remove useless if-before-free tests
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "diagnostic-core.h"
39 #include "gimple.h"
40 #include "target.h"
41
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p = 0;
48
49 void
50 using_eh_for_cleanups (void)
51 {
52 using_eh_for_cleanups_p = 1;
53 }
54
55 /* Misc functions used in this file. */
56
57 /* Compare and hash for any structure which begins with a canonical
58 pointer. Assumes all pointers are interchangeable, which is sort
59 of already assumed by gcc elsewhere IIRC. */
60
61 static int
62 struct_ptr_eq (const void *a, const void *b)
63 {
64 const void * const * x = (const void * const *) a;
65 const void * const * y = (const void * const *) b;
66 return *x == *y;
67 }
68
69 static hashval_t
70 struct_ptr_hash (const void *a)
71 {
72 const void * const * x = (const void * const *) a;
73 return (size_t)*x >> 4;
74 }
75
76
77 /* Remember and lookup EH landing pad data for arbitrary statements.
78 Really this means any statement that could_throw_p. We could
79 stuff this information into the stmt_ann data structure, but:
80
81 (1) We absolutely rely on this information being kept until
82 we get to rtl. Once we're done with lowering here, if we lose
83 the information there's no way to recover it!
84
85 (2) There are many more statements that *cannot* throw as
86 compared to those that can. We should be saving some amount
87 of space by only allocating memory for those that can throw. */
88
89 /* Add statement T in function IFUN to landing pad NUM. */
90
91 void
92 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
93 {
94 struct throw_stmt_node *n;
95 void **slot;
96
97 gcc_assert (num != 0);
98
99 n = ggc_alloc_throw_stmt_node ();
100 n->stmt = t;
101 n->lp_nr = num;
102
103 if (!get_eh_throw_stmt_table (ifun))
104 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
105 struct_ptr_eq,
106 ggc_free));
107
108 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
109 gcc_assert (!*slot);
110 *slot = n;
111 }
112
113 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
114
115 void
116 add_stmt_to_eh_lp (gimple t, int num)
117 {
118 add_stmt_to_eh_lp_fn (cfun, t, num);
119 }
120
121 /* Add statement T to the single EH landing pad in REGION. */
122
123 static void
124 record_stmt_eh_region (eh_region region, gimple t)
125 {
126 if (region == NULL)
127 return;
128 if (region->type == ERT_MUST_NOT_THROW)
129 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
130 else
131 {
132 eh_landing_pad lp = region->landing_pads;
133 if (lp == NULL)
134 lp = gen_eh_landing_pad (region);
135 else
136 gcc_assert (lp->next_lp == NULL);
137 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
138 }
139 }
140
141
142 /* Remove statement T in function IFUN from its EH landing pad. */
143
144 bool
145 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
146 {
147 struct throw_stmt_node dummy;
148 void **slot;
149
150 if (!get_eh_throw_stmt_table (ifun))
151 return false;
152
153 dummy.stmt = t;
154 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
155 NO_INSERT);
156 if (slot)
157 {
158 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
159 return true;
160 }
161 else
162 return false;
163 }
164
165
166 /* Remove statement T in the current function (cfun) from its
167 EH landing pad. */
168
169 bool
170 remove_stmt_from_eh_lp (gimple t)
171 {
172 return remove_stmt_from_eh_lp_fn (cfun, t);
173 }
174
175 /* Determine if statement T is inside an EH region in function IFUN.
176 Positive numbers indicate a landing pad index; negative numbers
177 indicate a MUST_NOT_THROW region index; zero indicates that the
178 statement is not recorded in the region table. */
179
180 int
181 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
182 {
183 struct throw_stmt_node *p, n;
184
185 if (ifun->eh->throw_stmt_table == NULL)
186 return 0;
187
188 n.stmt = t;
189 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
190 return p ? p->lp_nr : 0;
191 }
192
193 /* Likewise, but always use the current function. */
194
195 int
196 lookup_stmt_eh_lp (gimple t)
197 {
198 /* We can get called from initialized data when -fnon-call-exceptions
199 is on; prevent crash. */
200 if (!cfun)
201 return 0;
202 return lookup_stmt_eh_lp_fn (cfun, t);
203 }
204
205 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
206 nodes and LABEL_DECL nodes. We will use this during the second phase to
207 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
208
209 struct finally_tree_node
210 {
211 /* When storing a GIMPLE_TRY, we have to record a gimple. However
212 when deciding whether a GOTO to a certain LABEL_DECL (which is a
213 tree) leaves the TRY block, its necessary to record a tree in
214 this field. Thus a treemple is used. */
215 treemple child;
216 gimple parent;
217 };
218
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static htab_t finally_tree;
221
222 static void
223 record_in_finally_tree (treemple child, gimple parent)
224 {
225 struct finally_tree_node *n;
226 void **slot;
227
228 n = XNEW (struct finally_tree_node);
229 n->child = child;
230 n->parent = parent;
231
232 slot = htab_find_slot (finally_tree, n, INSERT);
233 gcc_assert (!*slot);
234 *slot = n;
235 }
236
237 static void
238 collect_finally_tree (gimple stmt, gimple region);
239
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
242
243 static void
244 collect_finally_tree_1 (gimple_seq seq, gimple region)
245 {
246 gimple_stmt_iterator gsi;
247
248 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
249 collect_finally_tree (gsi_stmt (gsi), region);
250 }
251
252 static void
253 collect_finally_tree (gimple stmt, gimple region)
254 {
255 treemple temp;
256
257 switch (gimple_code (stmt))
258 {
259 case GIMPLE_LABEL:
260 temp.t = gimple_label_label (stmt);
261 record_in_finally_tree (temp, region);
262 break;
263
264 case GIMPLE_TRY:
265 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
266 {
267 temp.g = stmt;
268 record_in_finally_tree (temp, region);
269 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
271 }
272 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
273 {
274 collect_finally_tree_1 (gimple_try_eval (stmt), region);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
276 }
277 break;
278
279 case GIMPLE_CATCH:
280 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
281 break;
282
283 case GIMPLE_EH_FILTER:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
285 break;
286
287 default:
288 /* A type, a decl, or some kind of statement that we're not
289 interested in. Don't walk them. */
290 break;
291 }
292 }
293
294
295 /* Use the finally tree to determine if a jump from START to TARGET
296 would leave the try_finally node that START lives in. */
297
298 static bool
299 outside_finally_tree (treemple start, gimple target)
300 {
301 struct finally_tree_node n, *p;
302
303 do
304 {
305 n.child = start;
306 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
307 if (!p)
308 return true;
309 start.g = p->parent;
310 }
311 while (start.g != target);
312
313 return false;
314 }
315
316 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
317 nodes into a set of gotos, magic labels, and eh regions.
318 The eh region creation is straight-forward, but frobbing all the gotos
319 and such into shape isn't. */
320
321 /* The sequence into which we record all EH stuff. This will be
322 placed at the end of the function when we're all done. */
323 static gimple_seq eh_seq;
324
325 /* Record whether an EH region contains something that can throw,
326 indexed by EH region number. */
327 static bitmap eh_region_may_contain_throw_map;
328
329 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
330 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
331 The idea is to record a gimple statement for everything except for
332 the conditionals, which get their labels recorded. Since labels are
333 of type 'tree', we need this node to store both gimple and tree
334 objects. REPL_STMT is the sequence used to replace the goto/return
335 statement. CONT_STMT is used to store the statement that allows
336 the return/goto to jump to the original destination. */
337
338 struct goto_queue_node
339 {
340 treemple stmt;
341 gimple_seq repl_stmt;
342 gimple cont_stmt;
343 int index;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
346 int is_label;
347 };
348
349 /* State of the world while lowering. */
350
351 struct leh_state
352 {
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region;
357
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region;
362
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state *tf;
367 };
368
369 struct leh_tf_state
370 {
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gimple try_finally_expr;
376 gimple top_p;
377
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq;
381
382 /* The state outside this try_finally node. */
383 struct leh_state *outer;
384
385 /* The exception region created for it. */
386 eh_region region;
387
388 /* The goto queue. */
389 struct goto_queue_node *goto_queue;
390 size_t goto_queue_size;
391 size_t goto_queue_active;
392
393 /* Pointer map to help in searching goto_queue when it is large. */
394 struct pointer_map_t *goto_queue_map;
395
396 /* The set of unique labels seen as entries in the goto queue. */
397 VEC(tree,heap) *dest_array;
398
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
402 tree fallthru_label;
403
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
406 bool may_fallthru;
407
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
409 bool may_return;
410
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
413 bool may_throw;
414 };
415
416 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
417
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
420
421 #define LARGE_GOTO_QUEUE 20
422
423 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
424
425 static gimple_seq
426 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
427 {
428 unsigned int i;
429 void **slot;
430
431 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
432 {
433 for (i = 0; i < tf->goto_queue_active; i++)
434 if ( tf->goto_queue[i].stmt.g == stmt.g)
435 return tf->goto_queue[i].repl_stmt;
436 return NULL;
437 }
438
439 /* If we have a large number of entries in the goto_queue, create a
440 pointer map and use that for searching. */
441
442 if (!tf->goto_queue_map)
443 {
444 tf->goto_queue_map = pointer_map_create ();
445 for (i = 0; i < tf->goto_queue_active; i++)
446 {
447 slot = pointer_map_insert (tf->goto_queue_map,
448 tf->goto_queue[i].stmt.g);
449 gcc_assert (*slot == NULL);
450 *slot = &tf->goto_queue[i];
451 }
452 }
453
454 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
455 if (slot != NULL)
456 return (((struct goto_queue_node *) *slot)->repl_stmt);
457
458 return NULL;
459 }
460
461 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
462 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
463 then we can just splat it in, otherwise we add the new stmts immediately
464 after the GIMPLE_COND and redirect. */
465
466 static void
467 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
468 gimple_stmt_iterator *gsi)
469 {
470 tree label;
471 gimple_seq new_seq;
472 treemple temp;
473 location_t loc = gimple_location (gsi_stmt (*gsi));
474
475 temp.tp = tp;
476 new_seq = find_goto_replacement (tf, temp);
477 if (!new_seq)
478 return;
479
480 if (gimple_seq_singleton_p (new_seq)
481 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
482 {
483 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
484 return;
485 }
486
487 label = create_artificial_label (loc);
488 /* Set the new label for the GIMPLE_COND */
489 *tp = label;
490
491 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
492 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
493 }
494
495 /* The real work of replace_goto_queue. Returns with TSI updated to
496 point to the next statement. */
497
498 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
499
500 static void
501 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
502 gimple_stmt_iterator *gsi)
503 {
504 gimple_seq seq;
505 treemple temp;
506 temp.g = NULL;
507
508 switch (gimple_code (stmt))
509 {
510 case GIMPLE_GOTO:
511 case GIMPLE_RETURN:
512 temp.g = stmt;
513 seq = find_goto_replacement (tf, temp);
514 if (seq)
515 {
516 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
517 gsi_remove (gsi, false);
518 return;
519 }
520 break;
521
522 case GIMPLE_COND:
523 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
525 break;
526
527 case GIMPLE_TRY:
528 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
529 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
530 break;
531 case GIMPLE_CATCH:
532 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
533 break;
534 case GIMPLE_EH_FILTER:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
536 break;
537
538 default:
539 /* These won't have gotos in them. */
540 break;
541 }
542
543 gsi_next (gsi);
544 }
545
546 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
547
548 static void
549 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
550 {
551 gimple_stmt_iterator gsi = gsi_start (seq);
552
553 while (!gsi_end_p (gsi))
554 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
555 }
556
557 /* Replace all goto queue members. */
558
559 static void
560 replace_goto_queue (struct leh_tf_state *tf)
561 {
562 if (tf->goto_queue_active == 0)
563 return;
564 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
565 replace_goto_queue_stmt_list (eh_seq, tf);
566 }
567
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
570 a gimple return. */
571
572 static void
573 record_in_goto_queue (struct leh_tf_state *tf,
574 treemple new_stmt,
575 int index,
576 bool is_label)
577 {
578 size_t active, size;
579 struct goto_queue_node *q;
580
581 gcc_assert (!tf->goto_queue_map);
582
583 active = tf->goto_queue_active;
584 size = tf->goto_queue_size;
585 if (active >= size)
586 {
587 size = (size ? size * 2 : 32);
588 tf->goto_queue_size = size;
589 tf->goto_queue
590 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
591 }
592
593 q = &tf->goto_queue[active];
594 tf->goto_queue_active = active + 1;
595
596 memset (q, 0, sizeof (*q));
597 q->stmt = new_stmt;
598 q->index = index;
599 q->is_label = is_label;
600 }
601
602 /* Record the LABEL label in the goto queue contained in TF.
603 TF is not null. */
604
605 static void
606 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
607 {
608 int index;
609 treemple temp, new_stmt;
610
611 if (!label)
612 return;
613
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
619
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
624
625 if (! tf->dest_array)
626 {
627 tf->dest_array = VEC_alloc (tree, heap, 10);
628 VEC_quick_push (tree, tf->dest_array, label);
629 index = 0;
630 }
631 else
632 {
633 int n = VEC_length (tree, tf->dest_array);
634 for (index = 0; index < n; ++index)
635 if (VEC_index (tree, tf->dest_array, index) == label)
636 break;
637 if (index == n)
638 VEC_safe_push (tree, heap, tf->dest_array, label);
639 }
640
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true);
646 }
647
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
650 try_finally node. */
651
652 static void
653 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
654 {
655 struct leh_tf_state *tf = state->tf;
656 treemple new_stmt;
657
658 if (!tf)
659 return;
660
661 switch (gimple_code (stmt))
662 {
663 case GIMPLE_COND:
664 new_stmt.tp = gimple_op_ptr (stmt, 2);
665 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
666 new_stmt.tp = gimple_op_ptr (stmt, 3);
667 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
668 break;
669 case GIMPLE_GOTO:
670 new_stmt.g = stmt;
671 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
672 break;
673
674 case GIMPLE_RETURN:
675 tf->may_return = true;
676 new_stmt.g = stmt;
677 record_in_goto_queue (tf, new_stmt, -1, false);
678 break;
679
680 default:
681 gcc_unreachable ();
682 }
683 }
684
685
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
690
691 static void
692 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
693 {
694 struct leh_tf_state *tf = state->tf;
695 size_t i, n;
696
697 if (!tf)
698 return;
699
700 n = gimple_switch_num_labels (switch_expr);
701
702 for (i = 0; i < n; ++i)
703 {
704 treemple temp;
705 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
706 temp.t = lab;
707 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
708 }
709 }
710 #else
711 #define verify_norecord_switch_expr(state, switch_expr)
712 #endif
713
714 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
715 whatever is needed to finish the return. If MOD is non-null, insert it
716 before the new branch. RETURN_VALUE_P is a cache containing a temporary
717 variable to be used in manipulating the value returned from the function. */
718
719 static void
720 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
721 tree *return_value_p)
722 {
723 tree ret_expr;
724 gimple x;
725
726 /* In the case of a return, the queue node must be a gimple statement. */
727 gcc_assert (!q->is_label);
728
729 ret_expr = gimple_return_retval (q->stmt.g);
730
731 if (ret_expr)
732 {
733 if (!*return_value_p)
734 *return_value_p = ret_expr;
735 else
736 gcc_assert (*return_value_p == ret_expr);
737 q->cont_stmt = q->stmt.g;
738 /* The nasty part about redirecting the return value is that the
739 return value itself is to be computed before the FINALLY block
740 is executed. e.g.
