4246dca8806b2f39417ffb086df5827e56e36d0c
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "cgraph.h"
31 #include "diagnostic-core.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "except.h"
35 #include "cfganal.h"
36 #include "cfgcleanup.h"
37 #include "tree-eh.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "tree-into-ssa.h"
41 #include "tree-ssa.h"
42 #include "tree-inline.h"
43 #include "langhooks.h"
44 #include "cfgloop.h"
45 #include "gimple-low.h"
46 #include "stringpool.h"
47 #include "attribs.h"
48 #include "asan.h"
49 #include "gimplify.h"
50
51 /* In some instances a tree and a gimple need to be stored in a same table,
52 i.e. in hash tables. This is a structure to do this. */
53 typedef union {tree *tp; tree t; gimple *g;} treemple;
54
55 /* Misc functions used in this file. */
56
57 /* Remember and lookup EH landing pad data for arbitrary statements.
58 Really this means any statement that could_throw_p. We could
59 stuff this information into the stmt_ann data structure, but:
60
61 (1) We absolutely rely on this information being kept until
62 we get to rtl. Once we're done with lowering here, if we lose
63 the information there's no way to recover it!
64
65 (2) There are many more statements that *cannot* throw as
66 compared to those that can. We should be saving some amount
67 of space by only allocating memory for those that can throw. */
68
69 /* Add statement T in function IFUN to landing pad NUM. */
70
71 static void
72 add_stmt_to_eh_lp_fn (struct function *ifun, gimple *t, int num)
73 {
74 gcc_assert (num != 0);
75
76 if (!get_eh_throw_stmt_table (ifun))
77 set_eh_throw_stmt_table (ifun, hash_map<gimple *, int>::create_ggc (31));
78
79 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
80 }
81
82 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
83
84 void
85 add_stmt_to_eh_lp (gimple *t, int num)
86 {
87 add_stmt_to_eh_lp_fn (cfun, t, num);
88 }
89
90 /* Add statement T to the single EH landing pad in REGION. */
91
92 static void
93 record_stmt_eh_region (eh_region region, gimple *t)
94 {
95 if (region == NULL)
96 return;
97 if (region->type == ERT_MUST_NOT_THROW)
98 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
99 else
100 {
101 eh_landing_pad lp = region->landing_pads;
102 if (lp == NULL)
103 lp = gen_eh_landing_pad (region);
104 else
105 gcc_assert (lp->next_lp == NULL);
106 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
107 }
108 }
109
110
111 /* Remove statement T in function IFUN from its EH landing pad. */
112
113 bool
114 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple *t)
115 {
116 if (!get_eh_throw_stmt_table (ifun))
117 return false;
118
119 if (!get_eh_throw_stmt_table (ifun)->get (t))
120 return false;
121
122 get_eh_throw_stmt_table (ifun)->remove (t);
123 return true;
124 }
125
126
127 /* Remove statement T in the current function (cfun) from its
128 EH landing pad. */
129
130 bool
131 remove_stmt_from_eh_lp (gimple *t)
132 {
133 return remove_stmt_from_eh_lp_fn (cfun, t);
134 }
135
136 /* Determine if statement T is inside an EH region in function IFUN.
137 Positive numbers indicate a landing pad index; negative numbers
138 indicate a MUST_NOT_THROW region index; zero indicates that the
139 statement is not recorded in the region table. */
140
141 int
142 lookup_stmt_eh_lp_fn (struct function *ifun, const gimple *t)
143 {
144 if (ifun->eh->throw_stmt_table == NULL)
145 return 0;
146
147 int *lp_nr = ifun->eh->throw_stmt_table->get (const_cast <gimple *> (t));
148 return lp_nr ? *lp_nr : 0;
149 }
150
151 /* Likewise, but always use the current function. */
152
153 int
154 lookup_stmt_eh_lp (const gimple *t)
155 {
156 /* We can get called from initialized data when -fnon-call-exceptions
157 is on; prevent crash. */
158 if (!cfun)
159 return 0;
160 return lookup_stmt_eh_lp_fn (cfun, t);
161 }
162
163 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
164 nodes and LABEL_DECL nodes. We will use this during the second phase to
165 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
166
167 struct finally_tree_node
168 {
169 /* When storing a GIMPLE_TRY, we have to record a gimple. However
170 when deciding whether a GOTO to a certain LABEL_DECL (which is a
171 tree) leaves the TRY block, its necessary to record a tree in
172 this field. Thus a treemple is used. */
173 treemple child;
174 gtry *parent;
175 };
176
177 /* Hashtable helpers. */
178
179 struct finally_tree_hasher : free_ptr_hash <finally_tree_node>
180 {
181 static inline hashval_t hash (const finally_tree_node *);
182 static inline bool equal (const finally_tree_node *,
183 const finally_tree_node *);
184 };
185
186 inline hashval_t
187 finally_tree_hasher::hash (const finally_tree_node *v)
188 {
189 return (intptr_t)v->child.t >> 4;
190 }
191
192 inline bool
193 finally_tree_hasher::equal (const finally_tree_node *v,
194 const finally_tree_node *c)
195 {
196 return v->child.t == c->child.t;
197 }
198
199 /* Note that this table is *not* marked GTY. It is short-lived. */
200 static hash_table<finally_tree_hasher> *finally_tree;
201
202 static void
203 record_in_finally_tree (treemple child, gtry *parent)
204 {
205 struct finally_tree_node *n;
206 finally_tree_node **slot;
207
208 n = XNEW (struct finally_tree_node);
209 n->child = child;
210 n->parent = parent;
211
212 slot = finally_tree->find_slot (n, INSERT);
213 gcc_assert (!*slot);
214 *slot = n;
215 }
216
217 static void
218 collect_finally_tree (gimple *stmt, gtry *region);
219
220 /* Go through the gimple sequence. Works with collect_finally_tree to
221 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
222
223 static void
224 collect_finally_tree_1 (gimple_seq seq, gtry *region)
225 {
226 gimple_stmt_iterator gsi;
227
228 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
229 collect_finally_tree (gsi_stmt (gsi), region);
230 }
231
232 static void
233 collect_finally_tree (gimple *stmt, gtry *region)
234 {
235 treemple temp;
236
237 switch (gimple_code (stmt))
238 {
239 case GIMPLE_LABEL:
240 temp.t = gimple_label_label (as_a <glabel *> (stmt));
241 record_in_finally_tree (temp, region);
242 break;
243
244 case GIMPLE_TRY:
245 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
246 {
247 temp.g = stmt;
248 record_in_finally_tree (temp, region);
249 collect_finally_tree_1 (gimple_try_eval (stmt),
250 as_a <gtry *> (stmt));
251 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
252 }
253 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
254 {
255 collect_finally_tree_1 (gimple_try_eval (stmt), region);
256 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
257 }
258 break;
259
260 case GIMPLE_CATCH:
261 collect_finally_tree_1 (gimple_catch_handler (
262 as_a <gcatch *> (stmt)),
263 region);
264 break;
265
266 case GIMPLE_EH_FILTER:
267 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
268 break;
269
270 case GIMPLE_EH_ELSE:
271 {
272 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
273 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region);
274 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region);
275 }
276 break;
277
278 default:
279 /* A type, a decl, or some kind of statement that we're not
280 interested in. Don't walk them. */
281 break;
282 }
283 }
284
285
286 /* Use the finally tree to determine if a jump from START to TARGET
287 would leave the try_finally node that START lives in. */
288
289 static bool
290 outside_finally_tree (treemple start, gimple *target)
291 {
292 struct finally_tree_node n, *p;
293
294 do
295 {
296 n.child = start;
297 p = finally_tree->find (&n);
298 if (!p)
299 return true;
300 start.g = p->parent;
301 }
302 while (start.g != target);
303
304 return false;
305 }
306
307 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
308 nodes into a set of gotos, magic labels, and eh regions.
309 The eh region creation is straight-forward, but frobbing all the gotos
310 and such into shape isn't. */
311
312 /* The sequence into which we record all EH stuff. This will be
313 placed at the end of the function when we're all done. */
314 static gimple_seq eh_seq;
315
316 /* Record whether an EH region contains something that can throw,
317 indexed by EH region number. */
318 static bitmap eh_region_may_contain_throw_map;
319
320 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
321 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
322 The idea is to record a gimple statement for everything except for
323 the conditionals, which get their labels recorded. Since labels are
324 of type 'tree', we need this node to store both gimple and tree
325 objects. REPL_STMT is the sequence used to replace the goto/return
326 statement. CONT_STMT is used to store the statement that allows
327 the return/goto to jump to the original destination. */
328
329 struct goto_queue_node
330 {
331 treemple stmt;
332 location_t location;
333 gimple_seq repl_stmt;
334 gimple *cont_stmt;
335 int index;
336 /* This is used when index >= 0 to indicate that stmt is a label (as
337 opposed to a goto stmt). */
338 int is_label;
339 };
340
341 /* State of the world while lowering. */
342
343 struct leh_state
344 {
345 /* What's "current" while constructing the eh region tree. These
346 correspond to variables of the same name in cfun->eh, which we
347 don't have easy access to. */
348 eh_region cur_region;
349
350 /* What's "current" for the purposes of __builtin_eh_pointer. For
351 a CATCH, this is the associated TRY. For an EH_FILTER, this is
352 the associated ALLOWED_EXCEPTIONS, etc. */
353 eh_region ehp_region;
354
355 /* Processing of TRY_FINALLY requires a bit more state. This is
356 split out into a separate structure so that we don't have to
357 copy so much when processing other nodes. */
358 struct leh_tf_state *tf;
359
360 /* Outer non-clean up region. */
361 eh_region outer_non_cleanup;
362 };
363
364 struct leh_tf_state
365 {
366 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
367 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
368 this so that outside_finally_tree can reliably reference the tree used
369 in the collect_finally_tree data structures. */
370 gtry *try_finally_expr;
371 gtry *top_p;
372
373 /* While lowering a top_p usually it is expanded into multiple statements,
374 thus we need the following field to store them. */
375 gimple_seq top_p_seq;
376
377 /* The state outside this try_finally node. */
378 struct leh_state *outer;
379
380 /* The exception region created for it. */
381 eh_region region;
382
383 /* The goto queue. */
384 struct goto_queue_node *goto_queue;
385 size_t goto_queue_size;
386 size_t goto_queue_active;
387
388 /* Pointer map to help in searching goto_queue when it is large. */
389 hash_map<gimple *, goto_queue_node *> *goto_queue_map;
390
391 /* The set of unique labels seen as entries in the goto queue. */
392 vec<tree> dest_array;
393
394 /* A label to be added at the end of the completed transformed
395 sequence. It will be set if may_fallthru was true *at one time*,
396 though subsequent transformations may have cleared that flag. */
397 tree fallthru_label;
398
399 /* True if it is possible to fall out the bottom of the try block.
400 Cleared if the fallthru is converted to a goto. */
401 bool may_fallthru;
402
403 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
404 bool may_return;
405
406 /* True if the finally block can receive an exception edge.
407 Cleared if the exception case is handled by code duplication. */
408 bool may_throw;
409 };
410
411 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
412
413 /* Search for STMT in the goto queue. Return the replacement,
414 or null if the statement isn't in the queue. */
415
416 #define LARGE_GOTO_QUEUE 20
417
418 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
419
420 static gimple_seq
421 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
422 {
423 unsigned int i;
424
425 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
426 {
427 for (i = 0; i < tf->goto_queue_active; i++)
428 if ( tf->goto_queue[i].stmt.g == stmt.g)
429 return tf->goto_queue[i].repl_stmt;
430 return NULL;
431 }
432
433 /* If we have a large number of entries in the goto_queue, create a
434 pointer map and use that for searching. */
435
436 if (!tf->goto_queue_map)
437 {
438 tf->goto_queue_map = new hash_map<gimple *, goto_queue_node *>;
439 for (i = 0; i < tf->goto_queue_active; i++)
440 {
441 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
442 &tf->goto_queue[i]);
443 gcc_assert (!existed);
444 }
445 }
446
447 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
448 if (slot != NULL)
449 return ((*slot)->repl_stmt);
450
451 return NULL;
452 }
453
454 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
455 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
456 then we can just splat it in, otherwise we add the new stmts immediately
457 after the GIMPLE_COND and redirect. */
458
459 static void
460 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
461 gimple_stmt_iterator *gsi)
462 {
463 tree label;
464 gimple_seq new_seq;
465 treemple temp;
466 location_t loc = gimple_location (gsi_stmt (*gsi));
467
468 temp.tp = tp;
469 new_seq = find_goto_replacement (tf, temp);
470 if (!new_seq)
471 return;
472
473 if (gimple_seq_singleton_p (new_seq)
474 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
475 {
476 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
477 return;
478 }
479
480 label = create_artificial_label (loc);
481 /* Set the new label for the GIMPLE_COND */
482 *tp = label;
483
484 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
485 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
486 }
487
488 /* The real work of replace_goto_queue. Returns with TSI updated to
489 point to the next statement. */
490
491 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
492
493 static void
494 replace_goto_queue_1 (gimple *stmt, struct leh_tf_state *tf,
495 gimple_stmt_iterator *gsi)
496 {
497 gimple_seq seq;
498 treemple temp;
499 temp.g = NULL;
500
501 switch (gimple_code (stmt))
502 {
503 case GIMPLE_GOTO:
504 case GIMPLE_RETURN:
505 temp.g = stmt;
506 seq = find_goto_replacement (tf, temp);
507 if (seq)
508 {
509 gimple_stmt_iterator i;
510 seq = gimple_seq_copy (seq);
511 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
512 gimple_set_location (gsi_stmt (i), gimple_location (stmt));
513 gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
514 gsi_remove (gsi, false);
515 return;
516 }
517 break;
518
519 case GIMPLE_COND:
520 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
521 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
522 break;
523
524 case GIMPLE_TRY:
525 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
526 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
527 break;
528 case GIMPLE_CATCH:
529 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
530 as_a <gcatch *> (stmt)),
531 tf);
532 break;
533 case GIMPLE_EH_FILTER:
534 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
535 break;
536 case GIMPLE_EH_ELSE:
537 {
538 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
539 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
540 tf);
541 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
542 tf);
543 }
544 break;
545
546 default:
547 /* These won't have gotos in them. */
548 break;
549 }
550
551 gsi_next (gsi);
552 }
553
554 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
555
556 static void
557 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
558 {
559 gimple_stmt_iterator gsi = gsi_start (*seq);
560
561 while (!gsi_end_p (gsi))
562 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
563 }
564
565 /* Replace all goto queue members. */
566
567 static void
568 replace_goto_queue (struct leh_tf_state *tf)
569 {
570 if (tf->goto_queue_active == 0)
571 return;
572 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
573 replace_goto_queue_stmt_list (&eh_seq, tf);
574 }
575
576 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
577 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
578 a gimple return. */
579
580 static void
581 record_in_goto_queue (struct leh_tf_state *tf,
582 treemple new_stmt,
583 int index,
584 bool is_label,
585 location_t location)
586 {
587 size_t active, size;
588 struct goto_queue_node *q;
589
590 gcc_assert (!tf->goto_queue_map);
591
592 active = tf->goto_queue_active;
593 size = tf->goto_queue_size;
594 if (active >= size)
595 {
596 size = (size ? size * 2 : 32);
597 tf->goto_queue_size = size;
598 tf->goto_queue
599 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
600 }
601
602 q = &tf->goto_queue[active];
603 tf->goto_queue_active = active + 1;
604
605 memset (q, 0, sizeof (*q));
606 q->stmt = new_stmt;
607 q->index = index;
608 q->location = location;
609 q->is_label = is_label;
610 }
611
612 /* Record the LABEL label in the goto queue contained in TF.
