re PR target/69140 (stack alignment + O1 breaks with Microsoft ABI)
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "cgraph.h"
31 #include "diagnostic-core.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "except.h"
35 #include "cfganal.h"
36 #include "cfgcleanup.h"
37 #include "tree-eh.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "tree-into-ssa.h"
41 #include "tree-ssa.h"
42 #include "tree-inline.h"
43 #include "langhooks.h"
44 #include "cfgloop.h"
45 #include "gimple-low.h"
46
47 /* In some instances a tree and a gimple need to be stored in a same table,
48 i.e. in hash tables. This is a structure to do this. */
49 typedef union {tree *tp; tree t; gimple *g;} treemple;
50
51 /* Misc functions used in this file. */
52
53 /* Remember and lookup EH landing pad data for arbitrary statements.
54 Really this means any statement that could_throw_p. We could
55 stuff this information into the stmt_ann data structure, but:
56
57 (1) We absolutely rely on this information being kept until
58 we get to rtl. Once we're done with lowering here, if we lose
59 the information there's no way to recover it!
60
61 (2) There are many more statements that *cannot* throw as
62 compared to those that can. We should be saving some amount
63 of space by only allocating memory for those that can throw. */
64
65 /* Add statement T in function IFUN to landing pad NUM. */
66
67 static void
68 add_stmt_to_eh_lp_fn (struct function *ifun, gimple *t, int num)
69 {
70 gcc_assert (num != 0);
71
72 if (!get_eh_throw_stmt_table (ifun))
73 set_eh_throw_stmt_table (ifun, hash_map<gimple *, int>::create_ggc (31));
74
75 gcc_assert (!get_eh_throw_stmt_table (ifun)->put (t, num));
76 }
77
78 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
79
80 void
81 add_stmt_to_eh_lp (gimple *t, int num)
82 {
83 add_stmt_to_eh_lp_fn (cfun, t, num);
84 }
85
86 /* Add statement T to the single EH landing pad in REGION. */
87
88 static void
89 record_stmt_eh_region (eh_region region, gimple *t)
90 {
91 if (region == NULL)
92 return;
93 if (region->type == ERT_MUST_NOT_THROW)
94 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
95 else
96 {
97 eh_landing_pad lp = region->landing_pads;
98 if (lp == NULL)
99 lp = gen_eh_landing_pad (region);
100 else
101 gcc_assert (lp->next_lp == NULL);
102 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
103 }
104 }
105
106
107 /* Remove statement T in function IFUN from its EH landing pad. */
108
109 bool
110 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple *t)
111 {
112 if (!get_eh_throw_stmt_table (ifun))
113 return false;
114
115 if (!get_eh_throw_stmt_table (ifun)->get (t))
116 return false;
117
118 get_eh_throw_stmt_table (ifun)->remove (t);
119 return true;
120 }
121
122
123 /* Remove statement T in the current function (cfun) from its
124 EH landing pad. */
125
126 bool
127 remove_stmt_from_eh_lp (gimple *t)
128 {
129 return remove_stmt_from_eh_lp_fn (cfun, t);
130 }
131
132 /* Determine if statement T is inside an EH region in function IFUN.
133 Positive numbers indicate a landing pad index; negative numbers
134 indicate a MUST_NOT_THROW region index; zero indicates that the
135 statement is not recorded in the region table. */
136
137 int
138 lookup_stmt_eh_lp_fn (struct function *ifun, gimple *t)
139 {
140 if (ifun->eh->throw_stmt_table == NULL)
141 return 0;
142
143 int *lp_nr = ifun->eh->throw_stmt_table->get (t);
144 return lp_nr ? *lp_nr : 0;
145 }
146
147 /* Likewise, but always use the current function. */
148
149 int
150 lookup_stmt_eh_lp (gimple *t)
151 {
152 /* We can get called from initialized data when -fnon-call-exceptions
153 is on; prevent crash. */
154 if (!cfun)
155 return 0;
156 return lookup_stmt_eh_lp_fn (cfun, t);
157 }
158
159 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
160 nodes and LABEL_DECL nodes. We will use this during the second phase to
161 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
162
163 struct finally_tree_node
164 {
165 /* When storing a GIMPLE_TRY, we have to record a gimple. However
166 when deciding whether a GOTO to a certain LABEL_DECL (which is a
167 tree) leaves the TRY block, its necessary to record a tree in
168 this field. Thus a treemple is used. */
169 treemple child;
170 gtry *parent;
171 };
172
173 /* Hashtable helpers. */
174
175 struct finally_tree_hasher : free_ptr_hash <finally_tree_node>
176 {
177 static inline hashval_t hash (const finally_tree_node *);
178 static inline bool equal (const finally_tree_node *,
179 const finally_tree_node *);
180 };
181
182 inline hashval_t
183 finally_tree_hasher::hash (const finally_tree_node *v)
184 {
185 return (intptr_t)v->child.t >> 4;
186 }
187
188 inline bool
189 finally_tree_hasher::equal (const finally_tree_node *v,
190 const finally_tree_node *c)
191 {
192 return v->child.t == c->child.t;
193 }
194
195 /* Note that this table is *not* marked GTY. It is short-lived. */
196 static hash_table<finally_tree_hasher> *finally_tree;
197
198 static void
199 record_in_finally_tree (treemple child, gtry *parent)
200 {
201 struct finally_tree_node *n;
202 finally_tree_node **slot;
203
204 n = XNEW (struct finally_tree_node);
205 n->child = child;
206 n->parent = parent;
207
208 slot = finally_tree->find_slot (n, INSERT);
209 gcc_assert (!*slot);
210 *slot = n;
211 }
212
213 static void
214 collect_finally_tree (gimple *stmt, gtry *region);
215
216 /* Go through the gimple sequence. Works with collect_finally_tree to
217 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
218
219 static void
220 collect_finally_tree_1 (gimple_seq seq, gtry *region)
221 {
222 gimple_stmt_iterator gsi;
223
224 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
225 collect_finally_tree (gsi_stmt (gsi), region);
226 }
227
228 static void
229 collect_finally_tree (gimple *stmt, gtry *region)
230 {
231 treemple temp;
232
233 switch (gimple_code (stmt))
234 {
235 case GIMPLE_LABEL:
236 temp.t = gimple_label_label (as_a <glabel *> (stmt));
237 record_in_finally_tree (temp, region);
238 break;
239
240 case GIMPLE_TRY:
241 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
242 {
243 temp.g = stmt;
244 record_in_finally_tree (temp, region);
245 collect_finally_tree_1 (gimple_try_eval (stmt),
246 as_a <gtry *> (stmt));
247 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
248 }
249 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
250 {
251 collect_finally_tree_1 (gimple_try_eval (stmt), region);
252 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
253 }
254 break;
255
256 case GIMPLE_CATCH:
257 collect_finally_tree_1 (gimple_catch_handler (
258 as_a <gcatch *> (stmt)),
259 region);
260 break;
261
262 case GIMPLE_EH_FILTER:
263 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
264 break;
265
266 case GIMPLE_EH_ELSE:
267 {
268 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
269 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt), region);
270 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt), region);
271 }
272 break;
273
274 default:
275 /* A type, a decl, or some kind of statement that we're not
276 interested in. Don't walk them. */
277 break;
278 }
279 }
280
281
282 /* Use the finally tree to determine if a jump from START to TARGET
283 would leave the try_finally node that START lives in. */
284
285 static bool
286 outside_finally_tree (treemple start, gimple *target)
287 {
288 struct finally_tree_node n, *p;
289
290 do
291 {
292 n.child = start;
293 p = finally_tree->find (&n);
294 if (!p)
295 return true;
296 start.g = p->parent;
297 }
298 while (start.g != target);
299
300 return false;
301 }
302
303 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
304 nodes into a set of gotos, magic labels, and eh regions.
305 The eh region creation is straight-forward, but frobbing all the gotos
306 and such into shape isn't. */
307
308 /* The sequence into which we record all EH stuff. This will be
309 placed at the end of the function when we're all done. */
310 static gimple_seq eh_seq;
311
312 /* Record whether an EH region contains something that can throw,
313 indexed by EH region number. */
314 static bitmap eh_region_may_contain_throw_map;
315
316 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
317 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
318 The idea is to record a gimple statement for everything except for
319 the conditionals, which get their labels recorded. Since labels are
320 of type 'tree', we need this node to store both gimple and tree
321 objects. REPL_STMT is the sequence used to replace the goto/return
322 statement. CONT_STMT is used to store the statement that allows
323 the return/goto to jump to the original destination. */
324
325 struct goto_queue_node
326 {
327 treemple stmt;
328 location_t location;
329 gimple_seq repl_stmt;
330 gimple *cont_stmt;
331 int index;
332 /* This is used when index >= 0 to indicate that stmt is a label (as
333 opposed to a goto stmt). */
334 int is_label;
335 };
336
337 /* State of the world while lowering. */
338
339 struct leh_state
340 {
341 /* What's "current" while constructing the eh region tree. These
342 correspond to variables of the same name in cfun->eh, which we
343 don't have easy access to. */
344 eh_region cur_region;
345
346 /* What's "current" for the purposes of __builtin_eh_pointer. For
347 a CATCH, this is the associated TRY. For an EH_FILTER, this is
348 the associated ALLOWED_EXCEPTIONS, etc. */
349 eh_region ehp_region;
350
351 /* Processing of TRY_FINALLY requires a bit more state. This is
352 split out into a separate structure so that we don't have to
353 copy so much when processing other nodes. */
354 struct leh_tf_state *tf;
355 };
356
357 struct leh_tf_state
358 {
359 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
360 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
361 this so that outside_finally_tree can reliably reference the tree used
362 in the collect_finally_tree data structures. */
363 gtry *try_finally_expr;
364 gtry *top_p;
365
366 /* While lowering a top_p usually it is expanded into multiple statements,
367 thus we need the following field to store them. */
368 gimple_seq top_p_seq;
369
370 /* The state outside this try_finally node. */
371 struct leh_state *outer;
372
373 /* The exception region created for it. */
374 eh_region region;
375
376 /* The goto queue. */
377 struct goto_queue_node *goto_queue;
378 size_t goto_queue_size;
379 size_t goto_queue_active;
380
381 /* Pointer map to help in searching goto_queue when it is large. */
382 hash_map<gimple *, goto_queue_node *> *goto_queue_map;
383
384 /* The set of unique labels seen as entries in the goto queue. */
385 vec<tree> dest_array;
386
387 /* A label to be added at the end of the completed transformed
388 sequence. It will be set if may_fallthru was true *at one time*,
389 though subsequent transformations may have cleared that flag. */
390 tree fallthru_label;
391
392 /* True if it is possible to fall out the bottom of the try block.
393 Cleared if the fallthru is converted to a goto. */
394 bool may_fallthru;
395
396 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
397 bool may_return;
398
399 /* True if the finally block can receive an exception edge.
400 Cleared if the exception case is handled by code duplication. */
401 bool may_throw;
402 };
403
404 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gtry *);
405
406 /* Search for STMT in the goto queue. Return the replacement,
407 or null if the statement isn't in the queue. */
408
409 #define LARGE_GOTO_QUEUE 20
410
411 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
412
413 static gimple_seq
414 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
415 {
416 unsigned int i;
417
418 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
419 {
420 for (i = 0; i < tf->goto_queue_active; i++)
421 if ( tf->goto_queue[i].stmt.g == stmt.g)
422 return tf->goto_queue[i].repl_stmt;
423 return NULL;
424 }
425
426 /* If we have a large number of entries in the goto_queue, create a
427 pointer map and use that for searching. */
428
429 if (!tf->goto_queue_map)
430 {
431 tf->goto_queue_map = new hash_map<gimple *, goto_queue_node *>;
432 for (i = 0; i < tf->goto_queue_active; i++)
433 {
434 bool existed = tf->goto_queue_map->put (tf->goto_queue[i].stmt.g,
435 &tf->goto_queue[i]);
436 gcc_assert (!existed);
437 }
438 }
439
440 goto_queue_node **slot = tf->goto_queue_map->get (stmt.g);
441 if (slot != NULL)
442 return ((*slot)->repl_stmt);
443
444 return NULL;
445 }
446
447 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
448 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
449 then we can just splat it in, otherwise we add the new stmts immediately
450 after the GIMPLE_COND and redirect. */
451
452 static void
453 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
454 gimple_stmt_iterator *gsi)
455 {
456 tree label;
457 gimple_seq new_seq;
458 treemple temp;
459 location_t loc = gimple_location (gsi_stmt (*gsi));
460
461 temp.tp = tp;
462 new_seq = find_goto_replacement (tf, temp);
463 if (!new_seq)
464 return;
465
466 if (gimple_seq_singleton_p (new_seq)
467 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
468 {
469 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
470 return;
471 }
472
473 label = create_artificial_label (loc);
474 /* Set the new label for the GIMPLE_COND */
475 *tp = label;
476
477 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
478 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
479 }
480
481 /* The real work of replace_goto_queue. Returns with TSI updated to
482 point to the next statement. */
483
484 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
485
486 static void
487 replace_goto_queue_1 (gimple *stmt, struct leh_tf_state *tf,
488 gimple_stmt_iterator *gsi)
489 {
490 gimple_seq seq;
491 treemple temp;
492 temp.g = NULL;
493
494 switch (gimple_code (stmt))
495 {
496 case GIMPLE_GOTO:
497 case GIMPLE_RETURN:
498 temp.g = stmt;
499 seq = find_goto_replacement (tf, temp);
500 if (seq)
501 {
502 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
503 gsi_remove (gsi, false);
504 return;
505 }
506 break;
507
508 case GIMPLE_COND:
509 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
510 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
511 break;
512
513 case GIMPLE_TRY:
514 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
515 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
516 break;
517 case GIMPLE_CATCH:
518 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
519 as_a <gcatch *> (stmt)),
520 tf);
521 break;
522 case GIMPLE_EH_FILTER:
523 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
524 break;
525 case GIMPLE_EH_ELSE:
526 {
527 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
528 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt),
529 tf);
530 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt),
531 tf);
532 }
533 break;
534
535 default:
536 /* These won't have gotos in them. */
537 break;
538 }
539
540 gsi_next (gsi);
541 }
542
543 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
544
545 static void
546 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
547 {
548 gimple_stmt_iterator gsi = gsi_start (*seq);
549
550 while (!gsi_end_p (gsi))
551 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
552 }
553
554 /* Replace all goto queue members. */
555
556 static void
557 replace_goto_queue (struct leh_tf_state *tf)
558 {
559 if (tf->goto_queue_active == 0)
560 return;
561 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
562 replace_goto_queue_stmt_list (&eh_seq, tf);
563 }
564
565 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
566 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
567 a gimple return. */
568
569 static void
570 record_in_goto_queue (struct leh_tf_state *tf,
571 treemple new_stmt,
572 int index,
573 bool is_label,
574 location_t location)
575 {
576 size_t active, size;
577 struct goto_queue_node *q;
578
579 gcc_assert (!tf->goto_queue_map);
580
581 active = tf->goto_queue_active;
582 size = tf->goto_queue_size;
583 if (active >= size)
584 {
585 size = (size ? size * 2 : 32);
586 tf->goto_queue_size = size;
587 tf->goto_queue
588 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
589 }
590
591 q = &tf->goto_queue[active];
592 tf->goto_queue_active = active + 1;
593
594 memset (q, 0, sizeof (*q));
595 q->stmt = new_stmt;
596 q->index = index;
597 q->location = location;
598 q->is_label = is_label;
599 }
600
601 /* Record the LABEL label in the goto queue contained in TF.