741
742 int x;
743 int foo (void)
744 {
745 x = 0;
746 try {
747 return x;
748 } finally {
749 x++;
750 }
751 }
752
753 should return 0, not 1. Arrange for this to happen by copying
754 computed the return value into a local temporary. This also
755 allows us to redirect multiple return statements through the
756 same destination block; whether this is a net win or not really
757 depends, I guess, but it does make generation of the switch in
758 lower_try_finally_switch easier. */
759
760 if (TREE_CODE (ret_expr) == RESULT_DECL)
761 {
762 if (!*return_value_p)
763 *return_value_p = ret_expr;
764 else
765 gcc_assert (*return_value_p == ret_expr);
766 q->cont_stmt = q->stmt.g;
767 }
768 else
769 gcc_unreachable ();
770 }
771 else
772 /* If we don't return a value, all return statements are the same. */
773 q->cont_stmt = q->stmt.g;
774
775 if (!q->repl_stmt)
776 q->repl_stmt = gimple_seq_alloc ();
777
778 if (mod)
779 gimple_seq_add_seq (&q->repl_stmt, mod);
780
781 x = gimple_build_goto (finlab);
782 gimple_seq_add_stmt (&q->repl_stmt, x);
783 }
784
785 /* Similar, but easier, for GIMPLE_GOTO. */
786
787 static void
788 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
789 struct leh_tf_state *tf)
790 {
791 gimple x;
792
793 gcc_assert (q->is_label);
794 if (!q->repl_stmt)
795 q->repl_stmt = gimple_seq_alloc ();
796
797 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
798
799 if (mod)
800 gimple_seq_add_seq (&q->repl_stmt, mod);
801
802 x = gimple_build_goto (finlab);
803 gimple_seq_add_stmt (&q->repl_stmt, x);
804 }
805
806 /* Emit a standard landing pad sequence into SEQ for REGION. */
807
808 static void
809 emit_post_landing_pad (gimple_seq *seq, eh_region region)
810 {
811 eh_landing_pad lp = region->landing_pads;
812 gimple x;
813
814 if (lp == NULL)
815 lp = gen_eh_landing_pad (region);
816
817 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
818 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
819
820 x = gimple_build_label (lp->post_landing_pad);
821 gimple_seq_add_stmt (seq, x);
822 }
823
824 /* Emit a RESX statement into SEQ for REGION. */
825
826 static void
827 emit_resx (gimple_seq *seq, eh_region region)
828 {
829 gimple x = gimple_build_resx (region->index);
830 gimple_seq_add_stmt (seq, x);
831 if (region->outer)
832 record_stmt_eh_region (region->outer, x);
833 }
834
835 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
836
837 static void
838 emit_eh_dispatch (gimple_seq *seq, eh_region region)
839 {
840 gimple x = gimple_build_eh_dispatch (region->index);
841 gimple_seq_add_stmt (seq, x);
842 }
843
844 /* Note that the current EH region may contain a throw, or a
845 call to a function which itself may contain a throw. */
846
847 static void
848 note_eh_region_may_contain_throw (eh_region region)
849 {
850 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
851 {
852 if (region->type == ERT_MUST_NOT_THROW)
853 break;
854 region = region->outer;
855 if (region == NULL)
856 break;
857 }
858 }
859
860 /* Check if REGION has been marked as containing a throw. If REGION is
861 NULL, this predicate is false. */
862
863 static inline bool
864 eh_region_may_contain_throw (eh_region r)
865 {
866 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
867 }
868
869 /* We want to transform
870 try { body; } catch { stuff; }
871 to
872 normal_seqence:
873 body;
874 over:
875 eh_seqence:
876 landing_pad:
877 stuff;
878 goto over;
879
880 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
881 should be placed before the second operand, or NULL. OVER is
882 an existing label that should be put at the exit, or NULL. */
883
884 static gimple_seq
885 frob_into_branch_around (gimple tp, eh_region region, tree over)
886 {
887 gimple x;
888 gimple_seq cleanup, result;
889 location_t loc = gimple_location (tp);
890
891 cleanup = gimple_try_cleanup (tp);
892 result = gimple_try_eval (tp);
893
894 if (region)
895 emit_post_landing_pad (&eh_seq, region);
896
897 if (gimple_seq_may_fallthru (cleanup))
898 {
899 if (!over)
900 over = create_artificial_label (loc);
901 x = gimple_build_goto (over);
902 gimple_seq_add_stmt (&cleanup, x);
903 }
904 gimple_seq_add_seq (&eh_seq, cleanup);
905
906 if (over)
907 {
908 x = gimple_build_label (over);
909 gimple_seq_add_stmt (&result, x);
910 }
911 return result;
912 }
913
914 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
915 Make sure to record all new labels found. */
916
917 static gimple_seq
918 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
919 {
920 gimple region = NULL;
921 gimple_seq new_seq;
922
923 new_seq = copy_gimple_seq_and_replace_locals (seq);
924
925 if (outer_state->tf)
926 region = outer_state->tf->try_finally_expr;
927 collect_finally_tree_1 (new_seq, region);
928
929 return new_seq;
930 }
931
932 /* A subroutine of lower_try_finally. Create a fallthru label for
933 the given try_finally state. The only tricky bit here is that
934 we have to make sure to record the label in our outer context. */
935
936 static tree
937 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
938 {
939 tree label = tf->fallthru_label;
940 treemple temp;
941
942 if (!label)
943 {
944 label = create_artificial_label (gimple_location (tf->try_finally_expr));
945 tf->fallthru_label = label;
946 if (tf->outer->tf)
947 {
948 temp.t = label;
949 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
950 }
951 }
952 return label;
953 }
954
955 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
956 langhook returns non-null, then the language requires that the exception
957 path out of a try_finally be treated specially. To wit: the code within
958 the finally block may not itself throw an exception. We have two choices
959 here. First we can duplicate the finally block and wrap it in a
960 must_not_throw region. Second, we can generate code like
961
962 try {
963 finally_block;
964 } catch {
965 if (fintmp == eh_edge)
966 protect_cleanup_actions;
967 }
968
969 where "fintmp" is the temporary used in the switch statement generation
970 alternative considered below. For the nonce, we always choose the first
971 option.
972
973 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
974
975 static void
976 honor_protect_cleanup_actions (struct leh_state *outer_state,
977 struct leh_state *this_state,
978 struct leh_tf_state *tf)
979 {
980 tree protect_cleanup_actions;
981 gimple_stmt_iterator gsi;
982 bool finally_may_fallthru;
983 gimple_seq finally;
984 gimple x;
985
986 /* First check for nothing to do. */
987 if (lang_hooks.eh_protect_cleanup_actions == NULL)
988 return;
989 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
990 if (protect_cleanup_actions == NULL)
991 return;
992
993 finally = gimple_try_cleanup (tf->top_p);
994 finally_may_fallthru = gimple_seq_may_fallthru (finally);
995
996 /* Duplicate the FINALLY block. Only need to do this for try-finally,
997 and not for cleanups. */
998 if (this_state)
999 finally = lower_try_finally_dup_block (finally, outer_state);
1000
1001 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1002 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1003 to be in an enclosing scope, but needs to be implemented at this level
1004 to avoid a nesting violation (see wrap_temporary_cleanups in
1005 cp/decl.c). Since it's logically at an outer level, we should call
1006 terminate before we get to it, so strip it away before adding the
1007 MUST_NOT_THROW filter. */
1008 gsi = gsi_start (finally);
1009 x = gsi_stmt (gsi);
1010 if (gimple_code (x) == GIMPLE_TRY
1011 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1012 && gimple_try_catch_is_cleanup (x))
1013 {
1014 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1015 gsi_remove (&gsi, false);
1016 }
1017
1018 /* Wrap the block with protect_cleanup_actions as the action. */
1019 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1020 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1021 GIMPLE_TRY_CATCH);
1022 finally = lower_eh_must_not_throw (outer_state, x);
1023
1024 /* Drop all of this into the exception sequence. */
1025 emit_post_landing_pad (&eh_seq, tf->region);
1026 gimple_seq_add_seq (&eh_seq, finally);
1027 if (finally_may_fallthru)
1028 emit_resx (&eh_seq, tf->region);
1029
1030 /* Having now been handled, EH isn't to be considered with
1031 the rest of the outgoing edges. */
1032 tf->may_throw = false;
1033 }
1034
1035 /* A subroutine of lower_try_finally. We have determined that there is
1036 no fallthru edge out of the finally block. This means that there is
1037 no outgoing edge corresponding to any incoming edge. Restructure the
1038 try_finally node for this special case. */
1039
1040 static void
1041 lower_try_finally_nofallthru (struct leh_state *state,
1042 struct leh_tf_state *tf)
1043 {
1044 tree lab, return_val;
1045 gimple x;
1046 gimple_seq finally;
1047 struct goto_queue_node *q, *qe;
1048
1049 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1050
1051 /* We expect that tf->top_p is a GIMPLE_TRY. */
1052 finally = gimple_try_cleanup (tf->top_p);
1053 tf->top_p_seq = gimple_try_eval (tf->top_p);
1054
1055 x = gimple_build_label (lab);
1056 gimple_seq_add_stmt (&tf->top_p_seq, x);
1057
1058 return_val = NULL;
1059 q = tf->goto_queue;
1060 qe = q + tf->goto_queue_active;
1061 for (; q < qe; ++q)
1062 if (q->index < 0)
1063 do_return_redirection (q, lab, NULL, &return_val);
1064 else
1065 do_goto_redirection (q, lab, NULL, tf);
1066
1067 replace_goto_queue (tf);
1068
1069 lower_eh_constructs_1 (state, finally);
1070 gimple_seq_add_seq (&tf->top_p_seq, finally);
1071
1072 if (tf->may_throw)
1073 {
1074 emit_post_landing_pad (&eh_seq, tf->region);
1075
1076 x = gimple_build_goto (lab);
1077 gimple_seq_add_stmt (&eh_seq, x);
1078 }
1079 }
1080
1081 /* A subroutine of lower_try_finally. We have determined that there is
1082 exactly one destination of the finally block. Restructure the
1083 try_finally node for this special case. */
1084
1085 static void
1086 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1087 {
1088 struct goto_queue_node *q, *qe;
1089 gimple x;
1090 gimple_seq finally;
1091 tree finally_label;
1092 location_t loc = gimple_location (tf->try_finally_expr);
1093
1094 finally = gimple_try_cleanup (tf->top_p);
1095 tf->top_p_seq = gimple_try_eval (tf->top_p);
1096
1097 lower_eh_constructs_1 (state, finally);
1098
1099 if (tf->may_throw)
1100 {
1101 /* Only reachable via the exception edge. Add the given label to
1102 the head of the FINALLY block. Append a RESX at the end. */
1103 emit_post_landing_pad (&eh_seq, tf->region);
1104 gimple_seq_add_seq (&eh_seq, finally);
1105 emit_resx (&eh_seq, tf->region);
1106 return;
1107 }
1108
1109 if (tf->may_fallthru)
1110 {
1111 /* Only reachable via the fallthru edge. Do nothing but let
1112 the two blocks run together; we'll fall out the bottom. */
1113 gimple_seq_add_seq (&tf->top_p_seq, finally);
1114 return;
1115 }
1116
1117 finally_label = create_artificial_label (loc);
1118 x = gimple_build_label (finally_label);
1119 gimple_seq_add_stmt (&tf->top_p_seq, x);
1120
1121 gimple_seq_add_seq (&tf->top_p_seq, finally);
1122
1123 q = tf->goto_queue;
1124 qe = q + tf->goto_queue_active;
1125
1126 if (tf->may_return)
1127 {
1128 /* Reachable by return expressions only. Redirect them. */
1129 tree return_val = NULL;
1130 for (; q < qe; ++q)
1131 do_return_redirection (q, finally_label, NULL, &return_val);
1132 replace_goto_queue (tf);
1133 }
1134 else
1135 {
1136 /* Reachable by goto expressions only. Redirect them. */
1137 for (; q < qe; ++q)
1138 do_goto_redirection (q, finally_label, NULL, tf);
1139 replace_goto_queue (tf);
1140
1141 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1142 {
1143 /* Reachable by goto to fallthru label only. Redirect it
1144 to the new label (already created, sadly), and do not
1145 emit the final branch out, or the fallthru label. */
1146 tf->fallthru_label = NULL;
1147 return;
1148 }
1149 }
1150
1151 /* Place the original return/goto to the original destination
1152 immediately after the finally block. */