613 TF is not null. */
614
615 static void
616 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
617 location_t location)
618 {
619 int index;
620 treemple temp, new_stmt;
621
622 if (!label)
623 return;
624
625 /* Computed and non-local gotos do not get processed. Given
626 their nature we can neither tell whether we've escaped the
627 finally block nor redirect them if we knew. */
628 if (TREE_CODE (label) != LABEL_DECL)
629 return;
630
631 /* No need to record gotos that don't leave the try block. */
632 temp.t = label;
633 if (!outside_finally_tree (temp, tf->try_finally_expr))
634 return;
635
636 if (! tf->dest_array.exists ())
637 {
638 tf->dest_array.create (10);
639 tf->dest_array.quick_push (label);
640 index = 0;
641 }
642 else
643 {
644 int n = tf->dest_array.length ();
645 for (index = 0; index < n; ++index)
646 if (tf->dest_array[index] == label)
647 break;
648 if (index == n)
649 tf->dest_array.safe_push (label);
650 }
651
652 /* In the case of a GOTO we want to record the destination label,
653 since with a GIMPLE_COND we have an easy access to the then/else
654 labels. */
655 new_stmt = stmt;
656 record_in_goto_queue (tf, new_stmt, index, true, location);
657 }
658
659 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
660 node, and if so record that fact in the goto queue associated with that
661 try_finally node. */
662
663 static void
664 maybe_record_in_goto_queue (struct leh_state *state, gimple *stmt)
665 {
666 struct leh_tf_state *tf = state->tf;
667 treemple new_stmt;
668
669 if (!tf)
670 return;
671
672 switch (gimple_code (stmt))
673 {
674 case GIMPLE_COND:
675 {
676 gcond *cond_stmt = as_a <gcond *> (stmt);
677 new_stmt.tp = gimple_op_ptr (cond_stmt, 2);
678 record_in_goto_queue_label (tf, new_stmt,
679 gimple_cond_true_label (cond_stmt),
680 EXPR_LOCATION (*new_stmt.tp));
681 new_stmt.tp = gimple_op_ptr (cond_stmt, 3);
682 record_in_goto_queue_label (tf, new_stmt,
683 gimple_cond_false_label (cond_stmt),
684 EXPR_LOCATION (*new_stmt.tp));
685 }
686 break;
687 case GIMPLE_GOTO:
688 new_stmt.g = stmt;
689 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
690 gimple_location (stmt));
691 break;
692
693 case GIMPLE_RETURN:
694 tf->may_return = true;
695 new_stmt.g = stmt;
696 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
697 break;
698
699 default:
700 gcc_unreachable ();
701 }
702 }
703
704
705 #if CHECKING_P
706 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
707 was in fact structured, and we've not yet done jump threading, then none
708 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
709
710 static void
711 verify_norecord_switch_expr (struct leh_state *state,
712 gswitch *switch_expr)
713 {
714 struct leh_tf_state *tf = state->tf;
715 size_t i, n;
716
717 if (!tf)
718 return;
719
720 n = gimple_switch_num_labels (switch_expr);
721
722 for (i = 0; i < n; ++i)
723 {
724 treemple temp;
725 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
726 temp.t = lab;
727 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
728 }
729 }
730 #else
731 #define verify_norecord_switch_expr(state, switch_expr)
732 #endif
733
734 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
735 non-null, insert it before the new branch. */
736
737 static void
738 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
739 {
740 gimple *x;
741
742 /* In the case of a return, the queue node must be a gimple statement. */
743 gcc_assert (!q->is_label);
744
745 /* Note that the return value may have already been computed, e.g.,
746
747 int x;
748 int foo (void)
749 {
750 x = 0;
751 try {
752 return x;
753 } finally {
754 x++;
755 }
756 }
757
758 should return 0, not 1. We don't have to do anything to make
759 this happens because the return value has been placed in the
760 RESULT_DECL already. */
761
762 q->cont_stmt = q->stmt.g;
763
764 if (mod)
765 gimple_seq_add_seq (&q->repl_stmt, mod);
766
767 x = gimple_build_goto (finlab);
768 gimple_set_location (x, q->location);
769 gimple_seq_add_stmt (&q->repl_stmt, x);
770 }
771
772 /* Similar, but easier, for GIMPLE_GOTO. */
773
774 static void
775 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
776 struct leh_tf_state *tf)
777 {
778 ggoto *x;
779
780 gcc_assert (q->is_label);
781
782 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
783
784 if (mod)
785 gimple_seq_add_seq (&q->repl_stmt, mod);
786
787 x = gimple_build_goto (finlab);
788 gimple_set_location (x, q->location);
789 gimple_seq_add_stmt (&q->repl_stmt, x);
790 }
791
792 /* Emit a standard landing pad sequence into SEQ for REGION. */
793
794 static void
795 emit_post_landing_pad (gimple_seq *seq, eh_region region)
796 {
797 eh_landing_pad lp = region->landing_pads;
798 glabel *x;
799
800 if (lp == NULL)
801 lp = gen_eh_landing_pad (region);
802
803 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
804 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
805
806 x = gimple_build_label (lp->post_landing_pad);
807 gimple_seq_add_stmt (seq, x);
808 }
809
810 /* Emit a RESX statement into SEQ for REGION. */
811
812 static void
813 emit_resx (gimple_seq *seq, eh_region region)
814 {
815 gresx *x = gimple_build_resx (region->index);
816 gimple_seq_add_stmt (seq, x);
817 if (region->outer)
818 record_stmt_eh_region (region->outer, x);
819 }
820
821 /* Note that the current EH region may contain a throw, or a
822 call to a function which itself may contain a throw. */
823
824 static void
825 note_eh_region_may_contain_throw (eh_region region)
826 {
827 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
828 {
829 if (region->type == ERT_MUST_NOT_THROW)
830 break;
831 region = region->outer;
832 if (region == NULL)
833 break;
834 }
835 }
836
837 /* Check if REGION has been marked as containing a throw. If REGION is
838 NULL, this predicate is false. */
839
840 static inline bool
841 eh_region_may_contain_throw (eh_region r)
842 {
843 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
844 }
845
846 /* We want to transform
847 try { body; } catch { stuff; }
848 to
849 normal_sequence:
850 body;
851 over:
852 eh_sequence:
853 landing_pad:
854 stuff;
855 goto over;
856
857 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
858 should be placed before the second operand, or NULL. OVER is
859 an existing label that should be put at the exit, or NULL. */
860
861 static gimple_seq
862 frob_into_branch_around (gtry *tp, eh_region region, tree over)
863 {
864 gimple *x;
865 gimple_seq cleanup, result;
866 location_t loc = gimple_location (tp);
867
868 cleanup = gimple_try_cleanup (tp);
869 result = gimple_try_eval (tp);
870
871 if (region)
872 emit_post_landing_pad (&eh_seq, region);
873
874 if (gimple_seq_may_fallthru (cleanup))
875 {
876 if (!over)
877 over = create_artificial_label (loc);
878 x = gimple_build_goto (over);
879 gimple_set_location (x, loc);
880 gimple_seq_add_stmt (&cleanup, x);
881 }
882 gimple_seq_add_seq (&eh_seq, cleanup);
883
884 if (over)
885 {
886 x = gimple_build_label (over);
887 gimple_seq_add_stmt (&result, x);
888 }
889 return result;
890 }
891
892 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
893 Make sure to record all new labels found. */
894
895 static gimple_seq
896 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
897 location_t loc)
898 {
899 gtry *region = NULL;
900 gimple_seq new_seq;
901 gimple_stmt_iterator gsi;
902
903 new_seq = copy_gimple_seq_and_replace_locals (seq);
904
905 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
906 {
907 gimple *stmt = gsi_stmt (gsi);
908 /* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating
909 it on the EH paths. When it is not eliminated, make it transparent in
910 the debug info. */
911 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
912 gimple_set_location (stmt, UNKNOWN_LOCATION);
913 else if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
914 {
915 tree block = gimple_block (stmt);
916 gimple_set_location (stmt, loc);
917 gimple_set_block (stmt, block);
918 }
919 }
920
921 if (outer_state->tf)
922 region = outer_state->tf->try_finally_expr;
923 collect_finally_tree_1 (new_seq, region);
924
925 return new_seq;
926 }
927
928 /* A subroutine of lower_try_finally. Create a fallthru label for
929 the given try_finally state. The only tricky bit here is that
930 we have to make sure to record the label in our outer context. */
931
932 static tree
933 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
934 {
935 tree label = tf->fallthru_label;
936 treemple temp;
937
938 if (!label)
939 {
940 label = create_artificial_label (gimple_location (tf->try_finally_expr));
941 tf->fallthru_label = label;
942 if (tf->outer->tf)
943 {
944 temp.t = label;
945 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
946 }
947 }
948 return label;
949 }
950
951 /* A subroutine of lower_try_finally. If FINALLY consits of a
952 GIMPLE_EH_ELSE node, return it. */
953
954 static inline geh_else *
955 get_eh_else (gimple_seq finally)
956 {
957 gimple *x = gimple_seq_first_stmt (finally);
958 if (gimple_code (x) == GIMPLE_EH_ELSE)
959 {
960 gcc_assert (gimple_seq_singleton_p (finally));
961 return as_a <geh_else *> (x);
962 }
963 return NULL;
964 }
965
966 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
967 langhook returns non-null, then the language requires that the exception
968 path out of a try_finally be treated specially. To wit: the code within
969 the finally block may not itself throw an exception. We have two choices
970 here. First we can duplicate the finally block and wrap it in a
971 must_not_throw region. Second, we can generate code like
972
973 try {
974 finally_block;
975 } catch {
976 if (fintmp == eh_edge)
977 protect_cleanup_actions;
978 }
979
980 where "fintmp" is the temporary used in the switch statement generation
981 alternative considered below. For the nonce, we always choose the first
982 option.
983
984 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
985
986 static void
987 honor_protect_cleanup_actions (struct leh_state *outer_state,
988 struct leh_state *this_state,
989 struct leh_tf_state *tf)
990 {
991 gimple_seq finally = gimple_try_cleanup (tf->top_p);
992
993 /* EH_ELSE doesn't come from user code; only compiler generated stuff.
994 It does need to be handled here, so as to separate the (different)
995 EH path from the normal path. But we should not attempt to wrap
996 it with a must-not-throw node (which indeed gets in the way). */
997 if (geh_else *eh_else = get_eh_else (finally))
998 {
999 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1000 finally = gimple_eh_else_e_body (eh_else);
1001
1002 /* Let the ELSE see the exception that's being processed, but
1003 since the cleanup is outside the try block, process it with
1004 outer_state, otherwise it may be used as a cleanup for
1005 itself, and Bad Things (TM) ensue. */
1006 eh_region save_ehp = outer_state->ehp_region;
1007 outer_state->ehp_region = this_state->cur_region;
1008 lower_eh_constructs_1 (outer_state, &finally);
1009 outer_state->ehp_region = save_ehp;
1010 }
1011 else
1012 {
1013 /* First check for nothing to do. */
1014 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1015 return;
1016 tree actions = lang_hooks.eh_protect_cleanup_actions ();
1017 if (actions == NULL)
1018 return;
1019
1020 if (this_state)
1021 finally = lower_try_finally_dup_block (finally, outer_state,
1022 gimple_location (tf->try_finally_expr));
1023
1024 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1025 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1026 to be in an enclosing scope, but needs to be implemented at this level
1027 to avoid a nesting violation (see wrap_temporary_cleanups in
1028 cp/decl.c). Since it's logically at an outer level, we should call
1029 terminate before we get to it, so strip it away before adding the
1030 MUST_NOT_THROW filter. */
1031 gimple_stmt_iterator gsi = gsi_start (finally);
1032 gimple *x = gsi_stmt (gsi);
1033 if (gimple_code (x) == GIMPLE_TRY
1034 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1035 && gimple_try_catch_is_cleanup (x))
1036 {
1037 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1038 gsi_remove (&gsi, false);
1039 }
1040
1041 /* Wrap the block with protect_cleanup_actions as the action. */
1042 geh_mnt *eh_mnt = gimple_build_eh_must_not_throw (actions);
1043 gtry *try_stmt = gimple_build_try (finally,
1044 gimple_seq_alloc_with_stmt (eh_mnt),
1045 GIMPLE_TRY_CATCH);
1046 finally = lower_eh_must_not_throw (outer_state, try_stmt);
1047 }
1048
1049 /* Drop all of this into the exception sequence. */
1050 emit_post_landing_pad (&eh_seq, tf->region);
1051 gimple_seq_add_seq (&eh_seq, finally);
1052 if (gimple_seq_may_fallthru (finally))
1053 emit_resx (&eh_seq, tf->region);
1054
1055 /* Having now been handled, EH isn't to be considered with
1056 the rest of the outgoing edges. */
1057 tf->may_throw = false;
1058 }
1059
1060 /* A subroutine of lower_try_finally. We have determined that there is
1061 no fallthru edge out of the finally block. This means that there is
1062 no outgoing edge corresponding to any incoming edge. Restructure the
1063 try_finally node for this special case. */
1064
1065 static void
1066 lower_try_finally_nofallthru (struct leh_state *state,
1067 struct leh_tf_state *tf)
1068 {
1069 tree lab;
1070 gimple *x;
1071 geh_else *eh_else;
1072 gimple_seq finally;
1073 struct goto_queue_node *q, *qe;
1074
1075 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1076
1077 /* We expect that tf->top_p is a GIMPLE_TRY. */
1078 finally = gimple_try_cleanup (tf->top_p);
1079 tf->top_p_seq = gimple_try_eval (tf->top_p);
1080
1081 x = gimple_build_label (lab);
1082 gimple_seq_add_stmt (&tf->top_p_seq, x);
1083
1084 q = tf->goto_queue;
1085 qe = q + tf->goto_queue_active;
1086 for (; q < qe; ++q)
1087 if (q->index < 0)
1088 do_return_redirection (q, lab, NULL);
1089 else
1090 do_goto_redirection (q, lab, NULL, tf);
1091
1092 replace_goto_queue (tf);
1093
1094 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1095 eh_else = get_eh_else (finally);
1096 if (eh_else)
1097 {
1098 finally = gimple_eh_else_n_body (eh_else);
1099 lower_eh_constructs_1 (state, &finally);
1100 gimple_seq_add_seq (&tf->top_p_seq, finally);
1101
1102 if (tf->may_throw)
1103 {
1104 finally = gimple_eh_else_e_body (eh_else);
1105 lower_eh_constructs_1 (state, &finally);
1106
1107 emit_post_landing_pad (&eh_seq, tf->region);
1108 gimple_seq_add_seq (&eh_seq, finally);
1109 }
1110 }
1111 else
1112 {
1113 lower_eh_constructs_1 (state, &finally);
1114 gimple_seq_add_seq (&tf->top_p_seq, finally);
1115
1116 if (tf->may_throw)
1117 {
1118 emit_post_landing_pad (&eh_seq, tf->region);
1119
1120 x = gimple_build_goto (lab);
1121 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1122 gimple_seq_add_stmt (&eh_seq, x);
1123 }
1124 }
1125 }
1126
1127 /* A subroutine of lower_try_finally. We have determined that there is
1128 exactly one destination of the finally block. Restructure the
1129 try_finally node for this special case. */
1130
1131 static void
1132 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1133 {
1134 struct goto_queue_node *q, *qe;
1135 geh_else *eh_else;
1136 glabel *label_stmt;
1137 gimple *x;
1138 gimple_seq finally;
1139 gimple_stmt_iterator gsi;
1140 tree finally_label;
1141 location_t loc = gimple_location (tf->try_finally_expr);
1142
1143 finally = gimple_try_cleanup (tf->top_p);
1144 tf->top_p_seq = gimple_try_eval (tf->top_p);
1145
1146 /* Since there's only one destination, and the destination edge can only
1147 either be EH or non-EH, that implies that all of our incoming edges
1148 are of the same type. Therefore we can lower EH_ELSE immediately. */
1149 eh_else = get_eh_else (finally);
1150 if (eh_else)
1151 {
1152 if (tf->may_throw)
1153 finally = gimple_eh_else_e_body (eh_else);
1154 else
1155 finally = gimple_eh_else_n_body (eh_else);
1156 }
1157
1158 lower_eh_constructs_1 (state, &finally);
1159
1160 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1161 {
1162 gimple *stmt = gsi_stmt (gsi);
1163 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1164 {
1165 tree block = gimple_block (stmt);
1166 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1167 gimple_set_block (stmt, block);
1168 }
1169 }
1170
1171 if (tf->may_throw)
1172 {
1173 /* Only reachable via the exception edge. Add the given label to
1174 the head of the FINALLY block. Append a RESX at the end. */
1175 emit_post_landing_pad (&eh_seq, tf->region);
1176 gimple_seq_add_seq (&eh_seq, finally);
1177 emit_resx (&eh_seq, tf->region);
1178 return;
1179 }
1180
1181 if (tf->may_fallthru)
1182 {
1183 /* Only reachable via the fallthru edge. Do nothing but let
1184 the two blocks run together; we'll fall out the bottom. */
1185 gimple_seq_add_seq (&tf->top_p_seq, finally);
1186 return;
1187 }
1188
1189 finally_label = create_artificial_label (loc);
1190 label_stmt = gimple_build_label (finally_label);
1191 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
1192
1193 gimple_seq_add_seq (&tf->top_p_seq, finally);
1194
1195 q = tf->goto_queue;
1196 qe = q + tf->goto_queue_active;
1197
1198 if (tf->may_return)
1199 {
1200 /* Reachable by return expressions only. Redirect them. */
1201 for (; q < qe; ++q)
1202 do_return_redirection (q, finally_label, NULL);
1203 replace_goto_queue (tf);
1204 }
1205 else
1206 {
1207 /* Reachable by goto expressions only. Redirect them. */
1208 for (; q < qe; ++q)
1209 do_goto_redirection (q, finally_label, NULL, tf);
1210 replace_goto_queue (tf);
1211
1212 if (tf->dest_array[0] == tf->fallthru_label)
1213 {
1214 /* Reachable by goto to fallthru label only. Redirect it
1215 to the new label (already created, sadly), and do not
1216 emit the final branch out, or the fallthru label. */
1217 tf->fallthru_label = NULL;
1218 return;
1219 }
1220 }
1221
1222 /* Place the original return/goto to the original destination
1223 immediately after the finally block. */
1224 x = tf->goto_queue[0].cont_stmt;
1225 gimple_seq_add_stmt (&tf->top_p_seq, x);
1226 maybe_record_in_goto_queue (state, x);
1227 }
1228
1229 /* A subroutine of lower_try_finally. There are multiple edges incoming
1230 and outgoing from the finally block. Implement this by duplicating the
1231 finally block for every destination. */
1232
1233 static void
1234 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1235 {
1236 gimple_seq finally;
1237 gimple_seq new_stmt;
1238 gimple_seq seq;
1239 gimple *x;
1240 geh_else *eh_else;
1241 tree tmp;
1242 location_t tf_loc = gimple_location (tf->try_finally_expr);
1243
1244 finally = gimple_try_cleanup (tf->top_p);
1245
1246 /* Notice EH_ELSE, and simplify some of the remaining code
1247 by considering FINALLY to be the normal return path only. */
1248 eh_else = get_eh_else (finally);
1249 if (eh_else)
1250 finally = gimple_eh_else_n_body (eh_else);
1251
1252 tf->top_p_seq = gimple_try_eval (tf->top_p);
1253 new_stmt = NULL;
1254
1255 if (tf->may_fallthru)
1256 {
1257 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1258 lower_eh_constructs_1 (state, &seq);
1259 gimple_seq_add_seq (&new_stmt, seq);
1260
1261 tmp = lower_try_finally_fallthru_label (tf);
1262 x = gimple_build_goto (tmp);
1263 gimple_set_location (x, tf_loc);
1264 gimple_seq_add_stmt (&new_stmt, x);
1265 }
1266
1267 if (tf->may_throw)
