re PR c++/41819 (ICE with try/catch and -fno-exceptions)
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "flags.h"
29 #include "function.h"
30 #include "except.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "tree-inline.h"
34 #include "tree-iterator.h"
35 #include "tree-pass.h"
36 #include "timevar.h"
37 #include "langhooks.h"
38 #include "ggc.h"
39 #include "toplev.h"
40 #include "gimple.h"
41 #include "target.h"
42
43 /* In some instances a tree and a gimple need to be stored in a same table,
44 i.e. in hash tables. This is a structure to do this. */
45 typedef union {tree *tp; tree t; gimple g;} treemple;
46
47 /* Nonzero if we are using EH to handle cleanups. */
48 static int using_eh_for_cleanups_p = 0;
49
50 void
51 using_eh_for_cleanups (void)
52 {
53 using_eh_for_cleanups_p = 1;
54 }
55
56 /* Misc functions used in this file. */
57
58 /* Compare and hash for any structure which begins with a canonical
59 pointer. Assumes all pointers are interchangeable, which is sort
60 of already assumed by gcc elsewhere IIRC. */
61
62 static int
63 struct_ptr_eq (const void *a, const void *b)
64 {
65 const void * const * x = (const void * const *) a;
66 const void * const * y = (const void * const *) b;
67 return *x == *y;
68 }
69
70 static hashval_t
71 struct_ptr_hash (const void *a)
72 {
73 const void * const * x = (const void * const *) a;
74 return (size_t)*x >> 4;
75 }
76
77
78 /* Remember and lookup EH landing pad data for arbitrary statements.
79 Really this means any statement that could_throw_p. We could
80 stuff this information into the stmt_ann data structure, but:
81
82 (1) We absolutely rely on this information being kept until
83 we get to rtl. Once we're done with lowering here, if we lose
84 the information there's no way to recover it!
85
86 (2) There are many more statements that *cannot* throw as
87 compared to those that can. We should be saving some amount
88 of space by only allocating memory for those that can throw. */
89
90 /* Add statement T in function IFUN to landing pad NUM. */
91
92 void
93 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
94 {
95 struct throw_stmt_node *n;
96 void **slot;
97
98 gcc_assert (num != 0);
99
100 n = GGC_NEW (struct throw_stmt_node);
101 n->stmt = t;
102 n->lp_nr = num;
103
104 if (!get_eh_throw_stmt_table (ifun))
105 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
106 struct_ptr_eq,
107 ggc_free));
108
109 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
110 gcc_assert (!*slot);
111 *slot = n;
112 }
113
114 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
115
116 void
117 add_stmt_to_eh_lp (gimple t, int num)
118 {
119 add_stmt_to_eh_lp_fn (cfun, t, num);
120 }
121
122 /* Add statement T to the single EH landing pad in REGION. */
123
124 static void
125 record_stmt_eh_region (eh_region region, gimple t)
126 {
127 if (region == NULL)
128 return;
129 if (region->type == ERT_MUST_NOT_THROW)
130 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
131 else
132 {
133 eh_landing_pad lp = region->landing_pads;
134 if (lp == NULL)
135 lp = gen_eh_landing_pad (region);
136 else
137 gcc_assert (lp->next_lp == NULL);
138 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
139 }
140 }
141
142
143 /* Remove statement T in function IFUN from its EH landing pad. */
144
145 bool
146 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
147 {
148 struct throw_stmt_node dummy;
149 void **slot;
150
151 if (!get_eh_throw_stmt_table (ifun))
152 return false;
153
154 dummy.stmt = t;
155 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
156 NO_INSERT);
157 if (slot)
158 {
159 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
160 return true;
161 }
162 else
163 return false;
164 }
165
166
167 /* Remove statement T in the current function (cfun) from its
168 EH landing pad. */
169
170 bool
171 remove_stmt_from_eh_lp (gimple t)
172 {
173 return remove_stmt_from_eh_lp_fn (cfun, t);
174 }
175
176 /* Determine if statement T is inside an EH region in function IFUN.
177 Positive numbers indicate a landing pad index; negative numbers
178 indicate a MUST_NOT_THROW region index; zero indicates that the
179 statement is not recorded in the region table. */
180
181 int
182 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
183 {
184 struct throw_stmt_node *p, n;
185
186 if (ifun->eh->throw_stmt_table == NULL)
187 return 0;
188
189 n.stmt = t;
190 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
191 return p ? p->lp_nr : 0;
192 }
193
194 /* Likewise, but always use the current function. */
195
196 int
197 lookup_stmt_eh_lp (gimple t)
198 {
199 /* We can get called from initialized data when -fnon-call-exceptions
200 is on; prevent crash. */
201 if (!cfun)
202 return 0;
203 return lookup_stmt_eh_lp_fn (cfun, t);
204 }
205
206 /* Likewise, but reference a tree expression instead. */
207
208 int
209 lookup_expr_eh_lp (tree t)
210 {
211 if (cfun && cfun->eh->throw_stmt_table && t && EXPR_P (t))
212 {
213 tree_ann_common_t ann = tree_common_ann (t);
214 if (ann)
215 return ann->lp_nr;
216 }
217 return 0;
218 }
219
220
221 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
222 nodes and LABEL_DECL nodes. We will use this during the second phase to
223 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
224
225 struct finally_tree_node
226 {
227 /* When storing a GIMPLE_TRY, we have to record a gimple. However
228 when deciding whether a GOTO to a certain LABEL_DECL (which is a
229 tree) leaves the TRY block, its necessary to record a tree in
230 this field. Thus a treemple is used. */
231 treemple child;
232 gimple parent;
233 };
234
235 /* Note that this table is *not* marked GTY. It is short-lived. */
236 static htab_t finally_tree;
237
238 static void
239 record_in_finally_tree (treemple child, gimple parent)
240 {
241 struct finally_tree_node *n;
242 void **slot;
243
244 n = XNEW (struct finally_tree_node);
245 n->child = child;
246 n->parent = parent;
247
248 slot = htab_find_slot (finally_tree, n, INSERT);
249 gcc_assert (!*slot);
250 *slot = n;
251 }
252
253 static void
254 collect_finally_tree (gimple stmt, gimple region);
255
256 /* Go through the gimple sequence. Works with collect_finally_tree to
257 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
258
259 static void
260 collect_finally_tree_1 (gimple_seq seq, gimple region)
261 {
262 gimple_stmt_iterator gsi;
263
264 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
265 collect_finally_tree (gsi_stmt (gsi), region);
266 }
267
268 static void
269 collect_finally_tree (gimple stmt, gimple region)
270 {
271 treemple temp;
272
273 switch (gimple_code (stmt))
274 {
275 case GIMPLE_LABEL:
276 temp.t = gimple_label_label (stmt);
277 record_in_finally_tree (temp, region);
278 break;
279
280 case GIMPLE_TRY:
281 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
282 {
283 temp.g = stmt;
284 record_in_finally_tree (temp, region);
285 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
286 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
287 }
288 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
289 {
290 collect_finally_tree_1 (gimple_try_eval (stmt), region);
291 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
292 }
293 break;
294
295 case GIMPLE_CATCH:
296 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
297 break;
298
299 case GIMPLE_EH_FILTER:
300 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
301 break;
302
303 default:
304 /* A type, a decl, or some kind of statement that we're not
305 interested in. Don't walk them. */
306 break;
307 }
308 }
309
310
311 /* Use the finally tree to determine if a jump from START to TARGET
312 would leave the try_finally node that START lives in. */
313
314 static bool
315 outside_finally_tree (treemple start, gimple target)
316 {
317 struct finally_tree_node n, *p;
318
319 do
320 {
321 n.child = start;
322 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
323 if (!p)
324 return true;
325 start.g = p->parent;
326 }
327 while (start.g != target);
328
329 return false;
330 }
331
332 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
333 nodes into a set of gotos, magic labels, and eh regions.
334 The eh region creation is straight-forward, but frobbing all the gotos
335 and such into shape isn't. */
336
337 /* The sequence into which we record all EH stuff. This will be
338 placed at the end of the function when we're all done. */
339 static gimple_seq eh_seq;
340
341 /* Record whether an EH region contains something that can throw,
342 indexed by EH region number. */
343 static bitmap eh_region_may_contain_throw_map;
344
345 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
346 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
347 The idea is to record a gimple statement for everything except for
348 the conditionals, which get their labels recorded. Since labels are
349 of type 'tree', we need this node to store both gimple and tree
350 objects. REPL_STMT is the sequence used to replace the goto/return
351 statement. CONT_STMT is used to store the statement that allows
352 the return/goto to jump to the original destination. */
353
354 struct goto_queue_node
355 {
356 treemple stmt;
357 gimple_seq repl_stmt;
358 gimple cont_stmt;
359 int index;
360 /* This is used when index >= 0 to indicate that stmt is a label (as
361 opposed to a goto stmt). */
362 int is_label;
363 };
364
365 /* State of the world while lowering. */
366
367 struct leh_state
368 {
369 /* What's "current" while constructing the eh region tree. These
370 correspond to variables of the same name in cfun->eh, which we
371 don't have easy access to. */
372 eh_region cur_region;
373
374 /* What's "current" for the purposes of __builtin_eh_pointer. For
375 a CATCH, this is the associated TRY. For an EH_FILTER, this is
376 the associated ALLOWED_EXCEPTIONS, etc. */
377 eh_region ehp_region;
378
379 /* Processing of TRY_FINALLY requires a bit more state. This is
380 split out into a separate structure so that we don't have to
381 copy so much when processing other nodes. */
382 struct leh_tf_state *tf;
383 };
384
385 struct leh_tf_state
386 {
387 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
388 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
389 this so that outside_finally_tree can reliably reference the tree used
390 in the collect_finally_tree data structures. */
391 gimple try_finally_expr;
392 gimple top_p;
393
394 /* While lowering a top_p usually it is expanded into multiple statements,
395 thus we need the following field to store them. */
396 gimple_seq top_p_seq;
397
398 /* The state outside this try_finally node. */
399 struct leh_state *outer;
400
401 /* The exception region created for it. */
402 eh_region region;
403
404 /* The goto queue. */
405 struct goto_queue_node *goto_queue;
406 size_t goto_queue_size;
407 size_t goto_queue_active;
408
409 /* Pointer map to help in searching goto_queue when it is large. */
410 struct pointer_map_t *goto_queue_map;
411
412 /* The set of unique labels seen as entries in the goto queue. */
413 VEC(tree,heap) *dest_array;
414
415 /* A label to be added at the end of the completed transformed
416 sequence. It will be set if may_fallthru was true *at one time*,
417 though subsequent transformations may have cleared that flag. */
418 tree fallthru_label;
419
420 /* True if it is possible to fall out the bottom of the try block.
421 Cleared if the fallthru is converted to a goto. */
422 bool may_fallthru;
423
424 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
425 bool may_return;
426
427 /* True if the finally block can receive an exception edge.
428 Cleared if the exception case is handled by code duplication. */
429 bool may_throw;
430 };
431
432 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
433
434 /* Search for STMT in the goto queue. Return the replacement,
435 or null if the statement isn't in the queue. */
436
437 #define LARGE_GOTO_QUEUE 20
438
439 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
440
441 static gimple_seq
442 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
443 {
444 unsigned int i;
445 void **slot;
446
447 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
448 {
449 for (i = 0; i < tf->goto_queue_active; i++)
450 if ( tf->goto_queue[i].stmt.g == stmt.g)
451 return tf->goto_queue[i].repl_stmt;
452 return NULL;
453 }
454
455 /* If we have a large number of entries in the goto_queue, create a
456 pointer map and use that for searching. */
457
458 if (!tf->goto_queue_map)
459 {
460 tf->goto_queue_map = pointer_map_create ();
461 for (i = 0; i < tf->goto_queue_active; i++)
462 {
463 slot = pointer_map_insert (tf->goto_queue_map,
464 tf->goto_queue[i].stmt.g);
465 gcc_assert (*slot == NULL);
466 *slot = &tf->goto_queue[i];
467 }
468 }
469
470 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
471 if (slot != NULL)
472 return (((struct goto_queue_node *) *slot)->repl_stmt);
473
474 return NULL;
475 }
476
477 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
478 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
479 then we can just splat it in, otherwise we add the new stmts immediately
480 after the GIMPLE_COND and redirect. */
481
482 static void
483 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
484 gimple_stmt_iterator *gsi)
485 {
486 tree label;
487 gimple_seq new_seq;
488 treemple temp;
489 location_t loc = gimple_location (gsi_stmt (*gsi));
490
491 temp.tp = tp;
492 new_seq = find_goto_replacement (tf, temp);
493 if (!new_seq)
494 return;
495
496 if (gimple_seq_singleton_p (new_seq)
497 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
498 {
499 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
500 return;
501 }
502
503 label = create_artificial_label (loc);
504 /* Set the new label for the GIMPLE_COND */
505 *tp = label;
506
507 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
508 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
509 }
510
511 /* The real work of replace_goto_queue. Returns with TSI updated to
512 point to the next statement. */
513
514 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
515
516 static void
517 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
518 gimple_stmt_iterator *gsi)
519 {
520 gimple_seq seq;
521 treemple temp;
522 temp.g = NULL;
523
524 switch (gimple_code (stmt))
525 {
526 case GIMPLE_GOTO:
527 case GIMPLE_RETURN:
528 temp.g = stmt;
529 seq = find_goto_replacement (tf, temp);
530 if (seq)
531 {
532 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
533 gsi_remove (gsi, false);
534 return;
535 }
536 break;
537
538 case GIMPLE_COND:
539 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
540 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
541 break;
542
543 case GIMPLE_TRY:
544 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
545 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
546 break;
547 case GIMPLE_CATCH:
548 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
549 break;
550 case GIMPLE_EH_FILTER:
551 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
552 break;
553
554 default:
555 /* These won't have gotos in them. */
556 break;
557 }
558
559 gsi_next (gsi);
560 }
561
562 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
563
564 static void
565 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
566 {
567 gimple_stmt_iterator gsi = gsi_start (seq);
568
569 while (!gsi_end_p (gsi))
570 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
571 }
572
573 /* Replace all goto queue members. */
574
575 static void
576 replace_goto_queue (struct leh_tf_state *tf)
577 {
578 if (tf->goto_queue_active == 0)
579 return;
580 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
581 }
582
583 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
584 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
585 a gimple return. */
586
587 static void
588 record_in_goto_queue (struct leh_tf_state *tf,
589 treemple new_stmt,
590 int index,
591 bool is_label)
592 {
593 size_t active, size;
594 struct goto_queue_node *q;
595
596 gcc_assert (!tf->goto_queue_map);
597
598 active = tf->goto_queue_active;
599 size = tf->goto_queue_size;
600 if (active >= size)
601 {
602 size = (size ? size * 2 : 32);
603 tf->goto_queue_size = size;
604 tf->goto_queue
605 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
606 }
607
608 q = &tf->goto_queue[active];
609 tf->goto_queue_active = active + 1;
610
611 memset (q, 0, sizeof (*q));
612 q->stmt = new_stmt;
613 q->index = index;
614 q->is_label = is_label;
615 }
616
617 /* Record the LABEL label in the goto queue contained in TF.
