re PR tree-optimization/67781 (wrong code generated on big-endian with -O1 -fexpensiv...
[gcc.git] / gcc / tree-dfa.c
1 /* Data flow functions for trees.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "tree-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "langhooks.h"
34 #include "gimple-iterator.h"
35 #include "gimple-walk.h"
36 #include "tree-dfa.h"
37
38 /* Build and maintain data flow information for trees. */
39
40 /* Counters used to display DFA and SSA statistics. */
41 struct dfa_stats_d
42 {
43 long num_defs;
44 long num_uses;
45 long num_phis;
46 long num_phi_args;
47 size_t max_num_phi_args;
48 long num_vdefs;
49 long num_vuses;
50 };
51
52
53 /* Local functions. */
54 static void collect_dfa_stats (struct dfa_stats_d *);
55
56
57 /*---------------------------------------------------------------------------
58 Dataflow analysis (DFA) routines
59 ---------------------------------------------------------------------------*/
60
61 /* Renumber all of the gimple stmt uids. */
62
63 void
64 renumber_gimple_stmt_uids (void)
65 {
66 basic_block bb;
67
68 set_gimple_stmt_max_uid (cfun, 0);
69 FOR_ALL_BB_FN (bb, cfun)
70 {
71 gimple_stmt_iterator bsi;
72 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
73 {
74 gimple *stmt = gsi_stmt (bsi);
75 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
76 }
77 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
78 {
79 gimple *stmt = gsi_stmt (bsi);
80 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
81 }
82 }
83 }
84
85 /* Like renumber_gimple_stmt_uids, but only do work on the basic blocks
86 in BLOCKS, of which there are N_BLOCKS. Also renumbers PHIs. */
87
88 void
89 renumber_gimple_stmt_uids_in_blocks (basic_block *blocks, int n_blocks)
90 {
91 int i;
92
93 set_gimple_stmt_max_uid (cfun, 0);
94 for (i = 0; i < n_blocks; i++)
95 {
96 basic_block bb = blocks[i];
97 gimple_stmt_iterator bsi;
98 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
99 {
100 gimple *stmt = gsi_stmt (bsi);
101 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
102 }
103 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
104 {
105 gimple *stmt = gsi_stmt (bsi);
106 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (cfun));
107 }
108 }
109 }
110
111
112
113 /*---------------------------------------------------------------------------
114 Debugging functions
115 ---------------------------------------------------------------------------*/
116
117 /* Dump variable VAR and its may-aliases to FILE. */
118
119 void
120 dump_variable (FILE *file, tree var)
121 {
122 if (TREE_CODE (var) == SSA_NAME)
123 {
124 if (POINTER_TYPE_P (TREE_TYPE (var)))
125 dump_points_to_info_for (file, var);
126 var = SSA_NAME_VAR (var);
127 }
128
129 if (var == NULL_TREE)
130 {
131 fprintf (file, "<nil>");
132 return;
133 }
134
135 print_generic_expr (file, var, dump_flags);
136
137 fprintf (file, ", UID D.%u", (unsigned) DECL_UID (var));
138 if (DECL_PT_UID (var) != DECL_UID (var))
139 fprintf (file, ", PT-UID D.%u", (unsigned) DECL_PT_UID (var));
140
141 fprintf (file, ", ");
142 print_generic_expr (file, TREE_TYPE (var), dump_flags);
143
144 if (TREE_ADDRESSABLE (var))
145 fprintf (file, ", is addressable");
146
147 if (is_global_var (var))
148 fprintf (file, ", is global");
149
150 if (TREE_THIS_VOLATILE (var))
151 fprintf (file, ", is volatile");
152
153 if (cfun && ssa_default_def (cfun, var))
154 {
155 fprintf (file, ", default def: ");
156 print_generic_expr (file, ssa_default_def (cfun, var), dump_flags);
157 }
158
159 if (DECL_INITIAL (var))
160 {
161 fprintf (file, ", initial: ");
162 print_generic_expr (file, DECL_INITIAL (var), dump_flags);
163 }
164
165 fprintf (file, "\n");
166 }
167
168
169 /* Dump variable VAR and its may-aliases to stderr. */
