tree.h: Include real.h and fixed-value.h as basic datatypes.
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "toplev.h"
39 #include "gimple.h"
40 #include "target.h"
41
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p = 0;
48
49 void
50 using_eh_for_cleanups (void)
51 {
52 using_eh_for_cleanups_p = 1;
53 }
54
55 /* Misc functions used in this file. */
56
57 /* Compare and hash for any structure which begins with a canonical
58 pointer. Assumes all pointers are interchangeable, which is sort
59 of already assumed by gcc elsewhere IIRC. */
60
61 static int
62 struct_ptr_eq (const void *a, const void *b)
63 {
64 const void * const * x = (const void * const *) a;
65 const void * const * y = (const void * const *) b;
66 return *x == *y;
67 }
68
69 static hashval_t
70 struct_ptr_hash (const void *a)
71 {
72 const void * const * x = (const void * const *) a;
73 return (size_t)*x >> 4;
74 }
75
76
77 /* Remember and lookup EH landing pad data for arbitrary statements.
78 Really this means any statement that could_throw_p. We could
79 stuff this information into the stmt_ann data structure, but:
80
81 (1) We absolutely rely on this information being kept until
82 we get to rtl. Once we're done with lowering here, if we lose
83 the information there's no way to recover it!
84
85 (2) There are many more statements that *cannot* throw as
86 compared to those that can. We should be saving some amount
87 of space by only allocating memory for those that can throw. */
88
89 /* Add statement T in function IFUN to landing pad NUM. */
90
91 void
92 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
93 {
94 struct throw_stmt_node *n;
95 void **slot;
96
97 gcc_assert (num != 0);
98
99 n = GGC_NEW (struct throw_stmt_node);
100 n->stmt = t;
101 n->lp_nr = num;
102
103 if (!get_eh_throw_stmt_table (ifun))
104 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
105 struct_ptr_eq,
106 ggc_free));
107
108 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
109 gcc_assert (!*slot);
110 *slot = n;
111 }
112
113 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
114
115 void
116 add_stmt_to_eh_lp (gimple t, int num)
117 {
118 add_stmt_to_eh_lp_fn (cfun, t, num);
119 }
120
121 /* Add statement T to the single EH landing pad in REGION. */
122
123 static void
124 record_stmt_eh_region (eh_region region, gimple t)
125 {
126 if (region == NULL)
127 return;
128 if (region->type == ERT_MUST_NOT_THROW)
129 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
130 else
131 {
132 eh_landing_pad lp = region->landing_pads;
133 if (lp == NULL)
134 lp = gen_eh_landing_pad (region);
135 else
136 gcc_assert (lp->next_lp == NULL);
137 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
138 }
139 }
140
141
142 /* Remove statement T in function IFUN from its EH landing pad. */
143
144 bool
145 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
146 {
147 struct throw_stmt_node dummy;
148 void **slot;
149
150 if (!get_eh_throw_stmt_table (ifun))
151 return false;
152
153 dummy.stmt = t;
154 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
155 NO_INSERT);
156 if (slot)
157 {
158 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
159 return true;
160 }
161 else
162 return false;
163 }
164
165
166 /* Remove statement T in the current function (cfun) from its
167 EH landing pad. */
168
169 bool
170 remove_stmt_from_eh_lp (gimple t)
171 {
172 return remove_stmt_from_eh_lp_fn (cfun, t);
173 }
174
175 /* Determine if statement T is inside an EH region in function IFUN.
176 Positive numbers indicate a landing pad index; negative numbers
177 indicate a MUST_NOT_THROW region index; zero indicates that the
178 statement is not recorded in the region table. */
179
180 int
181 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
182 {
183 struct throw_stmt_node *p, n;
184
185 if (ifun->eh->throw_stmt_table == NULL)
186 return 0;
187
188 n.stmt = t;
189 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
190 return p ? p->lp_nr : 0;
191 }
192
193 /* Likewise, but always use the current function. */
194
195 int
196 lookup_stmt_eh_lp (gimple t)
197 {
198 /* We can get called from initialized data when -fnon-call-exceptions
199 is on; prevent crash. */
200 if (!cfun)
201 return 0;
202 return lookup_stmt_eh_lp_fn (cfun, t);
203 }
204
205 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
206 nodes and LABEL_DECL nodes. We will use this during the second phase to
207 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
208
209 struct finally_tree_node
210 {
211 /* When storing a GIMPLE_TRY, we have to record a gimple. However
212 when deciding whether a GOTO to a certain LABEL_DECL (which is a
213 tree) leaves the TRY block, its necessary to record a tree in
214 this field. Thus a treemple is used. */
215 treemple child;
216 gimple parent;
217 };
218
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static htab_t finally_tree;
221
222 static void
223 record_in_finally_tree (treemple child, gimple parent)
224 {
225 struct finally_tree_node *n;
226 void **slot;
227
228 n = XNEW (struct finally_tree_node);
229 n->child = child;
230 n->parent = parent;
231
232 slot = htab_find_slot (finally_tree, n, INSERT);
233 gcc_assert (!*slot);
234 *slot = n;
235 }
236
237 static void
238 collect_finally_tree (gimple stmt, gimple region);
239
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
242
243 static void
244 collect_finally_tree_1 (gimple_seq seq, gimple region)
245 {
246 gimple_stmt_iterator gsi;
247
248 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
249 collect_finally_tree (gsi_stmt (gsi), region);
250 }
251
252 static void
253 collect_finally_tree (gimple stmt, gimple region)
254 {
255 treemple temp;
256
257 switch (gimple_code (stmt))
258 {
259 case GIMPLE_LABEL:
260 temp.t = gimple_label_label (stmt);
261 record_in_finally_tree (temp, region);
262 break;
263
264 case GIMPLE_TRY:
265 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
266 {
267 temp.g = stmt;
268 record_in_finally_tree (temp, region);
269 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
271 }
272 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
273 {
274 collect_finally_tree_1 (gimple_try_eval (stmt), region);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
276 }
277 break;
278
279 case GIMPLE_CATCH:
280 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
281 break;
282
283 case GIMPLE_EH_FILTER:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
285 break;
286
287 default:
288 /* A type, a decl, or some kind of statement that we're not
289 interested in. Don't walk them. */
290 break;
291 }
292 }
293
294
295 /* Use the finally tree to determine if a jump from START to TARGET
296 would leave the try_finally node that START lives in. */
297
298 static bool
299 outside_finally_tree (treemple start, gimple target)
300 {
301 struct finally_tree_node n, *p;
302
303 do
304 {
305 n.child = start;
306 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
307 if (!p)
308 return true;
309 start.g = p->parent;
310 }
311 while (start.g != target);
312
313 return false;
314 }
315
316 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
317 nodes into a set of gotos, magic labels, and eh regions.
318 The eh region creation is straight-forward, but frobbing all the gotos
319 and such into shape isn't. */
320
321 /* The sequence into which we record all EH stuff. This will be
322 placed at the end of the function when we're all done. */
323 static gimple_seq eh_seq;
324
325 /* Record whether an EH region contains something that can throw,
326 indexed by EH region number. */
327 static bitmap eh_region_may_contain_throw_map;
328
329 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
330 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
331 The idea is to record a gimple statement for everything except for
332 the conditionals, which get their labels recorded. Since labels are
333 of type 'tree', we need this node to store both gimple and tree
334 objects. REPL_STMT is the sequence used to replace the goto/return
335 statement. CONT_STMT is used to store the statement that allows
336 the return/goto to jump to the original destination. */
337
338 struct goto_queue_node
339 {
340 treemple stmt;
341 gimple_seq repl_stmt;
342 gimple cont_stmt;
343 int index;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
346 int is_label;
347 };
348
349 /* State of the world while lowering. */
350
351 struct leh_state
352 {
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region;
357
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region;
362
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state *tf;
367 };
368
369 struct leh_tf_state
370 {
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gimple try_finally_expr;
376 gimple top_p;
377
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq;
381
382 /* The state outside this try_finally node. */
383 struct leh_state *outer;
384
385 /* The exception region created for it. */
386 eh_region region;
387
388 /* The goto queue. */
389 struct goto_queue_node *goto_queue;
390 size_t goto_queue_size;
391 size_t goto_queue_active;
392
393 /* Pointer map to help in searching goto_queue when it is large. */
394 struct pointer_map_t *goto_queue_map;
395
396 /* The set of unique labels seen as entries in the goto queue. */
397 VEC(tree,heap) *dest_array;
398
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
402 tree fallthru_label;
403
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
406 bool may_fallthru;
407
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
409 bool may_return;
410
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
413 bool may_throw;
414 };
415
416 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
417
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
420
421 #define LARGE_GOTO_QUEUE 20
422
423 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
424
425 static gimple_seq
426 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
427 {
428 unsigned int i;
429 void **slot;
430
431 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
432 {
433 for (i = 0; i < tf->goto_queue_active; i++)
434 if ( tf->goto_queue[i].stmt.g == stmt.g)
435 return tf->goto_queue[i].repl_stmt;
436 return NULL;
437 }
438
439 /* If we have a large number of entries in the goto_queue, create a
440 pointer map and use that for searching. */
441
442 if (!tf->goto_queue_map)
443 {
444 tf->goto_queue_map = pointer_map_create ();
445 for (i = 0; i < tf->goto_queue_active; i++)
446 {
447 slot = pointer_map_insert (tf->goto_queue_map,
448 tf->goto_queue[i].stmt.g);
449 gcc_assert (*slot == NULL);
450 *slot = &tf->goto_queue[i];
451 }
452 }
453
454 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
455 if (slot != NULL)
456 return (((struct goto_queue_node *) *slot)->repl_stmt);
457
458 return NULL;
459 }
460
461 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
462 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
463 then we can just splat it in, otherwise we add the new stmts immediately
464 after the GIMPLE_COND and redirect. */
465
466 static void
467 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
468 gimple_stmt_iterator *gsi)
469 {
470 tree label;
471 gimple_seq new_seq;
472 treemple temp;
473 location_t loc = gimple_location (gsi_stmt (*gsi));
474
475 temp.tp = tp;
476 new_seq = find_goto_replacement (tf, temp);
477 if (!new_seq)
478 return;
479
480 if (gimple_seq_singleton_p (new_seq)
481 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
482 {
483 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
484 return;
485 }
486
487 label = create_artificial_label (loc);
488 /* Set the new label for the GIMPLE_COND */
489 *tp = label;
490
491 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
492 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
493 }
494
495 /* The real work of replace_goto_queue. Returns with TSI updated to
496 point to the next statement. */
497
498 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
499
500 static void
501 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
502 gimple_stmt_iterator *gsi)
503 {
504 gimple_seq seq;
505 treemple temp;
506 temp.g = NULL;
507
508 switch (gimple_code (stmt))
509 {
510 case GIMPLE_GOTO:
511 case GIMPLE_RETURN:
512 temp.g = stmt;
513 seq = find_goto_replacement (tf, temp);
514 if (seq)
515 {
516 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
517 gsi_remove (gsi, false);
518 return;
519 }
520 break;
521
522 case GIMPLE_COND:
523 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
525 break;
526
527 case GIMPLE_TRY:
528 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
529 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
530 break;
531 case GIMPLE_CATCH:
532 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
533 break;
534 case GIMPLE_EH_FILTER:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
536 break;
537
538 default:
539 /* These won't have gotos in them. */
540 break;
541 }
542
543 gsi_next (gsi);
544 }
545
546 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
547
548 static void
549 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
550 {
551 gimple_stmt_iterator gsi = gsi_start (seq);
552
553 while (!gsi_end_p (gsi))
554 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
555 }
556
557 /* Replace all goto queue members. */
558
559 static void
560 replace_goto_queue (struct leh_tf_state *tf)
561 {
562 if (tf->goto_queue_active == 0)
563 return;
564 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
565 replace_goto_queue_stmt_list (eh_seq, tf);
566 }
567
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
570 a gimple return. */
571
572 static void
573 record_in_goto_queue (struct leh_tf_state *tf,
574 treemple new_stmt,
575 int index,
576 bool is_label)
577 {
578 size_t active, size;
579 struct goto_queue_node *q;
580
581 gcc_assert (!tf->goto_queue_map);
582
583 active = tf->goto_queue_active;
584 size = tf->goto_queue_size;
585 if (active >= size)
586 {
587 size = (size ? size * 2 : 32);
588 tf->goto_queue_size = size;
589 tf->goto_queue
590 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
591 }
592
593 q = &tf->goto_queue[active];
594 tf->goto_queue_active = active + 1;
595
596 memset (q, 0, sizeof (*q));
597 q->stmt = new_stmt;
598 q->index = index;
599 q->is_label = is_label;
600 }
601
602 /* Record the LABEL label in the goto queue contained in TF.
603 TF is not null. */
604
605 static void
606 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
607 {
608 int index;
609 treemple temp, new_stmt;
610
611 if (!label)
612 return;
613
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
619
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
624
625 if (! tf->dest_array)
626 {
627 tf->dest_array = VEC_alloc (tree, heap, 10);
628 VEC_quick_push (tree, tf->dest_array, label);
629 index = 0;
630 }
631 else
632 {
633 int n = VEC_length (tree, tf->dest_array);
634 for (index = 0; index < n; ++index)
635 if (VEC_index (tree, tf->dest_array, index) == label)
636 break;
637 if (index == n)
638 VEC_safe_push (tree, heap, tf->dest_array, label);
639 }
640
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true);
646 }
647
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
650 try_finally node. */
651
652 static void
653 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
654 {
655 struct leh_tf_state *tf = state->tf;
656 treemple new_stmt;
657
658 if (!tf)
659 return;
660
661 switch (gimple_code (stmt))
662 {
663 case GIMPLE_COND:
664 new_stmt.tp = gimple_op_ptr (stmt, 2);
665 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
666 new_stmt.tp = gimple_op_ptr (stmt, 3);
667 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
668 break;
669 case GIMPLE_GOTO:
670 new_stmt.g = stmt;
671 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
672 break;
673
674 case GIMPLE_RETURN:
675 tf->may_return = true;
676 new_stmt.g = stmt;
677 record_in_goto_queue (tf, new_stmt, -1, false);
678 break;
679
680 default:
681 gcc_unreachable ();
682 }
683 }
684
685
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
690
691 static void
692 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
693 {
694 struct leh_tf_state *tf = state->tf;
695 size_t i, n;
696
697 if (!tf)
698 return;
699
700 n = gimple_switch_num_labels (switch_expr);
701
702 for (i = 0; i < n; ++i)
703 {
704 treemple temp;
705 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
706 temp.t = lab;
707 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
708 }
709 }
710 #else
711 #define verify_norecord_switch_expr(state, switch_expr)
712 #endif
713
714 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
715 whatever is needed to finish the return. If MOD is non-null, insert it
716 before the new branch. RETURN_VALUE_P is a cache containing a temporary
717 variable to be used in manipulating the value returned from the function. */
718
719 static void
720 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
721 tree *return_value_p)
722 {
723 tree ret_expr;
724 gimple x;
725
726 /* In the case of a return, the queue node must be a gimple statement. */
727 gcc_assert (!q->is_label);
728
729 ret_expr = gimple_return_retval (q->stmt.g);
730
731 if (ret_expr)
732 {
733 if (!*return_value_p)
734 *return_value_p = ret_expr;
735 else
736 gcc_assert (*return_value_p == ret_expr);
737 q->cont_stmt = q->stmt.g;
738 /* The nasty part about redirecting the return value is that the
739 return value itself is to be computed before the FINALLY block
740 is executed. e.g.