618 TF is not null. */
619
620 static void
621 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
622 {
623 int index;
624 treemple temp, new_stmt;
625
626 if (!label)
627 return;
628
629 /* Computed and non-local gotos do not get processed. Given
630 their nature we can neither tell whether we've escaped the
631 finally block nor redirect them if we knew. */
632 if (TREE_CODE (label) != LABEL_DECL)
633 return;
634
635 /* No need to record gotos that don't leave the try block. */
636 temp.t = label;
637 if (!outside_finally_tree (temp, tf->try_finally_expr))
638 return;
639
640 if (! tf->dest_array)
641 {
642 tf->dest_array = VEC_alloc (tree, heap, 10);
643 VEC_quick_push (tree, tf->dest_array, label);
644 index = 0;
645 }
646 else
647 {
648 int n = VEC_length (tree, tf->dest_array);
649 for (index = 0; index < n; ++index)
650 if (VEC_index (tree, tf->dest_array, index) == label)
651 break;
652 if (index == n)
653 VEC_safe_push (tree, heap, tf->dest_array, label);
654 }
655
656 /* In the case of a GOTO we want to record the destination label,
657 since with a GIMPLE_COND we have an easy access to the then/else
658 labels. */
659 new_stmt = stmt;
660 record_in_goto_queue (tf, new_stmt, index, true);
661
662 }
663
664 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
665 node, and if so record that fact in the goto queue associated with that
666 try_finally node. */
667
668 static void
669 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
670 {
671 struct leh_tf_state *tf = state->tf;
672 treemple new_stmt;
673
674 if (!tf)
675 return;
676
677 switch (gimple_code (stmt))
678 {
679 case GIMPLE_COND:
680 new_stmt.tp = gimple_op_ptr (stmt, 2);
681 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
682 new_stmt.tp = gimple_op_ptr (stmt, 3);
683 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
684 break;
685 case GIMPLE_GOTO:
686 new_stmt.g = stmt;
687 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
688 break;
689
690 case GIMPLE_RETURN:
691 tf->may_return = true;
692 new_stmt.g = stmt;
693 record_in_goto_queue (tf, new_stmt, -1, false);
694 break;
695
696 default:
697 gcc_unreachable ();
698 }
699 }
700
701
702 #ifdef ENABLE_CHECKING
703 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
704 was in fact structured, and we've not yet done jump threading, then none
705 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
706
707 static void
708 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
709 {
710 struct leh_tf_state *tf = state->tf;
711 size_t i, n;
712
713 if (!tf)
714 return;
715
716 n = gimple_switch_num_labels (switch_expr);
717
718 for (i = 0; i < n; ++i)
719 {
720 treemple temp;
721 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
722 temp.t = lab;
723 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
724 }
725 }
726 #else
727 #define verify_norecord_switch_expr(state, switch_expr)
728 #endif
729
730 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
731 whatever is needed to finish the return. If MOD is non-null, insert it
732 before the new branch. RETURN_VALUE_P is a cache containing a temporary
733 variable to be used in manipulating the value returned from the function. */
734
735 static void
736 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
737 tree *return_value_p)
738 {
739 tree ret_expr;
740 gimple x;
741
742 /* In the case of a return, the queue node must be a gimple statement. */
743 gcc_assert (!q->is_label);
744
745 ret_expr = gimple_return_retval (q->stmt.g);
746
747 if (ret_expr)
748 {
749 if (!*return_value_p)
750 *return_value_p = ret_expr;
751 else
752 gcc_assert (*return_value_p == ret_expr);
753 q->cont_stmt = q->stmt.g;
754 /* The nasty part about redirecting the return value is that the
755 return value itself is to be computed before the FINALLY block
756 is executed. e.g.
757
758 int x;
759 int foo (void)
760 {
761 x = 0;
762 try {
763 return x;
764 } finally {
765 x++;
766 }
767 }
768
769 should return 0, not 1. Arrange for this to happen by copying
770 computed the return value into a local temporary. This also
771 allows us to redirect multiple return statements through the
772 same destination block; whether this is a net win or not really
773 depends, I guess, but it does make generation of the switch in
774 lower_try_finally_switch easier. */
775
776 if (TREE_CODE (ret_expr) == RESULT_DECL)
777 {
778 if (!*return_value_p)
779 *return_value_p = ret_expr;
780 else
781 gcc_assert (*return_value_p == ret_expr);
782 q->cont_stmt = q->stmt.g;
783 }
784 else
785 gcc_unreachable ();
786 }
787 else
788 /* If we don't return a value, all return statements are the same. */
789 q->cont_stmt = q->stmt.g;
790
791 if (!q->repl_stmt)
792 q->repl_stmt = gimple_seq_alloc ();
793
794 if (mod)
795 gimple_seq_add_seq (&q->repl_stmt, mod);
796
797 x = gimple_build_goto (finlab);
798 gimple_seq_add_stmt (&q->repl_stmt, x);
799 }
800
801 /* Similar, but easier, for GIMPLE_GOTO. */
802
803 static void
804 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
805 struct leh_tf_state *tf)
806 {
807 gimple x;
808
809 gcc_assert (q->is_label);
810 if (!q->repl_stmt)
811 q->repl_stmt = gimple_seq_alloc ();
812
813 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
814
815 if (mod)
816 gimple_seq_add_seq (&q->repl_stmt, mod);
817
818 x = gimple_build_goto (finlab);
819 gimple_seq_add_stmt (&q->repl_stmt, x);
820 }
821
822 /* Emit a standard landing pad sequence into SEQ for REGION. */
823
824 static void
825 emit_post_landing_pad (gimple_seq *seq, eh_region region)
826 {
827 eh_landing_pad lp = region->landing_pads;
828 gimple x;
829
830 if (lp == NULL)
831 lp = gen_eh_landing_pad (region);
832
833 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
834 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
835
836 x = gimple_build_label (lp->post_landing_pad);
837 gimple_seq_add_stmt (seq, x);
838 }
839
840 /* Emit a RESX statement into SEQ for REGION. */
841
842 static void
843 emit_resx (gimple_seq *seq, eh_region region)
844 {
845 gimple x = gimple_build_resx (region->index);
846 gimple_seq_add_stmt (seq, x);
847 if (region->outer)
848 record_stmt_eh_region (region->outer, x);
849 }
850
851 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
852
853 static void
854 emit_eh_dispatch (gimple_seq *seq, eh_region region)
855 {
856 gimple x = gimple_build_eh_dispatch (region->index);
857 gimple_seq_add_stmt (seq, x);
858 }
859
860 /* Note that the current EH region may contain a throw, or a
861 call to a function which itself may contain a throw. */
862
863 static void
864 note_eh_region_may_contain_throw (eh_region region)
865 {
866 while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
867 {
868 bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
869 region = region->outer;
870 if (region == NULL)
871 break;
872 }
873 }
874
875 /* Check if REGION has been marked as containing a throw. If REGION is
876 NULL, this predicate is false. */
877
878 static inline bool
879 eh_region_may_contain_throw (eh_region r)
880 {
881 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
882 }
883
884 /* We want to transform
885 try { body; } catch { stuff; }
886 to
887 normal_seqence:
888 body;
889 over:
890 eh_seqence:
891 landing_pad:
892 stuff;
893 goto over;
894
895 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
896 should be placed before the second operand, or NULL. OVER is
897 an existing label that should be put at the exit, or NULL. */
898
899 static gimple_seq
900 frob_into_branch_around (gimple tp, eh_region region, tree over)
901 {
902 gimple x;
903 gimple_seq cleanup, result;
904 location_t loc = gimple_location (tp);
905
906 cleanup = gimple_try_cleanup (tp);
907 result = gimple_try_eval (tp);
908
909 if (region)
910 emit_post_landing_pad (&eh_seq, region);
911
912 if (gimple_seq_may_fallthru (cleanup))
913 {
914 if (!over)
915 over = create_artificial_label (loc);
916 x = gimple_build_goto (over);
917 gimple_seq_add_stmt (&cleanup, x);
918 }
919 gimple_seq_add_seq (&eh_seq, cleanup);
920
921 if (over)
922 {
923 x = gimple_build_label (over);
924 gimple_seq_add_stmt (&result, x);
925 }
926 return result;
927 }
928
929 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
930 Make sure to record all new labels found. */
931
932 static gimple_seq
933 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
934 {
935 gimple region = NULL;
936 gimple_seq new_seq;
937
938 new_seq = copy_gimple_seq_and_replace_locals (seq);
939
940 if (outer_state->tf)
941 region = outer_state->tf->try_finally_expr;
942 collect_finally_tree_1 (new_seq, region);
943
944 return new_seq;
945 }
946
947 /* A subroutine of lower_try_finally. Create a fallthru label for
948 the given try_finally state. The only tricky bit here is that
949 we have to make sure to record the label in our outer context. */
950
951 static tree
952 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
953 {
954 tree label = tf->fallthru_label;
955 treemple temp;
956
957 if (!label)
958 {
959 label = create_artificial_label (gimple_location (tf->try_finally_expr));
960 tf->fallthru_label = label;
961 if (tf->outer->tf)
962 {
963 temp.t = label;
964 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
965 }
966 }
967 return label;
968 }
969
970 /* A subroutine of lower_try_finally. If lang_protect_cleanup_actions
971 returns non-null, then the language requires that the exception path out
972 of a try_finally be treated specially. To wit: the code within the
973 finally block may not itself throw an exception. We have two choices here.
974 First we can duplicate the finally block and wrap it in a must_not_throw
975 region. Second, we can generate code like
976
977 try {
978 finally_block;
979 } catch {
980 if (fintmp == eh_edge)
981 protect_cleanup_actions;
982 }
983
984 where "fintmp" is the temporary used in the switch statement generation
985 alternative considered below. For the nonce, we always choose the first
986 option.