170
171 DEBUG_FUNCTION void
172 debug_variable (tree var)
173 {
174 dump_variable (stderr, var);
175 }
176
177
178 /* Dump various DFA statistics to FILE. */
179
180 void
181 dump_dfa_stats (FILE *file)
182 {
183 struct dfa_stats_d dfa_stats;
184
185 unsigned long size, total = 0;
186 const char * const fmt_str = "%-30s%-13s%12s\n";
187 const char * const fmt_str_1 = "%-30s%13lu%11lu%c\n";
188 const char * const fmt_str_3 = "%-43s%11lu%c\n";
189 const char *funcname
190 = lang_hooks.decl_printable_name (current_function_decl, 2);
191
192 collect_dfa_stats (&dfa_stats);
193
194 fprintf (file, "\nDFA Statistics for %s\n\n", funcname);
195
196 fprintf (file, "---------------------------------------------------------\n");
197 fprintf (file, fmt_str, "", " Number of ", "Memory");
198 fprintf (file, fmt_str, "", " instances ", "used ");
199 fprintf (file, "---------------------------------------------------------\n");
200
201 size = dfa_stats.num_uses * sizeof (tree *);
202 total += size;
203 fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
204 SCALE (size), LABEL (size));
205
206 size = dfa_stats.num_defs * sizeof (tree *);
207 total += size;
208 fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
209 SCALE (size), LABEL (size));
210
211 size = dfa_stats.num_vuses * sizeof (tree *);
212 total += size;
213 fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
214 SCALE (size), LABEL (size));
215
216 size = dfa_stats.num_vdefs * sizeof (tree *);
217 total += size;
218 fprintf (file, fmt_str_1, "VDEF operands", dfa_stats.num_vdefs,
219 SCALE (size), LABEL (size));
220
221 size = dfa_stats.num_phis * sizeof (struct gphi);
222 total += size;
223 fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
224 SCALE (size), LABEL (size));
225
226 size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
227 total += size;
228 fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
229 SCALE (size), LABEL (size));
230
231 fprintf (file, "---------------------------------------------------------\n");
232 fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data", SCALE (total),
233 LABEL (total));
234 fprintf (file, "---------------------------------------------------------\n");
235 fprintf (file, "\n");
236
237 if (dfa_stats.num_phis)
238 fprintf (file, "Average number of arguments per PHI node: %.1f (max: %ld)\n",
239 (float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
240 (long) dfa_stats.max_num_phi_args);
241
242 fprintf (file, "\n");
243 }
244
245
246 /* Dump DFA statistics on stderr. */
247
248 DEBUG_FUNCTION void
249 debug_dfa_stats (void)
250 {
251 dump_dfa_stats (stderr);
252 }
253
254
255 /* Collect DFA statistics and store them in the structure pointed to by
256 DFA_STATS_P. */
257
258 static void
259 collect_dfa_stats (struct dfa_stats_d *dfa_stats_p ATTRIBUTE_UNUSED)
260 {
261 basic_block bb;
262
263 gcc_assert (dfa_stats_p);
264
265 memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));
266
267 /* Walk all the statements in the function counting references. */
268 FOR_EACH_BB_FN (bb, cfun)
269 {
270 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
271 gsi_next (&si))
272 {
273 gphi *phi = si.phi ();
274 dfa_stats_p->num_phis++;
275 dfa_stats_p->num_phi_args += gimple_phi_num_args (phi);
276 if (gimple_phi_num_args (phi) > dfa_stats_p->max_num_phi_args)
277 dfa_stats_p->max_num_phi_args = gimple_phi_num_args (phi);
278 }
279
280 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
281 gsi_next (&si))
282 {
283 gimple *stmt = gsi_stmt (si);
284 dfa_stats_p->num_defs += NUM_SSA_OPERANDS (stmt, SSA_OP_DEF);
285 dfa_stats_p->num_uses += NUM_SSA_OPERANDS (stmt, SSA_OP_USE);
286 dfa_stats_p->num_vdefs += gimple_vdef (stmt) ? 1 : 0;
