* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "diagnostic-core.h"
39 #include "gimple.h"
40 #include "target.h"
41
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p = 0;
48
49 void
50 using_eh_for_cleanups (void)
51 {
52 using_eh_for_cleanups_p = 1;
53 }
54
55 /* Misc functions used in this file. */
56
57 /* Compare and hash for any structure which begins with a canonical
58 pointer. Assumes all pointers are interchangeable, which is sort
59 of already assumed by gcc elsewhere IIRC. */
60
61 static int
62 struct_ptr_eq (const void *a, const void *b)
63 {
64 const void * const * x = (const void * const *) a;
65 const void * const * y = (const void * const *) b;
66 return *x == *y;
67 }
68
69 static hashval_t
70 struct_ptr_hash (const void *a)
71 {
72 const void * const * x = (const void * const *) a;
73 return (size_t)*x >> 4;
74 }
75
76
77 /* Remember and lookup EH landing pad data for arbitrary statements.
78 Really this means any statement that could_throw_p. We could
79 stuff this information into the stmt_ann data structure, but:
80
81 (1) We absolutely rely on this information being kept until
82 we get to rtl. Once we're done with lowering here, if we lose
83 the information there's no way to recover it!
84
85 (2) There are many more statements that *cannot* throw as
86 compared to those that can. We should be saving some amount
87 of space by only allocating memory for those that can throw. */
88
89 /* Add statement T in function IFUN to landing pad NUM. */
90
91 void
92 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
93 {
94 struct throw_stmt_node *n;
95 void **slot;
96
97 gcc_assert (num != 0);
98
99 n = ggc_alloc_throw_stmt_node ();
100 n->stmt = t;
101 n->lp_nr = num;
102
103 if (!get_eh_throw_stmt_table (ifun))
104 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
105 struct_ptr_eq,
106 ggc_free));
107
108 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
109 gcc_assert (!*slot);
110 *slot = n;
111 }
112
113 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
114
115 void
116 add_stmt_to_eh_lp (gimple t, int num)
117 {
118 add_stmt_to_eh_lp_fn (cfun, t, num);
119 }
120
121 /* Add statement T to the single EH landing pad in REGION. */
122
123 static void
124 record_stmt_eh_region (eh_region region, gimple t)
125 {
126 if (region == NULL)
127 return;
128 if (region->type == ERT_MUST_NOT_THROW)
129 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
130 else
131 {
132 eh_landing_pad lp = region->landing_pads;
133 if (lp == NULL)
134 lp = gen_eh_landing_pad (region);
135 else
136 gcc_assert (lp->next_lp == NULL);
137 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
138 }
139 }
140
141
142 /* Remove statement T in function IFUN from its EH landing pad. */
143
144 bool
145 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
146 {
147 struct throw_stmt_node dummy;
148 void **slot;
149
150 if (!get_eh_throw_stmt_table (ifun))
151 return false;
152
153 dummy.stmt = t;
154 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
155 NO_INSERT);
156 if (slot)
157 {
158 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
159 return true;
160 }
161 else
162 return false;
163 }
164
165
166 /* Remove statement T in the current function (cfun) from its
167 EH landing pad. */
168
169 bool
170 remove_stmt_from_eh_lp (gimple t)
171 {
172 return remove_stmt_from_eh_lp_fn (cfun, t);
173 }
174
175 /* Determine if statement T is inside an EH region in function IFUN.
176 Positive numbers indicate a landing pad index; negative numbers
177 indicate a MUST_NOT_THROW region index; zero indicates that the
178 statement is not recorded in the region table. */
179
180 int
181 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
182 {
183 struct throw_stmt_node *p, n;
184
185 if (ifun->eh->throw_stmt_table == NULL)
186 return 0;
187
188 n.stmt = t;
189 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
190 return p ? p->lp_nr : 0;
191 }
192
193 /* Likewise, but always use the current function. */
194
195 int
196 lookup_stmt_eh_lp (gimple t)
197 {
198 /* We can get called from initialized data when -fnon-call-exceptions
199 is on; prevent crash. */
200 if (!cfun)
201 return 0;
202 return lookup_stmt_eh_lp_fn (cfun, t);
203 }
204
205 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
206 nodes and LABEL_DECL nodes. We will use this during the second phase to
207 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
208
209 struct finally_tree_node
210 {
211 /* When storing a GIMPLE_TRY, we have to record a gimple. However
212 when deciding whether a GOTO to a certain LABEL_DECL (which is a
213 tree) leaves the TRY block, its necessary to record a tree in
214 this field. Thus a treemple is used. */
215 treemple child;
216 gimple parent;
217 };
218
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static htab_t finally_tree;
221
222 static void
223 record_in_finally_tree (treemple child, gimple parent)
224 {
225 struct finally_tree_node *n;
226 void **slot;
227
228 n = XNEW (struct finally_tree_node);
229 n->child = child;
230 n->parent = parent;
231
232 slot = htab_find_slot (finally_tree, n, INSERT);
233 gcc_assert (!*slot);
234 *slot = n;
235 }
236
237 static void
238 collect_finally_tree (gimple stmt, gimple region);
239
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
242
243 static void
244 collect_finally_tree_1 (gimple_seq seq, gimple region)
245 {
246 gimple_stmt_iterator gsi;
247
248 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
249 collect_finally_tree (gsi_stmt (gsi), region);
250 }
251
252 static void
253 collect_finally_tree (gimple stmt, gimple region)
254 {
255 treemple temp;
256
257 switch (gimple_code (stmt))
258 {
259 case GIMPLE_LABEL:
260 temp.t = gimple_label_label (stmt);
261 record_in_finally_tree (temp, region);
262 break;
263
264 case GIMPLE_TRY:
265 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
266 {
267 temp.g = stmt;
268 record_in_finally_tree (temp, region);
269 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
271 }
272 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
273 {
274 collect_finally_tree_1 (gimple_try_eval (stmt), region);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
276 }
277 break;
278
279 case GIMPLE_CATCH:
280 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
281 break;
282
283 case GIMPLE_EH_FILTER:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
285 break;
286
287 default:
288 /* A type, a decl, or some kind of statement that we're not
289 interested in. Don't walk them. */
290 break;
291 }
292 }
293
294
295 /* Use the finally tree to determine if a jump from START to TARGET
296 would leave the try_finally node that START lives in. */
297
298 static bool
299 outside_finally_tree (treemple start, gimple target)
300 {
301 struct finally_tree_node n, *p;
302
303 do
304 {
305 n.child = start;
306 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
307 if (!p)
308 return true;
309 start.g = p->parent;
310 }
311 while (start.g != target);
312
313 return false;
314 }
315
316 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
317 nodes into a set of gotos, magic labels, and eh regions.
318 The eh region creation is straight-forward, but frobbing all the gotos
319 and such into shape isn't. */
320
321 /* The sequence into which we record all EH stuff. This will be
322 placed at the end of the function when we're all done. */
323 static gimple_seq eh_seq;
324
325 /* Record whether an EH region contains something that can throw,
326 indexed by EH region number. */
327 static bitmap eh_region_may_contain_throw_map;
328
329 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
330 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
331 The idea is to record a gimple statement for everything except for
332 the conditionals, which get their labels recorded. Since labels are
333 of type 'tree', we need this node to store both gimple and tree
334 objects. REPL_STMT is the sequence used to replace the goto/return
335 statement. CONT_STMT is used to store the statement that allows
336 the return/goto to jump to the original destination. */
337
338 struct goto_queue_node
339 {
340 treemple stmt;
341 gimple_seq repl_stmt;
342 gimple cont_stmt;
343 int index;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
346 int is_label;
347 };
348
349 /* State of the world while lowering. */
350
351 struct leh_state
352 {
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region;
357
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region;
362
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state *tf;
367 };
368
369 struct leh_tf_state
370 {
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gimple try_finally_expr;
376 gimple top_p;
377
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq;
381
382 /* The state outside this try_finally node. */
383 struct leh_state *outer;
384
385 /* The exception region created for it. */
386 eh_region region;
387
388 /* The goto queue. */
389 struct goto_queue_node *goto_queue;
390 size_t goto_queue_size;
391 size_t goto_queue_active;
392
393 /* Pointer map to help in searching goto_queue when it is large. */
394 struct pointer_map_t *goto_queue_map;
395
396 /* The set of unique labels seen as entries in the goto queue. */
397 VEC(tree,heap) *dest_array;
398
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
402 tree fallthru_label;
403
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
406 bool may_fallthru;
407
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
409 bool may_return;
410
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
413 bool may_throw;
414 };
415
416 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
417
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
420
421 #define LARGE_GOTO_QUEUE 20
422
423 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
424
425 static gimple_seq
426 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
427 {
428 unsigned int i;
429 void **slot;
430
431 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
432 {
433 for (i = 0; i < tf->goto_queue_active; i++)
434 if ( tf->goto_queue[i].stmt.g == stmt.g)
435 return tf->goto_queue[i].repl_stmt;
436 return NULL;
437 }
438
439 /* If we have a large number of entries in the goto_queue, create a
440 pointer map and use that for searching. */
441
442 if (!tf->goto_queue_map)
443 {
444 tf->goto_queue_map = pointer_map_create ();
445 for (i = 0; i < tf->goto_queue_active; i++)
446 {
447 slot = pointer_map_insert (tf->goto_queue_map,
448 tf->goto_queue[i].stmt.g);
449 gcc_assert (*slot == NULL);
450 *slot = &tf->goto_queue[i];
451 }
452 }
453
454 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
455 if (slot != NULL)
456 return (((struct goto_queue_node *) *slot)->repl_stmt);
457
458 return NULL;
459 }
460
461 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
462 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
463 then we can just splat it in, otherwise we add the new stmts immediately
464 after the GIMPLE_COND and redirect. */
465
466 static void
467 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
468 gimple_stmt_iterator *gsi)
469 {
470 tree label;
471 gimple_seq new_seq;
472 treemple temp;
473 location_t loc = gimple_location (gsi_stmt (*gsi));
474
475 temp.tp = tp;
476 new_seq = find_goto_replacement (tf, temp);
477 if (!new_seq)
478 return;
479
480 if (gimple_seq_singleton_p (new_seq)
481 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
482 {
483 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
484 return;
485 }
486
487 label = create_artificial_label (loc);
488 /* Set the new label for the GIMPLE_COND */
489 *tp = label;
490
491 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
492 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
493 }
494
495 /* The real work of replace_goto_queue. Returns with TSI updated to
496 point to the next statement. */
497
498 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
499
500 static void
501 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
502 gimple_stmt_iterator *gsi)
503 {
504 gimple_seq seq;
505 treemple temp;
506 temp.g = NULL;
507
508 switch (gimple_code (stmt))
509 {
510 case GIMPLE_GOTO:
511 case GIMPLE_RETURN:
512 temp.g = stmt;
513 seq = find_goto_replacement (tf, temp);
514 if (seq)
515 {
516 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
517 gsi_remove (gsi, false);
518 return;
519 }
520 break;
521
522 case GIMPLE_COND:
523 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
525 break;
526
527 case GIMPLE_TRY:
528 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
529 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
530 break;
531 case GIMPLE_CATCH:
532 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
533 break;
534 case GIMPLE_EH_FILTER:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
536 break;
537
538 default:
539 /* These won't have gotos in them. */
540 break;
541 }
542
543 gsi_next (gsi);
544 }
545
546 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
547
548 static void
549 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
550 {
551 gimple_stmt_iterator gsi = gsi_start (seq);
552
553 while (!gsi_end_p (gsi))
554 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
555 }
556
557 /* Replace all goto queue members. */
558
559 static void
560 replace_goto_queue (struct leh_tf_state *tf)
561 {
562 if (tf->goto_queue_active == 0)
563 return;
564 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
565 replace_goto_queue_stmt_list (eh_seq, tf);
566 }
567
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
570 a gimple return. */
571
572 static void
573 record_in_goto_queue (struct leh_tf_state *tf,
574 treemple new_stmt,
575 int index,
576 bool is_label)
577 {
578 size_t active, size;
579 struct goto_queue_node *q;
580
581 gcc_assert (!tf->goto_queue_map);
582
583 active = tf->goto_queue_active;
584 size = tf->goto_queue_size;
585 if (active >= size)
586 {
587 size = (size ? size * 2 : 32);
588 tf->goto_queue_size = size;
589 tf->goto_queue
590 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
591 }
592
593 q = &tf->goto_queue[active];
594 tf->goto_queue_active = active + 1;
595
596 memset (q, 0, sizeof (*q));
597 q->stmt = new_stmt;
598 q->index = index;
599 q->is_label = is_label;
600 }
601
602 /* Record the LABEL label in the goto queue contained in TF.
603 TF is not null. */
604
605 static void
606 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
607 {
608 int index;
609 treemple temp, new_stmt;
610
611 if (!label)
612 return;
613
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
619
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
624
625 if (! tf->dest_array)
626 {
627 tf->dest_array = VEC_alloc (tree, heap, 10);
628 VEC_quick_push (tree, tf->dest_array, label);
629 index = 0;
630 }
631 else
632 {
633 int n = VEC_length (tree, tf->dest_array);
634 for (index = 0; index < n; ++index)
635 if (VEC_index (tree, tf->dest_array, index) == label)
636 break;
637 if (index == n)
638 VEC_safe_push (tree, heap, tf->dest_array, label);
639 }
640
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true);
646 }
647
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
650 try_finally node. */
651
652 static void
653 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
654 {
655 struct leh_tf_state *tf = state->tf;
656 treemple new_stmt;
657
658 if (!tf)
659 return;
660
661 switch (gimple_code (stmt))
662 {
663 case GIMPLE_COND:
664 new_stmt.tp = gimple_op_ptr (stmt, 2);
665 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
666 new_stmt.tp = gimple_op_ptr (stmt, 3);
667 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
668 break;
669 case GIMPLE_GOTO:
670 new_stmt.g = stmt;
671 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
672 break;
673
674 case GIMPLE_RETURN:
675 tf->may_return = true;
676 new_stmt.g = stmt;
677 record_in_goto_queue (tf, new_stmt, -1, false);
678 break;
679
680 default:
681 gcc_unreachable ();
682 }
683 }
684
685
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
690
691 static void
692 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
693 {
694 struct leh_tf_state *tf = state->tf;
695 size_t i, n;
696
697 if (!tf)
698 return;
699
700 n = gimple_switch_num_labels (switch_expr);
701
702 for (i = 0; i < n; ++i)
703 {
704 treemple temp;
705 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
706 temp.t = lab;
707 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
708 }
709 }
710 #else
711 #define verify_norecord_switch_expr(state, switch_expr)
712 #endif
713
714 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
715 whatever is needed to finish the return. If MOD is non-null, insert it
716 before the new branch. RETURN_VALUE_P is a cache containing a temporary
717 variable to be used in manipulating the value returned from the function. */
718
719 static void
720 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
721 tree *return_value_p)
722 {
723 tree ret_expr;
724 gimple x;
725
726 /* In the case of a return, the queue node must be a gimple statement. */
727 gcc_assert (!q->is_label);
728
729 ret_expr = gimple_return_retval (q->stmt.g);
730
731 if (ret_expr)
732 {
733 if (!*return_value_p)
734 *return_value_p = ret_expr;
735 else
736 gcc_assert (*return_value_p == ret_expr);
737 q->cont_stmt = q->stmt.g;
738 /* The nasty part about redirecting the return value is that the
739 return value itself is to be computed before the FINALLY block
740 is executed. e.g.