987
988 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
989
990 static void
991 honor_protect_cleanup_actions (struct leh_state *outer_state,
992 struct leh_state *this_state,
993 struct leh_tf_state *tf)
994 {
995 tree protect_cleanup_actions;
996 gimple_stmt_iterator gsi;
997 bool finally_may_fallthru;
998 gimple_seq finally;
999 gimple x;
1000
1001 /* First check for nothing to do. */
1002 if (lang_protect_cleanup_actions == NULL)
1003 return;
1004 protect_cleanup_actions = lang_protect_cleanup_actions ();
1005 if (protect_cleanup_actions == NULL)
1006 return;
1007
1008 finally = gimple_try_cleanup (tf->top_p);
1009 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1010
1011 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1012 and not for cleanups. */
1013 if (this_state)
1014 finally = lower_try_finally_dup_block (finally, outer_state);
1015
1016 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1017 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1018 to be in an enclosing scope, but needs to be implemented at this level
1019 to avoid a nesting violation (see wrap_temporary_cleanups in
1020 cp/decl.c). Since it's logically at an outer level, we should call
1021 terminate before we get to it, so strip it away before adding the
1022 MUST_NOT_THROW filter. */
1023 gsi = gsi_start (finally);
1024 x = gsi_stmt (gsi);
1025 if (gimple_code (x) == GIMPLE_TRY
1026 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1027 && gimple_try_catch_is_cleanup (x))
1028 {
1029 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1030 gsi_remove (&gsi, false);
1031 }
1032
1033 /* Wrap the block with protect_cleanup_actions as the action. */
1034 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1035 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1036 GIMPLE_TRY_CATCH);
1037 finally = lower_eh_must_not_throw (outer_state, x);
1038
1039 /* Drop all of this into the exception sequence. */
1040 emit_post_landing_pad (&eh_seq, tf->region);
1041 gimple_seq_add_seq (&eh_seq, finally);
1042 if (finally_may_fallthru)
1043 emit_resx (&eh_seq, tf->region);
1044
1045 /* Having now been handled, EH isn't to be considered with
1046 the rest of the outgoing edges. */
1047 tf->may_throw = false;
1048 }
1049
1050 /* A subroutine of lower_try_finally. We have determined that there is
1051 no fallthru edge out of the finally block. This means that there is
1052 no outgoing edge corresponding to any incoming edge. Restructure the
1053 try_finally node for this special case. */
1054
1055 static void
1056 lower_try_finally_nofallthru (struct leh_state *state,
1057 struct leh_tf_state *tf)
1058 {
1059 tree lab, return_val;
1060 gimple x;
1061 gimple_seq finally;
1062 struct goto_queue_node *q, *qe;
1063
1064 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1065
1066 /* We expect that tf->top_p is a GIMPLE_TRY. */
1067 finally = gimple_try_cleanup (tf->top_p);
1068 tf->top_p_seq = gimple_try_eval (tf->top_p);
1069
1070 x = gimple_build_label (lab);
1071 gimple_seq_add_stmt (&tf->top_p_seq, x);
1072
1073 return_val = NULL;
1074 q = tf->goto_queue;
1075 qe = q + tf->goto_queue_active;
1076 for (; q < qe; ++q)
1077 if (q->index < 0)
1078 do_return_redirection (q, lab, NULL, &return_val);
1079 else
1080 do_goto_redirection (q, lab, NULL, tf);
1081
1082 replace_goto_queue (tf);
1083
1084 lower_eh_constructs_1 (state, finally);
1085 gimple_seq_add_seq (&tf->top_p_seq, finally);
1086
1087 if (tf->may_throw)
1088 {
1089 emit_post_landing_pad (&eh_seq, tf->region);
1090
1091 x = gimple_build_goto (lab);
1092 gimple_seq_add_stmt (&eh_seq, x);
1093 }
1094 }
1095
1096 /* A subroutine of lower_try_finally. We have determined that there is
1097 exactly one destination of the finally block. Restructure the
1098 try_finally node for this special case. */
1099
1100 static void
1101 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1102 {
1103 struct goto_queue_node *q, *qe;
1104 gimple x;
1105 gimple_seq finally;
1106 tree finally_label;
1107 location_t loc = gimple_location (tf->try_finally_expr);
1108
1109 finally = gimple_try_cleanup (tf->top_p);
1110 tf->top_p_seq = gimple_try_eval (tf->top_p);
1111
1112 lower_eh_constructs_1 (state, finally);
1113
1114 if (tf->may_throw)
1115 {
1116 /* Only reachable via the exception edge. Add the given label to
1117 the head of the FINALLY block. Append a RESX at the end. */
1118 emit_post_landing_pad (&eh_seq, tf->region);
1119 gimple_seq_add_seq (&eh_seq, finally);
1120 emit_resx (&eh_seq, tf->region);
1121 return;
1122 }
1123
1124 if (tf->may_fallthru)
1125 {
1126 /* Only reachable via the fallthru edge. Do nothing but let
1127 the two blocks run together; we'll fall out the bottom. */
1128 gimple_seq_add_seq (&tf->top_p_seq, finally);
1129 return;
1130 }
1131
1132 finally_label = create_artificial_label (loc);
1133 x = gimple_build_label (finally_label);
1134 gimple_seq_add_stmt (&tf->top_p_seq, x);
1135
1136 gimple_seq_add_seq (&tf->top_p_seq, finally);
1137
1138 q = tf->goto_queue;
1139 qe = q + tf->goto_queue_active;
1140
1141 if (tf->may_return)
1142 {
1143 /* Reachable by return expressions only. Redirect them. */
1144 tree return_val = NULL;
1145 for (; q < qe; ++q)
1146 do_return_redirection (q, finally_label, NULL, &return_val);
1147 replace_goto_queue (tf);
1148 }
1149 else
1150 {
1151 /* Reachable by goto expressions only. Redirect them. */
1152 for (; q < qe; ++q)
1153 do_goto_redirection (q, finally_label, NULL, tf);
1154 replace_goto_queue (tf);
1155
1156 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1157 {
1158 /* Reachable by goto to fallthru label only. Redirect it
1159 to the new label (already created, sadly), and do not
1160 emit the final branch out, or the fallthru label. */
1161 tf->fallthru_label = NULL;
1162 return;
1163 }
1164 }
1165
1166 /* Place the original return/goto to the original destination
1167 immediately after the finally block. */
1168 x = tf->goto_queue[0].cont_stmt;
1169 gimple_seq_add_stmt (&tf->top_p_seq, x);
1170 maybe_record_in_goto_queue (state, x);
1171 }
1172
1173 /* A subroutine of lower_try_finally. There are multiple edges incoming
1174 and outgoing from the finally block. Implement this by duplicating the
1175 finally block for every destination. */
1176
1177 static void
1178 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1179 {
1180 gimple_seq finally;
1181 gimple_seq new_stmt;
1182 gimple_seq seq;
1183 gimple x;
1184 tree tmp;
1185 location_t tf_loc = gimple_location (tf->try_finally_expr);
1186
1187 finally = gimple_try_cleanup (tf->top_p);
1188 tf->top_p_seq = gimple_try_eval (tf->top_p);
1189 new_stmt = NULL;
1190
1191 if (tf->may_fallthru)
1192 {
1193 seq = lower_try_finally_dup_block (finally, state);
1194 lower_eh_constructs_1 (state, seq);
1195 gimple_seq_add_seq (&new_stmt, seq);
1196
1197 tmp = lower_try_finally_fallthru_label (tf);
1198 x = gimple_build_goto (tmp);
1199 gimple_seq_add_stmt (&new_stmt, x);
1200 }
1201
1202 if (tf->may_throw)
1203 {
1204 seq = lower_try_finally_dup_block (finally, state);
1205 lower_eh_constructs_1 (state, seq);
1206
1207 emit_post_landing_pad (&eh_seq, tf->region);
1208 gimple_seq_add_seq (&eh_seq, seq);
1209 emit_resx (&eh_seq, tf->region);
1210 }
1211
1212 if (tf->goto_queue)
1213 {
1214 struct goto_queue_node *q, *qe;
1215 tree return_val = NULL;
1216 int return_index, index;
1217 struct labels_s
1218 {
1219 struct goto_queue_node *q;
1220 tree label;
1221 } *labels;
1222
1223 return_index = VEC_length (tree, tf->dest_array);
1224 labels = XCNEWVEC (struct labels_s, return_index + 1);
1225
1226 q = tf->goto_queue;
1227 qe = q + tf->goto_queue_active;
1228 for (; q < qe; q++)
1229 {
1230 index = q->index < 0 ? return_index : q->index;
1231
1232 if (!labels[index].q)
1233 labels[index].q = q;
1234 }
1235
1236 for (index = 0; index < return_index + 1; index++)
1237 {
1238 tree lab;
1239
1240 q = labels[index].q;
1241 if (! q)
1242 continue;
1243
1244 lab = labels[index].label
1245 = create_artificial_label (tf_loc);
1246
1247 if (index == return_index)
1248 do_return_redirection (q, lab, NULL, &return_val);
1249 else
1250 do_goto_redirection (q, lab, NULL, tf);
1251
1252 x = gimple_build_label (lab);
1253 gimple_seq_add_stmt (&new_stmt, x);
1254
1255 seq = lower_try_finally_dup_block (finally, state);
1256 lower_eh_constructs_1 (state, seq);
1257 gimple_seq_add_seq (&new_stmt, seq);
1258
1259 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1260 maybe_record_in_goto_queue (state, q->cont_stmt);
1261 }
1262
1263 for (q = tf->goto_queue; q < qe; q++)
1264 {
1265 tree lab;
1266
1267 index = q->index < 0 ? return_index : q->index;
1268
1269 if (labels[index].q == q)
1270 continue;
1271
1272 lab = labels[index].label;
1273
1274 if (index == return_index)
1275 do_return_redirection (q, lab, NULL, &return_val);
1276 else
1277 do_goto_redirection (q, lab, NULL, tf);
1278 }
1279
1280 replace_goto_queue (tf);
1281 free (labels);
1282 }
1283
1284 /* Need to link new stmts after running replace_goto_queue due
1285 to not wanting to process the same goto stmts twice. */
1286 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1287 }
1288
1289 /* A subroutine of lower_try_finally. There are multiple edges incoming
1290 and outgoing from the finally block. Implement this by instrumenting
1291 each incoming edge and creating a switch statement at the end of the
1292 finally block that branches to the appropriate destination. */
1293
1294 static void
1295 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1296 {
1297 struct goto_queue_node *q, *qe;
1298 tree return_val = NULL;
1299 tree finally_tmp, finally_label;
1300 int return_index, eh_index, fallthru_index;
1301 int nlabels, ndests, j, last_case_index;
1302 tree last_case;
1303 VEC (tree,heap) *case_label_vec;
1304 gimple_seq switch_body;
1305 gimple x;
1306 tree tmp;
1307 gimple switch_stmt;
1308 gimple_seq finally;
1309 struct pointer_map_t *cont_map = NULL;
1310 /* The location of the TRY_FINALLY stmt. */
1311 location_t tf_loc = gimple_location (tf->try_finally_expr);
1312 /* The location of the finally block. */
1313 location_t finally_loc;
1314
1315 switch_body = gimple_seq_alloc ();
1316
1317 /* Mash the TRY block to the head of the chain. */
1318 finally = gimple_try_cleanup (tf->top_p);
1319 tf->top_p_seq = gimple_try_eval (tf->top_p);
1320
1321 /* The location of the finally is either the last stmt in the finally
1322 block or the location of the TRY_FINALLY itself. */
1323 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1324 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1325 : tf_loc;
1326
1327 /* Lower the finally block itself. */
1328 lower_eh_constructs_1 (state, finally);
1329
1330 /* Prepare for switch statement generation. */
1331 nlabels = VEC_length (tree, tf->dest_array);
1332 return_index = nlabels;
1333 eh_index = return_index + tf->may_return;
1334 fallthru_index = eh_index + tf->may_throw;
1335 ndests = fallthru_index + tf->may_fallthru;
1336
1337 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1338 finally_label = create_artificial_label (finally_loc);
1339
1340 /* We use VEC_quick_push on case_label_vec throughout this function,
1341 since we know the size in advance and allocate precisely as muce
1342 space as needed. */
1343 case_label_vec = VEC_alloc (tree, heap, ndests);
1344 last_case = NULL;
1345 last_case_index = 0;
1346
1347 /* Begin inserting code for getting to the finally block. Things
1348 are done in this order to correspond to the sequence the code is
1349 layed out. */
1350
1351 if (tf->may_fallthru)
1352 {
1353 x = gimple_build_assign (finally_tmp,
1354 build_int_cst (NULL, fallthru_index));
1355 gimple_seq_add_stmt (&tf->top_p_seq, x);
1356
1357 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1358 build_int_cst (NULL, fallthru_index),
1359 NULL, create_artificial_label (tf_loc));
1360 VEC_quick_push (tree, case_label_vec, last_case);
1361 last_case_index++;
1362
1363 x = gimple_build_label (CASE_LABEL (last_case));
1364 gimple_seq_add_stmt (&switch_body, x);
1365
1366 tmp = lower_try_finally_fallthru_label (tf);
1367 x = gimple_build_goto (tmp);
1368 gimple_seq_add_stmt (&switch_body, x);
1369 }
1370
1371 if (tf->may_throw)
1372 {
1373 emit_post_landing_pad (&eh_seq, tf->region);
1374
1375 x = gimple_build_assign (finally_tmp,
1376 build_int_cst (NULL, eh_index));
1377 gimple_seq_add_stmt (&eh_seq, x);
1378
1379 x = gimple_build_goto (finally_label);
1380 gimple_seq_add_stmt (&eh_seq, x);
1381
1382 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1383 build_int_cst (NULL, eh_index),
1384 NULL, create_artificial_label (tf_loc));
1385 VEC_quick_push (tree, case_label_vec, last_case);
1386 last_case_index++;
1387
1388 x = gimple_build_label (CASE_LABEL (last_case));
1389 gimple_seq_add_stmt (&eh_seq, x);
1390 emit_resx (&eh_seq, tf->region);
1391 }
1392
1393 x = gimple_build_label (finally_label);
1394 gimple_seq_add_stmt (&tf->top_p_seq, x);
1395
1396 gimple_seq_add_seq (&tf->top_p_seq, finally);
1397
1398 /* Redirect each incoming goto edge. */
1399 q = tf->goto_queue;
1400 qe = q + tf->goto_queue_active;
1401 j = last_case_index + tf->may_return;
1402 /* Prepare the assignments to finally_tmp that are executed upon the
1403 entrance through a particular edge. */
1404 for (; q < qe; ++q)
1405 {
1406 gimple_seq mod;
1407 int switch_id;
1408 unsigned int case_index;
1409
1410 mod = gimple_seq_alloc ();
1411
1412 if (q->index < 0)
1413 {
1414 x = gimple_build_assign (finally_tmp,
1415 build_int_cst (NULL, return_index));
1416 gimple_seq_add_stmt (&mod, x);
1417 do_return_redirection (q, finally_label, mod, &return_val);
1418 switch_id = return_index;
1419 }
1420 else
1421 {
1422 x = gimple_build_assign (finally_tmp,
1423 build_int_cst (NULL, q->index));
1424 gimple_seq_add_stmt (&mod, x);
1425 do_goto_redirection (q, finally_label, mod, tf);
1426 switch_id = q->index;
1427 }
1428
1429 case_index = j + q->index;
1430 if (VEC_length (tree, case_label_vec) <= case_index
1431 || !VEC_index (tree, case_label_vec, case_index))
1432 {
1433 tree case_lab;
1434 void **slot;
1435 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1436 build_int_cst (NULL, switch_id),
1437 NULL, NULL);
1438 /* We store the cont_stmt in the pointer map, so that we can recover
1439 it in the loop below. We don't create the new label while
1440 walking the goto_queue because pointers don't offer a stable
1441 order. */
1442 if (!cont_map)
1443 cont_map = pointer_map_create ();
1444 slot = pointer_map_insert (cont_map, case_lab);
1445 *slot = q->cont_stmt;
1446 VEC_quick_push (tree, case_label_vec, case_lab);
1447 }
1448 }
1449 for (j = last_case_index; j < last_case_index + nlabels; j++)
1450 {
1451 tree label;
1452 gimple cont_stmt;
1453 void **slot;
1454
1455 last_case = VEC_index (tree, case_label_vec, j);
1456
1457 gcc_assert (last_case);
1458 gcc_assert (cont_map);
1459
1460 slot = pointer_map_contains (cont_map, last_case);
1461 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1462 placeholder, it does not store an actual label, yet. */
1463 gcc_assert (slot);
1464 cont_stmt = *(gimple *) slot;
1465
1466 label = create_artificial_label (tf_loc);
1467 CASE_LABEL (last_case) = label;
1468
1469 x = gimple_build_label (label);
1470 gimple_seq_add_stmt (&switch_body, x);
1471 gimple_seq_add_stmt (&switch_body, cont_stmt);
1472 maybe_record_in_goto_queue (state, cont_stmt);
1473 }
1474 if (cont_map)
1475 pointer_map_destroy (cont_map);
1476
1477 replace_goto_queue (tf);
1478
1479 /* Make sure that the last case is the default label, as one is required.
1480 Then sort the labels, which is also required in GIMPLE. */
1481 CASE_LOW (last_case) = NULL;
1482 sort_case_labels (case_label_vec);
1483
1484 /* Build the switch statement, setting last_case to be the default
1485 label. */
1486 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1487 case_label_vec);
1488 gimple_set_location (switch_stmt, finally_loc);
1489
1490 /* Need to link SWITCH_STMT after running replace_goto_queue
1491 due to not wanting to process the same goto stmts twice. */
1492 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1493 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1494 }
1495
1496 /* Decide whether or not we are going to duplicate the finally block.
1497 There are several considerations.
1498
1499 First, if this is Java, then the finally block contains code
1500 written by the user. It has line numbers associated with it,
1501 so duplicating the block means it's difficult to set a breakpoint.
1502 Since controlling code generation via -g is verboten, we simply
1503 never duplicate code without optimization.