287 dfa_stats_p->num_vuses += gimple_vuse (stmt) ? 1 : 0;
288 }
289 }
290 }
291
292
293 /*---------------------------------------------------------------------------
294 Miscellaneous helpers
295 ---------------------------------------------------------------------------*/
296
297 /* Lookup VAR UID in the default_defs hashtable and return the associated
298 variable. */
299
300 tree
301 ssa_default_def (struct function *fn, tree var)
302 {
303 struct tree_decl_minimal ind;
304 struct tree_ssa_name in;
305 gcc_assert (TREE_CODE (var) == VAR_DECL
306 || TREE_CODE (var) == PARM_DECL
307 || TREE_CODE (var) == RESULT_DECL);
308 in.var = (tree)&ind;
309 ind.uid = DECL_UID (var);
310 return DEFAULT_DEFS (fn)->find_with_hash ((tree)&in, DECL_UID (var));
311 }
312
313 /* Insert the pair VAR's UID, DEF into the default_defs hashtable
314 of function FN. */
315
316 void
317 set_ssa_default_def (struct function *fn, tree var, tree def)
318 {
319 struct tree_decl_minimal ind;
320 struct tree_ssa_name in;
321
322 gcc_assert (TREE_CODE (var) == VAR_DECL
323 || TREE_CODE (var) == PARM_DECL
324 || TREE_CODE (var) == RESULT_DECL);
325 in.var = (tree)&ind;
326 ind.uid = DECL_UID (var);
327 if (!def)
328 {
329 tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
330 DECL_UID (var),
331 NO_INSERT);
332 if (loc)
333 {
334 SSA_NAME_IS_DEFAULT_DEF (*(tree *)loc) = false;
335 DEFAULT_DEFS (fn)->clear_slot (loc);
336 }
337 return;
338 }
339 gcc_assert (TREE_CODE (def) == SSA_NAME && SSA_NAME_VAR (def) == var);
340 tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
341 DECL_UID (var), INSERT);
342
343 /* Default definition might be changed by tail call optimization. */
344 if (*loc)
345 SSA_NAME_IS_DEFAULT_DEF (*loc) = false;
346
347 /* Mark DEF as the default definition for VAR. */
348 *loc = def;
349 SSA_NAME_IS_DEFAULT_DEF (def) = true;
350 }
351
352 /* Retrieve or create a default definition for VAR. */
353
354 tree
355 get_or_create_ssa_default_def (struct function *fn, tree var)
356 {
357 tree ddef = ssa_default_def (fn, var);
358 if (ddef == NULL_TREE)
359 {
360 ddef = make_ssa_name_fn (fn, var, gimple_build_nop ());
361 set_ssa_default_def (fn, var, ddef);
362 }
363 return ddef;
364 }
365
366
367 /* If EXP is a handled component reference for a structure, return the
368 base variable. The access range is delimited by bit positions *POFFSET and
369 *POFFSET + *PMAX_SIZE. The access size is *PSIZE bits. If either
370 *PSIZE or *PMAX_SIZE is -1, they could not be determined. If *PSIZE
371 and *PMAX_SIZE are equal, the access is non-variable. If *PREVERSE is
372 true, the storage order of the reference is reversed. */
373
374 tree
375 get_ref_base_and_extent (tree exp, HOST_WIDE_INT *poffset,
376 HOST_WIDE_INT *psize,
377 HOST_WIDE_INT *pmax_size,
378 bool *preverse)
379 {
380 offset_int bitsize = -1;
381 offset_int maxsize;
382 tree size_tree = NULL_TREE;
383 offset_int bit_offset = 0;
384 bool seen_variable_array_ref = false;
385
386 /* First get the final access size and the storage order from just the
387 outermost expression. */
388 if (TREE_CODE (exp) == COMPONENT_REF)
389 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
390 else if (TREE_CODE (exp) == BIT_FIELD_REF)
391 size_tree = TREE_OPERAND (exp, 1);
392 else if (!VOID_TYPE_P (TREE_TYPE (exp)))
393 {
394 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
395 if (mode == BLKmode)
396 size_tree = TYPE_SIZE (TREE_TYPE (exp));
397 else
398 bitsize = int (GET_MODE_PRECISION (mode));
399 }
400 if (size_tree != NULL_TREE
401 && TREE_CODE (size_tree) == INTEGER_CST)
402 bitsize = wi::to_offset (size_tree);
403
404 *preverse = reverse_storage_order_for_component_p (exp);
405
406 /* Initially, maxsize is the same as the accessed element size.