741
742 int x;
743 int foo (void)
744 {
745 x = 0;
746 try {
747 return x;
748 } finally {
749 x++;
750 }
751 }
752
753 should return 0, not 1. Arrange for this to happen by copying
754 computed the return value into a local temporary. This also
755 allows us to redirect multiple return statements through the
756 same destination block; whether this is a net win or not really
757 depends, I guess, but it does make generation of the switch in
758 lower_try_finally_switch easier. */
759
760 if (TREE_CODE (ret_expr) == RESULT_DECL)
761 {
762 if (!*return_value_p)
763 *return_value_p = ret_expr;
764 else
765 gcc_assert (*return_value_p == ret_expr);
766 q->cont_stmt = q->stmt.g;
767 }
768 else
769 gcc_unreachable ();
770 }
771 else
772 /* If we don't return a value, all return statements are the same. */
773 q->cont_stmt = q->stmt.g;
774
775 if (!q->repl_stmt)
776 q->repl_stmt = gimple_seq_alloc ();
777
778 if (mod)
779 gimple_seq_add_seq (&q->repl_stmt, mod);
780
781 x = gimple_build_goto (finlab);
782 gimple_seq_add_stmt (&q->repl_stmt, x);
783 }
784
785 /* Similar, but easier, for GIMPLE_GOTO. */
786
787 static void
788 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
789 struct leh_tf_state *tf)
790 {
791 gimple x;
792
793 gcc_assert (q->is_label);
794 if (!q->repl_stmt)
795 q->repl_stmt = gimple_seq_alloc ();
796
797 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
798
799 if (mod)
800 gimple_seq_add_seq (&q->repl_stmt, mod);
801
802 x = gimple_build_goto (finlab);
803 gimple_seq_add_stmt (&q->repl_stmt, x);
804 }
805
806 /* Emit a standard landing pad sequence into SEQ for REGION. */
807
808 static void
809 emit_post_landing_pad (gimple_seq *seq, eh_region region)
810 {
811 eh_landing_pad lp = region->landing_pads;
812 gimple x;
813
814 if (lp == NULL)
815 lp = gen_eh_landing_pad (region);
816
817 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
818 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
819
820 x = gimple_build_label (lp->post_landing_pad);
821 gimple_seq_add_stmt (seq, x);
822 }
823
824 /* Emit a RESX statement into SEQ for REGION. */
825
826 static void
827 emit_resx (gimple_seq *seq, eh_region region)
828 {
829 gimple x = gimple_build_resx (region->index);
830 gimple_seq_add_stmt (seq, x);
831 if (region->outer)
832 record_stmt_eh_region (region->outer, x);
833 }
834
835 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
836
837 static void
838 emit_eh_dispatch (gimple_seq *seq, eh_region region)
839 {
840 gimple x = gimple_build_eh_dispatch (region->index);
841 gimple_seq_add_stmt (seq, x);
842 }
843
844 /* Note that the current EH region may contain a throw, or a
845 call to a function which itself may contain a throw. */
846
847 static void
848 note_eh_region_may_contain_throw (eh_region region)
849 {
850 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
851 {
852 region = region->outer;
853 if (region == NULL)
854 break;
855 }
856 }
857
858 /* Check if REGION has been marked as containing a throw. If REGION is
859 NULL, this predicate is false. */
860
861 static inline bool
862 eh_region_may_contain_throw (eh_region r)
863 {
864 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
865 }
866
867 /* We want to transform
868 try { body; } catch { stuff; }
869 to
870 normal_seqence:
871 body;
872 over:
873 eh_seqence:
874 landing_pad:
875 stuff;
876 goto over;
877
878 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
879 should be placed before the second operand, or NULL. OVER is
880 an existing label that should be put at the exit, or NULL. */
881
882 static gimple_seq
883 frob_into_branch_around (gimple tp, eh_region region, tree over)
884 {
885 gimple x;
886 gimple_seq cleanup, result;
887 location_t loc = gimple_location (tp);
888
889 cleanup = gimple_try_cleanup (tp);
890 result = gimple_try_eval (tp);
891
892 if (region)
893 emit_post_landing_pad (&eh_seq, region);
894
895 if (gimple_seq_may_fallthru (cleanup))
896 {
897 if (!over)
898 over = create_artificial_label (loc);
899 x = gimple_build_goto (over);
900 gimple_seq_add_stmt (&cleanup, x);
901 }
902 gimple_seq_add_seq (&eh_seq, cleanup);
903
904 if (over)
905 {
906 x = gimple_build_label (over);
907 gimple_seq_add_stmt (&result, x);
908 }
909 return result;
910 }
911
912 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
913 Make sure to record all new labels found. */
914
915 static gimple_seq
916 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
917 {
918 gimple region = NULL;
919 gimple_seq new_seq;
920
921 new_seq = copy_gimple_seq_and_replace_locals (seq);
922
923 if (outer_state->tf)
924 region = outer_state->tf->try_finally_expr;
925 collect_finally_tree_1 (new_seq, region);
926
927 return new_seq;
928 }
929
930 /* A subroutine of lower_try_finally. Create a fallthru label for
931 the given try_finally state. The only tricky bit here is that
932 we have to make sure to record the label in our outer context. */
933
934 static tree
935 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
936 {
937 tree label = tf->fallthru_label;
938 treemple temp;
939
940 if (!label)
941 {
942 label = create_artificial_label (gimple_location (tf->try_finally_expr));
943 tf->fallthru_label = label;
944 if (tf->outer->tf)
945 {
946 temp.t = label;
947 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
948 }
949 }
950 return label;
951 }
952
953 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
954 langhook returns non-null, then the language requires that the exception
955 path out of a try_finally be treated specially. To wit: the code within
956 the finally block may not itself throw an exception. We have two choices
957 here. First we can duplicate the finally block and wrap it in a
958 must_not_throw region. Second, we can generate code like
959
960 try {
961 finally_block;
962 } catch {
963 if (fintmp == eh_edge)
964 protect_cleanup_actions;
965 }
966
967 where "fintmp" is the temporary used in the switch statement generation
968 alternative considered below. For the nonce, we always choose the first
969 option.
970
971 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
972
973 static void
974 honor_protect_cleanup_actions (struct leh_state *outer_state,
975 struct leh_state *this_state,
976 struct leh_tf_state *tf)
977 {
978 tree protect_cleanup_actions;
979 gimple_stmt_iterator gsi;
980 bool finally_may_fallthru;
981 gimple_seq finally;
982 gimple x;
983
984 /* First check for nothing to do. */
985 if (lang_hooks.eh_protect_cleanup_actions == NULL)
986 return;
987 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
988 if (protect_cleanup_actions == NULL)
989 return;
990
991 finally = gimple_try_cleanup (tf->top_p);
992 finally_may_fallthru = gimple_seq_may_fallthru (finally);
993
994 /* Duplicate the FINALLY block. Only need to do this for try-finally,
995 and not for cleanups. */
996 if (this_state)
997 finally = lower_try_finally_dup_block (finally, outer_state);
998
999 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1000 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1001 to be in an enclosing scope, but needs to be implemented at this level
1002 to avoid a nesting violation (see wrap_temporary_cleanups in
1003 cp/decl.c). Since it's logically at an outer level, we should call
1004 terminate before we get to it, so strip it away before adding the
1005 MUST_NOT_THROW filter. */
1006 gsi = gsi_start (finally);
1007 x = gsi_stmt (gsi);
1008 if (gimple_code (x) == GIMPLE_TRY
1009 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1010 && gimple_try_catch_is_cleanup (x))
1011 {
1012 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1013 gsi_remove (&gsi, false);
1014 }
1015
1016 /* Wrap the block with protect_cleanup_actions as the action. */
1017 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1018 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1019 GIMPLE_TRY_CATCH);
1020 finally = lower_eh_must_not_throw (outer_state, x);
1021
1022 /* Drop all of this into the exception sequence. */
1023 emit_post_landing_pad (&eh_seq, tf->region);
1024 gimple_seq_add_seq (&eh_seq, finally);
1025 if (finally_may_fallthru)
1026 emit_resx (&eh_seq, tf->region);
1027
1028 /* Having now been handled, EH isn't to be considered with
1029 the rest of the outgoing edges. */
1030 tf->may_throw = false;
1031 }
1032
1033 /* A subroutine of lower_try_finally. We have determined that there is
1034 no fallthru edge out of the finally block. This means that there is
1035 no outgoing edge corresponding to any incoming edge. Restructure the
1036 try_finally node for this special case. */
1037
1038 static void
1039 lower_try_finally_nofallthru (struct leh_state *state,
1040 struct leh_tf_state *tf)
1041 {
1042 tree lab, return_val;
1043 gimple x;
1044 gimple_seq finally;
1045 struct goto_queue_node *q, *qe;
1046
1047 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1048
1049 /* We expect that tf->top_p is a GIMPLE_TRY. */
1050 finally = gimple_try_cleanup (tf->top_p);
1051 tf->top_p_seq = gimple_try_eval (tf->top_p);
1052
1053 x = gimple_build_label (lab);
1054 gimple_seq_add_stmt (&tf->top_p_seq, x);
1055
1056 return_val = NULL;
1057 q = tf->goto_queue;
1058 qe = q + tf->goto_queue_active;
1059 for (; q < qe; ++q)
1060 if (q->index < 0)
1061 do_return_redirection (q, lab, NULL, &return_val);
1062 else
1063 do_goto_redirection (q, lab, NULL, tf);
1064
1065 replace_goto_queue (tf);
1066
1067 lower_eh_constructs_1 (state, finally);
1068 gimple_seq_add_seq (&tf->top_p_seq, finally);
1069
1070 if (tf->may_throw)
1071 {
1072 emit_post_landing_pad (&eh_seq, tf->region);
1073
1074 x = gimple_build_goto (lab);
1075 gimple_seq_add_stmt (&eh_seq, x);
1076 }
1077 }
1078
1079 /* A subroutine of lower_try_finally. We have determined that there is
1080 exactly one destination of the finally block. Restructure the
1081 try_finally node for this special case. */
1082
1083 static void
1084 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1085 {
1086 struct goto_queue_node *q, *qe;
1087 gimple x;
1088 gimple_seq finally;
1089 tree finally_label;
1090 location_t loc = gimple_location (tf->try_finally_expr);
1091
1092 finally = gimple_try_cleanup (tf->top_p);
1093 tf->top_p_seq = gimple_try_eval (tf->top_p);
1094
1095 lower_eh_constructs_1 (state, finally);
1096
1097 if (tf->may_throw)
1098 {
1099 /* Only reachable via the exception edge. Add the given label to
1100 the head of the FINALLY block. Append a RESX at the end. */
1101 emit_post_landing_pad (&eh_seq, tf->region);
1102 gimple_seq_add_seq (&eh_seq, finally);
1103 emit_resx (&eh_seq, tf->region);
1104 return;
1105 }
1106
1107 if (tf->may_fallthru)
1108 {
1109 /* Only reachable via the fallthru edge. Do nothing but let
1110 the two blocks run together; we'll fall out the bottom. */
1111 gimple_seq_add_seq (&tf->top_p_seq, finally);
1112 return;
1113 }
1114
1115 finally_label = create_artificial_label (loc);
1116 x = gimple_build_label (finally_label);
1117 gimple_seq_add_stmt (&tf->top_p_seq, x);
1118
1119 gimple_seq_add_seq (&tf->top_p_seq, finally);
1120
1121 q = tf->goto_queue;
1122 qe = q + tf->goto_queue_active;
1123
1124 if (tf->may_return)
1125 {
1126 /* Reachable by return expressions only. Redirect them. */
1127 tree return_val = NULL;
1128 for (; q < qe; ++q)
1129 do_return_redirection (q, finally_label, NULL, &return_val);
1130 replace_goto_queue (tf);
1131 }
1132 else
1133 {
1134 /* Reachable by goto expressions only. Redirect them. */
1135 for (; q < qe; ++q)
1136 do_goto_redirection (q, finally_label, NULL, tf);
1137 replace_goto_queue (tf);
1138
1139 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1140 {
1141 /* Reachable by goto to fallthru label only. Redirect it
1142 to the new label (already created, sadly), and do not
1143 emit the final branch out, or the fallthru label. */
1144 tf->fallthru_label = NULL;
1145 return;
1146 }
1147 }
1148
1149 /* Place the original return/goto to the original destination
1150 immediately after the finally block. */