1153 x = tf->goto_queue[0].cont_stmt;
1154 gimple_seq_add_stmt (&tf->top_p_seq, x);
1155 maybe_record_in_goto_queue (state, x);
1156 }
1157
1158 /* A subroutine of lower_try_finally. There are multiple edges incoming
1159 and outgoing from the finally block. Implement this by duplicating the
1160 finally block for every destination. */
1161
1162 static void
1163 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1164 {
1165 gimple_seq finally;
1166 gimple_seq new_stmt;
1167 gimple_seq seq;
1168 gimple x;
1169 tree tmp;
1170 location_t tf_loc = gimple_location (tf->try_finally_expr);
1171
1172 finally = gimple_try_cleanup (tf->top_p);
1173 tf->top_p_seq = gimple_try_eval (tf->top_p);
1174 new_stmt = NULL;
1175
1176 if (tf->may_fallthru)
1177 {
1178 seq = lower_try_finally_dup_block (finally, state);
1179 lower_eh_constructs_1 (state, seq);
1180 gimple_seq_add_seq (&new_stmt, seq);
1181
1182 tmp = lower_try_finally_fallthru_label (tf);
1183 x = gimple_build_goto (tmp);
1184 gimple_seq_add_stmt (&new_stmt, x);
1185 }
1186
1187 if (tf->may_throw)
1188 {
1189 seq = lower_try_finally_dup_block (finally, state);
1190 lower_eh_constructs_1 (state, seq);
1191
1192 emit_post_landing_pad (&eh_seq, tf->region);
1193 gimple_seq_add_seq (&eh_seq, seq);
1194 emit_resx (&eh_seq, tf->region);
1195 }
1196
1197 if (tf->goto_queue)
1198 {
1199 struct goto_queue_node *q, *qe;
1200 tree return_val = NULL;
1201 int return_index, index;
1202 struct labels_s
1203 {
1204 struct goto_queue_node *q;
1205 tree label;
1206 } *labels;
1207
1208 return_index = VEC_length (tree, tf->dest_array);
1209 labels = XCNEWVEC (struct labels_s, return_index + 1);
1210
1211 q = tf->goto_queue;
1212 qe = q + tf->goto_queue_active;
1213 for (; q < qe; q++)
1214 {
1215 index = q->index < 0 ? return_index : q->index;
1216
1217 if (!labels[index].q)
1218 labels[index].q = q;
1219 }
1220
1221 for (index = 0; index < return_index + 1; index++)
1222 {
1223 tree lab;
1224
1225 q = labels[index].q;
1226 if (! q)
1227 continue;
1228
1229 lab = labels[index].label
1230 = create_artificial_label (tf_loc);
1231
1232 if (index == return_index)
1233 do_return_redirection (q, lab, NULL, &return_val);
1234 else
1235 do_goto_redirection (q, lab, NULL, tf);
1236
1237 x = gimple_build_label (lab);
1238 gimple_seq_add_stmt (&new_stmt, x);
1239
1240 seq = lower_try_finally_dup_block (finally, state);
1241 lower_eh_constructs_1 (state, seq);
1242 gimple_seq_add_seq (&new_stmt, seq);
1243
1244 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1245 maybe_record_in_goto_queue (state, q->cont_stmt);
1246 }
1247
1248 for (q = tf->goto_queue; q < qe; q++)
1249 {
1250 tree lab;
1251
1252 index = q->index < 0 ? return_index : q->index;
1253
1254 if (labels[index].q == q)
1255 continue;
1256
1257 lab = labels[index].label;
1258
1259 if (index == return_index)
1260 do_return_redirection (q, lab, NULL, &return_val);
1261 else
1262 do_goto_redirection (q, lab, NULL, tf);
1263 }
1264
1265 replace_goto_queue (tf);
1266 free (labels);
1267 }
1268
1269 /* Need to link new stmts after running replace_goto_queue due
1270 to not wanting to process the same goto stmts twice. */
1271 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1272 }
1273
1274 /* A subroutine of lower_try_finally. There are multiple edges incoming
1275 and outgoing from the finally block. Implement this by instrumenting
1276 each incoming edge and creating a switch statement at the end of the
1277 finally block that branches to the appropriate destination. */
1278
1279 static void
1280 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1281 {
1282 struct goto_queue_node *q, *qe;
1283 tree return_val = NULL;
1284 tree finally_tmp, finally_label;
1285 int return_index, eh_index, fallthru_index;
1286 int nlabels, ndests, j, last_case_index;
1287 tree last_case;
1288 VEC (tree,heap) *case_label_vec;
1289 gimple_seq switch_body;
1290 gimple x;
1291 tree tmp;
1292 gimple switch_stmt;
1293 gimple_seq finally;
1294 struct pointer_map_t *cont_map = NULL;
1295 /* The location of the TRY_FINALLY stmt. */
1296 location_t tf_loc = gimple_location (tf->try_finally_expr);
1297 /* The location of the finally block. */
1298 location_t finally_loc;
1299
1300 switch_body = gimple_seq_alloc ();
1301
1302 /* Mash the TRY block to the head of the chain. */
1303 finally = gimple_try_cleanup (tf->top_p);
1304 tf->top_p_seq = gimple_try_eval (tf->top_p);
1305
1306 /* The location of the finally is either the last stmt in the finally
1307 block or the location of the TRY_FINALLY itself. */
1308 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1309 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1310 : tf_loc;
1311
1312 /* Lower the finally block itself. */
1313 lower_eh_constructs_1 (state, finally);
1314
1315 /* Prepare for switch statement generation. */
1316 nlabels = VEC_length (tree, tf->dest_array);
1317 return_index = nlabels;
1318 eh_index = return_index + tf->may_return;
1319 fallthru_index = eh_index + tf->may_throw;
1320 ndests = fallthru_index + tf->may_fallthru;
1321
1322 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1323 finally_label = create_artificial_label (finally_loc);
1324
1325 /* We use VEC_quick_push on case_label_vec throughout this function,
1326 since we know the size in advance and allocate precisely as muce
1327 space as needed. */
1328 case_label_vec = VEC_alloc (tree, heap, ndests);
1329 last_case = NULL;
1330 last_case_index = 0;
1331
1332 /* Begin inserting code for getting to the finally block. Things
1333 are done in this order to correspond to the sequence the code is
1334 layed out. */
1335
1336 if (tf->may_fallthru)
1337 {
1338 x = gimple_build_assign (finally_tmp,
1339 build_int_cst (NULL, fallthru_index));
1340 gimple_seq_add_stmt (&tf->top_p_seq, x);
1341
1342 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1343 build_int_cst (NULL, fallthru_index),
1344 NULL, create_artificial_label (tf_loc));
1345 VEC_quick_push (tree, case_label_vec, last_case);
1346 last_case_index++;
1347
1348 x = gimple_build_label (CASE_LABEL (last_case));
1349 gimple_seq_add_stmt (&switch_body, x);
1350
1351 tmp = lower_try_finally_fallthru_label (tf);
1352 x = gimple_build_goto (tmp);
1353 gimple_seq_add_stmt (&switch_body, x);
1354 }
1355
1356 if (tf->may_throw)
1357 {
1358 emit_post_landing_pad (&eh_seq, tf->region);
1359
1360 x = gimple_build_assign (finally_tmp,
1361 build_int_cst (NULL, eh_index));
1362 gimple_seq_add_stmt (&eh_seq, x);
1363
1364 x = gimple_build_goto (finally_label);
1365 gimple_seq_add_stmt (&eh_seq, x);
1366
1367 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1368 build_int_cst (NULL, eh_index),
1369 NULL, create_artificial_label (tf_loc));
1370 VEC_quick_push (tree, case_label_vec, last_case);
1371 last_case_index++;
1372
1373 x = gimple_build_label (CASE_LABEL (last_case));
1374 gimple_seq_add_stmt (&eh_seq, x);
1375 emit_resx (&eh_seq, tf->region);
1376 }
1377
1378 x = gimple_build_label (finally_label);
1379 gimple_seq_add_stmt (&tf->top_p_seq, x);
1380
1381 gimple_seq_add_seq (&tf->top_p_seq, finally);
1382
1383 /* Redirect each incoming goto edge. */
1384 q = tf->goto_queue;
1385 qe = q + tf->goto_queue_active;
1386 j = last_case_index + tf->may_return;
1387 /* Prepare the assignments to finally_tmp that are executed upon the
1388 entrance through a particular edge. */
1389 for (; q < qe; ++q)
1390 {
1391 gimple_seq mod;
1392 int switch_id;
1393 unsigned int case_index;
1394
1395 mod = gimple_seq_alloc ();
1396
1397 if (q->index < 0)
1398 {
1399 x = gimple_build_assign (finally_tmp,
1400 build_int_cst (NULL, return_index));
1401 gimple_seq_add_stmt (&mod, x);
1402 do_return_redirection (q, finally_label, mod, &return_val);
1403 switch_id = return_index;
1404 }
1405 else
1406 {
1407 x = gimple_build_assign (finally_tmp,
1408 build_int_cst (NULL, q->index));
1409 gimple_seq_add_stmt (&mod, x);
1410 do_goto_redirection (q, finally_label, mod, tf);
1411 switch_id = q->index;
1412 }
1413
1414 case_index = j + q->index;
1415 if (VEC_length (tree, case_label_vec) <= case_index
1416 || !VEC_index (tree, case_label_vec, case_index))
1417 {
1418 tree case_lab;
1419 void **slot;
1420 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1421 build_int_cst (NULL, switch_id),
1422 NULL, NULL);
1423 /* We store the cont_stmt in the pointer map, so that we can recover
1424 it in the loop below. We don't create the new label while
1425 walking the goto_queue because pointers don't offer a stable
1426 order. */
1427 if (!cont_map)
1428 cont_map = pointer_map_create ();
1429 slot = pointer_map_insert (cont_map, case_lab);
1430 *slot = q->cont_stmt;
1431 VEC_quick_push (tree, case_label_vec, case_lab);
1432 }
1433 }
1434 for (j = last_case_index; j < last_case_index + nlabels; j++)
1435 {
1436 tree label;
1437 gimple cont_stmt;
1438 void **slot;
1439
1440 last_case = VEC_index (tree, case_label_vec, j);
1441
1442 gcc_assert (last_case);
1443 gcc_assert (cont_map);
1444
1445 slot = pointer_map_contains (cont_map, last_case);
1446 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1447 placeholder, it does not store an actual label, yet. */
1448 gcc_assert (slot);
1449 cont_stmt = *(gimple *) slot;
1450
1451 label = create_artificial_label (tf_loc);
1452 CASE_LABEL (last_case) = label;
1453
1454 x = gimple_build_label (label);
1455 gimple_seq_add_stmt (&switch_body, x);
1456 gimple_seq_add_stmt (&switch_body, cont_stmt);
1457 maybe_record_in_goto_queue (state, cont_stmt);
1458 }
1459 if (cont_map)
1460 pointer_map_destroy (cont_map);
1461
1462 replace_goto_queue (tf);
1463
1464 /* Make sure that the last case is the default label, as one is required.
1465 Then sort the labels, which is also required in GIMPLE. */
1466 CASE_LOW (last_case) = NULL;
1467 sort_case_labels (case_label_vec);
1468
1469 /* Build the switch statement, setting last_case to be the default
1470 label. */
1471 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1472 case_label_vec);
1473 gimple_set_location (switch_stmt, finally_loc);
1474
1475 /* Need to link SWITCH_STMT after running replace_goto_queue
1476 due to not wanting to process the same goto stmts twice. */
1477 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1478 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1479 }
1480
1481 /* Decide whether or not we are going to duplicate the finally block.
1482 There are several considerations.
1483
1484 First, if this is Java, then the finally block contains code
1485 written by the user. It has line numbers associated with it,
1486 so duplicating the block means it's difficult to set a breakpoint.
1487 Since controlling code generation via -g is verboten, we simply
1488 never duplicate code without optimization.
1489
1490 Second, we'd like to prevent egregious code growth. One way to
1491 do this is to estimate the size of the finally block, multiply
1492 that by the number of copies we'd need to make, and compare against
1493 the estimate of the size of the switch machinery we'd have to add. */
1494
1495 static bool
1496 decide_copy_try_finally (int ndests, gimple_seq finally)
1497 {
1498 int f_estimate, sw_estimate;
1499
1500 if (!optimize)
1501 return false;
1502
1503 /* Finally estimate N times, plus N gotos. */
1504 f_estimate = count_insns_seq (finally, &eni_size_weights);
1505 f_estimate = (f_estimate + 1) * ndests;
1506
1507 /* Switch statement (cost 10), N variable assignments, N gotos. */
1508 sw_estimate = 10 + 2 * ndests;
1509
1510 /* Optimize for size clearly wants our best guess. */
1511 if (optimize_function_for_size_p (cfun))
1512 return f_estimate < sw_estimate;
1513
1514 /* ??? These numbers are completely made up so far. */
1515 if (optimize > 1)
1516 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1517 else
1518 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1519 }
1520
1521 /* REG is the enclosing region for a possible cleanup region, or the region
1522 itself. Returns TRUE if such a region would be unreachable.