741
742 int x;
743 int foo (void)
744 {
745 x = 0;
746 try {
747 return x;
748 } finally {
749 x++;
750 }
751 }
752
753 should return 0, not 1. Arrange for this to happen by copying
754 computed the return value into a local temporary. This also
755 allows us to redirect multiple return statements through the
756 same destination block; whether this is a net win or not really
757 depends, I guess, but it does make generation of the switch in
758 lower_try_finally_switch easier. */
759
760 if (TREE_CODE (ret_expr) == RESULT_DECL)
761 {
762 if (!*return_value_p)
763 *return_value_p = ret_expr;
764 else
765 gcc_assert (*return_value_p == ret_expr);
766 q->cont_stmt = q->stmt.g;
767 }
768 else
769 gcc_unreachable ();
770 }
771 else
772 /* If we don't return a value, all return statements are the same. */
773 q->cont_stmt = q->stmt.g;
774
775 if (!q->repl_stmt)
776 q->repl_stmt = gimple_seq_alloc ();
777
778 if (mod)
779 gimple_seq_add_seq (&q->repl_stmt, mod);
780
781 x = gimple_build_goto (finlab);
782 gimple_seq_add_stmt (&q->repl_stmt, x);
783 }
784
785 /* Similar, but easier, for GIMPLE_GOTO. */
786
787 static void
788 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
789 struct leh_tf_state *tf)
790 {
791 gimple x;
792
793 gcc_assert (q->is_label);
794 if (!q->repl_stmt)
795 q->repl_stmt = gimple_seq_alloc ();
796
797 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
798
799 if (mod)
800 gimple_seq_add_seq (&q->repl_stmt, mod);
801
802 x = gimple_build_goto (finlab);
803 gimple_seq_add_stmt (&q->repl_stmt, x);
804 }
805
806 /* Emit a standard landing pad sequence into SEQ for REGION. */
807
808 static void
809 emit_post_landing_pad (gimple_seq *seq, eh_region region)
810 {
811 eh_landing_pad lp = region->landing_pads;
812 gimple x;
813
814 if (lp == NULL)
815 lp = gen_eh_landing_pad (region);
816
817 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
818 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
819
820 x = gimple_build_label (lp->post_landing_pad);
821 gimple_seq_add_stmt (seq, x);
822 }
823
824 /* Emit a RESX statement into SEQ for REGION. */
825
826 static void
827 emit_resx (gimple_seq *seq, eh_region region)
828 {
829 gimple x = gimple_build_resx (region->index);
830 gimple_seq_add_stmt (seq, x);
831 if (region->outer)
832 record_stmt_eh_region (region->outer, x);
833 }
834
835 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
836
837 static void
838 emit_eh_dispatch (gimple_seq *seq, eh_region region)
839 {
840 gimple x = gimple_build_eh_dispatch (region->index);
841 gimple_seq_add_stmt (seq, x);
842 }
843
844 /* Note that the current EH region may contain a throw, or a
845 call to a function which itself may contain a throw. */
846
847 static void
848 note_eh_region_may_contain_throw (eh_region region)
849 {
850 while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
851 {
852 bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
853 region = region->outer;
854 if (region == NULL)
855 break;
856 }
857 }
858
859 /* Check if REGION has been marked as containing a throw. If REGION is
860 NULL, this predicate is false. */
861
862 static inline bool
863 eh_region_may_contain_throw (eh_region r)
864 {
865 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
866 }
867
868 /* We want to transform
869 try { body; } catch { stuff; }
870 to
871 normal_seqence:
872 body;
873 over:
874 eh_seqence:
875 landing_pad:
876 stuff;
877 goto over;
878
879 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
880 should be placed before the second operand, or NULL. OVER is
881 an existing label that should be put at the exit, or NULL. */
882
883 static gimple_seq
884 frob_into_branch_around (gimple tp, eh_region region, tree over)
885 {
886 gimple x;
887 gimple_seq cleanup, result;
888 location_t loc = gimple_location (tp);
889
890 cleanup = gimple_try_cleanup (tp);
891 result = gimple_try_eval (tp);
892
893 if (region)
894 emit_post_landing_pad (&eh_seq, region);
895
896 if (gimple_seq_may_fallthru (cleanup))
897 {
898 if (!over)
899 over = create_artificial_label (loc);
900 x = gimple_build_goto (over);
901 gimple_seq_add_stmt (&cleanup, x);
902 }
903 gimple_seq_add_seq (&eh_seq, cleanup);
904
905 if (over)
906 {
907 x = gimple_build_label (over);
908 gimple_seq_add_stmt (&result, x);
909 }
910 return result;
911 }
912
913 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
914 Make sure to record all new labels found. */
915
916 static gimple_seq
917 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
918 {
919 gimple region = NULL;
920 gimple_seq new_seq;
921
922 new_seq = copy_gimple_seq_and_replace_locals (seq);
923
924 if (outer_state->tf)
925 region = outer_state->tf->try_finally_expr;
926 collect_finally_tree_1 (new_seq, region);
927
928 return new_seq;
929 }
930
931 /* A subroutine of lower_try_finally. Create a fallthru label for
932 the given try_finally state. The only tricky bit here is that
933 we have to make sure to record the label in our outer context. */
934
935 static tree
936 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
937 {
938 tree label = tf->fallthru_label;
939 treemple temp;
940
941 if (!label)
942 {
943 label = create_artificial_label (gimple_location (tf->try_finally_expr));
944 tf->fallthru_label = label;
945 if (tf->outer->tf)
946 {
947 temp.t = label;
948 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
949 }
950 }
951 return label;
952 }
953
954 /* A subroutine of lower_try_finally. If lang_protect_cleanup_actions
955 returns non-null, then the language requires that the exception path out
956 of a try_finally be treated specially. To wit: the code within the
957 finally block may not itself throw an exception. We have two choices here.
958 First we can duplicate the finally block and wrap it in a must_not_throw
959 region. Second, we can generate code like
960
961 try {
962 finally_block;
963 } catch {
964 if (fintmp == eh_edge)
965 protect_cleanup_actions;
966 }
967
968 where "fintmp" is the temporary used in the switch statement generation
969 alternative considered below. For the nonce, we always choose the first
970 option.
971
972 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
973
974 static void
975 honor_protect_cleanup_actions (struct leh_state *outer_state,
976 struct leh_state *this_state,
977 struct leh_tf_state *tf)
978 {
979 tree protect_cleanup_actions;
980 gimple_stmt_iterator gsi;
981 bool finally_may_fallthru;
982 gimple_seq finally;
983 gimple x;
984
985 /* First check for nothing to do. */
986 if (lang_protect_cleanup_actions == NULL)
987 return;
988 protect_cleanup_actions = lang_protect_cleanup_actions ();
989 if (protect_cleanup_actions == NULL)
990 return;
991
992 finally = gimple_try_cleanup (tf->top_p);
993 finally_may_fallthru = gimple_seq_may_fallthru (finally);
994
995 /* Duplicate the FINALLY block. Only need to do this for try-finally,
996 and not for cleanups. */
997 if (this_state)
998 finally = lower_try_finally_dup_block (finally, outer_state);
999
1000 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1001 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1002 to be in an enclosing scope, but needs to be implemented at this level
1003 to avoid a nesting violation (see wrap_temporary_cleanups in
1004 cp/decl.c). Since it's logically at an outer level, we should call
1005 terminate before we get to it, so strip it away before adding the
1006 MUST_NOT_THROW filter. */
1007 gsi = gsi_start (finally);
1008 x = gsi_stmt (gsi);
1009 if (gimple_code (x) == GIMPLE_TRY
1010 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1011 && gimple_try_catch_is_cleanup (x))
1012 {
1013 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1014 gsi_remove (&gsi, false);
1015 }
1016
1017 /* Wrap the block with protect_cleanup_actions as the action. */
1018 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1019 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1020 GIMPLE_TRY_CATCH);
1021 finally = lower_eh_must_not_throw (outer_state, x);
1022
1023 /* Drop all of this into the exception sequence. */
1024 emit_post_landing_pad (&eh_seq, tf->region);
1025 gimple_seq_add_seq (&eh_seq, finally);
1026 if (finally_may_fallthru)
1027 emit_resx (&eh_seq, tf->region);
1028
1029 /* Having now been handled, EH isn't to be considered with
1030 the rest of the outgoing edges. */
1031 tf->may_throw = false;
1032 }
1033
1034 /* A subroutine of lower_try_finally. We have determined that there is
1035 no fallthru edge out of the finally block. This means that there is
1036 no outgoing edge corresponding to any incoming edge. Restructure the
1037 try_finally node for this special case. */
1038
1039 static void
1040 lower_try_finally_nofallthru (struct leh_state *state,
1041 struct leh_tf_state *tf)
1042 {
1043 tree lab, return_val;
1044 gimple x;
1045 gimple_seq finally;
1046 struct goto_queue_node *q, *qe;
1047
1048 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1049
1050 /* We expect that tf->top_p is a GIMPLE_TRY. */
1051 finally = gimple_try_cleanup (tf->top_p);
1052 tf->top_p_seq = gimple_try_eval (tf->top_p);
1053
1054 x = gimple_build_label (lab);
1055 gimple_seq_add_stmt (&tf->top_p_seq, x);
1056
1057 return_val = NULL;
1058 q = tf->goto_queue;
1059 qe = q + tf->goto_queue_active;
1060 for (; q < qe; ++q)
1061 if (q->index < 0)
1062 do_return_redirection (q, lab, NULL, &return_val);
1063 else
1064 do_goto_redirection (q, lab, NULL, tf);
1065
1066 replace_goto_queue (tf);
1067
1068 lower_eh_constructs_1 (state, finally);
1069 gimple_seq_add_seq (&tf->top_p_seq, finally);
1070
1071 if (tf->may_throw)
1072 {
1073 emit_post_landing_pad (&eh_seq, tf->region);
1074
1075 x = gimple_build_goto (lab);
1076 gimple_seq_add_stmt (&eh_seq, x);
1077 }
1078 }
1079
1080 /* A subroutine of lower_try_finally. We have determined that there is
1081 exactly one destination of the finally block. Restructure the
1082 try_finally node for this special case. */
1083
1084 static void
1085 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1086 {
1087 struct goto_queue_node *q, *qe;
1088 gimple x;
1089 gimple_seq finally;
1090 tree finally_label;
1091 location_t loc = gimple_location (tf->try_finally_expr);
1092
1093 finally = gimple_try_cleanup (tf->top_p);
1094 tf->top_p_seq = gimple_try_eval (tf->top_p);
1095
1096 lower_eh_constructs_1 (state, finally);
1097
1098 if (tf->may_throw)
1099 {
1100 /* Only reachable via the exception edge. Add the given label to
1101 the head of the FINALLY block. Append a RESX at the end. */
1102 emit_post_landing_pad (&eh_seq, tf->region);
1103 gimple_seq_add_seq (&eh_seq, finally);
1104 emit_resx (&eh_seq, tf->region);
1105 return;
1106 }
1107
1108 if (tf->may_fallthru)
1109 {
1110 /* Only reachable via the fallthru edge. Do nothing but let
1111 the two blocks run together; we'll fall out the bottom. */
1112 gimple_seq_add_seq (&tf->top_p_seq, finally);
1113 return;
1114 }
1115
1116 finally_label = create_artificial_label (loc);
1117 x = gimple_build_label (finally_label);
1118 gimple_seq_add_stmt (&tf->top_p_seq, x);
1119
1120 gimple_seq_add_seq (&tf->top_p_seq, finally);
1121
1122 q = tf->goto_queue;
1123 qe = q + tf->goto_queue_active;
1124
1125 if (tf->may_return)
1126 {
1127 /* Reachable by return expressions only. Redirect them. */
1128 tree return_val = NULL;
1129 for (; q < qe; ++q)
1130 do_return_redirection (q, finally_label, NULL, &return_val);