407 In the following it will only grow (or become -1). */
408 maxsize = bitsize;
409
410 /* Compute cumulative bit-offset for nested component-refs and array-refs,
411 and find the ultimate containing object. */
412 while (1)
413 {
414 switch (TREE_CODE (exp))
415 {
416 case BIT_FIELD_REF:
417 bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
418 break;
419
420 case COMPONENT_REF:
421 {
422 tree field = TREE_OPERAND (exp, 1);
423 tree this_offset = component_ref_field_offset (exp);
424
425 if (this_offset && TREE_CODE (this_offset) == INTEGER_CST)
426 {
427 offset_int woffset = wi::lshift (wi::to_offset (this_offset),
428 LOG2_BITS_PER_UNIT);
429 woffset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
430 bit_offset += woffset;
431
432 /* If we had seen a variable array ref already and we just
433 referenced the last field of a struct or a union member
434 then we have to adjust maxsize by the padding at the end
435 of our field. */
436 if (seen_variable_array_ref && maxsize != -1)
437 {
438 tree stype = TREE_TYPE (TREE_OPERAND (exp, 0));
439 tree next = DECL_CHAIN (field);
440 while (next && TREE_CODE (next) != FIELD_DECL)
441 next = DECL_CHAIN (next);
442 if (!next
443 || TREE_CODE (stype) != RECORD_TYPE)
444 {
445 tree fsize = DECL_SIZE_UNIT (field);
446 tree ssize = TYPE_SIZE_UNIT (stype);
447 if (fsize == NULL
448 || TREE_CODE (fsize) != INTEGER_CST
449 || ssize == NULL
450 || TREE_CODE (ssize) != INTEGER_CST)
451 maxsize = -1;
452 else
453 {
454 offset_int tem = (wi::to_offset (ssize)
455 - wi::to_offset (fsize));
456 tem = wi::lshift (tem, LOG2_BITS_PER_UNIT);
457 tem -= woffset;
458 maxsize += tem;
459 }
460 }
461 }
462 }
463 else
464 {
465 tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
466 /* We need to adjust maxsize to the whole structure bitsize.
467 But we can subtract any constant offset seen so far,
468 because that would get us out of the structure otherwise. */
469 if (maxsize != -1
470 && csize
471 && TREE_CODE (csize) == INTEGER_CST)
472 maxsize = wi::to_offset (csize) - bit_offset;
473 else
474 maxsize = -1;
475 }
476 }
477 break;
478
479 case ARRAY_REF:
480 case ARRAY_RANGE_REF:
481 {
482 tree index = TREE_OPERAND (exp, 1);
483 tree low_bound, unit_size;
484
485 /* If the resulting bit-offset is constant, track it. */
486 if (TREE_CODE (index) == INTEGER_CST
487 && (low_bound = array_ref_low_bound (exp),
488 TREE_CODE (low_bound) == INTEGER_CST)
489 && (unit_size = array_ref_element_size (exp),
490 TREE_CODE (unit_size) == INTEGER_CST))
491 {
492 offset_int woffset
493 = wi::sext (wi::to_offset (index) - wi::to_offset (low_bound),
494 TYPE_PRECISION (TREE_TYPE (index)));
495 woffset *= wi::to_offset (unit_size);
496 woffset = wi::lshift (woffset, LOG2_BITS_PER_UNIT);
497 bit_offset += woffset;
498
499 /* An array ref with a constant index up in the structure
500 hierarchy will constrain the size of any variable array ref
501 lower in the access hierarchy. */
502 seen_variable_array_ref = false;
503 }
504 else
505 {
506 tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
507 /* We need to adjust maxsize to the whole array bitsize.