1523
1524 Cleanup regions within a must-not-throw region aren't actually reachable
1525 even if there are throwing stmts within them, because the personality
1526 routine will call terminate before unwinding. */
1527
1528 static bool
1529 cleanup_is_dead_in (eh_region reg)
1530 {
1531 while (reg && reg->type == ERT_CLEANUP)
1532 reg = reg->outer;
1533 return (reg && reg->type == ERT_MUST_NOT_THROW);
1534 }
1535
1536 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1537 to a sequence of labels and blocks, plus the exception region trees
1538 that record all the magic. This is complicated by the need to
1539 arrange for the FINALLY block to be executed on all exits. */
1540
1541 static gimple_seq
1542 lower_try_finally (struct leh_state *state, gimple tp)
1543 {
1544 struct leh_tf_state this_tf;
1545 struct leh_state this_state;
1546 int ndests;
1547 gimple_seq old_eh_seq;
1548
1549 /* Process the try block. */
1550
1551 memset (&this_tf, 0, sizeof (this_tf));
1552 this_tf.try_finally_expr = tp;
1553 this_tf.top_p = tp;
1554 this_tf.outer = state;
1555 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1556 {
1557 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1558 this_state.cur_region = this_tf.region;
1559 }
1560 else
1561 {
1562 this_tf.region = NULL;
1563 this_state.cur_region = state->cur_region;
1564 }
1565
1566 this_state.ehp_region = state->ehp_region;
1567 this_state.tf = &this_tf;
1568
1569 old_eh_seq = eh_seq;
1570 eh_seq = NULL;
1571
1572 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1573
1574 /* Determine if the try block is escaped through the bottom. */
1575 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1576
1577 /* Determine if any exceptions are possible within the try block. */
1578 if (this_tf.region)
1579 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1580 if (this_tf.may_throw)
1581 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1582
1583 /* Determine how many edges (still) reach the finally block. Or rather,
1584 how many destinations are reached by the finally block. Use this to
1585 determine how we process the finally block itself. */
1586
1587 ndests = VEC_length (tree, this_tf.dest_array);
1588 ndests += this_tf.may_fallthru;
1589 ndests += this_tf.may_return;
1590 ndests += this_tf.may_throw;
1591
1592 /* If the FINALLY block is not reachable, dike it out. */
1593 if (ndests == 0)
1594 {
1595 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1596 gimple_try_set_cleanup (tp, NULL);
1597 }
1598 /* If the finally block doesn't fall through, then any destination
1599 we might try to impose there isn't reached either. There may be
1600 some minor amount of cleanup and redirection still needed. */
1601 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1602 lower_try_finally_nofallthru (state, &this_tf);
1603
1604 /* We can easily special-case redirection to a single destination. */
1605 else if (ndests == 1)
1606 lower_try_finally_onedest (state, &this_tf);
1607 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1608 lower_try_finally_copy (state, &this_tf);
1609 else
1610 lower_try_finally_switch (state, &this_tf);
1611
1612 /* If someone requested we add a label at the end of the transformed
1613 block, do so. */
1614 if (this_tf.fallthru_label)
1615 {
1616 /* This must be reached only if ndests == 0. */
1617 gimple x = gimple_build_label (this_tf.fallthru_label);
1618 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1619 }
1620
1621 VEC_free (tree, heap, this_tf.dest_array);
1622 free (this_tf.goto_queue);
1623 if (this_tf.goto_queue_map)
1624 pointer_map_destroy (this_tf.goto_queue_map);
1625
1626 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1627 If there was no old eh_seq, then the append is trivially already done. */
1628 if (old_eh_seq)
1629 {
1630 if (eh_seq == NULL)
1631 eh_seq = old_eh_seq;
1632 else
1633 {
1634 gimple_seq new_eh_seq = eh_seq;
1635 eh_seq = old_eh_seq;
1636 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1637 }
1638 }
1639
1640 return this_tf.top_p_seq;
1641 }
1642
1643 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1644 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1645 exception region trees that records all the magic. */
1646
1647 static gimple_seq
1648 lower_catch (struct leh_state *state, gimple tp)
1649 {
1650 eh_region try_region = NULL;
1651 struct leh_state this_state = *state;
1652 gimple_stmt_iterator gsi;
1653 tree out_label;
1654 gimple_seq new_seq;
1655 gimple x;
1656 location_t try_catch_loc = gimple_location (tp);
1657
1658 if (flag_exceptions)
1659 {
1660 try_region = gen_eh_region_try (state->cur_region);
1661 this_state.cur_region = try_region;
1662 }
1663
1664 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1665
1666 if (!eh_region_may_contain_throw (try_region))
1667 return gimple_try_eval (tp);
1668
1669 new_seq = NULL;
1670 emit_eh_dispatch (&new_seq, try_region);
1671 emit_resx (&new_seq, try_region);
1672
1673 this_state.cur_region = state->cur_region;
1674 this_state.ehp_region = try_region;
1675
1676 out_label = NULL;
1677 for (gsi = gsi_start (gimple_try_cleanup (tp));
1678 !gsi_end_p (gsi);
1679 gsi_next (&gsi))
1680 {
1681 eh_catch c;
1682 gimple gcatch;
1683 gimple_seq handler;
1684
1685 gcatch = gsi_stmt (gsi);
1686 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1687
1688 handler = gimple_catch_handler (gcatch);
1689 lower_eh_constructs_1 (&this_state, handler);
1690
1691 c->label = create_artificial_label (UNKNOWN_LOCATION);
1692 x = gimple_build_label (c->label);
1693 gimple_seq_add_stmt (&new_seq, x);
1694
1695 gimple_seq_add_seq (&new_seq, handler);
1696
1697 if (gimple_seq_may_fallthru (new_seq))
1698 {
1699 if (!out_label)
1700 out_label = create_artificial_label (try_catch_loc);
1701
1702 x = gimple_build_goto (out_label);
1703 gimple_seq_add_stmt (&new_seq, x);
1704 }
1705 if (!c->type_list)
1706 break;
1707 }
1708
1709 gimple_try_set_cleanup (tp, new_seq);
1710
1711 return frob_into_branch_around (tp, try_region, out_label);
1712 }
1713
1714 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1715 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1716 region trees that record all the magic. */
1717
1718 static gimple_seq
1719 lower_eh_filter (struct leh_state *state, gimple tp)
1720 {
1721 struct leh_state this_state = *state;
1722 eh_region this_region = NULL;
1723 gimple inner, x;
1724 gimple_seq new_seq;
1725
1726 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1727
1728 if (flag_exceptions)
1729 {
1730 this_region = gen_eh_region_allowed (state->cur_region,
1731 gimple_eh_filter_types (inner));
1732 this_state.cur_region = this_region;
1733 }
1734
1735 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1736
1737 if (!eh_region_may_contain_throw (this_region))
1738 return gimple_try_eval (tp);
1739
1740 new_seq = NULL;
1741 this_state.cur_region = state->cur_region;
1742 this_state.ehp_region = this_region;
1743
1744 emit_eh_dispatch (&new_seq, this_region);
1745 emit_resx (&new_seq, this_region);
1746
1747 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1748 x = gimple_build_label (this_region->u.allowed.label);
1749 gimple_seq_add_stmt (&new_seq, x);
1750
1751 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1752 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1753
1754 gimple_try_set_cleanup (tp, new_seq);
1755
1756 return frob_into_branch_around (tp, this_region, NULL);
1757 }
1758
1759 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1760 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1761 plus the exception region trees that record all the magic. */
1762
1763 static gimple_seq
1764 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1765 {
1766 struct leh_state this_state = *state;
1767
1768 if (flag_exceptions)
1769 {
1770 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1771 eh_region this_region;
1772
1773 this_region = gen_eh_region_must_not_throw (state->cur_region);
1774 this_region->u.must_not_throw.failure_decl
1775 = gimple_eh_must_not_throw_fndecl (inner);
1776 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1777
1778 /* In order to get mangling applied to this decl, we must mark it
1779 used now. Otherwise, pass_ipa_free_lang_data won't think it
1780 needs to happen. */
1781 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1782
1783 this_state.cur_region = this_region;
1784 }
1785
1786 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1787
1788 return gimple_try_eval (tp);
1789 }
1790
1791 /* Implement a cleanup expression. This is similar to try-finally,
1792 except that we only execute the cleanup block for exception edges. */
1793
1794 static gimple_seq
1795 lower_cleanup (struct leh_state *state, gimple tp)
1796 {
1797 struct leh_state this_state = *state;
1798 eh_region this_region = NULL;
1799 struct leh_tf_state fake_tf;
1800 gimple_seq result;
1801 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1802
1803 if (flag_exceptions && !cleanup_dead)
1804 {
1805 this_region = gen_eh_region_cleanup (state->cur_region);
1806 this_state.cur_region = this_region;
1807 }
1808
1809 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1810
1811 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1812 return gimple_try_eval (tp);
1813
1814 /* Build enough of a try-finally state so that we can reuse
1815 honor_protect_cleanup_actions. */
1816 memset (&fake_tf, 0, sizeof (fake_tf));
1817 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1818 fake_tf.outer = state;
1819 fake_tf.region = this_region;
1820 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1821 fake_tf.may_throw = true;
1822
1823 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1824
1825 if (fake_tf.may_throw)
1826 {
1827 /* In this case honor_protect_cleanup_actions had nothing to do,
1828 and we should process this normally. */
1829 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1830 result = frob_into_branch_around (tp, this_region,
1831 fake_tf.fallthru_label);
1832 }
1833 else
1834 {
1835 /* In this case honor_protect_cleanup_actions did nearly all of
1836 the work. All we have left is to append the fallthru_label. */
1837
1838 result = gimple_try_eval (tp);
1839 if (fake_tf.fallthru_label)
1840 {
1841 gimple x = gimple_build_label (fake_tf.fallthru_label);
1842 gimple_seq_add_stmt (&result, x);
1843 }
1844 }
1845 return result;
1846 }
1847
1848 /* Main loop for lowering eh constructs. Also moves gsi to the next
1849 statement. */
1850
1851 static void
1852 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1853 {
1854 gimple_seq replace;
1855 gimple x;
1856 gimple stmt = gsi_stmt (*gsi);
1857
1858 switch (gimple_code (stmt))
1859 {
1860 case GIMPLE_CALL:
1861 {
1862 tree fndecl = gimple_call_fndecl (stmt);
1863 tree rhs, lhs;
1864
1865 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1866 switch (DECL_FUNCTION_CODE (fndecl))
1867 {
1868 case BUILT_IN_EH_POINTER:
1869 /* The front end may have generated a call to
1870 __builtin_eh_pointer (0) within a catch region. Replace
1871 this zero argument with the current catch region number. */
1872 if (state->ehp_region)
1873 {
1874 tree nr = build_int_cst (NULL, state->ehp_region->index);
1875 gimple_call_set_arg (stmt, 0, nr);
1876 }
1877 else
1878 {
1879 /* The user has dome something silly. Remove it. */
1880 rhs = null_pointer_node;
1881 goto do_replace;
1882 }
1883 break;
1884
1885 case BUILT_IN_EH_FILTER:
1886 /* ??? This should never appear, but since it's a builtin it
1887 is accessible to abuse by users. Just remove it and
1888 replace the use with the arbitrary value zero. */
1889 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1890 do_replace:
1891 lhs = gimple_call_lhs (stmt);
1892 x = gimple_build_assign (lhs, rhs);
1893 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1894 /* FALLTHRU */
1895
1896 case BUILT_IN_EH_COPY_VALUES:
1897 /* Likewise this should not appear. Remove it. */
1898 gsi_remove (gsi, true);
1899 return;
1900
1901 default:
1902 break;
1903 }
1904 }
1905 /* FALLTHRU */
1906
1907 case GIMPLE_ASSIGN:
1908 /* If the stmt can throw use a new temporary for the assignment
1909 to a LHS. This makes sure the old value of the LHS is
1910 available on the EH edge. Only do so for statements that
1911 potentially fall thru (no noreturn calls e.g.), otherwise
1912 this new assignment might create fake fallthru regions. */
1913 if (stmt_could_throw_p (stmt)
1914 && gimple_has_lhs (stmt)
1915 && gimple_stmt_may_fallthru (stmt)
1916 && !tree_could_throw_p (gimple_get_lhs (stmt))
1917 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1918 {
1919 tree lhs = gimple_get_lhs (stmt);
1920 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1921 gimple s = gimple_build_assign (lhs, tmp);
1922 gimple_set_location (s, gimple_location (stmt));
1923 gimple_set_block (s, gimple_block (stmt));
1924 gimple_set_lhs (stmt, tmp);
1925 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1926 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1927 DECL_GIMPLE_REG_P (tmp) = 1;
1928 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1929 }
1930 /* Look for things that can throw exceptions, and record them. */
1931 if (state->cur_region && stmt_could_throw_p (stmt))
1932 {
1933 record_stmt_eh_region (state->cur_region, stmt);
1934 note_eh_region_may_contain_throw (state->cur_region);
1935 }
1936 break;
1937
1938 case GIMPLE_COND:
1939 case GIMPLE_GOTO:
1940 case GIMPLE_RETURN:
1941 maybe_record_in_goto_queue (state, stmt);
1942 break;
1943
1944 case GIMPLE_SWITCH:
1945 verify_norecord_switch_expr (state, stmt);
1946 break;
1947
1948 case GIMPLE_TRY:
1949 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1950 replace = lower_try_finally (state, stmt);
1951 else
1952 {
1953 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1954 if (!x)
1955 {
1956 replace = gimple_try_eval (stmt);
1957 lower_eh_constructs_1 (state, replace);
1958 }
1959 else
1960 switch (gimple_code (x))
1961 {
1962 case GIMPLE_CATCH:
1963 replace = lower_catch (state, stmt);
1964 break;
1965 case GIMPLE_EH_FILTER:
1966 replace = lower_eh_filter (state, stmt);
1967 break;
1968 case GIMPLE_EH_MUST_NOT_THROW:
1969 replace = lower_eh_must_not_throw (state, stmt);
1970 break;
1971 default:
1972 replace = lower_cleanup (state, stmt);
1973 break;
1974 }
1975 }
1976
1977 /* Remove the old stmt and insert the transformed sequence
1978 instead. */
1979 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1980 gsi_remove (gsi, true);
1981
1982 /* Return since we don't want gsi_next () */
1983 return;
1984
1985 default:
1986 /* A type, a decl, or some kind of statement that we're not
1987 interested in. Don't walk them. */
1988 break;
1989 }
1990
1991 gsi_next (gsi);
1992 }
1993
1994 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1995
1996 static void
1997 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1998 {
1999 gimple_stmt_iterator gsi;
2000 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
2001 lower_eh_constructs_2 (state, &gsi);
2002 }
2003
2004 static unsigned int
2005 lower_eh_constructs (void)
2006 {
2007 struct leh_state null_state;
2008 gimple_seq bodyp;
2009
2010 bodyp = gimple_body (current_function_decl);
2011 if (bodyp == NULL)
2012 return 0;
2013
2014 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2015 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2016 memset (&null_state, 0, sizeof (null_state));
2017
2018 collect_finally_tree_1 (bodyp, NULL);
2019 lower_eh_constructs_1 (&null_state, bodyp);
2020
2021 /* We assume there's a return statement, or something, at the end of
2022 the function, and thus ploping the EH sequence afterward won't
2023 change anything. */
2024 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2025 gimple_seq_add_seq (&bodyp, eh_seq);
2026
2027 /* We assume that since BODYP already existed, adding EH_SEQ to it
2028 didn't change its value, and we don't have to re-set the function. */
2029 gcc_assert (bodyp == gimple_body (current_function_decl));
2030
2031 htab_delete (finally_tree);
2032 BITMAP_FREE (eh_region_may_contain_throw_map);
2033 eh_seq = NULL;
2034
2035 /* If this function needs a language specific EH personality routine
2036 and the frontend didn't already set one do so now. */
2037 if (function_needs_eh_personality (cfun) == eh_personality_lang
2038 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2039 DECL_FUNCTION_PERSONALITY (current_function_decl)
2040 = lang_hooks.eh_personality ();
2041
2042 return 0;
2043 }
2044
2045 struct gimple_opt_pass pass_lower_eh =
2046 {
2047 {
2048 GIMPLE_PASS,
2049 "eh", /* name */
2050 NULL, /* gate */
2051 lower_eh_constructs, /* execute */
2052 NULL, /* sub */
2053 NULL, /* next */
2054 0, /* static_pass_number */
2055 TV_TREE_EH, /* tv_id */
2056 PROP_gimple_lcf, /* properties_required */
2057 PROP_gimple_leh, /* properties_provided */
2058 0, /* properties_destroyed */
2059 0, /* todo_flags_start */
2060 TODO_dump_func /* todo_flags_finish */
2061 }
2062 };
2063 \f
2064 /* Create the multiple edges from an EH_DISPATCH statement to all of
2065 the possible handlers for its EH region. Return true if there's
2066 no fallthru edge; false if there is. */
2067
2068 bool
2069 make_eh_dispatch_edges (gimple stmt)
2070 {
2071 eh_region r;
2072 eh_catch c;
2073 basic_block src, dst;
2074
2075 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2076 src = gimple_bb (stmt);
2077
2078 switch (r->type)
2079 {
2080 case ERT_TRY:
2081 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2082 {
2083 dst = label_to_block (c->label);
2084 make_edge (src, dst, 0);
2085
2086 /* A catch-all handler doesn't have a fallthru. */
2087 if (c->type_list == NULL)
2088 return false;
2089 }
2090 break;
2091
2092 case ERT_ALLOWED_EXCEPTIONS:
2093 dst = label_to_block (r->u.allowed.label);
2094 make_edge (src, dst, 0);
2095 break;
2096
2097 default:
2098 gcc_unreachable ();
2099 }
2100
2101 return true;
2102 }
2103
2104 /* Create the single EH edge from STMT to its nearest landing pad,
2105 if there is such a landing pad within the current function. */
2106
2107 void
2108 make_eh_edges (gimple stmt)
2109 {
2110 basic_block src, dst;
2111 eh_landing_pad lp;
2112 int lp_nr;
2113
2114 lp_nr = lookup_stmt_eh_lp (stmt);
2115 if (lp_nr <= 0)
2116 return;
2117
2118 lp = get_eh_landing_pad_from_number (lp_nr);
2119 gcc_assert (lp != NULL);
2120
2121 src = gimple_bb (stmt);
2122 dst = label_to_block (lp->post_landing_pad);
2123 make_edge (src, dst, EDGE_EH);
2124 }
2125
2126 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2127 do not actually perform the final edge redirection.