1151 x = tf->goto_queue[0].cont_stmt;
1152 gimple_seq_add_stmt (&tf->top_p_seq, x);
1153 maybe_record_in_goto_queue (state, x);
1154 }
1155
1156 /* A subroutine of lower_try_finally. There are multiple edges incoming
1157 and outgoing from the finally block. Implement this by duplicating the
1158 finally block for every destination. */
1159
1160 static void
1161 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1162 {
1163 gimple_seq finally;
1164 gimple_seq new_stmt;
1165 gimple_seq seq;
1166 gimple x;
1167 tree tmp;
1168 location_t tf_loc = gimple_location (tf->try_finally_expr);
1169
1170 finally = gimple_try_cleanup (tf->top_p);
1171 tf->top_p_seq = gimple_try_eval (tf->top_p);
1172 new_stmt = NULL;
1173
1174 if (tf->may_fallthru)
1175 {
1176 seq = lower_try_finally_dup_block (finally, state);
1177 lower_eh_constructs_1 (state, seq);
1178 gimple_seq_add_seq (&new_stmt, seq);
1179
1180 tmp = lower_try_finally_fallthru_label (tf);
1181 x = gimple_build_goto (tmp);
1182 gimple_seq_add_stmt (&new_stmt, x);
1183 }
1184
1185 if (tf->may_throw)
1186 {
1187 seq = lower_try_finally_dup_block (finally, state);
1188 lower_eh_constructs_1 (state, seq);
1189
1190 emit_post_landing_pad (&eh_seq, tf->region);
1191 gimple_seq_add_seq (&eh_seq, seq);
1192 emit_resx (&eh_seq, tf->region);
1193 }
1194
1195 if (tf->goto_queue)
1196 {
1197 struct goto_queue_node *q, *qe;
1198 tree return_val = NULL;
1199 int return_index, index;
1200 struct labels_s
1201 {
1202 struct goto_queue_node *q;
1203 tree label;
1204 } *labels;
1205
1206 return_index = VEC_length (tree, tf->dest_array);
1207 labels = XCNEWVEC (struct labels_s, return_index + 1);
1208
1209 q = tf->goto_queue;
1210 qe = q + tf->goto_queue_active;
1211 for (; q < qe; q++)
1212 {
1213 index = q->index < 0 ? return_index : q->index;
1214
1215 if (!labels[index].q)
1216 labels[index].q = q;
1217 }
1218
1219 for (index = 0; index < return_index + 1; index++)
1220 {
1221 tree lab;
1222
1223 q = labels[index].q;
1224 if (! q)
1225 continue;
1226
1227 lab = labels[index].label
1228 = create_artificial_label (tf_loc);
1229
1230 if (index == return_index)
1231 do_return_redirection (q, lab, NULL, &return_val);
1232 else
1233 do_goto_redirection (q, lab, NULL, tf);
1234
1235 x = gimple_build_label (lab);
1236 gimple_seq_add_stmt (&new_stmt, x);
1237
1238 seq = lower_try_finally_dup_block (finally, state);
1239 lower_eh_constructs_1 (state, seq);
1240 gimple_seq_add_seq (&new_stmt, seq);
1241
1242 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1243 maybe_record_in_goto_queue (state, q->cont_stmt);
1244 }
1245
1246 for (q = tf->goto_queue; q < qe; q++)
1247 {
1248 tree lab;
1249
1250 index = q->index < 0 ? return_index : q->index;
1251
1252 if (labels[index].q == q)
1253 continue;
1254
1255 lab = labels[index].label;
1256
1257 if (index == return_index)
1258 do_return_redirection (q, lab, NULL, &return_val);
1259 else
1260 do_goto_redirection (q, lab, NULL, tf);
1261 }
1262
1263 replace_goto_queue (tf);
1264 free (labels);
1265 }
1266
1267 /* Need to link new stmts after running replace_goto_queue due
1268 to not wanting to process the same goto stmts twice. */
1269 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1270 }
1271
1272 /* A subroutine of lower_try_finally. There are multiple edges incoming
1273 and outgoing from the finally block. Implement this by instrumenting
1274 each incoming edge and creating a switch statement at the end of the
1275 finally block that branches to the appropriate destination. */
1276
1277 static void
1278 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1279 {
1280 struct goto_queue_node *q, *qe;
1281 tree return_val = NULL;
1282 tree finally_tmp, finally_label;
1283 int return_index, eh_index, fallthru_index;
1284 int nlabels, ndests, j, last_case_index;
1285 tree last_case;
1286 VEC (tree,heap) *case_label_vec;
1287 gimple_seq switch_body;
1288 gimple x;
1289 tree tmp;
1290 gimple switch_stmt;
1291 gimple_seq finally;
1292 struct pointer_map_t *cont_map = NULL;
1293 /* The location of the TRY_FINALLY stmt. */
1294 location_t tf_loc = gimple_location (tf->try_finally_expr);
1295 /* The location of the finally block. */
1296 location_t finally_loc;
1297
1298 switch_body = gimple_seq_alloc ();
1299
1300 /* Mash the TRY block to the head of the chain. */
1301 finally = gimple_try_cleanup (tf->top_p);
1302 tf->top_p_seq = gimple_try_eval (tf->top_p);
1303
1304 /* The location of the finally is either the last stmt in the finally
1305 block or the location of the TRY_FINALLY itself. */
1306 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1307 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1308 : tf_loc;
1309
1310 /* Lower the finally block itself. */
1311 lower_eh_constructs_1 (state, finally);
1312
1313 /* Prepare for switch statement generation. */
1314 nlabels = VEC_length (tree, tf->dest_array);
1315 return_index = nlabels;
1316 eh_index = return_index + tf->may_return;
1317 fallthru_index = eh_index + tf->may_throw;
1318 ndests = fallthru_index + tf->may_fallthru;
1319
1320 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1321 finally_label = create_artificial_label (finally_loc);
1322
1323 /* We use VEC_quick_push on case_label_vec throughout this function,
1324 since we know the size in advance and allocate precisely as muce
1325 space as needed. */
1326 case_label_vec = VEC_alloc (tree, heap, ndests);
1327 last_case = NULL;
1328 last_case_index = 0;
1329
1330 /* Begin inserting code for getting to the finally block. Things
1331 are done in this order to correspond to the sequence the code is
1332 layed out. */
1333
1334 if (tf->may_fallthru)
1335 {
1336 x = gimple_build_assign (finally_tmp,
1337 build_int_cst (NULL, fallthru_index));
1338 gimple_seq_add_stmt (&tf->top_p_seq, x);
1339
1340 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1341 build_int_cst (NULL, fallthru_index),
1342 NULL, create_artificial_label (tf_loc));
1343 VEC_quick_push (tree, case_label_vec, last_case);
1344 last_case_index++;
1345
1346 x = gimple_build_label (CASE_LABEL (last_case));
1347 gimple_seq_add_stmt (&switch_body, x);
1348
1349 tmp = lower_try_finally_fallthru_label (tf);
1350 x = gimple_build_goto (tmp);
1351 gimple_seq_add_stmt (&switch_body, x);
1352 }
1353
1354 if (tf->may_throw)
1355 {
1356 emit_post_landing_pad (&eh_seq, tf->region);
1357
1358 x = gimple_build_assign (finally_tmp,
1359 build_int_cst (NULL, eh_index));
1360 gimple_seq_add_stmt (&eh_seq, x);
1361
1362 x = gimple_build_goto (finally_label);
1363 gimple_seq_add_stmt (&eh_seq, x);
1364
1365 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1366 build_int_cst (NULL, eh_index),
1367 NULL, create_artificial_label (tf_loc));
1368 VEC_quick_push (tree, case_label_vec, last_case);
1369 last_case_index++;
1370
1371 x = gimple_build_label (CASE_LABEL (last_case));
1372 gimple_seq_add_stmt (&eh_seq, x);
1373 emit_resx (&eh_seq, tf->region);
1374 }
1375
1376 x = gimple_build_label (finally_label);
1377 gimple_seq_add_stmt (&tf->top_p_seq, x);
1378
1379 gimple_seq_add_seq (&tf->top_p_seq, finally);
1380
1381 /* Redirect each incoming goto edge. */
1382 q = tf->goto_queue;
1383 qe = q + tf->goto_queue_active;
1384 j = last_case_index + tf->may_return;
1385 /* Prepare the assignments to finally_tmp that are executed upon the
1386 entrance through a particular edge. */
1387 for (; q < qe; ++q)
1388 {
1389 gimple_seq mod;
1390 int switch_id;
1391 unsigned int case_index;
1392
1393 mod = gimple_seq_alloc ();
1394
1395 if (q->index < 0)
1396 {
1397 x = gimple_build_assign (finally_tmp,
1398 build_int_cst (NULL, return_index));
1399 gimple_seq_add_stmt (&mod, x);
1400 do_return_redirection (q, finally_label, mod, &return_val);
1401 switch_id = return_index;
1402 }
1403 else
1404 {
1405 x = gimple_build_assign (finally_tmp,
1406 build_int_cst (NULL, q->index));
1407 gimple_seq_add_stmt (&mod, x);
1408 do_goto_redirection (q, finally_label, mod, tf);
1409 switch_id = q->index;
1410 }
1411
1412 case_index = j + q->index;
1413 if (VEC_length (tree, case_label_vec) <= case_index
1414 || !VEC_index (tree, case_label_vec, case_index))
1415 {
1416 tree case_lab;
1417 void **slot;
1418 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1419 build_int_cst (NULL, switch_id),
1420 NULL, NULL);
1421 /* We store the cont_stmt in the pointer map, so that we can recover
1422 it in the loop below. We don't create the new label while
1423 walking the goto_queue because pointers don't offer a stable
1424 order. */
1425 if (!cont_map)
1426 cont_map = pointer_map_create ();
1427 slot = pointer_map_insert (cont_map, case_lab);
1428 *slot = q->cont_stmt;
1429 VEC_quick_push (tree, case_label_vec, case_lab);
1430 }
1431 }
1432 for (j = last_case_index; j < last_case_index + nlabels; j++)
1433 {
1434 tree label;
1435 gimple cont_stmt;
1436 void **slot;
1437
1438 last_case = VEC_index (tree, case_label_vec, j);
1439
1440 gcc_assert (last_case);
1441 gcc_assert (cont_map);
1442
1443 slot = pointer_map_contains (cont_map, last_case);
1444 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1445 placeholder, it does not store an actual label, yet. */
1446 gcc_assert (slot);
1447 cont_stmt = *(gimple *) slot;
1448
1449 label = create_artificial_label (tf_loc);
1450 CASE_LABEL (last_case) = label;
1451
1452 x = gimple_build_label (label);
1453 gimple_seq_add_stmt (&switch_body, x);
1454 gimple_seq_add_stmt (&switch_body, cont_stmt);
1455 maybe_record_in_goto_queue (state, cont_stmt);
1456 }
1457 if (cont_map)
1458 pointer_map_destroy (cont_map);
1459
1460 replace_goto_queue (tf);
1461
1462 /* Make sure that the last case is the default label, as one is required.
1463 Then sort the labels, which is also required in GIMPLE. */
1464 CASE_LOW (last_case) = NULL;
1465 sort_case_labels (case_label_vec);
1466
1467 /* Build the switch statement, setting last_case to be the default
1468 label. */
1469 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1470 case_label_vec);
1471 gimple_set_location (switch_stmt, finally_loc);
1472
1473 /* Need to link SWITCH_STMT after running replace_goto_queue
1474 due to not wanting to process the same goto stmts twice. */
1475 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1476 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1477 }
1478
1479 /* Decide whether or not we are going to duplicate the finally block.
1480 There are several considerations.
1481
1482 First, if this is Java, then the finally block contains code
1483 written by the user. It has line numbers associated with it,
1484 so duplicating the block means it's difficult to set a breakpoint.
1485 Since controlling code generation via -g is verboten, we simply
1486 never duplicate code without optimization.
1487
1488 Second, we'd like to prevent egregious code growth. One way to
1489 do this is to estimate the size of the finally block, multiply
1490 that by the number of copies we'd need to make, and compare against
1491 the estimate of the size of the switch machinery we'd have to add. */
1492
1493 static bool
1494 decide_copy_try_finally (int ndests, gimple_seq finally)
1495 {
1496 int f_estimate, sw_estimate;
1497
1498 if (!optimize)
1499 return false;
1500
1501 /* Finally estimate N times, plus N gotos. */
1502 f_estimate = count_insns_seq (finally, &eni_size_weights);
1503 f_estimate = (f_estimate + 1) * ndests;
1504
1505 /* Switch statement (cost 10), N variable assignments, N gotos. */
1506 sw_estimate = 10 + 2 * ndests;
1507
1508 /* Optimize for size clearly wants our best guess. */
1509 if (optimize_function_for_size_p (cfun))
1510 return f_estimate < sw_estimate;
1511
1512 /* ??? These numbers are completely made up so far. */
1513 if (optimize > 1)
1514 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1515 else
1516 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1517 }
1518
1519 /* REG is the enclosing region for a possible cleanup region, or the region
1520 itself. Returns TRUE if such a region would be unreachable.
