tree-eh.c (cleanup_empty_eh_merge_phis): Remove rename_virts bitmap and its handling.
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "langhooks.h"
34 #include "ggc.h"
35 #include "diagnostic-core.h"
36 #include "gimple.h"
37 #include "target.h"
38 #include "cfgloop.h"
39
40 /* In some instances a tree and a gimple need to be stored in a same table,
41 i.e. in hash tables. This is a structure to do this. */
42 typedef union {tree *tp; tree t; gimple g;} treemple;
43
44 /* Nonzero if we are using EH to handle cleanups. */
45 static int using_eh_for_cleanups_p = 0;
46
47 void
48 using_eh_for_cleanups (void)
49 {
50 using_eh_for_cleanups_p = 1;
51 }
52
53 /* Misc functions used in this file. */
54
55 /* Remember and lookup EH landing pad data for arbitrary statements.
56 Really this means any statement that could_throw_p. We could
57 stuff this information into the stmt_ann data structure, but:
58
59 (1) We absolutely rely on this information being kept until
60 we get to rtl. Once we're done with lowering here, if we lose
61 the information there's no way to recover it!
62
63 (2) There are many more statements that *cannot* throw as
64 compared to those that can. We should be saving some amount
65 of space by only allocating memory for those that can throw. */
66
67 /* Add statement T in function IFUN to landing pad NUM. */
68
69 void
70 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
71 {
72 struct throw_stmt_node *n;
73 void **slot;
74
75 gcc_assert (num != 0);
76
77 n = ggc_alloc_throw_stmt_node ();
78 n->stmt = t;
79 n->lp_nr = num;
80
81 if (!get_eh_throw_stmt_table (ifun))
82 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
83 struct_ptr_eq,
84 ggc_free));
85
86 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
87 gcc_assert (!*slot);
88 *slot = n;
89 }
90
91 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
92
93 void
94 add_stmt_to_eh_lp (gimple t, int num)
95 {
96 add_stmt_to_eh_lp_fn (cfun, t, num);
97 }
98
99 /* Add statement T to the single EH landing pad in REGION. */
100
101 static void
102 record_stmt_eh_region (eh_region region, gimple t)
103 {
104 if (region == NULL)
105 return;
106 if (region->type == ERT_MUST_NOT_THROW)
107 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
108 else
109 {
110 eh_landing_pad lp = region->landing_pads;
111 if (lp == NULL)
112 lp = gen_eh_landing_pad (region);
113 else
114 gcc_assert (lp->next_lp == NULL);
115 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
116 }
117 }
118
119
120 /* Remove statement T in function IFUN from its EH landing pad. */
121
122 bool
123 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
124 {
125 struct throw_stmt_node dummy;
126 void **slot;
127
128 if (!get_eh_throw_stmt_table (ifun))
129 return false;
130
131 dummy.stmt = t;
132 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
133 NO_INSERT);
134 if (slot)
135 {
136 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
137 return true;
138 }
139 else
140 return false;
141 }
142
143
144 /* Remove statement T in the current function (cfun) from its
145 EH landing pad. */
146
147 bool
148 remove_stmt_from_eh_lp (gimple t)
149 {
150 return remove_stmt_from_eh_lp_fn (cfun, t);
151 }
152
153 /* Determine if statement T is inside an EH region in function IFUN.
154 Positive numbers indicate a landing pad index; negative numbers
155 indicate a MUST_NOT_THROW region index; zero indicates that the
156 statement is not recorded in the region table. */
157
158 int
159 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
160 {
161 struct throw_stmt_node *p, n;
162
163 if (ifun->eh->throw_stmt_table == NULL)
164 return 0;
165
166 n.stmt = t;
167 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
168 return p ? p->lp_nr : 0;
169 }
170
171 /* Likewise, but always use the current function. */
172
173 int
174 lookup_stmt_eh_lp (gimple t)
175 {
176 /* We can get called from initialized data when -fnon-call-exceptions
177 is on; prevent crash. */
178 if (!cfun)
179 return 0;
180 return lookup_stmt_eh_lp_fn (cfun, t);
181 }
182
183 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
184 nodes and LABEL_DECL nodes. We will use this during the second phase to
185 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
186
187 struct finally_tree_node
188 {
189 /* When storing a GIMPLE_TRY, we have to record a gimple. However
190 when deciding whether a GOTO to a certain LABEL_DECL (which is a
191 tree) leaves the TRY block, its necessary to record a tree in
192 this field. Thus a treemple is used. */
193 treemple child;
194 gimple parent;
195 };
196
197 /* Hashtable helpers. */
198
199 struct finally_tree_hasher : typed_free_remove <finally_tree_node>
200 {
201 typedef finally_tree_node value_type;
202 typedef finally_tree_node compare_type;
203 static inline hashval_t hash (const value_type *);
204 static inline bool equal (const value_type *, const compare_type *);
205 };
206
207 inline hashval_t
208 finally_tree_hasher::hash (const value_type *v)
209 {
210 return (intptr_t)v->child.t >> 4;
211 }
212
213 inline bool
214 finally_tree_hasher::equal (const value_type *v, const compare_type *c)
215 {
216 return v->child.t == c->child.t;
217 }
218
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static hash_table <finally_tree_hasher> finally_tree;
221
222 static void
223 record_in_finally_tree (treemple child, gimple parent)
224 {
225 struct finally_tree_node *n;
226 finally_tree_node **slot;
227
228 n = XNEW (struct finally_tree_node);
229 n->child = child;
230 n->parent = parent;
231
232 slot = finally_tree.find_slot (n, INSERT);
233 gcc_assert (!*slot);
234 *slot = n;
235 }
236
237 static void
238 collect_finally_tree (gimple stmt, gimple region);
239
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
242
243 static void
244 collect_finally_tree_1 (gimple_seq seq, gimple region)
245 {
246 gimple_stmt_iterator gsi;
247
248 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
249 collect_finally_tree (gsi_stmt (gsi), region);
250 }
251
252 static void
253 collect_finally_tree (gimple stmt, gimple region)