1268 {
1269 /* We don't need to copy the EH path of EH_ELSE,
1270 since it is only emitted once. */
1271 if (eh_else)
1272 seq = gimple_eh_else_e_body (eh_else);
1273 else
1274 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1275 lower_eh_constructs_1 (state, &seq);
1276
1277 emit_post_landing_pad (&eh_seq, tf->region);
1278 gimple_seq_add_seq (&eh_seq, seq);
1279 emit_resx (&eh_seq, tf->region);
1280 }
1281
1282 if (tf->goto_queue)
1283 {
1284 struct goto_queue_node *q, *qe;
1285 int return_index, index;
1286 struct labels_s
1287 {
1288 struct goto_queue_node *q;
1289 tree label;
1290 } *labels;
1291
1292 return_index = tf->dest_array.length ();
1293 labels = XCNEWVEC (struct labels_s, return_index + 1);
1294
1295 q = tf->goto_queue;
1296 qe = q + tf->goto_queue_active;
1297 for (; q < qe; q++)
1298 {
1299 index = q->index < 0 ? return_index : q->index;
1300
1301 if (!labels[index].q)
1302 labels[index].q = q;
1303 }
1304
1305 for (index = 0; index < return_index + 1; index++)
1306 {
1307 tree lab;
1308
1309 q = labels[index].q;
1310 if (! q)
1311 continue;
1312
1313 lab = labels[index].label
1314 = create_artificial_label (tf_loc);
1315
1316 if (index == return_index)
1317 do_return_redirection (q, lab, NULL);
1318 else
1319 do_goto_redirection (q, lab, NULL, tf);
1320
1321 x = gimple_build_label (lab);
1322 gimple_seq_add_stmt (&new_stmt, x);
1323
1324 seq = lower_try_finally_dup_block (finally, state, q->location);
1325 lower_eh_constructs_1 (state, &seq);
1326 gimple_seq_add_seq (&new_stmt, seq);
1327
1328 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1329 maybe_record_in_goto_queue (state, q->cont_stmt);
1330 }
1331
1332 for (q = tf->goto_queue; q < qe; q++)
1333 {
1334 tree lab;
1335
1336 index = q->index < 0 ? return_index : q->index;
1337
1338 if (labels[index].q == q)
1339 continue;
1340
1341 lab = labels[index].label;
1342
1343 if (index == return_index)
1344 do_return_redirection (q, lab, NULL);
1345 else
1346 do_goto_redirection (q, lab, NULL, tf);
1347 }
1348
1349 replace_goto_queue (tf);
1350 free (labels);
1351 }
1352
1353 /* Need to link new stmts after running replace_goto_queue due
1354 to not wanting to process the same goto stmts twice. */
1355 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1356 }
1357
1358 /* A subroutine of lower_try_finally. There are multiple edges incoming
1359 and outgoing from the finally block. Implement this by instrumenting
1360 each incoming edge and creating a switch statement at the end of the
1361 finally block that branches to the appropriate destination. */
1362
1363 static void
1364 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1365 {
1366 struct goto_queue_node *q, *qe;
1367 tree finally_tmp, finally_label;
1368 int return_index, eh_index, fallthru_index;
1369 int nlabels, ndests, j, last_case_index;
1370 tree last_case;
1371 auto_vec<tree> case_label_vec;
1372 gimple_seq switch_body = NULL;
1373 gimple *x;
1374 geh_else *eh_else;
1375 tree tmp;
1376 gimple *switch_stmt;
1377 gimple_seq finally;
1378 hash_map<tree, gimple *> *cont_map = NULL;
1379 /* The location of the TRY_FINALLY stmt. */
1380 location_t tf_loc = gimple_location (tf->try_finally_expr);
1381 /* The location of the finally block. */
1382 location_t finally_loc;
1383
1384 finally = gimple_try_cleanup (tf->top_p);
1385 eh_else = get_eh_else (finally);
1386
1387 /* Mash the TRY block to the head of the chain. */
1388 tf->top_p_seq = gimple_try_eval (tf->top_p);
1389
1390 /* The location of the finally is either the last stmt in the finally
1391 block or the location of the TRY_FINALLY itself. */
1392 x = gimple_seq_last_stmt (finally);
1393 finally_loc = x ? gimple_location (x) : tf_loc;
1394
1395 /* Prepare for switch statement generation. */
1396 nlabels = tf->dest_array.length ();
1397 return_index = nlabels;
1398 eh_index = return_index + tf->may_return;
1399 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1400 ndests = fallthru_index + tf->may_fallthru;
1401
1402 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1403 finally_label = create_artificial_label (finally_loc);
1404
1405 /* We use vec::quick_push on case_label_vec throughout this function,
1406 since we know the size in advance and allocate precisely as muce
1407 space as needed. */
1408 case_label_vec.create (ndests);
1409 last_case = NULL;
1410 last_case_index = 0;
1411
1412 /* Begin inserting code for getting to the finally block. Things
1413 are done in this order to correspond to the sequence the code is
1414 laid out. */
1415
1416 if (tf->may_fallthru)
1417 {
1418 x = gimple_build_assign (finally_tmp,
1419 build_int_cst (integer_type_node,
1420 fallthru_index));
1421 gimple_set_location (x, finally_loc);
1422 gimple_seq_add_stmt (&tf->top_p_seq, x);
1423
1424 tmp = build_int_cst (integer_type_node, fallthru_index);
1425 last_case = build_case_label (tmp, NULL,
1426 create_artificial_label (finally_loc));
1427 case_label_vec.quick_push (last_case);
1428 last_case_index++;
1429
1430 x = gimple_build_label (CASE_LABEL (last_case));
1431 gimple_seq_add_stmt (&switch_body, x);
1432
1433 tmp = lower_try_finally_fallthru_label (tf);
1434 x = gimple_build_goto (tmp);
1435 gimple_set_location (x, finally_loc);
1436 gimple_seq_add_stmt (&switch_body, x);
1437 }
1438
1439 /* For EH_ELSE, emit the exception path (plus resx) now, then
1440 subsequently we only need consider the normal path. */
1441 if (eh_else)
1442 {
1443 if (tf->may_throw)
1444 {
1445 finally = gimple_eh_else_e_body (eh_else);
1446 lower_eh_constructs_1 (state, &finally);
1447
1448 emit_post_landing_pad (&eh_seq, tf->region);
1449 gimple_seq_add_seq (&eh_seq, finally);
1450 emit_resx (&eh_seq, tf->region);
1451 }
1452
1453 finally = gimple_eh_else_n_body (eh_else);
1454 }
1455 else if (tf->may_throw)
1456 {
1457 emit_post_landing_pad (&eh_seq, tf->region);
1458
1459 x = gimple_build_assign (finally_tmp,
1460 build_int_cst (integer_type_node, eh_index));
1461 gimple_seq_add_stmt (&eh_seq, x);
1462
1463 x = gimple_build_goto (finally_label);
1464 gimple_set_location (x, tf_loc);
1465 gimple_seq_add_stmt (&eh_seq, x);
1466
1467 tmp = build_int_cst (integer_type_node, eh_index);
1468 last_case = build_case_label (tmp, NULL,
1469 create_artificial_label (tf_loc));
1470 case_label_vec.quick_push (last_case);
1471 last_case_index++;
1472
1473 x = gimple_build_label (CASE_LABEL (last_case));
1474 gimple_seq_add_stmt (&eh_seq, x);
1475 emit_resx (&eh_seq, tf->region);
1476 }
1477
1478 x = gimple_build_label (finally_label);
1479 gimple_seq_add_stmt (&tf->top_p_seq, x);
1480
1481 lower_eh_constructs_1 (state, &finally);
1482 gimple_seq_add_seq (&tf->top_p_seq, finally);
1483
1484 /* Redirect each incoming goto edge. */
1485 q = tf->goto_queue;
1486 qe = q + tf->goto_queue_active;
1487 j = last_case_index + tf->may_return;
1488 /* Prepare the assignments to finally_tmp that are executed upon the
1489 entrance through a particular edge. */
1490 for (; q < qe; ++q)
1491 {
1492 gimple_seq mod = NULL;
1493 int switch_id;
1494 unsigned int case_index;
1495
1496 if (q->index < 0)
1497 {
1498 x = gimple_build_assign (finally_tmp,
1499 build_int_cst (integer_type_node,
1500 return_index));
1501 gimple_seq_add_stmt (&mod, x);
1502 do_return_redirection (q, finally_label, mod);
1503 switch_id = return_index;
1504 }
1505 else
1506 {
1507 x = gimple_build_assign (finally_tmp,
1508 build_int_cst (integer_type_node, q->index));
1509 gimple_seq_add_stmt (&mod, x);
1510 do_goto_redirection (q, finally_label, mod, tf);
1511 switch_id = q->index;
1512 }
1513
1514 case_index = j + q->index;
1515 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1516 {
1517 tree case_lab;
1518 tmp = build_int_cst (integer_type_node, switch_id);
1519 case_lab = build_case_label (tmp, NULL,
1520 create_artificial_label (tf_loc));
1521 /* We store the cont_stmt in the pointer map, so that we can recover
1522 it in the loop below. */
1523 if (!cont_map)
1524 cont_map = new hash_map<tree, gimple *>;
1525 cont_map->put (case_lab, q->cont_stmt);
1526 case_label_vec.quick_push (case_lab);
1527 }
1528 }
1529 for (j = last_case_index; j < last_case_index + nlabels; j++)
1530 {
1531 gimple *cont_stmt;
1532
1533 last_case = case_label_vec[j];
1534
1535 gcc_assert (last_case);
1536 gcc_assert (cont_map);
1537
1538 cont_stmt = *cont_map->get (last_case);
1539
1540 x = gimple_build_label (CASE_LABEL (last_case));
1541 gimple_seq_add_stmt (&switch_body, x);
1542 gimple_seq_add_stmt (&switch_body, cont_stmt);
1543 maybe_record_in_goto_queue (state, cont_stmt);
1544 }
1545 if (cont_map)
1546 delete cont_map;
1547
1548 replace_goto_queue (tf);
1549
1550 /* Make sure that the last case is the default label, as one is required.
1551 Then sort the labels, which is also required in GIMPLE. */
1552 CASE_LOW (last_case) = NULL;
1553 tree tem = case_label_vec.pop ();
1554 gcc_assert (tem == last_case);
1555 sort_case_labels (case_label_vec);
1556
1557 /* Build the switch statement, setting last_case to be the default
1558 label. */
1559 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1560 case_label_vec);
1561 gimple_set_location (switch_stmt, finally_loc);
1562
1563 /* Need to link SWITCH_STMT after running replace_goto_queue
1564 due to not wanting to process the same goto stmts twice. */
1565 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1566 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1567 }
1568
1569 /* Decide whether or not we are going to duplicate the finally block.
1570 There are several considerations.
1571
1572 Second, we'd like to prevent egregious code growth. One way to
1573 do this is to estimate the size of the finally block, multiply
1574 that by the number of copies we'd need to make, and compare against
1575 the estimate of the size of the switch machinery we'd have to add. */
1576
1577 static bool
1578 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1579 {
1580 int f_estimate, sw_estimate;
1581 geh_else *eh_else;
1582
1583 /* If there's an EH_ELSE involved, the exception path is separate
1584 and really doesn't come into play for this computation. */
1585 eh_else = get_eh_else (finally);
1586 if (eh_else)
1587 {
1588 ndests -= may_throw;
1589 finally = gimple_eh_else_n_body (eh_else);
1590 }
1591
1592 if (!optimize)
1593 {
1594 gimple_stmt_iterator gsi;
1595
1596 if (ndests == 1)
1597 return true;
1598
1599 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1600 {
1601 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1602 on the EH paths and, consequently, useless cleanups. */
1603 gimple *stmt = gsi_stmt (gsi);
1604 if (!is_gimple_debug (stmt)
1605 && !gimple_clobber_p (stmt)
1606 && !gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1607 return false;
1608 }
1609 return true;
1610 }
1611
1612 /* Finally estimate N times, plus N gotos. */
1613 f_estimate = estimate_num_insns_seq (finally, &eni_size_weights);
1614 f_estimate = (f_estimate + 1) * ndests;
1615
1616 /* Switch statement (cost 10), N variable assignments, N gotos. */
1617 sw_estimate = 10 + 2 * ndests;
1618
1619 /* Optimize for size clearly wants our best guess. */
1620 if (optimize_function_for_size_p (cfun))
1621 return f_estimate < sw_estimate;
1622
1623 /* ??? These numbers are completely made up so far. */
1624 if (optimize > 1)
1625 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1626 else
1627 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1628 }
1629
1630 /* REG is current region of a LEH state.
1631 is the enclosing region for a possible cleanup region, or the region
1632 itself. Returns TRUE if such a region would be unreachable.
1633
1634 Cleanup regions within a must-not-throw region aren't actually reachable
1635 even if there are throwing stmts within them, because the personality
1636 routine will call terminate before unwinding. */
1637
1638 static bool
1639 cleanup_is_dead_in (leh_state *state)
1640 {
1641 if (flag_checking)
1642 {
1643 eh_region reg = state->cur_region;
1644 while (reg && reg->type == ERT_CLEANUP)
1645 reg = reg->outer;
1646
1647 gcc_assert (reg == state->outer_non_cleanup);
1648 }
1649
1650 eh_region reg = state->outer_non_cleanup;
1651 return (reg && reg->type == ERT_MUST_NOT_THROW);
1652 }
1653
1654 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1655 to a sequence of labels and blocks, plus the exception region trees
1656 that record all the magic. This is complicated by the need to
1657 arrange for the FINALLY block to be executed on all exits. */
1658
1659 static gimple_seq
1660 lower_try_finally (struct leh_state *state, gtry *tp)
1661 {
1662 struct leh_tf_state this_tf;
1663 struct leh_state this_state;
1664 int ndests;
1665 gimple_seq old_eh_seq;
1666
1667 /* Process the try block. */
1668
1669 memset (&this_tf, 0, sizeof (this_tf));
1670 this_tf.try_finally_expr = tp;
1671 this_tf.top_p = tp;
1672 this_tf.outer = state;
1673 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state))
1674 {
1675 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1676 this_state.cur_region = this_tf.region;
1677 }
1678 else
1679 {
1680 this_tf.region = NULL;
1681 this_state.cur_region = state->cur_region;
1682 }
1683
1684 this_state.outer_non_cleanup = state->outer_non_cleanup;
1685 this_state.ehp_region = state->ehp_region;
1686 this_state.tf = &this_tf;
1687
1688 old_eh_seq = eh_seq;
1689 eh_seq = NULL;
1690
1691 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1692
1693 /* Determine if the try block is escaped through the bottom. */
1694 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1695
1696 /* Determine if any exceptions are possible within the try block. */
1697 if (this_tf.region)
1698 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1699 if (this_tf.may_throw)
1700 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1701
1702 /* Determine how many edges (still) reach the finally block. Or rather,
1703 how many destinations are reached by the finally block. Use this to
1704 determine how we process the finally block itself. */
1705
1706 ndests = this_tf.dest_array.length ();
1707 ndests += this_tf.may_fallthru;
1708 ndests += this_tf.may_return;
1709 ndests += this_tf.may_throw;
1710
1711 /* If the FINALLY block is not reachable, dike it out. */
1712 if (ndests == 0)
1713 {
1714 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1715 gimple_try_set_cleanup (tp, NULL);
1716 }
1717 /* If the finally block doesn't fall through, then any destination
1718 we might try to impose there isn't reached either. There may be
1719 some minor amount of cleanup and redirection still needed. */
1720 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1721 lower_try_finally_nofallthru (state, &this_tf);
1722
1723 /* We can easily special-case redirection to a single destination. */
1724 else if (ndests == 1)
1725 lower_try_finally_onedest (state, &this_tf);
1726 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1727 gimple_try_cleanup (tp)))
1728 lower_try_finally_copy (state, &this_tf);
1729 else
1730 lower_try_finally_switch (state, &this_tf);
1731
1732 /* If someone requested we add a label at the end of the transformed
1733 block, do so. */
1734 if (this_tf.fallthru_label)
1735 {
1736 /* This must be reached only if ndests == 0. */
1737 gimple *x = gimple_build_label (this_tf.fallthru_label);
1738 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1739 }
1740
1741 this_tf.dest_array.release ();
1742 free (this_tf.goto_queue);
1743 if (this_tf.goto_queue_map)
1744 delete this_tf.goto_queue_map;
1745
1746 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1747 If there was no old eh_seq, then the append is trivially already done. */
1748 if (old_eh_seq)
1749 {
1750 if (eh_seq == NULL)
1751 eh_seq = old_eh_seq;
1752 else
1753 {
1754 gimple_seq new_eh_seq = eh_seq;
1755 eh_seq = old_eh_seq;
1756 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1757 }
1758 }
1759
1760 return this_tf.top_p_seq;
1761 }
1762
1763 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1764 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1765 exception region trees that records all the magic. */
1766
1767 static gimple_seq
1768 lower_catch (struct leh_state *state, gtry *tp)
1769 {
1770 eh_region try_region = NULL;
1771 struct leh_state this_state = *state;
1772 gimple_stmt_iterator gsi;
1773 tree out_label;
1774 gimple_seq new_seq, cleanup;
1775 gimple *x;
1776 geh_dispatch *eh_dispatch;
1777 location_t try_catch_loc = gimple_location (tp);
1778 location_t catch_loc = UNKNOWN_LOCATION;
1779
1780 if (flag_exceptions)
1781 {
1782 try_region = gen_eh_region_try (state->cur_region);
1783 this_state.cur_region = try_region;
1784 this_state.outer_non_cleanup = this_state.cur_region;
1785 }
1786
1787 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1788
1789 if (!eh_region_may_contain_throw (try_region))
1790 return gimple_try_eval (tp);
1791
1792 new_seq = NULL;
1793 eh_dispatch = gimple_build_eh_dispatch (try_region->index);
1794 gimple_seq_add_stmt (&new_seq, eh_dispatch);
1795 emit_resx (&new_seq, try_region);
1796
1797 this_state.cur_region = state->cur_region;
1798 this_state.outer_non_cleanup = state->outer_non_cleanup;
1799 this_state.ehp_region = try_region;
1800
1801 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1802 itself, so that e.g. for coverage purposes the nested cleanups don't
1803 appear before the cleanup body. See PR64634 for details. */
1804 gimple_seq old_eh_seq = eh_seq;
1805 eh_seq = NULL;
1806
1807 out_label = NULL;
1808 cleanup = gimple_try_cleanup (tp);
1809 for (gsi = gsi_start (cleanup);
1810 !gsi_end_p (gsi);
1811 gsi_next (&gsi))
1812 {
1813 eh_catch c;
1814 gcatch *catch_stmt;
1815 gimple_seq handler;
1816
1817 catch_stmt = as_a <gcatch *> (gsi_stmt (gsi));
1818 if (catch_loc == UNKNOWN_LOCATION)
1819 catch_loc = gimple_location (catch_stmt);
1820 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
1821
1822 handler = gimple_catch_handler (catch_stmt);
1823 lower_eh_constructs_1 (&this_state, &handler);
1824
1825 c->label = create_artificial_label (UNKNOWN_LOCATION);
1826 x = gimple_build_label (c->label);
1827 gimple_seq_add_stmt (&new_seq, x);
1828
1829 gimple_seq_add_seq (&new_seq, handler);
1830
1831 if (gimple_seq_may_fallthru (new_seq))
1832 {
1833 if (!out_label)
1834 out_label = create_artificial_label (try_catch_loc);
1835
1836 x = gimple_build_goto (out_label);
1837 gimple_seq_add_stmt (&new_seq, x);
1838 }
1839 if (!c->type_list)
1840 break;
1841 }
1842
1843 /* Try to set a location on the dispatching construct to avoid inheriting
1844 the location of the previous statement. */
1845 gimple_set_location (eh_dispatch, catch_loc);
1846
1847 gimple_try_set_cleanup (tp, new_seq);
1848
1849 gimple_seq new_eh_seq = eh_seq;
1850 eh_seq = old_eh_seq;
1851 gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
1852 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1853 return ret_seq;
1854 }
1855
1856 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1857 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1858 region trees that record all the magic. */
1859
1860 static gimple_seq
1861 lower_eh_filter (struct leh_state *state, gtry *tp)
1862 {
1863 struct leh_state this_state = *state;
1864 eh_region this_region = NULL;
1865 gimple *inner, *x;
1866 gimple_seq new_seq;