1131 replace_goto_queue (tf);
1132 }
1133 else
1134 {
1135 /* Reachable by goto expressions only. Redirect them. */
1136 for (; q < qe; ++q)
1137 do_goto_redirection (q, finally_label, NULL, tf);
1138 replace_goto_queue (tf);
1139
1140 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1141 {
1142 /* Reachable by goto to fallthru label only. Redirect it
1143 to the new label (already created, sadly), and do not
1144 emit the final branch out, or the fallthru label. */
1145 tf->fallthru_label = NULL;
1146 return;
1147 }
1148 }
1149
1150 /* Place the original return/goto to the original destination
1151 immediately after the finally block. */
1152 x = tf->goto_queue[0].cont_stmt;
1153 gimple_seq_add_stmt (&tf->top_p_seq, x);
1154 maybe_record_in_goto_queue (state, x);
1155 }
1156
1157 /* A subroutine of lower_try_finally. There are multiple edges incoming
1158 and outgoing from the finally block. Implement this by duplicating the
1159 finally block for every destination. */
1160
1161 static void
1162 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1163 {
1164 gimple_seq finally;
1165 gimple_seq new_stmt;
1166 gimple_seq seq;
1167 gimple x;
1168 tree tmp;
1169 location_t tf_loc = gimple_location (tf->try_finally_expr);
1170
1171 finally = gimple_try_cleanup (tf->top_p);
1172 tf->top_p_seq = gimple_try_eval (tf->top_p);
1173 new_stmt = NULL;
1174
1175 if (tf->may_fallthru)
1176 {
1177 seq = lower_try_finally_dup_block (finally, state);
1178 lower_eh_constructs_1 (state, seq);
1179 gimple_seq_add_seq (&new_stmt, seq);
1180
1181 tmp = lower_try_finally_fallthru_label (tf);
1182 x = gimple_build_goto (tmp);
1183 gimple_seq_add_stmt (&new_stmt, x);
1184 }
1185
1186 if (tf->may_throw)
1187 {
1188 seq = lower_try_finally_dup_block (finally, state);
1189 lower_eh_constructs_1 (state, seq);
1190
1191 emit_post_landing_pad (&eh_seq, tf->region);
1192 gimple_seq_add_seq (&eh_seq, seq);
1193 emit_resx (&eh_seq, tf->region);
1194 }
1195
1196 if (tf->goto_queue)
1197 {
1198 struct goto_queue_node *q, *qe;
1199 tree return_val = NULL;
1200 int return_index, index;
1201 struct labels_s
1202 {
1203 struct goto_queue_node *q;
1204 tree label;
1205 } *labels;
1206
1207 return_index = VEC_length (tree, tf->dest_array);
1208 labels = XCNEWVEC (struct labels_s, return_index + 1);
1209
1210 q = tf->goto_queue;
1211 qe = q + tf->goto_queue_active;
1212 for (; q < qe; q++)
1213 {
1214 index = q->index < 0 ? return_index : q->index;
1215
1216 if (!labels[index].q)
1217 labels[index].q = q;
1218 }
1219
1220 for (index = 0; index < return_index + 1; index++)
1221 {
1222 tree lab;
1223
1224 q = labels[index].q;
1225 if (! q)
1226 continue;
1227
1228 lab = labels[index].label
1229 = create_artificial_label (tf_loc);
1230
1231 if (index == return_index)
1232 do_return_redirection (q, lab, NULL, &return_val);
1233 else
1234 do_goto_redirection (q, lab, NULL, tf);
1235
1236 x = gimple_build_label (lab);
1237 gimple_seq_add_stmt (&new_stmt, x);
1238
1239 seq = lower_try_finally_dup_block (finally, state);
1240 lower_eh_constructs_1 (state, seq);
1241 gimple_seq_add_seq (&new_stmt, seq);
1242
1243 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1244 maybe_record_in_goto_queue (state, q->cont_stmt);
1245 }
1246
1247 for (q = tf->goto_queue; q < qe; q++)
1248 {
1249 tree lab;
1250
1251 index = q->index < 0 ? return_index : q->index;
1252
1253 if (labels[index].q == q)
1254 continue;
1255
1256 lab = labels[index].label;
1257
1258 if (index == return_index)
1259 do_return_redirection (q, lab, NULL, &return_val);
1260 else
1261 do_goto_redirection (q, lab, NULL, tf);
1262 }
1263
1264 replace_goto_queue (tf);
1265 free (labels);
1266 }
1267
1268 /* Need to link new stmts after running replace_goto_queue due
1269 to not wanting to process the same goto stmts twice. */
1270 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1271 }
1272
1273 /* A subroutine of lower_try_finally. There are multiple edges incoming
1274 and outgoing from the finally block. Implement this by instrumenting
1275 each incoming edge and creating a switch statement at the end of the
1276 finally block that branches to the appropriate destination. */
1277
1278 static void
1279 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1280 {
1281 struct goto_queue_node *q, *qe;
1282 tree return_val = NULL;
1283 tree finally_tmp, finally_label;
1284 int return_index, eh_index, fallthru_index;
1285 int nlabels, ndests, j, last_case_index;
1286 tree last_case;
1287 VEC (tree,heap) *case_label_vec;
1288 gimple_seq switch_body;
1289 gimple x;
1290 tree tmp;
1291 gimple switch_stmt;
1292 gimple_seq finally;
1293 struct pointer_map_t *cont_map = NULL;
1294 /* The location of the TRY_FINALLY stmt. */
1295 location_t tf_loc = gimple_location (tf->try_finally_expr);
1296 /* The location of the finally block. */
1297 location_t finally_loc;
1298
1299 switch_body = gimple_seq_alloc ();
1300
1301 /* Mash the TRY block to the head of the chain. */
1302 finally = gimple_try_cleanup (tf->top_p);
1303 tf->top_p_seq = gimple_try_eval (tf->top_p);
1304
1305 /* The location of the finally is either the last stmt in the finally
1306 block or the location of the TRY_FINALLY itself. */
1307 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1308 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1309 : tf_loc;
1310
1311 /* Lower the finally block itself. */
1312 lower_eh_constructs_1 (state, finally);
1313
1314 /* Prepare for switch statement generation. */
1315 nlabels = VEC_length (tree, tf->dest_array);
1316 return_index = nlabels;
1317 eh_index = return_index + tf->may_return;
1318 fallthru_index = eh_index + tf->may_throw;
1319 ndests = fallthru_index + tf->may_fallthru;
1320
1321 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1322 finally_label = create_artificial_label (finally_loc);
1323
1324 /* We use VEC_quick_push on case_label_vec throughout this function,
1325 since we know the size in advance and allocate precisely as muce
1326 space as needed. */
1327 case_label_vec = VEC_alloc (tree, heap, ndests);
1328 last_case = NULL;
1329 last_case_index = 0;
1330
1331 /* Begin inserting code for getting to the finally block. Things
1332 are done in this order to correspond to the sequence the code is
1333 layed out. */
1334
1335 if (tf->may_fallthru)
1336 {
1337 x = gimple_build_assign (finally_tmp,
1338 build_int_cst (NULL, fallthru_index));
1339 gimple_seq_add_stmt (&tf->top_p_seq, x);
1340
1341 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1342 build_int_cst (NULL, fallthru_index),
1343 NULL, create_artificial_label (tf_loc));
1344 VEC_quick_push (tree, case_label_vec, last_case);
1345 last_case_index++;
1346
1347 x = gimple_build_label (CASE_LABEL (last_case));
1348 gimple_seq_add_stmt (&switch_body, x);
1349
1350 tmp = lower_try_finally_fallthru_label (tf);
1351 x = gimple_build_goto (tmp);
1352 gimple_seq_add_stmt (&switch_body, x);
1353 }
1354
1355 if (tf->may_throw)
1356 {
1357 emit_post_landing_pad (&eh_seq, tf->region);
1358
1359 x = gimple_build_assign (finally_tmp,
1360 build_int_cst (NULL, eh_index));
1361 gimple_seq_add_stmt (&eh_seq, x);
1362
1363 x = gimple_build_goto (finally_label);
1364 gimple_seq_add_stmt (&eh_seq, x);
1365
1366 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1367 build_int_cst (NULL, eh_index),
1368 NULL, create_artificial_label (tf_loc));
1369 VEC_quick_push (tree, case_label_vec, last_case);
1370 last_case_index++;
1371
1372 x = gimple_build_label (CASE_LABEL (last_case));
1373 gimple_seq_add_stmt (&eh_seq, x);
1374 emit_resx (&eh_seq, tf->region);
1375 }
1376
1377 x = gimple_build_label (finally_label);
1378 gimple_seq_add_stmt (&tf->top_p_seq, x);
1379
1380 gimple_seq_add_seq (&tf->top_p_seq, finally);
1381
1382 /* Redirect each incoming goto edge. */
1383 q = tf->goto_queue;
1384 qe = q + tf->goto_queue_active;
1385 j = last_case_index + tf->may_return;
1386 /* Prepare the assignments to finally_tmp that are executed upon the
1387 entrance through a particular edge. */
1388 for (; q < qe; ++q)
1389 {
1390 gimple_seq mod;
1391 int switch_id;
1392 unsigned int case_index;
1393
1394 mod = gimple_seq_alloc ();
1395
1396 if (q->index < 0)
1397 {
1398 x = gimple_build_assign (finally_tmp,
1399 build_int_cst (NULL, return_index));
1400 gimple_seq_add_stmt (&mod, x);
1401 do_return_redirection (q, finally_label, mod, &return_val);
1402 switch_id = return_index;
1403 }
1404 else
1405 {
1406 x = gimple_build_assign (finally_tmp,
1407 build_int_cst (NULL, q->index));
1408 gimple_seq_add_stmt (&mod, x);
1409 do_goto_redirection (q, finally_label, mod, tf);
1410 switch_id = q->index;
1411 }
1412
1413 case_index = j + q->index;
1414 if (VEC_length (tree, case_label_vec) <= case_index
1415 || !VEC_index (tree, case_label_vec, case_index))
1416 {
1417 tree case_lab;
1418 void **slot;
1419 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1420 build_int_cst (NULL, switch_id),
1421 NULL, NULL);
1422 /* We store the cont_stmt in the pointer map, so that we can recover
1423 it in the loop below. We don't create the new label while
1424 walking the goto_queue because pointers don't offer a stable
1425 order. */
1426 if (!cont_map)
1427 cont_map = pointer_map_create ();
1428 slot = pointer_map_insert (cont_map, case_lab);
1429 *slot = q->cont_stmt;
1430 VEC_quick_push (tree, case_label_vec, case_lab);
1431 }
1432 }
1433 for (j = last_case_index; j < last_case_index + nlabels; j++)
1434 {
1435 tree label;
1436 gimple cont_stmt;
1437 void **slot;
1438
1439 last_case = VEC_index (tree, case_label_vec, j);
1440
1441 gcc_assert (last_case);
1442 gcc_assert (cont_map);
1443
1444 slot = pointer_map_contains (cont_map, last_case);
1445 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1446 placeholder, it does not store an actual label, yet. */
1447 gcc_assert (slot);
1448 cont_stmt = *(gimple *) slot;
1449
1450 label = create_artificial_label (tf_loc);
1451 CASE_LABEL (last_case) = label;
1452
1453 x = gimple_build_label (label);
1454 gimple_seq_add_stmt (&switch_body, x);
1455 gimple_seq_add_stmt (&switch_body, cont_stmt);
1456 maybe_record_in_goto_queue (state, cont_stmt);
1457 }
1458 if (cont_map)
1459 pointer_map_destroy (cont_map);
1460
1461 replace_goto_queue (tf);
1462
1463 /* Make sure that the last case is the default label, as one is required.
1464 Then sort the labels, which is also required in GIMPLE. */
1465 CASE_LOW (last_case) = NULL;
1466 sort_case_labels (case_label_vec);
1467
1468 /* Build the switch statement, setting last_case to be the default
1469 label. */
1470 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1471 case_label_vec);
1472 gimple_set_location (switch_stmt, finally_loc);
1473
1474 /* Need to link SWITCH_STMT after running replace_goto_queue
1475 due to not wanting to process the same goto stmts twice. */
1476 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1477 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1478 }
1479
1480 /* Decide whether or not we are going to duplicate the finally block.
1481 There are several considerations.
1482
1483 First, if this is Java, then the finally block contains code
1484 written by the user. It has line numbers associated with it,
1485 so duplicating the block means it's difficult to set a breakpoint.
1486 Since controlling code generation via -g is verboten, we simply
1487 never duplicate code without optimization.