2128
2129 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2130 we intend to change the destination EH region as well; this means
2131 EH_LANDING_PAD_NR must already be set on the destination block label.
2132 If false, we're being called from generic cfg manipulation code and we
2133 should preserve our place within the region tree. */
2134
2135 static void
2136 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2137 {
2138 eh_landing_pad old_lp, new_lp;
2139 basic_block old_bb;
2140 gimple throw_stmt;
2141 int old_lp_nr, new_lp_nr;
2142 tree old_label, new_label;
2143 edge_iterator ei;
2144 edge e;
2145
2146 old_bb = edge_in->dest;
2147 old_label = gimple_block_label (old_bb);
2148 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2149 gcc_assert (old_lp_nr > 0);
2150 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2151
2152 throw_stmt = last_stmt (edge_in->src);
2153 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2154
2155 new_label = gimple_block_label (new_bb);
2156
2157 /* Look for an existing region that might be using NEW_BB already. */
2158 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2159 if (new_lp_nr)
2160 {
2161 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2162 gcc_assert (new_lp);
2163
2164 /* Unless CHANGE_REGION is true, the new and old landing pad
2165 had better be associated with the same EH region. */
2166 gcc_assert (change_region || new_lp->region == old_lp->region);
2167 }
2168 else
2169 {
2170 new_lp = NULL;
2171 gcc_assert (!change_region);
2172 }
2173
2174 /* Notice when we redirect the last EH edge away from OLD_BB. */
2175 FOR_EACH_EDGE (e, ei, old_bb->preds)
2176 if (e != edge_in && (e->flags & EDGE_EH))
2177 break;
2178
2179 if (new_lp)
2180 {
2181 /* NEW_LP already exists. If there are still edges into OLD_LP,
2182 there's nothing to do with the EH tree. If there are no more
2183 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2184 If CHANGE_REGION is true, then our caller is expecting to remove
2185 the landing pad. */
2186 if (e == NULL && !change_region)
2187 remove_eh_landing_pad (old_lp);
2188 }
2189 else
2190 {
2191 /* No correct landing pad exists. If there are no more edges
2192 into OLD_LP, then we can simply re-use the existing landing pad.
2193 Otherwise, we have to create a new landing pad. */
2194 if (e == NULL)
2195 {
2196 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2197 new_lp = old_lp;
2198 }
2199 else
2200 new_lp = gen_eh_landing_pad (old_lp->region);
2201 new_lp->post_landing_pad = new_label;
2202 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2203 }
2204
2205 /* Maybe move the throwing statement to the new region. */
2206 if (old_lp != new_lp)
2207 {
2208 remove_stmt_from_eh_lp (throw_stmt);
2209 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2210 }
2211 }
2212
2213 /* Redirect EH edge E to NEW_BB. */
2214
2215 edge
2216 redirect_eh_edge (edge edge_in, basic_block new_bb)
2217 {
2218 redirect_eh_edge_1 (edge_in, new_bb, false);
2219 return ssa_redirect_edge (edge_in, new_bb);
2220 }
2221
2222 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2223 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2224 The actual edge update will happen in the caller. */
2225
2226 void
2227 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2228 {
2229 tree new_lab = gimple_block_label (new_bb);
2230 bool any_changed = false;
2231 basic_block old_bb;
2232 eh_region r;
2233 eh_catch c;
2234
2235 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2236 switch (r->type)
2237 {
2238 case ERT_TRY:
2239 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2240 {
2241 old_bb = label_to_block (c->label);
2242 if (old_bb == e->dest)
2243 {
2244 c->label = new_lab;
2245 any_changed = true;
2246 }
2247 }
2248 break;
2249
2250 case ERT_ALLOWED_EXCEPTIONS:
2251 old_bb = label_to_block (r->u.allowed.label);
2252 gcc_assert (old_bb == e->dest);
2253 r->u.allowed.label = new_lab;
2254 any_changed = true;
2255 break;
2256
2257 default:
2258 gcc_unreachable ();
2259 }
2260
2261 gcc_assert (any_changed);
2262 }
2263 \f
2264 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2265
2266 bool
2267 operation_could_trap_helper_p (enum tree_code op,
2268 bool fp_operation,
2269 bool honor_trapv,
2270 bool honor_nans,
2271 bool honor_snans,
2272 tree divisor,
2273 bool *handled)
2274 {
2275 *handled = true;
2276 switch (op)
2277 {
2278 case TRUNC_DIV_EXPR:
2279 case CEIL_DIV_EXPR:
2280 case FLOOR_DIV_EXPR:
2281 case ROUND_DIV_EXPR:
2282 case EXACT_DIV_EXPR:
2283 case CEIL_MOD_EXPR:
2284 case FLOOR_MOD_EXPR:
2285 case ROUND_MOD_EXPR:
2286 case TRUNC_MOD_EXPR:
2287 case RDIV_EXPR:
2288 if (honor_snans || honor_trapv)
2289 return true;
2290 if (fp_operation)
2291 return flag_trapping_math;
2292 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2293 return true;
2294 return false;
2295
2296 case LT_EXPR:
2297 case LE_EXPR:
2298 case GT_EXPR:
2299 case GE_EXPR:
2300 case LTGT_EXPR:
2301 /* Some floating point comparisons may trap. */
2302 return honor_nans;
2303
2304 case EQ_EXPR:
2305 case NE_EXPR:
2306 case UNORDERED_EXPR:
2307 case ORDERED_EXPR:
2308 case UNLT_EXPR:
2309 case UNLE_EXPR:
2310 case UNGT_EXPR:
2311 case UNGE_EXPR:
2312 case UNEQ_EXPR:
2313 return honor_snans;
2314
2315 case CONVERT_EXPR:
2316 case FIX_TRUNC_EXPR:
2317 /* Conversion of floating point might trap. */
2318 return honor_nans;
2319
2320 case NEGATE_EXPR:
2321 case ABS_EXPR:
2322 case CONJ_EXPR:
2323 /* These operations don't trap with floating point. */
2324 if (honor_trapv)
2325 return true;
2326 return false;
2327
2328 case PLUS_EXPR:
2329 case MINUS_EXPR:
2330 case MULT_EXPR:
2331 /* Any floating arithmetic may trap. */
2332 if (fp_operation && flag_trapping_math)
2333 return true;
2334 if (honor_trapv)
2335 return true;
2336 return false;
2337
2338 case COMPLEX_EXPR:
2339 case CONSTRUCTOR:
2340 /* Constructing an object cannot trap. */
2341 return false;
2342
2343 default:
2344 /* Any floating arithmetic may trap. */
2345 if (fp_operation && flag_trapping_math)
2346 return true;
2347
2348 *handled = false;
2349 return false;
2350 }
2351 }
2352
2353 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2354 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2355 type operands that may trap. If OP is a division operator, DIVISOR contains
2356 the value of the divisor. */
2357
2358 bool
2359 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2360 tree divisor)
2361 {
2362 bool honor_nans = (fp_operation && flag_trapping_math
2363 && !flag_finite_math_only);
2364 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2365 bool handled;
2366
2367 if (TREE_CODE_CLASS (op) != tcc_comparison
2368 && TREE_CODE_CLASS (op) != tcc_unary
2369 && TREE_CODE_CLASS (op) != tcc_binary)
2370 return false;
2371
2372 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2373 honor_nans, honor_snans, divisor,
2374 &handled);
2375 }
2376
2377 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2378 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2379 This routine expects only GIMPLE lhs or rhs input. */
2380
2381 bool
2382 tree_could_trap_p (tree expr)
2383 {
2384 enum tree_code code;
2385 bool fp_operation = false;
2386 bool honor_trapv = false;
2387 tree t, base, div = NULL_TREE;
2388
2389 if (!expr)
2390 return false;
2391
2392 code = TREE_CODE (expr);
2393 t = TREE_TYPE (expr);
2394
2395 if (t)
2396 {
2397 if (COMPARISON_CLASS_P (expr))
2398 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2399 else
2400 fp_operation = FLOAT_TYPE_P (t);
2401 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2402 }
2403
2404 if (TREE_CODE_CLASS (code) == tcc_binary)
2405 div = TREE_OPERAND (expr, 1);
2406 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2407 return true;
2408
2409 restart:
2410 switch (code)
2411 {
2412 case TARGET_MEM_REF:
2413 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2414 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2415 return false;
2416 return !TREE_THIS_NOTRAP (expr);
2417
2418 case COMPONENT_REF:
2419 case REALPART_EXPR:
2420 case IMAGPART_EXPR:
2421 case BIT_FIELD_REF:
2422 case VIEW_CONVERT_EXPR:
2423 case WITH_SIZE_EXPR:
2424 expr = TREE_OPERAND (expr, 0);
2425 code = TREE_CODE (expr);
2426 goto restart;
2427
2428 case ARRAY_RANGE_REF:
2429 base = TREE_OPERAND (expr, 0);
2430 if (tree_could_trap_p (base))
2431 return true;
2432 if (TREE_THIS_NOTRAP (expr))
2433 return false;
2434 return !range_in_array_bounds_p (expr);
2435
2436 case ARRAY_REF:
2437 base = TREE_OPERAND (expr, 0);
2438 if (tree_could_trap_p (base))
2439 return true;
2440 if (TREE_THIS_NOTRAP (expr))
2441 return false;
2442 return !in_array_bounds_p (expr);
2443
2444 case MEM_REF:
2445 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2446 return false;
2447 /* Fallthru. */
2448 case INDIRECT_REF:
2449 return !TREE_THIS_NOTRAP (expr);
2450
2451 case ASM_EXPR:
2452 return TREE_THIS_VOLATILE (expr);
2453
2454 case CALL_EXPR:
2455 t = get_callee_fndecl (expr);
2456 /* Assume that calls to weak functions may trap. */
2457 if (!t || !DECL_P (t) || DECL_WEAK (t))
2458 return true;
2459 return false;
2460
2461 default:
2462 return false;
2463 }
2464 }
2465
2466
2467 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2468 an assignment or a conditional) may throw. */
2469
2470 static bool
2471 stmt_could_throw_1_p (gimple stmt)
2472 {
2473 enum tree_code code = gimple_expr_code (stmt);
2474 bool honor_nans = false;
2475 bool honor_snans = false;
2476 bool fp_operation = false;
2477 bool honor_trapv = false;
2478 tree t;
2479 size_t i;
2480 bool handled, ret;
2481
2482 if (TREE_CODE_CLASS (code) == tcc_comparison
2483 || TREE_CODE_CLASS (code) == tcc_unary
2484 || TREE_CODE_CLASS (code) == tcc_binary)
2485 {
2486 t = gimple_expr_type (stmt);
2487 fp_operation = FLOAT_TYPE_P (t);
2488 if (fp_operation)
2489 {
2490 honor_nans = flag_trapping_math && !flag_finite_math_only;
2491 honor_snans = flag_signaling_nans != 0;
2492 }
2493 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2494 honor_trapv = true;
2495 }
2496
2497 /* Check if the main expression may trap. */
2498 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2499 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2500 honor_nans, honor_snans, t,
2501 &handled);
2502 if (handled)
2503 return ret;
2504
2505 /* If the expression does not trap, see if any of the individual operands may
2506 trap. */
2507 for (i = 0; i < gimple_num_ops (stmt); i++)
2508 if (tree_could_trap_p (gimple_op (stmt, i)))
2509 return true;
2510
2511 return false;
2512 }
2513
2514
2515 /* Return true if statement STMT could throw an exception. */
2516
2517 bool
2518 stmt_could_throw_p (gimple stmt)
2519 {
2520 if (!flag_exceptions)
2521 return false;
2522
2523 /* The only statements that can throw an exception are assignments,
2524 conditionals, calls, resx, and asms. */
2525 switch (gimple_code (stmt))
2526 {
2527 case GIMPLE_RESX:
2528 return true;
2529
2530 case GIMPLE_CALL:
2531 return !gimple_call_nothrow_p (stmt);
2532
2533 case GIMPLE_ASSIGN:
2534 case GIMPLE_COND:
2535 if (!cfun->can_throw_non_call_exceptions)
2536 return false;
2537 return stmt_could_throw_1_p (stmt);
2538
2539 case GIMPLE_ASM:
2540 if (!cfun->can_throw_non_call_exceptions)
2541 return false;
2542 return gimple_asm_volatile_p (stmt);
2543
2544 default:
2545 return false;
2546 }
2547 }
2548
2549
2550 /* Return true if expression T could throw an exception. */
2551
2552 bool
2553 tree_could_throw_p (tree t)
2554 {
2555 if (!flag_exceptions)
2556 return false;
2557 if (TREE_CODE (t) == MODIFY_EXPR)
2558 {
2559 if (cfun->can_throw_non_call_exceptions
2560 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2561 return true;
2562 t = TREE_OPERAND (t, 1);
2563 }
2564
2565 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2566 t = TREE_OPERAND (t, 0);
2567 if (TREE_CODE (t) == CALL_EXPR)
2568 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2569 if (cfun->can_throw_non_call_exceptions)
2570 return tree_could_trap_p (t);
2571 return false;
2572 }
2573
2574 /* Return true if STMT can throw an exception that is not caught within
2575 the current function (CFUN). */
2576
2577 bool
2578 stmt_can_throw_external (gimple stmt)
2579 {
2580 int lp_nr;
2581
2582 if (!stmt_could_throw_p (stmt))
2583 return false;
2584
2585 lp_nr = lookup_stmt_eh_lp (stmt);
2586 return lp_nr == 0;
2587 }
2588
2589 /* Return true if STMT can throw an exception that is caught within
2590 the current function (CFUN). */
2591
2592 bool
2593 stmt_can_throw_internal (gimple stmt)
2594 {
2595 int lp_nr;
2596
2597 if (!stmt_could_throw_p (stmt))
2598 return false;
2599
2600 lp_nr = lookup_stmt_eh_lp (stmt);
2601 return lp_nr > 0;
2602 }
2603
2604 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2605 remove any entry it might have from the EH table. Return true if
2606 any change was made. */
2607
2608 bool
2609 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2610 {
2611 if (stmt_could_throw_p (stmt))
2612 return false;
2613 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2614 }
2615
2616 /* Likewise, but always use the current function. */
2617
2618 bool
2619 maybe_clean_eh_stmt (gimple stmt)
2620 {
2621 return maybe_clean_eh_stmt_fn (cfun, stmt);
2622 }
2623
2624 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2625 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2626 in the table if it should be in there. Return TRUE if a replacement was
2627 done that my require an EH edge purge. */
2628
2629 bool
2630 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2631 {
2632 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2633
2634 if (lp_nr != 0)
2635 {
2636 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2637
2638 if (new_stmt == old_stmt && new_stmt_could_throw)
2639 return false;
2640
2641 remove_stmt_from_eh_lp (old_stmt);
2642 if (new_stmt_could_throw)
2643 {
2644 add_stmt_to_eh_lp (new_stmt, lp_nr);
2645 return false;
2646 }
2647 else
2648 return true;
2649 }
2650
2651 return false;
2652 }
2653
2654 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2655 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2656 operand is the return value of duplicate_eh_regions. */