1504
1505 Second, we'd like to prevent egregious code growth. One way to
1506 do this is to estimate the size of the finally block, multiply
1507 that by the number of copies we'd need to make, and compare against
1508 the estimate of the size of the switch machinery we'd have to add. */
1509
1510 static bool
1511 decide_copy_try_finally (int ndests, gimple_seq finally)
1512 {
1513 int f_estimate, sw_estimate;
1514
1515 if (!optimize)
1516 return false;
1517
1518 /* Finally estimate N times, plus N gotos. */
1519 f_estimate = count_insns_seq (finally, &eni_size_weights);
1520 f_estimate = (f_estimate + 1) * ndests;
1521
1522 /* Switch statement (cost 10), N variable assignments, N gotos. */
1523 sw_estimate = 10 + 2 * ndests;
1524
1525 /* Optimize for size clearly wants our best guess. */
1526 if (optimize_function_for_size_p (cfun))
1527 return f_estimate < sw_estimate;
1528
1529 /* ??? These numbers are completely made up so far. */
1530 if (optimize > 1)
1531 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1532 else
1533 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1534 }
1535
1536
1537 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1538 to a sequence of labels and blocks, plus the exception region trees
1539 that record all the magic. This is complicated by the need to
1540 arrange for the FINALLY block to be executed on all exits. */
1541
1542 static gimple_seq
1543 lower_try_finally (struct leh_state *state, gimple tp)
1544 {
1545 struct leh_tf_state this_tf;
1546 struct leh_state this_state;
1547 int ndests;
1548
1549 /* Process the try block. */
1550
1551 memset (&this_tf, 0, sizeof (this_tf));
1552 this_tf.try_finally_expr = tp;
1553 this_tf.top_p = tp;
1554 this_tf.outer = state;
1555 if (using_eh_for_cleanups_p)
1556 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1557 else
1558 this_tf.region = NULL;
1559
1560 this_state.cur_region = this_tf.region;
1561 this_state.ehp_region = state->ehp_region;
1562 this_state.tf = &this_tf;
1563
1564 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1565
1566 /* Determine if the try block is escaped through the bottom. */
1567 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1568
1569 /* Determine if any exceptions are possible within the try block. */
1570 if (using_eh_for_cleanups_p)
1571 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1572 if (this_tf.may_throw)
1573 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1574
1575 /* Determine how many edges (still) reach the finally block. Or rather,
1576 how many destinations are reached by the finally block. Use this to
1577 determine how we process the finally block itself. */
1578
1579 ndests = VEC_length (tree, this_tf.dest_array);
1580 ndests += this_tf.may_fallthru;
1581 ndests += this_tf.may_return;
1582 ndests += this_tf.may_throw;
1583
1584 /* If the FINALLY block is not reachable, dike it out. */
1585 if (ndests == 0)
1586 {
1587 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1588 gimple_try_set_cleanup (tp, NULL);
1589 }
1590 /* If the finally block doesn't fall through, then any destination
1591 we might try to impose there isn't reached either. There may be
1592 some minor amount of cleanup and redirection still needed. */
1593 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1594 lower_try_finally_nofallthru (state, &this_tf);
1595
1596 /* We can easily special-case redirection to a single destination. */
1597 else if (ndests == 1)
1598 lower_try_finally_onedest (state, &this_tf);
1599 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1600 lower_try_finally_copy (state, &this_tf);
1601 else
1602 lower_try_finally_switch (state, &this_tf);
1603
1604 /* If someone requested we add a label at the end of the transformed
1605 block, do so. */
1606 if (this_tf.fallthru_label)
1607 {
1608 /* This must be reached only if ndests == 0. */
1609 gimple x = gimple_build_label (this_tf.fallthru_label);
1610 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1611 }
1612
1613 VEC_free (tree, heap, this_tf.dest_array);
1614 if (this_tf.goto_queue)
1615 free (this_tf.goto_queue);
1616 if (this_tf.goto_queue_map)
1617 pointer_map_destroy (this_tf.goto_queue_map);
1618
1619 return this_tf.top_p_seq;
1620 }
1621
1622 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1623 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1624 exception region trees that records all the magic. */
1625
1626 static gimple_seq
1627 lower_catch (struct leh_state *state, gimple tp)
1628 {
1629 eh_region try_region = NULL;
1630 struct leh_state this_state = *state;
1631 gimple_stmt_iterator gsi;
1632 tree out_label;
1633 gimple_seq new_seq;
1634 gimple x;
1635 location_t try_catch_loc = gimple_location (tp);
1636
1637 if (flag_exceptions)
1638 {
1639 try_region = gen_eh_region_try (state->cur_region);
1640 this_state.cur_region = try_region;
1641 }
1642
1643 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1644
1645 if (!eh_region_may_contain_throw (try_region))
1646 return gimple_try_eval (tp);
1647
1648 new_seq = NULL;
1649 emit_eh_dispatch (&new_seq, try_region);
1650 emit_resx (&new_seq, try_region);
1651
1652 this_state.cur_region = state->cur_region;
1653 this_state.ehp_region = try_region;
1654
1655 out_label = NULL;
1656 for (gsi = gsi_start (gimple_try_cleanup (tp));
1657 !gsi_end_p (gsi);
1658 gsi_next (&gsi))
1659 {
1660 eh_catch c;
1661 gimple gcatch;
1662 gimple_seq handler;
1663
1664 gcatch = gsi_stmt (gsi);
1665 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1666
1667 handler = gimple_catch_handler (gcatch);
1668 lower_eh_constructs_1 (&this_state, handler);
1669
1670 c->label = create_artificial_label (UNKNOWN_LOCATION);
1671 x = gimple_build_label (c->label);
1672 gimple_seq_add_stmt (&new_seq, x);
1673
1674 gimple_seq_add_seq (&new_seq, handler);
1675
1676 if (gimple_seq_may_fallthru (new_seq))
1677 {
1678 if (!out_label)
1679 out_label = create_artificial_label (try_catch_loc);
1680
1681 x = gimple_build_goto (out_label);
1682 gimple_seq_add_stmt (&new_seq, x);
1683 }
1684 }
1685
1686 gimple_try_set_cleanup (tp, new_seq);
1687
1688 return frob_into_branch_around (tp, try_region, out_label);
1689 }
1690
1691 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1692 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1693 region trees that record all the magic. */
1694
1695 static gimple_seq
1696 lower_eh_filter (struct leh_state *state, gimple tp)
1697 {
1698 struct leh_state this_state = *state;
1699 eh_region this_region = NULL;
1700 gimple inner, x;
1701 gimple_seq new_seq;
1702
1703 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1704
1705 if (flag_exceptions)
1706 {
1707 this_region = gen_eh_region_allowed (state->cur_region,
1708 gimple_eh_filter_types (inner));
1709 this_state.cur_region = this_region;
1710 }
1711
1712 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1713
1714 if (!eh_region_may_contain_throw (this_region))
1715 return gimple_try_eval (tp);
1716
1717 new_seq = NULL;
1718 this_state.cur_region = state->cur_region;
1719 this_state.ehp_region = this_region;
1720
1721 emit_eh_dispatch (&new_seq, this_region);
1722 emit_resx (&new_seq, this_region);
1723
1724 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1725 x = gimple_build_label (this_region->u.allowed.label);
1726 gimple_seq_add_stmt (&new_seq, x);
1727
1728 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1729 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1730
1731 gimple_try_set_cleanup (tp, new_seq);
1732
1733 return frob_into_branch_around (tp, this_region, NULL);
1734 }
1735
1736 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1737 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1738 plus the exception region trees that record all the magic. */
1739
1740 static gimple_seq
1741 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1742 {
1743 struct leh_state this_state = *state;
1744
1745 if (flag_exceptions)
1746 {
1747 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1748 eh_region this_region;
1749
1750 this_region = gen_eh_region_must_not_throw (state->cur_region);
1751 this_region->u.must_not_throw.failure_decl
1752 = gimple_eh_must_not_throw_fndecl (inner);
1753 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1754
1755 /* In order to get mangling applied to this decl, we must mark it
1756 used now. Otherwise, pass_ipa_free_lang_data won't think it
1757 needs to happen. */
1758 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1759
1760 this_state.cur_region = this_region;
1761 }
1762
1763 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1764
1765 return gimple_try_eval (tp);
1766 }
1767
1768 /* Implement a cleanup expression. This is similar to try-finally,
1769 except that we only execute the cleanup block for exception edges. */
1770
1771 static gimple_seq
1772 lower_cleanup (struct leh_state *state, gimple tp)
1773 {
1774 struct leh_state this_state = *state;
1775 eh_region this_region = NULL;
1776 struct leh_tf_state fake_tf;
1777 gimple_seq result;
1778
1779 if (flag_exceptions)
1780 {
1781 this_region = gen_eh_region_cleanup (state->cur_region);
1782 this_state.cur_region = this_region;
1783 }
1784
1785 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1786
1787 if (!eh_region_may_contain_throw (this_region))
1788 return gimple_try_eval (tp);
1789
1790 /* Build enough of a try-finally state so that we can reuse
1791 honor_protect_cleanup_actions. */
1792 memset (&fake_tf, 0, sizeof (fake_tf));
1793 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1794 fake_tf.outer = state;
1795 fake_tf.region = this_region;
1796 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1797 fake_tf.may_throw = true;
1798
1799 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1800
1801 if (fake_tf.may_throw)
1802 {
1803 /* In this case honor_protect_cleanup_actions had nothing to do,
1804 and we should process this normally. */
1805 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1806 result = frob_into_branch_around (tp, this_region,
1807 fake_tf.fallthru_label);
1808 }
1809 else
1810 {
1811 /* In this case honor_protect_cleanup_actions did nearly all of
1812 the work. All we have left is to append the fallthru_label. */
1813
1814 result = gimple_try_eval (tp);
1815 if (fake_tf.fallthru_label)
1816 {
1817 gimple x = gimple_build_label (fake_tf.fallthru_label);
1818 gimple_seq_add_stmt (&result, x);
1819 }
1820 }
1821 return result;
1822 }
1823
1824 /* Main loop for lowering eh constructs. Also moves gsi to the next
1825 statement. */
1826
1827 static void
1828 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1829 {
1830 gimple_seq replace;
1831 gimple x;
1832 gimple stmt = gsi_stmt (*gsi);
1833
1834 switch (gimple_code (stmt))
1835 {
1836 case GIMPLE_CALL:
1837 {
1838 tree fndecl = gimple_call_fndecl (stmt);
1839 tree rhs, lhs;
1840
1841 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1842 switch (DECL_FUNCTION_CODE (fndecl))
1843 {
1844 case BUILT_IN_EH_POINTER:
1845 /* The front end may have generated a call to
1846 __builtin_eh_pointer (0) within a catch region. Replace
1847 this zero argument with the current catch region number. */
1848 if (state->ehp_region)
1849 {
1850 tree nr = build_int_cst (NULL, state->ehp_region->index);
1851 gimple_call_set_arg (stmt, 0, nr);
1852 }
1853 else
1854 {
1855 /* The user has dome something silly. Remove it. */
1856 rhs = build_int_cst (ptr_type_node, 0);
1857 goto do_replace;
1858 }
1859 break;
1860
1861 case BUILT_IN_EH_FILTER:
1862 /* ??? This should never appear, but since it's a builtin it
1863 is accessible to abuse by users. Just remove it and
1864 replace the use with the arbitrary value zero. */
1865 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1866 do_replace:
1867 lhs = gimple_call_lhs (stmt);
1868 x = gimple_build_assign (lhs, rhs);
1869 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1870 /* FALLTHRU */
1871
1872 case BUILT_IN_EH_COPY_VALUES:
1873 /* Likewise this should not appear. Remove it. */
1874 gsi_remove (gsi, true);
1875 return;
1876
1877 default:
1878 break;
1879 }
1880 }
1881 /* FALLTHRU */
1882
1883 case GIMPLE_ASSIGN:
1884 /* If the stmt can throw use a new temporary for the assignment
1885 to a LHS. This makes sure the old value of the LHS is
1886 available on the EH edge. */
1887 if (stmt_could_throw_p (stmt)
1888 && gimple_has_lhs (stmt)
1889 && !tree_could_throw_p (gimple_get_lhs (stmt))
1890 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1891 {
1892 tree lhs = gimple_get_lhs (stmt);
1893 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1894 gimple s = gimple_build_assign (lhs, tmp);
1895 gimple_set_location (s, gimple_location (stmt));
1896 gimple_set_block (s, gimple_block (stmt));
1897 gimple_set_lhs (stmt, tmp);
1898 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1899 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1900 DECL_GIMPLE_REG_P (tmp) = 1;
1901 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1902 }
1903 /* Look for things that can throw exceptions, and record them. */
1904 if (state->cur_region && stmt_could_throw_p (stmt))
1905 {
1906 record_stmt_eh_region (state->cur_region, stmt);
1907 note_eh_region_may_contain_throw (state->cur_region);
1908 }
1909 break;
1910
1911 case GIMPLE_COND:
1912 case GIMPLE_GOTO:
1913 case GIMPLE_RETURN:
1914 maybe_record_in_goto_queue (state, stmt);
1915 break;
1916
1917 case GIMPLE_SWITCH:
1918 verify_norecord_switch_expr (state, stmt);
1919 break;
1920
1921 case GIMPLE_TRY:
1922 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1923 replace = lower_try_finally (state, stmt);
1924 else
1925 {
1926 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1927 if (!x)
1928 {
1929 replace = gimple_try_eval (stmt);
1930 lower_eh_constructs_1 (state, replace);
1931 }
1932 else
1933 switch (gimple_code (x))
1934 {
1935 case GIMPLE_CATCH:
1936 replace = lower_catch (state, stmt);
1937 break;
1938 case GIMPLE_EH_FILTER:
1939 replace = lower_eh_filter (state, stmt);
1940 break;
1941 case GIMPLE_EH_MUST_NOT_THROW:
1942 replace = lower_eh_must_not_throw (state, stmt);
1943 break;
1944 default:
1945 replace = lower_cleanup (state, stmt);
1946 break;
1947 }
1948 }
1949
1950 /* Remove the old stmt and insert the transformed sequence
1951 instead. */
1952 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1953 gsi_remove (gsi, true);
1954
1955 /* Return since we don't want gsi_next () */
1956 return;
1957
1958 default:
1959 /* A type, a decl, or some kind of statement that we're not
1960 interested in. Don't walk them. */
1961 break;
1962 }
1963
1964 gsi_next (gsi);
1965 }
1966
1967 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1968
1969 static void
1970 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1971 {
1972 gimple_stmt_iterator gsi;
1973 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1974 lower_eh_constructs_2 (state, &gsi);
1975 }
1976
1977 static unsigned int
1978 lower_eh_constructs (void)
1979 {
1980 struct leh_state null_state;
1981 gimple_seq bodyp;
1982
1983 bodyp = gimple_body (current_function_decl);
1984 if (bodyp == NULL)
1985 return 0;
1986
1987 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
1988 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
1989 memset (&null_state, 0, sizeof (null_state));
1990
1991 collect_finally_tree_1 (bodyp, NULL);
1992 lower_eh_constructs_1 (&null_state, bodyp);
1993
1994 /* We assume there's a return statement, or something, at the end of
1995 the function, and thus ploping the EH sequence afterward won't
1996 change anything. */
1997 gcc_assert (!gimple_seq_may_fallthru (bodyp));
1998 gimple_seq_add_seq (&bodyp, eh_seq);
1999
2000 /* We assume that since BODYP already existed, adding EH_SEQ to it
2001 didn't change its value, and we don't have to re-set the function. */
2002 gcc_assert (bodyp == gimple_body (current_function_decl));
2003
2004 htab_delete (finally_tree);
2005 BITMAP_FREE (eh_region_may_contain_throw_map);
2006 eh_seq = NULL;
2007
2008 /* If this function needs a language specific EH personality routine
2009 and the frontend didn't already set one do so now. */
2010 if (function_needs_eh_personality (cfun) == eh_personality_lang
2011 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2012 DECL_FUNCTION_PERSONALITY (current_function_decl)
2013 = lang_hooks.eh_personality ();
2014
2015 return 0;
2016 }
2017
2018 struct gimple_opt_pass pass_lower_eh =
2019 {
2020 {
2021 GIMPLE_PASS,
2022 "eh", /* name */
2023 NULL, /* gate */
2024 lower_eh_constructs, /* execute */
2025 NULL, /* sub */
2026 NULL, /* next */
2027 0, /* static_pass_number */
2028 TV_TREE_EH, /* tv_id */
2029 PROP_gimple_lcf, /* properties_required */
2030 PROP_gimple_leh, /* properties_provided */
2031 0, /* properties_destroyed */
2032 0, /* todo_flags_start */
2033 TODO_dump_func /* todo_flags_finish */
2034 }
2035 };
2036 \f
2037 /* Create the multiple edges from an EH_DISPATCH statement to all of
2038 the possible handlers for its EH region. Return true if there's
2039 no fallthru edge; false if there is. */
2040
2041 bool
2042 make_eh_dispatch_edges (gimple stmt)
2043 {
2044 eh_region r;
2045 eh_catch c;
2046 basic_block src, dst;
2047
2048 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2049 src = gimple_bb (stmt);
2050
2051 switch (r->type)
2052 {
2053 case ERT_TRY:
2054 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2055 {
2056 dst = label_to_block (c->label);
2057 make_edge (src, dst, 0);
2058
2059 /* A catch-all handler doesn't have a fallthru. */
2060 if (c->type_list == NULL)
2061 return false;
2062 }
2063 break;
2064
2065 case ERT_ALLOWED_EXCEPTIONS:
2066 dst = label_to_block (r->u.allowed.label);
2067 make_edge (src, dst, 0);
2068 break;
2069
2070 default:
2071 gcc_unreachable ();
2072 }
2073
2074 return true;
2075 }
2076
2077 /* Create the single EH edge from STMT to its nearest landing pad,
2078 if there is such a landing pad within the current function. */
2079
2080 void
2081 make_eh_edges (gimple stmt)
2082 {
2083 basic_block src, dst;
2084 eh_landing_pad lp;
2085 int lp_nr;
2086
2087 lp_nr = lookup_stmt_eh_lp (stmt);
2088 if (lp_nr <= 0)
2089 return;
2090
2091 lp = get_eh_landing_pad_from_number (lp_nr);
2092 gcc_assert (lp != NULL);
2093
2094 src = gimple_bb (stmt);
2095 dst = label_to_block (lp->post_landing_pad);
2096 make_edge (src, dst, EDGE_EH);
2097 }
2098
2099 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2100 do not actually perform the final edge redirection.