1488
1489 Second, we'd like to prevent egregious code growth. One way to
1490 do this is to estimate the size of the finally block, multiply
1491 that by the number of copies we'd need to make, and compare against
1492 the estimate of the size of the switch machinery we'd have to add. */
1493
1494 static bool
1495 decide_copy_try_finally (int ndests, gimple_seq finally)
1496 {
1497 int f_estimate, sw_estimate;
1498
1499 if (!optimize)
1500 return false;
1501
1502 /* Finally estimate N times, plus N gotos. */
1503 f_estimate = count_insns_seq (finally, &eni_size_weights);
1504 f_estimate = (f_estimate + 1) * ndests;
1505
1506 /* Switch statement (cost 10), N variable assignments, N gotos. */
1507 sw_estimate = 10 + 2 * ndests;
1508
1509 /* Optimize for size clearly wants our best guess. */
1510 if (optimize_function_for_size_p (cfun))
1511 return f_estimate < sw_estimate;
1512
1513 /* ??? These numbers are completely made up so far. */
1514 if (optimize > 1)
1515 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1516 else
1517 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1518 }
1519
1520
1521 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1522 to a sequence of labels and blocks, plus the exception region trees
1523 that record all the magic. This is complicated by the need to
1524 arrange for the FINALLY block to be executed on all exits. */
1525
1526 static gimple_seq
1527 lower_try_finally (struct leh_state *state, gimple tp)
1528 {
1529 struct leh_tf_state this_tf;
1530 struct leh_state this_state;
1531 int ndests;
1532 gimple_seq old_eh_seq;
1533
1534 /* Process the try block. */
1535
1536 memset (&this_tf, 0, sizeof (this_tf));
1537 this_tf.try_finally_expr = tp;
1538 this_tf.top_p = tp;
1539 this_tf.outer = state;
1540 if (using_eh_for_cleanups_p)
1541 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1542 else
1543 this_tf.region = NULL;
1544
1545 this_state.cur_region = this_tf.region;
1546 this_state.ehp_region = state->ehp_region;
1547 this_state.tf = &this_tf;
1548
1549 old_eh_seq = eh_seq;
1550 eh_seq = NULL;
1551
1552 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1553
1554 /* Determine if the try block is escaped through the bottom. */
1555 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1556
1557 /* Determine if any exceptions are possible within the try block. */
1558 if (using_eh_for_cleanups_p)
1559 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1560 if (this_tf.may_throw)
1561 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1562
1563 /* Determine how many edges (still) reach the finally block. Or rather,
1564 how many destinations are reached by the finally block. Use this to
1565 determine how we process the finally block itself. */
1566
1567 ndests = VEC_length (tree, this_tf.dest_array);
1568 ndests += this_tf.may_fallthru;
1569 ndests += this_tf.may_return;
1570 ndests += this_tf.may_throw;
1571
1572 /* If the FINALLY block is not reachable, dike it out. */
1573 if (ndests == 0)
1574 {
1575 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1576 gimple_try_set_cleanup (tp, NULL);
1577 }
1578 /* If the finally block doesn't fall through, then any destination
1579 we might try to impose there isn't reached either. There may be
1580 some minor amount of cleanup and redirection still needed. */
1581 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1582 lower_try_finally_nofallthru (state, &this_tf);
1583
1584 /* We can easily special-case redirection to a single destination. */
1585 else if (ndests == 1)
1586 lower_try_finally_onedest (state, &this_tf);
1587 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1588 lower_try_finally_copy (state, &this_tf);
1589 else
1590 lower_try_finally_switch (state, &this_tf);
1591
1592 /* If someone requested we add a label at the end of the transformed
1593 block, do so. */
1594 if (this_tf.fallthru_label)
1595 {
1596 /* This must be reached only if ndests == 0. */
1597 gimple x = gimple_build_label (this_tf.fallthru_label);
1598 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1599 }
1600
1601 VEC_free (tree, heap, this_tf.dest_array);
1602 if (this_tf.goto_queue)
1603 free (this_tf.goto_queue);
1604 if (this_tf.goto_queue_map)
1605 pointer_map_destroy (this_tf.goto_queue_map);
1606
1607 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1608 If there was no old eh_seq, then the append is trivially already done. */
1609 if (old_eh_seq)
1610 {
1611 if (eh_seq == NULL)
1612 eh_seq = old_eh_seq;
1613 else
1614 {
1615 gimple_seq new_eh_seq = eh_seq;
1616 eh_seq = old_eh_seq;
1617 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1618 }
1619 }
1620
1621 return this_tf.top_p_seq;
1622 }
1623
1624 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1625 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1626 exception region trees that records all the magic. */
1627
1628 static gimple_seq
1629 lower_catch (struct leh_state *state, gimple tp)
1630 {
1631 eh_region try_region = NULL;
1632 struct leh_state this_state = *state;
1633 gimple_stmt_iterator gsi;
1634 tree out_label;
1635 gimple_seq new_seq;
1636 gimple x;
1637 location_t try_catch_loc = gimple_location (tp);
1638
1639 if (flag_exceptions)
1640 {
1641 try_region = gen_eh_region_try (state->cur_region);
1642 this_state.cur_region = try_region;
1643 }
1644
1645 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1646
1647 if (!eh_region_may_contain_throw (try_region))
1648 return gimple_try_eval (tp);
1649
1650 new_seq = NULL;
1651 emit_eh_dispatch (&new_seq, try_region);
1652 emit_resx (&new_seq, try_region);
1653
1654 this_state.cur_region = state->cur_region;
1655 this_state.ehp_region = try_region;
1656
1657 out_label = NULL;
1658 for (gsi = gsi_start (gimple_try_cleanup (tp));
1659 !gsi_end_p (gsi);
1660 gsi_next (&gsi))
1661 {
1662 eh_catch c;
1663 gimple gcatch;
1664 gimple_seq handler;
1665
1666 gcatch = gsi_stmt (gsi);
1667 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1668
1669 handler = gimple_catch_handler (gcatch);
1670 lower_eh_constructs_1 (&this_state, handler);
1671
1672 c->label = create_artificial_label (UNKNOWN_LOCATION);
1673 x = gimple_build_label (c->label);
1674 gimple_seq_add_stmt (&new_seq, x);
1675
1676 gimple_seq_add_seq (&new_seq, handler);
1677
1678 if (gimple_seq_may_fallthru (new_seq))
1679 {
1680 if (!out_label)
1681 out_label = create_artificial_label (try_catch_loc);
1682
1683 x = gimple_build_goto (out_label);
1684 gimple_seq_add_stmt (&new_seq, x);
1685 }
1686 if (!c->type_list)
1687 break;
1688 }
1689
1690 gimple_try_set_cleanup (tp, new_seq);
1691
1692 return frob_into_branch_around (tp, try_region, out_label);
1693 }
1694
1695 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1696 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1697 region trees that record all the magic. */
1698
1699 static gimple_seq
1700 lower_eh_filter (struct leh_state *state, gimple tp)
1701 {
1702 struct leh_state this_state = *state;
1703 eh_region this_region = NULL;
1704 gimple inner, x;
1705 gimple_seq new_seq;
1706
1707 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1708
1709 if (flag_exceptions)
1710 {
1711 this_region = gen_eh_region_allowed (state->cur_region,
1712 gimple_eh_filter_types (inner));
1713 this_state.cur_region = this_region;
1714 }
1715
1716 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1717
1718 if (!eh_region_may_contain_throw (this_region))
1719 return gimple_try_eval (tp);
1720
1721 new_seq = NULL;
1722 this_state.cur_region = state->cur_region;
1723 this_state.ehp_region = this_region;
1724
1725 emit_eh_dispatch (&new_seq, this_region);
1726 emit_resx (&new_seq, this_region);
1727
1728 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1729 x = gimple_build_label (this_region->u.allowed.label);
1730 gimple_seq_add_stmt (&new_seq, x);
1731
1732 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1733 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1734
1735 gimple_try_set_cleanup (tp, new_seq);
1736
1737 return frob_into_branch_around (tp, this_region, NULL);
1738 }
1739
1740 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1741 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1742 plus the exception region trees that record all the magic. */
1743
1744 static gimple_seq
1745 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1746 {
1747 struct leh_state this_state = *state;
1748
1749 if (flag_exceptions)
1750 {
1751 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1752 eh_region this_region;
1753
1754 this_region = gen_eh_region_must_not_throw (state->cur_region);
1755 this_region->u.must_not_throw.failure_decl
1756 = gimple_eh_must_not_throw_fndecl (inner);
1757 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1758
1759 /* In order to get mangling applied to this decl, we must mark it
1760 used now. Otherwise, pass_ipa_free_lang_data won't think it
1761 needs to happen. */
1762 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1763
1764 this_state.cur_region = this_region;
1765 }
1766
1767 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1768
1769 return gimple_try_eval (tp);
1770 }
1771
1772 /* Implement a cleanup expression. This is similar to try-finally,
1773 except that we only execute the cleanup block for exception edges. */
1774
1775 static gimple_seq
1776 lower_cleanup (struct leh_state *state, gimple tp)
1777 {
1778 struct leh_state this_state = *state;
1779 eh_region this_region = NULL;
1780 struct leh_tf_state fake_tf;
1781 gimple_seq result;
1782
1783 if (flag_exceptions)
1784 {
1785 this_region = gen_eh_region_cleanup (state->cur_region);
1786 this_state.cur_region = this_region;
1787 }
1788
1789 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1790
1791 if (!eh_region_may_contain_throw (this_region))
1792 return gimple_try_eval (tp);
1793
1794 /* Build enough of a try-finally state so that we can reuse
1795 honor_protect_cleanup_actions. */
1796 memset (&fake_tf, 0, sizeof (fake_tf));
1797 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1798 fake_tf.outer = state;
1799 fake_tf.region = this_region;
1800 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1801 fake_tf.may_throw = true;
1802
1803 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1804
1805 if (fake_tf.may_throw)
1806 {
1807 /* In this case honor_protect_cleanup_actions had nothing to do,
1808 and we should process this normally. */
1809 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1810 result = frob_into_branch_around (tp, this_region,
1811 fake_tf.fallthru_label);
1812 }
1813 else
1814 {
1815 /* In this case honor_protect_cleanup_actions did nearly all of
1816 the work. All we have left is to append the fallthru_label. */
1817
1818 result = gimple_try_eval (tp);
1819 if (fake_tf.fallthru_label)
1820 {
1821 gimple x = gimple_build_label (fake_tf.fallthru_label);
1822 gimple_seq_add_stmt (&result, x);
1823 }
1824 }
1825 return result;
1826 }
1827
1828 /* Main loop for lowering eh constructs. Also moves gsi to the next
1829 statement. */
1830
1831 static void
1832 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1833 {
1834 gimple_seq replace;
1835 gimple x;
1836 gimple stmt = gsi_stmt (*gsi);
1837
1838 switch (gimple_code (stmt))
1839 {
1840 case GIMPLE_CALL:
1841 {
1842 tree fndecl = gimple_call_fndecl (stmt);
1843 tree rhs, lhs;
1844
1845 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1846 switch (DECL_FUNCTION_CODE (fndecl))
1847 {
1848 case BUILT_IN_EH_POINTER:
1849 /* The front end may have generated a call to
1850 __builtin_eh_pointer (0) within a catch region. Replace
1851 this zero argument with the current catch region number. */
1852 if (state->ehp_region)
1853 {
1854 tree nr = build_int_cst (NULL, state->ehp_region->index);
1855 gimple_call_set_arg (stmt, 0, nr);
1856 }
1857 else
1858 {
1859 /* The user has dome something silly. Remove it. */
1860 rhs = build_int_cst (ptr_type_node, 0);
1861 goto do_replace;
1862 }
1863 break;
1864
1865 case BUILT_IN_EH_FILTER:
1866 /* ??? This should never appear, but since it's a builtin it
1867 is accessible to abuse by users. Just remove it and
1868 replace the use with the arbitrary value zero. */
1869 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1870 do_replace:
1871 lhs = gimple_call_lhs (stmt);
1872 x = gimple_build_assign (lhs, rhs);
1873 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1874 /* FALLTHRU */
1875
1876 case BUILT_IN_EH_COPY_VALUES:
1877 /* Likewise this should not appear. Remove it. */
1878 gsi_remove (gsi, true);
1879 return;
1880
1881 default:
1882 break;
1883 }
1884 }
1885 /* FALLTHRU */
1886
1887 case GIMPLE_ASSIGN:
1888 /* If the stmt can throw use a new temporary for the assignment
1889 to a LHS. This makes sure the old value of the LHS is
1890 available on the EH edge. Only do so for statements that
1891 potentially fall thru (no noreturn calls e.g.), otherwise
1892 this new assignment might create fake fallthru regions. */
1893 if (stmt_could_throw_p (stmt)
1894 && gimple_has_lhs (stmt)
1895 && gimple_stmt_may_fallthru (stmt)
1896 && !tree_could_throw_p (gimple_get_lhs (stmt))
1897 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1898 {
1899 tree lhs = gimple_get_lhs (stmt);
1900 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1901 gimple s = gimple_build_assign (lhs, tmp);
1902 gimple_set_location (s, gimple_location (stmt));
1903 gimple_set_block (s, gimple_block (stmt));
1904 gimple_set_lhs (stmt, tmp);
1905 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1906 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1907 DECL_GIMPLE_REG_P (tmp) = 1;
1908 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1909 }
1910 /* Look for things that can throw exceptions, and record them. */
1911 if (state->cur_region && stmt_could_throw_p (stmt))
1912 {
1913 record_stmt_eh_region (state->cur_region, stmt);
1914 note_eh_region_may_contain_throw (state->cur_region);
1915 }
1916 break;
1917
1918 case GIMPLE_COND:
1919 case GIMPLE_GOTO:
1920 case GIMPLE_RETURN:
1921 maybe_record_in_goto_queue (state, stmt);
1922 break;
1923
1924 case GIMPLE_SWITCH:
1925 verify_norecord_switch_expr (state, stmt);
1926 break;
1927
1928 case GIMPLE_TRY:
1929 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1930 replace = lower_try_finally (state, stmt);
1931 else
1932 {
1933 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1934 if (!x)
1935 {
1936 replace = gimple_try_eval (stmt);
1937 lower_eh_constructs_1 (state, replace);
1938 }
1939 else
1940 switch (gimple_code (x))
1941 {
1942 case GIMPLE_CATCH:
1943 replace = lower_catch (state, stmt);
1944 break;
1945 case GIMPLE_EH_FILTER:
1946 replace = lower_eh_filter (state, stmt);
1947 break;
1948 case GIMPLE_EH_MUST_NOT_THROW:
1949 replace = lower_eh_must_not_throw (state, stmt);
1950 break;
1951 default:
1952 replace = lower_cleanup (state, stmt);
1953 break;
1954 }
1955 }
1956
1957 /* Remove the old stmt and insert the transformed sequence
1958 instead. */
1959 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1960 gsi_remove (gsi, true);
1961
1962 /* Return since we don't want gsi_next () */
1963 return;
1964
1965 default:
1966 /* A type, a decl, or some kind of statement that we're not
1967 interested in. Don't walk them. */
1968 break;
1969 }
1970
1971 gsi_next (gsi);
1972 }
1973
1974 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1975
1976 static void
1977 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1978 {
1979 gimple_stmt_iterator gsi;
1980 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1981 lower_eh_constructs_2 (state, &gsi);
1982 }
1983
1984 static unsigned int
1985 lower_eh_constructs (void)
1986 {
1987 struct leh_state null_state;
1988 gimple_seq bodyp;
1989
1990 bodyp = gimple_body (current_function_decl);
1991 if (bodyp == NULL)
1992 return 0;
1993
1994 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
1995 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
1996 memset (&null_state, 0, sizeof (null_state));
1997
1998 collect_finally_tree_1 (bodyp, NULL);
1999 lower_eh_constructs_1 (&null_state, bodyp);
2000
2001 /* We assume there's a return statement, or something, at the end of
2002 the function, and thus ploping the EH sequence afterward won't
2003 change anything. */
2004 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2005 gimple_seq_add_seq (&bodyp, eh_seq);
2006
2007 /* We assume that since BODYP already existed, adding EH_SEQ to it
2008 didn't change its value, and we don't have to re-set the function. */
2009 gcc_assert (bodyp == gimple_body (current_function_decl));
2010
2011 htab_delete (finally_tree);
2012 BITMAP_FREE (eh_region_may_contain_throw_map);
2013 eh_seq = NULL;
2014
2015 /* If this function needs a language specific EH personality routine
2016 and the frontend didn't already set one do so now. */
2017 if (function_needs_eh_personality (cfun) == eh_personality_lang
2018 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2019 DECL_FUNCTION_PERSONALITY (current_function_decl)
2020 = lang_hooks.eh_personality ();
2021
2022 return 0;
2023 }
2024
2025 struct gimple_opt_pass pass_lower_eh =
2026 {
2027 {
2028 GIMPLE_PASS,
2029 "eh", /* name */
2030 NULL, /* gate */
2031 lower_eh_constructs, /* execute */
2032 NULL, /* sub */
2033 NULL, /* next */
2034 0, /* static_pass_number */
2035 TV_TREE_EH, /* tv_id */
2036 PROP_gimple_lcf, /* properties_required */
2037 PROP_gimple_leh, /* properties_provided */
2038 0, /* properties_destroyed */
2039 0, /* todo_flags_start */
2040 TODO_dump_func /* todo_flags_finish */
2041 }
2042 };
2043 \f
2044 /* Create the multiple edges from an EH_DISPATCH statement to all of
2045 the possible handlers for its EH region. Return true if there's
2046 no fallthru edge; false if there is. */
2047
2048 bool
2049 make_eh_dispatch_edges (gimple stmt)
2050 {
2051 eh_region r;
2052 eh_catch c;
2053 basic_block src, dst;
2054
2055 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2056 src = gimple_bb (stmt);
2057
2058 switch (r->type)
2059 {
2060 case ERT_TRY:
2061 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2062 {
2063 dst = label_to_block (c->label);
2064 make_edge (src, dst, 0);
2065
2066 /* A catch-all handler doesn't have a fallthru. */
2067 if (c->type_list == NULL)
2068 return false;
2069 }
2070 break;
2071
2072 case ERT_ALLOWED_EXCEPTIONS:
2073 dst = label_to_block (r->u.allowed.label);
2074 make_edge (src, dst, 0);
2075 break;
2076
2077 default:
2078 gcc_unreachable ();
2079 }
2080
2081 return true;
2082 }
2083
2084 /* Create the single EH edge from STMT to its nearest landing pad,
2085 if there is such a landing pad within the current function. */
2086
2087 void
2088 make_eh_edges (gimple stmt)
2089 {
2090 basic_block src, dst;
2091 eh_landing_pad lp;
2092 int lp_nr;
2093
2094 lp_nr = lookup_stmt_eh_lp (stmt);
2095 if (lp_nr <= 0)
2096 return;
2097
2098 lp = get_eh_landing_pad_from_number (lp_nr);
2099 gcc_assert (lp != NULL);
2100
2101 src = gimple_bb (stmt);
2102 dst = label_to_block (lp->post_landing_pad);
2103 make_edge (src, dst, EDGE_EH);
2104 }
2105
2106 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2107 do not actually perform the final edge redirection.
