 {
764 offset_int off = mem_ref_offset (exp);
765 byte_offset += off.to_short_addr ();
766 }
767 exp = TREE_OPERAND (base, 0);
768 }
769 goto done;
770 }
771
772 default:
773 goto done;
774 }
775
776 exp = TREE_OPERAND (exp, 0);
777 }
778 done:
779
780 *poffset = byte_offset;
781 return exp;
782 }
783
784 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
785 denotes the starting address of the memory access EXP.
786 Returns NULL_TREE if the offset is not constant or any component
787 is not BITS_PER_UNIT-aligned. */
788
789 tree
790 get_addr_base_and_unit_offset (tree exp, HOST_WIDE_INT *poffset)
791 {
792 return get_addr_base_and_unit_offset_1 (exp, poffset, NULL);
793 }
794
795 /* Returns true if STMT references an SSA_NAME that has
796 SSA_NAME_OCCURS_IN_ABNORMAL_PHI set, otherwise false. */
797
798 bool
799 stmt_references_abnormal_ssa_name (gimple *stmt)
800 {
801 ssa_op_iter oi;
802 use_operand_p use_p;
803
804 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
805 {
806 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
807 return true;
808 }
809
810 return false;
811 }
812
813 /* Pair of tree and a sorting index, for dump_enumerated_decls. */
814 struct GTY(()) numbered_tree
815 {
816 tree t;
817 int num;
818 };
819
820
821 /* Compare two declarations references by their DECL_UID / sequence number.
822 Called via qsort. */
823
824 static int
825 compare_decls_by_uid (const void *pa, const void *pb)
826 {
827 const numbered_tree *nt_a = ((const numbered_tree *)pa);
828 const numbered_tree *nt_b = ((const numbered_tree *)pb);
829
830 if (DECL_UID (nt_a->t) != DECL_UID (nt_b->t))
831 return DECL_UID (nt_a->t) - DECL_UID (nt_b->t);
832 return nt_a->num - nt_b->num;
833 }
834
835 /* Called via walk_gimple_stmt / walk_gimple_op by dump_enumerated_decls. */
836 static tree
837 dump_enumerated_decls_push (tree *tp, int *walk_subtrees, void *data)
838 {
839 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
840 vec<numbered_tree> *list = (vec<numbered_tree> *) wi->info;
841 numbered_tree nt;
842
843 if (!DECL_P (*tp))
844 return NULL_TREE;
845 nt.t = *tp;
846 nt.num = list->length ();
847 list->safe_push (nt);
848 *walk_subtrees = 0;
849 return NULL_TREE;
850 }
851
852 /* Find all the declarations used by the current function, sort them by uid,
853 and emit the sorted list. Each declaration is tagged with a sequence
854 number indicating when it was found during statement / tree walking,
855 so that TDF_NOUID comparisons of anonymous declarations are still
856 meaningful. Where a declaration was encountered more than once, we
857 emit only the sequence number of the first encounter.
858 FILE is the dump file where to output the list and FLAGS is as in
859 print_generic_expr. */
860 void
861 dump_enumerated_decls (FILE *file, int flags)
862 {
863 basic_block bb;
864 struct walk_stmt_info wi;
865 auto_vec<numbered_tree, 40> decl_list;
866
867 memset (&wi, '\0', sizeof (wi));
868 wi.info = (void *) &decl_list;
869 FOR_EACH_BB_FN (bb, cfun)
870 {
871 gimple_stmt_iterator gsi;
872
873 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
874 if (!is_gimple_debug (gsi_stmt (gsi)))
875 walk_gimple_stmt (&gsi, NULL, dump_enumerated_decls_push, &wi);
876 }
877 decl_list.qsort (compare_decls_by_uid);
878 if (decl_list.length ())
879 {
880 unsigned ix;
881 numbered_tree *ntp;
882 tree last = NULL_TREE;
883
884 fprintf (file, "Declarations used by %s, sorted by DECL_UID:\n",
885 current_function_name ());
886 FOR_EACH_VEC_ELT (decl_list, ix, ntp)
887 {
888 if (ntp->t == last)
889 continue;
890 fprintf (file, "%d: ", ntp->num);
891 print_generic_decl (file, ntp->t, flags);
892 fprintf (file, "\n");
893 last = ntp->t;
894 }
895 }
896 }