602 TF is not null. */
603
604 static void
605 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
606 location_t location)
607 {
608 int index;
609 treemple temp, new_stmt;
610
611 if (!label)
612 return;
613
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
619
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
624
625 if (! tf->dest_array.exists ())
626 {
627 tf->dest_array.create (10);
628 tf->dest_array.quick_push (label);
629 index = 0;
630 }
631 else
632 {
633 int n = tf->dest_array.length ();
634 for (index = 0; index < n; ++index)
635 if (tf->dest_array[index] == label)
636 break;
637 if (index == n)
638 tf->dest_array.safe_push (label);
639 }
640
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true, location);
646 }
647
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
650 try_finally node. */
651
652 static void
653 maybe_record_in_goto_queue (struct leh_state *state, gimple *stmt)
654 {
655 struct leh_tf_state *tf = state->tf;
656 treemple new_stmt;
657
658 if (!tf)
659 return;
660
661 switch (gimple_code (stmt))
662 {
663 case GIMPLE_COND:
664 {
665 gcond *cond_stmt = as_a <gcond *> (stmt);
666 new_stmt.tp = gimple_op_ptr (cond_stmt, 2);
667 record_in_goto_queue_label (tf, new_stmt,
668 gimple_cond_true_label (cond_stmt),
669 EXPR_LOCATION (*new_stmt.tp));
670 new_stmt.tp = gimple_op_ptr (cond_stmt, 3);
671 record_in_goto_queue_label (tf, new_stmt,
672 gimple_cond_false_label (cond_stmt),
673 EXPR_LOCATION (*new_stmt.tp));
674 }
675 break;
676 case GIMPLE_GOTO:
677 new_stmt.g = stmt;
678 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
679 gimple_location (stmt));
680 break;
681
682 case GIMPLE_RETURN:
683 tf->may_return = true;
684 new_stmt.g = stmt;
685 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
686 break;
687
688 default:
689 gcc_unreachable ();
690 }
691 }
692
693
694 #if CHECKING_P
695 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
696 was in fact structured, and we've not yet done jump threading, then none
697 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
698
699 static void
700 verify_norecord_switch_expr (struct leh_state *state,
701 gswitch *switch_expr)
702 {
703 struct leh_tf_state *tf = state->tf;
704 size_t i, n;
705
706 if (!tf)
707 return;
708
709 n = gimple_switch_num_labels (switch_expr);
710
711 for (i = 0; i < n; ++i)
712 {
713 treemple temp;
714 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
715 temp.t = lab;
716 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
717 }
718 }
719 #else
720 #define verify_norecord_switch_expr(state, switch_expr)
721 #endif
722
723 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
724 non-null, insert it before the new branch. */
725
726 static void
727 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
728 {
729 gimple *x;
730
731 /* In the case of a return, the queue node must be a gimple statement. */
732 gcc_assert (!q->is_label);
733
734 /* Note that the return value may have already been computed, e.g.,
735
736 int x;
737 int foo (void)
738 {
739 x = 0;
740 try {
741 return x;
742 } finally {
743 x++;
744 }
745 }
746
747 should return 0, not 1. We don't have to do anything to make
748 this happens because the return value has been placed in the
749 RESULT_DECL already. */
750
751 q->cont_stmt = q->stmt.g;
752
753 if (mod)
754 gimple_seq_add_seq (&q->repl_stmt, mod);
755
756 x = gimple_build_goto (finlab);
757 gimple_set_location (x, q->location);
758 gimple_seq_add_stmt (&q->repl_stmt, x);
759 }
760
761 /* Similar, but easier, for GIMPLE_GOTO. */
762
763 static void
764 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
765 struct leh_tf_state *tf)
766 {
767 ggoto *x;
768
769 gcc_assert (q->is_label);
770
771 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
772
773 if (mod)
774 gimple_seq_add_seq (&q->repl_stmt, mod);
775
776 x = gimple_build_goto (finlab);
777 gimple_set_location (x, q->location);
778 gimple_seq_add_stmt (&q->repl_stmt, x);
779 }
780
781 /* Emit a standard landing pad sequence into SEQ for REGION. */
782
783 static void
784 emit_post_landing_pad (gimple_seq *seq, eh_region region)
785 {
786 eh_landing_pad lp = region->landing_pads;
787 glabel *x;
788
789 if (lp == NULL)
790 lp = gen_eh_landing_pad (region);
791
792 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
793 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
794
795 x = gimple_build_label (lp->post_landing_pad);
796 gimple_seq_add_stmt (seq, x);
797 }
798
799 /* Emit a RESX statement into SEQ for REGION. */
800
801 static void
802 emit_resx (gimple_seq *seq, eh_region region)
803 {
804 gresx *x = gimple_build_resx (region->index);
805 gimple_seq_add_stmt (seq, x);
806 if (region->outer)
807 record_stmt_eh_region (region->outer, x);
808 }
809
810 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
811
812 static void
813 emit_eh_dispatch (gimple_seq *seq, eh_region region)
814 {
815 geh_dispatch *x = gimple_build_eh_dispatch (region->index);
816 gimple_seq_add_stmt (seq, x);
817 }
818
819 /* Note that the current EH region may contain a throw, or a
820 call to a function which itself may contain a throw. */
821
822 static void
823 note_eh_region_may_contain_throw (eh_region region)
824 {
825 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
826 {
827 if (region->type == ERT_MUST_NOT_THROW)
828 break;
829 region = region->outer;
830 if (region == NULL)
831 break;
832 }
833 }
834
835 /* Check if REGION has been marked as containing a throw. If REGION is
836 NULL, this predicate is false. */
837
838 static inline bool
839 eh_region_may_contain_throw (eh_region r)
840 {
841 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
842 }
843
844 /* We want to transform
845 try { body; } catch { stuff; }
846 to
847 normal_sequence:
848 body;
849 over:
850 eh_sequence:
851 landing_pad:
852 stuff;
853 goto over;
854
855 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
856 should be placed before the second operand, or NULL. OVER is
857 an existing label that should be put at the exit, or NULL. */
858
859 static gimple_seq
860 frob_into_branch_around (gtry *tp, eh_region region, tree over)
861 {
862 gimple *x;
863 gimple_seq cleanup, result;
864 location_t loc = gimple_location (tp);
865
866 cleanup = gimple_try_cleanup (tp);
867 result = gimple_try_eval (tp);
868
869 if (region)
870 emit_post_landing_pad (&eh_seq, region);
871
872 if (gimple_seq_may_fallthru (cleanup))
873 {
874 if (!over)
875 over = create_artificial_label (loc);
876 x = gimple_build_goto (over);
877 gimple_set_location (x, loc);
878 gimple_seq_add_stmt (&cleanup, x);
879 }
880 gimple_seq_add_seq (&eh_seq, cleanup);
881
882 if (over)
883 {
884 x = gimple_build_label (over);
885 gimple_seq_add_stmt (&result, x);
886 }
887 return result;
888 }
889
890 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
891 Make sure to record all new labels found. */
892
893 static gimple_seq
894 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
895 location_t loc)
896 {
897 gtry *region = NULL;
898 gimple_seq new_seq;
899 gimple_stmt_iterator gsi;
900
901 new_seq = copy_gimple_seq_and_replace_locals (seq);
902
903 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
904 {
905 gimple *stmt = gsi_stmt (gsi);
906 /* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating
907 it on the EH paths. When it is not eliminated, make it transparent in
908 the debug info. */
909 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
910 gimple_set_location (stmt, UNKNOWN_LOCATION);
911 else if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
912 {
913 tree block = gimple_block (stmt);
914 gimple_set_location (stmt, loc);
915 gimple_set_block (stmt, block);
916 }
917 }
918
919 if (outer_state->tf)
920 region = outer_state->tf->try_finally_expr;
921 collect_finally_tree_1 (new_seq, region);
922
923 return new_seq;
924 }
925
926 /* A subroutine of lower_try_finally. Create a fallthru label for
927 the given try_finally state. The only tricky bit here is that
928 we have to make sure to record the label in our outer context. */
929
930 static tree
931 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
932 {
933 tree label = tf->fallthru_label;
934 treemple temp;
935
936 if (!label)
937 {
938 label = create_artificial_label (gimple_location (tf->try_finally_expr));
939 tf->fallthru_label = label;
940 if (tf->outer->tf)
941 {
942 temp.t = label;
943 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
944 }
945 }
946 return label;
947 }
948
949 /* A subroutine of lower_try_finally. If FINALLY consits of a
950 GIMPLE_EH_ELSE node, return it. */
951
952 static inline geh_else *
953 get_eh_else (gimple_seq finally)
954 {
955 gimple *x = gimple_seq_first_stmt (finally);
956 if (gimple_code (x) == GIMPLE_EH_ELSE)
957 {
958 gcc_assert (gimple_seq_singleton_p (finally));
959 return as_a <geh_else *> (x);
960 }
961 return NULL;
962 }
963
964 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
965 langhook returns non-null, then the language requires that the exception
966 path out of a try_finally be treated specially. To wit: the code within
967 the finally block may not itself throw an exception. We have two choices
968 here. First we can duplicate the finally block and wrap it in a
969 must_not_throw region. Second, we can generate code like
970
971 try {
972 finally_block;
973 } catch {
974 if (fintmp == eh_edge)
975 protect_cleanup_actions;
976 }
977
978 where "fintmp" is the temporary used in the switch statement generation
979 alternative considered below. For the nonce, we always choose the first
980 option.
981
982 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
983
984 static void
985 honor_protect_cleanup_actions (struct leh_state *outer_state,
986 struct leh_state *this_state,
987 struct leh_tf_state *tf)
988 {
989 gimple_seq finally = gimple_try_cleanup (tf->top_p);
990
991 /* EH_ELSE doesn't come from user code; only compiler generated stuff.
992 It does need to be handled here, so as to separate the (different)
993 EH path from the normal path. But we should not attempt to wrap
994 it with a must-not-throw node (which indeed gets in the way). */
995 if (geh_else *eh_else = get_eh_else (finally))
996 {
997 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
998 finally = gimple_eh_else_e_body (eh_else);
999
1000 /* Let the ELSE see the exception that's being processed. */
1001 eh_region save_ehp = this_state->ehp_region;
1002 this_state->ehp_region = this_state->cur_region;
1003 lower_eh_constructs_1 (this_state, &finally);
1004 this_state->ehp_region = save_ehp;
1005 }
1006 else
1007 {
1008 /* First check for nothing to do. */
1009 if (lang_hooks.eh_protect_cleanup_actions == NULL)
1010 return;
1011 tree actions = lang_hooks.eh_protect_cleanup_actions ();
1012 if (actions == NULL)
1013 return;
1014
1015 if (this_state)
1016 finally = lower_try_finally_dup_block (finally, outer_state,
1017 gimple_location (tf->try_finally_expr));
1018
1019 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1020 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1021 to be in an enclosing scope, but needs to be implemented at this level
1022 to avoid a nesting violation (see wrap_temporary_cleanups in
1023 cp/decl.c). Since it's logically at an outer level, we should call
1024 terminate before we get to it, so strip it away before adding the
1025 MUST_NOT_THROW filter. */
1026 gimple_stmt_iterator gsi = gsi_start (finally);
1027 gimple *x = gsi_stmt (gsi);
1028 if (gimple_code (x) == GIMPLE_TRY
1029 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1030 && gimple_try_catch_is_cleanup (x))
1031 {
1032 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1033 gsi_remove (&gsi, false);
1034 }
1035
1036 /* Wrap the block with protect_cleanup_actions as the action. */
1037 geh_mnt *eh_mnt = gimple_build_eh_must_not_throw (actions);
1038 gtry *try_stmt = gimple_build_try (finally,
1039 gimple_seq_alloc_with_stmt (eh_mnt),
1040 GIMPLE_TRY_CATCH);
1041 finally = lower_eh_must_not_throw (outer_state, try_stmt);
1042 }
1043
1044 /* Drop all of this into the exception sequence. */
1045 emit_post_landing_pad (&eh_seq, tf->region);
1046 gimple_seq_add_seq (&eh_seq, finally);
1047 if (gimple_seq_may_fallthru (finally))
1048 emit_resx (&eh_seq, tf->region);
1049
1050 /* Having now been handled, EH isn't to be considered with
1051 the rest of the outgoing edges. */
1052 tf->may_throw = false;
1053 }
1054
1055 /* A subroutine of lower_try_finally. We have determined that there is
1056 no fallthru edge out of the finally block. This means that there is
1057 no outgoing edge corresponding to any incoming edge. Restructure the
1058 try_finally node for this special case. */
1059
1060 static void
1061 lower_try_finally_nofallthru (struct leh_state *state,
1062 struct leh_tf_state *tf)
1063 {
1064 tree lab;
1065 gimple *x;
1066 geh_else *eh_else;
1067 gimple_seq finally;
1068 struct goto_queue_node *q, *qe;
1069
1070 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1071
1072 /* We expect that tf->top_p is a GIMPLE_TRY. */
1073 finally = gimple_try_cleanup (tf->top_p);
1074 tf->top_p_seq = gimple_try_eval (tf->top_p);
1075
1076 x = gimple_build_label (lab);
1077 gimple_seq_add_stmt (&tf->top_p_seq, x);
1078
1079 q = tf->goto_queue;
1080 qe = q + tf->goto_queue_active;
1081 for (; q < qe; ++q)
1082 if (q->index < 0)
1083 do_return_redirection (q, lab, NULL);
1084 else
1085 do_goto_redirection (q, lab, NULL, tf);
1086
1087 replace_goto_queue (tf);
1088
1089 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1090 eh_else = get_eh_else (finally);
1091 if (eh_else)
1092 {
1093 finally = gimple_eh_else_n_body (eh_else);
1094 lower_eh_constructs_1 (state, &finally);
1095 gimple_seq_add_seq (&tf->top_p_seq, finally);
1096
1097 if (tf->may_throw)
1098 {
1099 finally = gimple_eh_else_e_body (eh_else);
1100 lower_eh_constructs_1 (state, &finally);
1101
1102 emit_post_landing_pad (&eh_seq, tf->region);
1103 gimple_seq_add_seq (&eh_seq, finally);
1104 }
1105 }
1106 else
1107 {
1108 lower_eh_constructs_1 (state, &finally);
1109 gimple_seq_add_seq (&tf->top_p_seq, finally);
1110
1111 if (tf->may_throw)
1112 {
1113 emit_post_landing_pad (&eh_seq, tf->region);
1114
1115 x = gimple_build_goto (lab);
1116 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1117 gimple_seq_add_stmt (&eh_seq, x);
1118 }
1119 }
1120 }
1121
1122 /* A subroutine of lower_try_finally. We have determined that there is
1123 exactly one destination of the finally block. Restructure the
1124 try_finally node for this special case. */
1125
1126 static void
1127 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1128 {
1129 struct goto_queue_node *q, *qe;
1130 geh_else *eh_else;
1131 glabel *label_stmt;
1132 gimple *x;
1133 gimple_seq finally;
1134 gimple_stmt_iterator gsi;
1135 tree finally_label;
1136 location_t loc = gimple_location (tf->try_finally_expr);
1137
1138 finally = gimple_try_cleanup (tf->top_p);
1139 tf->top_p_seq = gimple_try_eval (tf->top_p);
1140
1141 /* Since there's only one destination, and the destination edge can only
1142 either be EH or non-EH, that implies that all of our incoming edges
1143 are of the same type. Therefore we can lower EH_ELSE immediately. */
1144 eh_else = get_eh_else (finally);
1145 if (eh_else)
1146 {
1147 if (tf->may_throw)
1148 finally = gimple_eh_else_e_body (eh_else);
1149 else
1150 finally = gimple_eh_else_n_body (eh_else);
1151 }
1152
1153 lower_eh_constructs_1 (state, &finally);
1154
1155 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1156 {
1157 gimple *stmt = gsi_stmt (gsi);
1158 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1159 {
1160 tree block = gimple_block (stmt);
1161 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1162 gimple_set_block (stmt, block);
1163 }
1164 }
1165
1166 if (tf->may_throw)
1167 {
1168 /* Only reachable via the exception edge. Add the given label to
1169 the head of the FINALLY block. Append a RESX at the end. */
1170 emit_post_landing_pad (&eh_seq, tf->region);
1171 gimple_seq_add_seq (&eh_seq, finally);
1172 emit_resx (&eh_seq, tf->region);
1173 return;
1174 }
1175
1176 if (tf->may_fallthru)
1177 {
1178 /* Only reachable via the fallthru edge. Do nothing but let
1179 the two blocks run together; we'll fall out the bottom. */
1180 gimple_seq_add_seq (&tf->top_p_seq, finally);
1181 return;
1182 }
1183
1184 finally_label = create_artificial_label (loc);
1185 label_stmt = gimple_build_label (finally_label);
1186 gimple_seq_add_stmt (&tf->top_p_seq, label_stmt);
1187
1188 gimple_seq_add_seq (&tf->top_p_seq, finally);
1189
1190 q = tf->goto_queue;
1191 qe = q + tf->goto_queue_active;
1192
1193 if (tf->may_return)
1194 {
1195 /* Reachable by return expressions only. Redirect them. */
1196 for (; q < qe; ++q)
1197 do_return_redirection (q, finally_label, NULL);
1198 replace_goto_queue (tf);
1199 }
1200 else
1201 {
1202 /* Reachable by goto expressions only. Redirect them. */
1203 for (; q < qe; ++q)
1204 do_goto_redirection (q, finally_label, NULL, tf);
1205 replace_goto_queue (tf);
1206
1207 if (tf->dest_array[0] == tf->fallthru_label)
1208 {
1209 /* Reachable by goto to fallthru label only. Redirect it
1210 to the new label (already created, sadly), and do not
1211 emit the final branch out, or the fallthru label. */
1212 tf->fallthru_label = NULL;
1213 return;
1214 }
1215 }
1216
1217 /* Place the original return/goto to the original destination
1218 immediately after the finally block. */
1219 x = tf->goto_queue[0].cont_stmt;
1220 gimple_seq_add_stmt (&tf->top_p_seq, x);
1221 maybe_record_in_goto_queue (state, x);
1222 }
1223
1224 /* A subroutine of lower_try_finally. There are multiple edges incoming