2108
2109 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2110 we intend to change the destination EH region as well; this means
2111 EH_LANDING_PAD_NR must already be set on the destination block label.
2112 If false, we're being called from generic cfg manipulation code and we
2113 should preserve our place within the region tree. */
2114
2115 static void
2116 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2117 {
2118 eh_landing_pad old_lp, new_lp;
2119 basic_block old_bb;
2120 gimple throw_stmt;
2121 int old_lp_nr, new_lp_nr;
2122 tree old_label, new_label;
2123 edge_iterator ei;
2124 edge e;
2125
2126 old_bb = edge_in->dest;
2127 old_label = gimple_block_label (old_bb);
2128 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2129 gcc_assert (old_lp_nr > 0);
2130 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2131
2132 throw_stmt = last_stmt (edge_in->src);
2133 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2134
2135 new_label = gimple_block_label (new_bb);
2136
2137 /* Look for an existing region that might be using NEW_BB already. */
2138 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2139 if (new_lp_nr)
2140 {
2141 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2142 gcc_assert (new_lp);
2143
2144 /* Unless CHANGE_REGION is true, the new and old landing pad
2145 had better be associated with the same EH region. */
2146 gcc_assert (change_region || new_lp->region == old_lp->region);
2147 }
2148 else
2149 {
2150 new_lp = NULL;
2151 gcc_assert (!change_region);
2152 }
2153
2154 /* Notice when we redirect the last EH edge away from OLD_BB. */
2155 FOR_EACH_EDGE (e, ei, old_bb->preds)
2156 if (e != edge_in && (e->flags & EDGE_EH))
2157 break;
2158
2159 if (new_lp)
2160 {
2161 /* NEW_LP already exists. If there are still edges into OLD_LP,
2162 there's nothing to do with the EH tree. If there are no more
2163 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2164 If CHANGE_REGION is true, then our caller is expecting to remove
2165 the landing pad. */
2166 if (e == NULL && !change_region)
2167 remove_eh_landing_pad (old_lp);
2168 }
2169 else
2170 {
2171 /* No correct landing pad exists. If there are no more edges
2172 into OLD_LP, then we can simply re-use the existing landing pad.
2173 Otherwise, we have to create a new landing pad. */
2174 if (e == NULL)
2175 {
2176 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2177 new_lp = old_lp;
2178 }
2179 else
2180 new_lp = gen_eh_landing_pad (old_lp->region);
2181 new_lp->post_landing_pad = new_label;
2182 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2183 }
2184
2185 /* Maybe move the throwing statement to the new region. */
2186 if (old_lp != new_lp)
2187 {
2188 remove_stmt_from_eh_lp (throw_stmt);
2189 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2190 }
2191 }
2192
2193 /* Redirect EH edge E to NEW_BB. */
2194
2195 edge
2196 redirect_eh_edge (edge edge_in, basic_block new_bb)
2197 {
2198 redirect_eh_edge_1 (edge_in, new_bb, false);
2199 return ssa_redirect_edge (edge_in, new_bb);
2200 }
2201
2202 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2203 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2204 The actual edge update will happen in the caller. */
2205
2206 void
2207 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2208 {
2209 tree new_lab = gimple_block_label (new_bb);
2210 bool any_changed = false;
2211 basic_block old_bb;
2212 eh_region r;
2213 eh_catch c;
2214
2215 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2216 switch (r->type)
2217 {
2218 case ERT_TRY:
2219 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2220 {
2221 old_bb = label_to_block (c->label);
2222 if (old_bb == e->dest)
2223 {
2224 c->label = new_lab;
2225 any_changed = true;
2226 }
2227 }
2228 break;
2229
2230 case ERT_ALLOWED_EXCEPTIONS:
2231 old_bb = label_to_block (r->u.allowed.label);
2232 gcc_assert (old_bb == e->dest);
2233 r->u.allowed.label = new_lab;
2234 any_changed = true;
2235 break;
2236
2237 default:
2238 gcc_unreachable ();
2239 }
2240
2241 gcc_assert (any_changed);
2242 }
2243 \f
2244 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2245
2246 bool
2247 operation_could_trap_helper_p (enum tree_code op,
2248 bool fp_operation,
2249 bool honor_trapv,
2250 bool honor_nans,
2251 bool honor_snans,
2252 tree divisor,
2253 bool *handled)
2254 {
2255 *handled = true;
2256 switch (op)
2257 {
2258 case TRUNC_DIV_EXPR:
2259 case CEIL_DIV_EXPR:
2260 case FLOOR_DIV_EXPR:
2261 case ROUND_DIV_EXPR:
2262 case EXACT_DIV_EXPR:
2263 case CEIL_MOD_EXPR:
2264 case FLOOR_MOD_EXPR:
2265 case ROUND_MOD_EXPR:
2266 case TRUNC_MOD_EXPR:
2267 case RDIV_EXPR:
2268 if (honor_snans || honor_trapv)
2269 return true;
2270 if (fp_operation)
2271 return flag_trapping_math;
2272 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2273 return true;
2274 return false;
2275
2276 case LT_EXPR:
2277 case LE_EXPR:
2278 case GT_EXPR:
2279 case GE_EXPR:
2280 case LTGT_EXPR:
2281 /* Some floating point comparisons may trap. */
2282 return honor_nans;
2283
2284 case EQ_EXPR:
2285 case NE_EXPR:
2286 case UNORDERED_EXPR:
2287 case ORDERED_EXPR:
2288 case UNLT_EXPR:
2289 case UNLE_EXPR:
2290 case UNGT_EXPR:
2291 case UNGE_EXPR:
2292 case UNEQ_EXPR:
2293 return honor_snans;
2294
2295 case CONVERT_EXPR:
2296 case FIX_TRUNC_EXPR:
2297 /* Conversion of floating point might trap. */
2298 return honor_nans;
2299
2300 case NEGATE_EXPR:
2301 case ABS_EXPR:
2302 case CONJ_EXPR:
2303 /* These operations don't trap with floating point. */
2304 if (honor_trapv)
2305 return true;
2306 return false;
2307
2308 case PLUS_EXPR:
2309 case MINUS_EXPR:
2310 case MULT_EXPR:
2311 /* Any floating arithmetic may trap. */
2312 if (fp_operation && flag_trapping_math)
2313 return true;
2314 if (honor_trapv)
2315 return true;
2316 return false;
2317
2318 default:
2319 /* Any floating arithmetic may trap. */
2320 if (fp_operation && flag_trapping_math)
2321 return true;
2322
2323 *handled = false;
2324 return false;
2325 }
2326 }
2327
2328 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2329 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2330 type operands that may trap. If OP is a division operator, DIVISOR contains
2331 the value of the divisor. */
2332
2333 bool
2334 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2335 tree divisor)
2336 {
2337 bool honor_nans = (fp_operation && flag_trapping_math
2338 && !flag_finite_math_only);
2339 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2340 bool handled;
2341
2342 if (TREE_CODE_CLASS (op) != tcc_comparison
2343 && TREE_CODE_CLASS (op) != tcc_unary
2344 && TREE_CODE_CLASS (op) != tcc_binary)
2345 return false;
2346
2347 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2348 honor_nans, honor_snans, divisor,
2349 &handled);
2350 }
2351
2352 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2353 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2354 This routine expects only GIMPLE lhs or rhs input. */
2355
2356 bool
2357 tree_could_trap_p (tree expr)
2358 {
2359 enum tree_code code;
2360 bool fp_operation = false;
2361 bool honor_trapv = false;
2362 tree t, base, div = NULL_TREE;
2363
2364 if (!expr)
2365 return false;
2366
2367 code = TREE_CODE (expr);
2368 t = TREE_TYPE (expr);
2369
2370 if (t)
2371 {
2372 if (COMPARISON_CLASS_P (expr))
2373 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2374 else
2375 fp_operation = FLOAT_TYPE_P (t);
2376 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2377 }
2378
2379 if (TREE_CODE_CLASS (code) == tcc_binary)
2380 div = TREE_OPERAND (expr, 1);
2381 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2382 return true;
2383
2384 restart:
2385 switch (code)
2386 {
2387 case TARGET_MEM_REF:
2388 /* For TARGET_MEM_REFs use the information based on the original
2389 reference. */
2390 expr = TMR_ORIGINAL (expr);
2391 code = TREE_CODE (expr);
2392 goto restart;
2393
2394 case COMPONENT_REF:
2395 case REALPART_EXPR:
2396 case IMAGPART_EXPR:
2397 case BIT_FIELD_REF:
2398 case VIEW_CONVERT_EXPR:
2399 case WITH_SIZE_EXPR:
2400 expr = TREE_OPERAND (expr, 0);
2401 code = TREE_CODE (expr);
2402 goto restart;
2403
2404 case ARRAY_RANGE_REF:
2405 base = TREE_OPERAND (expr, 0);
2406 if (tree_could_trap_p (base))
2407 return true;
2408 if (TREE_THIS_NOTRAP (expr))
2409 return false;
2410 return !range_in_array_bounds_p (expr);
2411
2412 case ARRAY_REF:
2413 base = TREE_OPERAND (expr, 0);
2414 if (tree_could_trap_p (base))
2415 return true;
2416 if (TREE_THIS_NOTRAP (expr))
2417 return false;
2418 return !in_array_bounds_p (expr);
2419
2420 case INDIRECT_REF:
2421 case ALIGN_INDIRECT_REF:
2422 case MISALIGNED_INDIRECT_REF:
2423 return !TREE_THIS_NOTRAP (expr);
2424
2425 case ASM_EXPR:
2426 return TREE_THIS_VOLATILE (expr);
2427
2428 case CALL_EXPR:
2429 t = get_callee_fndecl (expr);
2430 /* Assume that calls to weak functions may trap. */
2431 if (!t || !DECL_P (t) || DECL_WEAK (t))
2432 return true;
2433 return false;
2434
2435 default:
2436 return false;
2437 }
2438 }
2439
2440
2441 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2442 an assignment or a conditional) may throw. */
2443
2444 static bool
2445 stmt_could_throw_1_p (gimple stmt)
2446 {
2447 enum tree_code code = gimple_expr_code (stmt);
2448 bool honor_nans = false;
2449 bool honor_snans = false;
2450 bool fp_operation = false;
2451 bool honor_trapv = false;
2452 tree t;
2453 size_t i;
2454 bool handled, ret;
2455
2456 if (TREE_CODE_CLASS (code) == tcc_comparison
2457 || TREE_CODE_CLASS (code) == tcc_unary
2458 || TREE_CODE_CLASS (code) == tcc_binary)
2459 {
2460 t = gimple_expr_type (stmt);
2461 fp_operation = FLOAT_TYPE_P (t);
2462 if (fp_operation)
2463 {
2464 honor_nans = flag_trapping_math && !flag_finite_math_only;
2465 honor_snans = flag_signaling_nans != 0;
2466 }
2467 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2468 honor_trapv = true;
2469 }
2470
2471 /* Check if the main expression may trap. */
2472 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2473 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2474 honor_nans, honor_snans, t,
2475 &handled);
2476 if (handled)
2477 return ret;
2478
2479 /* If the expression does not trap, see if any of the individual operands may
2480 trap. */
2481 for (i = 0; i < gimple_num_ops (stmt); i++)
2482 if (tree_could_trap_p (gimple_op (stmt, i)))
2483 return true;
2484
2485 return false;
2486 }
2487
2488
2489 /* Return true if statement STMT could throw an exception. */
2490
2491 bool
2492 stmt_could_throw_p (gimple stmt)
2493 {
2494 if (!flag_exceptions)
2495 return false;
2496
2497 /* The only statements that can throw an exception are assignments,
2498 conditionals, calls, resx, and asms. */
2499 switch (gimple_code (stmt))
2500 {
2501 case GIMPLE_RESX:
2502 return true;
2503
2504 case GIMPLE_CALL:
2505 return !gimple_call_nothrow_p (stmt);
2506
2507 case GIMPLE_ASSIGN:
2508 case GIMPLE_COND:
2509 if (!flag_non_call_exceptions)
2510 return false;
2511 return stmt_could_throw_1_p (stmt);
2512
2513 case GIMPLE_ASM:
2514 if (!flag_non_call_exceptions)
2515 return false;
2516 return gimple_asm_volatile_p (stmt);
2517
2518 default:
2519 return false;
2520 }
2521 }
2522
2523
2524 /* Return true if expression T could throw an exception. */
2525
2526 bool
2527 tree_could_throw_p (tree t)
2528 {
2529 if (!flag_exceptions)
2530 return false;
2531 if (TREE_CODE (t) == MODIFY_EXPR)
2532 {
2533 if (flag_non_call_exceptions
2534 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2535 return true;
2536 t = TREE_OPERAND (t, 1);
2537 }
2538
2539 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2540 t = TREE_OPERAND (t, 0);
2541 if (TREE_CODE (t) == CALL_EXPR)
2542 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2543 if (flag_non_call_exceptions)
2544 return tree_could_trap_p (t);
2545 return false;
2546 }
2547
2548 /* Return true if STMT can throw an exception that is not caught within
2549 the current function (CFUN). */
2550
2551 bool
2552 stmt_can_throw_external (gimple stmt)
2553 {
2554 int lp_nr;
2555
2556 if (!stmt_could_throw_p (stmt))
2557 return false;
2558
2559 lp_nr = lookup_stmt_eh_lp (stmt);
2560 return lp_nr == 0;
2561 }
2562
2563 /* Return true if STMT can throw an exception that is caught within
2564 the current function (CFUN). */
2565
2566 bool
2567 stmt_can_throw_internal (gimple stmt)
2568 {
2569 int lp_nr;
2570
2571 if (!stmt_could_throw_p (stmt))
2572 return false;
2573
2574 lp_nr = lookup_stmt_eh_lp (stmt);
2575 return lp_nr > 0;
2576 }
2577
2578 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2579 remove any entry it might have from the EH table. Return true if
2580 any change was made. */
2581
2582 bool
2583 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2584 {
2585 if (stmt_could_throw_p (stmt))
2586 return false;
2587 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2588 }
2589
2590 /* Likewise, but always use the current function. */
2591
2592 bool
2593 maybe_clean_eh_stmt (gimple stmt)
2594 {
2595 return maybe_clean_eh_stmt_fn (cfun, stmt);
2596 }
2597
2598 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2599 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2600 in the table if it should be in there. Return TRUE if a replacement was
2601 done that my require an EH edge purge. */
2602
2603 bool
2604 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2605 {
2606 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2607
2608 if (lp_nr != 0)
2609 {
2610 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2611
2612 if (new_stmt == old_stmt && new_stmt_could_throw)
2613 return false;
2614
2615 remove_stmt_from_eh_lp (old_stmt);
2616 if (new_stmt_could_throw)
2617 {
2618 add_stmt_to_eh_lp (new_stmt, lp_nr);
2619 return false;
2620 }
2621 else
2622 return true;
2623 }
2624
2625 return false;
2626 }
2627
2628 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2629 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2630 operand is the return value of duplicate_eh_regions. */
2631
2632 bool