1867
1868 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1869
1870 if (flag_exceptions)
1871 {
1872 this_region = gen_eh_region_allowed (state->cur_region,
1873 gimple_eh_filter_types (inner));
1874 this_state.cur_region = this_region;
1875 this_state.outer_non_cleanup = this_state.cur_region;
1876 }
1877
1878 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1879
1880 if (!eh_region_may_contain_throw (this_region))
1881 return gimple_try_eval (tp);
1882
1883 this_state.cur_region = state->cur_region;
1884 this_state.ehp_region = this_region;
1885
1886 new_seq = NULL;
1887 x = gimple_build_eh_dispatch (this_region->index);
1888 gimple_set_location (x, gimple_location (tp));
1889 gimple_seq_add_stmt (&new_seq, x);
1890 emit_resx (&new_seq, this_region);
1891
1892 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1893 x = gimple_build_label (this_region->u.allowed.label);
1894 gimple_seq_add_stmt (&new_seq, x);
1895
1896 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1897 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1898
1899 gimple_try_set_cleanup (tp, new_seq);
1900
1901 return frob_into_branch_around (tp, this_region, NULL);
1902 }
1903
1904 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1905 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1906 plus the exception region trees that record all the magic. */
1907
1908 static gimple_seq
1909 lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
1910 {
1911 struct leh_state this_state = *state;
1912
1913 if (flag_exceptions)
1914 {
1915 gimple *inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1916 eh_region this_region;
1917
1918 this_region = gen_eh_region_must_not_throw (state->cur_region);
1919 this_region->u.must_not_throw.failure_decl
1920 = gimple_eh_must_not_throw_fndecl (
1921 as_a <geh_mnt *> (inner));
1922 this_region->u.must_not_throw.failure_loc
1923 = LOCATION_LOCUS (gimple_location (tp));
1924
1925 /* In order to get mangling applied to this decl, we must mark it
1926 used now. Otherwise, pass_ipa_free_lang_data won't think it
1927 needs to happen. */
1928 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1929
1930 this_state.cur_region = this_region;
1931 this_state.outer_non_cleanup = this_state.cur_region;
1932 }
1933
1934 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1935
1936 return gimple_try_eval (tp);
1937 }
1938
1939 /* Implement a cleanup expression. This is similar to try-finally,
1940 except that we only execute the cleanup block for exception edges. */
1941
1942 static gimple_seq
1943 lower_cleanup (struct leh_state *state, gtry *tp)
1944 {
1945 struct leh_state this_state = *state;
1946 eh_region this_region = NULL;
1947 struct leh_tf_state fake_tf;
1948 gimple_seq result;
1949 bool cleanup_dead = cleanup_is_dead_in (state);
1950
1951 if (flag_exceptions && !cleanup_dead)
1952 {
1953 this_region = gen_eh_region_cleanup (state->cur_region);
1954 this_state.cur_region = this_region;
1955 this_state.outer_non_cleanup = state->outer_non_cleanup;
1956 }
1957
1958 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1959
1960 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1961 return gimple_try_eval (tp);
1962
1963 /* Build enough of a try-finally state so that we can reuse
1964 honor_protect_cleanup_actions. */
1965 memset (&fake_tf, 0, sizeof (fake_tf));
1966 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1967 fake_tf.outer = state;
1968 fake_tf.region = this_region;
1969 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1970 fake_tf.may_throw = true;
1971
1972 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1973
1974 if (fake_tf.may_throw)
1975 {
1976 /* In this case honor_protect_cleanup_actions had nothing to do,
1977 and we should process this normally. */
1978 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1979 result = frob_into_branch_around (tp, this_region,
1980 fake_tf.fallthru_label);
1981 }
1982 else
1983 {
1984 /* In this case honor_protect_cleanup_actions did nearly all of
1985 the work. All we have left is to append the fallthru_label. */
1986
1987 result = gimple_try_eval (tp);
1988 if (fake_tf.fallthru_label)
1989 {
1990 gimple *x = gimple_build_label (fake_tf.fallthru_label);
1991 gimple_seq_add_stmt (&result, x);
1992 }
1993 }
1994 return result;
1995 }
1996
1997 /* Main loop for lowering eh constructs. Also moves gsi to the next
1998 statement. */
1999
2000 static void
2001 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
2002 {
2003 gimple_seq replace;
2004 gimple *x;
2005 gimple *stmt = gsi_stmt (*gsi);
2006
2007 switch (gimple_code (stmt))
2008 {
2009 case GIMPLE_CALL:
2010 {
2011 tree fndecl = gimple_call_fndecl (stmt);
2012 tree rhs, lhs;
2013
2014 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
2015 switch (DECL_FUNCTION_CODE (fndecl))
2016 {
2017 case BUILT_IN_EH_POINTER:
2018 /* The front end may have generated a call to
2019 __builtin_eh_pointer (0) within a catch region. Replace
2020 this zero argument with the current catch region number. */
2021 if (state->ehp_region)
2022 {
2023 tree nr = build_int_cst (integer_type_node,
2024 state->ehp_region->index);
2025 gimple_call_set_arg (stmt, 0, nr);
2026 }
2027 else
2028 {
2029 /* The user has dome something silly. Remove it. */
2030 rhs = null_pointer_node;
2031 goto do_replace;
2032 }
2033 break;
2034
2035 case BUILT_IN_EH_FILTER:
2036 /* ??? This should never appear, but since it's a builtin it
2037 is accessible to abuse by users. Just remove it and
2038 replace the use with the arbitrary value zero. */
2039 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2040 do_replace:
2041 lhs = gimple_call_lhs (stmt);
2042 x = gimple_build_assign (lhs, rhs);
2043 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2044 /* FALLTHRU */
2045
2046 case BUILT_IN_EH_COPY_VALUES:
2047 /* Likewise this should not appear. Remove it. */
2048 gsi_remove (gsi, true);
2049 return;
2050
2051 default:
2052 break;
2053 }
2054 }
2055 /* FALLTHRU */
2056
2057 case GIMPLE_ASSIGN:
2058 /* If the stmt can throw, use a new temporary for the assignment
2059 to a LHS. This makes sure the old value of the LHS is
2060 available on the EH edge. Only do so for statements that
2061 potentially fall through (no noreturn calls e.g.), otherwise
2062 this new assignment might create fake fallthru regions. */
2063 if (stmt_could_throw_p (cfun, stmt)
2064 && gimple_has_lhs (stmt)
2065 && gimple_stmt_may_fallthru (stmt)
2066 && !tree_could_throw_p (gimple_get_lhs (stmt))
2067 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2068 {
2069 tree lhs = gimple_get_lhs (stmt);
2070 tree tmp = create_tmp_var (TREE_TYPE (lhs));
2071 gimple *s = gimple_build_assign (lhs, tmp);
2072 gimple_set_location (s, gimple_location (stmt));
2073 gimple_set_block (s, gimple_block (stmt));
2074 gimple_set_lhs (stmt, tmp);
2075 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2076 }
2077 /* Look for things that can throw exceptions, and record them. */
2078 if (state->cur_region && stmt_could_throw_p (cfun, stmt))
2079 {
2080 record_stmt_eh_region (state->cur_region, stmt);
2081 note_eh_region_may_contain_throw (state->cur_region);
2082 }
2083 break;
2084
2085 case GIMPLE_COND:
2086 case GIMPLE_GOTO:
2087 case GIMPLE_RETURN:
2088 maybe_record_in_goto_queue (state, stmt);
2089 break;
2090
2091 case GIMPLE_SWITCH:
2092 verify_norecord_switch_expr (state, as_a <gswitch *> (stmt));
2093 break;
2094
2095 case GIMPLE_TRY:
2096 {
2097 gtry *try_stmt = as_a <gtry *> (stmt);
2098 if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
2099 replace = lower_try_finally (state, try_stmt);
2100 else
2101 {
2102 x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt));
2103 if (!x)
2104 {
2105 replace = gimple_try_eval (try_stmt);
2106 lower_eh_constructs_1 (state, &replace);
2107 }
2108 else
2109 switch (gimple_code (x))
2110 {
2111 case GIMPLE_CATCH:
2112 replace = lower_catch (state, try_stmt);
2113 break;
2114 case GIMPLE_EH_FILTER:
2115 replace = lower_eh_filter (state, try_stmt);
2116 break;
2117 case GIMPLE_EH_MUST_NOT_THROW:
2118 replace = lower_eh_must_not_throw (state, try_stmt);
2119 break;
2120 case GIMPLE_EH_ELSE:
2121 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2122 gcc_unreachable ();
2123 default:
2124 replace = lower_cleanup (state, try_stmt);
2125 break;
2126 }
2127 }
2128 }
2129
2130 /* Remove the old stmt and insert the transformed sequence
2131 instead. */
2132 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2133 gsi_remove (gsi, true);
2134
2135 /* Return since we don't want gsi_next () */
2136 return;
2137
2138 case GIMPLE_EH_ELSE:
2139 /* We should be eliminating this in lower_try_finally et al. */
2140 gcc_unreachable ();
2141
2142 default:
2143 /* A type, a decl, or some kind of statement that we're not
2144 interested in. Don't walk them. */
2145 break;
2146 }
2147
2148 gsi_next (gsi);
2149 }
2150
2151 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2152
2153 static void
2154 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2155 {
2156 gimple_stmt_iterator gsi;
2157 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2158 lower_eh_constructs_2 (state, &gsi);
2159 }
2160
2161 namespace {
2162
2163 const pass_data pass_data_lower_eh =
2164 {
2165 GIMPLE_PASS, /* type */
2166 "eh", /* name */
2167 OPTGROUP_NONE, /* optinfo_flags */
2168 TV_TREE_EH, /* tv_id */
2169 PROP_gimple_lcf, /* properties_required */
2170 PROP_gimple_leh, /* properties_provided */
2171 0, /* properties_destroyed */
2172 0, /* todo_flags_start */
2173 0, /* todo_flags_finish */
2174 };
2175
2176 class pass_lower_eh : public gimple_opt_pass
2177 {
2178 public:
2179 pass_lower_eh (gcc::context *ctxt)
2180 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2181 {}
2182
2183 /* opt_pass methods: */
2184 virtual unsigned int execute (function *);
2185
2186 }; // class pass_lower_eh
2187
2188 unsigned int
2189 pass_lower_eh::execute (function *fun)
2190 {
2191 struct leh_state null_state;
2192 gimple_seq bodyp;
2193
2194 bodyp = gimple_body (current_function_decl);
2195 if (bodyp == NULL)
2196 return 0;
2197
2198 finally_tree = new hash_table<finally_tree_hasher> (31);
2199 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2200 memset (&null_state, 0, sizeof (null_state));
2201
2202 collect_finally_tree_1 (bodyp, NULL);
2203 lower_eh_constructs_1 (&null_state, &bodyp);
2204 gimple_set_body (current_function_decl, bodyp);
2205
2206 /* We assume there's a return statement, or something, at the end of
2207 the function, and thus ploping the EH sequence afterward won't
2208 change anything. */
2209 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2210 gimple_seq_add_seq (&bodyp, eh_seq);
2211
2212 /* We assume that since BODYP already existed, adding EH_SEQ to it
2213 didn't change its value, and we don't have to re-set the function. */
2214 gcc_assert (bodyp == gimple_body (current_function_decl));
2215
2216 delete finally_tree;
2217 finally_tree = NULL;
2218 BITMAP_FREE (eh_region_may_contain_throw_map);
2219 eh_seq = NULL;
2220
2221 /* If this function needs a language specific EH personality routine
2222 and the frontend didn't already set one do so now. */
2223 if (function_needs_eh_personality (fun) == eh_personality_lang
2224 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2225 DECL_FUNCTION_PERSONALITY (current_function_decl)
2226 = lang_hooks.eh_personality ();
2227
2228 return 0;
2229 }
2230
2231 } // anon namespace
2232
2233 gimple_opt_pass *
2234 make_pass_lower_eh (gcc::context *ctxt)
2235 {
2236 return new pass_lower_eh (ctxt);
2237 }
2238 \f
2239 /* Create the multiple edges from an EH_DISPATCH statement to all of
2240 the possible handlers for its EH region. Return true if there's
2241 no fallthru edge; false if there is. */
2242
2243 bool
2244 make_eh_dispatch_edges (geh_dispatch *stmt)
2245 {
2246 eh_region r;
2247 eh_catch c;
2248 basic_block src, dst;
2249
2250 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2251 src = gimple_bb (stmt);
2252
2253 switch (r->type)
2254 {
2255 case ERT_TRY:
2256 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2257 {
2258 dst = label_to_block (cfun, c->label);
2259 make_edge (src, dst, 0);
2260
2261 /* A catch-all handler doesn't have a fallthru. */
2262 if (c->type_list == NULL)
2263 return false;
2264 }
2265 break;
2266
2267 case ERT_ALLOWED_EXCEPTIONS:
2268 dst = label_to_block (cfun, r->u.allowed.label);
2269 make_edge (src, dst, 0);
2270 break;
2271
2272 default:
2273 gcc_unreachable ();
2274 }
2275
2276 return true;
2277 }
2278
2279 /* Create the single EH edge from STMT to its nearest landing pad,
2280 if there is such a landing pad within the current function. */
2281
2282 void
2283 make_eh_edges (gimple *stmt)
2284 {
2285 basic_block src, dst;
2286 eh_landing_pad lp;
2287 int lp_nr;
2288
2289 lp_nr = lookup_stmt_eh_lp (stmt);
2290 if (lp_nr <= 0)
2291 return;
2292
2293 lp = get_eh_landing_pad_from_number (lp_nr);
2294 gcc_assert (lp != NULL);
2295
2296 src = gimple_bb (stmt);
2297 dst = label_to_block (cfun, lp->post_landing_pad);
2298 make_edge (src, dst, EDGE_EH);
2299 }
2300
2301 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2302 do not actually perform the final edge redirection.
2303
2304 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2305 we intend to change the destination EH region as well; this means
2306 EH_LANDING_PAD_NR must already be set on the destination block label.
2307 If false, we're being called from generic cfg manipulation code and we
2308 should preserve our place within the region tree. */
2309
2310 static void
2311 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2312 {
2313 eh_landing_pad old_lp, new_lp;
2314 basic_block old_bb;
2315 gimple *throw_stmt;
2316 int old_lp_nr, new_lp_nr;
2317 tree old_label, new_label;
2318 edge_iterator ei;
2319 edge e;
2320
2321 old_bb = edge_in->dest;
2322 old_label = gimple_block_label (old_bb);
2323 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2324 gcc_assert (old_lp_nr > 0);
2325 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2326
2327 throw_stmt = last_stmt (edge_in->src);
2328 gcc_checking_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2329
2330 new_label = gimple_block_label (new_bb);
2331
2332 /* Look for an existing region that might be using NEW_BB already. */
2333 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2334 if (new_lp_nr)
2335 {
2336 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2337 gcc_assert (new_lp);
2338
2339 /* Unless CHANGE_REGION is true, the new and old landing pad
2340 had better be associated with the same EH region. */
2341 gcc_assert (change_region || new_lp->region == old_lp->region);
2342 }
2343 else
2344 {
2345 new_lp = NULL;
2346 gcc_assert (!change_region);
2347 }
2348
2349 /* Notice when we redirect the last EH edge away from OLD_BB. */
2350 FOR_EACH_EDGE (e, ei, old_bb->preds)
2351 if (e != edge_in && (e->flags & EDGE_EH))
2352 break;
2353
2354 if (new_lp)
2355 {
2356 /* NEW_LP already exists. If there are still edges into OLD_LP,
2357 there's nothing to do with the EH tree. If there are no more
2358 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2359 If CHANGE_REGION is true, then our caller is expecting to remove
2360 the landing pad. */
2361 if (e == NULL && !change_region)
2362 remove_eh_landing_pad (old_lp);
2363 }
2364 else
2365 {
2366 /* No correct landing pad exists. If there are no more edges
2367 into OLD_LP, then we can simply re-use the existing landing pad.
2368 Otherwise, we have to create a new landing pad. */
2369 if (e == NULL)
2370 {
2371 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2372 new_lp = old_lp;
2373 }
2374 else
2375 new_lp = gen_eh_landing_pad (old_lp->region);
2376 new_lp->post_landing_pad = new_label;
2377 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2378 }
2379
2380 /* Maybe move the throwing statement to the new region. */
2381 if (old_lp != new_lp)
2382 {
2383 remove_stmt_from_eh_lp (throw_stmt);
2384 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2385 }
2386 }
2387
2388 /* Redirect EH edge E to NEW_BB. */
2389
2390 edge
2391 redirect_eh_edge (edge edge_in, basic_block new_bb)
2392 {
2393 redirect_eh_edge_1 (edge_in, new_bb, false);
2394 return ssa_redirect_edge (edge_in, new_bb);
2395 }
2396
2397 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2398 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2399 The actual edge update will happen in the caller. */
2400
2401 void
2402 redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
2403 {
2404 tree new_lab = gimple_block_label (new_bb);
2405 bool any_changed = false;
2406 basic_block old_bb;
2407 eh_region r;
2408 eh_catch c;
2409
2410 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2411 switch (r->type)
2412 {
2413 case ERT_TRY:
2414 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2415 {
2416 old_bb = label_to_block (cfun, c->label);
2417 if (old_bb == e->dest)
2418 {
2419 c->label = new_lab;
2420 any_changed = true;
2421 }
2422 }
2423 break;
2424
2425 case ERT_ALLOWED_EXCEPTIONS:
2426 old_bb = label_to_block (cfun, r->u.allowed.label);
2427 gcc_assert (old_bb == e->dest);
2428 r->u.allowed.label = new_lab;
2429 any_changed = true;
2430 break;
2431
2432 default:
2433 gcc_unreachable ();
2434 }
2435
2436 gcc_assert (any_changed);
2437 }
2438 \f
2439 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2440
2441 bool
2442 operation_could_trap_helper_p (enum tree_code op,
2443 bool fp_operation,
2444 bool honor_trapv,
2445 bool honor_nans,
2446 bool honor_snans,
2447 tree divisor,
2448 bool *handled)
2449 {
2450 *handled = true;
2451 switch (op)
2452 {
2453 case TRUNC_DIV_EXPR:
2454 case CEIL_DIV_EXPR:
2455 case FLOOR_DIV_EXPR:
2456 case ROUND_DIV_EXPR:
2457 case EXACT_DIV_EXPR:
2458 case CEIL_MOD_EXPR:
2459 case FLOOR_MOD_EXPR:
2460 case ROUND_MOD_EXPR:
2461 case TRUNC_MOD_EXPR:
2462 case RDIV_EXPR:
2463 if (honor_snans)
2464 return true;
2465 if (fp_operation)
2466 return flag_trapping_math;
2467 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2468 return true;
2469 return false;
2470
2471 case LT_EXPR:
2472 case LE_EXPR:
2473 case GT_EXPR:
2474 case GE_EXPR:
2475 case LTGT_EXPR:
2476 /* Some floating point comparisons may trap. */
2477 return honor_nans;
2478
2479 case EQ_EXPR:
2480 case NE_EXPR:
2481 case UNORDERED_EXPR:
2482 case ORDERED_EXPR:
2483 case UNLT_EXPR:
2484 case UNLE_EXPR:
2485 case UNGT_EXPR:
2486 case UNGE_EXPR:
2487 case UNEQ_EXPR:
2488 return honor_snans;
2489
2490 case NEGATE_EXPR:
2491 case ABS_EXPR:
2492 case CONJ_EXPR:
2493 /* These operations don't trap with floating point. */
2494 if (honor_trapv)
2495 return true;
2496 return false;
2497
2498 case ABSU_EXPR:
2499 /* ABSU_EXPR never traps. */
2500 return false;
2501
2502 case PLUS_EXPR:
2503 case MINUS_EXPR:
2504 case MULT_EXPR:
2505 /* Any floating arithmetic may trap. */
2506 if (fp_operation && flag_trapping_math)
2507 return true;
2508 if (honor_trapv)
2509 return true;
2510 return false;
2511
2512 case COMPLEX_EXPR:
2513 case CONSTRUCTOR:
2514 /* Constructing an object cannot trap. */
2515 return false;
2516
2517 case COND_EXPR:
2518 case VEC_COND_EXPR:
2519 /* Whether *COND_EXPR can trap depends on whether the
2520 first argument can trap, so signal it as not handled.