1521
1522 Cleanup regions within a must-not-throw region aren't actually reachable
1523 even if there are throwing stmts within them, because the personality
1524 routine will call terminate before unwinding. */
1525
1526 static bool
1527 cleanup_is_dead_in (eh_region reg)
1528 {
1529 while (reg && reg->type == ERT_CLEANUP)
1530 reg = reg->outer;
1531 return (reg && reg->type == ERT_MUST_NOT_THROW);
1532 }
1533
1534 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1535 to a sequence of labels and blocks, plus the exception region trees
1536 that record all the magic. This is complicated by the need to
1537 arrange for the FINALLY block to be executed on all exits. */
1538
1539 static gimple_seq
1540 lower_try_finally (struct leh_state *state, gimple tp)
1541 {
1542 struct leh_tf_state this_tf;
1543 struct leh_state this_state;
1544 int ndests;
1545 gimple_seq old_eh_seq;
1546
1547 /* Process the try block. */
1548
1549 memset (&this_tf, 0, sizeof (this_tf));
1550 this_tf.try_finally_expr = tp;
1551 this_tf.top_p = tp;
1552 this_tf.outer = state;
1553 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1554 {
1555 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1556 this_state.cur_region = this_tf.region;
1557 }
1558 else
1559 {
1560 this_tf.region = NULL;
1561 this_state.cur_region = state->cur_region;
1562 }
1563
1564 this_state.ehp_region = state->ehp_region;
1565 this_state.tf = &this_tf;
1566
1567 old_eh_seq = eh_seq;
1568 eh_seq = NULL;
1569
1570 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1571
1572 /* Determine if the try block is escaped through the bottom. */
1573 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1574
1575 /* Determine if any exceptions are possible within the try block. */
1576 if (this_tf.region)
1577 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1578 if (this_tf.may_throw)
1579 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1580
1581 /* Determine how many edges (still) reach the finally block. Or rather,
1582 how many destinations are reached by the finally block. Use this to
1583 determine how we process the finally block itself. */
1584
1585 ndests = VEC_length (tree, this_tf.dest_array);
1586 ndests += this_tf.may_fallthru;
1587 ndests += this_tf.may_return;
1588 ndests += this_tf.may_throw;
1589
1590 /* If the FINALLY block is not reachable, dike it out. */
1591 if (ndests == 0)
1592 {
1593 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1594 gimple_try_set_cleanup (tp, NULL);
1595 }
1596 /* If the finally block doesn't fall through, then any destination
1597 we might try to impose there isn't reached either. There may be
1598 some minor amount of cleanup and redirection still needed. */
1599 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1600 lower_try_finally_nofallthru (state, &this_tf);
1601
1602 /* We can easily special-case redirection to a single destination. */
1603 else if (ndests == 1)
1604 lower_try_finally_onedest (state, &this_tf);
1605 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1606 lower_try_finally_copy (state, &this_tf);
1607 else
1608 lower_try_finally_switch (state, &this_tf);
1609
1610 /* If someone requested we add a label at the end of the transformed
1611 block, do so. */
1612 if (this_tf.fallthru_label)
1613 {
1614 /* This must be reached only if ndests == 0. */
1615 gimple x = gimple_build_label (this_tf.fallthru_label);
1616 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1617 }
1618
1619 VEC_free (tree, heap, this_tf.dest_array);
1620 if (this_tf.goto_queue)
1621 free (this_tf.goto_queue);
1622 if (this_tf.goto_queue_map)
1623 pointer_map_destroy (this_tf.goto_queue_map);
1624
1625 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1626 If there was no old eh_seq, then the append is trivially already done. */
1627 if (old_eh_seq)
1628 {
1629 if (eh_seq == NULL)
1630 eh_seq = old_eh_seq;
1631 else
1632 {
1633 gimple_seq new_eh_seq = eh_seq;
1634 eh_seq = old_eh_seq;
1635 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1636 }
1637 }
1638
1639 return this_tf.top_p_seq;
1640 }
1641
1642 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1643 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1644 exception region trees that records all the magic. */
1645
1646 static gimple_seq
1647 lower_catch (struct leh_state *state, gimple tp)
1648 {
1649 eh_region try_region = NULL;
1650 struct leh_state this_state = *state;
1651 gimple_stmt_iterator gsi;
1652 tree out_label;
1653 gimple_seq new_seq;
1654 gimple x;
1655 location_t try_catch_loc = gimple_location (tp);
1656
1657 if (flag_exceptions)
1658 {
1659 try_region = gen_eh_region_try (state->cur_region);
1660 this_state.cur_region = try_region;
1661 }
1662
1663 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1664
1665 if (!eh_region_may_contain_throw (try_region))
1666 return gimple_try_eval (tp);
1667
1668 new_seq = NULL;
1669 emit_eh_dispatch (&new_seq, try_region);
1670 emit_resx (&new_seq, try_region);
1671
1672 this_state.cur_region = state->cur_region;
1673 this_state.ehp_region = try_region;
1674
1675 out_label = NULL;
1676 for (gsi = gsi_start (gimple_try_cleanup (tp));
1677 !gsi_end_p (gsi);
1678 gsi_next (&gsi))
1679 {
1680 eh_catch c;
1681 gimple gcatch;
1682 gimple_seq handler;
1683
1684 gcatch = gsi_stmt (gsi);
1685 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1686
1687 handler = gimple_catch_handler (gcatch);
1688 lower_eh_constructs_1 (&this_state, handler);
1689
1690 c->label = create_artificial_label (UNKNOWN_LOCATION);
1691 x = gimple_build_label (c->label);
1692 gimple_seq_add_stmt (&new_seq, x);
1693
1694 gimple_seq_add_seq (&new_seq, handler);
1695
1696 if (gimple_seq_may_fallthru (new_seq))
1697 {
1698 if (!out_label)
1699 out_label = create_artificial_label (try_catch_loc);
1700
1701 x = gimple_build_goto (out_label);
1702 gimple_seq_add_stmt (&new_seq, x);
1703 }
1704 if (!c->type_list)
1705 break;
1706 }
1707
1708 gimple_try_set_cleanup (tp, new_seq);
1709
1710 return frob_into_branch_around (tp, try_region, out_label);
1711 }
1712
1713 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1714 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1715 region trees that record all the magic. */
1716
1717 static gimple_seq
1718 lower_eh_filter (struct leh_state *state, gimple tp)
1719 {
1720 struct leh_state this_state = *state;
1721 eh_region this_region = NULL;
1722 gimple inner, x;
1723 gimple_seq new_seq;
1724
1725 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1726
1727 if (flag_exceptions)
1728 {
1729 this_region = gen_eh_region_allowed (state->cur_region,
1730 gimple_eh_filter_types (inner));
1731 this_state.cur_region = this_region;
1732 }
1733
1734 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1735
1736 if (!eh_region_may_contain_throw (this_region))
1737 return gimple_try_eval (tp);
1738
1739 new_seq = NULL;
1740 this_state.cur_region = state->cur_region;
1741 this_state.ehp_region = this_region;
1742
1743 emit_eh_dispatch (&new_seq, this_region);
1744 emit_resx (&new_seq, this_region);
1745
1746 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1747 x = gimple_build_label (this_region->u.allowed.label);
1748 gimple_seq_add_stmt (&new_seq, x);
1749
1750 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1751 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1752
1753 gimple_try_set_cleanup (tp, new_seq);
1754
1755 return frob_into_branch_around (tp, this_region, NULL);
1756 }
1757
1758 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1759 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1760 plus the exception region trees that record all the magic. */
1761
1762 static gimple_seq
1763 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1764 {
1765 struct leh_state this_state = *state;
1766
1767 if (flag_exceptions)
1768 {
1769 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1770 eh_region this_region;
1771
1772 this_region = gen_eh_region_must_not_throw (state->cur_region);
1773 this_region->u.must_not_throw.failure_decl
1774 = gimple_eh_must_not_throw_fndecl (inner);
1775 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1776
1777 /* In order to get mangling applied to this decl, we must mark it
1778 used now. Otherwise, pass_ipa_free_lang_data won't think it
1779 needs to happen. */
1780 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1781
1782 this_state.cur_region = this_region;
1783 }
1784
1785 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1786
1787 return gimple_try_eval (tp);
1788 }
1789
1790 /* Implement a cleanup expression. This is similar to try-finally,
1791 except that we only execute the cleanup block for exception edges. */
1792
1793 static gimple_seq
1794 lower_cleanup (struct leh_state *state, gimple tp)
1795 {
1796 struct leh_state this_state = *state;
1797 eh_region this_region = NULL;
1798 struct leh_tf_state fake_tf;
1799 gimple_seq result;
1800 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1801
1802 if (flag_exceptions && !cleanup_dead)
1803 {
1804 this_region = gen_eh_region_cleanup (state->cur_region);
1805 this_state.cur_region = this_region;
1806 }
1807
1808 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1809
1810 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1811 return gimple_try_eval (tp);
1812
1813 /* Build enough of a try-finally state so that we can reuse
1814 honor_protect_cleanup_actions. */
1815 memset (&fake_tf, 0, sizeof (fake_tf));
1816 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1817 fake_tf.outer = state;
1818 fake_tf.region = this_region;
1819 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1820 fake_tf.may_throw = true;
1821
1822 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1823
1824 if (fake_tf.may_throw)
1825 {
1826 /* In this case honor_protect_cleanup_actions had nothing to do,
1827 and we should process this normally. */
1828 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1829 result = frob_into_branch_around (tp, this_region,
1830 fake_tf.fallthru_label);
1831 }
1832 else
1833 {
1834 /* In this case honor_protect_cleanup_actions did nearly all of
1835 the work. All we have left is to append the fallthru_label. */
1836
1837 result = gimple_try_eval (tp);
1838 if (fake_tf.fallthru_label)
1839 {
1840 gimple x = gimple_build_label (fake_tf.fallthru_label);
1841 gimple_seq_add_stmt (&result, x);
1842 }
1843 }
1844 return result;
1845 }
1846
1847 /* Main loop for lowering eh constructs. Also moves gsi to the next
1848 statement. */
1849
1850 static void
1851 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1852 {
1853 gimple_seq replace;
1854 gimple x;
1855 gimple stmt = gsi_stmt (*gsi);
1856
1857 switch (gimple_code (stmt))
1858 {
1859 case GIMPLE_CALL:
1860 {
1861 tree fndecl = gimple_call_fndecl (stmt);
1862 tree rhs, lhs;
1863
1864 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1865 switch (DECL_FUNCTION_CODE (fndecl))
1866 {
1867 case BUILT_IN_EH_POINTER:
1868 /* The front end may have generated a call to
1869 __builtin_eh_pointer (0) within a catch region. Replace
1870 this zero argument with the current catch region number. */
1871 if (state->ehp_region)
1872 {
1873 tree nr = build_int_cst (NULL, state->ehp_region->index);
1874 gimple_call_set_arg (stmt, 0, nr);
1875 }
1876 else
1877 {
1878 /* The user has dome something silly. Remove it. */
1879 rhs = null_pointer_node;
1880 goto do_replace;
1881 }
1882 break;
1883
1884 case BUILT_IN_EH_FILTER:
1885 /* ??? This should never appear, but since it's a builtin it
1886 is accessible to abuse by users. Just remove it and
1887 replace the use with the arbitrary value zero. */
1888 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1889 do_replace:
1890 lhs = gimple_call_lhs (stmt);
1891 x = gimple_build_assign (lhs, rhs);
1892 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1893 /* FALLTHRU */
1894
1895 case BUILT_IN_EH_COPY_VALUES:
1896 /* Likewise this should not appear. Remove it. */
1897 gsi_remove (gsi, true);
1898 return;
1899
1900 default:
1901 break;
1902 }
1903 }
1904 /* FALLTHRU */
1905
1906 case GIMPLE_ASSIGN:
1907 /* If the stmt can throw use a new temporary for the assignment
1908 to a LHS. This makes sure the old value of the LHS is
1909 available on the EH edge. Only do so for statements that
1910 potentially fall thru (no noreturn calls e.g.), otherwise
1911 this new assignment might create fake fallthru regions. */
1912 if (stmt_could_throw_p (stmt)
1913 && gimple_has_lhs (stmt)
1914 && gimple_stmt_may_fallthru (stmt)
1915 && !tree_could_throw_p (gimple_get_lhs (stmt))
1916 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1917 {
1918 tree lhs = gimple_get_lhs (stmt);
1919 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1920 gimple s = gimple_build_assign (lhs, tmp);
1921 gimple_set_location (s, gimple_location (stmt));
1922 gimple_set_block (s, gimple_block (stmt));
1923 gimple_set_lhs (stmt, tmp);
1924 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1925 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1926 DECL_GIMPLE_REG_P (tmp) = 1;
1927 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1928 }
1929 /* Look for things that can throw exceptions, and record them. */
1930 if (state->cur_region && stmt_could_throw_p (stmt))
1931 {
1932 record_stmt_eh_region (state->cur_region, stmt);
1933 note_eh_region_may_contain_throw (state->cur_region);
1934 }
1935 break;
1936
1937 case GIMPLE_COND:
1938 case GIMPLE_GOTO:
1939 case GIMPLE_RETURN:
1940 maybe_record_in_goto_queue (state, stmt);
1941 break;
1942
1943 case GIMPLE_SWITCH:
1944 verify_norecord_switch_expr (state, stmt);
1945 break;
1946
1947 case GIMPLE_TRY:
1948 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1949 replace = lower_try_finally (state, stmt);
1950 else
1951 {
1952 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1953 if (!x)
1954 {
1955 replace = gimple_try_eval (stmt);
1956 lower_eh_constructs_1 (state, replace);
1957 }
1958 else
1959 switch (gimple_code (x))
1960 {
1961 case GIMPLE_CATCH:
1962 replace = lower_catch (state, stmt);
1963 break;
1964 case GIMPLE_EH_FILTER:
1965 replace = lower_eh_filter (state, stmt);
1966 break;
1967 case GIMPLE_EH_MUST_NOT_THROW:
1968 replace = lower_eh_must_not_throw (state, stmt);
1969 break;
1970 default:
1971 replace = lower_cleanup (state, stmt);
1972 break;
1973 }
1974 }
1975
1976 /* Remove the old stmt and insert the transformed sequence
1977 instead. */
1978 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1979 gsi_remove (gsi, true);
1980
1981 /* Return since we don't want gsi_next () */
1982 return;
1983
1984 default:
1985 /* A type, a decl, or some kind of statement that we're not
1986 interested in. Don't walk them. */
1987 break;
1988 }
1989
1990 gsi_next (gsi);
1991 }
1992
1993 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1994
1995 static void
1996 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1997 {
1998 gimple_stmt_iterator gsi;
1999 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
2000 lower_eh_constructs_2 (state, &gsi);
2001 }
2002
2003 static unsigned int
2004 lower_eh_constructs (void)
2005 {
2006 struct leh_state null_state;
2007 gimple_seq bodyp;
2008
2009 bodyp = gimple_body (current_function_decl);
2010 if (bodyp == NULL)
2011 return 0;
2012
2013 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2014 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2015 memset (&null_state, 0, sizeof (null_state));
2016
2017 collect_finally_tree_1 (bodyp, NULL);
2018 lower_eh_constructs_1 (&null_state, bodyp);
2019
2020 /* We assume there's a return statement, or something, at the end of
2021 the function, and thus ploping the EH sequence afterward won't
2022 change anything. */
2023 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2024 gimple_seq_add_seq (&bodyp, eh_seq);
2025
2026 /* We assume that since BODYP already existed, adding EH_SEQ to it
2027 didn't change its value, and we don't have to re-set the function. */
2028 gcc_assert (bodyp == gimple_body (current_function_decl));
2029
2030 htab_delete (finally_tree);
2031 BITMAP_FREE (eh_region_may_contain_throw_map);
2032 eh_seq = NULL;
2033
2034 /* If this function needs a language specific EH personality routine
2035 and the frontend didn't already set one do so now. */
2036 if (function_needs_eh_personality (cfun) == eh_personality_lang
2037 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2038 DECL_FUNCTION_PERSONALITY (current_function_decl)
2039 = lang_hooks.eh_personality ();
2040
2041 return 0;
2042 }
2043
2044 struct gimple_opt_pass pass_lower_eh =
2045 {
2046 {
2047 GIMPLE_PASS,
2048 "eh", /* name */
2049 NULL, /* gate */
2050 lower_eh_constructs, /* execute */
2051 NULL, /* sub */
2052 NULL, /* next */
2053 0, /* static_pass_number */
2054 TV_TREE_EH, /* tv_id */
2055 PROP_gimple_lcf, /* properties_required */
2056 PROP_gimple_leh, /* properties_provided */
2057 0, /* properties_destroyed */
2058 0, /* todo_flags_start */
2059 TODO_dump_func /* todo_flags_finish */
2060 }
2061 };
2062 \f
2063 /* Create the multiple edges from an EH_DISPATCH statement to all of
2064 the possible handlers for its EH region. Return true if there's
2065 no fallthru edge; false if there is. */
2066
2067 bool
2068 make_eh_dispatch_edges (gimple stmt)
2069 {
2070 eh_region r;
2071 eh_catch c;
2072 basic_block src, dst;
2073
2074 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2075 src = gimple_bb (stmt);
2076
2077 switch (r->type)
2078 {
2079 case ERT_TRY:
2080 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2081 {
2082 dst = label_to_block (c->label);
2083 make_edge (src, dst, 0);
2084
2085 /* A catch-all handler doesn't have a fallthru. */
2086 if (c->type_list == NULL)
2087 return false;
2088 }
2089 break;
2090
2091 case ERT_ALLOWED_EXCEPTIONS:
2092 dst = label_to_block (r->u.allowed.label);
2093 make_edge (src, dst, 0);
2094 break;
2095
2096 default:
2097 gcc_unreachable ();
2098 }
2099
2100 return true;
2101 }
2102
2103 /* Create the single EH edge from STMT to its nearest landing pad,
2104 if there is such a landing pad within the current function. */
2105
2106 void
2107 make_eh_edges (gimple stmt)
2108 {
2109 basic_block src, dst;
2110 eh_landing_pad lp;
2111 int lp_nr;
2112
2113 lp_nr = lookup_stmt_eh_lp (stmt);
2114 if (lp_nr <= 0)
2115 return;
2116
2117 lp = get_eh_landing_pad_from_number (lp_nr);
2118 gcc_assert (lp != NULL);
2119
2120 src = gimple_bb (stmt);
2121 dst = label_to_block (lp->post_landing_pad);
2122 make_edge (src, dst, EDGE_EH);
2123 }
2124
2125 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2126 do not actually perform the final edge redirection.