2633 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2634 struct function *old_fun, gimple old_stmt,
2635 struct pointer_map_t *map, int default_lp_nr)
2636 {
2637 int old_lp_nr, new_lp_nr;
2638 void **slot;
2639
2640 if (!stmt_could_throw_p (new_stmt))
2641 return false;
2642
2643 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2644 if (old_lp_nr == 0)
2645 {
2646 if (default_lp_nr == 0)
2647 return false;
2648 new_lp_nr = default_lp_nr;
2649 }
2650 else if (old_lp_nr > 0)
2651 {
2652 eh_landing_pad old_lp, new_lp;
2653
2654 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2655 slot = pointer_map_contains (map, old_lp);
2656 new_lp = (eh_landing_pad) *slot;
2657 new_lp_nr = new_lp->index;
2658 }
2659 else
2660 {
2661 eh_region old_r, new_r;
2662
2663 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2664 slot = pointer_map_contains (map, old_r);
2665 new_r = (eh_region) *slot;
2666 new_lp_nr = -new_r->index;
2667 }
2668
2669 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2670 return true;
2671 }
2672
2673 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2674 and thus no remapping is required. */
2675
2676 bool
2677 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2678 {
2679 int lp_nr;
2680
2681 if (!stmt_could_throw_p (new_stmt))
2682 return false;
2683
2684 lp_nr = lookup_stmt_eh_lp (old_stmt);
2685 if (lp_nr == 0)
2686 return false;
2687
2688 add_stmt_to_eh_lp (new_stmt, lp_nr);
2689 return true;
2690 }
2691 \f
2692 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2693 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2694 this only handles handlers consisting of a single call, as that's the
2695 important case for C++: a destructor call for a particular object showing
2696 up in multiple handlers. */
2697
2698 static bool
2699 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2700 {
2701 gimple_stmt_iterator gsi;
2702 gimple ones, twos;
2703 unsigned int ai;
2704
2705 gsi = gsi_start (oneh);
2706 if (!gsi_one_before_end_p (gsi))
2707 return false;
2708 ones = gsi_stmt (gsi);
2709
2710 gsi = gsi_start (twoh);
2711 if (!gsi_one_before_end_p (gsi))
2712 return false;
2713 twos = gsi_stmt (gsi);
2714
2715 if (!is_gimple_call (ones)
2716 || !is_gimple_call (twos)
2717 || gimple_call_lhs (ones)
2718 || gimple_call_lhs (twos)
2719 || gimple_call_chain (ones)
2720 || gimple_call_chain (twos)
2721 || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2722 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2723 return false;
2724
2725 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2726 if (!operand_equal_p (gimple_call_arg (ones, ai),
2727 gimple_call_arg (twos, ai), 0))
2728 return false;
2729
2730 return true;
2731 }
2732
2733 /* Optimize
2734 try { A() } finally { try { ~B() } catch { ~A() } }
2735 try { ... } finally { ~A() }
2736 into
2737 try { A() } catch { ~B() }
2738 try { ~B() ... } finally { ~A() }
2739
2740 This occurs frequently in C++, where A is a local variable and B is a
2741 temporary used in the initializer for A. */
2742
2743 static void
2744 optimize_double_finally (gimple one, gimple two)
2745 {
2746 gimple oneh;
2747 gimple_stmt_iterator gsi;
2748
2749 gsi = gsi_start (gimple_try_cleanup (one));
2750 if (!gsi_one_before_end_p (gsi))
2751 return;
2752
2753 oneh = gsi_stmt (gsi);
2754 if (gimple_code (oneh) != GIMPLE_TRY
2755 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2756 return;
2757
2758 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2759 {
2760 gimple_seq seq = gimple_try_eval (oneh);
2761
2762 gimple_try_set_cleanup (one, seq);
2763 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2764 seq = copy_gimple_seq_and_replace_locals (seq);
2765 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2766 gimple_try_set_eval (two, seq);
2767 }
2768 }
2769
2770 /* Perform EH refactoring optimizations that are simpler to do when code
2771 flow has been lowered but EH structures haven't. */
2772
2773 static void
2774 refactor_eh_r (gimple_seq seq)
2775 {
2776 gimple_stmt_iterator gsi;
2777 gimple one, two;
2778
2779 one = NULL;
2780 two = NULL;
2781 gsi = gsi_start (seq);
2782 while (1)
2783 {
2784 one = two;
2785 if (gsi_end_p (gsi))
2786 two = NULL;
2787 else
2788 two = gsi_stmt (gsi);
2789 if (one
2790 && two
2791 && gimple_code (one) == GIMPLE_TRY
2792 && gimple_code (two) == GIMPLE_TRY
2793 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2794 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2795 optimize_double_finally (one, two);
2796 if (one)
2797 switch (gimple_code (one))
2798 {
2799 case GIMPLE_TRY:
2800 refactor_eh_r (gimple_try_eval (one));
2801 refactor_eh_r (gimple_try_cleanup (one));
2802 break;
2803 case GIMPLE_CATCH:
2804 refactor_eh_r (gimple_catch_handler (one));
2805 break;
2806 case GIMPLE_EH_FILTER:
2807 refactor_eh_r (gimple_eh_filter_failure (one));
2808 break;
2809 default:
2810 break;
2811 }
2812 if (two)
2813 gsi_next (&gsi);
2814 else
2815 break;
2816 }
2817 }
2818
2819 static unsigned
2820 refactor_eh (void)
2821 {
2822 refactor_eh_r (gimple_body (current_function_decl));
2823 return 0;
2824 }
2825
2826 static bool
2827 gate_refactor_eh (void)
2828 {
2829 return flag_exceptions != 0;
2830 }
2831
2832 struct gimple_opt_pass pass_refactor_eh =
2833 {
2834 {
2835 GIMPLE_PASS,
2836 "ehopt", /* name */
2837 gate_refactor_eh, /* gate */
2838 refactor_eh, /* execute */
2839 NULL, /* sub */
2840 NULL, /* next */
2841 0, /* static_pass_number */
2842 TV_TREE_EH, /* tv_id */
2843 PROP_gimple_lcf, /* properties_required */
2844 0, /* properties_provided */
2845 0, /* properties_destroyed */
2846 0, /* todo_flags_start */
2847 TODO_dump_func /* todo_flags_finish */
2848 }
2849 };
2850 \f
2851 /* At the end of gimple optimization, we can lower RESX. */
2852
2853 static bool
2854 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2855 {
2856 int lp_nr;
2857 eh_region src_r, dst_r;
2858 gimple_stmt_iterator gsi;
2859 gimple x;
2860 tree fn, src_nr;
2861 bool ret = false;
2862
2863 lp_nr = lookup_stmt_eh_lp (stmt);
2864 if (lp_nr != 0)
2865 dst_r = get_eh_region_from_lp_number (lp_nr);
2866 else
2867 dst_r = NULL;
2868
2869 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2870 gsi = gsi_last_bb (bb);
2871
2872 if (src_r == NULL)
2873 {
2874 /* We can wind up with no source region when pass_cleanup_eh shows
2875 that there are no entries into an eh region and deletes it, but
2876 then the block that contains the resx isn't removed. This can
2877 happen without optimization when the switch statement created by
2878 lower_try_finally_switch isn't simplified to remove the eh case.
2879
2880 Resolve this by expanding the resx node to an abort. */
2881
2882 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2883 x = gimple_build_call (fn, 0);
2884 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2885
2886 while (EDGE_COUNT (bb->succs) > 0)
2887 remove_edge (EDGE_SUCC (bb, 0));
2888 }
2889 else if (dst_r)
2890 {
2891 /* When we have a destination region, we resolve this by copying
2892 the excptr and filter values into place, and changing the edge
2893 to immediately after the landing pad. */
2894 edge e;
2895
2896 if (lp_nr < 0)
2897 {
2898 basic_block new_bb;
2899 void **slot;
2900 tree lab;
2901
2902 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2903 the failure decl into a new block, if needed. */
2904 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2905
2906 slot = pointer_map_contains (mnt_map, dst_r);
2907 if (slot == NULL)
2908 {
2909 gimple_stmt_iterator gsi2;
2910
2911 new_bb = create_empty_bb (bb);
2912 lab = gimple_block_label (new_bb);
2913 gsi2 = gsi_start_bb (new_bb);
2914
2915 fn = dst_r->u.must_not_throw.failure_decl;
2916 x = gimple_build_call (fn, 0);
2917 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2918 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2919
2920 slot = pointer_map_insert (mnt_map, dst_r);
2921 *slot = lab;
2922 }
2923 else
2924 {
2925 lab = (tree) *slot;
2926 new_bb = label_to_block (lab);
2927 }
2928
2929 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2930 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2931 e->count = bb->count;
2932 e->probability = REG_BR_PROB_BASE;
2933 }
2934 else
2935 {
2936 edge_iterator ei;
2937 tree dst_nr = build_int_cst (NULL, dst_r->index);
2938
2939 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2940 src_nr = build_int_cst (NULL, src_r->index);
2941 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2942 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2943
2944 /* Update the flags for the outgoing edge. */
2945 e = single_succ_edge (bb);
2946 gcc_assert (e->flags & EDGE_EH);
2947 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2948
2949 /* If there are no more EH users of the landing pad, delete it. */
2950 FOR_EACH_EDGE (e, ei, e->dest->preds)
2951 if (e->flags & EDGE_EH)
2952 break;
2953 if (e == NULL)
2954 {
2955 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2956 remove_eh_landing_pad (lp);
2957 }
2958 }
2959
2960 ret = true;
2961 }
2962 else
2963 {
2964 tree var;
2965
2966 /* When we don't have a destination region, this exception escapes
2967 up the call chain. We resolve this by generating a call to the
2968 _Unwind_Resume library function. */
2969
2970 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2971 with no arguments for C++ and Java. Check for that. */
2972 if (src_r->use_cxa_end_cleanup)
2973 {
2974 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2975 x = gimple_build_call (fn, 0);
2976 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2977 }
2978 else
2979 {
2980 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
2981 src_nr = build_int_cst (NULL, src_r->index);
2982 x = gimple_build_call (fn, 1, src_nr);
2983 var = create_tmp_var (ptr_type_node, NULL);
2984 var = make_ssa_name (var, x);
2985 gimple_call_set_lhs (x, var);
2986 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2987
2988 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
2989 x = gimple_build_call (fn, 1, var);
2990 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2991 }
2992
2993 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2994 }
2995
2996 gsi_remove (&gsi, true);
2997
2998 return ret;
2999 }
3000
3001 static unsigned
3002 execute_lower_resx (void)
3003 {
3004 basic_block bb;
3005 struct pointer_map_t *mnt_map;
3006 bool dominance_invalidated = false;
3007 bool any_rewritten = false;
3008
3009 mnt_map = pointer_map_create ();
3010
3011 FOR_EACH_BB (bb)
3012 {
3013 gimple last = last_stmt (bb);
3014 if (last && is_gimple_resx (last))
3015 {
3016 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3017 any_rewritten = true;
3018 }
3019 }
3020
3021 pointer_map_destroy (mnt_map);
3022
3023 if (dominance_invalidated)
3024 {
3025 free_dominance_info (CDI_DOMINATORS);
3026 free_dominance_info (CDI_POST_DOMINATORS);
3027 }
3028
3029 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3030 }
3031
3032 static bool
3033 gate_lower_resx (void)
3034 {
3035 return flag_exceptions != 0;
3036 }
3037
3038 struct gimple_opt_pass pass_lower_resx =
3039 {
3040 {
3041 GIMPLE_PASS,
3042 "resx", /* name */
3043 gate_lower_resx, /* gate */
3044 execute_lower_resx, /* execute */
3045 NULL, /* sub */
3046 NULL, /* next */
3047 0, /* static_pass_number */
3048 TV_TREE_EH, /* tv_id */
3049 PROP_gimple_lcf, /* properties_required */
3050 0, /* properties_provided */
3051 0, /* properties_destroyed */
3052 0, /* todo_flags_start */
3053 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3054 }
3055 };
3056
3057
3058 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3059 we have found some duplicate labels and removed some edges. */
3060
3061 static bool
3062 lower_eh_dispatch (basic_block src, gimple stmt)
3063 {
3064 gimple_stmt_iterator gsi;
3065 int region_nr;
3066 eh_region r;
3067 tree filter, fn;
3068 gimple x;
3069 bool redirected = false;
3070
3071 region_nr = gimple_eh_dispatch_region (stmt);
3072 r = get_eh_region_from_number (region_nr);
3073
3074 gsi = gsi_last_bb (src);
3075
3076 switch (r->type)
3077 {
3078 case ERT_TRY:
3079 {
3080 VEC (tree, heap) *labels = NULL;
3081 tree default_label = NULL;
3082 eh_catch c;
3083 edge_iterator ei;
3084 edge e;
3085 struct pointer_set_t *seen_values = pointer_set_create ();
3086
3087 /* Collect the labels for a switch. Zero the post_landing_pad
3088 field becase we'll no longer have anything keeping these labels
3089 in existance and the optimizer will be free to merge these
3090 blocks at will. */
3091 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3092 {
3093 tree tp_node, flt_node, lab = c->label;
3094 bool have_label = false;
3095
3096 c->label = NULL;
3097 tp_node = c->type_list;
3098 flt_node = c->filter_list;
3099
3100 if (tp_node == NULL)
3101 {
3102 default_label = lab;
3103 break;
3104 }
3105 do
3106 {
3107 /* Filter out duplicate labels that arise when this handler
3108 is shadowed by an earlier one. When no labels are
3109 attached to the handler anymore, we remove
3110 the corresponding edge and then we delete unreachable
3111 blocks at the end of this pass. */
3112 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3113 {
3114 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3115 TREE_VALUE (flt_node), NULL, lab);
3116 VEC_safe_push (tree, heap, labels, t);
3117 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3118 have_label = true;
3119 }
3120
3121 tp_node = TREE_CHAIN (tp_node);
3122 flt_node = TREE_CHAIN (flt_node);
3123 }
3124 while (tp_node);
3125 if (! have_label)
3126 {
3127 remove_edge (find_edge (src, label_to_block (lab)));
3128 redirected = true;
3129 }
3130 }
3131
3132 /* Clean up the edge flags. */
3133 FOR_EACH_EDGE (e, ei, src->succs)
3134 {
3135 if (e->flags & EDGE_FALLTHRU)
3136 {
3137 /* If there was no catch-all, use the fallthru edge. */
3138 if (default_label == NULL)
3139 default_label = gimple_block_label (e->dest);
3140 e->flags &= ~EDGE_FALLTHRU;
3141 }
3142 }
3143 gcc_assert (default_label != NULL);
3144
3145 /* Don't generate a switch if there's only a default case.