2521 Whether lhs is floating or not doesn't matter. */
2522 *handled = false;
2523 return false;
2524
2525 default:
2526 /* Any floating arithmetic may trap. */
2527 if (fp_operation && flag_trapping_math)
2528 return true;
2529
2530 *handled = false;
2531 return false;
2532 }
2533 }
2534
2535 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2536 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2537 type operands that may trap. If OP is a division operator, DIVISOR contains
2538 the value of the divisor. */
2539
2540 bool
2541 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2542 tree divisor)
2543 {
2544 bool honor_nans = (fp_operation && flag_trapping_math
2545 && !flag_finite_math_only);
2546 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2547 bool handled;
2548
2549 /* This function cannot tell whether or not COND_EXPR and VEC_COND_EXPR could
2550 trap, because that depends on the respective condition op. */
2551 gcc_assert (op != COND_EXPR && op != VEC_COND_EXPR);
2552
2553 if (TREE_CODE_CLASS (op) != tcc_comparison
2554 && TREE_CODE_CLASS (op) != tcc_unary
2555 && TREE_CODE_CLASS (op) != tcc_binary)
2556 return false;
2557
2558 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2559 honor_nans, honor_snans, divisor,
2560 &handled);
2561 }
2562
2563
2564 /* Returns true if it is possible to prove that the index of
2565 an array access REF (an ARRAY_REF expression) falls into the
2566 array bounds. */
2567
2568 static bool
2569 in_array_bounds_p (tree ref)
2570 {
2571 tree idx = TREE_OPERAND (ref, 1);
2572 tree min, max;
2573
2574 if (TREE_CODE (idx) != INTEGER_CST)
2575 return false;
2576
2577 min = array_ref_low_bound (ref);
2578 max = array_ref_up_bound (ref);
2579 if (!min
2580 || !max
2581 || TREE_CODE (min) != INTEGER_CST
2582 || TREE_CODE (max) != INTEGER_CST)
2583 return false;
2584
2585 if (tree_int_cst_lt (idx, min)
2586 || tree_int_cst_lt (max, idx))
2587 return false;
2588
2589 return true;
2590 }
2591
2592 /* Returns true if it is possible to prove that the range of
2593 an array access REF (an ARRAY_RANGE_REF expression) falls
2594 into the array bounds. */
2595
2596 static bool
2597 range_in_array_bounds_p (tree ref)
2598 {
2599 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2600 tree range_min, range_max, min, max;
2601
2602 range_min = TYPE_MIN_VALUE (domain_type);
2603 range_max = TYPE_MAX_VALUE (domain_type);
2604 if (!range_min
2605 || !range_max
2606 || TREE_CODE (range_min) != INTEGER_CST
2607 || TREE_CODE (range_max) != INTEGER_CST)
2608 return false;
2609
2610 min = array_ref_low_bound (ref);
2611 max = array_ref_up_bound (ref);
2612 if (!min
2613 || !max
2614 || TREE_CODE (min) != INTEGER_CST
2615 || TREE_CODE (max) != INTEGER_CST)
2616 return false;
2617
2618 if (tree_int_cst_lt (range_min, min)
2619 || tree_int_cst_lt (max, range_max))
2620 return false;
2621
2622 return true;
2623 }
2624
2625 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2626 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2627 This routine expects only GIMPLE lhs or rhs input. */
2628
2629 bool
2630 tree_could_trap_p (tree expr)
2631 {
2632 enum tree_code code;
2633 bool fp_operation = false;
2634 bool honor_trapv = false;
2635 tree t, base, div = NULL_TREE;
2636
2637 if (!expr)
2638 return false;
2639
2640 /* In COND_EXPR and VEC_COND_EXPR only the condition may trap, but
2641 they won't appear as operands in GIMPLE form, so this is just for the
2642 GENERIC uses where it needs to recurse on the operands and so
2643 *COND_EXPR itself doesn't trap. */
2644 if (TREE_CODE (expr) == COND_EXPR || TREE_CODE (expr) == VEC_COND_EXPR)
2645 return false;
2646
2647 code = TREE_CODE (expr);
2648 t = TREE_TYPE (expr);
2649
2650 if (t)
2651 {
2652 if (COMPARISON_CLASS_P (expr))
2653 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2654 else
2655 fp_operation = FLOAT_TYPE_P (t);
2656 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2657 }
2658
2659 if (TREE_CODE_CLASS (code) == tcc_binary)
2660 div = TREE_OPERAND (expr, 1);
2661 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2662 return true;
2663
2664 restart:
2665 switch (code)
2666 {
2667 case COMPONENT_REF:
2668 case REALPART_EXPR:
2669 case IMAGPART_EXPR:
2670 case BIT_FIELD_REF:
2671 case VIEW_CONVERT_EXPR:
2672 case WITH_SIZE_EXPR:
2673 expr = TREE_OPERAND (expr, 0);
2674 code = TREE_CODE (expr);
2675 goto restart;
2676
2677 case ARRAY_RANGE_REF:
2678 base = TREE_OPERAND (expr, 0);
2679 if (tree_could_trap_p (base))
2680 return true;
2681 if (TREE_THIS_NOTRAP (expr))
2682 return false;
2683 return !range_in_array_bounds_p (expr);
2684
2685 case ARRAY_REF:
2686 base = TREE_OPERAND (expr, 0);
2687 if (tree_could_trap_p (base))
2688 return true;
2689 if (TREE_THIS_NOTRAP (expr))
2690 return false;
2691 return !in_array_bounds_p (expr);
2692
2693 case TARGET_MEM_REF:
2694 case MEM_REF:
2695 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2696 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2697 return true;
2698 if (TREE_THIS_NOTRAP (expr))
2699 return false;
2700 /* We cannot prove that the access is in-bounds when we have
2701 variable-index TARGET_MEM_REFs. */
2702 if (code == TARGET_MEM_REF
2703 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2704 return true;
2705 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2706 {
2707 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2708 poly_offset_int off = mem_ref_offset (expr);
2709 if (maybe_lt (off, 0))
2710 return true;
2711 if (TREE_CODE (base) == STRING_CST)
2712 return maybe_le (TREE_STRING_LENGTH (base), off);
2713 tree size = DECL_SIZE_UNIT (base);
2714 if (size == NULL_TREE
2715 || !poly_int_tree_p (size)
2716 || maybe_le (wi::to_poly_offset (size), off))
2717 return true;
2718 /* Now we are sure the first byte of the access is inside
2719 the object. */
2720 return false;
2721 }
2722 return true;
2723
2724 case INDIRECT_REF:
2725 return !TREE_THIS_NOTRAP (expr);
2726
2727 case ASM_EXPR:
2728 return TREE_THIS_VOLATILE (expr);
2729
2730 case CALL_EXPR:
2731 t = get_callee_fndecl (expr);
2732 /* Assume that calls to weak functions may trap. */
2733 if (!t || !DECL_P (t))
2734 return true;
2735 if (DECL_WEAK (t))
2736 return tree_could_trap_p (t);
2737 return false;
2738
2739 case FUNCTION_DECL:
2740 /* Assume that accesses to weak functions may trap, unless we know
2741 they are certainly defined in current TU or in some other
2742 LTO partition. */
2743 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2744 {
2745 cgraph_node *node = cgraph_node::get (expr);
2746 if (node)
2747 node = node->function_symbol ();
2748 return !(node && node->in_other_partition);
2749 }
2750 return false;
2751
2752 case VAR_DECL:
2753 /* Assume that accesses to weak vars may trap, unless we know
2754 they are certainly defined in current TU or in some other
2755 LTO partition. */
2756 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2757 {
2758 varpool_node *node = varpool_node::get (expr);
2759 if (node)
2760 node = node->ultimate_alias_target ();
2761 return !(node && node->in_other_partition);
2762 }
2763 return false;
2764
2765 default:
2766 return false;
2767 }
2768 }
2769
2770 /* Return non-NULL if there is an integer operation with trapping overflow
2771 we can rewrite into non-trapping. Called via walk_tree from
2772 rewrite_to_non_trapping_overflow. */
2773
2774 static tree
2775 find_trapping_overflow (tree *tp, int *walk_subtrees, void *data)
2776 {
2777 if (EXPR_P (*tp)
2778 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (*tp))
2779 && !operation_no_trapping_overflow (TREE_TYPE (*tp), TREE_CODE (*tp)))
2780 return *tp;
2781 if (IS_TYPE_OR_DECL_P (*tp)
2782 || (TREE_CODE (*tp) == SAVE_EXPR && data == NULL))
2783 *walk_subtrees = 0;
2784 return NULL_TREE;
2785 }
2786
2787 /* Rewrite selected operations into unsigned arithmetics, so that they
2788 don't trap on overflow. */
2789
2790 static tree
2791 replace_trapping_overflow (tree *tp, int *walk_subtrees, void *data)
2792 {
2793 if (find_trapping_overflow (tp, walk_subtrees, data))
2794 {
2795 tree type = TREE_TYPE (*tp);
2796 tree utype = unsigned_type_for (type);
2797 *walk_subtrees = 0;
2798 int len = TREE_OPERAND_LENGTH (*tp);
2799 for (int i = 0; i < len; ++i)
2800 walk_tree (&TREE_OPERAND (*tp, i), replace_trapping_overflow,
2801 data, (hash_set<tree> *) data);
2802
2803 if (TREE_CODE (*tp) == ABS_EXPR)
2804 {
2805 TREE_SET_CODE (*tp, ABSU_EXPR);
2806 TREE_TYPE (*tp) = utype;
2807 *tp = fold_convert (type, *tp);
2808 }
2809 else
2810 {
2811 TREE_TYPE (*tp) = utype;
2812 len = TREE_OPERAND_LENGTH (*tp);
2813 for (int i = 0; i < len; ++i)
2814 TREE_OPERAND (*tp, i)
2815 = fold_convert (utype, TREE_OPERAND (*tp, i));
2816 *tp = fold_convert (type, *tp);
2817 }
2818 }
2819 return NULL_TREE;
2820 }
2821
2822 /* If any subexpression of EXPR can trap due to -ftrapv, rewrite it
2823 using unsigned arithmetics to avoid traps in it. */
2824
2825 tree
2826 rewrite_to_non_trapping_overflow (tree expr)
2827 {
2828 if (!flag_trapv)
2829 return expr;
2830 hash_set<tree> pset;
2831 if (!walk_tree (&expr, find_trapping_overflow, &pset, &pset))
2832 return expr;
2833 expr = unshare_expr (expr);
2834 pset.empty ();
2835 walk_tree (&expr, replace_trapping_overflow, &pset, &pset);
2836 return expr;
2837 }
2838
2839 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2840 an assignment or a conditional) may throw. */
2841
2842 static bool
2843 stmt_could_throw_1_p (gassign *stmt)
2844 {
2845 enum tree_code code = gimple_assign_rhs_code (stmt);
2846 bool honor_nans = false;
2847 bool honor_snans = false;
2848 bool fp_operation = false;
2849 bool honor_trapv = false;
2850 tree t;
2851 size_t i;
2852 bool handled, ret;
2853
2854 if (TREE_CODE_CLASS (code) == tcc_comparison
2855 || TREE_CODE_CLASS (code) == tcc_unary
2856 || TREE_CODE_CLASS (code) == tcc_binary)
2857 {
2858 if (TREE_CODE_CLASS (code) == tcc_comparison)
2859 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2860 else
2861 t = gimple_expr_type (stmt);
2862 fp_operation = FLOAT_TYPE_P (t);
2863 if (fp_operation)
2864 {
2865 honor_nans = flag_trapping_math && !flag_finite_math_only;
2866 honor_snans = flag_signaling_nans != 0;
2867 }
2868 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2869 honor_trapv = true;
2870 }
2871
2872 /* First check the LHS. */
2873 if (tree_could_trap_p (gimple_assign_lhs (stmt)))
2874 return true;
2875
2876 /* Check if the main expression may trap. */
2877 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2878 honor_nans, honor_snans,
2879 gimple_assign_rhs2 (stmt),
2880 &handled);
2881 if (handled)
2882 return ret;
2883
2884 /* If the expression does not trap, see if any of the individual operands may
2885 trap. */
2886 for (i = 1; i < gimple_num_ops (stmt); i++)
2887 if (tree_could_trap_p (gimple_op (stmt, i)))
2888 return true;
2889
2890 return false;
2891 }
2892
2893
2894 /* Return true if statement STMT within FUN could throw an exception. */
2895
2896 bool
2897 stmt_could_throw_p (function *fun, gimple *stmt)
2898 {
2899 if (!flag_exceptions)
2900 return false;
2901
2902 /* The only statements that can throw an exception are assignments,
2903 conditionals, calls, resx, and asms. */
2904 switch (gimple_code (stmt))
2905 {
2906 case GIMPLE_RESX:
2907 return true;
2908
2909 case GIMPLE_CALL:
2910 return !gimple_call_nothrow_p (as_a <gcall *> (stmt));
2911
2912 case GIMPLE_COND:
2913 {
2914 if (fun && !fun->can_throw_non_call_exceptions)
2915 return false;
2916 gcond *cond = as_a <gcond *> (stmt);
2917 tree lhs = gimple_cond_lhs (cond);
2918 return operation_could_trap_p (gimple_cond_code (cond),
2919 FLOAT_TYPE_P (TREE_TYPE (lhs)),
2920 false, NULL_TREE);
2921 }
2922
2923 case GIMPLE_ASSIGN:
2924 if ((fun && !fun->can_throw_non_call_exceptions)
2925 || gimple_clobber_p (stmt))
2926 return false;
2927 return stmt_could_throw_1_p (as_a <gassign *> (stmt));
2928
2929 case GIMPLE_ASM:
2930 if (fun && !fun->can_throw_non_call_exceptions)
2931 return false;
2932 return gimple_asm_volatile_p (as_a <gasm *> (stmt));
2933
2934 default:
2935 return false;
2936 }
2937 }
2938
2939 /* Return true if STMT in function FUN must be assumed necessary because of
2940 non-call exceptions. */
2941
2942 bool
2943 stmt_unremovable_because_of_non_call_eh_p (function *fun, gimple *stmt)
2944 {
2945 return (fun->can_throw_non_call_exceptions
2946 && !fun->can_delete_dead_exceptions
2947 && stmt_could_throw_p (fun, stmt));
2948 }
2949
2950 /* Return true if expression T could throw an exception. */
2951
2952 bool
2953 tree_could_throw_p (tree t)
2954 {
2955 if (!flag_exceptions)
2956 return false;
2957 if (TREE_CODE (t) == MODIFY_EXPR)
2958 {
2959 if (cfun->can_throw_non_call_exceptions
2960 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2961 return true;
2962 t = TREE_OPERAND (t, 1);
2963 }
2964
2965 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2966 t = TREE_OPERAND (t, 0);
2967 if (TREE_CODE (t) == CALL_EXPR)
2968 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2969 if (cfun->can_throw_non_call_exceptions)
2970 return tree_could_trap_p (t);
2971 return false;
2972 }
2973
2974 /* Return true if STMT can throw an exception that is not caught within its
2975 function FUN. FUN can be NULL but the function is extra conservative
2976 then. */
2977
2978 bool
2979 stmt_can_throw_external (function *fun, gimple *stmt)
2980 {
2981 int lp_nr;
2982
2983 if (!stmt_could_throw_p (fun, stmt))
2984 return false;
2985 if (!fun)
2986 return true;
2987
2988 lp_nr = lookup_stmt_eh_lp_fn (fun, stmt);
2989 return lp_nr == 0;
2990 }
2991
2992 /* Return true if STMT can throw an exception that is caught within its
2993 function FUN. */
2994
2995 bool
2996 stmt_can_throw_internal (function *fun, gimple *stmt)
2997 {
2998 int lp_nr;
2999
3000 gcc_checking_assert (fun);
3001 if (!stmt_could_throw_p (fun, stmt))
3002 return false;
3003
3004 lp_nr = lookup_stmt_eh_lp_fn (fun, stmt);
3005 return lp_nr > 0;
3006 }
3007
3008 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
3009 remove any entry it might have from the EH table. Return true if
3010 any change was made. */
3011
3012 bool
3013 maybe_clean_eh_stmt_fn (struct function *ifun, gimple *stmt)
3014 {
3015 if (stmt_could_throw_p (ifun, stmt))
3016 return false;
3017 return remove_stmt_from_eh_lp_fn (ifun, stmt);
3018 }
3019
3020 /* Likewise, but always use the current function. */
3021
3022 bool
3023 maybe_clean_eh_stmt (gimple *stmt)
3024 {
3025 return maybe_clean_eh_stmt_fn (cfun, stmt);
3026 }
3027
3028 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
3029 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
3030 in the table if it should be in there. Return TRUE if a replacement was
3031 done that my require an EH edge purge. */
3032
3033 bool
3034 maybe_clean_or_replace_eh_stmt (gimple *old_stmt, gimple *new_stmt)
3035 {
3036 int lp_nr = lookup_stmt_eh_lp (old_stmt);
3037
3038 if (lp_nr != 0)
3039 {
3040 bool new_stmt_could_throw = stmt_could_throw_p (cfun, new_stmt);
3041
3042 if (new_stmt == old_stmt && new_stmt_could_throw)
3043 return false;
3044
3045 remove_stmt_from_eh_lp (old_stmt);
3046 if (new_stmt_could_throw)
3047 {
3048 add_stmt_to_eh_lp (new_stmt, lp_nr);
3049 return false;
3050 }
3051 else
3052 return true;
3053 }
3054
3055 return false;
3056 }
3057
3058 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
3059 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
3060 operand is the return value of duplicate_eh_regions. */
3061
3062 bool
3063 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple *new_stmt,
3064 struct function *old_fun, gimple *old_stmt,
3065 hash_map<void *, void *> *map,
3066 int default_lp_nr)
3067 {
3068 int old_lp_nr, new_lp_nr;
3069
3070 if (!stmt_could_throw_p (new_fun, new_stmt))
3071 return false;
3072
3073 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
3074 if (old_lp_nr == 0)
3075 {
3076 if (default_lp_nr == 0)
3077 return false;
3078 new_lp_nr = default_lp_nr;
3079 }
3080 else if (old_lp_nr > 0)
3081 {
3082 eh_landing_pad old_lp, new_lp;
3083
3084 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
3085 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
3086 new_lp_nr = new_lp->index;
3087 }
3088 else
3089 {
3090 eh_region old_r, new_r;
3091
3092 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
3093 new_r = static_cast<eh_region> (*map->get (old_r));
3094 new_lp_nr = -new_r->index;
3095 }
3096
3097 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
3098 return true;
3099 }
3100
3101 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
3102 and thus no remapping is required. */
3103
3104 bool
3105 maybe_duplicate_eh_stmt (gimple *new_stmt, gimple *old_stmt)
3106 {
3107 int lp_nr;
3108
3109 if (!stmt_could_throw_p (cfun, new_stmt))
3110 return false;
3111
3112 lp_nr = lookup_stmt_eh_lp (old_stmt);
3113 if (lp_nr == 0)
3114 return false;
3115
3116 add_stmt_to_eh_lp (new_stmt, lp_nr);
3117 return true;
3118 }
3119 \f
3120 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
3121 GIMPLE_TRY) that are similar enough to be considered the same. Currently
3122 this only handles handlers consisting of a single call, as that's the
3123 important case for C++: a destructor call for a particular object showing
3124 up in multiple handlers. */
3125
3126 static bool
3127 same_handler_p (gimple_seq oneh, gimple_seq twoh)
3128 {
3129 gimple_stmt_iterator gsi;
3130 gimple *ones, *twos;
3131 unsigned int ai;
3132
3133 gsi = gsi_start (oneh);
3134 if (!gsi_one_before_end_p (gsi))
3135 return false;
3136 ones = gsi_stmt (gsi);
3137
3138 gsi = gsi_start (twoh);
3139 if (!gsi_one_before_end_p (gsi))
3140 return false;
3141 twos = gsi_stmt (gsi);
3142
3143 if (!is_gimple_call (ones)
3144 || !is_gimple_call (twos)
3145 || gimple_call_lhs (ones)
3146 || gimple_call_lhs (twos)
3147 || gimple_call_chain (ones)
3148 || gimple_call_chain (twos)
3149 || !gimple_call_same_target_p (ones, twos)
3150 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3151 return false;
3152
3153 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3154 if (!operand_equal_p (gimple_call_arg (ones, ai),
3155 gimple_call_arg (twos, ai), 0))
3156 return false;
3157
3158 return true;
3159 }
3160
3161 /* Optimize
3162 try { A() } finally { try { ~B() } catch { ~A() } }
3163 try { ... } finally { ~A() }
3164 into
3165 try { A() } catch { ~B() }
3166 try { ~B() ... } finally { ~A() }
3167
3168 This occurs frequently in C++, where A is a local variable and B is a
3169 temporary used in the initializer for A. */
3170
3171 static void
3172 optimize_double_finally (gtry *one, gtry *two)
3173 {
3174 gimple *oneh;
3175 gimple_stmt_iterator gsi;
3176 gimple_seq cleanup;
3177
3178 cleanup = gimple_try_cleanup (one);
3179 gsi = gsi_start (cleanup);
3180 if (!gsi_one_before_end_p (gsi))
3181 return;
3182
3183 oneh = gsi_stmt (gsi);
3184 if (gimple_code (oneh) != GIMPLE_TRY
3185 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3186 return;
3187
3188 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3189 {
3190 gimple_seq seq = gimple_try_eval (oneh);
3191
3192 gimple_try_set_cleanup (one, seq);
3193 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3194 seq = copy_gimple_seq_and_replace_locals (seq);
3195 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3196 gimple_try_set_eval (two, seq);
3197 }
3198 }
3199
3200 /* Perform EH refactoring optimizations that are simpler to do when code
3201 flow has been lowered but EH structures haven't. */
3202
3203 static void
3204 refactor_eh_r (gimple_seq seq)
3205 {
3206 gimple_stmt_iterator gsi;
3207 gimple *one, *two;
3208
3209 one = NULL;
3210 two = NULL;
3211 gsi = gsi_start (seq);
3212 while (1)
3213 {
3214 one = two;
3215 if (gsi_end_p (gsi))
3216 two = NULL;
3217 else
3218 two = gsi_stmt (gsi);
3219 if (one && two)
3220 if (gtry *try_one = dyn_cast <gtry *> (one))
3221 if (gtry *try_two = dyn_cast <gtry *> (two))
3222 if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY
3223 && gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY)
3224 optimize_double_finally (try_one, try_two);
3225 if (one)
3226 switch (gimple_code (one))
3227 {
3228 case GIMPLE_TRY:
3229 refactor_eh_r (gimple_try_eval (one));
3230 refactor_eh_r (gimple_try_cleanup (one));
3231 break;
3232 case GIMPLE_CATCH:
3233 refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one)));
3234 break;
3235 case GIMPLE_EH_FILTER:
3236 refactor_eh_r (gimple_eh_filter_failure (one));
3237 break;
3238 case GIMPLE_EH_ELSE:
3239 {
3240 geh_else *eh_else_stmt = as_a <geh_else *> (one);
3241 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt));
3242 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt));
3243 }
3244 break;
3245 default:
3246 break;
3247 }
3248 if (two)
3249 gsi_next (&gsi);
3250 else
3251 break;
3252 }
3253 }
3254
3255 namespace {
3256
3257 const pass_data pass_data_refactor_eh =
3258 {
3259 GIMPLE_PASS, /* type */
3260 "ehopt", /* name */
3261 OPTGROUP_NONE, /* optinfo_flags */
3262 TV_TREE_EH, /* tv_id */
3263 PROP_gimple_lcf, /* properties_required */
3264 0, /* properties_provided */
3265 0, /* properties_destroyed */
3266 0, /* todo_flags_start */
3267 0, /* todo_flags_finish */
3268 };
3269
3270 class pass_refactor_eh : public gimple_opt_pass
3271 {
3272 public:
3273 pass_refactor_eh (gcc::context *ctxt)
3274 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3275 {}
3276
3277 /* opt_pass methods: */
3278 virtual bool gate (function *) { return flag_exceptions != 0; }
3279 virtual unsigned int execute (function *)
3280 {
3281 refactor_eh_r (gimple_body (current_function_decl));
3282 return 0;
3283 }
3284
3285 }; // class pass_refactor_eh
3286
3287 } // anon namespace
3288
3289 gimple_opt_pass *
3290 make_pass_refactor_eh (gcc::context *ctxt)
3291 {
3292 return new pass_refactor_eh (ctxt);
3293 }
3294 \f
3295 /* At the end of gimple optimization, we can lower RESX. */
3296
3297 static bool
3298 lower_resx (basic_block bb, gresx *stmt,
3299 hash_map<eh_region, tree> *mnt_map)
3300 {
3301 int lp_nr;
3302 eh_region src_r, dst_r;
3303 gimple_stmt_iterator gsi;
3304 gimple *x;
3305 tree fn, src_nr;
3306 bool ret = false;
3307
3308 lp_nr = lookup_stmt_eh_lp (stmt);
3309 if (lp_nr != 0)
3310 dst_r = get_eh_region_from_lp_number (lp_nr);
3311 else
3312 dst_r = NULL;
3313
3314 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3315 gsi = gsi_last_bb (bb);
3316
3317 if (src_r == NULL)
3318 {
3319 /* We can wind up with no source region when pass_cleanup_eh shows
3320 that there are no entries into an eh region and deletes it, but
3321 then the block that contains the resx isn't removed. This can
3322 happen without optimization when the switch statement created by
3323 lower_try_finally_switch isn't simplified to remove the eh case.