2657
2658 bool
2659 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2660 struct function *old_fun, gimple old_stmt,
2661 struct pointer_map_t *map, int default_lp_nr)
2662 {
2663 int old_lp_nr, new_lp_nr;
2664 void **slot;
2665
2666 if (!stmt_could_throw_p (new_stmt))
2667 return false;
2668
2669 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2670 if (old_lp_nr == 0)
2671 {
2672 if (default_lp_nr == 0)
2673 return false;
2674 new_lp_nr = default_lp_nr;
2675 }
2676 else if (old_lp_nr > 0)
2677 {
2678 eh_landing_pad old_lp, new_lp;
2679
2680 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2681 slot = pointer_map_contains (map, old_lp);
2682 new_lp = (eh_landing_pad) *slot;
2683 new_lp_nr = new_lp->index;
2684 }
2685 else
2686 {
2687 eh_region old_r, new_r;
2688
2689 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2690 slot = pointer_map_contains (map, old_r);
2691 new_r = (eh_region) *slot;
2692 new_lp_nr = -new_r->index;
2693 }
2694
2695 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2696 return true;
2697 }
2698
2699 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2700 and thus no remapping is required. */
2701
2702 bool
2703 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2704 {
2705 int lp_nr;
2706
2707 if (!stmt_could_throw_p (new_stmt))
2708 return false;
2709
2710 lp_nr = lookup_stmt_eh_lp (old_stmt);
2711 if (lp_nr == 0)
2712 return false;
2713
2714 add_stmt_to_eh_lp (new_stmt, lp_nr);
2715 return true;
2716 }
2717 \f
2718 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2719 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2720 this only handles handlers consisting of a single call, as that's the
2721 important case for C++: a destructor call for a particular object showing
2722 up in multiple handlers. */
2723
2724 static bool
2725 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2726 {
2727 gimple_stmt_iterator gsi;
2728 gimple ones, twos;
2729 unsigned int ai;
2730
2731 gsi = gsi_start (oneh);
2732 if (!gsi_one_before_end_p (gsi))
2733 return false;
2734 ones = gsi_stmt (gsi);
2735
2736 gsi = gsi_start (twoh);
2737 if (!gsi_one_before_end_p (gsi))
2738 return false;
2739 twos = gsi_stmt (gsi);
2740
2741 if (!is_gimple_call (ones)
2742 || !is_gimple_call (twos)
2743 || gimple_call_lhs (ones)
2744 || gimple_call_lhs (twos)
2745 || gimple_call_chain (ones)
2746 || gimple_call_chain (twos)
2747 || !gimple_call_same_target_p (ones, twos)
2748 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2749 return false;
2750
2751 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2752 if (!operand_equal_p (gimple_call_arg (ones, ai),
2753 gimple_call_arg (twos, ai), 0))
2754 return false;
2755
2756 return true;
2757 }
2758
2759 /* Optimize
2760 try { A() } finally { try { ~B() } catch { ~A() } }
2761 try { ... } finally { ~A() }
2762 into
2763 try { A() } catch { ~B() }
2764 try { ~B() ... } finally { ~A() }
2765
2766 This occurs frequently in C++, where A is a local variable and B is a
2767 temporary used in the initializer for A. */
2768
2769 static void
2770 optimize_double_finally (gimple one, gimple two)
2771 {
2772 gimple oneh;
2773 gimple_stmt_iterator gsi;
2774
2775 gsi = gsi_start (gimple_try_cleanup (one));
2776 if (!gsi_one_before_end_p (gsi))
2777 return;
2778
2779 oneh = gsi_stmt (gsi);
2780 if (gimple_code (oneh) != GIMPLE_TRY
2781 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2782 return;
2783
2784 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2785 {
2786 gimple_seq seq = gimple_try_eval (oneh);
2787
2788 gimple_try_set_cleanup (one, seq);
2789 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2790 seq = copy_gimple_seq_and_replace_locals (seq);
2791 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2792 gimple_try_set_eval (two, seq);
2793 }
2794 }
2795
2796 /* Perform EH refactoring optimizations that are simpler to do when code
2797 flow has been lowered but EH structures haven't. */
2798
2799 static void
2800 refactor_eh_r (gimple_seq seq)
2801 {
2802 gimple_stmt_iterator gsi;
2803 gimple one, two;
2804
2805 one = NULL;
2806 two = NULL;
2807 gsi = gsi_start (seq);
2808 while (1)
2809 {
2810 one = two;
2811 if (gsi_end_p (gsi))
2812 two = NULL;
2813 else
2814 two = gsi_stmt (gsi);
2815 if (one
2816 && two
2817 && gimple_code (one) == GIMPLE_TRY
2818 && gimple_code (two) == GIMPLE_TRY
2819 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2820 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2821 optimize_double_finally (one, two);
2822 if (one)
2823 switch (gimple_code (one))
2824 {
2825 case GIMPLE_TRY:
2826 refactor_eh_r (gimple_try_eval (one));
2827 refactor_eh_r (gimple_try_cleanup (one));
2828 break;
2829 case GIMPLE_CATCH:
2830 refactor_eh_r (gimple_catch_handler (one));
2831 break;
2832 case GIMPLE_EH_FILTER:
2833 refactor_eh_r (gimple_eh_filter_failure (one));
2834 break;
2835 default:
2836 break;
2837 }
2838 if (two)
2839 gsi_next (&gsi);
2840 else
2841 break;
2842 }
2843 }
2844
2845 static unsigned
2846 refactor_eh (void)
2847 {
2848 refactor_eh_r (gimple_body (current_function_decl));
2849 return 0;
2850 }
2851
2852 static bool
2853 gate_refactor_eh (void)
2854 {
2855 return flag_exceptions != 0;
2856 }
2857
2858 struct gimple_opt_pass pass_refactor_eh =
2859 {
2860 {
2861 GIMPLE_PASS,
2862 "ehopt", /* name */
2863 gate_refactor_eh, /* gate */
2864 refactor_eh, /* execute */
2865 NULL, /* sub */
2866 NULL, /* next */
2867 0, /* static_pass_number */
2868 TV_TREE_EH, /* tv_id */
2869 PROP_gimple_lcf, /* properties_required */
2870 0, /* properties_provided */
2871 0, /* properties_destroyed */
2872 0, /* todo_flags_start */
2873 TODO_dump_func /* todo_flags_finish */
2874 }
2875 };
2876 \f
2877 /* At the end of gimple optimization, we can lower RESX. */
2878
2879 static bool
2880 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2881 {
2882 int lp_nr;
2883 eh_region src_r, dst_r;
2884 gimple_stmt_iterator gsi;
2885 gimple x;
2886 tree fn, src_nr;
2887 bool ret = false;
2888
2889 lp_nr = lookup_stmt_eh_lp (stmt);
2890 if (lp_nr != 0)
2891 dst_r = get_eh_region_from_lp_number (lp_nr);
2892 else
2893 dst_r = NULL;
2894
2895 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2896 gsi = gsi_last_bb (bb);
2897
2898 if (src_r == NULL)
2899 {
2900 /* We can wind up with no source region when pass_cleanup_eh shows
2901 that there are no entries into an eh region and deletes it, but
2902 then the block that contains the resx isn't removed. This can
2903 happen without optimization when the switch statement created by
2904 lower_try_finally_switch isn't simplified to remove the eh case.
2905
2906 Resolve this by expanding the resx node to an abort. */
2907
2908 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2909 x = gimple_build_call (fn, 0);
2910 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2911
2912 while (EDGE_COUNT (bb->succs) > 0)
2913 remove_edge (EDGE_SUCC (bb, 0));
2914 }
2915 else if (dst_r)
2916 {
2917 /* When we have a destination region, we resolve this by copying
2918 the excptr and filter values into place, and changing the edge
2919 to immediately after the landing pad. */
2920 edge e;
2921
2922 if (lp_nr < 0)
2923 {
2924 basic_block new_bb;
2925 void **slot;
2926 tree lab;
2927
2928 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2929 the failure decl into a new block, if needed. */
2930 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2931
2932 slot = pointer_map_contains (mnt_map, dst_r);
2933 if (slot == NULL)
2934 {
2935 gimple_stmt_iterator gsi2;
2936
2937 new_bb = create_empty_bb (bb);
2938 lab = gimple_block_label (new_bb);
2939 gsi2 = gsi_start_bb (new_bb);
2940
2941 fn = dst_r->u.must_not_throw.failure_decl;
2942 x = gimple_build_call (fn, 0);
2943 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2944 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2945
2946 slot = pointer_map_insert (mnt_map, dst_r);
2947 *slot = lab;
2948 }
2949 else
2950 {
2951 lab = (tree) *slot;
2952 new_bb = label_to_block (lab);
2953 }
2954
2955 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2956 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2957 e->count = bb->count;
2958 e->probability = REG_BR_PROB_BASE;
2959 }
2960 else
2961 {
2962 edge_iterator ei;
2963 tree dst_nr = build_int_cst (NULL, dst_r->index);
2964
2965 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2966 src_nr = build_int_cst (NULL, src_r->index);
2967 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2968 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2969
2970 /* Update the flags for the outgoing edge. */
2971 e = single_succ_edge (bb);
2972 gcc_assert (e->flags & EDGE_EH);
2973 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2974
2975 /* If there are no more EH users of the landing pad, delete it. */
2976 FOR_EACH_EDGE (e, ei, e->dest->preds)
2977 if (e->flags & EDGE_EH)
2978 break;
2979 if (e == NULL)
2980 {
2981 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2982 remove_eh_landing_pad (lp);
2983 }
2984 }
2985
2986 ret = true;
2987 }
2988 else
2989 {
2990 tree var;
2991
2992 /* When we don't have a destination region, this exception escapes
2993 up the call chain. We resolve this by generating a call to the
2994 _Unwind_Resume library function. */
2995
2996 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2997 with no arguments for C++ and Java. Check for that. */
2998 if (src_r->use_cxa_end_cleanup)
2999 {
3000 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
3001 x = gimple_build_call (fn, 0);
3002 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3003 }
3004 else
3005 {
3006 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
3007 src_nr = build_int_cst (NULL, src_r->index);
3008 x = gimple_build_call (fn, 1, src_nr);
3009 var = create_tmp_var (ptr_type_node, NULL);
3010 var = make_ssa_name (var, x);
3011 gimple_call_set_lhs (x, var);
3012 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3013
3014 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
3015 x = gimple_build_call (fn, 1, var);
3016 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3017 }
3018
3019 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3020 }
3021
3022 gsi_remove (&gsi, true);
3023
3024 return ret;
3025 }
3026
3027 static unsigned
3028 execute_lower_resx (void)
3029 {
3030 basic_block bb;
3031 struct pointer_map_t *mnt_map;
3032 bool dominance_invalidated = false;
3033 bool any_rewritten = false;
3034
3035 mnt_map = pointer_map_create ();
3036
3037 FOR_EACH_BB (bb)
3038 {
3039 gimple last = last_stmt (bb);
3040 if (last && is_gimple_resx (last))
3041 {
3042 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3043 any_rewritten = true;
3044 }
3045 }
3046
3047 pointer_map_destroy (mnt_map);
3048
3049 if (dominance_invalidated)
3050 {
3051 free_dominance_info (CDI_DOMINATORS);
3052 free_dominance_info (CDI_POST_DOMINATORS);
3053 }
3054
3055 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3056 }
3057
3058 static bool
3059 gate_lower_resx (void)
3060 {
3061 return flag_exceptions != 0;
3062 }
3063
3064 struct gimple_opt_pass pass_lower_resx =
3065 {
3066 {
3067 GIMPLE_PASS,
3068 "resx", /* name */
3069 gate_lower_resx, /* gate */
3070 execute_lower_resx, /* execute */
3071 NULL, /* sub */
3072 NULL, /* next */
3073 0, /* static_pass_number */
3074 TV_TREE_EH, /* tv_id */
3075 PROP_gimple_lcf, /* properties_required */
3076 0, /* properties_provided */
3077 0, /* properties_destroyed */
3078 0, /* todo_flags_start */
3079 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3080 }
3081 };
3082
3083
3084 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3085 we have found some duplicate labels and removed some edges. */
3086
3087 static bool
3088 lower_eh_dispatch (basic_block src, gimple stmt)
3089 {
3090 gimple_stmt_iterator gsi;
3091 int region_nr;
3092 eh_region r;
3093 tree filter, fn;
3094 gimple x;
3095 bool redirected = false;
3096
3097 region_nr = gimple_eh_dispatch_region (stmt);
3098 r = get_eh_region_from_number (region_nr);
3099
3100 gsi = gsi_last_bb (src);
3101
3102 switch (r->type)
3103 {
3104 case ERT_TRY:
3105 {
3106 VEC (tree, heap) *labels = NULL;
3107 tree default_label = NULL;
3108 eh_catch c;
3109 edge_iterator ei;
3110 edge e;
3111 struct pointer_set_t *seen_values = pointer_set_create ();
3112
3113 /* Collect the labels for a switch. Zero the post_landing_pad
3114 field becase we'll no longer have anything keeping these labels
3115 in existance and the optimizer will be free to merge these
3116 blocks at will. */
3117 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3118 {
3119 tree tp_node, flt_node, lab = c->label;
3120 bool have_label = false;
3121
3122 c->label = NULL;
3123 tp_node = c->type_list;
3124 flt_node = c->filter_list;
3125
3126 if (tp_node == NULL)
3127 {
3128 default_label = lab;
3129 break;
3130 }
3131 do
3132 {
3133 /* Filter out duplicate labels that arise when this handler
3134 is shadowed by an earlier one. When no labels are
3135 attached to the handler anymore, we remove
3136 the corresponding edge and then we delete unreachable
3137 blocks at the end of this pass. */
3138 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3139 {
3140 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3141 TREE_VALUE (flt_node), NULL, lab);
3142 VEC_safe_push (tree, heap, labels, t);
3143 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3144 have_label = true;
3145 }
3146
3147 tp_node = TREE_CHAIN (tp_node);
3148 flt_node = TREE_CHAIN (flt_node);
3149 }
3150 while (tp_node);
3151 if (! have_label)
3152 {
3153 remove_edge (find_edge (src, label_to_block (lab)));
3154 redirected = true;
3155 }
3156 }
3157
3158 /* Clean up the edge flags. */
3159 FOR_EACH_EDGE (e, ei, src->succs)
3160 {
3161 if (e->flags & EDGE_FALLTHRU)
3162 {
3163 /* If there was no catch-all, use the fallthru edge. */
3164 if (default_label == NULL)
3165 default_label = gimple_block_label (e->dest);
3166 e->flags &= ~EDGE_FALLTHRU;
3167 }
3168 }
3169 gcc_assert (default_label != NULL);
3170
3171 /* Don't generate a switch if there's only a default case.