2127
2128 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2129 we intend to change the destination EH region as well; this means
2130 EH_LANDING_PAD_NR must already be set on the destination block label.
2131 If false, we're being called from generic cfg manipulation code and we
2132 should preserve our place within the region tree. */
2133
2134 static void
2135 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2136 {
2137 eh_landing_pad old_lp, new_lp;
2138 basic_block old_bb;
2139 gimple throw_stmt;
2140 int old_lp_nr, new_lp_nr;
2141 tree old_label, new_label;
2142 edge_iterator ei;
2143 edge e;
2144
2145 old_bb = edge_in->dest;
2146 old_label = gimple_block_label (old_bb);
2147 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2148 gcc_assert (old_lp_nr > 0);
2149 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2150
2151 throw_stmt = last_stmt (edge_in->src);
2152 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2153
2154 new_label = gimple_block_label (new_bb);
2155
2156 /* Look for an existing region that might be using NEW_BB already. */
2157 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2158 if (new_lp_nr)
2159 {
2160 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2161 gcc_assert (new_lp);
2162
2163 /* Unless CHANGE_REGION is true, the new and old landing pad
2164 had better be associated with the same EH region. */
2165 gcc_assert (change_region || new_lp->region == old_lp->region);
2166 }
2167 else
2168 {
2169 new_lp = NULL;
2170 gcc_assert (!change_region);
2171 }
2172
2173 /* Notice when we redirect the last EH edge away from OLD_BB. */
2174 FOR_EACH_EDGE (e, ei, old_bb->preds)
2175 if (e != edge_in && (e->flags & EDGE_EH))
2176 break;
2177
2178 if (new_lp)
2179 {
2180 /* NEW_LP already exists. If there are still edges into OLD_LP,
2181 there's nothing to do with the EH tree. If there are no more
2182 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2183 If CHANGE_REGION is true, then our caller is expecting to remove
2184 the landing pad. */
2185 if (e == NULL && !change_region)
2186 remove_eh_landing_pad (old_lp);
2187 }
2188 else
2189 {
2190 /* No correct landing pad exists. If there are no more edges
2191 into OLD_LP, then we can simply re-use the existing landing pad.
2192 Otherwise, we have to create a new landing pad. */
2193 if (e == NULL)
2194 {
2195 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2196 new_lp = old_lp;
2197 }
2198 else
2199 new_lp = gen_eh_landing_pad (old_lp->region);
2200 new_lp->post_landing_pad = new_label;
2201 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2202 }
2203
2204 /* Maybe move the throwing statement to the new region. */
2205 if (old_lp != new_lp)
2206 {
2207 remove_stmt_from_eh_lp (throw_stmt);
2208 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2209 }
2210 }
2211
2212 /* Redirect EH edge E to NEW_BB. */
2213
2214 edge
2215 redirect_eh_edge (edge edge_in, basic_block new_bb)
2216 {
2217 redirect_eh_edge_1 (edge_in, new_bb, false);
2218 return ssa_redirect_edge (edge_in, new_bb);
2219 }
2220
2221 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2222 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2223 The actual edge update will happen in the caller. */
2224
2225 void
2226 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2227 {
2228 tree new_lab = gimple_block_label (new_bb);
2229 bool any_changed = false;
2230 basic_block old_bb;
2231 eh_region r;
2232 eh_catch c;
2233
2234 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2235 switch (r->type)
2236 {
2237 case ERT_TRY:
2238 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2239 {
2240 old_bb = label_to_block (c->label);
2241 if (old_bb == e->dest)
2242 {
2243 c->label = new_lab;
2244 any_changed = true;
2245 }
2246 }
2247 break;
2248
2249 case ERT_ALLOWED_EXCEPTIONS:
2250 old_bb = label_to_block (r->u.allowed.label);
2251 gcc_assert (old_bb == e->dest);
2252 r->u.allowed.label = new_lab;
2253 any_changed = true;
2254 break;
2255
2256 default:
2257 gcc_unreachable ();
2258 }
2259
2260 gcc_assert (any_changed);
2261 }
2262 \f
2263 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2264
2265 bool
2266 operation_could_trap_helper_p (enum tree_code op,
2267 bool fp_operation,
2268 bool honor_trapv,
2269 bool honor_nans,
2270 bool honor_snans,
2271 tree divisor,
2272 bool *handled)
2273 {
2274 *handled = true;
2275 switch (op)
2276 {
2277 case TRUNC_DIV_EXPR:
2278 case CEIL_DIV_EXPR:
2279 case FLOOR_DIV_EXPR:
2280 case ROUND_DIV_EXPR:
2281 case EXACT_DIV_EXPR:
2282 case CEIL_MOD_EXPR:
2283 case FLOOR_MOD_EXPR:
2284 case ROUND_MOD_EXPR:
2285 case TRUNC_MOD_EXPR:
2286 case RDIV_EXPR:
2287 if (honor_snans || honor_trapv)
2288 return true;
2289 if (fp_operation)
2290 return flag_trapping_math;
2291 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2292 return true;
2293 return false;
2294
2295 case LT_EXPR:
2296 case LE_EXPR:
2297 case GT_EXPR:
2298 case GE_EXPR:
2299 case LTGT_EXPR:
2300 /* Some floating point comparisons may trap. */
2301 return honor_nans;
2302
2303 case EQ_EXPR:
2304 case NE_EXPR:
2305 case UNORDERED_EXPR:
2306 case ORDERED_EXPR:
2307 case UNLT_EXPR:
2308 case UNLE_EXPR:
2309 case UNGT_EXPR:
2310 case UNGE_EXPR:
2311 case UNEQ_EXPR:
2312 return honor_snans;
2313
2314 case CONVERT_EXPR:
2315 case FIX_TRUNC_EXPR:
2316 /* Conversion of floating point might trap. */
2317 return honor_nans;
2318
2319 case NEGATE_EXPR:
2320 case ABS_EXPR:
2321 case CONJ_EXPR:
2322 /* These operations don't trap with floating point. */
2323 if (honor_trapv)
2324 return true;
2325 return false;
2326
2327 case PLUS_EXPR:
2328 case MINUS_EXPR:
2329 case MULT_EXPR:
2330 /* Any floating arithmetic may trap. */
2331 if (fp_operation && flag_trapping_math)
2332 return true;
2333 if (honor_trapv)
2334 return true;
2335 return false;
2336
2337 default:
2338 /* Any floating arithmetic may trap. */
2339 if (fp_operation && flag_trapping_math)
2340 return true;
2341
2342 *handled = false;
2343 return false;
2344 }
2345 }
2346
2347 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2348 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2349 type operands that may trap. If OP is a division operator, DIVISOR contains
2350 the value of the divisor. */
2351
2352 bool
2353 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2354 tree divisor)
2355 {
2356 bool honor_nans = (fp_operation && flag_trapping_math
2357 && !flag_finite_math_only);
2358 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2359 bool handled;
2360
2361 if (TREE_CODE_CLASS (op) != tcc_comparison
2362 && TREE_CODE_CLASS (op) != tcc_unary
2363 && TREE_CODE_CLASS (op) != tcc_binary)
2364 return false;
2365
2366 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2367 honor_nans, honor_snans, divisor,
2368 &handled);
2369 }
2370
2371 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2372 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2373 This routine expects only GIMPLE lhs or rhs input. */
2374
2375 bool
2376 tree_could_trap_p (tree expr)
2377 {
2378 enum tree_code code;
2379 bool fp_operation = false;
2380 bool honor_trapv = false;
2381 tree t, base, div = NULL_TREE;
2382
2383 if (!expr)
2384 return false;
2385
2386 code = TREE_CODE (expr);
2387 t = TREE_TYPE (expr);
2388
2389 if (t)
2390 {
2391 if (COMPARISON_CLASS_P (expr))
2392 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2393 else
2394 fp_operation = FLOAT_TYPE_P (t);
2395 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2396 }
2397
2398 if (TREE_CODE_CLASS (code) == tcc_binary)
2399 div = TREE_OPERAND (expr, 1);
2400 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2401 return true;
2402
2403 restart:
2404 switch (code)
2405 {
2406 case TARGET_MEM_REF:
2407 if (TMR_SYMBOL (expr)
2408 && !TMR_INDEX (expr) && !TMR_BASE (expr))
2409 return false;
2410 return !TREE_THIS_NOTRAP (expr);
2411
2412 case COMPONENT_REF:
2413 case REALPART_EXPR:
2414 case IMAGPART_EXPR:
2415 case BIT_FIELD_REF:
2416 case VIEW_CONVERT_EXPR:
2417 case WITH_SIZE_EXPR:
2418 expr = TREE_OPERAND (expr, 0);
2419 code = TREE_CODE (expr);
2420 goto restart;
2421
2422 case ARRAY_RANGE_REF:
2423 base = TREE_OPERAND (expr, 0);
2424 if (tree_could_trap_p (base))
2425 return true;
2426 if (TREE_THIS_NOTRAP (expr))
2427 return false;
2428 return !range_in_array_bounds_p (expr);
2429
2430 case ARRAY_REF:
2431 base = TREE_OPERAND (expr, 0);
2432 if (tree_could_trap_p (base))
2433 return true;
2434 if (TREE_THIS_NOTRAP (expr))
2435 return false;
2436 return !in_array_bounds_p (expr);
2437
2438 case MEM_REF:
2439 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2440 return false;
2441 /* Fallthru. */
2442 case INDIRECT_REF:
2443 case MISALIGNED_INDIRECT_REF:
2444 return !TREE_THIS_NOTRAP (expr);
2445
2446 case ASM_EXPR:
2447 return TREE_THIS_VOLATILE (expr);
2448
2449 case CALL_EXPR:
2450 t = get_callee_fndecl (expr);
2451 /* Assume that calls to weak functions may trap. */
2452 if (!t || !DECL_P (t) || DECL_WEAK (t))
2453 return true;
2454 return false;
2455
2456 default:
2457 return false;
2458 }
2459 }
2460
2461
2462 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2463 an assignment or a conditional) may throw. */
2464
2465 static bool
2466 stmt_could_throw_1_p (gimple stmt)
2467 {
2468 enum tree_code code = gimple_expr_code (stmt);
2469 bool honor_nans = false;
2470 bool honor_snans = false;
2471 bool fp_operation = false;
2472 bool honor_trapv = false;
2473 tree t;
2474 size_t i;
2475 bool handled, ret;
2476
2477 if (TREE_CODE_CLASS (code) == tcc_comparison
2478 || TREE_CODE_CLASS (code) == tcc_unary
2479 || TREE_CODE_CLASS (code) == tcc_binary)
2480 {
2481 t = gimple_expr_type (stmt);
2482 fp_operation = FLOAT_TYPE_P (t);
2483 if (fp_operation)
2484 {
2485 honor_nans = flag_trapping_math && !flag_finite_math_only;
2486 honor_snans = flag_signaling_nans != 0;
2487 }
2488 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2489 honor_trapv = true;
2490 }
2491
2492 /* Check if the main expression may trap. */
2493 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2494 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2495 honor_nans, honor_snans, t,
2496 &handled);
2497 if (handled)
2498 return ret;
2499
2500 /* If the expression does not trap, see if any of the individual operands may
2501 trap. */
2502 for (i = 0; i < gimple_num_ops (stmt); i++)
2503 if (tree_could_trap_p (gimple_op (stmt, i)))
2504 return true;
2505
2506 return false;
2507 }
2508
2509
2510 /* Return true if statement STMT could throw an exception. */
2511
2512 bool
2513 stmt_could_throw_p (gimple stmt)
2514 {
2515 if (!flag_exceptions)
2516 return false;
2517
2518 /* The only statements that can throw an exception are assignments,
2519 conditionals, calls, resx, and asms. */
2520 switch (gimple_code (stmt))
2521 {
2522 case GIMPLE_RESX:
2523 return true;
2524
2525 case GIMPLE_CALL:
2526 return !gimple_call_nothrow_p (stmt);
2527
2528 case GIMPLE_ASSIGN:
2529 case GIMPLE_COND:
2530 if (!cfun->can_throw_non_call_exceptions)
2531 return false;
2532 return stmt_could_throw_1_p (stmt);
2533
2534 case GIMPLE_ASM:
2535 if (!cfun->can_throw_non_call_exceptions)
2536 return false;
2537 return gimple_asm_volatile_p (stmt);
2538
2539 default:
2540 return false;
2541 }
2542 }
2543
2544
2545 /* Return true if expression T could throw an exception. */
2546
2547 bool
2548 tree_could_throw_p (tree t)
2549 {
2550 if (!flag_exceptions)
2551 return false;
2552 if (TREE_CODE (t) == MODIFY_EXPR)
2553 {
2554 if (cfun->can_throw_non_call_exceptions
2555 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2556 return true;
2557 t = TREE_OPERAND (t, 1);
2558 }
2559
2560 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2561 t = TREE_OPERAND (t, 0);
2562 if (TREE_CODE (t) == CALL_EXPR)
2563 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2564 if (cfun->can_throw_non_call_exceptions)
2565 return tree_could_trap_p (t);
2566 return false;
2567 }
2568
2569 /* Return true if STMT can throw an exception that is not caught within
2570 the current function (CFUN). */
2571
2572 bool
2573 stmt_can_throw_external (gimple stmt)
2574 {
2575 int lp_nr;
2576
2577 if (!stmt_could_throw_p (stmt))
2578 return false;
2579
2580 lp_nr = lookup_stmt_eh_lp (stmt);
2581 return lp_nr == 0;
2582 }
2583
2584 /* Return true if STMT can throw an exception that is caught within
2585 the current function (CFUN). */
2586
2587 bool
2588 stmt_can_throw_internal (gimple stmt)
2589 {
2590 int lp_nr;
2591
2592 if (!stmt_could_throw_p (stmt))
2593 return false;
2594
2595 lp_nr = lookup_stmt_eh_lp (stmt);
2596 return lp_nr > 0;
2597 }
2598
2599 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2600 remove any entry it might have from the EH table. Return true if
2601 any change was made. */
2602
2603 bool
2604 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2605 {
2606 if (stmt_could_throw_p (stmt))
2607 return false;
2608 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2609 }
2610
2611 /* Likewise, but always use the current function. */
2612
2613 bool
2614 maybe_clean_eh_stmt (gimple stmt)
2615 {
2616 return maybe_clean_eh_stmt_fn (cfun, stmt);
2617 }
2618
2619 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2620 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2621 in the table if it should be in there. Return TRUE if a replacement was
2622 done that my require an EH edge purge. */
2623
2624 bool
2625 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2626 {
2627 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2628
2629 if (lp_nr != 0)
2630 {
2631 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2632
2633 if (new_stmt == old_stmt && new_stmt_could_throw)
2634 return false;
2635
2636 remove_stmt_from_eh_lp (old_stmt);
2637 if (new_stmt_could_throw)
2638 {
2639 add_stmt_to_eh_lp (new_stmt, lp_nr);
2640 return false;
2641 }
2642 else
2643 return true;
2644 }
2645
2646 return false;
2647 }
2648
2649 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2650 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2651 operand is the return value of duplicate_eh_regions. */
2652