3324
3325 Resolve this by expanding the resx node to an abort. */
3326
3327 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3328 x = gimple_build_call (fn, 0);
3329 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3330
3331 while (EDGE_COUNT (bb->succs) > 0)
3332 remove_edge (EDGE_SUCC (bb, 0));
3333 }
3334 else if (dst_r)
3335 {
3336 /* When we have a destination region, we resolve this by copying
3337 the excptr and filter values into place, and changing the edge
3338 to immediately after the landing pad. */
3339 edge e;
3340
3341 if (lp_nr < 0)
3342 {
3343 basic_block new_bb;
3344 tree lab;
3345
3346 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3347 the failure decl into a new block, if needed. */
3348 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3349
3350 tree *slot = mnt_map->get (dst_r);
3351 if (slot == NULL)
3352 {
3353 gimple_stmt_iterator gsi2;
3354
3355 new_bb = create_empty_bb (bb);
3356 new_bb->count = bb->count;
3357 add_bb_to_loop (new_bb, bb->loop_father);
3358 lab = gimple_block_label (new_bb);
3359 gsi2 = gsi_start_bb (new_bb);
3360
3361 fn = dst_r->u.must_not_throw.failure_decl;
3362 x = gimple_build_call (fn, 0);
3363 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3364 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3365
3366 mnt_map->put (dst_r, lab);
3367 }
3368 else
3369 {
3370 lab = *slot;
3371 new_bb = label_to_block (cfun, lab);
3372 }
3373
3374 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3375 e = make_single_succ_edge (bb, new_bb, EDGE_FALLTHRU);
3376 }
3377 else
3378 {
3379 edge_iterator ei;
3380 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3381
3382 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3383 src_nr = build_int_cst (integer_type_node, src_r->index);
3384 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3385 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3386
3387 /* Update the flags for the outgoing edge. */
3388 e = single_succ_edge (bb);
3389 gcc_assert (e->flags & EDGE_EH);
3390 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3391 e->probability = profile_probability::always ();
3392
3393 /* If there are no more EH users of the landing pad, delete it. */
3394 FOR_EACH_EDGE (e, ei, e->dest->preds)
3395 if (e->flags & EDGE_EH)
3396 break;
3397 if (e == NULL)
3398 {
3399 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3400 remove_eh_landing_pad (lp);
3401 }
3402 }
3403
3404 ret = true;
3405 }
3406 else
3407 {
3408 tree var;
3409
3410 /* When we don't have a destination region, this exception escapes
3411 up the call chain. We resolve this by generating a call to the
3412 _Unwind_Resume library function. */
3413
3414 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3415 with no arguments for C++. Check for that. */
3416 if (src_r->use_cxa_end_cleanup)
3417 {
3418 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3419 x = gimple_build_call (fn, 0);
3420 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3421 }
3422 else
3423 {
3424 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3425 src_nr = build_int_cst (integer_type_node, src_r->index);
3426 x = gimple_build_call (fn, 1, src_nr);
3427 var = create_tmp_var (ptr_type_node);
3428 var = make_ssa_name (var, x);
3429 gimple_call_set_lhs (x, var);
3430 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3431
3432 /* When exception handling is delegated to a caller function, we
3433 have to guarantee that shadow memory variables living on stack
3434 will be cleaner before control is given to a parent function. */
3435 if (sanitize_flags_p (SANITIZE_ADDRESS))
3436 {
3437 tree decl
3438 = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
3439 gimple *g = gimple_build_call (decl, 0);
3440 gimple_set_location (g, gimple_location (stmt));
3441 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3442 }
3443
3444 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3445 x = gimple_build_call (fn, 1, var);
3446 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3447 }
3448
3449 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3450 }
3451
3452 gsi_remove (&gsi, true);
3453
3454 return ret;
3455 }
3456
3457 namespace {
3458
3459 const pass_data pass_data_lower_resx =
3460 {
3461 GIMPLE_PASS, /* type */
3462 "resx", /* name */
3463 OPTGROUP_NONE, /* optinfo_flags */
3464 TV_TREE_EH, /* tv_id */
3465 PROP_gimple_lcf, /* properties_required */
3466 0, /* properties_provided */
3467 0, /* properties_destroyed */
3468 0, /* todo_flags_start */
3469 0, /* todo_flags_finish */
3470 };
3471
3472 class pass_lower_resx : public gimple_opt_pass
3473 {
3474 public:
3475 pass_lower_resx (gcc::context *ctxt)
3476 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3477 {}
3478
3479 /* opt_pass methods: */
3480 virtual bool gate (function *) { return flag_exceptions != 0; }
3481 virtual unsigned int execute (function *);
3482
3483 }; // class pass_lower_resx
3484
3485 unsigned
3486 pass_lower_resx::execute (function *fun)
3487 {
3488 basic_block bb;
3489 bool dominance_invalidated = false;
3490 bool any_rewritten = false;
3491
3492 hash_map<eh_region, tree> mnt_map;
3493
3494 FOR_EACH_BB_FN (bb, fun)
3495 {
3496 gimple *last = last_stmt (bb);
3497 if (last && is_gimple_resx (last))
3498 {
3499 dominance_invalidated |=
3500 lower_resx (bb, as_a <gresx *> (last), &mnt_map);
3501 any_rewritten = true;
3502 }
3503 }
3504
3505 if (dominance_invalidated)
3506 {
3507 free_dominance_info (CDI_DOMINATORS);
3508 free_dominance_info (CDI_POST_DOMINATORS);
3509 }
3510
3511 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3512 }
3513
3514 } // anon namespace
3515
3516 gimple_opt_pass *
3517 make_pass_lower_resx (gcc::context *ctxt)
3518 {
3519 return new pass_lower_resx (ctxt);
3520 }
3521
3522 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3523 external throw. */
3524
3525 static void
3526 optimize_clobbers (basic_block bb)
3527 {
3528 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3529 bool any_clobbers = false;
3530 bool seen_stack_restore = false;
3531 edge_iterator ei;
3532 edge e;
3533
3534 /* Only optimize anything if the bb contains at least one clobber,
3535 ends with resx (checked by caller), optionally contains some
3536 debug stmts or labels, or at most one __builtin_stack_restore
3537 call, and has an incoming EH edge. */
3538 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3539 {
3540 gimple *stmt = gsi_stmt (gsi);
3541 if (is_gimple_debug (stmt))
3542 continue;
3543 if (gimple_clobber_p (stmt))
3544 {
3545 any_clobbers = true;
3546 continue;
3547 }
3548 if (!seen_stack_restore
3549 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3550 {
3551 seen_stack_restore = true;
3552 continue;
3553 }
3554 if (gimple_code (stmt) == GIMPLE_LABEL)
3555 break;
3556 return;
3557 }
3558 if (!any_clobbers)
3559 return;
3560 FOR_EACH_EDGE (e, ei, bb->preds)
3561 if (e->flags & EDGE_EH)
3562 break;
3563 if (e == NULL)
3564 return;
3565 gsi = gsi_last_bb (bb);
3566 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3567 {
3568 gimple *stmt = gsi_stmt (gsi);
3569 if (!gimple_clobber_p (stmt))
3570 continue;
3571 unlink_stmt_vdef (stmt);
3572 gsi_remove (&gsi, true);
3573 release_defs (stmt);
3574 }
3575 }
3576
3577 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3578 internal throw to successor BB.
3579 SUNK, if not NULL, is an array of sequences indexed by basic-block
3580 index to sink to and to pick up sinking opportunities from.
3581 If FOUND_OPPORTUNITY is not NULL then do not perform the optimization
3582 but set *FOUND_OPPORTUNITY to true. */
3583
3584 static int
3585 sink_clobbers (basic_block bb,
3586 gimple_seq *sunk = NULL, bool *found_opportunity = NULL)
3587 {
3588 edge e;
3589 edge_iterator ei;
3590 gimple_stmt_iterator gsi, dgsi;
3591 basic_block succbb;
3592 bool any_clobbers = false;
3593 unsigned todo = 0;
3594
3595 /* Only optimize if BB has a single EH successor and
3596 all predecessor edges are EH too. */
3597 if (!single_succ_p (bb)
3598 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3599 return 0;
3600
3601 FOR_EACH_EDGE (e, ei, bb->preds)
3602 {
3603 if ((e->flags & EDGE_EH) == 0)
3604 return 0;
3605 }
3606
3607 /* And BB contains only CLOBBER stmts before the final
3608 RESX. */
3609 gsi = gsi_last_bb (bb);
3610 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3611 {
3612 gimple *stmt = gsi_stmt (gsi);
3613 if (is_gimple_debug (stmt))
3614 continue;
3615 if (gimple_code (stmt) == GIMPLE_LABEL)
3616 break;
3617 if (!gimple_clobber_p (stmt))
3618 return 0;
3619 any_clobbers = true;
3620 }
3621 if (!any_clobbers && (!sunk || gimple_seq_empty_p (sunk[bb->index])))
3622 return 0;
3623
3624 /* If this was a dry run, tell it we found clobbers to sink. */
3625 if (found_opportunity)
3626 {
3627 *found_opportunity = true;
3628 return 0;
3629 }
3630
3631 edge succe = single_succ_edge (bb);
3632 succbb = succe->dest;
3633
3634 /* See if there is a virtual PHI node to take an updated virtual
3635 operand from. */
3636 gphi *vphi = NULL;
3637 for (gphi_iterator gpi = gsi_start_phis (succbb);
3638 !gsi_end_p (gpi); gsi_next (&gpi))
3639 {
3640 tree res = gimple_phi_result (gpi.phi ());
3641 if (virtual_operand_p (res))
3642 {
3643 vphi = gpi.phi ();
3644 break;
3645 }
3646 }
3647
3648 gimple *first_sunk = NULL;
3649 gimple *last_sunk = NULL;
3650 if (sunk && !(succbb->flags & BB_VISITED))
3651 dgsi = gsi_start (sunk[succbb->index]);
3652 else
3653 dgsi = gsi_after_labels (succbb);
3654 gsi = gsi_last_bb (bb);
3655 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3656 {
3657 gimple *stmt = gsi_stmt (gsi);
3658 tree lhs;
3659 if (is_gimple_debug (stmt))
3660 continue;
3661 if (gimple_code (stmt) == GIMPLE_LABEL)
3662 break;
3663 lhs = gimple_assign_lhs (stmt);
3664 /* Unfortunately we don't have dominance info updated at this
3665 point, so checking if
3666 dominated_by_p (CDI_DOMINATORS, succbb,
3667 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3668 would be too costly. Thus, avoid sinking any clobbers that
3669 refer to non-(D) SSA_NAMEs. */
3670 if (TREE_CODE (lhs) == MEM_REF
3671 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3672 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3673 {
3674 unlink_stmt_vdef (stmt);
3675 gsi_remove (&gsi, true);
3676 release_defs (stmt);
3677 continue;
3678 }
3679
3680 /* As we do not change stmt order when sinking across a
3681 forwarder edge we can keep virtual operands in place. */
3682 gsi_remove (&gsi, false);
3683 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3684 if (!first_sunk)
3685 first_sunk = stmt;
3686 last_sunk = stmt;
3687 }
3688 if (sunk && !gimple_seq_empty_p (sunk[bb->index]))
3689 {
3690 if (!first_sunk)
3691 first_sunk = gsi_stmt (gsi_last (sunk[bb->index]));
3692 last_sunk = gsi_stmt (gsi_start (sunk[bb->index]));
3693 gsi_insert_seq_before_without_update (&dgsi,
3694 sunk[bb->index], GSI_NEW_STMT);
3695 sunk[bb->index] = NULL;
3696 }
3697 if (first_sunk)
3698 {
3699 /* Adjust virtual operands if we sunk across a virtual PHI. */
3700 if (vphi)
3701 {
3702 imm_use_iterator iter;
3703 use_operand_p use_p;
3704 gimple *use_stmt;
3705 tree phi_def = gimple_phi_result (vphi);
3706 FOR_EACH_IMM_USE_STMT (use_stmt, iter, phi_def)
3707 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3708 SET_USE (use_p, gimple_vdef (first_sunk));
3709 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phi_def))
3710 {
3711 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (first_sunk)) = 1;
3712 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (phi_def) = 0;
3713 }
3714 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe),
3715 gimple_vuse (last_sunk));
3716 SET_USE (gimple_vuse_op (last_sunk), phi_def);
3717 }
3718 /* If there isn't a single predecessor but no virtual PHI node
3719 arrange for virtual operands to be renamed. */
3720 else if (!single_pred_p (succbb)
3721 && TREE_CODE (gimple_vuse (last_sunk)) == SSA_NAME)
3722 {
3723 mark_virtual_operand_for_renaming (gimple_vuse (last_sunk));
3724 todo |= TODO_update_ssa_only_virtuals;
3725 }
3726 }
3727
3728 return todo;
3729 }
3730
3731 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3732 we have found some duplicate labels and removed some edges. */
3733
3734 static bool
3735 lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
3736 {
3737 gimple_stmt_iterator gsi;
3738 int region_nr;
3739 eh_region r;
3740 tree filter, fn;
3741 gimple *x;
3742 bool redirected = false;
3743
3744 region_nr = gimple_eh_dispatch_region (stmt);
3745 r = get_eh_region_from_number (region_nr);
3746
3747 gsi = gsi_last_bb (src);
3748
3749 switch (r->type)
3750 {
3751 case ERT_TRY:
3752 {
3753 auto_vec<tree> labels;
3754 tree default_label = NULL;
3755 eh_catch c;
3756 edge_iterator ei;
3757 edge e;
3758 hash_set<tree> seen_values;
3759
3760 /* Collect the labels for a switch. Zero the post_landing_pad
3761 field becase we'll no longer have anything keeping these labels
3762 in existence and the optimizer will be free to merge these
3763 blocks at will. */
3764 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3765 {
3766 tree tp_node, flt_node, lab = c->label;
3767 bool have_label = false;
3768
3769 c->label = NULL;
3770 tp_node = c->type_list;
3771 flt_node = c->filter_list;
3772
3773 if (tp_node == NULL)
3774 {
3775 default_label = lab;
3776 break;
3777 }
3778 do
3779 {
3780 /* Filter out duplicate labels that arise when this handler
3781 is shadowed by an earlier one. When no labels are
3782 attached to the handler anymore, we remove
3783 the corresponding edge and then we delete unreachable
3784 blocks at the end of this pass. */
3785 if (! seen_values.contains (TREE_VALUE (flt_node)))
3786 {
3787 tree t = build_case_label (TREE_VALUE (flt_node),
3788 NULL, lab);
3789 labels.safe_push (t);
3790 seen_values.add (TREE_VALUE (flt_node));
3791 have_label = true;
3792 }
3793
3794 tp_node = TREE_CHAIN (tp_node);
3795 flt_node = TREE_CHAIN (flt_node);
3796 }
3797 while (tp_node);
3798 if (! have_label)
3799 {
3800 remove_edge (find_edge (src, label_to_block (cfun, lab)));
3801 redirected = true;
3802 }
3803 }
3804
3805 /* Clean up the edge flags. */
3806 FOR_EACH_EDGE (e, ei, src->succs)
3807 {
3808 if (e->flags & EDGE_FALLTHRU)
3809 {
3810 /* If there was no catch-all, use the fallthru edge. */
3811 if (default_label == NULL)
3812 default_label = gimple_block_label (e->dest);
3813 e->flags &= ~EDGE_FALLTHRU;
3814 }
3815 }
3816 gcc_assert (default_label != NULL);
3817
3818 /* Don't generate a switch if there's only a default case.