508 But we can subtract any constant offset seen so far,
509 because that would get us outside of the array otherwise. */
510 if (maxsize != -1
511 && asize
512 && TREE_CODE (asize) == INTEGER_CST)
513 maxsize = wi::to_offset (asize) - bit_offset;
514 else
515 maxsize = -1;
516
517 /* Remember that we have seen an array ref with a variable
518 index. */
519 seen_variable_array_ref = true;
520 }
521 }
522 break;
523
524 case REALPART_EXPR:
525 break;
526
527 case IMAGPART_EXPR:
528 bit_offset += bitsize;
529 break;
530
531 case VIEW_CONVERT_EXPR:
532 break;
533
534 case TARGET_MEM_REF:
535 /* Via the variable index or index2 we can reach the
536 whole object. Still hand back the decl here. */
537 if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR
538 && (TMR_INDEX (exp) || TMR_INDEX2 (exp)))
539 {
540 exp = TREE_OPERAND (TMR_BASE (exp), 0);
541 bit_offset = 0;
542 maxsize = -1;
543 goto done;
544 }
545 /* Fallthru. */
546 case MEM_REF:
547 /* We need to deal with variable arrays ending structures such as
548 struct { int length; int a[1]; } x; x.a[d]
549 struct { struct { int a; int b; } a[1]; } x; x.a[d].a
550 struct { struct { int a[1]; } a[1]; } x; x.a[0][d], x.a[d][0]
551 struct { int len; union { int a[1]; struct X x; } u; } x; x.u.a[d]
552 where we do not know maxsize for variable index accesses to
553 the array. The simplest way to conservatively deal with this
554 is to punt in the case that offset + maxsize reaches the
555 base type boundary. This needs to include possible trailing
556 padding that is there for alignment purposes. */
557 if (seen_variable_array_ref
558 && maxsize != -1
559 && (TYPE_SIZE (TREE_TYPE (exp)) == NULL_TREE
560 || TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
561 || (bit_offset + maxsize
562 == wi::to_offset (TYPE_SIZE (TREE_TYPE (exp))))))
563 maxsize = -1;
564
565 /* Hand back the decl for MEM[&decl, off]. */
566 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
567 {
568 if (integer_zerop (TREE_OPERAND (exp, 1)))
569 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
570 else
571 {
572 offset_int off = mem_ref_offset (exp);
573 off = wi::lshift (off, LOG2_BITS_PER_UNIT);
574 off += bit_offset;
575 if (wi::fits_shwi_p (off))
576 {
577 bit_offset = off;
578 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
579 }
580 }
581 }
582 goto done;
583
584 default:
585 goto done;
586 }
587
588 exp = TREE_OPERAND (exp, 0);
589 }
590
591 /* We need to deal with variable arrays ending structures. */
592 if (seen_variable_array_ref
593 && maxsize != -1
594 && (TYPE_SIZE (TREE_TYPE (exp)) == NULL_TREE
595 || TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
596 || (bit_offset + maxsize
597 == wi::to_offset (TYPE_SIZE (TREE_TYPE (exp))))))
598 maxsize = -1;
599
600 done:
601 if (!wi::fits_shwi_p (bitsize) || wi::neg_p (bitsize))
602 {
603 *poffset = 0;
604 *psize = -1;
605 *pmax_size = -1;
606
607 return exp;
608 }
609
610 *psize = bitsize.to_shwi ();
611
612 if (!wi::fits_shwi_p (bit_offset))
613 {
614 *poffset = 0;
615 *pmax_size = -1;
616
617 return exp;
618 }
619
620 /* In case of a decl or constant base object we can do better. */
621
622 if (DECL_P (exp))
623 {
624 /* If maxsize is unknown adjust it according to the size of the
625 base decl. */
626 if (maxsize == -1
627 && DECL_SIZE (exp)
628 && TREE_CODE (DECL_SIZE (exp)) == INTEGER_CST)
629 maxsize = wi::to_offset (DECL_SIZE (exp)) - bit_offset;
630 }
631 else if (CONSTANT_CLASS_P (exp))
632 {
633 /* If maxsize is unknown adjust it according to the size of the
634 base type constant. */
635 if (maxsize == -1
636 && TYPE_SIZE (TREE_TYPE (exp))
637 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST)
638 maxsize = (wi::to_offset (TYPE_SIZE (TREE_TYPE (exp)))
639 - bit_offset);
640 }
641
642 /* ??? Due to negative offsets in ARRAY_REF we can end up with
643 negative bit_offset here. We might want to store a zero offset
644 in this case. */
645 *poffset = bit_offset.to_shwi ();
646 if (!wi::fits_shwi_p (maxsize) || wi::neg_p (maxsize))
647 *pmax_size = -1;
648 else
649 *pmax_size = maxsize.to_shwi ();
650
651 return exp;
652 }
653
654 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
655 denotes the starting address of the memory access EXP.