1225 and outgoing from the finally block. Implement this by duplicating the
1226 finally block for every destination. */
1227
1228 static void
1229 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1230 {
1231 gimple_seq finally;
1232 gimple_seq new_stmt;
1233 gimple_seq seq;
1234 gimple *x;
1235 geh_else *eh_else;
1236 tree tmp;
1237 location_t tf_loc = gimple_location (tf->try_finally_expr);
1238
1239 finally = gimple_try_cleanup (tf->top_p);
1240
1241 /* Notice EH_ELSE, and simplify some of the remaining code
1242 by considering FINALLY to be the normal return path only. */
1243 eh_else = get_eh_else (finally);
1244 if (eh_else)
1245 finally = gimple_eh_else_n_body (eh_else);
1246
1247 tf->top_p_seq = gimple_try_eval (tf->top_p);
1248 new_stmt = NULL;
1249
1250 if (tf->may_fallthru)
1251 {
1252 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1253 lower_eh_constructs_1 (state, &seq);
1254 gimple_seq_add_seq (&new_stmt, seq);
1255
1256 tmp = lower_try_finally_fallthru_label (tf);
1257 x = gimple_build_goto (tmp);
1258 gimple_set_location (x, tf_loc);
1259 gimple_seq_add_stmt (&new_stmt, x);
1260 }
1261
1262 if (tf->may_throw)
1263 {
1264 /* We don't need to copy the EH path of EH_ELSE,
1265 since it is only emitted once. */
1266 if (eh_else)
1267 seq = gimple_eh_else_e_body (eh_else);
1268 else
1269 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1270 lower_eh_constructs_1 (state, &seq);
1271
1272 emit_post_landing_pad (&eh_seq, tf->region);
1273 gimple_seq_add_seq (&eh_seq, seq);
1274 emit_resx (&eh_seq, tf->region);
1275 }
1276
1277 if (tf->goto_queue)
1278 {
1279 struct goto_queue_node *q, *qe;
1280 int return_index, index;
1281 struct labels_s
1282 {
1283 struct goto_queue_node *q;
1284 tree label;
1285 } *labels;
1286
1287 return_index = tf->dest_array.length ();
1288 labels = XCNEWVEC (struct labels_s, return_index + 1);
1289
1290 q = tf->goto_queue;
1291 qe = q + tf->goto_queue_active;
1292 for (; q < qe; q++)
1293 {
1294 index = q->index < 0 ? return_index : q->index;
1295
1296 if (!labels[index].q)
1297 labels[index].q = q;
1298 }
1299
1300 for (index = 0; index < return_index + 1; index++)
1301 {
1302 tree lab;
1303
1304 q = labels[index].q;
1305 if (! q)
1306 continue;
1307
1308 lab = labels[index].label
1309 = create_artificial_label (tf_loc);
1310
1311 if (index == return_index)
1312 do_return_redirection (q, lab, NULL);
1313 else
1314 do_goto_redirection (q, lab, NULL, tf);
1315
1316 x = gimple_build_label (lab);
1317 gimple_seq_add_stmt (&new_stmt, x);
1318
1319 seq = lower_try_finally_dup_block (finally, state, q->location);
1320 lower_eh_constructs_1 (state, &seq);
1321 gimple_seq_add_seq (&new_stmt, seq);
1322
1323 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1324 maybe_record_in_goto_queue (state, q->cont_stmt);
1325 }
1326
1327 for (q = tf->goto_queue; q < qe; q++)
1328 {
1329 tree lab;
1330
1331 index = q->index < 0 ? return_index : q->index;
1332
1333 if (labels[index].q == q)
1334 continue;
1335
1336 lab = labels[index].label;
1337
1338 if (index == return_index)
1339 do_return_redirection (q, lab, NULL);
1340 else
1341 do_goto_redirection (q, lab, NULL, tf);
1342 }
1343
1344 replace_goto_queue (tf);
1345 free (labels);
1346 }
1347
1348 /* Need to link new stmts after running replace_goto_queue due
1349 to not wanting to process the same goto stmts twice. */
1350 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1351 }
1352
1353 /* A subroutine of lower_try_finally. There are multiple edges incoming
1354 and outgoing from the finally block. Implement this by instrumenting
1355 each incoming edge and creating a switch statement at the end of the
1356 finally block that branches to the appropriate destination. */
1357
1358 static void
1359 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1360 {
1361 struct goto_queue_node *q, *qe;
1362 tree finally_tmp, finally_label;
1363 int return_index, eh_index, fallthru_index;
1364 int nlabels, ndests, j, last_case_index;
1365 tree last_case;
1366 auto_vec<tree> case_label_vec;
1367 gimple_seq switch_body = NULL;
1368 gimple *x;
1369 geh_else *eh_else;
1370 tree tmp;
1371 gimple *switch_stmt;
1372 gimple_seq finally;
1373 hash_map<tree, gimple *> *cont_map = NULL;
1374 /* The location of the TRY_FINALLY stmt. */
1375 location_t tf_loc = gimple_location (tf->try_finally_expr);
1376 /* The location of the finally block. */
1377 location_t finally_loc;
1378
1379 finally = gimple_try_cleanup (tf->top_p);
1380 eh_else = get_eh_else (finally);
1381
1382 /* Mash the TRY block to the head of the chain. */
1383 tf->top_p_seq = gimple_try_eval (tf->top_p);
1384
1385 /* The location of the finally is either the last stmt in the finally
1386 block or the location of the TRY_FINALLY itself. */
1387 x = gimple_seq_last_stmt (finally);
1388 finally_loc = x ? gimple_location (x) : tf_loc;
1389
1390 /* Prepare for switch statement generation. */
1391 nlabels = tf->dest_array.length ();
1392 return_index = nlabels;
1393 eh_index = return_index + tf->may_return;
1394 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1395 ndests = fallthru_index + tf->may_fallthru;
1396
1397 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1398 finally_label = create_artificial_label (finally_loc);
1399
1400 /* We use vec::quick_push on case_label_vec throughout this function,
1401 since we know the size in advance and allocate precisely as muce
1402 space as needed. */
1403 case_label_vec.create (ndests);
1404 last_case = NULL;
1405 last_case_index = 0;
1406
1407 /* Begin inserting code for getting to the finally block. Things
1408 are done in this order to correspond to the sequence the code is
1409 laid out. */
1410
1411 if (tf->may_fallthru)
1412 {
1413 x = gimple_build_assign (finally_tmp,
1414 build_int_cst (integer_type_node,
1415 fallthru_index));
1416 gimple_seq_add_stmt (&tf->top_p_seq, x);
1417
1418 tmp = build_int_cst (integer_type_node, fallthru_index);
1419 last_case = build_case_label (tmp, NULL,
1420 create_artificial_label (tf_loc));
1421 case_label_vec.quick_push (last_case);
1422 last_case_index++;
1423
1424 x = gimple_build_label (CASE_LABEL (last_case));
1425 gimple_seq_add_stmt (&switch_body, x);
1426
1427 tmp = lower_try_finally_fallthru_label (tf);
1428 x = gimple_build_goto (tmp);
1429 gimple_set_location (x, tf_loc);
1430 gimple_seq_add_stmt (&switch_body, x);
1431 }
1432
1433 /* For EH_ELSE, emit the exception path (plus resx) now, then
1434 subsequently we only need consider the normal path. */
1435 if (eh_else)
1436 {
1437 if (tf->may_throw)
1438 {
1439 finally = gimple_eh_else_e_body (eh_else);
1440 lower_eh_constructs_1 (state, &finally);
1441
1442 emit_post_landing_pad (&eh_seq, tf->region);
1443 gimple_seq_add_seq (&eh_seq, finally);
1444 emit_resx (&eh_seq, tf->region);
1445 }
1446
1447 finally = gimple_eh_else_n_body (eh_else);
1448 }
1449 else if (tf->may_throw)
1450 {
1451 emit_post_landing_pad (&eh_seq, tf->region);
1452
1453 x = gimple_build_assign (finally_tmp,
1454 build_int_cst (integer_type_node, eh_index));
1455 gimple_seq_add_stmt (&eh_seq, x);
1456
1457 x = gimple_build_goto (finally_label);
1458 gimple_set_location (x, tf_loc);
1459 gimple_seq_add_stmt (&eh_seq, x);
1460
1461 tmp = build_int_cst (integer_type_node, eh_index);
1462 last_case = build_case_label (tmp, NULL,
1463 create_artificial_label (tf_loc));
1464 case_label_vec.quick_push (last_case);
1465 last_case_index++;
1466
1467 x = gimple_build_label (CASE_LABEL (last_case));
1468 gimple_seq_add_stmt (&eh_seq, x);
1469 emit_resx (&eh_seq, tf->region);
1470 }
1471
1472 x = gimple_build_label (finally_label);
1473 gimple_seq_add_stmt (&tf->top_p_seq, x);
1474
1475 lower_eh_constructs_1 (state, &finally);
1476 gimple_seq_add_seq (&tf->top_p_seq, finally);
1477
1478 /* Redirect each incoming goto edge. */
1479 q = tf->goto_queue;
1480 qe = q + tf->goto_queue_active;
1481 j = last_case_index + tf->may_return;
1482 /* Prepare the assignments to finally_tmp that are executed upon the
1483 entrance through a particular edge. */
1484 for (; q < qe; ++q)
1485 {
1486 gimple_seq mod = NULL;
1487 int switch_id;
1488 unsigned int case_index;
1489
1490 if (q->index < 0)
1491 {
1492 x = gimple_build_assign (finally_tmp,
1493 build_int_cst (integer_type_node,
1494 return_index));
1495 gimple_seq_add_stmt (&mod, x);
1496 do_return_redirection (q, finally_label, mod);
1497 switch_id = return_index;
1498 }
1499 else
1500 {
1501 x = gimple_build_assign (finally_tmp,
1502 build_int_cst (integer_type_node, q->index));
1503 gimple_seq_add_stmt (&mod, x);
1504 do_goto_redirection (q, finally_label, mod, tf);
1505 switch_id = q->index;
1506 }
1507
1508 case_index = j + q->index;
1509 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1510 {
1511 tree case_lab;
1512 tmp = build_int_cst (integer_type_node, switch_id);
1513 case_lab = build_case_label (tmp, NULL,
1514 create_artificial_label (tf_loc));
1515 /* We store the cont_stmt in the pointer map, so that we can recover
1516 it in the loop below. */
1517 if (!cont_map)
1518 cont_map = new hash_map<tree, gimple *>;
1519 cont_map->put (case_lab, q->cont_stmt);
1520 case_label_vec.quick_push (case_lab);
1521 }
1522 }
1523 for (j = last_case_index; j < last_case_index + nlabels; j++)
1524 {
1525 gimple *cont_stmt;
1526
1527 last_case = case_label_vec[j];
1528
1529 gcc_assert (last_case);
1530 gcc_assert (cont_map);
1531
1532 cont_stmt = *cont_map->get (last_case);
1533
1534 x = gimple_build_label (CASE_LABEL (last_case));
1535 gimple_seq_add_stmt (&switch_body, x);
1536 gimple_seq_add_stmt (&switch_body, cont_stmt);
1537 maybe_record_in_goto_queue (state, cont_stmt);
1538 }
1539 if (cont_map)
1540 delete cont_map;
1541
1542 replace_goto_queue (tf);
1543
1544 /* Make sure that the last case is the default label, as one is required.
1545 Then sort the labels, which is also required in GIMPLE. */
1546 CASE_LOW (last_case) = NULL;
1547 tree tem = case_label_vec.pop ();
1548 gcc_assert (tem == last_case);
1549 sort_case_labels (case_label_vec);
1550
1551 /* Build the switch statement, setting last_case to be the default
1552 label. */
1553 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1554 case_label_vec);
1555 gimple_set_location (switch_stmt, finally_loc);
1556
1557 /* Need to link SWITCH_STMT after running replace_goto_queue
1558 due to not wanting to process the same goto stmts twice. */
1559 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1560 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1561 }
1562
1563 /* Decide whether or not we are going to duplicate the finally block.
1564 There are several considerations.
1565
1566 First, if this is Java, then the finally block contains code
1567 written by the user. It has line numbers associated with it,
1568 so duplicating the block means it's difficult to set a breakpoint.
1569 Since controlling code generation via -g is verboten, we simply
1570 never duplicate code without optimization.
1571
1572 Second, we'd like to prevent egregious code growth. One way to
1573 do this is to estimate the size of the finally block, multiply
1574 that by the number of copies we'd need to make, and compare against
1575 the estimate of the size of the switch machinery we'd have to add. */
1576
1577 static bool
1578 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1579 {
1580 int f_estimate, sw_estimate;
1581 geh_else *eh_else;
1582
1583 /* If there's an EH_ELSE involved, the exception path is separate
1584 and really doesn't come into play for this computation. */
1585 eh_else = get_eh_else (finally);
1586 if (eh_else)
1587 {
1588 ndests -= may_throw;
1589 finally = gimple_eh_else_n_body (eh_else);
1590 }
1591
1592 if (!optimize)
1593 {
1594 gimple_stmt_iterator gsi;
1595
1596 if (ndests == 1)
1597 return true;
1598
1599 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1600 {
1601 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1602 on the EH paths and, consequently, useless cleanups. */
1603 gimple *stmt = gsi_stmt (gsi);
1604 if (!is_gimple_debug (stmt)
1605 && !gimple_clobber_p (stmt)
1606 && !gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
1607 return false;
1608 }
1609 return true;
1610 }
1611
1612 /* Finally estimate N times, plus N gotos. */
1613 f_estimate = estimate_num_insns_seq (finally, &eni_size_weights);
1614 f_estimate = (f_estimate + 1) * ndests;
1615
1616 /* Switch statement (cost 10), N variable assignments, N gotos. */
1617 sw_estimate = 10 + 2 * ndests;
1618
1619 /* Optimize for size clearly wants our best guess. */
1620 if (optimize_function_for_size_p (cfun))
1621 return f_estimate < sw_estimate;
1622
1623 /* ??? These numbers are completely made up so far. */
1624 if (optimize > 1)
1625 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1626 else
1627 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1628 }
1629
1630 /* REG is the enclosing region for a possible cleanup region, or the region
1631 itself. Returns TRUE if such a region would be unreachable.
1632
1633 Cleanup regions within a must-not-throw region aren't actually reachable
1634 even if there are throwing stmts within them, because the personality
1635 routine will call terminate before unwinding. */
1636
1637 static bool
1638 cleanup_is_dead_in (eh_region reg)
1639 {
1640 while (reg && reg->type == ERT_CLEANUP)
1641 reg = reg->outer;
1642 return (reg && reg->type == ERT_MUST_NOT_THROW);
1643 }
1644
1645 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1646 to a sequence of labels and blocks, plus the exception region trees
1647 that record all the magic. This is complicated by the need to
1648 arrange for the FINALLY block to be executed on all exits. */
1649
1650 static gimple_seq
1651 lower_try_finally (struct leh_state *state, gtry *tp)
1652 {
1653 struct leh_tf_state this_tf;
1654 struct leh_state this_state;
1655 int ndests;
1656 gimple_seq old_eh_seq;
1657
1658 /* Process the try block. */
1659
1660 memset (&this_tf, 0, sizeof (this_tf));
1661 this_tf.try_finally_expr = tp;
1662 this_tf.top_p = tp;
1663 this_tf.outer = state;
1664 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state->cur_region))
1665 {
1666 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1667 this_state.cur_region = this_tf.region;
1668 }
1669 else
1670 {
1671 this_tf.region = NULL;
1672 this_state.cur_region = state->cur_region;
1673 }
1674
1675 this_state.ehp_region = state->ehp_region;
1676 this_state.tf = &this_tf;
1677
1678 old_eh_seq = eh_seq;
1679 eh_seq = NULL;
1680
1681 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1682
1683 /* Determine if the try block is escaped through the bottom. */
1684 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1685
1686 /* Determine if any exceptions are possible within the try block. */
1687 if (this_tf.region)
1688 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1689 if (this_tf.may_throw)
1690 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1691
1692 /* Determine how many edges (still) reach the finally block. Or rather,
1693 how many destinations are reached by the finally block. Use this to
1694 determine how we process the finally block itself. */
1695
1696 ndests = this_tf.dest_array.length ();
1697 ndests += this_tf.may_fallthru;
1698 ndests += this_tf.may_return;
1699 ndests += this_tf.may_throw;
1700
1701 /* If the FINALLY block is not reachable, dike it out. */
1702 if (ndests == 0)
1703 {
1704 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1705 gimple_try_set_cleanup (tp, NULL);
1706 }
1707 /* If the finally block doesn't fall through, then any destination
1708 we might try to impose there isn't reached either. There may be
1709 some minor amount of cleanup and redirection still needed. */
1710 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1711 lower_try_finally_nofallthru (state, &this_tf);
1712
1713 /* We can easily special-case redirection to a single destination. */
1714 else if (ndests == 1)
1715 lower_try_finally_onedest (state, &this_tf);
1716 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1717 gimple_try_cleanup (tp)))
1718 lower_try_finally_copy (state, &this_tf);
1719 else
1720 lower_try_finally_switch (state, &this_tf);
1721
1722 /* If someone requested we add a label at the end of the transformed
1723 block, do so. */
1724 if (this_tf.fallthru_label)
1725 {
1726 /* This must be reached only if ndests == 0. */
1727 gimple *x = gimple_build_label (this_tf.fallthru_label);
1728 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1729 }
1730
1731 this_tf.dest_array.release ();
1732 free (this_tf.goto_queue);
1733 if (this_tf.goto_queue_map)
1734 delete this_tf.goto_queue_map;
1735
1736 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1737 If there was no old eh_seq, then the append is trivially already done. */
1738 if (old_eh_seq)
1739 {
1740 if (eh_seq == NULL)
1741 eh_seq = old_eh_seq;
1742 else
1743 {
1744 gimple_seq new_eh_seq = eh_seq;
1745 eh_seq = old_eh_seq;
1746 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1747 }
1748 }
1749
1750 return this_tf.top_p_seq;
1751 }
1752
1753 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1754 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1755 exception region trees that records all the magic. */
1756
1757 static gimple_seq
1758 lower_catch (struct leh_state *state, gtry *tp)
1759 {
1760 eh_region try_region = NULL;
1761 struct leh_state this_state = *state;
1762 gimple_stmt_iterator gsi;
1763 tree out_label;
1764 gimple_seq new_seq, cleanup;
1765 gimple *x;
1766 location_t try_catch_loc = gimple_location (tp);
1767
1768 if (flag_exceptions)
1769 {