3819 This is common in the form of try { A; } catch (...) { B; }. */
3820 if (!labels.exists ())
3821 {
3822 e = single_succ_edge (src);
3823 e->flags |= EDGE_FALLTHRU;
3824 }
3825 else
3826 {
3827 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3828 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3829 region_nr));
3830 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3831 filter = make_ssa_name (filter, x);
3832 gimple_call_set_lhs (x, filter);
3833 gimple_set_location (x, gimple_location (stmt));
3834 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3835
3836 /* Turn the default label into a default case. */
3837 default_label = build_case_label (NULL, NULL, default_label);
3838 sort_case_labels (labels);
3839
3840 x = gimple_build_switch (filter, default_label, labels);
3841 gimple_set_location (x, gimple_location (stmt));
3842 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3843 }
3844 }
3845 break;
3846
3847 case ERT_ALLOWED_EXCEPTIONS:
3848 {
3849 edge b_e = BRANCH_EDGE (src);
3850 edge f_e = FALLTHRU_EDGE (src);
3851
3852 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3853 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3854 region_nr));
3855 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3856 filter = make_ssa_name (filter, x);
3857 gimple_call_set_lhs (x, filter);
3858 gimple_set_location (x, gimple_location (stmt));
3859 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3860
3861 r->u.allowed.label = NULL;
3862 x = gimple_build_cond (EQ_EXPR, filter,
3863 build_int_cst (TREE_TYPE (filter),
3864 r->u.allowed.filter),
3865 NULL_TREE, NULL_TREE);
3866 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3867
3868 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3869 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3870 }
3871 break;
3872
3873 default:
3874 gcc_unreachable ();
3875 }
3876
3877 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3878 gsi_remove (&gsi, true);
3879 return redirected;
3880 }
3881
3882 namespace {
3883
3884 const pass_data pass_data_lower_eh_dispatch =
3885 {
3886 GIMPLE_PASS, /* type */
3887 "ehdisp", /* name */
3888 OPTGROUP_NONE, /* optinfo_flags */
3889 TV_TREE_EH, /* tv_id */
3890 PROP_gimple_lcf, /* properties_required */
3891 0, /* properties_provided */
3892 0, /* properties_destroyed */
3893 0, /* todo_flags_start */
3894 0, /* todo_flags_finish */
3895 };
3896
3897 class pass_lower_eh_dispatch : public gimple_opt_pass
3898 {
3899 public:
3900 pass_lower_eh_dispatch (gcc::context *ctxt)
3901 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3902 {}
3903
3904 /* opt_pass methods: */
3905 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3906 virtual unsigned int execute (function *);
3907
3908 }; // class pass_lower_eh_dispatch
3909
3910 unsigned
3911 pass_lower_eh_dispatch::execute (function *fun)
3912 {
3913 basic_block bb;
3914 int flags = 0;
3915 bool redirected = false;
3916 bool any_resx_to_process = false;
3917
3918 assign_filter_values ();
3919
3920 FOR_EACH_BB_FN (bb, fun)
3921 {
3922 gimple *last = last_stmt (bb);
3923 if (last == NULL)
3924 continue;
3925 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3926 {
3927 redirected |= lower_eh_dispatch (bb,
3928 as_a <geh_dispatch *> (last));
3929 flags |= TODO_update_ssa_only_virtuals;
3930 }
3931 else if (gimple_code (last) == GIMPLE_RESX)
3932 {
3933 if (stmt_can_throw_external (fun, last))
3934 optimize_clobbers (bb);
3935 else if (!any_resx_to_process)
3936 sink_clobbers (bb, NULL, &any_resx_to_process);
3937 }
3938 bb->flags &= ~BB_VISITED;
3939 }
3940 if (redirected)
3941 {
3942 free_dominance_info (CDI_DOMINATORS);
3943 delete_unreachable_blocks ();
3944 }
3945
3946 if (any_resx_to_process)
3947 {
3948 /* Make sure to catch all secondary sinking opportunities by processing
3949 blocks in RPO order and after all CFG modifications from lowering
3950 and unreachable block removal. */
3951 int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (fun));
3952 int rpo_n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
3953 gimple_seq *sunk = XCNEWVEC (gimple_seq, last_basic_block_for_fn (fun));
3954 for (int i = 0; i < rpo_n; ++i)
3955 {
3956 bb = BASIC_BLOCK_FOR_FN (fun, rpo[i]);
3957 gimple *last = last_stmt (bb);
3958 if (last
3959 && gimple_code (last) == GIMPLE_RESX
3960 && !stmt_can_throw_external (fun, last))
3961 flags |= sink_clobbers (bb, sunk);
3962 /* If there were any clobbers sunk into this BB, insert them now. */
3963 if (!gimple_seq_empty_p (sunk[bb->index]))
3964 {
3965 gimple_stmt_iterator gsi = gsi_after_labels (bb);
3966 gsi_insert_seq_before (&gsi, sunk[bb->index], GSI_NEW_STMT);
3967 sunk[bb->index] = NULL;
3968 }
3969 bb->flags |= BB_VISITED;
3970 }
3971 free (rpo);
3972 free (sunk);
3973 }
3974
3975 return flags;
3976 }
3977
3978 } // anon namespace
3979
3980 gimple_opt_pass *
3981 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3982 {
3983 return new pass_lower_eh_dispatch (ctxt);
3984 }
3985 \f
3986 /* Walk statements, see what regions and, optionally, landing pads
3987 are really referenced.
3988
3989 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3990 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3991
3992 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3993 regions are marked.
3994
3995 The caller is responsible for freeing the returned sbitmaps. */
3996
3997 static void
3998 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3999 {
4000 sbitmap r_reachable, lp_reachable;
4001 basic_block bb;
4002 bool mark_landing_pads = (lp_reachablep != NULL);
4003 gcc_checking_assert (r_reachablep != NULL);
4004
4005 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
4006 bitmap_clear (r_reachable);
4007 *r_reachablep = r_reachable;
4008
4009 if (mark_landing_pads)
4010 {
4011 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
4012 bitmap_clear (lp_reachable);
4013 *lp_reachablep = lp_reachable;
4014 }
4015 else
4016 lp_reachable = NULL;
4017
4018 FOR_EACH_BB_FN (bb, cfun)
4019 {
4020 gimple_stmt_iterator gsi;
4021
4022 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4023 {
4024 gimple *stmt = gsi_stmt (gsi);
4025
4026 if (mark_landing_pads)
4027 {
4028 int lp_nr = lookup_stmt_eh_lp (stmt);
4029
4030 /* Negative LP numbers are MUST_NOT_THROW regions which
4031 are not considered BB enders. */
4032 if (lp_nr < 0)
4033 bitmap_set_bit (r_reachable, -lp_nr);
4034
4035 /* Positive LP numbers are real landing pads, and BB enders. */
4036 else if (lp_nr > 0)
4037 {
4038 gcc_assert (gsi_one_before_end_p (gsi));
4039 eh_region region = get_eh_region_from_lp_number (lp_nr);
4040 bitmap_set_bit (r_reachable, region->index);
4041 bitmap_set_bit (lp_reachable, lp_nr);
4042 }
4043 }
4044
4045 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
4046 switch (gimple_code (stmt))
4047 {
4048 case GIMPLE_RESX:
4049 bitmap_set_bit (r_reachable,
4050 gimple_resx_region (as_a <gresx *> (stmt)));
4051 break;
4052 case GIMPLE_EH_DISPATCH:
4053 bitmap_set_bit (r_reachable,
4054 gimple_eh_dispatch_region (
4055 as_a <geh_dispatch *> (stmt)));
4056 break;
4057 case GIMPLE_CALL:
4058 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
4059 for (int i = 0; i < 2; ++i)
4060 {
4061 tree rt = gimple_call_arg (stmt, i);
4062 HOST_WIDE_INT ri = tree_to_shwi (rt);
4063
4064 gcc_assert (ri == (int)ri);
4065 bitmap_set_bit (r_reachable, ri);
4066 }
4067 break;
4068 default:
4069 break;
4070 }
4071 }
4072 }
4073 }
4074
4075 /* Remove unreachable handlers and unreachable landing pads. */
4076
4077 static void
4078 remove_unreachable_handlers (void)
4079 {
4080 sbitmap r_reachable, lp_reachable;
4081 eh_region region;
4082 eh_landing_pad lp;
4083 unsigned i;
4084
4085 mark_reachable_handlers (&r_reachable, &lp_reachable);
4086
4087 if (dump_file)
4088 {
4089 fprintf (dump_file, "Before removal of unreachable regions:\n");
4090 dump_eh_tree (dump_file, cfun);
4091 fprintf (dump_file, "Reachable regions: ");
4092 dump_bitmap_file (dump_file, r_reachable);
4093 fprintf (dump_file, "Reachable landing pads: ");
4094 dump_bitmap_file (dump_file, lp_reachable);
4095 }
4096
4097 if (dump_file)
4098 {
4099 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
4100 if (region && !bitmap_bit_p (r_reachable, region->index))
4101 fprintf (dump_file,
4102 "Removing unreachable region %d\n",
4103 region->index);
4104 }
4105
4106 remove_unreachable_eh_regions (r_reachable);
4107
4108 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
4109 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
4110 {
4111 if (dump_file)
4112 fprintf (dump_file,
4113 "Removing unreachable landing pad %d\n",
4114 lp->index);
4115 remove_eh_landing_pad (lp);
4116 }
4117
4118 if (dump_file)
4119 {
4120 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
4121 dump_eh_tree (dump_file, cfun);
4122 fprintf (dump_file, "\n\n");
4123 }
4124
4125 sbitmap_free (r_reachable);
4126 sbitmap_free (lp_reachable);
4127
4128 if (flag_checking)
4129 verify_eh_tree (cfun);
4130 }
4131
4132 /* Remove unreachable handlers if any landing pads have been removed after
4133 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
4134
4135 void
4136 maybe_remove_unreachable_handlers (void)
4137 {
4138 eh_landing_pad lp;
4139 unsigned i;
4140
4141 if (cfun->eh == NULL)
4142 return;
4143
4144 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
4145 if (lp
4146 && (lp->post_landing_pad == NULL_TREE
4147 || label_to_block (cfun, lp->post_landing_pad) == NULL))
4148 {
4149 remove_unreachable_handlers ();
4150 return;
4151 }
4152 }
4153
4154 /* Remove regions that do not have landing pads. This assumes
4155 that remove_unreachable_handlers has already been run, and
4156 that we've just manipulated the landing pads since then.
4157
4158 Preserve regions with landing pads and regions that prevent
4159 exceptions from propagating further, even if these regions
4160 are not reachable. */
4161
4162 static void
4163 remove_unreachable_handlers_no_lp (void)
4164 {
4165 eh_region region;
4166 sbitmap r_reachable;
4167 unsigned i;
4168
4169 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
4170
4171 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
4172 {
4173 if (! region)
4174 continue;
4175
4176 if (region->landing_pads != NULL
4177 || region->type == ERT_MUST_NOT_THROW)
4178 bitmap_set_bit (r_reachable, region->index);
4179
4180 if (dump_file
4181 && !bitmap_bit_p (r_reachable, region->index))
4182 fprintf (dump_file,
4183 "Removing unreachable region %d\n",
4184 region->index);
4185 }
4186
4187 remove_unreachable_eh_regions (r_reachable);
4188
4189 sbitmap_free (r_reachable);
4190 }
4191
4192 /* Undo critical edge splitting on an EH landing pad. Earlier, we
4193 optimisticaly split all sorts of edges, including EH edges. The
4194 optimization passes in between may not have needed them; if not,
4195 we should undo the split.
4196
4197 Recognize this case by having one EH edge incoming to the BB and
4198 one normal edge outgoing; BB should be empty apart from the
4199 post_landing_pad label.
4200
4201 Note that this is slightly different from the empty handler case
4202 handled by cleanup_empty_eh, in that the actual handler may yet
4203 have actual code but the landing pad has been separated from the
4204 handler. As such, cleanup_empty_eh relies on this transformation
4205 having been done first. */
4206
4207 static bool
4208 unsplit_eh (eh_landing_pad lp)
4209 {
4210 basic_block bb = label_to_block (cfun, lp->post_landing_pad);
4211 gimple_stmt_iterator gsi;
4212 edge e_in, e_out;
4213
4214 /* Quickly check the edge counts on BB for singularity. */
4215 if (!single_pred_p (bb) || !single_succ_p (bb))
4216 return false;
4217 e_in = single_pred_edge (bb);
4218 e_out = single_succ_edge (bb);
4219
4220 /* Input edge must be EH and output edge must be normal. */
4221 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4222 return false;
4223
4224 /* The block must be empty except for the labels and debug insns. */
4225 gsi = gsi_after_labels (bb);
4226 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4227 gsi_next_nondebug (&gsi);
4228 if (!gsi_end_p (gsi))
4229 return false;
4230
4231 /* The destination block must not already have a landing pad
4232 for a different region. */
4233 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4234 {
4235 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4236 tree lab;
4237 int lp_nr;
4238
4239 if (!label_stmt)
4240 break;
4241 lab = gimple_label_label (label_stmt);
4242 lp_nr = EH_LANDING_PAD_NR (lab);
4243 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4244 return false;
4245 }
4246
4247 /* The new destination block must not already be a destination of
4248 the source block, lest we merge fallthru and eh edges and get
4249 all sorts of confused. */
4250 if (find_edge (e_in->src, e_out->dest))
4251 return false;
4252
4253 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4254 thought this should have been cleaned up by a phicprop pass, but
4255 that doesn't appear to handle virtuals. Propagate by hand. */
4256 if (!gimple_seq_empty_p (phi_nodes (bb)))
4257 {
4258 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); )
4259 {
4260 gimple *use_stmt;
4261 gphi *phi = gpi.phi ();
4262 tree lhs = gimple_phi_result (phi);
4263 tree rhs = gimple_phi_arg_def (phi, 0);
4264 use_operand_p use_p;
4265 imm_use_iterator iter;
4266
4267 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4268 {
4269 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4270 SET_USE (use_p, rhs);
4271 }
4272
4273 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4274 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4275
4276 remove_phi_node (&gpi, true);
4277 }
4278 }
4279
4280 if (dump_file && (dump_flags & TDF_DETAILS))
4281 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4282 lp->index, e_out->dest->index);
4283
4284 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4285 a successor edge, humor it. But do the real CFG change with the
4286 predecessor of E_OUT in order to preserve the ordering of arguments
4287 to the PHI nodes in E_OUT->DEST. */
4288 redirect_eh_edge_1 (e_in, e_out->dest, false);
4289 redirect_edge_pred (e_out, e_in->src);
4290 e_out->flags = e_in->flags;
4291 e_out->probability = e_in->probability;
4292 remove_edge (e_in);
4293
4294 return true;
4295 }
4296
4297 /* Examine each landing pad block and see if it matches unsplit_eh. */
4298
4299 static bool
4300 unsplit_all_eh (void)
4301 {
4302 bool changed = false;
4303 eh_landing_pad lp;
4304 int i;
4305
4306 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4307 if (lp)
4308 changed |= unsplit_eh (lp);
4309
4310 return changed;
4311 }
4312
4313 /* Wrapper around unsplit_all_eh that makes it usable everywhere. */
4314
4315 void
4316 unsplit_eh_edges (void)
4317 {
4318 bool changed;
4319
4320 /* unsplit_all_eh can die looking up unreachable landing pads. */
4321 maybe_remove_unreachable_handlers ();
4322
4323 changed = unsplit_all_eh ();
4324
4325 /* If EH edges have been unsplit, delete unreachable forwarder blocks. */
4326 if (changed)
4327 {
4328 free_dominance_info (CDI_DOMINATORS);
4329 free_dominance_info (CDI_POST_DOMINATORS);
4330 delete_unreachable_blocks ();
4331 }
4332 }
4333
4334 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4335 to OLD_BB to NEW_BB; return true on success, false on failure.