3172 This is common in the form of try { A; } catch (...) { B; }. */
3173 if (labels == NULL)
3174 {
3175 e = single_succ_edge (src);
3176 e->flags |= EDGE_FALLTHRU;
3177 }
3178 else
3179 {
3180 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3181 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3182 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3183 filter = make_ssa_name (filter, x);
3184 gimple_call_set_lhs (x, filter);
3185 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3186
3187 /* Turn the default label into a default case. */
3188 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3189 NULL, NULL, default_label);
3190 sort_case_labels (labels);
3191
3192 x = gimple_build_switch_vec (filter, default_label, labels);
3193 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3194
3195 VEC_free (tree, heap, labels);
3196 }
3197 pointer_set_destroy (seen_values);
3198 }
3199 break;
3200
3201 case ERT_ALLOWED_EXCEPTIONS:
3202 {
3203 edge b_e = BRANCH_EDGE (src);
3204 edge f_e = FALLTHRU_EDGE (src);
3205
3206 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3207 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3208 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3209 filter = make_ssa_name (filter, x);
3210 gimple_call_set_lhs (x, filter);
3211 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3212
3213 r->u.allowed.label = NULL;
3214 x = gimple_build_cond (EQ_EXPR, filter,
3215 build_int_cst (TREE_TYPE (filter),
3216 r->u.allowed.filter),
3217 NULL_TREE, NULL_TREE);
3218 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3219
3220 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3221 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3222 }
3223 break;
3224
3225 default:
3226 gcc_unreachable ();
3227 }
3228
3229 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3230 gsi_remove (&gsi, true);
3231 return redirected;
3232 }
3233
3234 static unsigned
3235 execute_lower_eh_dispatch (void)
3236 {
3237 basic_block bb;
3238 bool any_rewritten = false;
3239 bool redirected = false;
3240
3241 assign_filter_values ();
3242
3243 FOR_EACH_BB (bb)
3244 {
3245 gimple last = last_stmt (bb);
3246 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3247 {
3248 redirected |= lower_eh_dispatch (bb, last);
3249 any_rewritten = true;
3250 }
3251 }
3252
3253 if (redirected)
3254 delete_unreachable_blocks ();
3255 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3256 }
3257
3258 static bool
3259 gate_lower_eh_dispatch (void)
3260 {
3261 return cfun->eh->region_tree != NULL;
3262 }
3263
3264 struct gimple_opt_pass pass_lower_eh_dispatch =
3265 {
3266 {
3267 GIMPLE_PASS,
3268 "ehdisp", /* name */
3269 gate_lower_eh_dispatch, /* gate */
3270 execute_lower_eh_dispatch, /* execute */
3271 NULL, /* sub */
3272 NULL, /* next */
3273 0, /* static_pass_number */
3274 TV_TREE_EH, /* tv_id */
3275 PROP_gimple_lcf, /* properties_required */
3276 0, /* properties_provided */
3277 0, /* properties_destroyed */
3278 0, /* todo_flags_start */
3279 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3280 }
3281 };
3282 \f
3283 /* Walk statements, see what regions are really referenced and remove
3284 those that are unused. */
3285
3286 static void
3287 remove_unreachable_handlers (void)
3288 {
3289 sbitmap r_reachable, lp_reachable;
3290 eh_region region;
3291 eh_landing_pad lp;
3292 basic_block bb;
3293 int lp_nr, r_nr;
3294
3295 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3296 lp_reachable
3297 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3298 sbitmap_zero (r_reachable);
3299 sbitmap_zero (lp_reachable);
3300
3301 FOR_EACH_BB (bb)
3302 {
3303 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3304
3305 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3306 {
3307 gimple stmt = gsi_stmt (gsi);
3308 lp_nr = lookup_stmt_eh_lp (stmt);
3309
3310 /* Negative LP numbers are MUST_NOT_THROW regions which
3311 are not considered BB enders. */
3312 if (lp_nr < 0)
3313 SET_BIT (r_reachable, -lp_nr);
3314
3315 /* Positive LP numbers are real landing pads, are are BB enders. */
3316 else if (lp_nr > 0)
3317 {
3318 gcc_assert (gsi_one_before_end_p (gsi));
3319 region = get_eh_region_from_lp_number (lp_nr);
3320 SET_BIT (r_reachable, region->index);
3321 SET_BIT (lp_reachable, lp_nr);
3322 }
3323 }
3324 }
3325
3326 if (dump_file)
3327 {
3328 fprintf (dump_file, "Before removal of unreachable regions:\n");
3329 dump_eh_tree (dump_file, cfun);
3330 fprintf (dump_file, "Reachable regions: ");
3331 dump_sbitmap_file (dump_file, r_reachable);
3332 fprintf (dump_file, "Reachable landing pads: ");
3333 dump_sbitmap_file (dump_file, lp_reachable);
3334 }
3335
3336 for (r_nr = 1;
3337 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3338 if (region && !TEST_BIT (r_reachable, r_nr))
3339 {
3340 if (dump_file)
3341 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3342 remove_eh_handler (region);
3343 }
3344
3345 for (lp_nr = 1;
3346 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3347 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3348 {
3349 if (dump_file)
3350 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3351 remove_eh_landing_pad (lp);
3352 }
3353
3354 if (dump_file)
3355 {
3356 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3357 dump_eh_tree (dump_file, cfun);
3358 fprintf (dump_file, "\n\n");
3359 }
3360
3361 sbitmap_free (r_reachable);
3362 sbitmap_free (lp_reachable);
3363
3364 #ifdef ENABLE_CHECKING
3365 verify_eh_tree (cfun);
3366 #endif
3367 }
3368
3369 /* Remove regions that do not have landing pads. This assumes
3370 that remove_unreachable_handlers has already been run, and
3371 that we've just manipulated the landing pads since then. */
3372
3373 static void
3374 remove_unreachable_handlers_no_lp (void)
3375 {
3376 eh_region r;
3377 int i;
3378
3379 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3380 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3381 {
3382 if (dump_file)
3383 fprintf (dump_file, "Removing unreachable region %d\n", i);
3384 remove_eh_handler (r);
3385 }
3386 }
3387
3388 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3389 optimisticaly split all sorts of edges, including EH edges. The
3390 optimization passes in between may not have needed them; if not,
3391 we should undo the split.
3392
3393 Recognize this case by having one EH edge incoming to the BB and
3394 one normal edge outgoing; BB should be empty apart from the
3395 post_landing_pad label.
3396
3397 Note that this is slightly different from the empty handler case
3398 handled by cleanup_empty_eh, in that the actual handler may yet
3399 have actual code but the landing pad has been separated from the
3400 handler. As such, cleanup_empty_eh relies on this transformation
3401 having been done first. */
3402
3403 static bool
3404 unsplit_eh (eh_landing_pad lp)
3405 {
3406 basic_block bb = label_to_block (lp->post_landing_pad);
3407 gimple_stmt_iterator gsi;
3408 edge e_in, e_out;
3409
3410 /* Quickly check the edge counts on BB for singularity. */
3411 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3412 return false;
3413 e_in = EDGE_PRED (bb, 0);
3414 e_out = EDGE_SUCC (bb, 0);
3415
3416 /* Input edge must be EH and output edge must be normal. */
3417 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3418 return false;
3419
3420 /* The block must be empty except for the labels and debug insns. */
3421 gsi = gsi_after_labels (bb);
3422 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3423 gsi_next_nondebug (&gsi);
3424 if (!gsi_end_p (gsi))
3425 return false;
3426
3427 /* The destination block must not already have a landing pad
3428 for a different region. */
3429 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3430 {
3431 gimple stmt = gsi_stmt (gsi);
3432 tree lab;
3433 int lp_nr;
3434
3435 if (gimple_code (stmt) != GIMPLE_LABEL)
3436 break;
3437 lab = gimple_label_label (stmt);
3438 lp_nr = EH_LANDING_PAD_NR (lab);
3439 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3440 return false;
3441 }
3442
3443 /* The new destination block must not already be a destination of
3444 the source block, lest we merge fallthru and eh edges and get
3445 all sorts of confused. */
3446 if (find_edge (e_in->src, e_out->dest))
3447 return false;
3448
3449 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3450 thought this should have been cleaned up by a phicprop pass, but
3451 that doesn't appear to handle virtuals. Propagate by hand. */
3452 if (!gimple_seq_empty_p (phi_nodes (bb)))
3453 {
3454 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3455 {
3456 gimple use_stmt, phi = gsi_stmt (gsi);
3457 tree lhs = gimple_phi_result (phi);
3458 tree rhs = gimple_phi_arg_def (phi, 0);
3459 use_operand_p use_p;
3460 imm_use_iterator iter;
3461
3462 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3463 {
3464 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3465 SET_USE (use_p, rhs);
3466 }
3467
3468 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3469 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3470
3471 remove_phi_node (&gsi, true);
3472 }
3473 }
3474
3475 if (dump_file && (dump_flags & TDF_DETAILS))
3476 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3477 lp->index, e_out->dest->index);
3478
3479 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3480 a successor edge, humor it. But do the real CFG change with the
3481 predecessor of E_OUT in order to preserve the ordering of arguments
3482 to the PHI nodes in E_OUT->DEST. */
3483 redirect_eh_edge_1 (e_in, e_out->dest, false);
3484 redirect_edge_pred (e_out, e_in->src);
3485 e_out->flags = e_in->flags;
3486 e_out->probability = e_in->probability;
3487 e_out->count = e_in->count;
3488 remove_edge (e_in);
3489
3490 return true;
3491 }
3492
3493 /* Examine each landing pad block and see if it matches unsplit_eh. */
3494
3495 static bool
3496 unsplit_all_eh (void)
3497 {
3498 bool changed = false;
3499 eh_landing_pad lp;
3500 int i;
3501
3502 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3503 if (lp)
3504 changed |= unsplit_eh (lp);
3505
3506 return changed;
3507 }
3508
3509 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3510 to OLD_BB to NEW_BB; return true on success, false on failure.