2653 bool
2654 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2655 struct function *old_fun, gimple old_stmt,
2656 struct pointer_map_t *map, int default_lp_nr)
2657 {
2658 int old_lp_nr, new_lp_nr;
2659 void **slot;
2660
2661 if (!stmt_could_throw_p (new_stmt))
2662 return false;
2663
2664 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2665 if (old_lp_nr == 0)
2666 {
2667 if (default_lp_nr == 0)
2668 return false;
2669 new_lp_nr = default_lp_nr;
2670 }
2671 else if (old_lp_nr > 0)
2672 {
2673 eh_landing_pad old_lp, new_lp;
2674
2675 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2676 slot = pointer_map_contains (map, old_lp);
2677 new_lp = (eh_landing_pad) *slot;
2678 new_lp_nr = new_lp->index;
2679 }
2680 else
2681 {
2682 eh_region old_r, new_r;
2683
2684 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2685 slot = pointer_map_contains (map, old_r);
2686 new_r = (eh_region) *slot;
2687 new_lp_nr = -new_r->index;
2688 }
2689
2690 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2691 return true;
2692 }
2693
2694 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2695 and thus no remapping is required. */
2696
2697 bool
2698 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2699 {
2700 int lp_nr;
2701
2702 if (!stmt_could_throw_p (new_stmt))
2703 return false;
2704
2705 lp_nr = lookup_stmt_eh_lp (old_stmt);
2706 if (lp_nr == 0)
2707 return false;
2708
2709 add_stmt_to_eh_lp (new_stmt, lp_nr);
2710 return true;
2711 }
2712 \f
2713 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2714 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2715 this only handles handlers consisting of a single call, as that's the
2716 important case for C++: a destructor call for a particular object showing
2717 up in multiple handlers. */
2718
2719 static bool
2720 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2721 {
2722 gimple_stmt_iterator gsi;
2723 gimple ones, twos;
2724 unsigned int ai;
2725
2726 gsi = gsi_start (oneh);
2727 if (!gsi_one_before_end_p (gsi))
2728 return false;
2729 ones = gsi_stmt (gsi);
2730
2731 gsi = gsi_start (twoh);
2732 if (!gsi_one_before_end_p (gsi))
2733 return false;
2734 twos = gsi_stmt (gsi);
2735
2736 if (!is_gimple_call (ones)
2737 || !is_gimple_call (twos)
2738 || gimple_call_lhs (ones)
2739 || gimple_call_lhs (twos)
2740 || gimple_call_chain (ones)
2741 || gimple_call_chain (twos)
2742 || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2743 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2744 return false;
2745
2746 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2747 if (!operand_equal_p (gimple_call_arg (ones, ai),
2748 gimple_call_arg (twos, ai), 0))
2749 return false;
2750
2751 return true;
2752 }
2753
2754 /* Optimize
2755 try { A() } finally { try { ~B() } catch { ~A() } }
2756 try { ... } finally { ~A() }
2757 into
2758 try { A() } catch { ~B() }
2759 try { ~B() ... } finally { ~A() }
2760
2761 This occurs frequently in C++, where A is a local variable and B is a
2762 temporary used in the initializer for A. */
2763
2764 static void
2765 optimize_double_finally (gimple one, gimple two)
2766 {
2767 gimple oneh;
2768 gimple_stmt_iterator gsi;
2769
2770 gsi = gsi_start (gimple_try_cleanup (one));
2771 if (!gsi_one_before_end_p (gsi))
2772 return;
2773
2774 oneh = gsi_stmt (gsi);
2775 if (gimple_code (oneh) != GIMPLE_TRY
2776 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2777 return;
2778
2779 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2780 {
2781 gimple_seq seq = gimple_try_eval (oneh);
2782
2783 gimple_try_set_cleanup (one, seq);
2784 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2785 seq = copy_gimple_seq_and_replace_locals (seq);
2786 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2787 gimple_try_set_eval (two, seq);
2788 }
2789 }
2790
2791 /* Perform EH refactoring optimizations that are simpler to do when code
2792 flow has been lowered but EH structures haven't. */
2793
2794 static void
2795 refactor_eh_r (gimple_seq seq)
2796 {
2797 gimple_stmt_iterator gsi;
2798 gimple one, two;
2799
2800 one = NULL;
2801 two = NULL;
2802 gsi = gsi_start (seq);
2803 while (1)
2804 {
2805 one = two;
2806 if (gsi_end_p (gsi))
2807 two = NULL;
2808 else
2809 two = gsi_stmt (gsi);
2810 if (one
2811 && two
2812 && gimple_code (one) == GIMPLE_TRY
2813 && gimple_code (two) == GIMPLE_TRY
2814 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2815 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2816 optimize_double_finally (one, two);
2817 if (one)
2818 switch (gimple_code (one))
2819 {
2820 case GIMPLE_TRY:
2821 refactor_eh_r (gimple_try_eval (one));
2822 refactor_eh_r (gimple_try_cleanup (one));
2823 break;
2824 case GIMPLE_CATCH:
2825 refactor_eh_r (gimple_catch_handler (one));
2826 break;
2827 case GIMPLE_EH_FILTER:
2828 refactor_eh_r (gimple_eh_filter_failure (one));
2829 break;
2830 default:
2831 break;
2832 }
2833 if (two)
2834 gsi_next (&gsi);
2835 else
2836 break;
2837 }
2838 }
2839
2840 static unsigned
2841 refactor_eh (void)
2842 {
2843 refactor_eh_r (gimple_body (current_function_decl));
2844 return 0;
2845 }
2846
2847 static bool
2848 gate_refactor_eh (void)
2849 {
2850 return flag_exceptions != 0;
2851 }
2852
2853 struct gimple_opt_pass pass_refactor_eh =
2854 {
2855 {
2856 GIMPLE_PASS,
2857 "ehopt", /* name */
2858 gate_refactor_eh, /* gate */
2859 refactor_eh, /* execute */
2860 NULL, /* sub */
2861 NULL, /* next */
2862 0, /* static_pass_number */
2863 TV_TREE_EH, /* tv_id */
2864 PROP_gimple_lcf, /* properties_required */
2865 0, /* properties_provided */
2866 0, /* properties_destroyed */
2867 0, /* todo_flags_start */
2868 TODO_dump_func /* todo_flags_finish */
2869 }
2870 };
2871 \f
2872 /* At the end of gimple optimization, we can lower RESX. */
2873
2874 static bool
2875 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2876 {
2877 int lp_nr;
2878 eh_region src_r, dst_r;
2879 gimple_stmt_iterator gsi;
2880 gimple x;
2881 tree fn, src_nr;
2882 bool ret = false;
2883
2884 lp_nr = lookup_stmt_eh_lp (stmt);
2885 if (lp_nr != 0)
2886 dst_r = get_eh_region_from_lp_number (lp_nr);
2887 else
2888 dst_r = NULL;
2889
2890 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2891 gsi = gsi_last_bb (bb);
2892
2893 if (src_r == NULL)
2894 {
2895 /* We can wind up with no source region when pass_cleanup_eh shows
2896 that there are no entries into an eh region and deletes it, but
2897 then the block that contains the resx isn't removed. This can
2898 happen without optimization when the switch statement created by
2899 lower_try_finally_switch isn't simplified to remove the eh case.
2900
2901 Resolve this by expanding the resx node to an abort. */
2902
2903 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2904 x = gimple_build_call (fn, 0);
2905 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2906
2907 while (EDGE_COUNT (bb->succs) > 0)
2908 remove_edge (EDGE_SUCC (bb, 0));
2909 }
2910 else if (dst_r)
2911 {
2912 /* When we have a destination region, we resolve this by copying
2913 the excptr and filter values into place, and changing the edge
2914 to immediately after the landing pad. */
2915 edge e;
2916
2917 if (lp_nr < 0)
2918 {
2919 basic_block new_bb;
2920 void **slot;
2921 tree lab;
2922
2923 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2924 the failure decl into a new block, if needed. */
2925 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2926
2927 slot = pointer_map_contains (mnt_map, dst_r);
2928 if (slot == NULL)
2929 {
2930 gimple_stmt_iterator gsi2;
2931
2932 new_bb = create_empty_bb (bb);
2933 lab = gimple_block_label (new_bb);
2934 gsi2 = gsi_start_bb (new_bb);
2935
2936 fn = dst_r->u.must_not_throw.failure_decl;
2937 x = gimple_build_call (fn, 0);
2938 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2939 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2940
2941 slot = pointer_map_insert (mnt_map, dst_r);
2942 *slot = lab;
2943 }
2944 else
2945 {
2946 lab = (tree) *slot;
2947 new_bb = label_to_block (lab);
2948 }
2949
2950 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2951 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2952 e->count = bb->count;
2953 e->probability = REG_BR_PROB_BASE;
2954 }
2955 else
2956 {
2957 edge_iterator ei;
2958 tree dst_nr = build_int_cst (NULL, dst_r->index);
2959
2960 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2961 src_nr = build_int_cst (NULL, src_r->index);
2962 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2963 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2964
2965 /* Update the flags for the outgoing edge. */
2966 e = single_succ_edge (bb);
2967 gcc_assert (e->flags & EDGE_EH);
2968 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2969
2970 /* If there are no more EH users of the landing pad, delete it. */
2971 FOR_EACH_EDGE (e, ei, e->dest->preds)
2972 if (e->flags & EDGE_EH)
2973 break;
2974 if (e == NULL)
2975 {
2976 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2977 remove_eh_landing_pad (lp);
2978 }
2979 }
2980
2981 ret = true;
2982 }
2983 else
2984 {
2985 tree var;
2986
2987 /* When we don't have a destination region, this exception escapes
2988 up the call chain. We resolve this by generating a call to the
2989 _Unwind_Resume library function. */
2990
2991 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2992 with no arguments for C++ and Java. Check for that. */
2993 if (src_r->use_cxa_end_cleanup)
2994 {
2995 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2996 x = gimple_build_call (fn, 0);
2997 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2998 }
2999 else
3000 {
3001 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
3002 src_nr = build_int_cst (NULL, src_r->index);
3003 x = gimple_build_call (fn, 1, src_nr);
3004 var = create_tmp_var (ptr_type_node, NULL);
3005 var = make_ssa_name (var, x);
3006 gimple_call_set_lhs (x, var);
3007 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3008
3009 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
3010 x = gimple_build_call (fn, 1, var);
3011 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3012 }
3013
3014 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3015 }
3016
3017 gsi_remove (&gsi, true);
3018
3019 return ret;
3020 }
3021
3022 static unsigned
3023 execute_lower_resx (void)
3024 {
3025 basic_block bb;
3026 struct pointer_map_t *mnt_map;
3027 bool dominance_invalidated = false;
3028 bool any_rewritten = false;
3029
3030 mnt_map = pointer_map_create ();
3031
3032 FOR_EACH_BB (bb)
3033 {
3034 gimple last = last_stmt (bb);
3035 if (last && is_gimple_resx (last))
3036 {
3037 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3038 any_rewritten = true;
3039 }
3040 }
3041
3042 pointer_map_destroy (mnt_map);
3043
3044 if (dominance_invalidated)
3045 {
3046 free_dominance_info (CDI_DOMINATORS);
3047 free_dominance_info (CDI_POST_DOMINATORS);
3048 }
3049
3050 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3051 }
3052
3053 static bool
3054 gate_lower_resx (void)
3055 {
3056 return flag_exceptions != 0;
3057 }
3058
3059 struct gimple_opt_pass pass_lower_resx =
3060 {
3061 {
3062 GIMPLE_PASS,
3063 "resx", /* name */
3064 gate_lower_resx, /* gate */
3065 execute_lower_resx, /* execute */
3066 NULL, /* sub */
3067 NULL, /* next */
3068 0, /* static_pass_number */
3069 TV_TREE_EH, /* tv_id */
3070 PROP_gimple_lcf, /* properties_required */
3071 0, /* properties_provided */
3072 0, /* properties_destroyed */
3073 0, /* todo_flags_start */
3074 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3075 }
3076 };
3077
3078
3079 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3080 we have found some duplicate labels and removed some edges. */
3081
3082 static bool
3083 lower_eh_dispatch (basic_block src, gimple stmt)
3084 {
3085 gimple_stmt_iterator gsi;
3086 int region_nr;
3087 eh_region r;
3088 tree filter, fn;
3089 gimple x;
3090 bool redirected = false;
3091
3092 region_nr = gimple_eh_dispatch_region (stmt);
3093 r = get_eh_region_from_number (region_nr);
3094
3095 gsi = gsi_last_bb (src);
3096
3097 switch (r->type)
3098 {
3099 case ERT_TRY:
3100 {
3101 VEC (tree, heap) *labels = NULL;
3102 tree default_label = NULL;
3103 eh_catch c;
3104 edge_iterator ei;
3105 edge e;
3106 struct pointer_set_t *seen_values = pointer_set_create ();
3107
3108 /* Collect the labels for a switch. Zero the post_landing_pad
3109 field becase we'll no longer have anything keeping these labels
3110 in existance and the optimizer will be free to merge these
3111 blocks at will. */
3112 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3113 {
3114 tree tp_node, flt_node, lab = c->label;
3115 bool have_label = false;
3116
3117 c->label = NULL;
3118 tp_node = c->type_list;
3119 flt_node = c->filter_list;
3120
3121 if (tp_node == NULL)
3122 {
3123 default_label = lab;
3124 break;
3125 }
3126 do
3127 {
3128 /* Filter out duplicate labels that arise when this handler
3129 is shadowed by an earlier one. When no labels are
3130 attached to the handler anymore, we remove
3131 the corresponding edge and then we delete unreachable
3132 blocks at the end of this pass. */
3133 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3134 {
3135 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3136 TREE_VALUE (flt_node), NULL, lab);
3137 VEC_safe_push (tree, heap, labels, t);
3138 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3139 have_label = true;
3140 }
3141
3142 tp_node = TREE_CHAIN (tp_node);
3143 flt_node = TREE_CHAIN (flt_node);
3144 }
3145 while (tp_node);
3146 if (! have_label)
3147 {
3148 remove_edge (find_edge (src, label_to_block (lab)));
3149 redirected = true;
3150 }
3151 }
3152
3153 /* Clean up the edge flags. */
3154 FOR_EACH_EDGE (e, ei, src->succs)
3155 {
3156 if (e->flags & EDGE_FALLTHRU)
3157 {
3158 /* If there was no catch-all, use the fallthru edge. */
3159 if (default_label == NULL)
3160 default_label = gimple_block_label (e->dest);
3161 e->flags &= ~EDGE_FALLTHRU;
3162 }
3163 }
3164 gcc_assert (default_label != NULL);
3165
3166 /* Don't generate a switch if there's only a default case.