1770 try_region = gen_eh_region_try (state->cur_region);
1771 this_state.cur_region = try_region;
1772 }
1773
1774 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1775
1776 if (!eh_region_may_contain_throw (try_region))
1777 return gimple_try_eval (tp);
1778
1779 new_seq = NULL;
1780 emit_eh_dispatch (&new_seq, try_region);
1781 emit_resx (&new_seq, try_region);
1782
1783 this_state.cur_region = state->cur_region;
1784 this_state.ehp_region = try_region;
1785
1786 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1787 itself, so that e.g. for coverage purposes the nested cleanups don't
1788 appear before the cleanup body. See PR64634 for details. */
1789 gimple_seq old_eh_seq = eh_seq;
1790 eh_seq = NULL;
1791
1792 out_label = NULL;
1793 cleanup = gimple_try_cleanup (tp);
1794 for (gsi = gsi_start (cleanup);
1795 !gsi_end_p (gsi);
1796 gsi_next (&gsi))
1797 {
1798 eh_catch c;
1799 gcatch *catch_stmt;
1800 gimple_seq handler;
1801
1802 catch_stmt = as_a <gcatch *> (gsi_stmt (gsi));
1803 c = gen_eh_region_catch (try_region, gimple_catch_types (catch_stmt));
1804
1805 handler = gimple_catch_handler (catch_stmt);
1806 lower_eh_constructs_1 (&this_state, &handler);
1807
1808 c->label = create_artificial_label (UNKNOWN_LOCATION);
1809 x = gimple_build_label (c->label);
1810 gimple_seq_add_stmt (&new_seq, x);
1811
1812 gimple_seq_add_seq (&new_seq, handler);
1813
1814 if (gimple_seq_may_fallthru (new_seq))
1815 {
1816 if (!out_label)
1817 out_label = create_artificial_label (try_catch_loc);
1818
1819 x = gimple_build_goto (out_label);
1820 gimple_seq_add_stmt (&new_seq, x);
1821 }
1822 if (!c->type_list)
1823 break;
1824 }
1825
1826 gimple_try_set_cleanup (tp, new_seq);
1827
1828 gimple_seq new_eh_seq = eh_seq;
1829 eh_seq = old_eh_seq;
1830 gimple_seq ret_seq = frob_into_branch_around (tp, try_region, out_label);
1831 gimple_seq_add_seq (&eh_seq, new_eh_seq);
1832 return ret_seq;
1833 }
1834
1835 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1836 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1837 region trees that record all the magic. */
1838
1839 static gimple_seq
1840 lower_eh_filter (struct leh_state *state, gtry *tp)
1841 {
1842 struct leh_state this_state = *state;
1843 eh_region this_region = NULL;
1844 gimple *inner, *x;
1845 gimple_seq new_seq;
1846
1847 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1848
1849 if (flag_exceptions)
1850 {
1851 this_region = gen_eh_region_allowed (state->cur_region,
1852 gimple_eh_filter_types (inner));
1853 this_state.cur_region = this_region;
1854 }
1855
1856 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1857
1858 if (!eh_region_may_contain_throw (this_region))
1859 return gimple_try_eval (tp);
1860
1861 new_seq = NULL;
1862 this_state.cur_region = state->cur_region;
1863 this_state.ehp_region = this_region;
1864
1865 emit_eh_dispatch (&new_seq, this_region);
1866 emit_resx (&new_seq, this_region);
1867
1868 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1869 x = gimple_build_label (this_region->u.allowed.label);
1870 gimple_seq_add_stmt (&new_seq, x);
1871
1872 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1873 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1874
1875 gimple_try_set_cleanup (tp, new_seq);
1876
1877 return frob_into_branch_around (tp, this_region, NULL);
1878 }
1879
1880 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1881 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1882 plus the exception region trees that record all the magic. */
1883
1884 static gimple_seq
1885 lower_eh_must_not_throw (struct leh_state *state, gtry *tp)
1886 {
1887 struct leh_state this_state = *state;
1888
1889 if (flag_exceptions)
1890 {
1891 gimple *inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1892 eh_region this_region;
1893
1894 this_region = gen_eh_region_must_not_throw (state->cur_region);
1895 this_region->u.must_not_throw.failure_decl
1896 = gimple_eh_must_not_throw_fndecl (
1897 as_a <geh_mnt *> (inner));
1898 this_region->u.must_not_throw.failure_loc
1899 = LOCATION_LOCUS (gimple_location (tp));
1900
1901 /* In order to get mangling applied to this decl, we must mark it
1902 used now. Otherwise, pass_ipa_free_lang_data won't think it
1903 needs to happen. */
1904 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1905
1906 this_state.cur_region = this_region;
1907 }
1908
1909 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1910
1911 return gimple_try_eval (tp);
1912 }
1913
1914 /* Implement a cleanup expression. This is similar to try-finally,
1915 except that we only execute the cleanup block for exception edges. */
1916
1917 static gimple_seq
1918 lower_cleanup (struct leh_state *state, gtry *tp)
1919 {
1920 struct leh_state this_state = *state;
1921 eh_region this_region = NULL;
1922 struct leh_tf_state fake_tf;
1923 gimple_seq result;
1924 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1925
1926 if (flag_exceptions && !cleanup_dead)
1927 {
1928 this_region = gen_eh_region_cleanup (state->cur_region);
1929 this_state.cur_region = this_region;
1930 }
1931
1932 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1933
1934 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1935 return gimple_try_eval (tp);
1936
1937 /* Build enough of a try-finally state so that we can reuse
1938 honor_protect_cleanup_actions. */
1939 memset (&fake_tf, 0, sizeof (fake_tf));
1940 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1941 fake_tf.outer = state;
1942 fake_tf.region = this_region;
1943 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1944 fake_tf.may_throw = true;
1945
1946 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1947
1948 if (fake_tf.may_throw)
1949 {
1950 /* In this case honor_protect_cleanup_actions had nothing to do,
1951 and we should process this normally. */
1952 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1953 result = frob_into_branch_around (tp, this_region,
1954 fake_tf.fallthru_label);
1955 }
1956 else
1957 {
1958 /* In this case honor_protect_cleanup_actions did nearly all of
1959 the work. All we have left is to append the fallthru_label. */
1960
1961 result = gimple_try_eval (tp);
1962 if (fake_tf.fallthru_label)
1963 {
1964 gimple *x = gimple_build_label (fake_tf.fallthru_label);
1965 gimple_seq_add_stmt (&result, x);
1966 }
1967 }
1968 return result;
1969 }
1970
1971 /* Main loop for lowering eh constructs. Also moves gsi to the next
1972 statement. */
1973
1974 static void
1975 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1976 {
1977 gimple_seq replace;
1978 gimple *x;
1979 gimple *stmt = gsi_stmt (*gsi);
1980
1981 switch (gimple_code (stmt))
1982 {
1983 case GIMPLE_CALL:
1984 {
1985 tree fndecl = gimple_call_fndecl (stmt);
1986 tree rhs, lhs;
1987
1988 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1989 switch (DECL_FUNCTION_CODE (fndecl))
1990 {
1991 case BUILT_IN_EH_POINTER:
1992 /* The front end may have generated a call to
1993 __builtin_eh_pointer (0) within a catch region. Replace
1994 this zero argument with the current catch region number. */
1995 if (state->ehp_region)
1996 {
1997 tree nr = build_int_cst (integer_type_node,
1998 state->ehp_region->index);
1999 gimple_call_set_arg (stmt, 0, nr);
2000 }
2001 else
2002 {
2003 /* The user has dome something silly. Remove it. */
2004 rhs = null_pointer_node;
2005 goto do_replace;
2006 }
2007 break;
2008
2009 case BUILT_IN_EH_FILTER:
2010 /* ??? This should never appear, but since it's a builtin it
2011 is accessible to abuse by users. Just remove it and
2012 replace the use with the arbitrary value zero. */
2013 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
2014 do_replace:
2015 lhs = gimple_call_lhs (stmt);
2016 x = gimple_build_assign (lhs, rhs);
2017 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2018 /* FALLTHRU */
2019
2020 case BUILT_IN_EH_COPY_VALUES:
2021 /* Likewise this should not appear. Remove it. */
2022 gsi_remove (gsi, true);
2023 return;
2024
2025 default:
2026 break;
2027 }
2028 }
2029 /* FALLTHRU */
2030
2031 case GIMPLE_ASSIGN:
2032 /* If the stmt can throw use a new temporary for the assignment
2033 to a LHS. This makes sure the old value of the LHS is
2034 available on the EH edge. Only do so for statements that
2035 potentially fall through (no noreturn calls e.g.), otherwise
2036 this new assignment might create fake fallthru regions. */
2037 if (stmt_could_throw_p (stmt)
2038 && gimple_has_lhs (stmt)
2039 && gimple_stmt_may_fallthru (stmt)
2040 && !tree_could_throw_p (gimple_get_lhs (stmt))
2041 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2042 {
2043 tree lhs = gimple_get_lhs (stmt);
2044 tree tmp = create_tmp_var (TREE_TYPE (lhs));
2045 gimple *s = gimple_build_assign (lhs, tmp);
2046 gimple_set_location (s, gimple_location (stmt));
2047 gimple_set_block (s, gimple_block (stmt));
2048 gimple_set_lhs (stmt, tmp);
2049 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2050 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2051 DECL_GIMPLE_REG_P (tmp) = 1;
2052 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2053 }
2054 /* Look for things that can throw exceptions, and record them. */
2055 if (state->cur_region && stmt_could_throw_p (stmt))
2056 {
2057 record_stmt_eh_region (state->cur_region, stmt);
2058 note_eh_region_may_contain_throw (state->cur_region);
2059 }
2060 break;
2061
2062 case GIMPLE_COND:
2063 case GIMPLE_GOTO:
2064 case GIMPLE_RETURN:
2065 maybe_record_in_goto_queue (state, stmt);
2066 break;
2067
2068 case GIMPLE_SWITCH:
2069 verify_norecord_switch_expr (state, as_a <gswitch *> (stmt));
2070 break;
2071
2072 case GIMPLE_TRY:
2073 {
2074 gtry *try_stmt = as_a <gtry *> (stmt);
2075 if (gimple_try_kind (try_stmt) == GIMPLE_TRY_FINALLY)
2076 replace = lower_try_finally (state, try_stmt);
2077 else
2078 {
2079 x = gimple_seq_first_stmt (gimple_try_cleanup (try_stmt));
2080 if (!x)
2081 {
2082 replace = gimple_try_eval (try_stmt);
2083 lower_eh_constructs_1 (state, &replace);
2084 }
2085 else
2086 switch (gimple_code (x))
2087 {
2088 case GIMPLE_CATCH:
2089 replace = lower_catch (state, try_stmt);
2090 break;
2091 case GIMPLE_EH_FILTER:
2092 replace = lower_eh_filter (state, try_stmt);
2093 break;
2094 case GIMPLE_EH_MUST_NOT_THROW:
2095 replace = lower_eh_must_not_throw (state, try_stmt);
2096 break;
2097 case GIMPLE_EH_ELSE:
2098 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2099 gcc_unreachable ();
2100 default:
2101 replace = lower_cleanup (state, try_stmt);
2102 break;
2103 }
2104 }
2105 }
2106
2107 /* Remove the old stmt and insert the transformed sequence
2108 instead. */
2109 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2110 gsi_remove (gsi, true);
2111
2112 /* Return since we don't want gsi_next () */
2113 return;
2114
2115 case GIMPLE_EH_ELSE:
2116 /* We should be eliminating this in lower_try_finally et al. */
2117 gcc_unreachable ();
2118
2119 default:
2120 /* A type, a decl, or some kind of statement that we're not
2121 interested in. Don't walk them. */
2122 break;
2123 }
2124
2125 gsi_next (gsi);
2126 }
2127
2128 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2129
2130 static void
2131 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2132 {
2133 gimple_stmt_iterator gsi;
2134 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2135 lower_eh_constructs_2 (state, &gsi);
2136 }
2137
2138 namespace {
2139
2140 const pass_data pass_data_lower_eh =
2141 {
2142 GIMPLE_PASS, /* type */
2143 "eh", /* name */
2144 OPTGROUP_NONE, /* optinfo_flags */
2145 TV_TREE_EH, /* tv_id */
2146 PROP_gimple_lcf, /* properties_required */
2147 PROP_gimple_leh, /* properties_provided */
2148 0, /* properties_destroyed */
2149 0, /* todo_flags_start */
2150 0, /* todo_flags_finish */
2151 };
2152
2153 class pass_lower_eh : public gimple_opt_pass
2154 {
2155 public:
2156 pass_lower_eh (gcc::context *ctxt)
2157 : gimple_opt_pass (pass_data_lower_eh, ctxt)
2158 {}
2159
2160 /* opt_pass methods: */
2161 virtual unsigned int execute (function *);
2162
2163 }; // class pass_lower_eh
2164
2165 unsigned int
2166 pass_lower_eh::execute (function *fun)
2167 {
2168 struct leh_state null_state;
2169 gimple_seq bodyp;
2170
2171 bodyp = gimple_body (current_function_decl);
2172 if (bodyp == NULL)
2173 return 0;
2174
2175 finally_tree = new hash_table<finally_tree_hasher> (31);
2176 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2177 memset (&null_state, 0, sizeof (null_state));
2178
2179 collect_finally_tree_1 (bodyp, NULL);
2180 lower_eh_constructs_1 (&null_state, &bodyp);
2181 gimple_set_body (current_function_decl, bodyp);
2182
2183 /* We assume there's a return statement, or something, at the end of
2184 the function, and thus ploping the EH sequence afterward won't
2185 change anything. */
2186 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2187 gimple_seq_add_seq (&bodyp, eh_seq);
2188
2189 /* We assume that since BODYP already existed, adding EH_SEQ to it
2190 didn't change its value, and we don't have to re-set the function. */
2191 gcc_assert (bodyp == gimple_body (current_function_decl));
2192
2193 delete finally_tree;
2194 finally_tree = NULL;
2195 BITMAP_FREE (eh_region_may_contain_throw_map);
2196 eh_seq = NULL;
2197
2198 /* If this function needs a language specific EH personality routine
2199 and the frontend didn't already set one do so now. */
2200 if (function_needs_eh_personality (fun) == eh_personality_lang
2201 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2202 DECL_FUNCTION_PERSONALITY (current_function_decl)
2203 = lang_hooks.eh_personality ();
2204
2205 return 0;
2206 }
2207
2208 } // anon namespace
2209
2210 gimple_opt_pass *
2211 make_pass_lower_eh (gcc::context *ctxt)
2212 {
2213 return new pass_lower_eh (ctxt);
2214 }
2215 \f
2216 /* Create the multiple edges from an EH_DISPATCH statement to all of
2217 the possible handlers for its EH region. Return true if there's
2218 no fallthru edge; false if there is. */
2219
2220 bool
2221 make_eh_dispatch_edges (geh_dispatch *stmt)
2222 {
2223 eh_region r;
2224 eh_catch c;
2225 basic_block src, dst;
2226
2227 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2228 src = gimple_bb (stmt);
2229
2230 switch (r->type)
2231 {
2232 case ERT_TRY:
2233 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2234 {
2235 dst = label_to_block (c->label);
2236 make_edge (src, dst, 0);
2237
2238 /* A catch-all handler doesn't have a fallthru. */
2239 if (c->type_list == NULL)
2240 return false;
2241 }
2242 break;
2243
2244 case ERT_ALLOWED_EXCEPTIONS:
2245 dst = label_to_block (r->u.allowed.label);
2246 make_edge (src, dst, 0);
2247 break;
2248
2249 default:
2250 gcc_unreachable ();
2251 }
2252
2253 return true;
2254 }
2255
2256 /* Create the single EH edge from STMT to its nearest landing pad,
2257 if there is such a landing pad within the current function. */
2258
2259 void
2260 make_eh_edges (gimple *stmt)
2261 {
2262 basic_block src, dst;
2263 eh_landing_pad lp;
2264 int lp_nr;
2265
2266 lp_nr = lookup_stmt_eh_lp (stmt);
2267 if (lp_nr <= 0)
2268 return;
2269
2270 lp = get_eh_landing_pad_from_number (lp_nr);
2271 gcc_assert (lp != NULL);
2272
2273 src = gimple_bb (stmt);
2274 dst = label_to_block (lp->post_landing_pad);
2275 make_edge (src, dst, EDGE_EH);
2276 }
2277
2278 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2279 do not actually perform the final edge redirection.
2280
2281 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2282 we intend to change the destination EH region as well; this means
2283 EH_LANDING_PAD_NR must already be set on the destination block label.
2284 If false, we're being called from generic cfg manipulation code and we
2285 should preserve our place within the region tree. */
2286
2287 static void
2288 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2289 {
2290 eh_landing_pad old_lp, new_lp;
2291 basic_block old_bb;
2292 gimple *throw_stmt;
2293 int old_lp_nr, new_lp_nr;
2294 tree old_label, new_label;
2295 edge_iterator ei;
2296 edge e;
2297
2298 old_bb = edge_in->dest;
2299 old_label = gimple_block_label (old_bb);
2300 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2301 gcc_assert (old_lp_nr > 0);
2302 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2303
2304 throw_stmt = last_stmt (edge_in->src);
2305 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2306
2307 new_label = gimple_block_label (new_bb);
2308
2309 /* Look for an existing region that might be using NEW_BB already. */
2310 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2311 if (new_lp_nr)
2312 {
2313 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2314 gcc_assert (new_lp);
2315
2316 /* Unless CHANGE_REGION is true, the new and old landing pad
2317 had better be associated with the same EH region. */
2318 gcc_assert (change_region || new_lp->region == old_lp->region);
2319 }
2320 else
2321 {
2322 new_lp = NULL;
2323 gcc_assert (!change_region);
2324 }
2325
2326 /* Notice when we redirect the last EH edge away from OLD_BB. */
2327 FOR_EACH_EDGE (e, ei, old_bb->preds)
2328 if (e != edge_in && (e->flags & EDGE_EH))
2329 break;
2330
2331 if (new_lp)
2332 {
2333 /* NEW_LP already exists. If there are still edges into OLD_LP,
2334 there's nothing to do with the EH tree. If there are no more
2335 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2336 If CHANGE_REGION is true, then our caller is expecting to remove
2337 the landing pad. */
2338 if (e == NULL && !change_region)
2339 remove_eh_landing_pad (old_lp);
2340 }
2341 else
2342 {
2343 /* No correct landing pad exists. If there are no more edges
2344 into OLD_LP, then we can simply re-use the existing landing pad.