3146 This is common in the form of try { A; } catch (...) { B; }. */
3147 if (labels == NULL)
3148 {
3149 e = single_succ_edge (src);
3150 e->flags |= EDGE_FALLTHRU;
3151 }
3152 else
3153 {
3154 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3155 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3156 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3157 filter = make_ssa_name (filter, x);
3158 gimple_call_set_lhs (x, filter);
3159 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3160
3161 /* Turn the default label into a default case. */
3162 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3163 NULL, NULL, default_label);
3164 sort_case_labels (labels);
3165
3166 x = gimple_build_switch_vec (filter, default_label, labels);
3167 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3168
3169 VEC_free (tree, heap, labels);
3170 }
3171 pointer_set_destroy (seen_values);
3172 }
3173 break;
3174
3175 case ERT_ALLOWED_EXCEPTIONS:
3176 {
3177 edge b_e = BRANCH_EDGE (src);
3178 edge f_e = FALLTHRU_EDGE (src);
3179
3180 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3181 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3182 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3183 filter = make_ssa_name (filter, x);
3184 gimple_call_set_lhs (x, filter);
3185 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3186
3187 r->u.allowed.label = NULL;
3188 x = gimple_build_cond (EQ_EXPR, filter,
3189 build_int_cst (TREE_TYPE (filter),
3190 r->u.allowed.filter),
3191 NULL_TREE, NULL_TREE);
3192 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3193
3194 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3195 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3196 }
3197 break;
3198
3199 default:
3200 gcc_unreachable ();
3201 }
3202
3203 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3204 gsi_remove (&gsi, true);
3205 return redirected;
3206 }
3207
3208 static unsigned
3209 execute_lower_eh_dispatch (void)
3210 {
3211 basic_block bb;
3212 bool any_rewritten = false;
3213 bool redirected = false;
3214
3215 assign_filter_values ();
3216
3217 FOR_EACH_BB (bb)
3218 {
3219 gimple last = last_stmt (bb);
3220 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3221 {
3222 redirected |= lower_eh_dispatch (bb, last);
3223 any_rewritten = true;
3224 }
3225 }
3226
3227 if (redirected)
3228 delete_unreachable_blocks ();
3229 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3230 }
3231
3232 static bool
3233 gate_lower_eh_dispatch (void)
3234 {
3235 return cfun->eh->region_tree != NULL;
3236 }
3237
3238 struct gimple_opt_pass pass_lower_eh_dispatch =
3239 {
3240 {
3241 GIMPLE_PASS,
3242 "ehdisp", /* name */
3243 gate_lower_eh_dispatch, /* gate */
3244 execute_lower_eh_dispatch, /* execute */
3245 NULL, /* sub */
3246 NULL, /* next */
3247 0, /* static_pass_number */
3248 TV_TREE_EH, /* tv_id */
3249 PROP_gimple_lcf, /* properties_required */
3250 0, /* properties_provided */
3251 0, /* properties_destroyed */
3252 0, /* todo_flags_start */
3253 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3254 }
3255 };
3256 \f
3257 /* Walk statements, see what regions are really referenced and remove
3258 those that are unused. */
3259
3260 static void
3261 remove_unreachable_handlers (void)
3262 {
3263 sbitmap r_reachable, lp_reachable;
3264 eh_region region;
3265 eh_landing_pad lp;
3266 basic_block bb;
3267 int lp_nr, r_nr;
3268
3269 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3270 lp_reachable
3271 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3272 sbitmap_zero (r_reachable);
3273 sbitmap_zero (lp_reachable);
3274
3275 FOR_EACH_BB (bb)
3276 {
3277 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3278
3279 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3280 {
3281 gimple stmt = gsi_stmt (gsi);
3282 lp_nr = lookup_stmt_eh_lp (stmt);
3283
3284 /* Negative LP numbers are MUST_NOT_THROW regions which
3285 are not considered BB enders. */
3286 if (lp_nr < 0)
3287 SET_BIT (r_reachable, -lp_nr);
3288
3289 /* Positive LP numbers are real landing pads, are are BB enders. */
3290 else if (lp_nr > 0)
3291 {
3292 gcc_assert (gsi_one_before_end_p (gsi));
3293 region = get_eh_region_from_lp_number (lp_nr);
3294 SET_BIT (r_reachable, region->index);
3295 SET_BIT (lp_reachable, lp_nr);
3296 }
3297 }
3298 }
3299
3300 if (dump_file)
3301 {
3302 fprintf (dump_file, "Before removal of unreachable regions:\n");
3303 dump_eh_tree (dump_file, cfun);
3304 fprintf (dump_file, "Reachable regions: ");
3305 dump_sbitmap_file (dump_file, r_reachable);
3306 fprintf (dump_file, "Reachable landing pads: ");
3307 dump_sbitmap_file (dump_file, lp_reachable);
3308 }
3309
3310 for (r_nr = 1;
3311 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3312 if (region && !TEST_BIT (r_reachable, r_nr))
3313 {
3314 if (dump_file)
3315 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3316 remove_eh_handler (region);
3317 }
3318
3319 for (lp_nr = 1;
3320 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3321 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3322 {
3323 if (dump_file)
3324 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3325 remove_eh_landing_pad (lp);
3326 }
3327
3328 if (dump_file)
3329 {
3330 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3331 dump_eh_tree (dump_file, cfun);
3332 fprintf (dump_file, "\n\n");
3333 }
3334
3335 sbitmap_free (r_reachable);
3336 sbitmap_free (lp_reachable);
3337
3338 #ifdef ENABLE_CHECKING
3339 verify_eh_tree (cfun);
3340 #endif
3341 }
3342
3343 /* Remove regions that do not have landing pads. This assumes
3344 that remove_unreachable_handlers has already been run, and
3345 that we've just manipulated the landing pads since then. */
3346
3347 static void
3348 remove_unreachable_handlers_no_lp (void)
3349 {
3350 eh_region r;
3351 int i;
3352
3353 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3354 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3355 {
3356 if (dump_file)
3357 fprintf (dump_file, "Removing unreachable region %d\n", i);
3358 remove_eh_handler (r);
3359 }
3360 }
3361
3362 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3363 optimisticaly split all sorts of edges, including EH edges. The
3364 optimization passes in between may not have needed them; if not,
3365 we should undo the split.
3366
3367 Recognize this case by having one EH edge incoming to the BB and
3368 one normal edge outgoing; BB should be empty apart from the
3369 post_landing_pad label.
3370
3371 Note that this is slightly different from the empty handler case
3372 handled by cleanup_empty_eh, in that the actual handler may yet
3373 have actual code but the landing pad has been separated from the
3374 handler. As such, cleanup_empty_eh relies on this transformation
3375 having been done first. */
3376
3377 static bool
3378 unsplit_eh (eh_landing_pad lp)
3379 {
3380 basic_block bb = label_to_block (lp->post_landing_pad);
3381 gimple_stmt_iterator gsi;
3382 edge e_in, e_out;
3383
3384 /* Quickly check the edge counts on BB for singularity. */
3385 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3386 return false;
3387 e_in = EDGE_PRED (bb, 0);
3388 e_out = EDGE_SUCC (bb, 0);
3389
3390 /* Input edge must be EH and output edge must be normal. */
3391 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3392 return false;
3393
3394 /* The block must be empty except for the labels and debug insns. */
3395 gsi = gsi_after_labels (bb);
3396 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3397 gsi_next_nondebug (&gsi);
3398 if (!gsi_end_p (gsi))
3399 return false;
3400
3401 /* The destination block must not already have a landing pad
3402 for a different region. */
3403 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3404 {
3405 gimple stmt = gsi_stmt (gsi);
3406 tree lab;
3407 int lp_nr;
3408
3409 if (gimple_code (stmt) != GIMPLE_LABEL)
3410 break;
3411 lab = gimple_label_label (stmt);
3412 lp_nr = EH_LANDING_PAD_NR (lab);
3413 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3414 return false;
3415 }
3416
3417 /* The new destination block must not already be a destination of
3418 the source block, lest we merge fallthru and eh edges and get
3419 all sorts of confused. */
3420 if (find_edge (e_in->src, e_out->dest))
3421 return false;
3422
3423 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3424 thought this should have been cleaned up by a phicprop pass, but
3425 that doesn't appear to handle virtuals. Propagate by hand. */
3426 if (!gimple_seq_empty_p (phi_nodes (bb)))
3427 {
3428 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3429 {
3430 gimple use_stmt, phi = gsi_stmt (gsi);
3431 tree lhs = gimple_phi_result (phi);
3432 tree rhs = gimple_phi_arg_def (phi, 0);
3433 use_operand_p use_p;
3434 imm_use_iterator iter;
3435
3436 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3437 {
3438 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3439 SET_USE (use_p, rhs);
3440 }
3441
3442 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3443 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3444
3445 remove_phi_node (&gsi, true);
3446 }
3447 }
3448
3449 if (dump_file && (dump_flags & TDF_DETAILS))
3450 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3451 lp->index, e_out->dest->index);
3452
3453 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3454 a successor edge, humor it. But do the real CFG change with the
3455 predecessor of E_OUT in order to preserve the ordering of arguments
3456 to the PHI nodes in E_OUT->DEST. */
3457 redirect_eh_edge_1 (e_in, e_out->dest, false);
3458 redirect_edge_pred (e_out, e_in->src);
3459 e_out->flags = e_in->flags;
3460 e_out->probability = e_in->probability;
3461 e_out->count = e_in->count;
3462 remove_edge (e_in);
3463
3464 return true;
3465 }
3466
3467 /* Examine each landing pad block and see if it matches unsplit_eh. */
3468
3469 static bool
3470 unsplit_all_eh (void)
3471 {
3472 bool changed = false;
3473 eh_landing_pad lp;
3474 int i;
3475
3476 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3477 if (lp)
3478 changed |= unsplit_eh (lp);
3479
3480 return changed;
3481 }
3482
3483 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3484 to OLD_BB to NEW_BB; return true on success, false on failure.