2101
2102 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2103 we intend to change the destination EH region as well; this means
2104 EH_LANDING_PAD_NR must already be set on the destination block label.
2105 If false, we're being called from generic cfg manipulation code and we
2106 should preserve our place within the region tree. */
2107
2108 static void
2109 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2110 {
2111 eh_landing_pad old_lp, new_lp;
2112 basic_block old_bb;
2113 gimple throw_stmt;
2114 int old_lp_nr, new_lp_nr;
2115 tree old_label, new_label;
2116 edge_iterator ei;
2117 edge e;
2118
2119 old_bb = edge_in->dest;
2120 old_label = gimple_block_label (old_bb);
2121 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2122 gcc_assert (old_lp_nr > 0);
2123 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2124
2125 throw_stmt = last_stmt (edge_in->src);
2126 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2127
2128 new_label = gimple_block_label (new_bb);
2129
2130 /* Look for an existing region that might be using NEW_BB already. */
2131 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2132 if (new_lp_nr)
2133 {
2134 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2135 gcc_assert (new_lp);
2136
2137 /* Unless CHANGE_REGION is true, the new and old landing pad
2138 had better be associated with the same EH region. */
2139 gcc_assert (change_region || new_lp->region == old_lp->region);
2140 }
2141 else
2142 {
2143 new_lp = NULL;
2144 gcc_assert (!change_region);
2145 }
2146
2147 /* Notice when we redirect the last EH edge away from OLD_BB. */
2148 FOR_EACH_EDGE (e, ei, old_bb->preds)
2149 if (e != edge_in && (e->flags & EDGE_EH))
2150 break;
2151
2152 if (new_lp)
2153 {
2154 /* NEW_LP already exists. If there are still edges into OLD_LP,
2155 there's nothing to do with the EH tree. If there are no more
2156 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2157 If CHANGE_REGION is true, then our caller is expecting to remove
2158 the landing pad. */
2159 if (e == NULL && !change_region)
2160 remove_eh_landing_pad (old_lp);
2161 }
2162 else
2163 {
2164 /* No correct landing pad exists. If there are no more edges
2165 into OLD_LP, then we can simply re-use the existing landing pad.
2166 Otherwise, we have to create a new landing pad. */
2167 if (e == NULL)
2168 {
2169 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2170 new_lp = old_lp;
2171 }
2172 else
2173 new_lp = gen_eh_landing_pad (old_lp->region);
2174 new_lp->post_landing_pad = new_label;
2175 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2176 }
2177
2178 /* Maybe move the throwing statement to the new region. */
2179 if (old_lp != new_lp)
2180 {
2181 remove_stmt_from_eh_lp (throw_stmt);
2182 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2183 }
2184 }
2185
2186 /* Redirect EH edge E to NEW_BB. */
2187
2188 edge
2189 redirect_eh_edge (edge edge_in, basic_block new_bb)
2190 {
2191 redirect_eh_edge_1 (edge_in, new_bb, false);
2192 return ssa_redirect_edge (edge_in, new_bb);
2193 }
2194
2195 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2196 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2197 The actual edge update will happen in the caller. */
2198
2199 void
2200 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2201 {
2202 tree new_lab = gimple_block_label (new_bb);
2203 bool any_changed = false;
2204 basic_block old_bb;
2205 eh_region r;
2206 eh_catch c;
2207
2208 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2209 switch (r->type)
2210 {
2211 case ERT_TRY:
2212 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2213 {
2214 old_bb = label_to_block (c->label);
2215 if (old_bb == e->dest)
2216 {
2217 c->label = new_lab;
2218 any_changed = true;
2219 }
2220 }
2221 break;
2222
2223 case ERT_ALLOWED_EXCEPTIONS:
2224 old_bb = label_to_block (r->u.allowed.label);
2225 gcc_assert (old_bb == e->dest);
2226 r->u.allowed.label = new_lab;
2227 any_changed = true;
2228 break;
2229
2230 default:
2231 gcc_unreachable ();
2232 }
2233
2234 gcc_assert (any_changed);
2235 }
2236 \f
2237 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2238
2239 bool
2240 operation_could_trap_helper_p (enum tree_code op,
2241 bool fp_operation,
2242 bool honor_trapv,
2243 bool honor_nans,
2244 bool honor_snans,
2245 tree divisor,
2246 bool *handled)
2247 {
2248 *handled = true;
2249 switch (op)
2250 {
2251 case TRUNC_DIV_EXPR:
2252 case CEIL_DIV_EXPR:
2253 case FLOOR_DIV_EXPR:
2254 case ROUND_DIV_EXPR:
2255 case EXACT_DIV_EXPR:
2256 case CEIL_MOD_EXPR:
2257 case FLOOR_MOD_EXPR:
2258 case ROUND_MOD_EXPR:
2259 case TRUNC_MOD_EXPR:
2260 case RDIV_EXPR:
2261 if (honor_snans || honor_trapv)
2262 return true;
2263 if (fp_operation)
2264 return flag_trapping_math;
2265 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2266 return true;
2267 return false;
2268
2269 case LT_EXPR:
2270 case LE_EXPR:
2271 case GT_EXPR:
2272 case GE_EXPR:
2273 case LTGT_EXPR:
2274 /* Some floating point comparisons may trap. */
2275 return honor_nans;
2276
2277 case EQ_EXPR:
2278 case NE_EXPR:
2279 case UNORDERED_EXPR:
2280 case ORDERED_EXPR:
2281 case UNLT_EXPR:
2282 case UNLE_EXPR:
2283 case UNGT_EXPR:
2284 case UNGE_EXPR:
2285 case UNEQ_EXPR:
2286 return honor_snans;
2287
2288 case CONVERT_EXPR:
2289 case FIX_TRUNC_EXPR:
2290 /* Conversion of floating point might trap. */
2291 return honor_nans;
2292
2293 case NEGATE_EXPR:
2294 case ABS_EXPR:
2295 case CONJ_EXPR:
2296 /* These operations don't trap with floating point. */
2297 if (honor_trapv)
2298 return true;
2299 return false;
2300
2301 case PLUS_EXPR:
2302 case MINUS_EXPR:
2303 case MULT_EXPR:
2304 /* Any floating arithmetic may trap. */
2305 if (fp_operation && flag_trapping_math)
2306 return true;
2307 if (honor_trapv)
2308 return true;
2309 return false;
2310
2311 default:
2312 /* Any floating arithmetic may trap. */
2313 if (fp_operation && flag_trapping_math)
2314 return true;
2315
2316 *handled = false;
2317 return false;
2318 }
2319 }
2320
2321 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2322 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2323 type operands that may trap. If OP is a division operator, DIVISOR contains
2324 the value of the divisor. */
2325
2326 bool
2327 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2328 tree divisor)
2329 {
2330 bool honor_nans = (fp_operation && flag_trapping_math
2331 && !flag_finite_math_only);
2332 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2333 bool handled;
2334
2335 if (TREE_CODE_CLASS (op) != tcc_comparison
2336 && TREE_CODE_CLASS (op) != tcc_unary
2337 && TREE_CODE_CLASS (op) != tcc_binary)
2338 return false;
2339
2340 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2341 honor_nans, honor_snans, divisor,
2342 &handled);
2343 }
2344
2345 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2346 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2347 This routine expects only GIMPLE lhs or rhs input. */
2348
2349 bool
2350 tree_could_trap_p (tree expr)
2351 {
2352 enum tree_code code;
2353 bool fp_operation = false;
2354 bool honor_trapv = false;
2355 tree t, base, div = NULL_TREE;
2356
2357 if (!expr)
2358 return false;
2359
2360 code = TREE_CODE (expr);
2361 t = TREE_TYPE (expr);
2362
2363 if (t)
2364 {
2365 if (COMPARISON_CLASS_P (expr))
2366 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2367 else
2368 fp_operation = FLOAT_TYPE_P (t);
2369 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2370 }
2371
2372 if (TREE_CODE_CLASS (code) == tcc_binary)
2373 div = TREE_OPERAND (expr, 1);
2374 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2375 return true;
2376
2377 restart:
2378 switch (code)
2379 {
2380 case TARGET_MEM_REF:
2381 /* For TARGET_MEM_REFs use the information based on the original
2382 reference. */
2383 expr = TMR_ORIGINAL (expr);
2384 code = TREE_CODE (expr);
2385 goto restart;
2386
2387 case COMPONENT_REF:
2388 case REALPART_EXPR:
2389 case IMAGPART_EXPR:
2390 case BIT_FIELD_REF:
2391 case VIEW_CONVERT_EXPR:
2392 case WITH_SIZE_EXPR:
2393 expr = TREE_OPERAND (expr, 0);
2394 code = TREE_CODE (expr);
2395 goto restart;
2396
2397 case ARRAY_RANGE_REF:
2398 base = TREE_OPERAND (expr, 0);
2399 if (tree_could_trap_p (base))
2400 return true;
2401 if (TREE_THIS_NOTRAP (expr))
2402 return false;
2403 return !range_in_array_bounds_p (expr);
2404
2405 case ARRAY_REF:
2406 base = TREE_OPERAND (expr, 0);
2407 if (tree_could_trap_p (base))
2408 return true;
2409 if (TREE_THIS_NOTRAP (expr))
2410 return false;
2411 return !in_array_bounds_p (expr);
2412
2413 case INDIRECT_REF:
2414 case ALIGN_INDIRECT_REF:
2415 case MISALIGNED_INDIRECT_REF:
2416 return !TREE_THIS_NOTRAP (expr);
2417
2418 case ASM_EXPR:
2419 return TREE_THIS_VOLATILE (expr);
2420
2421 case CALL_EXPR:
2422 t = get_callee_fndecl (expr);
2423 /* Assume that calls to weak functions may trap. */
2424 if (!t || !DECL_P (t) || DECL_WEAK (t))
2425 return true;
2426 return false;
2427
2428 default:
2429 return false;
2430 }
2431 }
2432
2433
2434 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2435 an assignment or a conditional) may throw. */
2436
2437 static bool
2438 stmt_could_throw_1_p (gimple stmt)
2439 {
2440 enum tree_code code = gimple_expr_code (stmt);
2441 bool honor_nans = false;
2442 bool honor_snans = false;
2443 bool fp_operation = false;
2444 bool honor_trapv = false;
2445 tree t;
2446 size_t i;
2447 bool handled, ret;
2448
2449 if (TREE_CODE_CLASS (code) == tcc_comparison
2450 || TREE_CODE_CLASS (code) == tcc_unary
2451 || TREE_CODE_CLASS (code) == tcc_binary)
2452 {
2453 t = gimple_expr_type (stmt);
2454 fp_operation = FLOAT_TYPE_P (t);
2455 if (fp_operation)
2456 {
2457 honor_nans = flag_trapping_math && !flag_finite_math_only;
2458 honor_snans = flag_signaling_nans != 0;
2459 }
2460 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2461 honor_trapv = true;
2462 }
2463
2464 /* Check if the main expression may trap. */
2465 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2466 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2467 honor_nans, honor_snans, t,
2468 &handled);
2469 if (handled)
2470 return ret;
2471
2472 /* If the expression does not trap, see if any of the individual operands may
2473 trap. */
2474 for (i = 0; i < gimple_num_ops (stmt); i++)
2475 if (tree_could_trap_p (gimple_op (stmt, i)))
2476 return true;
2477
2478 return false;
2479 }
2480
2481
2482 /* Return true if statement STMT could throw an exception. */
2483
2484 bool
2485 stmt_could_throw_p (gimple stmt)
2486 {
2487 if (!flag_exceptions)
2488 return false;
2489
2490 /* The only statements that can throw an exception are assignments,
2491 conditionals, calls, resx, and asms. */
2492 switch (gimple_code (stmt))
2493 {
2494 case GIMPLE_RESX:
2495 return true;
2496
2497 case GIMPLE_CALL:
2498 return !gimple_call_nothrow_p (stmt);
2499
2500 case GIMPLE_ASSIGN:
2501 case GIMPLE_COND:
2502 if (!flag_non_call_exceptions)
2503 return false;
2504 return stmt_could_throw_1_p (stmt);
2505
2506 case GIMPLE_ASM:
2507 if (!flag_non_call_exceptions)
2508 return false;
2509 return gimple_asm_volatile_p (stmt);
2510
2511 default:
2512 return false;
2513 }
2514 }
2515
2516
2517 /* Return true if expression T could throw an exception. */
2518
2519 bool
2520 tree_could_throw_p (tree t)
2521 {
2522 if (!flag_exceptions)
2523 return false;
2524 if (TREE_CODE (t) == MODIFY_EXPR)
2525 {
2526 if (flag_non_call_exceptions
2527 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2528 return true;
2529 t = TREE_OPERAND (t, 1);
2530 }
2531
2532 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2533 t = TREE_OPERAND (t, 0);
2534 if (TREE_CODE (t) == CALL_EXPR)
2535 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2536 if (flag_non_call_exceptions)
2537 return tree_could_trap_p (t);
2538 return false;
2539 }
2540
2541 /* Return true if STMT can throw an exception that is not caught within
2542 the current function (CFUN). */
2543
2544 bool
2545 stmt_can_throw_external (gimple stmt)
2546 {
2547 int lp_nr;
2548
2549 if (!stmt_could_throw_p (stmt))
2550 return false;
2551
2552 lp_nr = lookup_stmt_eh_lp (stmt);
2553 return lp_nr == 0;
2554 }
2555
2556 /* Return true if STMT can throw an exception that is caught within
2557 the current function (CFUN). */
2558
2559 bool
2560 stmt_can_throw_internal (gimple stmt)
2561 {
2562 int lp_nr;
2563
2564 if (!stmt_could_throw_p (stmt))
2565 return false;
2566
2567 lp_nr = lookup_stmt_eh_lp (stmt);
2568 return lp_nr > 0;
2569 }
2570
2571 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2572 remove any entry it might have from the EH table. Return true if
2573 any change was made. */
2574
2575 bool
2576 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2577 {
2578 if (stmt_could_throw_p (stmt))
2579 return false;
2580 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2581 }
2582
2583 /* Likewise, but always use the current function. */
2584
2585 bool
2586 maybe_clean_eh_stmt (gimple stmt)
2587 {
2588 return maybe_clean_eh_stmt_fn (cfun, stmt);
2589 }
2590
2591 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2592 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2593 in the table if it should be in there. Return TRUE if a replacement was
2594 done that my require an EH edge purge. */
2595
2596 bool
2597 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2598 {
2599 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2600
2601 if (lp_nr != 0)
2602 {
2603 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2604
2605 if (new_stmt == old_stmt && new_stmt_could_throw)
2606 return false;
2607
2608 remove_stmt_from_eh_lp (old_stmt);
2609 if (new_stmt_could_throw)
2610 {