2345 Otherwise, we have to create a new landing pad. */
2346 if (e == NULL)
2347 {
2348 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2349 new_lp = old_lp;
2350 }
2351 else
2352 new_lp = gen_eh_landing_pad (old_lp->region);
2353 new_lp->post_landing_pad = new_label;
2354 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2355 }
2356
2357 /* Maybe move the throwing statement to the new region. */
2358 if (old_lp != new_lp)
2359 {
2360 remove_stmt_from_eh_lp (throw_stmt);
2361 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2362 }
2363 }
2364
2365 /* Redirect EH edge E to NEW_BB. */
2366
2367 edge
2368 redirect_eh_edge (edge edge_in, basic_block new_bb)
2369 {
2370 redirect_eh_edge_1 (edge_in, new_bb, false);
2371 return ssa_redirect_edge (edge_in, new_bb);
2372 }
2373
2374 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2375 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2376 The actual edge update will happen in the caller. */
2377
2378 void
2379 redirect_eh_dispatch_edge (geh_dispatch *stmt, edge e, basic_block new_bb)
2380 {
2381 tree new_lab = gimple_block_label (new_bb);
2382 bool any_changed = false;
2383 basic_block old_bb;
2384 eh_region r;
2385 eh_catch c;
2386
2387 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2388 switch (r->type)
2389 {
2390 case ERT_TRY:
2391 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2392 {
2393 old_bb = label_to_block (c->label);
2394 if (old_bb == e->dest)
2395 {
2396 c->label = new_lab;
2397 any_changed = true;
2398 }
2399 }
2400 break;
2401
2402 case ERT_ALLOWED_EXCEPTIONS:
2403 old_bb = label_to_block (r->u.allowed.label);
2404 gcc_assert (old_bb == e->dest);
2405 r->u.allowed.label = new_lab;
2406 any_changed = true;
2407 break;
2408
2409 default:
2410 gcc_unreachable ();
2411 }
2412
2413 gcc_assert (any_changed);
2414 }
2415 \f
2416 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2417
2418 bool
2419 operation_could_trap_helper_p (enum tree_code op,
2420 bool fp_operation,
2421 bool honor_trapv,
2422 bool honor_nans,
2423 bool honor_snans,
2424 tree divisor,
2425 bool *handled)
2426 {
2427 *handled = true;
2428 switch (op)
2429 {
2430 case TRUNC_DIV_EXPR:
2431 case CEIL_DIV_EXPR:
2432 case FLOOR_DIV_EXPR:
2433 case ROUND_DIV_EXPR:
2434 case EXACT_DIV_EXPR:
2435 case CEIL_MOD_EXPR:
2436 case FLOOR_MOD_EXPR:
2437 case ROUND_MOD_EXPR:
2438 case TRUNC_MOD_EXPR:
2439 case RDIV_EXPR:
2440 if (honor_snans || honor_trapv)
2441 return true;
2442 if (fp_operation)
2443 return flag_trapping_math;
2444 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2445 return true;
2446 return false;
2447
2448 case LT_EXPR:
2449 case LE_EXPR:
2450 case GT_EXPR:
2451 case GE_EXPR:
2452 case LTGT_EXPR:
2453 /* Some floating point comparisons may trap. */
2454 return honor_nans;
2455
2456 case EQ_EXPR:
2457 case NE_EXPR:
2458 case UNORDERED_EXPR:
2459 case ORDERED_EXPR:
2460 case UNLT_EXPR:
2461 case UNLE_EXPR:
2462 case UNGT_EXPR:
2463 case UNGE_EXPR:
2464 case UNEQ_EXPR:
2465 return honor_snans;
2466
2467 case NEGATE_EXPR:
2468 case ABS_EXPR:
2469 case CONJ_EXPR:
2470 /* These operations don't trap with floating point. */
2471 if (honor_trapv)
2472 return true;
2473 return false;
2474
2475 case PLUS_EXPR:
2476 case MINUS_EXPR:
2477 case MULT_EXPR:
2478 /* Any floating arithmetic may trap. */
2479 if (fp_operation && flag_trapping_math)
2480 return true;
2481 if (honor_trapv)
2482 return true;
2483 return false;
2484
2485 case COMPLEX_EXPR:
2486 case CONSTRUCTOR:
2487 /* Constructing an object cannot trap. */
2488 return false;
2489
2490 default:
2491 /* Any floating arithmetic may trap. */
2492 if (fp_operation && flag_trapping_math)
2493 return true;
2494
2495 *handled = false;
2496 return false;
2497 }
2498 }
2499
2500 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2501 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2502 type operands that may trap. If OP is a division operator, DIVISOR contains
2503 the value of the divisor. */
2504
2505 bool
2506 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2507 tree divisor)
2508 {
2509 bool honor_nans = (fp_operation && flag_trapping_math
2510 && !flag_finite_math_only);
2511 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2512 bool handled;
2513
2514 if (TREE_CODE_CLASS (op) != tcc_comparison
2515 && TREE_CODE_CLASS (op) != tcc_unary
2516 && TREE_CODE_CLASS (op) != tcc_binary)
2517 return false;
2518
2519 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2520 honor_nans, honor_snans, divisor,
2521 &handled);
2522 }
2523
2524
2525 /* Returns true if it is possible to prove that the index of
2526 an array access REF (an ARRAY_REF expression) falls into the
2527 array bounds. */
2528
2529 static bool
2530 in_array_bounds_p (tree ref)
2531 {
2532 tree idx = TREE_OPERAND (ref, 1);
2533 tree min, max;
2534
2535 if (TREE_CODE (idx) != INTEGER_CST)
2536 return false;
2537
2538 min = array_ref_low_bound (ref);
2539 max = array_ref_up_bound (ref);
2540 if (!min
2541 || !max
2542 || TREE_CODE (min) != INTEGER_CST
2543 || TREE_CODE (max) != INTEGER_CST)
2544 return false;
2545
2546 if (tree_int_cst_lt (idx, min)
2547 || tree_int_cst_lt (max, idx))
2548 return false;
2549
2550 return true;
2551 }
2552
2553 /* Returns true if it is possible to prove that the range of
2554 an array access REF (an ARRAY_RANGE_REF expression) falls
2555 into the array bounds. */
2556
2557 static bool
2558 range_in_array_bounds_p (tree ref)
2559 {
2560 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
2561 tree range_min, range_max, min, max;
2562
2563 range_min = TYPE_MIN_VALUE (domain_type);
2564 range_max = TYPE_MAX_VALUE (domain_type);
2565 if (!range_min
2566 || !range_max
2567 || TREE_CODE (range_min) != INTEGER_CST
2568 || TREE_CODE (range_max) != INTEGER_CST)
2569 return false;
2570
2571 min = array_ref_low_bound (ref);
2572 max = array_ref_up_bound (ref);
2573 if (!min
2574 || !max
2575 || TREE_CODE (min) != INTEGER_CST
2576 || TREE_CODE (max) != INTEGER_CST)
2577 return false;
2578
2579 if (tree_int_cst_lt (range_min, min)
2580 || tree_int_cst_lt (max, range_max))
2581 return false;
2582
2583 return true;
2584 }
2585
2586 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2587 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2588 This routine expects only GIMPLE lhs or rhs input. */
2589
2590 bool
2591 tree_could_trap_p (tree expr)
2592 {
2593 enum tree_code code;
2594 bool fp_operation = false;
2595 bool honor_trapv = false;
2596 tree t, base, div = NULL_TREE;
2597
2598 if (!expr)
2599 return false;
2600
2601 code = TREE_CODE (expr);
2602 t = TREE_TYPE (expr);
2603
2604 if (t)
2605 {
2606 if (COMPARISON_CLASS_P (expr))
2607 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2608 else
2609 fp_operation = FLOAT_TYPE_P (t);
2610 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2611 }
2612
2613 if (TREE_CODE_CLASS (code) == tcc_binary)
2614 div = TREE_OPERAND (expr, 1);
2615 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2616 return true;
2617
2618 restart:
2619 switch (code)
2620 {
2621 case COMPONENT_REF:
2622 case REALPART_EXPR:
2623 case IMAGPART_EXPR:
2624 case BIT_FIELD_REF:
2625 case VIEW_CONVERT_EXPR:
2626 case WITH_SIZE_EXPR:
2627 expr = TREE_OPERAND (expr, 0);
2628 code = TREE_CODE (expr);
2629 goto restart;
2630
2631 case ARRAY_RANGE_REF:
2632 base = TREE_OPERAND (expr, 0);
2633 if (tree_could_trap_p (base))
2634 return true;
2635 if (TREE_THIS_NOTRAP (expr))
2636 return false;
2637 return !range_in_array_bounds_p (expr);
2638
2639 case ARRAY_REF:
2640 base = TREE_OPERAND (expr, 0);
2641 if (tree_could_trap_p (base))
2642 return true;
2643 if (TREE_THIS_NOTRAP (expr))
2644 return false;
2645 return !in_array_bounds_p (expr);
2646
2647 case TARGET_MEM_REF:
2648 case MEM_REF:
2649 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
2650 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
2651 return true;
2652 if (TREE_THIS_NOTRAP (expr))
2653 return false;
2654 /* We cannot prove that the access is in-bounds when we have
2655 variable-index TARGET_MEM_REFs. */
2656 if (code == TARGET_MEM_REF
2657 && (TMR_INDEX (expr) || TMR_INDEX2 (expr)))
2658 return true;
2659 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2660 {
2661 tree base = TREE_OPERAND (TREE_OPERAND (expr, 0), 0);
2662 offset_int off = mem_ref_offset (expr);
2663 if (wi::neg_p (off, SIGNED))
2664 return true;
2665 if (TREE_CODE (base) == STRING_CST)
2666 return wi::leu_p (TREE_STRING_LENGTH (base), off);
2667 else if (DECL_SIZE_UNIT (base) == NULL_TREE
2668 || TREE_CODE (DECL_SIZE_UNIT (base)) != INTEGER_CST
2669 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base)), off))
2670 return true;
2671 /* Now we are sure the first byte of the access is inside
2672 the object. */
2673 return false;
2674 }
2675 return true;
2676
2677 case INDIRECT_REF:
2678 return !TREE_THIS_NOTRAP (expr);
2679
2680 case ASM_EXPR:
2681 return TREE_THIS_VOLATILE (expr);
2682
2683 case CALL_EXPR:
2684 t = get_callee_fndecl (expr);
2685 /* Assume that calls to weak functions may trap. */
2686 if (!t || !DECL_P (t))
2687 return true;
2688 if (DECL_WEAK (t))
2689 return tree_could_trap_p (t);
2690 return false;
2691
2692 case FUNCTION_DECL:
2693 /* Assume that accesses to weak functions may trap, unless we know
2694 they are certainly defined in current TU or in some other
2695 LTO partition. */
2696 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2697 {
2698 cgraph_node *node = cgraph_node::get (expr);
2699 if (node)
2700 node = node->function_symbol ();
2701 return !(node && node->in_other_partition);
2702 }
2703 return false;
2704
2705 case VAR_DECL:
2706 /* Assume that accesses to weak vars may trap, unless we know
2707 they are certainly defined in current TU or in some other
2708 LTO partition. */
2709 if (DECL_WEAK (expr) && !DECL_COMDAT (expr) && DECL_EXTERNAL (expr))
2710 {
2711 varpool_node *node = varpool_node::get (expr);
2712 if (node)
2713 node = node->ultimate_alias_target ();
2714 return !(node && node->in_other_partition);
2715 }
2716 return false;
2717
2718 default:
2719 return false;
2720 }
2721 }
2722
2723
2724 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2725 an assignment or a conditional) may throw. */
2726
2727 static bool
2728 stmt_could_throw_1_p (gimple *stmt)
2729 {
2730 enum tree_code code = gimple_expr_code (stmt);
2731 bool honor_nans = false;
2732 bool honor_snans = false;
2733 bool fp_operation = false;
2734 bool honor_trapv = false;
2735 tree t;
2736 size_t i;
2737 bool handled, ret;
2738
2739 if (TREE_CODE_CLASS (code) == tcc_comparison
2740 || TREE_CODE_CLASS (code) == tcc_unary
2741 || TREE_CODE_CLASS (code) == tcc_binary)
2742 {
2743 if (is_gimple_assign (stmt)
2744 && TREE_CODE_CLASS (code) == tcc_comparison)
2745 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2746 else if (gimple_code (stmt) == GIMPLE_COND)
2747 t = TREE_TYPE (gimple_cond_lhs (stmt));
2748 else
2749 t = gimple_expr_type (stmt);
2750 fp_operation = FLOAT_TYPE_P (t);
2751 if (fp_operation)
2752 {
2753 honor_nans = flag_trapping_math && !flag_finite_math_only;
2754 honor_snans = flag_signaling_nans != 0;
2755 }
2756 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2757 honor_trapv = true;
2758 }
2759
2760 /* Check if the main expression may trap. */
2761 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2762 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2763 honor_nans, honor_snans, t,
2764 &handled);
2765 if (handled)
2766 return ret;
2767
2768 /* If the expression does not trap, see if any of the individual operands may
2769 trap. */
2770 for (i = 0; i < gimple_num_ops (stmt); i++)
2771 if (tree_could_trap_p (gimple_op (stmt, i)))
2772 return true;
2773
2774 return false;
2775 }
2776
2777
2778 /* Return true if statement STMT could throw an exception. */
2779
2780 bool
2781 stmt_could_throw_p (gimple *stmt)
2782 {
2783 if (!flag_exceptions)
2784 return false;
2785
2786 /* The only statements that can throw an exception are assignments,
2787 conditionals, calls, resx, and asms. */
2788 switch (gimple_code (stmt))
2789 {
2790 case GIMPLE_RESX:
2791 return true;
2792
2793 case GIMPLE_CALL:
2794 return !gimple_call_nothrow_p (as_a <gcall *> (stmt));
2795
2796 case GIMPLE_ASSIGN:
2797 case GIMPLE_COND:
2798 if (!cfun->can_throw_non_call_exceptions)
2799 return false;
2800 return stmt_could_throw_1_p (stmt);
2801
2802 case GIMPLE_ASM:
2803 if (!cfun->can_throw_non_call_exceptions)
2804 return false;
2805 return gimple_asm_volatile_p (as_a <gasm *> (stmt));
2806
2807 default:
2808 return false;
2809 }
2810 }
2811
2812
2813 /* Return true if expression T could throw an exception. */
2814
2815 bool
2816 tree_could_throw_p (tree t)
2817 {
2818 if (!flag_exceptions)
2819 return false;
2820 if (TREE_CODE (t) == MODIFY_EXPR)
2821 {
2822 if (cfun->can_throw_non_call_exceptions
2823 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2824 return true;
2825 t = TREE_OPERAND (t, 1);
2826 }
2827
2828 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2829 t = TREE_OPERAND (t, 0);
2830 if (TREE_CODE (t) == CALL_EXPR)
2831 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2832 if (cfun->can_throw_non_call_exceptions)
2833 return tree_could_trap_p (t);
2834 return false;
2835 }
2836
2837 /* Return true if STMT can throw an exception that is not caught within
2838 the current function (CFUN). */
2839
2840 bool
2841 stmt_can_throw_external (gimple *stmt)
2842 {
2843 int lp_nr;
2844
2845 if (!stmt_could_throw_p (stmt))
2846 return false;
2847
2848 lp_nr = lookup_stmt_eh_lp (stmt);
2849 return lp_nr == 0;
2850 }
2851
2852 /* Return true if STMT can throw an exception that is caught within
2853 the current function (CFUN). */
2854
2855 bool
2856 stmt_can_throw_internal (gimple *stmt)
2857 {
2858 int lp_nr;
2859
2860 if (!stmt_could_throw_p (stmt))
2861 return false;
2862
2863 lp_nr = lookup_stmt_eh_lp (stmt);
2864 return lp_nr > 0;
2865 }
2866
2867 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2868 remove any entry it might have from the EH table. Return true if
2869 any change was made. */
2870
2871 bool
2872 maybe_clean_eh_stmt_fn (struct function *ifun, gimple *stmt)
2873 {
2874 if (stmt_could_throw_p (stmt))
2875 return false;
2876 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2877 }
2878
2879 /* Likewise, but always use the current function. */
2880
2881 bool
2882 maybe_clean_eh_stmt (gimple *stmt)
2883 {
2884 return maybe_clean_eh_stmt_fn (cfun, stmt);
2885 }
2886
2887 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2888 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2889 in the table if it should be in there. Return TRUE if a replacement was
2890 done that my require an EH edge purge. */
2891
2892 bool
2893 maybe_clean_or_replace_eh_stmt (gimple *old_stmt, gimple *new_stmt)
2894 {
2895 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2896
2897 if (lp_nr != 0)
2898 {
2899 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2900
2901 if (new_stmt == old_stmt && new_stmt_could_throw)
2902 return false;
2903
2904 remove_stmt_from_eh_lp (old_stmt);
2905 if (new_stmt_could_throw)
2906 {
2907 add_stmt_to_eh_lp (new_stmt, lp_nr);
2908 return false;
2909 }
2910 else
2911 return true;
2912 }
2913
2914 return false;
2915 }
2916
2917 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2918 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2919 operand is the return value of duplicate_eh_regions. */
2920
2921 bool
2922 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple *new_stmt,
2923 struct function *old_fun, gimple *old_stmt,
2924 hash_map<void *, void *> *map,
2925 int default_lp_nr)
2926 {
2927 int old_lp_nr, new_lp_nr;
2928
2929 if (!stmt_could_throw_p (new_stmt))
2930 return false;
2931
2932 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2933 if (old_lp_nr == 0)
2934 {
2935 if (default_lp_nr == 0)
2936 return false;
2937 new_lp_nr = default_lp_nr;
2938 }
2939 else if (old_lp_nr > 0)
2940 {
2941 eh_landing_pad old_lp, new_lp;
2942
2943 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2944 new_lp = static_cast<eh_landing_pad> (*map->get (old_lp));
2945 new_lp_nr = new_lp->index;
2946 }
2947 else
2948 {
2949 eh_region old_r, new_r;
2950
2951 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2952 new_r = static_cast<eh_region> (*map->get (old_r));
2953 new_lp_nr = -new_r->index;
2954 }
2955
2956 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2957 return true;
2958 }
2959
2960 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2961 and thus no remapping is required. */
2962