4336
4337 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4338 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4339 Virtual PHIs may be deleted and marked for renaming. */
4340
4341 static bool
4342 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4343 edge old_bb_out, bool change_region)
4344 {
4345 gphi_iterator ngsi, ogsi;
4346 edge_iterator ei;
4347 edge e;
4348 bitmap ophi_handled;
4349
4350 /* The destination block must not be a regular successor for any
4351 of the preds of the landing pad. Thus, avoid turning
4352 <..>
4353 | \ EH
4354 | <..>
4355 | /
4356 <..>
4357 into
4358 <..>
4359 | | EH
4360 <..>
4361 which CFG verification would choke on. See PR45172 and PR51089. */
4362 if (!single_pred_p (new_bb))
4363 FOR_EACH_EDGE (e, ei, old_bb->preds)
4364 if (find_edge (e->src, new_bb))
4365 return false;
4366
4367 FOR_EACH_EDGE (e, ei, old_bb->preds)
4368 redirect_edge_var_map_clear (e);
4369
4370 ophi_handled = BITMAP_ALLOC (NULL);
4371
4372 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4373 for the edges we're going to move. */
4374 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4375 {
4376 gphi *ophi, *nphi = ngsi.phi ();
4377 tree nresult, nop;
4378
4379 nresult = gimple_phi_result (nphi);
4380 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4381
4382 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4383 the source ssa_name. */
4384 ophi = NULL;
4385 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4386 {
4387 ophi = ogsi.phi ();
4388 if (gimple_phi_result (ophi) == nop)
4389 break;
4390 ophi = NULL;
4391 }
4392
4393 /* If we did find the corresponding PHI, copy those inputs. */
4394 if (ophi)
4395 {
4396 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4397 if (!has_single_use (nop))
4398 {
4399 imm_use_iterator imm_iter;
4400 use_operand_p use_p;
4401
4402 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4403 {
4404 if (!gimple_debug_bind_p (USE_STMT (use_p))
4405 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4406 || gimple_bb (USE_STMT (use_p)) != new_bb))
4407 goto fail;
4408 }
4409 }
4410 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4411 FOR_EACH_EDGE (e, ei, old_bb->preds)
4412 {
4413 location_t oloc;
4414 tree oop;
4415
4416 if ((e->flags & EDGE_EH) == 0)
4417 continue;
4418 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4419 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4420 redirect_edge_var_map_add (e, nresult, oop, oloc);
4421 }
4422 }
4423 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4424 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4425 variable is unchanged from input to the block and we can simply
4426 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4427 else
4428 {
4429 location_t nloc
4430 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4431 FOR_EACH_EDGE (e, ei, old_bb->preds)
4432 redirect_edge_var_map_add (e, nresult, nop, nloc);
4433 }
4434 }
4435
4436 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4437 we don't know what values from the other edges into NEW_BB to use. */
4438 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4439 {
4440 gphi *ophi = ogsi.phi ();
4441 tree oresult = gimple_phi_result (ophi);
4442 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4443 goto fail;
4444 }
4445
4446 /* Finally, move the edges and update the PHIs. */
4447 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4448 if (e->flags & EDGE_EH)
4449 {
4450 /* ??? CFG manipluation routines do not try to update loop
4451 form on edge redirection. Do so manually here for now. */
4452 /* If we redirect a loop entry or latch edge that will either create
4453 a multiple entry loop or rotate the loop. If the loops merge
4454 we may have created a loop with multiple latches.
4455 All of this isn't easily fixed thus cancel the affected loop
4456 and mark the other loop as possibly having multiple latches. */
4457 if (e->dest == e->dest->loop_father->header)
4458 {
4459 mark_loop_for_removal (e->dest->loop_father);
4460 new_bb->loop_father->latch = NULL;
4461 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4462 }
4463 redirect_eh_edge_1 (e, new_bb, change_region);
4464 redirect_edge_succ (e, new_bb);
4465 flush_pending_stmts (e);
4466 }
4467 else
4468 ei_next (&ei);
4469
4470 BITMAP_FREE (ophi_handled);
4471 return true;
4472
4473 fail:
4474 FOR_EACH_EDGE (e, ei, old_bb->preds)
4475 redirect_edge_var_map_clear (e);
4476 BITMAP_FREE (ophi_handled);
4477 return false;
4478 }
4479
4480 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4481 old region to NEW_REGION at BB. */
4482
4483 static void
4484 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4485 eh_landing_pad lp, eh_region new_region)
4486 {
4487 gimple_stmt_iterator gsi;
4488 eh_landing_pad *pp;
4489
4490 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4491 continue;
4492 *pp = lp->next_lp;
4493
4494 lp->region = new_region;
4495 lp->next_lp = new_region->landing_pads;
4496 new_region->landing_pads = lp;
4497
4498 /* Delete the RESX that was matched within the empty handler block. */
4499 gsi = gsi_last_bb (bb);
4500 unlink_stmt_vdef (gsi_stmt (gsi));
4501 gsi_remove (&gsi, true);
4502
4503 /* Clean up E_OUT for the fallthru. */
4504 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4505 e_out->probability = profile_probability::always ();
4506 }
4507
4508 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4509 unsplitting than unsplit_eh was prepared to handle, e.g. when
4510 multiple incoming edges and phis are involved. */
4511
4512 static bool
4513 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4514 {
4515 gimple_stmt_iterator gsi;
4516 tree lab;
4517
4518 /* We really ought not have totally lost everything following
4519 a landing pad label. Given that BB is empty, there had better
4520 be a successor. */
4521 gcc_assert (e_out != NULL);
4522
4523 /* The destination block must not already have a landing pad
4524 for a different region. */
4525 lab = NULL;
4526 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4527 {
4528 glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4529 int lp_nr;
4530
4531 if (!stmt)
4532 break;
4533 lab = gimple_label_label (stmt);
4534 lp_nr = EH_LANDING_PAD_NR (lab);
4535 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4536 return false;
4537 }
4538
4539 /* Attempt to move the PHIs into the successor block. */
4540 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4541 {
4542 if (dump_file && (dump_flags & TDF_DETAILS))
4543 fprintf (dump_file,
4544 "Unsplit EH landing pad %d to block %i "
4545 "(via cleanup_empty_eh).\n",
4546 lp->index, e_out->dest->index);
4547 return true;
4548 }
4549
4550 return false;
4551 }
4552
4553 /* Return true if edge E_FIRST is part of an empty infinite loop
4554 or leads to such a loop through a series of single successor
4555 empty bbs. */
4556
4557 static bool
4558 infinite_empty_loop_p (edge e_first)
4559 {
4560 bool inf_loop = false;
4561 edge e;
4562
4563 if (e_first->dest == e_first->src)
4564 return true;
4565
4566 e_first->src->aux = (void *) 1;
4567 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4568 {
4569 gimple_stmt_iterator gsi;
4570 if (e->dest->aux)
4571 {
4572 inf_loop = true;
4573 break;
4574 }
4575 e->dest->aux = (void *) 1;
4576 gsi = gsi_after_labels (e->dest);
4577 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4578 gsi_next_nondebug (&gsi);
4579 if (!gsi_end_p (gsi))
4580 break;
4581 }
4582 e_first->src->aux = NULL;
4583 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4584 e->dest->aux = NULL;
4585
4586 return inf_loop;
4587 }
4588
4589 /* Examine the block associated with LP to determine if it's an empty
4590 handler for its EH region. If so, attempt to redirect EH edges to
4591 an outer region. Return true the CFG was updated in any way. This
4592 is similar to jump forwarding, just across EH edges. */
4593
4594 static bool
4595 cleanup_empty_eh (eh_landing_pad lp)
4596 {
4597 basic_block bb = label_to_block (cfun, lp->post_landing_pad);
4598 gimple_stmt_iterator gsi;
4599 gimple *resx;
4600 eh_region new_region;
4601 edge_iterator ei;
4602 edge e, e_out;
4603 bool has_non_eh_pred;
4604 bool ret = false;
4605 int new_lp_nr;
4606
4607 /* There can be zero or one edges out of BB. This is the quickest test. */
4608 switch (EDGE_COUNT (bb->succs))
4609 {
4610 case 0:
4611 e_out = NULL;
4612 break;
4613 case 1:
4614 e_out = single_succ_edge (bb);
4615 break;
4616 default:
4617 return false;
4618 }
4619
4620 gsi = gsi_last_nondebug_bb (bb);
4621 resx = gsi_stmt (gsi);
4622 if (resx && is_gimple_resx (resx))
4623 {
4624 if (stmt_can_throw_external (cfun, resx))
4625 optimize_clobbers (bb);
4626 else if (sink_clobbers (bb))
4627 ret = true;
4628 }
4629
4630 gsi = gsi_after_labels (bb);
4631
4632 /* Make sure to skip debug statements. */
4633 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4634 gsi_next_nondebug (&gsi);
4635
4636 /* If the block is totally empty, look for more unsplitting cases. */
4637 if (gsi_end_p (gsi))
4638 {
4639 /* For the degenerate case of an infinite loop bail out.
4640 If bb has no successors and is totally empty, which can happen e.g.
4641 because of incorrect noreturn attribute, bail out too. */
4642 if (e_out == NULL
4643 || infinite_empty_loop_p (e_out))
4644 return ret;
4645
4646 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4647 }
4648
4649 /* The block should consist only of a single RESX statement, modulo a
4650 preceding call to __builtin_stack_restore if there is no outgoing
4651 edge, since the call can be eliminated in this case. */
4652 resx = gsi_stmt (gsi);
4653 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4654 {
4655 gsi_next_nondebug (&gsi);
4656 resx = gsi_stmt (gsi);
4657 }
4658 if (!is_gimple_resx (resx))
4659 return ret;
4660 gcc_assert (gsi_one_nondebug_before_end_p (gsi));
4661
4662 /* Determine if there are non-EH edges, or resx edges into the handler. */
4663 has_non_eh_pred = false;
4664 FOR_EACH_EDGE (e, ei, bb->preds)
4665 if (!(e->flags & EDGE_EH))
4666 has_non_eh_pred = true;
4667
4668 /* Find the handler that's outer of the empty handler by looking at
4669 where the RESX instruction was vectored. */
4670 new_lp_nr = lookup_stmt_eh_lp (resx);
4671 new_region = get_eh_region_from_lp_number (new_lp_nr);
4672
4673 /* If there's no destination region within the current function,
4674 redirection is trivial via removing the throwing statements from
4675 the EH region, removing the EH edges, and allowing the block
4676 to go unreachable. */
4677 if (new_region == NULL)
4678 {
4679 gcc_assert (e_out == NULL);
4680 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4681 if (e->flags & EDGE_EH)
4682 {
4683 gimple *stmt = last_stmt (e->src);
4684 remove_stmt_from_eh_lp (stmt);
4685 remove_edge (e);
4686 }
4687 else
4688 ei_next (&ei);
4689 goto succeed;
4690 }
4691
4692 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4693 to handle the abort and allow the blocks to go unreachable. */
4694 if (new_region->type == ERT_MUST_NOT_THROW)
4695 {
4696 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4697 if (e->flags & EDGE_EH)
4698 {
4699 gimple *stmt = last_stmt (e->src);
4700 remove_stmt_from_eh_lp (stmt);
4701 add_stmt_to_eh_lp (stmt, new_lp_nr);
4702 remove_edge (e);
4703 }
4704 else
4705 ei_next (&ei);
4706 goto succeed;
4707 }
4708
4709 /* Try to redirect the EH edges and merge the PHIs into the destination
4710 landing pad block. If the merge succeeds, we'll already have redirected
4711 all the EH edges. The handler itself will go unreachable if there were
4712 no normal edges. */
4713 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4714 goto succeed;
4715
4716 /* Finally, if all input edges are EH edges, then we can (potentially)
4717 reduce the number of transfers from the runtime by moving the landing
4718 pad from the original region to the new region. This is a win when
4719 we remove the last CLEANUP region along a particular exception
4720 propagation path. Since nothing changes except for the region with
4721 which the landing pad is associated, the PHI nodes do not need to be
4722 adjusted at all. */
4723 if (!has_non_eh_pred)
4724 {
4725 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4726 if (dump_file && (dump_flags & TDF_DETAILS))
4727 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4728 lp->index, new_region->index);
4729
4730 /* ??? The CFG didn't change, but we may have rendered the
4731 old EH region unreachable. Trigger a cleanup there. */
4732 return true;
4733 }
4734
4735 return ret;
4736
4737 succeed:
4738 if (dump_file && (dump_flags & TDF_DETAILS))
4739 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4740 remove_eh_landing_pad (lp);
4741 return true;
4742 }
4743
4744 /* Do a post-order traversal of the EH region tree. Examine each
4745 post_landing_pad block and see if we can eliminate it as empty. */
4746
4747 static bool
4748 cleanup_all_empty_eh (void)
4749 {
4750 bool changed = false;
4751 eh_landing_pad lp;
4752 int i;
4753
4754 /* Ideally we'd walk the region tree and process LPs inner to outer
4755 to avoid quadraticness in EH redirection. Walking the LP array
4756 in reverse seems to be an approximation of that. */
4757 for (i = vec_safe_length (cfun->eh->lp_array) - 1; i >= 1; --i)
4758 {
4759 lp = (*cfun->eh->lp_array)[i];
4760 if (lp)
4761 changed |= cleanup_empty_eh (lp);
4762 }
4763
4764 return changed;
4765 }
4766
4767 /* Perform cleanups and lowering of exception handling
4768 1) cleanups regions with handlers doing nothing are optimized out
4769 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4770 3) Info about regions that are containing instructions, and regions
4771 reachable via local EH edges is collected
4772 4) Eh tree is pruned for regions no longer necessary.
4773
4774 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4775 Unify those that have the same failure decl and locus.
4776 */
4777
4778 static unsigned int
4779 execute_cleanup_eh_1 (void)
4780 {
4781 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4782 looking up unreachable landing pads. */
4783 remove_unreachable_handlers ();
4784
4785 /* Watch out for the region tree vanishing due to all unreachable. */
4786 if (cfun->eh->region_tree)
4787 {
4788 bool changed = false;
4789
4790 if (optimize)
4791 changed |= unsplit_all_eh ();
4792 changed |= cleanup_all_empty_eh ();
4793
4794 if (changed)
4795 {
4796 free_dominance_info (CDI_DOMINATORS);
4797 free_dominance_info (CDI_POST_DOMINATORS);
4798
4799 /* We delayed all basic block deletion, as we may have performed
4800 cleanups on EH edges while non-EH edges were still present. */
4801 delete_unreachable_blocks ();
4802
4803 /* We manipulated the landing pads. Remove any region that no
4804 longer has a landing pad. */
4805 remove_unreachable_handlers_no_lp ();
4806
4807 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4808 }
4809 }
4810
4811 return 0;
4812 }
4813
4814 namespace {
4815
4816 const pass_data pass_data_cleanup_eh =
4817 {
4818 GIMPLE_PASS, /* type */
4819 "ehcleanup", /* name */
4820 OPTGROUP_NONE, /* optinfo_flags */
4821 TV_TREE_EH, /* tv_id */
4822 PROP_gimple_lcf, /* properties_required */
4823 0, /* properties_provided */
4824 0, /* properties_destroyed */
4825 0, /* todo_flags_start */
4826 0, /* todo_flags_finish */
4827 };
4828
4829 class pass_cleanup_eh : public gimple_opt_pass
4830 {
4831 public:
4832 pass_cleanup_eh (gcc::context *ctxt)
4833 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4834 {}
4835
4836 /* opt_pass methods: */
4837 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4838 virtual bool gate (function *fun)
4839 {
4840 return fun->eh != NULL && fun->eh->region_tree != NULL;
4841 }
4842
4843 virtual unsigned int execute (function *);
4844
4845 }; // class pass_cleanup_eh
4846
4847 unsigned int
4848 pass_cleanup_eh::execute (function *fun)
4849 {
4850 int ret = execute_cleanup_eh_1 ();
4851
4852 /* If the function no longer needs an EH personality routine
4853 clear it. This exposes cross-language inlining opportunities
4854 and avoids references to a never defined personality routine. */
4855 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4856 && function_needs_eh_personality (fun) != eh_personality_lang)
4857 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4858
4859 return ret;
4860 }
4861
4862 } // anon namespace
4863
4864 gimple_opt_pass *
4865 make_pass_cleanup_eh (gcc::context *ctxt)
4866 {
4867 return new pass_cleanup_eh (ctxt);
4868 }
4869 \f
4870 /* Disable warnings about missing quoting in GCC diagnostics for
4871 the verification errors. Their format strings don't follow GCC
4872 diagnostic conventions but are only used for debugging. */
4873 #if __GNUC__ >= 10
4874 # pragma GCC diagnostic push
4875 # pragma GCC diagnostic ignored "-Wformat-diag"
4876 #endif
4877
4878 /* Verify that BB containing STMT as the last statement, has precisely the
4879 edge that make_eh_edges would create. */
4880
4881 DEBUG_FUNCTION bool
4882 verify_eh_edges (gimple *stmt)
4883 {
4884 basic_block bb = gimple_bb (stmt);
4885 eh_landing_pad lp = NULL;
4886 int lp_nr;
4887 edge_iterator ei;
4888 edge e, eh_edge;
4889
4890 lp_nr = lookup_stmt_eh_lp (stmt);
4891 if (lp_nr > 0)
4892 lp = get_eh_landing_pad_from_number (lp_nr);
4893
4894 eh_edge = NULL;
4895 FOR_EACH_EDGE (e, ei, bb->succs)
4896 {
4897 if (e->flags & EDGE_EH)
4898 {
4899 if (eh_edge)
4900 {
4901 error ("BB %i has multiple EH edges", bb->index);
4902 return true;
4903 }
4904 else
4905 eh_edge = e;
4906 }
4907 }
4908
4909 if (lp == NULL)
4910 {
4911 if (eh_edge)
4912 {
4913 error ("BB %i cannot throw but has an EH edge", bb->index);
4914 return true;
4915 }
4916 return false;
4917 }
4918
4919 if (!stmt_could_throw_p (cfun, stmt))
4920 {
4921 error ("BB %i last statement has incorrectly set lp", bb->index);
4922 return true;
4923 }
4924
4925 if (eh_edge == NULL)
4926 {
4927 error ("BB %i is missing an EH edge", bb->index);
4928 return true;
4929 }
4930
4931 if (eh_edge->dest != label_to_block (cfun, lp->post_landing_pad))
4932 {
4933 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4934 return true;
4935 }
4936
4937 return false;
4938 }
4939
4940 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4941
4942 DEBUG_FUNCTION bool
4943 verify_eh_dispatch_edge (geh_dispatch *stmt)
4944 {
4945 eh_region r;
4946 eh_catch c;
4947 basic_block src, dst;
4948 bool want_fallthru = true;
4949 edge_iterator ei;
4950 edge e, fall_edge;
4951
4952 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4953 src = gimple_bb (stmt);
4954
4955 FOR_EACH_EDGE (e, ei, src->succs)
4956 gcc_assert (e->aux == NULL);
4957
4958 switch (r->type)
4959 {
4960 case ERT_TRY:
4961 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4962 {
4963 dst = label_to_block (cfun, c->label);
4964 e = find_edge (src, dst);
4965 if (e == NULL)
4966 {
4967 error ("BB %i is missing an edge", src->index);
4968 return true;
4969 }
4970 e->aux = (void *)e;
4971
4972 /* A catch-all handler doesn't have a fallthru. */
4973 if (c->type_list == NULL)
4974 {
4975 want_fallthru = false;
4976 break;
4977 }
4978 }
4979 break;
4980
4981 case ERT_ALLOWED_EXCEPTIONS:
4982 dst = label_to_block (cfun, r->u.allowed.label);
4983 e = find_edge (src, dst);
4984 if (e == NULL)
4985 {
4986 error ("BB %i is missing an edge", src->index);
4987 return true;
4988 }
4989 e->aux = (void *)e;
4990 break;
4991
4992 default:
4993 gcc_unreachable ();
4994 }
4995
4996 fall_edge = NULL;
4997 FOR_EACH_EDGE (e, ei, src->succs)
4998 {
4999 if (e->flags & EDGE_FALLTHRU)
5000 {
5001 if (fall_edge != NULL)
5002 {
5003 error ("BB %i too many fallthru edges", src->index);
5004 return true;
5005 }
5006 fall_edge = e;
5007 }
5008 else if (e->aux)
5009 e->aux = NULL;
5010 else
5011 {
5012 error ("BB %i has incorrect edge", src->index);
5013 return true;
5014 }
5015 }
5016 if ((fall_edge != NULL) ^ want_fallthru)
5017 {
5018 error ("BB %i has incorrect fallthru edge", src->index);
5019 return true;
5020 }
5021
5022 return false;
5023 }
5024
5025 #if __GNUC__ >= 10
5026 # pragma GCC diagnostic pop
5027 #endif