2611 add_stmt_to_eh_lp (new_stmt, lp_nr);
2612 return false;
2613 }
2614 else
2615 return true;
2616 }
2617
2618 return false;
2619 }
2620
2621 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2622 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2623 operand is the return value of duplicate_eh_regions. */
2624
2625 bool
2626 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2627 struct function *old_fun, gimple old_stmt,
2628 struct pointer_map_t *map, int default_lp_nr)
2629 {
2630 int old_lp_nr, new_lp_nr;
2631 void **slot;
2632
2633 if (!stmt_could_throw_p (new_stmt))
2634 return false;
2635
2636 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2637 if (old_lp_nr == 0)
2638 {
2639 if (default_lp_nr == 0)
2640 return false;
2641 new_lp_nr = default_lp_nr;
2642 }
2643 else if (old_lp_nr > 0)
2644 {
2645 eh_landing_pad old_lp, new_lp;
2646
2647 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2648 slot = pointer_map_contains (map, old_lp);
2649 new_lp = (eh_landing_pad) *slot;
2650 new_lp_nr = new_lp->index;
2651 }
2652 else
2653 {
2654 eh_region old_r, new_r;
2655
2656 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2657 slot = pointer_map_contains (map, old_r);
2658 new_r = (eh_region) *slot;
2659 new_lp_nr = -new_r->index;
2660 }
2661
2662 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2663 return true;
2664 }
2665
2666 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2667 and thus no remapping is required. */
2668
2669 bool
2670 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2671 {
2672 int lp_nr;
2673
2674 if (!stmt_could_throw_p (new_stmt))
2675 return false;
2676
2677 lp_nr = lookup_stmt_eh_lp (old_stmt);
2678 if (lp_nr == 0)
2679 return false;
2680
2681 add_stmt_to_eh_lp (new_stmt, lp_nr);
2682 return true;
2683 }
2684 \f
2685 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2686 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2687 this only handles handlers consisting of a single call, as that's the
2688 important case for C++: a destructor call for a particular object showing
2689 up in multiple handlers. */
2690
2691 static bool
2692 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2693 {
2694 gimple_stmt_iterator gsi;
2695 gimple ones, twos;
2696 unsigned int ai;
2697
2698 gsi = gsi_start (oneh);
2699 if (!gsi_one_before_end_p (gsi))
2700 return false;
2701 ones = gsi_stmt (gsi);
2702
2703 gsi = gsi_start (twoh);
2704 if (!gsi_one_before_end_p (gsi))
2705 return false;
2706 twos = gsi_stmt (gsi);
2707
2708 if (!is_gimple_call (ones)
2709 || !is_gimple_call (twos)
2710 || gimple_call_lhs (ones)
2711 || gimple_call_lhs (twos)
2712 || gimple_call_chain (ones)
2713 || gimple_call_chain (twos)
2714 || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2715 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2716 return false;
2717
2718 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2719 if (!operand_equal_p (gimple_call_arg (ones, ai),
2720 gimple_call_arg (twos, ai), 0))
2721 return false;
2722
2723 return true;
2724 }
2725
2726 /* Optimize
2727 try { A() } finally { try { ~B() } catch { ~A() } }
2728 try { ... } finally { ~A() }
2729 into
2730 try { A() } catch { ~B() }
2731 try { ~B() ... } finally { ~A() }
2732
2733 This occurs frequently in C++, where A is a local variable and B is a
2734 temporary used in the initializer for A. */
2735
2736 static void
2737 optimize_double_finally (gimple one, gimple two)
2738 {
2739 gimple oneh;
2740 gimple_stmt_iterator gsi;
2741
2742 gsi = gsi_start (gimple_try_cleanup (one));
2743 if (!gsi_one_before_end_p (gsi))
2744 return;
2745
2746 oneh = gsi_stmt (gsi);
2747 if (gimple_code (oneh) != GIMPLE_TRY
2748 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2749 return;
2750
2751 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2752 {
2753 gimple_seq seq = gimple_try_eval (oneh);
2754
2755 gimple_try_set_cleanup (one, seq);
2756 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2757 seq = copy_gimple_seq_and_replace_locals (seq);
2758 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2759 gimple_try_set_eval (two, seq);
2760 }
2761 }
2762
2763 /* Perform EH refactoring optimizations that are simpler to do when code
2764 flow has been lowered but EH structures haven't. */
2765
2766 static void
2767 refactor_eh_r (gimple_seq seq)
2768 {
2769 gimple_stmt_iterator gsi;
2770 gimple one, two;
2771
2772 one = NULL;
2773 two = NULL;
2774 gsi = gsi_start (seq);
2775 while (1)
2776 {
2777 one = two;
2778 if (gsi_end_p (gsi))
2779 two = NULL;
2780 else
2781 two = gsi_stmt (gsi);
2782 if (one
2783 && two
2784 && gimple_code (one) == GIMPLE_TRY
2785 && gimple_code (two) == GIMPLE_TRY
2786 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2787 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2788 optimize_double_finally (one, two);
2789 if (one)
2790 switch (gimple_code (one))
2791 {
2792 case GIMPLE_TRY:
2793 refactor_eh_r (gimple_try_eval (one));
2794 refactor_eh_r (gimple_try_cleanup (one));
2795 break;
2796 case GIMPLE_CATCH:
2797 refactor_eh_r (gimple_catch_handler (one));
2798 break;
2799 case GIMPLE_EH_FILTER:
2800 refactor_eh_r (gimple_eh_filter_failure (one));
2801 break;
2802 default:
2803 break;
2804 }
2805 if (two)
2806 gsi_next (&gsi);
2807 else
2808 break;
2809 }
2810 }
2811
2812 static unsigned
2813 refactor_eh (void)
2814 {
2815 refactor_eh_r (gimple_body (current_function_decl));
2816 return 0;
2817 }
2818
2819 static bool
2820 gate_refactor_eh (void)
2821 {
2822 return flag_exceptions != 0;
2823 }
2824
2825 struct gimple_opt_pass pass_refactor_eh =
2826 {
2827 {
2828 GIMPLE_PASS,
2829 "ehopt", /* name */
2830 gate_refactor_eh, /* gate */
2831 refactor_eh, /* execute */
2832 NULL, /* sub */
2833 NULL, /* next */
2834 0, /* static_pass_number */
2835 TV_TREE_EH, /* tv_id */
2836 PROP_gimple_lcf, /* properties_required */
2837 0, /* properties_provided */
2838 0, /* properties_destroyed */
2839 0, /* todo_flags_start */
2840 TODO_dump_func /* todo_flags_finish */
2841 }
2842 };
2843 \f
2844 /* At the end of gimple optimization, we can lower RESX. */
2845
2846 static bool
2847 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2848 {
2849 int lp_nr;
2850 eh_region src_r, dst_r;
2851 gimple_stmt_iterator gsi;
2852 gimple x;
2853 tree fn, src_nr;
2854 bool ret = false;
2855
2856 lp_nr = lookup_stmt_eh_lp (stmt);
2857 if (lp_nr != 0)
2858 dst_r = get_eh_region_from_lp_number (lp_nr);
2859 else
2860 dst_r = NULL;
2861
2862 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2863 gsi = gsi_last_bb (bb);
2864
2865 if (src_r == NULL)
2866 {
2867 /* We can wind up with no source region when pass_cleanup_eh shows
2868 that there are no entries into an eh region and deletes it, but
2869 then the block that contains the resx isn't removed. This can
2870 happen without optimization when the switch statement created by
2871 lower_try_finally_switch isn't simplified to remove the eh case.
2872
2873 Resolve this by expanding the resx node to an abort. */
2874
2875 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2876 x = gimple_build_call (fn, 0);
2877 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2878
2879 while (EDGE_COUNT (bb->succs) > 0)
2880 remove_edge (EDGE_SUCC (bb, 0));
2881 }
2882 else if (dst_r)
2883 {
2884 /* When we have a destination region, we resolve this by copying
2885 the excptr and filter values into place, and changing the edge
2886 to immediately after the landing pad. */
2887 edge e;
2888
2889 if (lp_nr < 0)
2890 {
2891 basic_block new_bb;
2892 void **slot;
2893 tree lab;
2894
2895 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2896 the failure decl into a new block, if needed. */
2897 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2898
2899 slot = pointer_map_contains (mnt_map, dst_r);
2900 if (slot == NULL)
2901 {
2902 gimple_stmt_iterator gsi2;
2903
2904 new_bb = create_empty_bb (bb);
2905 lab = gimple_block_label (new_bb);
2906 gsi2 = gsi_start_bb (new_bb);
2907
2908 fn = dst_r->u.must_not_throw.failure_decl;
2909 x = gimple_build_call (fn, 0);
2910 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2911 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2912
2913 slot = pointer_map_insert (mnt_map, dst_r);
2914 *slot = lab;
2915 }
2916 else
2917 {
2918 lab = (tree) *slot;
2919 new_bb = label_to_block (lab);
2920 }
2921
2922 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2923 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2924 e->count = bb->count;
2925 e->probability = REG_BR_PROB_BASE;
2926 }
2927 else
2928 {
2929 edge_iterator ei;
2930 tree dst_nr = build_int_cst (NULL, dst_r->index);
2931
2932 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2933 src_nr = build_int_cst (NULL, src_r->index);
2934 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2935 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2936
2937 /* Update the flags for the outgoing edge. */
2938 e = single_succ_edge (bb);
2939 gcc_assert (e->flags & EDGE_EH);
2940 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2941
2942 /* If there are no more EH users of the landing pad, delete it. */
2943 FOR_EACH_EDGE (e, ei, e->dest->preds)
2944 if (e->flags & EDGE_EH)
2945 break;
2946 if (e == NULL)
2947 {
2948 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2949 remove_eh_landing_pad (lp);
2950 }
2951 }
2952
2953 ret = true;
2954 }
2955 else
2956 {
2957 tree var;
2958
2959 /* When we don't have a destination region, this exception escapes
2960 up the call chain. We resolve this by generating a call to the
2961 _Unwind_Resume library function. */
2962
2963 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2964 with no arguments for C++ and Java. Check for that. */
2965 if (src_r->use_cxa_end_cleanup)
2966 {
2967 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2968 x = gimple_build_call (fn, 0);
2969 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2970 }
2971 else
2972 {
2973 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
2974 src_nr = build_int_cst (NULL, src_r->index);
2975 x = gimple_build_call (fn, 1, src_nr);
2976 var = create_tmp_var (ptr_type_node, NULL);
2977 var = make_ssa_name (var, x);
2978 gimple_call_set_lhs (x, var);
2979 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2980
2981 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
2982 x = gimple_build_call (fn, 1, var);
2983 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2984 }
2985
2986 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2987 }
2988
2989 gsi_remove (&gsi, true);
2990
2991 return ret;
2992 }
2993
2994 static unsigned
2995 execute_lower_resx (void)
2996 {
2997 basic_block bb;
2998 struct pointer_map_t *mnt_map;
2999 bool dominance_invalidated = false;
3000 bool any_rewritten = false;
3001
3002 mnt_map = pointer_map_create ();
3003
3004 FOR_EACH_BB (bb)
3005 {
3006 gimple last = last_stmt (bb);
3007 if (last && is_gimple_resx (last))
3008 {
3009 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3010 any_rewritten = true;
3011 }
3012 }
3013
3014 pointer_map_destroy (mnt_map);
3015
3016 if (dominance_invalidated)
3017 {
3018 free_dominance_info (CDI_DOMINATORS);
3019 free_dominance_info (CDI_POST_DOMINATORS);
3020 }
3021
3022 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3023 }
3024
3025 static bool
3026 gate_lower_resx (void)
3027 {
3028 return flag_exceptions != 0;
3029 }
3030
3031 struct gimple_opt_pass pass_lower_resx =
3032 {
3033 {
3034 GIMPLE_PASS,
3035 "resx", /* name */
3036 gate_lower_resx, /* gate */
3037 execute_lower_resx, /* execute */
3038 NULL, /* sub */
3039 NULL, /* next */
3040 0, /* static_pass_number */
3041 TV_TREE_EH, /* tv_id */
3042 PROP_gimple_lcf, /* properties_required */
3043 0, /* properties_provided */
3044 0, /* properties_destroyed */
3045 0, /* todo_flags_start */
3046 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3047 }
3048 };
3049
3050
3051 /* At the end of inlining, we can lower EH_DISPATCH. */
3052
3053 static void
3054 lower_eh_dispatch (basic_block src, gimple stmt)
3055 {
3056 gimple_stmt_iterator gsi;
3057 int region_nr;
3058 eh_region r;
3059 tree filter, fn;
3060 gimple x;
3061
3062 region_nr = gimple_eh_dispatch_region (stmt);
3063 r = get_eh_region_from_number (region_nr);
3064
3065 gsi = gsi_last_bb (src);
3066
3067 switch (r->type)
3068 {
3069 case ERT_TRY:
3070 {
3071 VEC (tree, heap) *labels = NULL;
3072 tree default_label = NULL;
3073 eh_catch c;
3074 edge_iterator ei;
3075 edge e;
3076
3077 /* Collect the labels for a switch. Zero the post_landing_pad
3078 field becase we'll no longer have anything keeping these labels
3079 in existance and the optimizer will be free to merge these
3080 blocks at will. */
3081 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3082 {
3083 tree tp_node, flt_node, lab = c->label;
3084
3085 c->label = NULL;
3086 tp_node = c->type_list;
3087 flt_node = c->filter_list;
3088
3089 if (tp_node == NULL)
3090 {
3091 default_label = lab;
3092 break;
3093 }
3094 do
3095 {
3096 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3097 TREE_VALUE (flt_node), NULL, lab);
3098 VEC_safe_push (tree, heap, labels, t);
3099
3100 tp_node = TREE_CHAIN (tp_node);
3101 flt_node = TREE_CHAIN (flt_node);
3102 }
3103 while (tp_node);
3104 }
3105
3106 /* Clean up the edge flags. */
3107 FOR_EACH_EDGE (e, ei, src->succs)
3108 {
3109 if (e->flags & EDGE_FALLTHRU)
3110 {
3111 /* If there was no catch-all, use the fallthru edge. */
3112 if (default_label == NULL)
3113 default_label = gimple_block_label (e->dest);
3114 e->flags &= ~EDGE_FALLTHRU;
3115 }
3116 }
3117 gcc_assert (default_label != NULL);
3118
3119 /* Don't generate a switch if there's only a default case.