3511
3512 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3513 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3514 Virtual PHIs may be deleted and marked for renaming. */
3515
3516 static bool
3517 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3518 edge old_bb_out, bool change_region)
3519 {
3520 gimple_stmt_iterator ngsi, ogsi;
3521 edge_iterator ei;
3522 edge e;
3523 bitmap rename_virts;
3524 bitmap ophi_handled;
3525
3526 FOR_EACH_EDGE (e, ei, old_bb->preds)
3527 redirect_edge_var_map_clear (e);
3528
3529 ophi_handled = BITMAP_ALLOC (NULL);
3530 rename_virts = BITMAP_ALLOC (NULL);
3531
3532 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3533 for the edges we're going to move. */
3534 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3535 {
3536 gimple ophi, nphi = gsi_stmt (ngsi);
3537 tree nresult, nop;
3538
3539 nresult = gimple_phi_result (nphi);
3540 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3541
3542 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3543 the source ssa_name. */
3544 ophi = NULL;
3545 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3546 {
3547 ophi = gsi_stmt (ogsi);
3548 if (gimple_phi_result (ophi) == nop)
3549 break;
3550 ophi = NULL;
3551 }
3552
3553 /* If we did find the corresponding PHI, copy those inputs. */
3554 if (ophi)
3555 {
3556 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3557 if (!has_single_use (nop))
3558 {
3559 imm_use_iterator imm_iter;
3560 use_operand_p use_p;
3561
3562 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3563 {
3564 if (!gimple_debug_bind_p (USE_STMT (use_p))
3565 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3566 || gimple_bb (USE_STMT (use_p)) != new_bb))
3567 goto fail;
3568 }
3569 }
3570 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3571 FOR_EACH_EDGE (e, ei, old_bb->preds)
3572 {
3573 location_t oloc;
3574 tree oop;
3575
3576 if ((e->flags & EDGE_EH) == 0)
3577 continue;
3578 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3579 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3580 redirect_edge_var_map_add (e, nresult, oop, oloc);
3581 }
3582 }
3583 /* If we didn't find the PHI, but it's a VOP, remember to rename
3584 it later, assuming all other tests succeed. */
3585 else if (!is_gimple_reg (nresult))
3586 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3587 /* If we didn't find the PHI, and it's a real variable, we know
3588 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3589 variable is unchanged from input to the block and we can simply
3590 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3591 else
3592 {
3593 location_t nloc
3594 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3595 FOR_EACH_EDGE (e, ei, old_bb->preds)
3596 redirect_edge_var_map_add (e, nresult, nop, nloc);
3597 }
3598 }
3599
3600 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3601 we don't know what values from the other edges into NEW_BB to use. */
3602 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3603 {
3604 gimple ophi = gsi_stmt (ogsi);
3605 tree oresult = gimple_phi_result (ophi);
3606 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3607 goto fail;
3608 }
3609
3610 /* At this point we know that the merge will succeed. Remove the PHI
3611 nodes for the virtuals that we want to rename. */
3612 if (!bitmap_empty_p (rename_virts))
3613 {
3614 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3615 {
3616 gimple nphi = gsi_stmt (ngsi);
3617 tree nresult = gimple_phi_result (nphi);
3618 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3619 {
3620 mark_virtual_phi_result_for_renaming (nphi);
3621 remove_phi_node (&ngsi, true);
3622 }
3623 else
3624 gsi_next (&ngsi);
3625 }
3626 }
3627
3628 /* Finally, move the edges and update the PHIs. */
3629 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3630 if (e->flags & EDGE_EH)
3631 {
3632 redirect_eh_edge_1 (e, new_bb, change_region);
3633 redirect_edge_succ (e, new_bb);
3634 flush_pending_stmts (e);
3635 }
3636 else
3637 ei_next (&ei);
3638
3639 BITMAP_FREE (ophi_handled);
3640 BITMAP_FREE (rename_virts);
3641 return true;
3642
3643 fail:
3644 FOR_EACH_EDGE (e, ei, old_bb->preds)
3645 redirect_edge_var_map_clear (e);
3646 BITMAP_FREE (ophi_handled);
3647 BITMAP_FREE (rename_virts);
3648 return false;
3649 }
3650
3651 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3652 old region to NEW_REGION at BB. */
3653
3654 static void
3655 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3656 eh_landing_pad lp, eh_region new_region)
3657 {
3658 gimple_stmt_iterator gsi;
3659 eh_landing_pad *pp;
3660
3661 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3662 continue;
3663 *pp = lp->next_lp;
3664
3665 lp->region = new_region;
3666 lp->next_lp = new_region->landing_pads;
3667 new_region->landing_pads = lp;
3668
3669 /* Delete the RESX that was matched within the empty handler block. */
3670 gsi = gsi_last_bb (bb);
3671 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3672 gsi_remove (&gsi, true);
3673
3674 /* Clean up E_OUT for the fallthru. */
3675 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3676 e_out->probability = REG_BR_PROB_BASE;
3677 }
3678
3679 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3680 unsplitting than unsplit_eh was prepared to handle, e.g. when
3681 multiple incoming edges and phis are involved. */
3682
3683 static bool
3684 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3685 {
3686 gimple_stmt_iterator gsi;
3687 tree lab;
3688 edge_iterator ei;
3689 edge e;
3690
3691 /* We really ought not have totally lost everything following
3692 a landing pad label. Given that BB is empty, there had better
3693 be a successor. */
3694 gcc_assert (e_out != NULL);
3695
3696 /* The destination block must not already have a landing pad
3697 for a different region. */
3698 lab = NULL;
3699 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3700 {
3701 gimple stmt = gsi_stmt (gsi);
3702 int lp_nr;
3703
3704 if (gimple_code (stmt) != GIMPLE_LABEL)
3705 break;
3706 lab = gimple_label_label (stmt);
3707 lp_nr = EH_LANDING_PAD_NR (lab);
3708 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3709 return false;
3710 }
3711
3712 /* The destination block must not be a regular successor for any
3713 of the preds of the landing pad. Thus, avoid turning
3714 <..>
3715 | \ EH
3716 | <..>
3717 | /
3718 <..>
3719 into
3720 <..>
3721 | | EH
3722 <..>
3723 which CFG verification would choke on. See PR45172. */
3724 FOR_EACH_EDGE (e, ei, bb->preds)
3725 if (find_edge (e->src, e_out->dest))
3726 return false;
3727
3728 /* Attempt to move the PHIs into the successor block. */
3729 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3730 {
3731 if (dump_file && (dump_flags & TDF_DETAILS))
3732 fprintf (dump_file,
3733 "Unsplit EH landing pad %d to block %i "
3734 "(via cleanup_empty_eh).\n",
3735 lp->index, e_out->dest->index);
3736 return true;
3737 }
3738
3739 return false;
3740 }
3741
3742 /* Return true if edge E_FIRST is part of an empty infinite loop
3743 or leads to such a loop through a series of single successor
3744 empty bbs. */
3745
3746 static bool
3747 infinite_empty_loop_p (edge e_first)
3748 {
3749 bool inf_loop = false;
3750 edge e;
3751
3752 if (e_first->dest == e_first->src)
3753 return true;
3754
3755 e_first->src->aux = (void *) 1;
3756 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
3757 {
3758 gimple_stmt_iterator gsi;
3759 if (e->dest->aux)
3760 {
3761 inf_loop = true;
3762 break;
3763 }
3764 e->dest->aux = (void *) 1;
3765 gsi = gsi_after_labels (e->dest);
3766 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3767 gsi_next_nondebug (&gsi);
3768 if (!gsi_end_p (gsi))
3769 break;
3770 }
3771 e_first->src->aux = NULL;
3772 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
3773 e->dest->aux = NULL;
3774
3775 return inf_loop;
3776 }
3777
3778 /* Examine the block associated with LP to determine if it's an empty
3779 handler for its EH region. If so, attempt to redirect EH edges to
3780 an outer region. Return true the CFG was updated in any way. This
3781 is similar to jump forwarding, just across EH edges. */
3782
3783 static bool
3784 cleanup_empty_eh (eh_landing_pad lp)
3785 {
3786 basic_block bb = label_to_block (lp->post_landing_pad);
3787 gimple_stmt_iterator gsi;
3788 gimple resx;
3789 eh_region new_region;
3790 edge_iterator ei;
3791 edge e, e_out;
3792 bool has_non_eh_pred;
3793 int new_lp_nr;
3794
3795 /* There can be zero or one edges out of BB. This is the quickest test. */
3796 switch (EDGE_COUNT (bb->succs))
3797 {
3798 case 0:
3799 e_out = NULL;
3800 break;
3801 case 1:
3802 e_out = EDGE_SUCC (bb, 0);
3803 break;
3804 default:
3805 return false;
3806 }
3807 gsi = gsi_after_labels (bb);
3808
3809 /* Make sure to skip debug statements. */
3810 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3811 gsi_next_nondebug (&gsi);
3812
3813 /* If the block is totally empty, look for more unsplitting cases. */
3814 if (gsi_end_p (gsi))
3815 {
3816 /* For the degenerate case of an infinite loop bail out. */
3817 if (infinite_empty_loop_p (e_out))
3818 return false;
3819
3820 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3821 }
3822
3823 /* The block should consist only of a single RESX statement. */
3824 resx = gsi_stmt (gsi);
3825 if (!is_gimple_resx (resx))
3826 return false;
3827 gcc_assert (gsi_one_before_end_p (gsi));
3828
3829 /* Determine if there are non-EH edges, or resx edges into the handler. */
3830 has_non_eh_pred = false;
3831 FOR_EACH_EDGE (e, ei, bb->preds)
3832 if (!(e->flags & EDGE_EH))
3833 has_non_eh_pred = true;
3834
3835 /* Find the handler that's outer of the empty handler by looking at
3836 where the RESX instruction was vectored. */
3837 new_lp_nr = lookup_stmt_eh_lp (resx);
3838 new_region = get_eh_region_from_lp_number (new_lp_nr);
3839
3840 /* If there's no destination region within the current function,
3841 redirection is trivial via removing the throwing statements from
3842 the EH region, removing the EH edges, and allowing the block
3843 to go unreachable. */
3844 if (new_region == NULL)
3845 {
3846 gcc_assert (e_out == NULL);
3847 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3848 if (e->flags & EDGE_EH)
3849 {
3850 gimple stmt = last_stmt (e->src);
3851 remove_stmt_from_eh_lp (stmt);
3852 remove_edge (e);
3853 }
3854 else
3855 ei_next (&ei);
3856 goto succeed;
3857 }
3858
3859 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3860 to handle the abort and allow the blocks to go unreachable. */
3861 if (new_region->type == ERT_MUST_NOT_THROW)
3862 {
3863 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3864 if (e->flags & EDGE_EH)
3865 {
3866 gimple stmt = last_stmt (e->src);
3867 remove_stmt_from_eh_lp (stmt);
3868 add_stmt_to_eh_lp (stmt, new_lp_nr);
3869 remove_edge (e);
3870 }
3871 else
3872 ei_next (&ei);
3873 goto succeed;
3874 }
3875
3876 /* Try to redirect the EH edges and merge the PHIs into the destination
3877 landing pad block. If the merge succeeds, we'll already have redirected
3878 all the EH edges. The handler itself will go unreachable if there were
3879 no normal edges. */
3880 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3881 goto succeed;
3882
3883 /* Finally, if all input edges are EH edges, then we can (potentially)
3884 reduce the number of transfers from the runtime by moving the landing
3885 pad from the original region to the new region. This is a win when
3886 we remove the last CLEANUP region along a particular exception
3887 propagation path. Since nothing changes except for the region with
3888 which the landing pad is associated, the PHI nodes do not need to be
3889 adjusted at all. */
3890 if (!has_non_eh_pred)
3891 {
3892 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3893 if (dump_file && (dump_flags & TDF_DETAILS))
3894 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3895 lp->index, new_region->index);
3896
3897 /* ??? The CFG didn't change, but we may have rendered the
3898 old EH region unreachable. Trigger a cleanup there. */
3899 return true;
3900 }
3901
3902 return false;
3903
3904 succeed:
3905 if (dump_file && (dump_flags & TDF_DETAILS))
3906 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3907 remove_eh_landing_pad (lp);
3908 return true;
3909 }
3910
3911 /* Do a post-order traversal of the EH region tree. Examine each
3912 post_landing_pad block and see if we can eliminate it as empty. */
3913
3914 static bool
3915 cleanup_all_empty_eh (void)
3916 {
3917 bool changed = false;
3918 eh_landing_pad lp;
3919 int i;
3920
3921 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3922 if (lp)
3923 changed |= cleanup_empty_eh (lp);
3924
3925 return changed;
3926 }
3927
3928 /* Perform cleanups and lowering of exception handling
3929 1) cleanups regions with handlers doing nothing are optimized out
3930 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3931 3) Info about regions that are containing instructions, and regions
3932 reachable via local EH edges is collected
3933 4) Eh tree is pruned for regions no longer neccesary.
3934
3935 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3936 Unify those that have the same failure decl and locus.
3937 */
3938
3939 static unsigned int
3940 execute_cleanup_eh_1 (void)
3941 {
3942 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3943 looking up unreachable landing pads. */
3944 remove_unreachable_handlers ();
3945
3946 /* Watch out for the region tree vanishing due to all unreachable. */
3947 if (cfun->eh->region_tree && optimize)
3948 {
3949 bool changed = false;
3950
3951 changed |= unsplit_all_eh ();
3952 changed |= cleanup_all_empty_eh ();
3953
3954 if (changed)
3955 {
3956 free_dominance_info (CDI_DOMINATORS);
3957 free_dominance_info (CDI_POST_DOMINATORS);
3958
3959 /* We delayed all basic block deletion, as we may have performed
3960 cleanups on EH edges while non-EH edges were still present. */
3961 delete_unreachable_blocks ();
3962
3963 /* We manipulated the landing pads. Remove any region that no
3964 longer has a landing pad. */
3965 remove_unreachable_handlers_no_lp ();
3966
3967 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3968 }
3969 }
3970
3971 return 0;
3972 }
3973
3974 static unsigned int
3975 execute_cleanup_eh (void)
3976 {
3977 int ret = execute_cleanup_eh_1 ();
3978
3979 /* If the function no longer needs an EH personality routine
3980 clear it. This exposes cross-language inlining opportunities
3981 and avoids references to a never defined personality routine. */
3982 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
3983 && function_needs_eh_personality (cfun) != eh_personality_lang)
3984 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
3985
3986 return ret;
3987 }
3988
3989 static bool
3990 gate_cleanup_eh (void)
3991 {
3992 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3993 }
3994
3995 struct gimple_opt_pass pass_cleanup_eh = {
3996 {
3997 GIMPLE_PASS,
3998 "ehcleanup", /* name */
3999 gate_cleanup_eh, /* gate */
4000 execute_cleanup_eh, /* execute */
4001 NULL, /* sub */
4002 NULL, /* next */
4003 0, /* static_pass_number */
4004 TV_TREE_EH, /* tv_id */
4005 PROP_gimple_lcf, /* properties_required */
4006 0, /* properties_provided */
4007 0, /* properties_destroyed */
4008 0, /* todo_flags_start */
4009 TODO_dump_func /* todo_flags_finish */
4010 }
4011 };
4012 \f
4013 /* Verify that BB containing STMT as the last statement, has precisely the
4014 edge that make_eh_edges would create. */
4015
4016 DEBUG_FUNCTION bool
4017 verify_eh_edges (gimple stmt)
4018 {
4019 basic_block bb = gimple_bb (stmt);
4020 eh_landing_pad lp = NULL;
4021 int lp_nr;
4022 edge_iterator ei;
4023 edge e, eh_edge;
4024
4025 lp_nr = lookup_stmt_eh_lp (stmt);
4026 if (lp_nr > 0)
4027 lp = get_eh_landing_pad_from_number (lp_nr);
4028
4029 eh_edge = NULL;
4030 FOR_EACH_EDGE (e, ei, bb->succs)
4031 {
4032 if (e->flags & EDGE_EH)
4033 {
4034 if (eh_edge)
4035 {
4036 error ("BB %i has multiple EH edges", bb->index);
4037 return true;
4038 }
4039 else
4040 eh_edge = e;
4041 }
4042 }
4043
4044 if (lp == NULL)
4045 {
4046 if (eh_edge)
4047 {
4048 error ("BB %i can not throw but has an EH edge", bb->index);
4049 return true;
4050 }
4051 return false;
4052 }
4053
4054 if (!stmt_could_throw_p (stmt))
4055 {
4056 error ("BB %i last statement has incorrectly set lp", bb->index);
4057 return true;
4058 }
4059
4060 if (eh_edge == NULL)
4061 {
4062 error ("BB %i is missing an EH edge", bb->index);
4063 return true;
4064 }
4065
4066 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4067 {
4068 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4069 return true;
4070 }
4071
4072 return false;
4073 }
4074
4075 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4076
4077 DEBUG_FUNCTION bool
4078 verify_eh_dispatch_edge (gimple stmt)
4079 {
4080 eh_region r;
4081 eh_catch c;
4082 basic_block src, dst;
4083 bool want_fallthru = true;
4084 edge_iterator ei;
4085 edge e, fall_edge;
4086
4087 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4088 src = gimple_bb (stmt);
4089
4090 FOR_EACH_EDGE (e, ei, src->succs)
4091 gcc_assert (e->aux == NULL);
4092
4093 switch (r->type)
4094 {
4095 case ERT_TRY:
4096 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4097 {
4098 dst = label_to_block (c->label);
4099 e = find_edge (src, dst);
4100 if (e == NULL)
4101 {
4102 error ("BB %i is missing an edge", src->index);
4103 return true;
4104 }
4105 e->aux = (void *)e;
4106
4107 /* A catch-all handler doesn't have a fallthru. */
4108 if (c->type_list == NULL)
4109 {
4110 want_fallthru = false;
4111 break;
4112 }
4113 }
4114 break;
4115
4116 case ERT_ALLOWED_EXCEPTIONS:
4117 dst = label_to_block (r->u.allowed.label);
4118 e = find_edge (src, dst);
4119 if (e == NULL)
4120 {
4121 error ("BB %i is missing an edge", src->index);
4122 return true;
4123 }
4124 e->aux = (void *)e;
4125 break;
4126
4127 default:
4128 gcc_unreachable ();
4129 }
4130
4131 fall_edge = NULL;
4132 FOR_EACH_EDGE (e, ei, src->succs)
4133 {
4134 if (e->flags & EDGE_FALLTHRU)
4135 {
4136 if (fall_edge != NULL)
4137 {
4138 error ("BB %i too many fallthru edges", src->index);
4139 return true;
4140 }
4141 fall_edge = e;
4142 }
4143 else if (e->aux)
4144 e->aux = NULL;
4145 else
4146 {
4147 error ("BB %i has incorrect edge", src->index);
4148 return true;
4149 }
4150 }
4151 if ((fall_edge != NULL) ^ want_fallthru)
4152 {
4153 error ("BB %i has incorrect fallthru edge", src->index);
4154 return true;
4155 }
4156
4157 return false;
4158 }