2963 bool
2964 maybe_duplicate_eh_stmt (gimple *new_stmt, gimple *old_stmt)
2965 {
2966 int lp_nr;
2967
2968 if (!stmt_could_throw_p (new_stmt))
2969 return false;
2970
2971 lp_nr = lookup_stmt_eh_lp (old_stmt);
2972 if (lp_nr == 0)
2973 return false;
2974
2975 add_stmt_to_eh_lp (new_stmt, lp_nr);
2976 return true;
2977 }
2978 \f
2979 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2980 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2981 this only handles handlers consisting of a single call, as that's the
2982 important case for C++: a destructor call for a particular object showing
2983 up in multiple handlers. */
2984
2985 static bool
2986 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2987 {
2988 gimple_stmt_iterator gsi;
2989 gimple *ones, *twos;
2990 unsigned int ai;
2991
2992 gsi = gsi_start (oneh);
2993 if (!gsi_one_before_end_p (gsi))
2994 return false;
2995 ones = gsi_stmt (gsi);
2996
2997 gsi = gsi_start (twoh);
2998 if (!gsi_one_before_end_p (gsi))
2999 return false;
3000 twos = gsi_stmt (gsi);
3001
3002 if (!is_gimple_call (ones)
3003 || !is_gimple_call (twos)
3004 || gimple_call_lhs (ones)
3005 || gimple_call_lhs (twos)
3006 || gimple_call_chain (ones)
3007 || gimple_call_chain (twos)
3008 || !gimple_call_same_target_p (ones, twos)
3009 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
3010 return false;
3011
3012 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
3013 if (!operand_equal_p (gimple_call_arg (ones, ai),
3014 gimple_call_arg (twos, ai), 0))
3015 return false;
3016
3017 return true;
3018 }
3019
3020 /* Optimize
3021 try { A() } finally { try { ~B() } catch { ~A() } }
3022 try { ... } finally { ~A() }
3023 into
3024 try { A() } catch { ~B() }
3025 try { ~B() ... } finally { ~A() }
3026
3027 This occurs frequently in C++, where A is a local variable and B is a
3028 temporary used in the initializer for A. */
3029
3030 static void
3031 optimize_double_finally (gtry *one, gtry *two)
3032 {
3033 gimple *oneh;
3034 gimple_stmt_iterator gsi;
3035 gimple_seq cleanup;
3036
3037 cleanup = gimple_try_cleanup (one);
3038 gsi = gsi_start (cleanup);
3039 if (!gsi_one_before_end_p (gsi))
3040 return;
3041
3042 oneh = gsi_stmt (gsi);
3043 if (gimple_code (oneh) != GIMPLE_TRY
3044 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
3045 return;
3046
3047 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
3048 {
3049 gimple_seq seq = gimple_try_eval (oneh);
3050
3051 gimple_try_set_cleanup (one, seq);
3052 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
3053 seq = copy_gimple_seq_and_replace_locals (seq);
3054 gimple_seq_add_seq (&seq, gimple_try_eval (two));
3055 gimple_try_set_eval (two, seq);
3056 }
3057 }
3058
3059 /* Perform EH refactoring optimizations that are simpler to do when code
3060 flow has been lowered but EH structures haven't. */
3061
3062 static void
3063 refactor_eh_r (gimple_seq seq)
3064 {
3065 gimple_stmt_iterator gsi;
3066 gimple *one, *two;
3067
3068 one = NULL;
3069 two = NULL;
3070 gsi = gsi_start (seq);
3071 while (1)
3072 {
3073 one = two;
3074 if (gsi_end_p (gsi))
3075 two = NULL;
3076 else
3077 two = gsi_stmt (gsi);
3078 if (one && two)
3079 if (gtry *try_one = dyn_cast <gtry *> (one))
3080 if (gtry *try_two = dyn_cast <gtry *> (two))
3081 if (gimple_try_kind (try_one) == GIMPLE_TRY_FINALLY
3082 && gimple_try_kind (try_two) == GIMPLE_TRY_FINALLY)
3083 optimize_double_finally (try_one, try_two);
3084 if (one)
3085 switch (gimple_code (one))
3086 {
3087 case GIMPLE_TRY:
3088 refactor_eh_r (gimple_try_eval (one));
3089 refactor_eh_r (gimple_try_cleanup (one));
3090 break;
3091 case GIMPLE_CATCH:
3092 refactor_eh_r (gimple_catch_handler (as_a <gcatch *> (one)));
3093 break;
3094 case GIMPLE_EH_FILTER:
3095 refactor_eh_r (gimple_eh_filter_failure (one));
3096 break;
3097 case GIMPLE_EH_ELSE:
3098 {
3099 geh_else *eh_else_stmt = as_a <geh_else *> (one);
3100 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt));
3101 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt));
3102 }
3103 break;
3104 default:
3105 break;
3106 }
3107 if (two)
3108 gsi_next (&gsi);
3109 else
3110 break;
3111 }
3112 }
3113
3114 namespace {
3115
3116 const pass_data pass_data_refactor_eh =
3117 {
3118 GIMPLE_PASS, /* type */
3119 "ehopt", /* name */
3120 OPTGROUP_NONE, /* optinfo_flags */
3121 TV_TREE_EH, /* tv_id */
3122 PROP_gimple_lcf, /* properties_required */
3123 0, /* properties_provided */
3124 0, /* properties_destroyed */
3125 0, /* todo_flags_start */
3126 0, /* todo_flags_finish */
3127 };
3128
3129 class pass_refactor_eh : public gimple_opt_pass
3130 {
3131 public:
3132 pass_refactor_eh (gcc::context *ctxt)
3133 : gimple_opt_pass (pass_data_refactor_eh, ctxt)
3134 {}
3135
3136 /* opt_pass methods: */
3137 virtual bool gate (function *) { return flag_exceptions != 0; }
3138 virtual unsigned int execute (function *)
3139 {
3140 refactor_eh_r (gimple_body (current_function_decl));
3141 return 0;
3142 }
3143
3144 }; // class pass_refactor_eh
3145
3146 } // anon namespace
3147
3148 gimple_opt_pass *
3149 make_pass_refactor_eh (gcc::context *ctxt)
3150 {
3151 return new pass_refactor_eh (ctxt);
3152 }
3153 \f
3154 /* At the end of gimple optimization, we can lower RESX. */
3155
3156 static bool
3157 lower_resx (basic_block bb, gresx *stmt,
3158 hash_map<eh_region, tree> *mnt_map)
3159 {
3160 int lp_nr;
3161 eh_region src_r, dst_r;
3162 gimple_stmt_iterator gsi;
3163 gimple *x;
3164 tree fn, src_nr;
3165 bool ret = false;
3166
3167 lp_nr = lookup_stmt_eh_lp (stmt);
3168 if (lp_nr != 0)
3169 dst_r = get_eh_region_from_lp_number (lp_nr);
3170 else
3171 dst_r = NULL;
3172
3173 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3174 gsi = gsi_last_bb (bb);
3175
3176 if (src_r == NULL)
3177 {
3178 /* We can wind up with no source region when pass_cleanup_eh shows
3179 that there are no entries into an eh region and deletes it, but
3180 then the block that contains the resx isn't removed. This can
3181 happen without optimization when the switch statement created by
3182 lower_try_finally_switch isn't simplified to remove the eh case.
3183
3184 Resolve this by expanding the resx node to an abort. */
3185
3186 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3187 x = gimple_build_call (fn, 0);
3188 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3189
3190 while (EDGE_COUNT (bb->succs) > 0)
3191 remove_edge (EDGE_SUCC (bb, 0));
3192 }
3193 else if (dst_r)
3194 {
3195 /* When we have a destination region, we resolve this by copying
3196 the excptr and filter values into place, and changing the edge
3197 to immediately after the landing pad. */
3198 edge e;
3199
3200 if (lp_nr < 0)
3201 {
3202 basic_block new_bb;
3203 tree lab;
3204
3205 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3206 the failure decl into a new block, if needed. */
3207 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3208
3209 tree *slot = mnt_map->get (dst_r);
3210 if (slot == NULL)
3211 {
3212 gimple_stmt_iterator gsi2;
3213
3214 new_bb = create_empty_bb (bb);
3215 add_bb_to_loop (new_bb, bb->loop_father);
3216 lab = gimple_block_label (new_bb);
3217 gsi2 = gsi_start_bb (new_bb);
3218
3219 fn = dst_r->u.must_not_throw.failure_decl;
3220 x = gimple_build_call (fn, 0);
3221 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3222 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3223
3224 mnt_map->put (dst_r, lab);
3225 }
3226 else
3227 {
3228 lab = *slot;
3229 new_bb = label_to_block (lab);
3230 }
3231
3232 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3233 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3234 e->count = bb->count;
3235 e->probability = REG_BR_PROB_BASE;
3236 }
3237 else
3238 {
3239 edge_iterator ei;
3240 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3241
3242 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3243 src_nr = build_int_cst (integer_type_node, src_r->index);
3244 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3245 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3246
3247 /* Update the flags for the outgoing edge. */
3248 e = single_succ_edge (bb);
3249 gcc_assert (e->flags & EDGE_EH);
3250 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3251
3252 /* If there are no more EH users of the landing pad, delete it. */
3253 FOR_EACH_EDGE (e, ei, e->dest->preds)
3254 if (e->flags & EDGE_EH)
3255 break;
3256 if (e == NULL)
3257 {
3258 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3259 remove_eh_landing_pad (lp);
3260 }
3261 }
3262
3263 ret = true;
3264 }
3265 else
3266 {
3267 tree var;
3268
3269 /* When we don't have a destination region, this exception escapes
3270 up the call chain. We resolve this by generating a call to the
3271 _Unwind_Resume library function. */
3272
3273 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3274 with no arguments for C++ and Java. Check for that. */
3275 if (src_r->use_cxa_end_cleanup)
3276 {
3277 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3278 x = gimple_build_call (fn, 0);
3279 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3280 }
3281 else
3282 {
3283 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3284 src_nr = build_int_cst (integer_type_node, src_r->index);
3285 x = gimple_build_call (fn, 1, src_nr);
3286 var = create_tmp_var (ptr_type_node);
3287 var = make_ssa_name (var, x);
3288 gimple_call_set_lhs (x, var);
3289 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3290
3291 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3292 x = gimple_build_call (fn, 1, var);
3293 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3294 }
3295
3296 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3297 }
3298
3299 gsi_remove (&gsi, true);
3300
3301 return ret;
3302 }
3303
3304 namespace {
3305
3306 const pass_data pass_data_lower_resx =
3307 {
3308 GIMPLE_PASS, /* type */
3309 "resx", /* name */
3310 OPTGROUP_NONE, /* optinfo_flags */
3311 TV_TREE_EH, /* tv_id */
3312 PROP_gimple_lcf, /* properties_required */
3313 0, /* properties_provided */
3314 0, /* properties_destroyed */
3315 0, /* todo_flags_start */
3316 0, /* todo_flags_finish */
3317 };
3318
3319 class pass_lower_resx : public gimple_opt_pass
3320 {
3321 public:
3322 pass_lower_resx (gcc::context *ctxt)
3323 : gimple_opt_pass (pass_data_lower_resx, ctxt)
3324 {}
3325
3326 /* opt_pass methods: */
3327 virtual bool gate (function *) { return flag_exceptions != 0; }
3328 virtual unsigned int execute (function *);
3329
3330 }; // class pass_lower_resx
3331
3332 unsigned
3333 pass_lower_resx::execute (function *fun)
3334 {
3335 basic_block bb;
3336 bool dominance_invalidated = false;
3337 bool any_rewritten = false;
3338
3339 hash_map<eh_region, tree> mnt_map;
3340
3341 FOR_EACH_BB_FN (bb, fun)
3342 {
3343 gimple *last = last_stmt (bb);
3344 if (last && is_gimple_resx (last))
3345 {
3346 dominance_invalidated |=
3347 lower_resx (bb, as_a <gresx *> (last), &mnt_map);
3348 any_rewritten = true;
3349 }
3350 }
3351
3352 if (dominance_invalidated)
3353 {
3354 free_dominance_info (CDI_DOMINATORS);
3355 free_dominance_info (CDI_POST_DOMINATORS);
3356 }
3357
3358 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3359 }
3360
3361 } // anon namespace
3362
3363 gimple_opt_pass *
3364 make_pass_lower_resx (gcc::context *ctxt)
3365 {
3366 return new pass_lower_resx (ctxt);
3367 }
3368
3369 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3370 external throw. */
3371
3372 static void
3373 optimize_clobbers (basic_block bb)
3374 {
3375 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3376 bool any_clobbers = false;
3377 bool seen_stack_restore = false;
3378 edge_iterator ei;
3379 edge e;
3380
3381 /* Only optimize anything if the bb contains at least one clobber,
3382 ends with resx (checked by caller), optionally contains some
3383 debug stmts or labels, or at most one __builtin_stack_restore
3384 call, and has an incoming EH edge. */
3385 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3386 {
3387 gimple *stmt = gsi_stmt (gsi);
3388 if (is_gimple_debug (stmt))
3389 continue;
3390 if (gimple_clobber_p (stmt))
3391 {
3392 any_clobbers = true;
3393 continue;
3394 }
3395 if (!seen_stack_restore
3396 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3397 {
3398 seen_stack_restore = true;
3399 continue;
3400 }
3401 if (gimple_code (stmt) == GIMPLE_LABEL)
3402 break;
3403 return;
3404 }
3405 if (!any_clobbers)
3406 return;
3407 FOR_EACH_EDGE (e, ei, bb->preds)
3408 if (e->flags & EDGE_EH)
3409 break;
3410 if (e == NULL)
3411 return;
3412 gsi = gsi_last_bb (bb);
3413 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3414 {
3415 gimple *stmt = gsi_stmt (gsi);
3416 if (!gimple_clobber_p (stmt))
3417 continue;
3418 unlink_stmt_vdef (stmt);
3419 gsi_remove (&gsi, true);
3420 release_defs (stmt);
3421 }
3422 }
3423
3424 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3425 internal throw to successor BB. */
3426
3427 static int
3428 sink_clobbers (basic_block bb)
3429 {
3430 edge e;
3431 edge_iterator ei;
3432 gimple_stmt_iterator gsi, dgsi;
3433 basic_block succbb;
3434 bool any_clobbers = false;
3435 unsigned todo = 0;
3436
3437 /* Only optimize if BB has a single EH successor and
3438 all predecessor edges are EH too. */
3439 if (!single_succ_p (bb)
3440 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3441 return 0;
3442
3443 FOR_EACH_EDGE (e, ei, bb->preds)
3444 {
3445 if ((e->flags & EDGE_EH) == 0)
3446 return 0;
3447 }
3448
3449 /* And BB contains only CLOBBER stmts before the final
3450 RESX. */
3451 gsi = gsi_last_bb (bb);
3452 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3453 {
3454 gimple *stmt = gsi_stmt (gsi);
3455 if (is_gimple_debug (stmt))
3456 continue;
3457 if (gimple_code (stmt) == GIMPLE_LABEL)
3458 break;
3459 if (!gimple_clobber_p (stmt))
3460 return 0;
3461 any_clobbers = true;
3462 }
3463 if (!any_clobbers)
3464 return 0;
3465
3466 edge succe = single_succ_edge (bb);
3467 succbb = succe->dest;
3468
3469 /* See if there is a virtual PHI node to take an updated virtual
3470 operand from. */
3471 gphi *vphi = NULL;
3472 tree vuse = NULL_TREE;
3473 for (gphi_iterator gpi = gsi_start_phis (succbb);
3474 !gsi_end_p (gpi); gsi_next (&gpi))
3475 {
3476 tree res = gimple_phi_result (gpi.phi ());
3477 if (virtual_operand_p (res))
3478 {
3479 vphi = gpi.phi ();
3480 vuse = res;
3481 break;
3482 }
3483 }
3484
3485 dgsi = gsi_after_labels (succbb);
3486 gsi = gsi_last_bb (bb);
3487 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3488 {
3489 gimple *stmt = gsi_stmt (gsi);
3490 tree lhs;
3491 if (is_gimple_debug (stmt))
3492 continue;
3493 if (gimple_code (stmt) == GIMPLE_LABEL)
3494 break;
3495 lhs = gimple_assign_lhs (stmt);
3496 /* Unfortunately we don't have dominance info updated at this
3497 point, so checking if
3498 dominated_by_p (CDI_DOMINATORS, succbb,
3499 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3500 would be too costly. Thus, avoid sinking any clobbers that
3501 refer to non-(D) SSA_NAMEs. */
3502 if (TREE_CODE (lhs) == MEM_REF
3503 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3504 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3505 {
3506 unlink_stmt_vdef (stmt);
3507 gsi_remove (&gsi, true);
3508 release_defs (stmt);
3509 continue;
3510 }
3511
3512 /* As we do not change stmt order when sinking across a
3513 forwarder edge we can keep virtual operands in place. */
3514 gsi_remove (&gsi, false);
3515 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3516
3517 /* But adjust virtual operands if we sunk across a PHI node. */
3518 if (vuse)
3519 {
3520 gimple *use_stmt;
3521 imm_use_iterator iter;
3522 use_operand_p use_p;
3523 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3524 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3525 SET_USE (use_p, gimple_vdef (stmt));
3526 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse))
3527 {
3528 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt)) = 1;
3529 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 0;
3530 }
3531 /* Adjust the incoming virtual operand. */
3532 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3533 SET_USE (gimple_vuse_op (stmt), vuse);
3534 }
3535 /* If there isn't a single predecessor but no virtual PHI node
3536 arrange for virtual operands to be renamed. */
3537 else if (gimple_vuse_op (stmt) != NULL_USE_OPERAND_P
3538 && !single_pred_p (succbb))
3539 {
3540 /* In this case there will be no use of the VDEF of this stmt.
3541 ??? Unless this is a secondary opportunity and we have not
3542 removed unreachable blocks yet, so we cannot assert this.