3120 This is common in the form of try { A; } catch (...) { B; }. */
3121 if (labels == NULL)
3122 {
3123 e = single_succ_edge (src);
3124 e->flags |= EDGE_FALLTHRU;
3125 }
3126 else
3127 {
3128 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3129 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3130 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3131 filter = make_ssa_name (filter, x);
3132 gimple_call_set_lhs (x, filter);
3133 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3134
3135 /* Turn the default label into a default case. */
3136 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3137 NULL, NULL, default_label);
3138 sort_case_labels (labels);
3139
3140 x = gimple_build_switch_vec (filter, default_label, labels);
3141 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3142
3143 VEC_free (tree, heap, labels);
3144 }
3145 }
3146 break;
3147
3148 case ERT_ALLOWED_EXCEPTIONS:
3149 {
3150 edge b_e = BRANCH_EDGE (src);
3151 edge f_e = FALLTHRU_EDGE (src);
3152
3153 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3154 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3155 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3156 filter = make_ssa_name (filter, x);
3157 gimple_call_set_lhs (x, filter);
3158 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3159
3160 r->u.allowed.label = NULL;
3161 x = gimple_build_cond (EQ_EXPR, filter,
3162 build_int_cst (TREE_TYPE (filter),
3163 r->u.allowed.filter),
3164 NULL_TREE, NULL_TREE);
3165 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3166
3167 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3168 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3169 }
3170 break;
3171
3172 default:
3173 gcc_unreachable ();
3174 }
3175
3176 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3177 gsi_remove (&gsi, true);
3178 }
3179
3180 static unsigned
3181 execute_lower_eh_dispatch (void)
3182 {
3183 basic_block bb;
3184 bool any_rewritten = false;
3185
3186 assign_filter_values ();
3187
3188 FOR_EACH_BB (bb)
3189 {
3190 gimple last = last_stmt (bb);
3191 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3192 {
3193 lower_eh_dispatch (bb, last);
3194 any_rewritten = true;
3195 }
3196 }
3197
3198 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3199 }
3200
3201 static bool
3202 gate_lower_eh_dispatch (void)
3203 {
3204 return cfun->eh->region_tree != NULL;
3205 }
3206
3207 struct gimple_opt_pass pass_lower_eh_dispatch =
3208 {
3209 {
3210 GIMPLE_PASS,
3211 "ehdisp", /* name */
3212 gate_lower_eh_dispatch, /* gate */
3213 execute_lower_eh_dispatch, /* execute */
3214 NULL, /* sub */
3215 NULL, /* next */
3216 0, /* static_pass_number */
3217 TV_TREE_EH, /* tv_id */
3218 PROP_gimple_lcf, /* properties_required */
3219 0, /* properties_provided */
3220 0, /* properties_destroyed */
3221 0, /* todo_flags_start */
3222 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3223 }
3224 };
3225 \f
3226 /* Walk statements, see what regions are really referenced and remove
3227 those that are unused. */
3228
3229 static void
3230 remove_unreachable_handlers (void)
3231 {
3232 sbitmap r_reachable, lp_reachable;
3233 eh_region region;
3234 eh_landing_pad lp;
3235 basic_block bb;
3236 int lp_nr, r_nr;
3237
3238 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3239 lp_reachable
3240 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3241 sbitmap_zero (r_reachable);
3242 sbitmap_zero (lp_reachable);
3243
3244 FOR_EACH_BB (bb)
3245 {
3246 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3247
3248 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3249 {
3250 gimple stmt = gsi_stmt (gsi);
3251 lp_nr = lookup_stmt_eh_lp (stmt);
3252
3253 /* Negative LP numbers are MUST_NOT_THROW regions which
3254 are not considered BB enders. */
3255 if (lp_nr < 0)
3256 SET_BIT (r_reachable, -lp_nr);
3257
3258 /* Positive LP numbers are real landing pads, are are BB enders. */
3259 else if (lp_nr > 0)
3260 {
3261 gcc_assert (gsi_one_before_end_p (gsi));
3262 region = get_eh_region_from_lp_number (lp_nr);
3263 SET_BIT (r_reachable, region->index);
3264 SET_BIT (lp_reachable, lp_nr);
3265 }
3266 }
3267 }
3268
3269 if (dump_file)
3270 {
3271 fprintf (dump_file, "Before removal of unreachable regions:\n");
3272 dump_eh_tree (dump_file, cfun);
3273 fprintf (dump_file, "Reachable regions: ");
3274 dump_sbitmap_file (dump_file, r_reachable);
3275 fprintf (dump_file, "Reachable landing pads: ");
3276 dump_sbitmap_file (dump_file, lp_reachable);
3277 }
3278
3279 for (r_nr = 1;
3280 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3281 if (region && !TEST_BIT (r_reachable, r_nr))
3282 {
3283 if (dump_file)
3284 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3285 remove_eh_handler (region);
3286 }
3287
3288 for (lp_nr = 1;
3289 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3290 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3291 {
3292 if (dump_file)
3293 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3294 remove_eh_landing_pad (lp);
3295 }
3296
3297 if (dump_file)
3298 {
3299 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3300 dump_eh_tree (dump_file, cfun);
3301 fprintf (dump_file, "\n\n");
3302 }
3303
3304 sbitmap_free (r_reachable);
3305 sbitmap_free (lp_reachable);
3306
3307 #ifdef ENABLE_CHECKING
3308 verify_eh_tree (cfun);
3309 #endif
3310 }
3311
3312 /* Remove regions that do not have landing pads. This assumes
3313 that remove_unreachable_handlers has already been run, and
3314 that we've just manipulated the landing pads since then. */
3315
3316 static void
3317 remove_unreachable_handlers_no_lp (void)
3318 {
3319 eh_region r;
3320 int i;
3321
3322 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3323 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3324 {
3325 if (dump_file)
3326 fprintf (dump_file, "Removing unreachable region %d\n", i);
3327 remove_eh_handler (r);
3328 }
3329 }
3330
3331 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3332 optimisticaly split all sorts of edges, including EH edges. The
3333 optimization passes in between may not have needed them; if not,
3334 we should undo the split.
3335
3336 Recognize this case by having one EH edge incoming to the BB and
3337 one normal edge outgoing; BB should be empty apart from the
3338 post_landing_pad label.
3339
3340 Note that this is slightly different from the empty handler case
3341 handled by cleanup_empty_eh, in that the actual handler may yet
3342 have actual code but the landing pad has been separated from the
3343 handler. As such, cleanup_empty_eh relies on this transformation
3344 having been done first. */
3345
3346 static bool
3347 unsplit_eh (eh_landing_pad lp)
3348 {
3349 basic_block bb = label_to_block (lp->post_landing_pad);
3350 gimple_stmt_iterator gsi;
3351 edge e_in, e_out;
3352
3353 /* Quickly check the edge counts on BB for singularity. */
3354 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3355 return false;
3356 e_in = EDGE_PRED (bb, 0);
3357 e_out = EDGE_SUCC (bb, 0);
3358
3359 /* Input edge must be EH and output edge must be normal. */
3360 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3361 return false;
3362
3363 /* The block must be empty except for the labels. */
3364 if (!gsi_end_p (gsi_after_labels (bb)))
3365 return false;
3366
3367 /* The destination block must not already have a landing pad
3368 for a different region. */
3369 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3370 {
3371 gimple stmt = gsi_stmt (gsi);
3372 tree lab;
3373 int lp_nr;
3374
3375 if (gimple_code (stmt) != GIMPLE_LABEL)
3376 break;
3377 lab = gimple_label_label (stmt);
3378 lp_nr = EH_LANDING_PAD_NR (lab);
3379 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3380 return false;
3381 }
3382
3383 /* The new destination block must not already be a destination of
3384 the source block, lest we merge fallthru and eh edges and get
3385 all sorts of confused. */
3386 if (find_edge (e_in->src, e_out->dest))
3387 return false;
3388
3389 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3390 thought this should have been cleaned up by a phicprop pass, but
3391 that doesn't appear to handle virtuals. Propagate by hand. */
3392 if (!gimple_seq_empty_p (phi_nodes (bb)))
3393 {
3394 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3395 {
3396 gimple use_stmt, phi = gsi_stmt (gsi);
3397 tree lhs = gimple_phi_result (phi);
3398 tree rhs = gimple_phi_arg_def (phi, 0);
3399 use_operand_p use_p;
3400 imm_use_iterator iter;
3401
3402 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3403 {
3404 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3405 SET_USE (use_p, rhs);
3406 }
3407
3408 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3409 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3410
3411 remove_phi_node (&gsi, true);
3412 }
3413 }
3414
3415 if (dump_file && (dump_flags & TDF_DETAILS))
3416 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3417 lp->index, e_out->dest->index);
3418
3419 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3420 a successor edge, humor it. But do the real CFG change with the
3421 predecessor of E_OUT in order to preserve the ordering of arguments
3422 to the PHI nodes in E_OUT->DEST. */
3423 redirect_eh_edge_1 (e_in, e_out->dest, false);
3424 redirect_edge_pred (e_out, e_in->src);
3425 e_out->flags = e_in->flags;
3426 e_out->probability = e_in->probability;
3427 e_out->count = e_in->count;
3428 remove_edge (e_in);
3429
3430 return true;
3431 }
3432
3433 /* Examine each landing pad block and see if it matches unsplit_eh. */
3434
3435 static bool
3436 unsplit_all_eh (void)
3437 {
3438 bool changed = false;
3439 eh_landing_pad lp;
3440 int i;
3441
3442 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3443 if (lp)
3444 changed |= unsplit_eh (lp);
3445
3446 return changed;
3447 }
3448
3449 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3450 to OLD_BB to NEW_BB; return true on success, false on failure.