656 Returns NULL_TREE if the offset is not constant or any component
657 is not BITS_PER_UNIT-aligned.
658 VALUEIZE if non-NULL is used to valueize SSA names. It should return
659 its argument or a constant if the argument is known to be constant. */
660
661 tree
662 get_addr_base_and_unit_offset_1 (tree exp, HOST_WIDE_INT *poffset,
663 tree (*valueize) (tree))
664 {
665 HOST_WIDE_INT byte_offset = 0;
666
667 /* Compute cumulative byte-offset for nested component-refs and array-refs,
668 and find the ultimate containing object. */
669 while (1)
670 {
671 switch (TREE_CODE (exp))
672 {
673 case BIT_FIELD_REF:
674 {
675 HOST_WIDE_INT this_off = TREE_INT_CST_LOW (TREE_OPERAND (exp, 2));
676 if (this_off % BITS_PER_UNIT)
677 return NULL_TREE;
678 byte_offset += this_off / BITS_PER_UNIT;
679 }
680 break;
681
682 case COMPONENT_REF:
683 {
684 tree field = TREE_OPERAND (exp, 1);
685 tree this_offset = component_ref_field_offset (exp);
686 HOST_WIDE_INT hthis_offset;
687
688 if (!this_offset
689 || TREE_CODE (this_offset) != INTEGER_CST
690 || (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
691 % BITS_PER_UNIT))
692 return NULL_TREE;
693
694 hthis_offset = TREE_INT_CST_LOW (this_offset);
695 hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
696 / BITS_PER_UNIT);
697 byte_offset += hthis_offset;
698 }
699 break;
700
701 case ARRAY_REF:
702 case ARRAY_RANGE_REF:
703 {
704 tree index = TREE_OPERAND (exp, 1);
705 tree low_bound, unit_size;
706
707 if (valueize
708 && TREE_CODE (index) == SSA_NAME)
709 index = (*valueize) (index);
710
711 /* If the resulting bit-offset is constant, track it. */
712 if (TREE_CODE (index) == INTEGER_CST
713 && (low_bound = array_ref_low_bound (exp),
714 TREE_CODE (low_bound) == INTEGER_CST)
715 && (unit_size = array_ref_element_size (exp),
716 TREE_CODE (unit_size) == INTEGER_CST))
717 {
718 offset_int woffset
719 = wi::sext (wi::to_offset (index) - wi::to_offset (low_bound),
720 TYPE_PRECISION (TREE_TYPE (index)));
721 woffset *= wi::to_offset (unit_size);
722 byte_offset += woffset.to_shwi ();
723 }
724 else
725 return NULL_TREE;
726 }
727 break;
728
729 case REALPART_EXPR:
730 break;
731
732 case IMAGPART_EXPR:
733 byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
734 break;
735
736 case VIEW_CONVERT_EXPR:
737 break;
738
739 case MEM_REF:
740 {
741 tree base = TREE_OPERAND (exp, 0);
742 if (valueize
743 && TREE_CODE (base) == SSA_NAME)
744 base = (*valueize) (base);
745
746 /* Hand back the decl for MEM[&decl, off]. */
747 if (TREE_CODE (base) == ADDR_EXPR)
748 {
749 if (!integer_zerop (TREE_OPERAND (exp, 1)))
750 {
751 offset_int off = mem_ref_offset (exp);
752 byte_offset += off.to_short_addr ();
753 }
754 exp = TREE_OPERAND (base, 0);
755 }
756 goto done;
757 }
758
759 case TARGET_MEM_REF:
760 {
761 tree base = TREE_OPERAND (exp, 0);
762 if (valueize
763 && TREE_CODE (base) == SSA_NAME)
764 base = (*valueize) (base);
765
766 /* Hand back the decl for MEM[&decl, off]. */
767 if (TREE_CODE (base) == ADDR_EXPR)
768 {
769 if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
770 return NULL_TREE;
771 if (!integer_zerop (TMR_OFFSET (exp)))
772 {
773 offset_int off = mem_ref_offset (exp);
774 byte_offset += off.to_short_addr ();
775 }
776 exp = TREE_OPERAND (base, 0);
777 }
778 goto done;
779 }
780
781 default:
782 goto done;
783 }
784
785 exp = TREE_OPERAND (exp, 0);
786 }
787 done:
788
789 *poffset = byte_offset;
790 return exp;
791 }
792
793 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
794 denotes the starting address of the memory access EXP.