3543 Which also means we will end up renaming too many times. */
3544 SET_USE (gimple_vuse_op (stmt), gimple_vop (cfun));
3545 mark_virtual_operands_for_renaming (cfun);
3546 todo |= TODO_update_ssa_only_virtuals;
3547 }
3548 }
3549
3550 return todo;
3551 }
3552
3553 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3554 we have found some duplicate labels and removed some edges. */
3555
3556 static bool
3557 lower_eh_dispatch (basic_block src, geh_dispatch *stmt)
3558 {
3559 gimple_stmt_iterator gsi;
3560 int region_nr;
3561 eh_region r;
3562 tree filter, fn;
3563 gimple *x;
3564 bool redirected = false;
3565
3566 region_nr = gimple_eh_dispatch_region (stmt);
3567 r = get_eh_region_from_number (region_nr);
3568
3569 gsi = gsi_last_bb (src);
3570
3571 switch (r->type)
3572 {
3573 case ERT_TRY:
3574 {
3575 auto_vec<tree> labels;
3576 tree default_label = NULL;
3577 eh_catch c;
3578 edge_iterator ei;
3579 edge e;
3580 hash_set<tree> seen_values;
3581
3582 /* Collect the labels for a switch. Zero the post_landing_pad
3583 field becase we'll no longer have anything keeping these labels
3584 in existence and the optimizer will be free to merge these
3585 blocks at will. */
3586 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3587 {
3588 tree tp_node, flt_node, lab = c->label;
3589 bool have_label = false;
3590
3591 c->label = NULL;
3592 tp_node = c->type_list;
3593 flt_node = c->filter_list;
3594
3595 if (tp_node == NULL)
3596 {
3597 default_label = lab;
3598 break;
3599 }
3600 do
3601 {
3602 /* Filter out duplicate labels that arise when this handler
3603 is shadowed by an earlier one. When no labels are
3604 attached to the handler anymore, we remove
3605 the corresponding edge and then we delete unreachable
3606 blocks at the end of this pass. */
3607 if (! seen_values.contains (TREE_VALUE (flt_node)))
3608 {
3609 tree t = build_case_label (TREE_VALUE (flt_node),
3610 NULL, lab);
3611 labels.safe_push (t);
3612 seen_values.add (TREE_VALUE (flt_node));
3613 have_label = true;
3614 }
3615
3616 tp_node = TREE_CHAIN (tp_node);
3617 flt_node = TREE_CHAIN (flt_node);
3618 }
3619 while (tp_node);
3620 if (! have_label)
3621 {
3622 remove_edge (find_edge (src, label_to_block (lab)));
3623 redirected = true;
3624 }
3625 }
3626
3627 /* Clean up the edge flags. */
3628 FOR_EACH_EDGE (e, ei, src->succs)
3629 {
3630 if (e->flags & EDGE_FALLTHRU)
3631 {
3632 /* If there was no catch-all, use the fallthru edge. */
3633 if (default_label == NULL)
3634 default_label = gimple_block_label (e->dest);
3635 e->flags &= ~EDGE_FALLTHRU;
3636 }
3637 }
3638 gcc_assert (default_label != NULL);
3639
3640 /* Don't generate a switch if there's only a default case.
3641 This is common in the form of try { A; } catch (...) { B; }. */
3642 if (!labels.exists ())
3643 {
3644 e = single_succ_edge (src);
3645 e->flags |= EDGE_FALLTHRU;
3646 }
3647 else
3648 {
3649 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3650 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3651 region_nr));
3652 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3653 filter = make_ssa_name (filter, x);
3654 gimple_call_set_lhs (x, filter);
3655 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3656
3657 /* Turn the default label into a default case. */
3658 default_label = build_case_label (NULL, NULL, default_label);
3659 sort_case_labels (labels);
3660
3661 x = gimple_build_switch (filter, default_label, labels);
3662 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3663 }
3664 }
3665 break;
3666
3667 case ERT_ALLOWED_EXCEPTIONS:
3668 {
3669 edge b_e = BRANCH_EDGE (src);
3670 edge f_e = FALLTHRU_EDGE (src);
3671
3672 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3673 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3674 region_nr));
3675 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)));
3676 filter = make_ssa_name (filter, x);
3677 gimple_call_set_lhs (x, filter);
3678 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3679
3680 r->u.allowed.label = NULL;
3681 x = gimple_build_cond (EQ_EXPR, filter,
3682 build_int_cst (TREE_TYPE (filter),
3683 r->u.allowed.filter),
3684 NULL_TREE, NULL_TREE);
3685 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3686
3687 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3688 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3689 }
3690 break;
3691
3692 default:
3693 gcc_unreachable ();
3694 }
3695
3696 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3697 gsi_remove (&gsi, true);
3698 return redirected;
3699 }
3700
3701 namespace {
3702
3703 const pass_data pass_data_lower_eh_dispatch =
3704 {
3705 GIMPLE_PASS, /* type */
3706 "ehdisp", /* name */
3707 OPTGROUP_NONE, /* optinfo_flags */
3708 TV_TREE_EH, /* tv_id */
3709 PROP_gimple_lcf, /* properties_required */
3710 0, /* properties_provided */
3711 0, /* properties_destroyed */
3712 0, /* todo_flags_start */
3713 0, /* todo_flags_finish */
3714 };
3715
3716 class pass_lower_eh_dispatch : public gimple_opt_pass
3717 {
3718 public:
3719 pass_lower_eh_dispatch (gcc::context *ctxt)
3720 : gimple_opt_pass (pass_data_lower_eh_dispatch, ctxt)
3721 {}
3722
3723 /* opt_pass methods: */
3724 virtual bool gate (function *fun) { return fun->eh->region_tree != NULL; }
3725 virtual unsigned int execute (function *);
3726
3727 }; // class pass_lower_eh_dispatch
3728
3729 unsigned
3730 pass_lower_eh_dispatch::execute (function *fun)
3731 {
3732 basic_block bb;
3733 int flags = 0;
3734 bool redirected = false;
3735
3736 assign_filter_values ();
3737
3738 FOR_EACH_BB_FN (bb, fun)
3739 {
3740 gimple *last = last_stmt (bb);
3741 if (last == NULL)
3742 continue;
3743 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3744 {
3745 redirected |= lower_eh_dispatch (bb,
3746 as_a <geh_dispatch *> (last));
3747 flags |= TODO_update_ssa_only_virtuals;
3748 }
3749 else if (gimple_code (last) == GIMPLE_RESX)
3750 {
3751 if (stmt_can_throw_external (last))
3752 optimize_clobbers (bb);
3753 else
3754 flags |= sink_clobbers (bb);
3755 }
3756 }
3757
3758 if (redirected)
3759 delete_unreachable_blocks ();
3760 return flags;
3761 }
3762
3763 } // anon namespace
3764
3765 gimple_opt_pass *
3766 make_pass_lower_eh_dispatch (gcc::context *ctxt)
3767 {
3768 return new pass_lower_eh_dispatch (ctxt);
3769 }
3770 \f
3771 /* Walk statements, see what regions and, optionally, landing pads
3772 are really referenced.
3773
3774 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3775 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3776
3777 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3778 regions are marked.
3779
3780 The caller is responsible for freeing the returned sbitmaps. */
3781
3782 static void
3783 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3784 {
3785 sbitmap r_reachable, lp_reachable;
3786 basic_block bb;
3787 bool mark_landing_pads = (lp_reachablep != NULL);
3788 gcc_checking_assert (r_reachablep != NULL);
3789
3790 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3791 bitmap_clear (r_reachable);
3792 *r_reachablep = r_reachable;
3793
3794 if (mark_landing_pads)
3795 {
3796 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3797 bitmap_clear (lp_reachable);
3798 *lp_reachablep = lp_reachable;
3799 }
3800 else
3801 lp_reachable = NULL;
3802
3803 FOR_EACH_BB_FN (bb, cfun)
3804 {
3805 gimple_stmt_iterator gsi;
3806
3807 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3808 {
3809 gimple *stmt = gsi_stmt (gsi);
3810
3811 if (mark_landing_pads)
3812 {
3813 int lp_nr = lookup_stmt_eh_lp (stmt);
3814
3815 /* Negative LP numbers are MUST_NOT_THROW regions which
3816 are not considered BB enders. */
3817 if (lp_nr < 0)
3818 bitmap_set_bit (r_reachable, -lp_nr);
3819
3820 /* Positive LP numbers are real landing pads, and BB enders. */
3821 else if (lp_nr > 0)
3822 {
3823 gcc_assert (gsi_one_before_end_p (gsi));
3824 eh_region region = get_eh_region_from_lp_number (lp_nr);
3825 bitmap_set_bit (r_reachable, region->index);
3826 bitmap_set_bit (lp_reachable, lp_nr);
3827 }
3828 }
3829
3830 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3831 switch (gimple_code (stmt))
3832 {
3833 case GIMPLE_RESX:
3834 bitmap_set_bit (r_reachable,
3835 gimple_resx_region (as_a <gresx *> (stmt)));
3836 break;
3837 case GIMPLE_EH_DISPATCH:
3838 bitmap_set_bit (r_reachable,
3839 gimple_eh_dispatch_region (
3840 as_a <geh_dispatch *> (stmt)));
3841 break;
3842 case GIMPLE_CALL:
3843 if (gimple_call_builtin_p (stmt, BUILT_IN_EH_COPY_VALUES))
3844 for (int i = 0; i < 2; ++i)
3845 {
3846 tree rt = gimple_call_arg (stmt, i);
3847 HOST_WIDE_INT ri = tree_to_shwi (rt);
3848
3849 gcc_assert (ri == (int)ri);
3850 bitmap_set_bit (r_reachable, ri);
3851 }
3852 break;
3853 default:
3854 break;
3855 }
3856 }
3857 }
3858 }
3859
3860 /* Remove unreachable handlers and unreachable landing pads. */
3861
3862 static void
3863 remove_unreachable_handlers (void)
3864 {
3865 sbitmap r_reachable, lp_reachable;
3866 eh_region region;
3867 eh_landing_pad lp;
3868 unsigned i;
3869
3870 mark_reachable_handlers (&r_reachable, &lp_reachable);
3871
3872 if (dump_file)
3873 {
3874 fprintf (dump_file, "Before removal of unreachable regions:\n");
3875 dump_eh_tree (dump_file, cfun);
3876 fprintf (dump_file, "Reachable regions: ");
3877 dump_bitmap_file (dump_file, r_reachable);
3878 fprintf (dump_file, "Reachable landing pads: ");
3879 dump_bitmap_file (dump_file, lp_reachable);
3880 }
3881
3882 if (dump_file)
3883 {
3884 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3885 if (region && !bitmap_bit_p (r_reachable, region->index))
3886 fprintf (dump_file,
3887 "Removing unreachable region %d\n",
3888 region->index);
3889 }
3890
3891 remove_unreachable_eh_regions (r_reachable);
3892
3893 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3894 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3895 {
3896 if (dump_file)
3897 fprintf (dump_file,
3898 "Removing unreachable landing pad %d\n",
3899 lp->index);
3900 remove_eh_landing_pad (lp);
3901 }
3902
3903 if (dump_file)
3904 {
3905 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3906 dump_eh_tree (dump_file, cfun);
3907 fprintf (dump_file, "\n\n");
3908 }
3909
3910 sbitmap_free (r_reachable);
3911 sbitmap_free (lp_reachable);
3912
3913 if (flag_checking)
3914 verify_eh_tree (cfun);
3915 }
3916
3917 /* Remove unreachable handlers if any landing pads have been removed after
3918 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3919
3920 void
3921 maybe_remove_unreachable_handlers (void)
3922 {
3923 eh_landing_pad lp;
3924 unsigned i;
3925
3926 if (cfun->eh == NULL)
3927 return;
3928
3929 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3930 if (lp && lp->post_landing_pad)
3931 {
3932 if (label_to_block (lp->post_landing_pad) == NULL)
3933 {
3934 remove_unreachable_handlers ();
3935 return;
3936 }
3937 }
3938 }
3939
3940 /* Remove regions that do not have landing pads. This assumes
3941 that remove_unreachable_handlers has already been run, and
3942 that we've just manipulated the landing pads since then.
3943
3944 Preserve regions with landing pads and regions that prevent
3945 exceptions from propagating further, even if these regions
3946 are not reachable. */
3947
3948 static void
3949 remove_unreachable_handlers_no_lp (void)
3950 {
3951 eh_region region;
3952 sbitmap r_reachable;
3953 unsigned i;
3954
3955 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3956
3957 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3958 {
3959 if (! region)
3960 continue;
3961
3962 if (region->landing_pads != NULL
3963 || region->type == ERT_MUST_NOT_THROW)
3964 bitmap_set_bit (r_reachable, region->index);
3965
3966 if (dump_file
3967 && !bitmap_bit_p (r_reachable, region->index))
3968 fprintf (dump_file,
3969 "Removing unreachable region %d\n",
3970 region->index);
3971 }
3972
3973 remove_unreachable_eh_regions (r_reachable);
3974
3975 sbitmap_free (r_reachable);
3976 }
3977
3978 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3979 optimisticaly split all sorts of edges, including EH edges. The
3980 optimization passes in between may not have needed them; if not,
3981 we should undo the split.
3982
3983 Recognize this case by having one EH edge incoming to the BB and
3984 one normal edge outgoing; BB should be empty apart from the
3985 post_landing_pad label.
3986
3987 Note that this is slightly different from the empty handler case
3988 handled by cleanup_empty_eh, in that the actual handler may yet
3989 have actual code but the landing pad has been separated from the
3990 handler. As such, cleanup_empty_eh relies on this transformation
3991 having been done first. */
3992
3993 static bool
3994 unsplit_eh (eh_landing_pad lp)
3995 {
3996 basic_block bb = label_to_block (lp->post_landing_pad);
3997 gimple_stmt_iterator gsi;
3998 edge e_in, e_out;
3999
4000 /* Quickly check the edge counts on BB for singularity. */
4001 if (!single_pred_p (bb) || !single_succ_p (bb))
4002 return false;
4003 e_in = single_pred_edge (bb);
4004 e_out = single_succ_edge (bb);
4005
4006 /* Input edge must be EH and output edge must be normal. */
4007 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
4008 return false;
4009
4010 /* The block must be empty except for the labels and debug insns. */
4011 gsi = gsi_after_labels (bb);
4012 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4013 gsi_next_nondebug (&gsi);
4014 if (!gsi_end_p (gsi))
4015 return false;
4016
4017 /* The destination block must not already have a landing pad
4018 for a different region. */
4019 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4020 {
4021 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4022 tree lab;
4023 int lp_nr;
4024
4025 if (!label_stmt)
4026 break;
4027 lab = gimple_label_label (label_stmt);
4028 lp_nr = EH_LANDING_PAD_NR (lab);
4029 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4030 return false;
4031 }
4032
4033 /* The new destination block must not already be a destination of
4034 the source block, lest we merge fallthru and eh edges and get
4035 all sorts of confused. */
4036 if (find_edge (e_in->src, e_out->dest))
4037 return false;
4038
4039 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4040 thought this should have been cleaned up by a phicprop pass, but
4041 that doesn't appear to handle virtuals. Propagate by hand. */
4042 if (!gimple_seq_empty_p (phi_nodes (bb)))
4043 {
4044 for (gphi_iterator gpi = gsi_start_phis (bb); !gsi_end_p (gpi); )
4045 {
4046 gimple *use_stmt;
4047 gphi *phi = gpi.phi ();
4048 tree lhs = gimple_phi_result (phi);
4049 tree rhs = gimple_phi_arg_def (phi, 0);
4050 use_operand_p use_p;
4051 imm_use_iterator iter;
4052
4053 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
4054 {
4055 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4056 SET_USE (use_p, rhs);
4057 }
4058
4059 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
4060 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
4061
4062 remove_phi_node (&gpi, true);
4063 }
4064 }
4065
4066 if (dump_file && (dump_flags & TDF_DETAILS))
4067 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
4068 lp->index, e_out->dest->index);
4069
4070 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4071 a successor edge, humor it. But do the real CFG change with the
4072 predecessor of E_OUT in order to preserve the ordering of arguments
4073 to the PHI nodes in E_OUT->DEST. */
4074 redirect_eh_edge_1 (e_in, e_out->dest, false);
4075 redirect_edge_pred (e_out, e_in->src);
4076 e_out->flags = e_in->flags;
4077 e_out->probability = e_in->probability;
4078 e_out->count = e_in->count;
4079 remove_edge (e_in);
4080
4081 return true;
4082 }
4083
4084 /* Examine each landing pad block and see if it matches unsplit_eh. */
4085
4086 static bool
4087 unsplit_all_eh (void)
4088 {
4089 bool changed = false;
4090 eh_landing_pad lp;
4091 int i;
4092
4093 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4094 if (lp)
4095 changed |= unsplit_eh (lp);
4096
4097 return changed;
4098 }
4099
4100 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4101 to OLD_BB to NEW_BB; return true on success, false on failure.
4102
4103 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4104 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4105 Virtual PHIs may be deleted and marked for renaming. */
4106
4107 static bool
4108 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
4109 edge old_bb_out, bool change_region)
4110 {
4111 gphi_iterator ngsi, ogsi;
4112 edge_iterator ei;
4113 edge e;
4114 bitmap ophi_handled;
4115
4116 /* The destination block must not be a regular successor for any
4117 of the preds of the landing pad. Thus, avoid turning
4118 <..>
4119 | \ EH
4120 | <..>
4121 | /
4122 <..>
4123 into
4124 <..>
4125 | | EH
4126 <..>
4127 which CFG verification would choke on. See PR45172 and PR51089. */
4128 FOR_EACH_EDGE (e, ei, old_bb->preds)
4129 if (find_edge (e->src, new_bb))
4130 return false;
4131
4132 FOR_EACH_EDGE (e, ei, old_bb->preds)
4133 redirect_edge_var_map_clear (e);
4134
4135 ophi_handled = BITMAP_ALLOC (NULL);
4136
4137 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4138 for the edges we're going to move. */
4139 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
4140 {
4141 gphi *ophi, *nphi = ngsi.phi ();
4142 tree nresult, nop;
4143
4144 nresult = gimple_phi_result (nphi);
4145 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
4146
4147 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4148 the source ssa_name. */
4149 ophi = NULL;
4150 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4151 {
4152 ophi = ogsi.phi ();
4153 if (gimple_phi_result (ophi) == nop)
4154 break;
4155 ophi = NULL;
4156 }
4157
4158 /* If we did find the corresponding PHI, copy those inputs. */
4159 if (ophi)
4160 {
4161 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4162 if (!has_single_use (nop))
4163 {
4164 imm_use_iterator imm_iter;
4165 use_operand_p use_p;
4166
4167 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4168 {
4169 if (!gimple_debug_bind_p (USE_STMT (use_p))
4170 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4171 || gimple_bb (USE_STMT (use_p)) != new_bb))
4172 goto fail;
4173 }
4174 }
4175 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4176 FOR_EACH_EDGE (e, ei, old_bb->preds)
4177 {
4178 location_t oloc;
4179 tree oop;
4180
4181 if ((e->flags & EDGE_EH) == 0)
4182 continue;
4183 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4184 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4185 redirect_edge_var_map_add (e, nresult, oop, oloc);
4186 }
4187 }
4188 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4189 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4190 variable is unchanged from input to the block and we can simply
4191 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4192 else
4193 {
4194 location_t nloc
4195 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4196 FOR_EACH_EDGE (e, ei, old_bb->preds)
4197 redirect_edge_var_map_add (e, nresult, nop, nloc);
4198 }
4199 }
4200
4201 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4202 we don't know what values from the other edges into NEW_BB to use. */
4203 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4204 {
4205 gphi *ophi = ogsi.phi ();
4206 tree oresult = gimple_phi_result (ophi);
4207 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4208 goto fail;
4209 }
4210
4211 /* Finally, move the edges and update the PHIs. */
4212 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4213 if (e->flags & EDGE_EH)
4214 {
4215 /* ??? CFG manipluation routines do not try to update loop
4216 form on edge redirection. Do so manually here for now. */
4217 /* If we redirect a loop entry or latch edge that will either create
4218 a multiple entry loop or rotate the loop. If the loops merge
4219 we may have created a loop with multiple latches.