3451
3452 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3453 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3454 Virtual PHIs may be deleted and marked for renaming. */
3455
3456 static bool
3457 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3458 edge old_bb_out, bool change_region)
3459 {
3460 gimple_stmt_iterator ngsi, ogsi;
3461 edge_iterator ei;
3462 edge e;
3463 bitmap rename_virts;
3464 bitmap ophi_handled;
3465
3466 FOR_EACH_EDGE (e, ei, old_bb->preds)
3467 redirect_edge_var_map_clear (e);
3468
3469 ophi_handled = BITMAP_ALLOC (NULL);
3470 rename_virts = BITMAP_ALLOC (NULL);
3471
3472 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3473 for the edges we're going to move. */
3474 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3475 {
3476 gimple ophi, nphi = gsi_stmt (ngsi);
3477 tree nresult, nop;
3478
3479 nresult = gimple_phi_result (nphi);
3480 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3481
3482 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3483 the source ssa_name. */
3484 ophi = NULL;
3485 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3486 {
3487 ophi = gsi_stmt (ogsi);
3488 if (gimple_phi_result (ophi) == nop)
3489 break;
3490 ophi = NULL;
3491 }
3492
3493 /* If we did find the corresponding PHI, copy those inputs. */
3494 if (ophi)
3495 {
3496 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3497 FOR_EACH_EDGE (e, ei, old_bb->preds)
3498 {
3499 location_t oloc;
3500 tree oop;
3501
3502 if ((e->flags & EDGE_EH) == 0)
3503 continue;
3504 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3505 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3506 redirect_edge_var_map_add (e, nresult, oop, oloc);
3507 }
3508 }
3509 /* If we didn't find the PHI, but it's a VOP, remember to rename
3510 it later, assuming all other tests succeed. */
3511 else if (!is_gimple_reg (nresult))
3512 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3513 /* If we didn't find the PHI, and it's a real variable, we know
3514 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3515 variable is unchanged from input to the block and we can simply
3516 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3517 else
3518 {
3519 location_t nloc
3520 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3521 FOR_EACH_EDGE (e, ei, old_bb->preds)
3522 redirect_edge_var_map_add (e, nresult, nop, nloc);
3523 }
3524 }
3525
3526 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3527 we don't know what values from the other edges into NEW_BB to use. */
3528 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3529 {
3530 gimple ophi = gsi_stmt (ogsi);
3531 tree oresult = gimple_phi_result (ophi);
3532 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3533 goto fail;
3534 }
3535
3536 /* At this point we know that the merge will succeed. Remove the PHI
3537 nodes for the virtuals that we want to rename. */
3538 if (!bitmap_empty_p (rename_virts))
3539 {
3540 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3541 {
3542 gimple nphi = gsi_stmt (ngsi);
3543 tree nresult = gimple_phi_result (nphi);
3544 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3545 {
3546 mark_virtual_phi_result_for_renaming (nphi);
3547 remove_phi_node (&ngsi, true);
3548 }
3549 else
3550 gsi_next (&ngsi);
3551 }
3552 }
3553
3554 /* Finally, move the edges and update the PHIs. */
3555 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3556 if (e->flags & EDGE_EH)
3557 {
3558 redirect_eh_edge_1 (e, new_bb, change_region);
3559 redirect_edge_succ (e, new_bb);
3560 flush_pending_stmts (e);
3561 }
3562 else
3563 ei_next (&ei);
3564
3565 BITMAP_FREE (ophi_handled);
3566 BITMAP_FREE (rename_virts);
3567 return true;
3568
3569 fail:
3570 FOR_EACH_EDGE (e, ei, old_bb->preds)
3571 redirect_edge_var_map_clear (e);
3572 BITMAP_FREE (ophi_handled);
3573 BITMAP_FREE (rename_virts);
3574 return false;
3575 }
3576
3577 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3578 old region to NEW_REGION at BB. */
3579
3580 static void
3581 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3582 eh_landing_pad lp, eh_region new_region)
3583 {
3584 gimple_stmt_iterator gsi;
3585 eh_landing_pad *pp;
3586
3587 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3588 continue;
3589 *pp = lp->next_lp;
3590
3591 lp->region = new_region;
3592 lp->next_lp = new_region->landing_pads;
3593 new_region->landing_pads = lp;
3594
3595 /* Delete the RESX that was matched within the empty handler block. */
3596 gsi = gsi_last_bb (bb);
3597 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3598 gsi_remove (&gsi, true);
3599
3600 /* Clean up E_OUT for the fallthru. */
3601 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3602 e_out->probability = REG_BR_PROB_BASE;
3603 }
3604
3605 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3606 unsplitting than unsplit_eh was prepared to handle, e.g. when
3607 multiple incoming edges and phis are involved. */
3608
3609 static bool
3610 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3611 {
3612 gimple_stmt_iterator gsi;
3613 tree lab;
3614
3615 /* We really ought not have totally lost everything following
3616 a landing pad label. Given that BB is empty, there had better
3617 be a successor. */
3618 gcc_assert (e_out != NULL);
3619
3620 /* The destination block must not already have a landing pad
3621 for a different region. */
3622 lab = NULL;
3623 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3624 {
3625 gimple stmt = gsi_stmt (gsi);
3626 int lp_nr;
3627
3628 if (gimple_code (stmt) != GIMPLE_LABEL)
3629 break;
3630 lab = gimple_label_label (stmt);
3631 lp_nr = EH_LANDING_PAD_NR (lab);
3632 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3633 return false;
3634 }
3635
3636 /* Attempt to move the PHIs into the successor block. */
3637 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3638 {
3639 if (dump_file && (dump_flags & TDF_DETAILS))
3640 fprintf (dump_file,
3641 "Unsplit EH landing pad %d to block %i "
3642 "(via cleanup_empty_eh).\n",
3643 lp->index, e_out->dest->index);
3644 return true;
3645 }
3646
3647 return false;
3648 }
3649
3650 /* Examine the block associated with LP to determine if it's an empty
3651 handler for its EH region. If so, attempt to redirect EH edges to
3652 an outer region. Return true the CFG was updated in any way. This
3653 is similar to jump forwarding, just across EH edges. */
3654
3655 static bool
3656 cleanup_empty_eh (eh_landing_pad lp)
3657 {
3658 basic_block bb = label_to_block (lp->post_landing_pad);
3659 gimple_stmt_iterator gsi;
3660 gimple resx;
3661 eh_region new_region;
3662 edge_iterator ei;
3663 edge e, e_out;
3664 bool has_non_eh_pred;
3665 int new_lp_nr;
3666
3667 /* There can be zero or one edges out of BB. This is the quickest test. */
3668 switch (EDGE_COUNT (bb->succs))
3669 {
3670 case 0:
3671 e_out = NULL;
3672 break;
3673 case 1:
3674 e_out = EDGE_SUCC (bb, 0);
3675 break;
3676 default:
3677 return false;
3678 }
3679 gsi = gsi_after_labels (bb);
3680
3681 /* Make sure to skip debug statements. */
3682 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3683 gsi_next_nondebug (&gsi);
3684
3685 /* If the block is totally empty, look for more unsplitting cases. */
3686 if (gsi_end_p (gsi))
3687 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3688
3689 /* The block should consist only of a single RESX statement. */
3690 resx = gsi_stmt (gsi);
3691 if (!is_gimple_resx (resx))
3692 return false;
3693 gcc_assert (gsi_one_before_end_p (gsi));
3694
3695 /* Determine if there are non-EH edges, or resx edges into the handler. */
3696 has_non_eh_pred = false;
3697 FOR_EACH_EDGE (e, ei, bb->preds)
3698 if (!(e->flags & EDGE_EH))
3699 has_non_eh_pred = true;
3700
3701 /* Find the handler that's outer of the empty handler by looking at
3702 where the RESX instruction was vectored. */
3703 new_lp_nr = lookup_stmt_eh_lp (resx);
3704 new_region = get_eh_region_from_lp_number (new_lp_nr);
3705
3706 /* If there's no destination region within the current function,
3707 redirection is trivial via removing the throwing statements from
3708 the EH region, removing the EH edges, and allowing the block
3709 to go unreachable. */
3710 if (new_region == NULL)
3711 {
3712 gcc_assert (e_out == NULL);
3713 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3714 if (e->flags & EDGE_EH)
3715 {
3716 gimple stmt = last_stmt (e->src);
3717 remove_stmt_from_eh_lp (stmt);
3718 remove_edge (e);
3719 }
3720 else
3721 ei_next (&ei);
3722 goto succeed;
3723 }
3724
3725 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3726 to handle the abort and allow the blocks to go unreachable. */
3727 if (new_region->type == ERT_MUST_NOT_THROW)
3728 {
3729 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3730 if (e->flags & EDGE_EH)
3731 {
3732 gimple stmt = last_stmt (e->src);
3733 remove_stmt_from_eh_lp (stmt);
3734 add_stmt_to_eh_lp (stmt, new_lp_nr);
3735 remove_edge (e);
3736 }
3737 else
3738 ei_next (&ei);
3739 goto succeed;
3740 }
3741
3742 /* Try to redirect the EH edges and merge the PHIs into the destination
3743 landing pad block. If the merge succeeds, we'll already have redirected
3744 all the EH edges. The handler itself will go unreachable if there were
3745 no normal edges. */
3746 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3747 goto succeed;
3748
3749 /* Finally, if all input edges are EH edges, then we can (potentially)
3750 reduce the number of transfers from the runtime by moving the landing
3751 pad from the original region to the new region. This is a win when
3752 we remove the last CLEANUP region along a particular exception
3753 propagation path. Since nothing changes except for the region with
3754 which the landing pad is associated, the PHI nodes do not need to be
3755 adjusted at all. */
3756 if (!has_non_eh_pred)
3757 {
3758 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3759 if (dump_file && (dump_flags & TDF_DETAILS))
3760 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3761 lp->index, new_region->index);
3762
3763 /* ??? The CFG didn't change, but we may have rendered the
3764 old EH region unreachable. Trigger a cleanup there. */
3765 return true;
3766 }
3767
3768 return false;
3769
3770 succeed:
3771 if (dump_file && (dump_flags & TDF_DETAILS))
3772 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3773 remove_eh_landing_pad (lp);
3774 return true;
3775 }
3776
3777 /* Do a post-order traversal of the EH region tree. Examine each
3778 post_landing_pad block and see if we can eliminate it as empty. */
3779
3780 static bool
3781 cleanup_all_empty_eh (void)
3782 {
3783 bool changed = false;
3784 eh_landing_pad lp;
3785 int i;
3786
3787 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3788 if (lp)
3789 changed |= cleanup_empty_eh (lp);
3790
3791 return changed;
3792 }
3793
3794 /* Perform cleanups and lowering of exception handling
3795 1) cleanups regions with handlers doing nothing are optimized out
3796 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3797 3) Info about regions that are containing instructions, and regions
3798 reachable via local EH edges is collected
3799 4) Eh tree is pruned for regions no longer neccesary.
3800
3801 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3802 Unify those that have the same failure decl and locus.
3803 */
3804
3805 static unsigned int
3806 execute_cleanup_eh (void)
3807 {
3808 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3809 looking up unreachable landing pads. */
3810 remove_unreachable_handlers ();
3811
3812 /* Watch out for the region tree vanishing due to all unreachable. */
3813 if (cfun->eh->region_tree && optimize)
3814 {
3815 bool changed = false;
3816
3817 changed |= unsplit_all_eh ();
3818 changed |= cleanup_all_empty_eh ();
3819
3820 if (changed)
3821 {
3822 free_dominance_info (CDI_DOMINATORS);
3823 free_dominance_info (CDI_POST_DOMINATORS);
3824
3825 /* We delayed all basic block deletion, as we may have performed
3826 cleanups on EH edges while non-EH edges were still present. */
3827 delete_unreachable_blocks ();
3828
3829 /* We manipulated the landing pads. Remove any region that no
3830 longer has a landing pad. */
3831 remove_unreachable_handlers_no_lp ();
3832
3833 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3834 }
3835 }
3836
3837 return 0;
3838 }
3839
3840 static bool
3841 gate_cleanup_eh (void)
3842 {
3843 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3844 }
3845
3846 struct gimple_opt_pass pass_cleanup_eh = {
3847 {
3848 GIMPLE_PASS,
3849 "ehcleanup", /* name */
3850 gate_cleanup_eh, /* gate */
3851 execute_cleanup_eh, /* execute */
3852 NULL, /* sub */
3853 NULL, /* next */
3854 0, /* static_pass_number */
3855 TV_TREE_EH, /* tv_id */
3856 PROP_gimple_lcf, /* properties_required */
3857 0, /* properties_provided */
3858 0, /* properties_destroyed */
3859 0, /* todo_flags_start */
3860 TODO_dump_func /* todo_flags_finish */
3861 }
3862 };
3863 \f
3864 /* Verify that BB containing STMT as the last statement, has precisely the
3865 edge that make_eh_edges would create. */
3866
3867 bool
3868 verify_eh_edges (gimple stmt)
3869 {
3870 basic_block bb = gimple_bb (stmt);
3871 eh_landing_pad lp = NULL;
3872 int lp_nr;
3873 edge_iterator ei;
3874 edge e, eh_edge;
3875
3876 lp_nr = lookup_stmt_eh_lp (stmt);
3877 if (lp_nr > 0)
3878 lp = get_eh_landing_pad_from_number (lp_nr);
3879
3880 eh_edge = NULL;
3881 FOR_EACH_EDGE (e, ei, bb->succs)
3882 {
3883 if (e->flags & EDGE_EH)
3884 {
3885 if (eh_edge)
3886 {
3887 error ("BB %i has multiple EH edges", bb->index);
3888 return true;
3889 }
3890 else
3891 eh_edge = e;
3892 }
3893 }
3894
3895 if (lp == NULL)
3896 {
3897 if (eh_edge)
3898 {
3899 error ("BB %i can not throw but has an EH edge", bb->index);
3900 return true;
3901 }
3902 return false;
3903 }
3904
3905 if (!stmt_could_throw_p (stmt))
3906 {
3907 error ("BB %i last statement has incorrectly set lp", bb->index);
3908 return true;
3909 }
3910
3911 if (eh_edge == NULL)
3912 {
3913 error ("BB %i is missing an EH edge", bb->index);
3914 return true;
3915 }
3916
3917 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
3918 {
3919 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
3920 return true;
3921 }
3922
3923 return false;
3924 }
3925
3926 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
3927
3928 bool
3929 verify_eh_dispatch_edge (gimple stmt)
3930 {
3931 eh_region r;
3932 eh_catch c;
3933 basic_block src, dst;
3934 bool want_fallthru = true;
3935 edge_iterator ei;
3936 edge e, fall_edge;
3937
3938 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
3939 src = gimple_bb (stmt);
3940
3941 FOR_EACH_EDGE (e, ei, src->succs)
3942 gcc_assert (e->aux == NULL);
3943
3944 switch (r->type)
3945 {
3946 case ERT_TRY:
3947 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3948 {
3949 dst = label_to_block (c->label);
3950 e = find_edge (src, dst);
3951 if (e == NULL)
3952 {
3953 error ("BB %i is missing an edge", src->index);
3954 return true;
3955 }
3956 e->aux = (void *)e;
3957
3958 /* A catch-all handler doesn't have a fallthru. */
3959 if (c->type_list == NULL)
3960 {
3961 want_fallthru = false;
3962 break;
3963 }
3964 }
3965 break;
3966
3967 case ERT_ALLOWED_EXCEPTIONS:
3968 dst = label_to_block (r->u.allowed.label);
3969 e = find_edge (src, dst);
3970 if (e == NULL)
3971 {
3972 error ("BB %i is missing an edge", src->index);
3973 return true;
3974 }
3975 e->aux = (void *)e;
3976 break;
3977
3978 default:
3979 gcc_unreachable ();
3980 }
3981
3982 fall_edge = NULL;
3983 FOR_EACH_EDGE (e, ei, src->succs)
3984 {
3985 if (e->flags & EDGE_FALLTHRU)
3986 {
3987 if (fall_edge != NULL)
3988 {
3989 error ("BB %i too many fallthru edges", src->index);
3990 return true;
3991 }
3992 fall_edge = e;
3993 }
3994 else if (e->aux)
3995 e->aux = NULL;
3996 else
3997 {
3998 error ("BB %i has incorrect edge", src->index);
3999 return true;
4000 }
4001 }
4002 if ((fall_edge != NULL) ^ want_fallthru)
4003 {
4004 error ("BB %i has incorrect fallthru edge", src->index);
4005 return true;
4006 }
4007
4008 return false;
4009 }