3167 This is common in the form of try { A; } catch (...) { B; }. */
3168 if (labels == NULL)
3169 {
3170 e = single_succ_edge (src);
3171 e->flags |= EDGE_FALLTHRU;
3172 }
3173 else
3174 {
3175 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3176 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3177 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3178 filter = make_ssa_name (filter, x);
3179 gimple_call_set_lhs (x, filter);
3180 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3181
3182 /* Turn the default label into a default case. */
3183 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3184 NULL, NULL, default_label);
3185 sort_case_labels (labels);
3186
3187 x = gimple_build_switch_vec (filter, default_label, labels);
3188 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3189
3190 VEC_free (tree, heap, labels);
3191 }
3192 pointer_set_destroy (seen_values);
3193 }
3194 break;
3195
3196 case ERT_ALLOWED_EXCEPTIONS:
3197 {
3198 edge b_e = BRANCH_EDGE (src);
3199 edge f_e = FALLTHRU_EDGE (src);
3200
3201 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3202 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3203 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3204 filter = make_ssa_name (filter, x);
3205 gimple_call_set_lhs (x, filter);
3206 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3207
3208 r->u.allowed.label = NULL;
3209 x = gimple_build_cond (EQ_EXPR, filter,
3210 build_int_cst (TREE_TYPE (filter),
3211 r->u.allowed.filter),
3212 NULL_TREE, NULL_TREE);
3213 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3214
3215 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3216 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3217 }
3218 break;
3219
3220 default:
3221 gcc_unreachable ();
3222 }
3223
3224 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3225 gsi_remove (&gsi, true);
3226 return redirected;
3227 }
3228
3229 static unsigned
3230 execute_lower_eh_dispatch (void)
3231 {
3232 basic_block bb;
3233 bool any_rewritten = false;
3234 bool redirected = false;
3235
3236 assign_filter_values ();
3237
3238 FOR_EACH_BB (bb)
3239 {
3240 gimple last = last_stmt (bb);
3241 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3242 {
3243 redirected |= lower_eh_dispatch (bb, last);
3244 any_rewritten = true;
3245 }
3246 }
3247
3248 if (redirected)
3249 delete_unreachable_blocks ();
3250 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3251 }
3252
3253 static bool
3254 gate_lower_eh_dispatch (void)
3255 {
3256 return cfun->eh->region_tree != NULL;
3257 }
3258
3259 struct gimple_opt_pass pass_lower_eh_dispatch =
3260 {
3261 {
3262 GIMPLE_PASS,
3263 "ehdisp", /* name */
3264 gate_lower_eh_dispatch, /* gate */
3265 execute_lower_eh_dispatch, /* execute */
3266 NULL, /* sub */
3267 NULL, /* next */
3268 0, /* static_pass_number */
3269 TV_TREE_EH, /* tv_id */
3270 PROP_gimple_lcf, /* properties_required */
3271 0, /* properties_provided */
3272 0, /* properties_destroyed */
3273 0, /* todo_flags_start */
3274 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3275 }
3276 };
3277 \f
3278 /* Walk statements, see what regions are really referenced and remove
3279 those that are unused. */
3280
3281 static void
3282 remove_unreachable_handlers (void)
3283 {
3284 sbitmap r_reachable, lp_reachable;
3285 eh_region region;
3286 eh_landing_pad lp;
3287 basic_block bb;
3288 int lp_nr, r_nr;
3289
3290 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3291 lp_reachable
3292 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3293 sbitmap_zero (r_reachable);
3294 sbitmap_zero (lp_reachable);
3295
3296 FOR_EACH_BB (bb)
3297 {
3298 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3299
3300 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3301 {
3302 gimple stmt = gsi_stmt (gsi);
3303 lp_nr = lookup_stmt_eh_lp (stmt);
3304
3305 /* Negative LP numbers are MUST_NOT_THROW regions which
3306 are not considered BB enders. */
3307 if (lp_nr < 0)
3308 SET_BIT (r_reachable, -lp_nr);
3309
3310 /* Positive LP numbers are real landing pads, are are BB enders. */
3311 else if (lp_nr > 0)
3312 {
3313 gcc_assert (gsi_one_before_end_p (gsi));
3314 region = get_eh_region_from_lp_number (lp_nr);
3315 SET_BIT (r_reachable, region->index);
3316 SET_BIT (lp_reachable, lp_nr);
3317 }
3318 }
3319 }
3320
3321 if (dump_file)
3322 {
3323 fprintf (dump_file, "Before removal of unreachable regions:\n");
3324 dump_eh_tree (dump_file, cfun);
3325 fprintf (dump_file, "Reachable regions: ");
3326 dump_sbitmap_file (dump_file, r_reachable);
3327 fprintf (dump_file, "Reachable landing pads: ");
3328 dump_sbitmap_file (dump_file, lp_reachable);
3329 }
3330
3331 for (r_nr = 1;
3332 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3333 if (region && !TEST_BIT (r_reachable, r_nr))
3334 {
3335 if (dump_file)
3336 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3337 remove_eh_handler (region);
3338 }
3339
3340 for (lp_nr = 1;
3341 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3342 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3343 {
3344 if (dump_file)
3345 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3346 remove_eh_landing_pad (lp);
3347 }
3348
3349 if (dump_file)
3350 {
3351 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3352 dump_eh_tree (dump_file, cfun);
3353 fprintf (dump_file, "\n\n");
3354 }
3355
3356 sbitmap_free (r_reachable);
3357 sbitmap_free (lp_reachable);
3358
3359 #ifdef ENABLE_CHECKING
3360 verify_eh_tree (cfun);
3361 #endif
3362 }
3363
3364 /* Remove regions that do not have landing pads. This assumes
3365 that remove_unreachable_handlers has already been run, and
3366 that we've just manipulated the landing pads since then. */
3367
3368 static void
3369 remove_unreachable_handlers_no_lp (void)
3370 {
3371 eh_region r;
3372 int i;
3373
3374 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3375 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3376 {
3377 if (dump_file)
3378 fprintf (dump_file, "Removing unreachable region %d\n", i);
3379 remove_eh_handler (r);
3380 }
3381 }
3382
3383 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3384 optimisticaly split all sorts of edges, including EH edges. The
3385 optimization passes in between may not have needed them; if not,
3386 we should undo the split.
3387
3388 Recognize this case by having one EH edge incoming to the BB and
3389 one normal edge outgoing; BB should be empty apart from the
3390 post_landing_pad label.
3391
3392 Note that this is slightly different from the empty handler case
3393 handled by cleanup_empty_eh, in that the actual handler may yet
3394 have actual code but the landing pad has been separated from the
3395 handler. As such, cleanup_empty_eh relies on this transformation
3396 having been done first. */
3397
3398 static bool
3399 unsplit_eh (eh_landing_pad lp)
3400 {
3401 basic_block bb = label_to_block (lp->post_landing_pad);
3402 gimple_stmt_iterator gsi;
3403 edge e_in, e_out;
3404
3405 /* Quickly check the edge counts on BB for singularity. */
3406 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3407 return false;
3408 e_in = EDGE_PRED (bb, 0);
3409 e_out = EDGE_SUCC (bb, 0);
3410
3411 /* Input edge must be EH and output edge must be normal. */
3412 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3413 return false;
3414
3415 /* The block must be empty except for the labels and debug insns. */
3416 gsi = gsi_after_labels (bb);
3417 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3418 gsi_next_nondebug (&gsi);
3419 if (!gsi_end_p (gsi))
3420 return false;
3421
3422 /* The destination block must not already have a landing pad
3423 for a different region. */
3424 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3425 {
3426 gimple stmt = gsi_stmt (gsi);
3427 tree lab;
3428 int lp_nr;
3429
3430 if (gimple_code (stmt) != GIMPLE_LABEL)
3431 break;
3432 lab = gimple_label_label (stmt);
3433 lp_nr = EH_LANDING_PAD_NR (lab);
3434 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3435 return false;
3436 }
3437
3438 /* The new destination block must not already be a destination of
3439 the source block, lest we merge fallthru and eh edges and get
3440 all sorts of confused. */
3441 if (find_edge (e_in->src, e_out->dest))
3442 return false;
3443
3444 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3445 thought this should have been cleaned up by a phicprop pass, but
3446 that doesn't appear to handle virtuals. Propagate by hand. */
3447 if (!gimple_seq_empty_p (phi_nodes (bb)))
3448 {
3449 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3450 {
3451 gimple use_stmt, phi = gsi_stmt (gsi);
3452 tree lhs = gimple_phi_result (phi);
3453 tree rhs = gimple_phi_arg_def (phi, 0);
3454 use_operand_p use_p;
3455 imm_use_iterator iter;
3456
3457 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3458 {
3459 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3460 SET_USE (use_p, rhs);
3461 }
3462
3463 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3464 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3465
3466 remove_phi_node (&gsi, true);
3467 }
3468 }
3469
3470 if (dump_file && (dump_flags & TDF_DETAILS))
3471 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3472 lp->index, e_out->dest->index);
3473
3474 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3475 a successor edge, humor it. But do the real CFG change with the
3476 predecessor of E_OUT in order to preserve the ordering of arguments
3477 to the PHI nodes in E_OUT->DEST. */
3478 redirect_eh_edge_1 (e_in, e_out->dest, false);
3479 redirect_edge_pred (e_out, e_in->src);
3480 e_out->flags = e_in->flags;
3481 e_out->probability = e_in->probability;
3482 e_out->count = e_in->count;
3483 remove_edge (e_in);
3484
3485 return true;
3486 }
3487
3488 /* Examine each landing pad block and see if it matches unsplit_eh. */
3489
3490 static bool
3491 unsplit_all_eh (void)
3492 {
3493 bool changed = false;
3494 eh_landing_pad lp;
3495 int i;
3496
3497 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3498 if (lp)
3499 changed |= unsplit_eh (lp);
3500
3501 return changed;
3502 }
3503
3504 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3505 to OLD_BB to NEW_BB; return true on success, false on failure.