4220 All of this isn't easily fixed thus cancel the affected loop
4221 and mark the other loop as possibly having multiple latches. */
4222 if (e->dest == e->dest->loop_father->header)
4223 {
4224 mark_loop_for_removal (e->dest->loop_father);
4225 new_bb->loop_father->latch = NULL;
4226 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4227 }
4228 redirect_eh_edge_1 (e, new_bb, change_region);
4229 redirect_edge_succ (e, new_bb);
4230 flush_pending_stmts (e);
4231 }
4232 else
4233 ei_next (&ei);
4234
4235 BITMAP_FREE (ophi_handled);
4236 return true;
4237
4238 fail:
4239 FOR_EACH_EDGE (e, ei, old_bb->preds)
4240 redirect_edge_var_map_clear (e);
4241 BITMAP_FREE (ophi_handled);
4242 return false;
4243 }
4244
4245 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4246 old region to NEW_REGION at BB. */
4247
4248 static void
4249 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4250 eh_landing_pad lp, eh_region new_region)
4251 {
4252 gimple_stmt_iterator gsi;
4253 eh_landing_pad *pp;
4254
4255 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4256 continue;
4257 *pp = lp->next_lp;
4258
4259 lp->region = new_region;
4260 lp->next_lp = new_region->landing_pads;
4261 new_region->landing_pads = lp;
4262
4263 /* Delete the RESX that was matched within the empty handler block. */
4264 gsi = gsi_last_bb (bb);
4265 unlink_stmt_vdef (gsi_stmt (gsi));
4266 gsi_remove (&gsi, true);
4267
4268 /* Clean up E_OUT for the fallthru. */
4269 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4270 e_out->probability = REG_BR_PROB_BASE;
4271 }
4272
4273 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4274 unsplitting than unsplit_eh was prepared to handle, e.g. when
4275 multiple incoming edges and phis are involved. */
4276
4277 static bool
4278 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4279 {
4280 gimple_stmt_iterator gsi;
4281 tree lab;
4282
4283 /* We really ought not have totally lost everything following
4284 a landing pad label. Given that BB is empty, there had better
4285 be a successor. */
4286 gcc_assert (e_out != NULL);
4287
4288 /* The destination block must not already have a landing pad
4289 for a different region. */
4290 lab = NULL;
4291 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4292 {
4293 glabel *stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
4294 int lp_nr;
4295
4296 if (!stmt)
4297 break;
4298 lab = gimple_label_label (stmt);
4299 lp_nr = EH_LANDING_PAD_NR (lab);
4300 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4301 return false;
4302 }
4303
4304 /* Attempt to move the PHIs into the successor block. */
4305 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4306 {
4307 if (dump_file && (dump_flags & TDF_DETAILS))
4308 fprintf (dump_file,
4309 "Unsplit EH landing pad %d to block %i "
4310 "(via cleanup_empty_eh).\n",
4311 lp->index, e_out->dest->index);
4312 return true;
4313 }
4314
4315 return false;
4316 }
4317
4318 /* Return true if edge E_FIRST is part of an empty infinite loop
4319 or leads to such a loop through a series of single successor
4320 empty bbs. */
4321
4322 static bool
4323 infinite_empty_loop_p (edge e_first)
4324 {
4325 bool inf_loop = false;
4326 edge e;
4327
4328 if (e_first->dest == e_first->src)
4329 return true;
4330
4331 e_first->src->aux = (void *) 1;
4332 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4333 {
4334 gimple_stmt_iterator gsi;
4335 if (e->dest->aux)
4336 {
4337 inf_loop = true;
4338 break;
4339 }
4340 e->dest->aux = (void *) 1;
4341 gsi = gsi_after_labels (e->dest);
4342 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4343 gsi_next_nondebug (&gsi);
4344 if (!gsi_end_p (gsi))
4345 break;
4346 }
4347 e_first->src->aux = NULL;
4348 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4349 e->dest->aux = NULL;
4350
4351 return inf_loop;
4352 }
4353
4354 /* Examine the block associated with LP to determine if it's an empty
4355 handler for its EH region. If so, attempt to redirect EH edges to
4356 an outer region. Return true the CFG was updated in any way. This
4357 is similar to jump forwarding, just across EH edges. */
4358
4359 static bool
4360 cleanup_empty_eh (eh_landing_pad lp)
4361 {
4362 basic_block bb = label_to_block (lp->post_landing_pad);
4363 gimple_stmt_iterator gsi;
4364 gimple *resx;
4365 eh_region new_region;
4366 edge_iterator ei;
4367 edge e, e_out;
4368 bool has_non_eh_pred;
4369 bool ret = false;
4370 int new_lp_nr;
4371
4372 /* There can be zero or one edges out of BB. This is the quickest test. */
4373 switch (EDGE_COUNT (bb->succs))
4374 {
4375 case 0:
4376 e_out = NULL;
4377 break;
4378 case 1:
4379 e_out = single_succ_edge (bb);
4380 break;
4381 default:
4382 return false;
4383 }
4384
4385 resx = last_stmt (bb);
4386 if (resx && is_gimple_resx (resx))
4387 {
4388 if (stmt_can_throw_external (resx))
4389 optimize_clobbers (bb);
4390 else if (sink_clobbers (bb))
4391 ret = true;
4392 }
4393
4394 gsi = gsi_after_labels (bb);
4395
4396 /* Make sure to skip debug statements. */
4397 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4398 gsi_next_nondebug (&gsi);
4399
4400 /* If the block is totally empty, look for more unsplitting cases. */
4401 if (gsi_end_p (gsi))
4402 {
4403 /* For the degenerate case of an infinite loop bail out.
4404 If bb has no successors and is totally empty, which can happen e.g.
4405 because of incorrect noreturn attribute, bail out too. */
4406 if (e_out == NULL
4407 || infinite_empty_loop_p (e_out))
4408 return ret;
4409
4410 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4411 }
4412
4413 /* The block should consist only of a single RESX statement, modulo a
4414 preceding call to __builtin_stack_restore if there is no outgoing
4415 edge, since the call can be eliminated in this case. */
4416 resx = gsi_stmt (gsi);
4417 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4418 {
4419 gsi_next (&gsi);
4420 resx = gsi_stmt (gsi);
4421 }
4422 if (!is_gimple_resx (resx))
4423 return ret;
4424 gcc_assert (gsi_one_before_end_p (gsi));
4425
4426 /* Determine if there are non-EH edges, or resx edges into the handler. */
4427 has_non_eh_pred = false;
4428 FOR_EACH_EDGE (e, ei, bb->preds)
4429 if (!(e->flags & EDGE_EH))
4430 has_non_eh_pred = true;
4431
4432 /* Find the handler that's outer of the empty handler by looking at
4433 where the RESX instruction was vectored. */
4434 new_lp_nr = lookup_stmt_eh_lp (resx);
4435 new_region = get_eh_region_from_lp_number (new_lp_nr);
4436
4437 /* If there's no destination region within the current function,
4438 redirection is trivial via removing the throwing statements from
4439 the EH region, removing the EH edges, and allowing the block
4440 to go unreachable. */
4441 if (new_region == NULL)
4442 {
4443 gcc_assert (e_out == NULL);
4444 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4445 if (e->flags & EDGE_EH)
4446 {
4447 gimple *stmt = last_stmt (e->src);
4448 remove_stmt_from_eh_lp (stmt);
4449 remove_edge (e);
4450 }
4451 else
4452 ei_next (&ei);
4453 goto succeed;
4454 }
4455
4456 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4457 to handle the abort and allow the blocks to go unreachable. */
4458 if (new_region->type == ERT_MUST_NOT_THROW)
4459 {
4460 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4461 if (e->flags & EDGE_EH)
4462 {
4463 gimple *stmt = last_stmt (e->src);
4464 remove_stmt_from_eh_lp (stmt);
4465 add_stmt_to_eh_lp (stmt, new_lp_nr);
4466 remove_edge (e);
4467 }
4468 else
4469 ei_next (&ei);
4470 goto succeed;
4471 }
4472
4473 /* Try to redirect the EH edges and merge the PHIs into the destination
4474 landing pad block. If the merge succeeds, we'll already have redirected
4475 all the EH edges. The handler itself will go unreachable if there were
4476 no normal edges. */
4477 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4478 goto succeed;
4479
4480 /* Finally, if all input edges are EH edges, then we can (potentially)
4481 reduce the number of transfers from the runtime by moving the landing
4482 pad from the original region to the new region. This is a win when
4483 we remove the last CLEANUP region along a particular exception
4484 propagation path. Since nothing changes except for the region with
4485 which the landing pad is associated, the PHI nodes do not need to be
4486 adjusted at all. */
4487 if (!has_non_eh_pred)
4488 {
4489 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4490 if (dump_file && (dump_flags & TDF_DETAILS))
4491 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4492 lp->index, new_region->index);
4493
4494 /* ??? The CFG didn't change, but we may have rendered the
4495 old EH region unreachable. Trigger a cleanup there. */
4496 return true;
4497 }
4498
4499 return ret;
4500
4501 succeed:
4502 if (dump_file && (dump_flags & TDF_DETAILS))
4503 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4504 remove_eh_landing_pad (lp);
4505 return true;
4506 }
4507
4508 /* Do a post-order traversal of the EH region tree. Examine each
4509 post_landing_pad block and see if we can eliminate it as empty. */
4510
4511 static bool
4512 cleanup_all_empty_eh (void)
4513 {
4514 bool changed = false;
4515 eh_landing_pad lp;
4516 int i;
4517
4518 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4519 if (lp)
4520 changed |= cleanup_empty_eh (lp);
4521
4522 return changed;
4523 }
4524
4525 /* Perform cleanups and lowering of exception handling
4526 1) cleanups regions with handlers doing nothing are optimized out
4527 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4528 3) Info about regions that are containing instructions, and regions
4529 reachable via local EH edges is collected
4530 4) Eh tree is pruned for regions no longer necessary.
4531
4532 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4533 Unify those that have the same failure decl and locus.
4534 */
4535
4536 static unsigned int
4537 execute_cleanup_eh_1 (void)
4538 {
4539 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4540 looking up unreachable landing pads. */
4541 remove_unreachable_handlers ();
4542
4543 /* Watch out for the region tree vanishing due to all unreachable. */
4544 if (cfun->eh->region_tree)
4545 {
4546 bool changed = false;
4547
4548 if (optimize)
4549 changed |= unsplit_all_eh ();
4550 changed |= cleanup_all_empty_eh ();
4551
4552 if (changed)
4553 {
4554 free_dominance_info (CDI_DOMINATORS);
4555 free_dominance_info (CDI_POST_DOMINATORS);
4556
4557 /* We delayed all basic block deletion, as we may have performed
4558 cleanups on EH edges while non-EH edges were still present. */
4559 delete_unreachable_blocks ();
4560
4561 /* We manipulated the landing pads. Remove any region that no
4562 longer has a landing pad. */
4563 remove_unreachable_handlers_no_lp ();
4564
4565 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4566 }
4567 }
4568
4569 return 0;
4570 }
4571
4572 namespace {
4573
4574 const pass_data pass_data_cleanup_eh =
4575 {
4576 GIMPLE_PASS, /* type */
4577 "ehcleanup", /* name */
4578 OPTGROUP_NONE, /* optinfo_flags */
4579 TV_TREE_EH, /* tv_id */
4580 PROP_gimple_lcf, /* properties_required */
4581 0, /* properties_provided */
4582 0, /* properties_destroyed */
4583 0, /* todo_flags_start */
4584 0, /* todo_flags_finish */
4585 };
4586
4587 class pass_cleanup_eh : public gimple_opt_pass
4588 {
4589 public:
4590 pass_cleanup_eh (gcc::context *ctxt)
4591 : gimple_opt_pass (pass_data_cleanup_eh, ctxt)
4592 {}
4593
4594 /* opt_pass methods: */
4595 opt_pass * clone () { return new pass_cleanup_eh (m_ctxt); }
4596 virtual bool gate (function *fun)
4597 {
4598 return fun->eh != NULL && fun->eh->region_tree != NULL;
4599 }
4600
4601 virtual unsigned int execute (function *);
4602
4603 }; // class pass_cleanup_eh
4604
4605 unsigned int
4606 pass_cleanup_eh::execute (function *fun)
4607 {
4608 int ret = execute_cleanup_eh_1 ();
4609
4610 /* If the function no longer needs an EH personality routine
4611 clear it. This exposes cross-language inlining opportunities
4612 and avoids references to a never defined personality routine. */
4613 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4614 && function_needs_eh_personality (fun) != eh_personality_lang)
4615 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4616
4617 return ret;
4618 }
4619
4620 } // anon namespace
4621
4622 gimple_opt_pass *
4623 make_pass_cleanup_eh (gcc::context *ctxt)
4624 {
4625 return new pass_cleanup_eh (ctxt);
4626 }
4627 \f
4628 /* Verify that BB containing STMT as the last statement, has precisely the
4629 edge that make_eh_edges would create. */
4630
4631 DEBUG_FUNCTION bool
4632 verify_eh_edges (gimple *stmt)
4633 {
4634 basic_block bb = gimple_bb (stmt);
4635 eh_landing_pad lp = NULL;
4636 int lp_nr;
4637 edge_iterator ei;
4638 edge e, eh_edge;
4639
4640 lp_nr = lookup_stmt_eh_lp (stmt);
4641 if (lp_nr > 0)
4642 lp = get_eh_landing_pad_from_number (lp_nr);
4643
4644 eh_edge = NULL;
4645 FOR_EACH_EDGE (e, ei, bb->succs)
4646 {
4647 if (e->flags & EDGE_EH)
4648 {
4649 if (eh_edge)
4650 {
4651 error ("BB %i has multiple EH edges", bb->index);
4652 return true;
4653 }
4654 else
4655 eh_edge = e;
4656 }
4657 }
4658
4659 if (lp == NULL)
4660 {
4661 if (eh_edge)
4662 {
4663 error ("BB %i can not throw but has an EH edge", bb->index);
4664 return true;
4665 }
4666 return false;
4667 }
4668
4669 if (!stmt_could_throw_p (stmt))
4670 {
4671 error ("BB %i last statement has incorrectly set lp", bb->index);
4672 return true;
4673 }
4674
4675 if (eh_edge == NULL)
4676 {
4677 error ("BB %i is missing an EH edge", bb->index);
4678 return true;
4679 }
4680
4681 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4682 {
4683 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4684 return true;
4685 }
4686
4687 return false;
4688 }
4689
4690 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4691
4692 DEBUG_FUNCTION bool
4693 verify_eh_dispatch_edge (geh_dispatch *stmt)
4694 {
4695 eh_region r;
4696 eh_catch c;
4697 basic_block src, dst;
4698 bool want_fallthru = true;
4699 edge_iterator ei;
4700 edge e, fall_edge;
4701
4702 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4703 src = gimple_bb (stmt);
4704
4705 FOR_EACH_EDGE (e, ei, src->succs)
4706 gcc_assert (e->aux == NULL);
4707
4708 switch (r->type)
4709 {
4710 case ERT_TRY:
4711 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4712 {
4713 dst = label_to_block (c->label);
4714 e = find_edge (src, dst);
4715 if (e == NULL)
4716 {
4717 error ("BB %i is missing an edge", src->index);
4718 return true;
4719 }
4720 e->aux = (void *)e;
4721
4722 /* A catch-all handler doesn't have a fallthru. */
4723 if (c->type_list == NULL)
4724 {
4725 want_fallthru = false;
4726 break;
4727 }
4728 }
4729 break;
4730
4731 case ERT_ALLOWED_EXCEPTIONS:
4732 dst = label_to_block (r->u.allowed.label);
4733 e = find_edge (src, dst);
4734 if (e == NULL)
4735 {
4736 error ("BB %i is missing an edge", src->index);
4737 return true;
4738 }
4739 e->aux = (void *)e;
4740 break;
4741
4742 default:
4743 gcc_unreachable ();
4744 }
4745
4746 fall_edge = NULL;
4747 FOR_EACH_EDGE (e, ei, src->succs)
4748 {
4749 if (e->flags & EDGE_FALLTHRU)
4750 {
4751 if (fall_edge != NULL)
4752 {
4753 error ("BB %i too many fallthru edges", src->index);
4754 return true;
4755 }
4756 fall_edge = e;
4757 }
4758 else if (e->aux)
4759 e->aux = NULL;
4760 else
4761 {
4762 error ("BB %i has incorrect edge", src->index);
4763 return true;
4764 }
4765 }
4766 if ((fall_edge != NULL) ^ want_fallthru)
4767 {
4768 error ("BB %i has incorrect fallthru edge", src->index);
4769 return true;
4770 }
4771
4772 return false;
4773 }