795 Returns NULL_TREE if the offset is not constant or any component
796 is not BITS_PER_UNIT-aligned. */
797
798 tree
799 get_addr_base_and_unit_offset (tree exp, HOST_WIDE_INT *poffset)
800 {
801 return get_addr_base_and_unit_offset_1 (exp, poffset, NULL);
802 }
803
804 /* Returns true if STMT references an SSA_NAME that has
805 SSA_NAME_OCCURS_IN_ABNORMAL_PHI set, otherwise false. */
806
807 bool
808 stmt_references_abnormal_ssa_name (gimple *stmt)
809 {
810 ssa_op_iter oi;
811 use_operand_p use_p;
812
813 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
814 {
815 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
816 return true;
817 }
818
819 return false;
820 }
821
822 /* Pair of tree and a sorting index, for dump_enumerated_decls. */
823 struct GTY(()) numbered_tree
824 {
825 tree t;
826 int num;
827 };
828
829
830 /* Compare two declarations references by their DECL_UID / sequence number.
831 Called via qsort. */
832
833 static int
834 compare_decls_by_uid (const void *pa, const void *pb)
835 {
836 const numbered_tree *nt_a = ((const numbered_tree *)pa);
837 const numbered_tree *nt_b = ((const numbered_tree *)pb);
838
839 if (DECL_UID (nt_a->t) != DECL_UID (nt_b->t))
840 return DECL_UID (nt_a->t) - DECL_UID (nt_b->t);
841 return nt_a->num - nt_b->num;
842 }
843
844 /* Called via walk_gimple_stmt / walk_gimple_op by dump_enumerated_decls. */
845 static tree
846 dump_enumerated_decls_push (tree *tp, int *walk_subtrees, void *data)
847 {
848 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
849 vec<numbered_tree> *list = (vec<numbered_tree> *) wi->info;
850 numbered_tree nt;
851
852 if (!DECL_P (*tp))
853 return NULL_TREE;
854 nt.t = *tp;
855 nt.num = list->length ();
856 list->safe_push (nt);
857 *walk_subtrees = 0;
858 return NULL_TREE;
859 }
860
861 /* Find all the declarations used by the current function, sort them by uid,
862 and emit the sorted list. Each declaration is tagged with a sequence
863 number indicating when it was found during statement / tree walking,
864 so that TDF_NOUID comparisons of anonymous declarations are still
865 meaningful. Where a declaration was encountered more than once, we
866 emit only the sequence number of the first encounter.
867 FILE is the dump file where to output the list and FLAGS is as in
868 print_generic_expr. */
869 void
870 dump_enumerated_decls (FILE *file, int flags)
871 {
872 basic_block bb;
873 struct walk_stmt_info wi;
874 auto_vec<numbered_tree, 40> decl_list;
875
876 memset (&wi, '\0', sizeof (wi));
877 wi.info = (void *) &decl_list;
878 FOR_EACH_BB_FN (bb, cfun)
879 {
880 gimple_stmt_iterator gsi;
881
882 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
883 if (!is_gimple_debug (gsi_stmt (gsi)))
884 walk_gimple_stmt (&gsi, NULL, dump_enumerated_decls_push, &wi);
885 }
886 decl_list.qsort (compare_decls_by_uid);
887 if (decl_list.length ())
888 {
889 unsigned ix;
890 numbered_tree *ntp;
891 tree last = NULL_TREE;
892
893 fprintf (file, "Declarations used by %s, sorted by DECL_UID:\n",
894 current_function_name ());
895 FOR_EACH_VEC_ELT (decl_list, ix, ntp)
896 {
897 if (ntp->t == last)
898 continue;
899 fprintf (file, "%d: ", ntp->num);
900 print_generic_decl (file, ntp->t, flags);
901 fprintf (file, "\n");
902 last = ntp->t;
903 }
904 }
905 }