3506
3507 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3508 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3509 Virtual PHIs may be deleted and marked for renaming. */
3510
3511 static bool
3512 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3513 edge old_bb_out, bool change_region)
3514 {
3515 gimple_stmt_iterator ngsi, ogsi;
3516 edge_iterator ei;
3517 edge e;
3518 bitmap rename_virts;
3519 bitmap ophi_handled;
3520
3521 FOR_EACH_EDGE (e, ei, old_bb->preds)
3522 redirect_edge_var_map_clear (e);
3523
3524 ophi_handled = BITMAP_ALLOC (NULL);
3525 rename_virts = BITMAP_ALLOC (NULL);
3526
3527 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3528 for the edges we're going to move. */
3529 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3530 {
3531 gimple ophi, nphi = gsi_stmt (ngsi);
3532 tree nresult, nop;
3533
3534 nresult = gimple_phi_result (nphi);
3535 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3536
3537 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3538 the source ssa_name. */
3539 ophi = NULL;
3540 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3541 {
3542 ophi = gsi_stmt (ogsi);
3543 if (gimple_phi_result (ophi) == nop)
3544 break;
3545 ophi = NULL;
3546 }
3547
3548 /* If we did find the corresponding PHI, copy those inputs. */
3549 if (ophi)
3550 {
3551 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3552 FOR_EACH_EDGE (e, ei, old_bb->preds)
3553 {
3554 location_t oloc;
3555 tree oop;
3556
3557 if ((e->flags & EDGE_EH) == 0)
3558 continue;
3559 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3560 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3561 redirect_edge_var_map_add (e, nresult, oop, oloc);
3562 }
3563 }
3564 /* If we didn't find the PHI, but it's a VOP, remember to rename
3565 it later, assuming all other tests succeed. */
3566 else if (!is_gimple_reg (nresult))
3567 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3568 /* If we didn't find the PHI, and it's a real variable, we know
3569 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3570 variable is unchanged from input to the block and we can simply
3571 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3572 else
3573 {
3574 location_t nloc
3575 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3576 FOR_EACH_EDGE (e, ei, old_bb->preds)
3577 redirect_edge_var_map_add (e, nresult, nop, nloc);
3578 }
3579 }
3580
3581 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3582 we don't know what values from the other edges into NEW_BB to use. */
3583 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3584 {
3585 gimple ophi = gsi_stmt (ogsi);
3586 tree oresult = gimple_phi_result (ophi);
3587 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3588 goto fail;
3589 }
3590
3591 /* At this point we know that the merge will succeed. Remove the PHI
3592 nodes for the virtuals that we want to rename. */
3593 if (!bitmap_empty_p (rename_virts))
3594 {
3595 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3596 {
3597 gimple nphi = gsi_stmt (ngsi);
3598 tree nresult = gimple_phi_result (nphi);
3599 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3600 {
3601 mark_virtual_phi_result_for_renaming (nphi);
3602 remove_phi_node (&ngsi, true);
3603 }
3604 else
3605 gsi_next (&ngsi);
3606 }
3607 }
3608
3609 /* Finally, move the edges and update the PHIs. */
3610 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3611 if (e->flags & EDGE_EH)
3612 {
3613 redirect_eh_edge_1 (e, new_bb, change_region);
3614 redirect_edge_succ (e, new_bb);
3615 flush_pending_stmts (e);
3616 }
3617 else
3618 ei_next (&ei);
3619
3620 BITMAP_FREE (ophi_handled);
3621 BITMAP_FREE (rename_virts);
3622 return true;
3623
3624 fail:
3625 FOR_EACH_EDGE (e, ei, old_bb->preds)
3626 redirect_edge_var_map_clear (e);
3627 BITMAP_FREE (ophi_handled);
3628 BITMAP_FREE (rename_virts);
3629 return false;
3630 }
3631
3632 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3633 old region to NEW_REGION at BB. */
3634
3635 static void
3636 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3637 eh_landing_pad lp, eh_region new_region)
3638 {
3639 gimple_stmt_iterator gsi;
3640 eh_landing_pad *pp;
3641
3642 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3643 continue;
3644 *pp = lp->next_lp;
3645
3646 lp->region = new_region;
3647 lp->next_lp = new_region->landing_pads;
3648 new_region->landing_pads = lp;
3649
3650 /* Delete the RESX that was matched within the empty handler block. */
3651 gsi = gsi_last_bb (bb);
3652 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3653 gsi_remove (&gsi, true);
3654
3655 /* Clean up E_OUT for the fallthru. */
3656 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3657 e_out->probability = REG_BR_PROB_BASE;
3658 }
3659
3660 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3661 unsplitting than unsplit_eh was prepared to handle, e.g. when
3662 multiple incoming edges and phis are involved. */
3663
3664 static bool
3665 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3666 {
3667 gimple_stmt_iterator gsi;
3668 tree lab;
3669
3670 /* We really ought not have totally lost everything following
3671 a landing pad label. Given that BB is empty, there had better
3672 be a successor. */
3673 gcc_assert (e_out != NULL);
3674
3675 /* The destination block must not already have a landing pad
3676 for a different region. */
3677 lab = NULL;
3678 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3679 {
3680 gimple stmt = gsi_stmt (gsi);
3681 int lp_nr;
3682
3683 if (gimple_code (stmt) != GIMPLE_LABEL)
3684 break;
3685 lab = gimple_label_label (stmt);
3686 lp_nr = EH_LANDING_PAD_NR (lab);
3687 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3688 return false;
3689 }
3690
3691 /* Attempt to move the PHIs into the successor block. */
3692 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3693 {
3694 if (dump_file && (dump_flags & TDF_DETAILS))
3695 fprintf (dump_file,
3696 "Unsplit EH landing pad %d to block %i "
3697 "(via cleanup_empty_eh).\n",
3698 lp->index, e_out->dest->index);
3699 return true;
3700 }
3701
3702 return false;
3703 }
3704
3705 /* Examine the block associated with LP to determine if it's an empty
3706 handler for its EH region. If so, attempt to redirect EH edges to
3707 an outer region. Return true the CFG was updated in any way. This
3708 is similar to jump forwarding, just across EH edges. */
3709
3710 static bool
3711 cleanup_empty_eh (eh_landing_pad lp)
3712 {
3713 basic_block bb = label_to_block (lp->post_landing_pad);
3714 gimple_stmt_iterator gsi;
3715 gimple resx;
3716 eh_region new_region;
3717 edge_iterator ei;
3718 edge e, e_out;
3719 bool has_non_eh_pred;
3720 int new_lp_nr;
3721
3722 /* There can be zero or one edges out of BB. This is the quickest test. */
3723 switch (EDGE_COUNT (bb->succs))
3724 {
3725 case 0:
3726 e_out = NULL;
3727 break;
3728 case 1:
3729 e_out = EDGE_SUCC (bb, 0);
3730 break;
3731 default:
3732 return false;
3733 }
3734 gsi = gsi_after_labels (bb);
3735
3736 /* Make sure to skip debug statements. */
3737 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3738 gsi_next_nondebug (&gsi);
3739
3740 /* If the block is totally empty, look for more unsplitting cases. */
3741 if (gsi_end_p (gsi))
3742 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3743
3744 /* The block should consist only of a single RESX statement. */
3745 resx = gsi_stmt (gsi);
3746 if (!is_gimple_resx (resx))
3747 return false;
3748 gcc_assert (gsi_one_before_end_p (gsi));
3749
3750 /* Determine if there are non-EH edges, or resx edges into the handler. */
3751 has_non_eh_pred = false;
3752 FOR_EACH_EDGE (e, ei, bb->preds)
3753 if (!(e->flags & EDGE_EH))
3754 has_non_eh_pred = true;
3755
3756 /* Find the handler that's outer of the empty handler by looking at
3757 where the RESX instruction was vectored. */
3758 new_lp_nr = lookup_stmt_eh_lp (resx);
3759 new_region = get_eh_region_from_lp_number (new_lp_nr);
3760
3761 /* If there's no destination region within the current function,
3762 redirection is trivial via removing the throwing statements from
3763 the EH region, removing the EH edges, and allowing the block
3764 to go unreachable. */
3765 if (new_region == NULL)
3766 {
3767 gcc_assert (e_out == NULL);
3768 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3769 if (e->flags & EDGE_EH)
3770 {
3771 gimple stmt = last_stmt (e->src);
3772 remove_stmt_from_eh_lp (stmt);
3773 remove_edge (e);
3774 }
3775 else
3776 ei_next (&ei);
3777 goto succeed;
3778 }
3779
3780 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3781 to handle the abort and allow the blocks to go unreachable. */
3782 if (new_region->type == ERT_MUST_NOT_THROW)
3783 {
3784 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3785 if (e->flags & EDGE_EH)
3786 {
3787 gimple stmt = last_stmt (e->src);
3788 remove_stmt_from_eh_lp (stmt);
3789 add_stmt_to_eh_lp (stmt, new_lp_nr);
3790 remove_edge (e);
3791 }
3792 else
3793 ei_next (&ei);
3794 goto succeed;
3795 }
3796
3797 /* Try to redirect the EH edges and merge the PHIs into the destination
3798 landing pad block. If the merge succeeds, we'll already have redirected
3799 all the EH edges. The handler itself will go unreachable if there were
3800 no normal edges. */
3801 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3802 goto succeed;
3803
3804 /* Finally, if all input edges are EH edges, then we can (potentially)
3805 reduce the number of transfers from the runtime by moving the landing
3806 pad from the original region to the new region. This is a win when
3807 we remove the last CLEANUP region along a particular exception
3808 propagation path. Since nothing changes except for the region with
3809 which the landing pad is associated, the PHI nodes do not need to be
3810 adjusted at all. */
3811 if (!has_non_eh_pred)
3812 {
3813 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3814 if (dump_file && (dump_flags & TDF_DETAILS))
3815 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3816 lp->index, new_region->index);
3817
3818 /* ??? The CFG didn't change, but we may have rendered the
3819 old EH region unreachable. Trigger a cleanup there. */
3820 return true;
3821 }
3822
3823 return false;
3824
3825 succeed:
3826 if (dump_file && (dump_flags & TDF_DETAILS))
3827 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3828 remove_eh_landing_pad (lp);
3829 return true;
3830 }
3831
3832 /* Do a post-order traversal of the EH region tree. Examine each
3833 post_landing_pad block and see if we can eliminate it as empty. */
3834
3835 static bool
3836 cleanup_all_empty_eh (void)
3837 {
3838 bool changed = false;
3839 eh_landing_pad lp;
3840 int i;
3841
3842 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3843 if (lp)
3844 changed |= cleanup_empty_eh (lp);
3845
3846 return changed;
3847 }
3848
3849 /* Perform cleanups and lowering of exception handling
3850 1) cleanups regions with handlers doing nothing are optimized out
3851 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3852 3) Info about regions that are containing instructions, and regions
3853 reachable via local EH edges is collected
3854 4) Eh tree is pruned for regions no longer neccesary.
3855
3856 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3857 Unify those that have the same failure decl and locus.
3858 */
3859
3860 static unsigned int
3861 execute_cleanup_eh_1 (void)
3862 {
3863 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3864 looking up unreachable landing pads. */
3865 remove_unreachable_handlers ();
3866
3867 /* Watch out for the region tree vanishing due to all unreachable. */
3868 if (cfun->eh->region_tree && optimize)
3869 {
3870 bool changed = false;
3871
3872 changed |= unsplit_all_eh ();
3873 changed |= cleanup_all_empty_eh ();
3874
3875 if (changed)
3876 {
3877 free_dominance_info (CDI_DOMINATORS);
3878 free_dominance_info (CDI_POST_DOMINATORS);
3879
3880 /* We delayed all basic block deletion, as we may have performed
3881 cleanups on EH edges while non-EH edges were still present. */
3882 delete_unreachable_blocks ();
3883
3884 /* We manipulated the landing pads. Remove any region that no
3885 longer has a landing pad. */
3886 remove_unreachable_handlers_no_lp ();
3887
3888 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3889 }
3890 }
3891
3892 return 0;
3893 }
3894
3895 static unsigned int
3896 execute_cleanup_eh (void)
3897 {
3898 int ret = execute_cleanup_eh_1 ();
3899
3900 /* If the function no longer needs an EH personality routine
3901 clear it. This exposes cross-language inlining opportunities
3902 and avoids references to a never defined personality routine. */
3903 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
3904 && function_needs_eh_personality (cfun) != eh_personality_lang)
3905 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
3906
3907 return ret;
3908 }
3909
3910 static bool
3911 gate_cleanup_eh (void)
3912 {
3913 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3914 }
3915
3916 struct gimple_opt_pass pass_cleanup_eh = {
3917 {
3918 GIMPLE_PASS,
3919 "ehcleanup", /* name */
3920 gate_cleanup_eh, /* gate */
3921 execute_cleanup_eh, /* execute */
3922 NULL, /* sub */
3923 NULL, /* next */
3924 0, /* static_pass_number */
3925 TV_TREE_EH, /* tv_id */
3926 PROP_gimple_lcf, /* properties_required */
3927 0, /* properties_provided */
3928 0, /* properties_destroyed */
3929 0, /* todo_flags_start */
3930 TODO_dump_func /* todo_flags_finish */
3931 }
3932 };
3933 \f
3934 /* Verify that BB containing STMT as the last statement, has precisely the
3935 edge that make_eh_edges would create. */
3936
3937 DEBUG_FUNCTION bool
3938 verify_eh_edges (gimple stmt)
3939 {
3940 basic_block bb = gimple_bb (stmt);
3941 eh_landing_pad lp = NULL;
3942 int lp_nr;
3943 edge_iterator ei;
3944 edge e, eh_edge;
3945
3946 lp_nr = lookup_stmt_eh_lp (stmt);
3947 if (lp_nr > 0)
3948 lp = get_eh_landing_pad_from_number (lp_nr);
3949
3950 eh_edge = NULL;
3951 FOR_EACH_EDGE (e, ei, bb->succs)
3952 {
3953 if (e->flags & EDGE_EH)
3954 {
3955 if (eh_edge)
3956 {
3957 error ("BB %i has multiple EH edges", bb->index);
3958 return true;
3959 }
3960 else
3961 eh_edge = e;
3962 }
3963 }
3964
3965 if (lp == NULL)
3966 {
3967 if (eh_edge)
3968 {
3969 error ("BB %i can not throw but has an EH edge", bb->index);
3970 return true;
3971 }
3972 return false;
3973 }
3974
3975 if (!stmt_could_throw_p (stmt))
3976 {
3977 error ("BB %i last statement has incorrectly set lp", bb->index);
3978 return true;
3979 }
3980
3981 if (eh_edge == NULL)
3982 {
3983 error ("BB %i is missing an EH edge", bb->index);
3984 return true;
3985 }
3986
3987 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
3988 {
3989 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
3990 return true;
3991 }
3992
3993 return false;
3994 }
3995
3996 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
3997
3998 DEBUG_FUNCTION bool
3999 verify_eh_dispatch_edge (gimple stmt)
4000 {
4001 eh_region r;
4002 eh_catch c;
4003 basic_block src, dst;
4004 bool want_fallthru = true;
4005 edge_iterator ei;
4006 edge e, fall_edge;
4007
4008 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4009 src = gimple_bb (stmt);
4010
4011 FOR_EACH_EDGE (e, ei, src->succs)
4012 gcc_assert (e->aux == NULL);
4013
4014 switch (r->type)
4015 {
4016 case ERT_TRY:
4017 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4018 {
4019 dst = label_to_block (c->label);
4020 e = find_edge (src, dst);
4021 if (e == NULL)
4022 {
4023 error ("BB %i is missing an edge", src->index);
4024 return true;
4025 }
4026 e->aux = (void *)e;
4027
4028 /* A catch-all handler doesn't have a fallthru. */
4029 if (c->type_list == NULL)
4030 {
4031 want_fallthru = false;
4032 break;
4033 }
4034 }
4035 break;
4036
4037 case ERT_ALLOWED_EXCEPTIONS:
4038 dst = label_to_block (r->u.allowed.label);
4039 e = find_edge (src, dst);
4040 if (e == NULL)
4041 {
4042 error ("BB %i is missing an edge", src->index);
4043 return true;
4044 }
4045 e->aux = (void *)e;
4046 break;
4047
4048 default:
4049 gcc_unreachable ();
4050 }
4051
4052 fall_edge = NULL;
4053 FOR_EACH_EDGE (e, ei, src->succs)
4054 {
4055 if (e->flags & EDGE_FALLTHRU)
4056 {
4057 if (fall_edge != NULL)
4058 {
4059 error ("BB %i too many fallthru edges", src->index);
4060 return true;
4061 }
4062 fall_edge = e;
4063 }
4064 else if (e->aux)
4065 e->aux = NULL;
4066 else
4067 {
4068 error ("BB %i has incorrect edge", src->index);
4069 return true;
4070 }
4071 }
4072 if ((fall_edge != NULL) ^ want_fallthru)
4073 {
4074 error ("BB %i has incorrect fallthru edge", src->index);
4075 return true;
4076 }
4077
4078 return false;
4079 }