3485
3486 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3487 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3488 Virtual PHIs may be deleted and marked for renaming. */
3489
3490 static bool
3491 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3492 edge old_bb_out, bool change_region)
3493 {
3494 gimple_stmt_iterator ngsi, ogsi;
3495 edge_iterator ei;
3496 edge e;
3497 bitmap rename_virts;
3498 bitmap ophi_handled;
3499
3500 FOR_EACH_EDGE (e, ei, old_bb->preds)
3501 redirect_edge_var_map_clear (e);
3502
3503 ophi_handled = BITMAP_ALLOC (NULL);
3504 rename_virts = BITMAP_ALLOC (NULL);
3505
3506 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3507 for the edges we're going to move. */
3508 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3509 {
3510 gimple ophi, nphi = gsi_stmt (ngsi);
3511 tree nresult, nop;
3512
3513 nresult = gimple_phi_result (nphi);
3514 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3515
3516 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3517 the source ssa_name. */
3518 ophi = NULL;
3519 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3520 {
3521 ophi = gsi_stmt (ogsi);
3522 if (gimple_phi_result (ophi) == nop)
3523 break;
3524 ophi = NULL;
3525 }
3526
3527 /* If we did find the corresponding PHI, copy those inputs. */
3528 if (ophi)
3529 {
3530 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3531 FOR_EACH_EDGE (e, ei, old_bb->preds)
3532 {
3533 location_t oloc;
3534 tree oop;
3535
3536 if ((e->flags & EDGE_EH) == 0)
3537 continue;
3538 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3539 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3540 redirect_edge_var_map_add (e, nresult, oop, oloc);
3541 }
3542 }
3543 /* If we didn't find the PHI, but it's a VOP, remember to rename
3544 it later, assuming all other tests succeed. */
3545 else if (!is_gimple_reg (nresult))
3546 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3547 /* If we didn't find the PHI, and it's a real variable, we know
3548 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3549 variable is unchanged from input to the block and we can simply
3550 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3551 else
3552 {
3553 location_t nloc
3554 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3555 FOR_EACH_EDGE (e, ei, old_bb->preds)
3556 redirect_edge_var_map_add (e, nresult, nop, nloc);
3557 }
3558 }
3559
3560 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3561 we don't know what values from the other edges into NEW_BB to use. */
3562 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3563 {
3564 gimple ophi = gsi_stmt (ogsi);
3565 tree oresult = gimple_phi_result (ophi);
3566 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3567 goto fail;
3568 }
3569
3570 /* At this point we know that the merge will succeed. Remove the PHI
3571 nodes for the virtuals that we want to rename. */
3572 if (!bitmap_empty_p (rename_virts))
3573 {
3574 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3575 {
3576 gimple nphi = gsi_stmt (ngsi);
3577 tree nresult = gimple_phi_result (nphi);
3578 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3579 {
3580 mark_virtual_phi_result_for_renaming (nphi);
3581 remove_phi_node (&ngsi, true);
3582 }
3583 else
3584 gsi_next (&ngsi);
3585 }
3586 }
3587
3588 /* Finally, move the edges and update the PHIs. */
3589 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3590 if (e->flags & EDGE_EH)
3591 {
3592 redirect_eh_edge_1 (e, new_bb, change_region);
3593 redirect_edge_succ (e, new_bb);
3594 flush_pending_stmts (e);
3595 }
3596 else
3597 ei_next (&ei);
3598
3599 BITMAP_FREE (ophi_handled);
3600 BITMAP_FREE (rename_virts);
3601 return true;
3602
3603 fail:
3604 FOR_EACH_EDGE (e, ei, old_bb->preds)
3605 redirect_edge_var_map_clear (e);
3606 BITMAP_FREE (ophi_handled);
3607 BITMAP_FREE (rename_virts);
3608 return false;
3609 }
3610
3611 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3612 old region to NEW_REGION at BB. */
3613
3614 static void
3615 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3616 eh_landing_pad lp, eh_region new_region)
3617 {
3618 gimple_stmt_iterator gsi;
3619 eh_landing_pad *pp;
3620
3621 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3622 continue;
3623 *pp = lp->next_lp;
3624
3625 lp->region = new_region;
3626 lp->next_lp = new_region->landing_pads;
3627 new_region->landing_pads = lp;
3628
3629 /* Delete the RESX that was matched within the empty handler block. */
3630 gsi = gsi_last_bb (bb);
3631 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3632 gsi_remove (&gsi, true);
3633
3634 /* Clean up E_OUT for the fallthru. */
3635 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3636 e_out->probability = REG_BR_PROB_BASE;
3637 }
3638
3639 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3640 unsplitting than unsplit_eh was prepared to handle, e.g. when
3641 multiple incoming edges and phis are involved. */
3642
3643 static bool
3644 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3645 {
3646 gimple_stmt_iterator gsi;
3647 tree lab;
3648
3649 /* We really ought not have totally lost everything following
3650 a landing pad label. Given that BB is empty, there had better
3651 be a successor. */
3652 gcc_assert (e_out != NULL);
3653
3654 /* The destination block must not already have a landing pad
3655 for a different region. */
3656 lab = NULL;
3657 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3658 {
3659 gimple stmt = gsi_stmt (gsi);
3660 int lp_nr;
3661
3662 if (gimple_code (stmt) != GIMPLE_LABEL)
3663 break;
3664 lab = gimple_label_label (stmt);
3665 lp_nr = EH_LANDING_PAD_NR (lab);
3666 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3667 return false;
3668 }
3669
3670 /* Attempt to move the PHIs into the successor block. */
3671 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3672 {
3673 if (dump_file && (dump_flags & TDF_DETAILS))
3674 fprintf (dump_file,
3675 "Unsplit EH landing pad %d to block %i "
3676 "(via cleanup_empty_eh).\n",
3677 lp->index, e_out->dest->index);
3678 return true;
3679 }
3680
3681 return false;
3682 }
3683
3684 /* Examine the block associated with LP to determine if it's an empty
3685 handler for its EH region. If so, attempt to redirect EH edges to
3686 an outer region. Return true the CFG was updated in any way. This
3687 is similar to jump forwarding, just across EH edges. */
3688
3689 static bool
3690 cleanup_empty_eh (eh_landing_pad lp)
3691 {
3692 basic_block bb = label_to_block (lp->post_landing_pad);
3693 gimple_stmt_iterator gsi;
3694 gimple resx;
3695 eh_region new_region;
3696 edge_iterator ei;
3697 edge e, e_out;
3698 bool has_non_eh_pred;
3699 int new_lp_nr;
3700
3701 /* There can be zero or one edges out of BB. This is the quickest test. */
3702 switch (EDGE_COUNT (bb->succs))
3703 {
3704 case 0:
3705 e_out = NULL;
3706 break;
3707 case 1:
3708 e_out = EDGE_SUCC (bb, 0);
3709 break;
3710 default:
3711 return false;
3712 }
3713 gsi = gsi_after_labels (bb);
3714
3715 /* Make sure to skip debug statements. */
3716 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3717 gsi_next_nondebug (&gsi);
3718
3719 /* If the block is totally empty, look for more unsplitting cases. */
3720 if (gsi_end_p (gsi))
3721 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3722
3723 /* The block should consist only of a single RESX statement. */
3724 resx = gsi_stmt (gsi);
3725 if (!is_gimple_resx (resx))
3726 return false;
3727 gcc_assert (gsi_one_before_end_p (gsi));
3728
3729 /* Determine if there are non-EH edges, or resx edges into the handler. */
3730 has_non_eh_pred = false;
3731 FOR_EACH_EDGE (e, ei, bb->preds)
3732 if (!(e->flags & EDGE_EH))
3733 has_non_eh_pred = true;
3734
3735 /* Find the handler that's outer of the empty handler by looking at
3736 where the RESX instruction was vectored. */
3737 new_lp_nr = lookup_stmt_eh_lp (resx);
3738 new_region = get_eh_region_from_lp_number (new_lp_nr);
3739
3740 /* If there's no destination region within the current function,
3741 redirection is trivial via removing the throwing statements from
3742 the EH region, removing the EH edges, and allowing the block
3743 to go unreachable. */
3744 if (new_region == NULL)
3745 {
3746 gcc_assert (e_out == NULL);
3747 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3748 if (e->flags & EDGE_EH)
3749 {
3750 gimple stmt = last_stmt (e->src);
3751 remove_stmt_from_eh_lp (stmt);
3752 remove_edge (e);
3753 }
3754 else
3755 ei_next (&ei);
3756 goto succeed;
3757 }
3758
3759 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3760 to handle the abort and allow the blocks to go unreachable. */
3761 if (new_region->type == ERT_MUST_NOT_THROW)
3762 {
3763 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3764 if (e->flags & EDGE_EH)
3765 {
3766 gimple stmt = last_stmt (e->src);
3767 remove_stmt_from_eh_lp (stmt);
3768 add_stmt_to_eh_lp (stmt, new_lp_nr);
3769 remove_edge (e);
3770 }
3771 else
3772 ei_next (&ei);
3773 goto succeed;
3774 }
3775
3776 /* Try to redirect the EH edges and merge the PHIs into the destination
3777 landing pad block. If the merge succeeds, we'll already have redirected
3778 all the EH edges. The handler itself will go unreachable if there were
3779 no normal edges. */
3780 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3781 goto succeed;
3782
3783 /* Finally, if all input edges are EH edges, then we can (potentially)
3784 reduce the number of transfers from the runtime by moving the landing
3785 pad from the original region to the new region. This is a win when
3786 we remove the last CLEANUP region along a particular exception
3787 propagation path. Since nothing changes except for the region with
3788 which the landing pad is associated, the PHI nodes do not need to be
3789 adjusted at all. */
3790 if (!has_non_eh_pred)
3791 {
3792 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3793 if (dump_file && (dump_flags & TDF_DETAILS))
3794 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3795 lp->index, new_region->index);
3796
3797 /* ??? The CFG didn't change, but we may have rendered the
3798 old EH region unreachable. Trigger a cleanup there. */
3799 return true;
3800 }
3801
3802 return false;
3803
3804 succeed:
3805 if (dump_file && (dump_flags & TDF_DETAILS))
3806 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3807 remove_eh_landing_pad (lp);
3808 return true;
3809 }
3810
3811 /* Do a post-order traversal of the EH region tree. Examine each
3812 post_landing_pad block and see if we can eliminate it as empty. */
3813
3814 static bool
3815 cleanup_all_empty_eh (void)
3816 {
3817 bool changed = false;
3818 eh_landing_pad lp;
3819 int i;
3820
3821 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3822 if (lp)
3823 changed |= cleanup_empty_eh (lp);
3824
3825 return changed;
3826 }
3827
3828 /* Perform cleanups and lowering of exception handling
3829 1) cleanups regions with handlers doing nothing are optimized out
3830 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3831 3) Info about regions that are containing instructions, and regions
3832 reachable via local EH edges is collected
3833 4) Eh tree is pruned for regions no longer neccesary.
3834
3835 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3836 Unify those that have the same failure decl and locus.
3837 */
3838
3839 static unsigned int
3840 execute_cleanup_eh (void)
3841 {
3842 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3843 looking up unreachable landing pads. */
3844 remove_unreachable_handlers ();
3845
3846 /* Watch out for the region tree vanishing due to all unreachable. */
3847 if (cfun->eh->region_tree && optimize)
3848 {
3849 bool changed = false;
3850
3851 changed |= unsplit_all_eh ();
3852 changed |= cleanup_all_empty_eh ();
3853
3854 if (changed)
3855 {
3856 free_dominance_info (CDI_DOMINATORS);
3857 free_dominance_info (CDI_POST_DOMINATORS);
3858
3859 /* We delayed all basic block deletion, as we may have performed
3860 cleanups on EH edges while non-EH edges were still present. */
3861 delete_unreachable_blocks ();
3862
3863 /* We manipulated the landing pads. Remove any region that no
3864 longer has a landing pad. */
3865 remove_unreachable_handlers_no_lp ();
3866
3867 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3868 }
3869 }
3870
3871 return 0;
3872 }
3873
3874 static bool
3875 gate_cleanup_eh (void)
3876 {
3877 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3878 }
3879
3880 struct gimple_opt_pass pass_cleanup_eh = {
3881 {
3882 GIMPLE_PASS,
3883 "ehcleanup", /* name */
3884 gate_cleanup_eh, /* gate */
3885 execute_cleanup_eh, /* execute */
3886 NULL, /* sub */
3887 NULL, /* next */
3888 0, /* static_pass_number */
3889 TV_TREE_EH, /* tv_id */
3890 PROP_gimple_lcf, /* properties_required */
3891 0, /* properties_provided */
3892 0, /* properties_destroyed */
3893 0, /* todo_flags_start */
3894 TODO_dump_func /* todo_flags_finish */
3895 }
3896 };
3897 \f
3898 /* Verify that BB containing STMT as the last statement, has precisely the
3899 edge that make_eh_edges would create. */
3900
3901 bool
3902 verify_eh_edges (gimple stmt)
3903 {
3904 basic_block bb = gimple_bb (stmt);
3905 eh_landing_pad lp = NULL;
3906 int lp_nr;
3907 edge_iterator ei;
3908 edge e, eh_edge;
3909
3910 lp_nr = lookup_stmt_eh_lp (stmt);
3911 if (lp_nr > 0)
3912 lp = get_eh_landing_pad_from_number (lp_nr);
3913
3914 eh_edge = NULL;
3915 FOR_EACH_EDGE (e, ei, bb->succs)
3916 {
3917 if (e->flags & EDGE_EH)
3918 {
3919 if (eh_edge)
3920 {
3921 error ("BB %i has multiple EH edges", bb->index);
3922 return true;
3923 }
3924 else
3925 eh_edge = e;
3926 }
3927 }
3928
3929 if (lp == NULL)
3930 {
3931 if (eh_edge)
3932 {
3933 error ("BB %i can not throw but has an EH edge", bb->index);
3934 return true;
3935 }
3936 return false;
3937 }
3938
3939 if (!stmt_could_throw_p (stmt))
3940 {
3941 error ("BB %i last statement has incorrectly set lp", bb->index);
3942 return true;
3943 }
3944
3945 if (eh_edge == NULL)
3946 {
3947 error ("BB %i is missing an EH edge", bb->index);
3948 return true;
3949 }
3950
3951 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
3952 {
3953 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
3954 return true;
3955 }
3956
3957 return false;
3958 }
3959
3960 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
3961
3962 bool
3963 verify_eh_dispatch_edge (gimple stmt)
3964 {
3965 eh_region r;
3966 eh_catch c;
3967 basic_block src, dst;
3968 bool want_fallthru = true;
3969 edge_iterator ei;
3970 edge e, fall_edge;
3971
3972 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
3973 src = gimple_bb (stmt);
3974
3975 FOR_EACH_EDGE (e, ei, src->succs)
3976 gcc_assert (e->aux == NULL);
3977
3978 switch (r->type)
3979 {
3980 case ERT_TRY:
3981 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3982 {
3983 dst = label_to_block (c->label);
3984 e = find_edge (src, dst);
3985 if (e == NULL)
3986 {
3987 error ("BB %i is missing an edge", src->index);
3988 return true;
3989 }
3990 e->aux = (void *)e;
3991
3992 /* A catch-all handler doesn't have a fallthru. */
3993 if (c->type_list == NULL)
3994 {
3995 want_fallthru = false;
3996 break;
3997 }
3998 }
3999 break;
4000
4001 case ERT_ALLOWED_EXCEPTIONS:
4002 dst = label_to_block (r->u.allowed.label);
4003 e = find_edge (src, dst);
4004 if (e == NULL)
4005 {
4006 error ("BB %i is missing an edge", src->index);
4007 return true;
4008 }
4009 e->aux = (void *)e;
4010 break;
4011
4012 default:
4013 gcc_unreachable ();
4014 }
4015
4016 fall_edge = NULL;
4017 FOR_EACH_EDGE (e, ei, src->succs)
4018 {
4019 if (e->flags & EDGE_FALLTHRU)
4020 {
4021 if (fall_edge != NULL)
4022 {
4023 error ("BB %i too many fallthru edges", src->index);
4024 return true;
4025 }
4026 fall_edge = e;
4027 }
4028 else if (e->aux)
4029 e->aux = NULL;
4030 else
4031 {
4032 error ("BB %i has incorrect edge", src->index);
4033 return true;
4034 }
4035 }
4036 if ((fall_edge != NULL) ^ want_fallthru)
4037 {
4038 error ("BB %i has incorrect fallthru edge", src->index);
4039 return true;
4040 }
4041
4042 return false;
4043 }