254 {
255 treemple temp;
256
257 switch (gimple_code (stmt))
258 {
259 case GIMPLE_LABEL:
260 temp.t = gimple_label_label (stmt);
261 record_in_finally_tree (temp, region);
262 break;
263
264 case GIMPLE_TRY:
265 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
266 {
267 temp.g = stmt;
268 record_in_finally_tree (temp, region);
269 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
271 }
272 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
273 {
274 collect_finally_tree_1 (gimple_try_eval (stmt), region);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
276 }
277 break;
278
279 case GIMPLE_CATCH:
280 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
281 break;
282
283 case GIMPLE_EH_FILTER:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
285 break;
286
287 case GIMPLE_EH_ELSE:
288 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
289 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
290 break;
291
292 default:
293 /* A type, a decl, or some kind of statement that we're not
294 interested in. Don't walk them. */
295 break;
296 }
297 }
298
299
300 /* Use the finally tree to determine if a jump from START to TARGET
301 would leave the try_finally node that START lives in. */
302
303 static bool
304 outside_finally_tree (treemple start, gimple target)
305 {
306 struct finally_tree_node n, *p;
307
308 do
309 {
310 n.child = start;
311 p = finally_tree.find (&n);
312 if (!p)
313 return true;
314 start.g = p->parent;
315 }
316 while (start.g != target);
317
318 return false;
319 }
320
321 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
322 nodes into a set of gotos, magic labels, and eh regions.
323 The eh region creation is straight-forward, but frobbing all the gotos
324 and such into shape isn't. */
325
326 /* The sequence into which we record all EH stuff. This will be
327 placed at the end of the function when we're all done. */
328 static gimple_seq eh_seq;
329
330 /* Record whether an EH region contains something that can throw,
331 indexed by EH region number. */
332 static bitmap eh_region_may_contain_throw_map;
333
334 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
335 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
336 The idea is to record a gimple statement for everything except for
337 the conditionals, which get their labels recorded. Since labels are
338 of type 'tree', we need this node to store both gimple and tree
339 objects. REPL_STMT is the sequence used to replace the goto/return
340 statement. CONT_STMT is used to store the statement that allows
341 the return/goto to jump to the original destination. */
342
343 struct goto_queue_node
344 {
345 treemple stmt;
346 location_t location;
347 gimple_seq repl_stmt;
348 gimple cont_stmt;
349 int index;
350 /* This is used when index >= 0 to indicate that stmt is a label (as
351 opposed to a goto stmt). */
352 int is_label;
353 };
354
355 /* State of the world while lowering. */
356
357 struct leh_state
358 {
359 /* What's "current" while constructing the eh region tree. These
360 correspond to variables of the same name in cfun->eh, which we
361 don't have easy access to. */
362 eh_region cur_region;
363
364 /* What's "current" for the purposes of __builtin_eh_pointer. For
365 a CATCH, this is the associated TRY. For an EH_FILTER, this is
366 the associated ALLOWED_EXCEPTIONS, etc. */
367 eh_region ehp_region;
368
369 /* Processing of TRY_FINALLY requires a bit more state. This is
370 split out into a separate structure so that we don't have to
371 copy so much when processing other nodes. */
372 struct leh_tf_state *tf;
373 };
374
375 struct leh_tf_state
376 {
377 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
378 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
379 this so that outside_finally_tree can reliably reference the tree used
380 in the collect_finally_tree data structures. */
381 gimple try_finally_expr;
382 gimple top_p;
383
384 /* While lowering a top_p usually it is expanded into multiple statements,
385 thus we need the following field to store them. */
386 gimple_seq top_p_seq;
387
388 /* The state outside this try_finally node. */
389 struct leh_state *outer;
390
391 /* The exception region created for it. */
392 eh_region region;
393
394 /* The goto queue. */
395 struct goto_queue_node *goto_queue;
396 size_t goto_queue_size;
397 size_t goto_queue_active;
398
399 /* Pointer map to help in searching goto_queue when it is large. */
400 struct pointer_map_t *goto_queue_map;
401
402 /* The set of unique labels seen as entries in the goto queue. */
403 vec<tree> dest_array;
404
405 /* A label to be added at the end of the completed transformed
406 sequence. It will be set if may_fallthru was true *at one time*,
407 though subsequent transformations may have cleared that flag. */
408 tree fallthru_label;
409
410 /* True if it is possible to fall out the bottom of the try block.
411 Cleared if the fallthru is converted to a goto. */
412 bool may_fallthru;
413
414 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
415 bool may_return;
416
417 /* True if the finally block can receive an exception edge.
418 Cleared if the exception case is handled by code duplication. */
419 bool may_throw;
420 };
421
422 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
423
424 /* Search for STMT in the goto queue. Return the replacement,
425 or null if the statement isn't in the queue. */
426
427 #define LARGE_GOTO_QUEUE 20
428
429 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
430
431 static gimple_seq
432 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
433 {
434 unsigned int i;
435 void **slot;
436
437 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
438 {
439 for (i = 0; i < tf->goto_queue_active; i++)
440 if ( tf->goto_queue[i].stmt.g == stmt.g)
441 return tf->goto_queue[i].repl_stmt;
442 return NULL;
443 }
444
445 /* If we have a large number of entries in the goto_queue, create a
446 pointer map and use that for searching. */
447
448 if (!tf->goto_queue_map)
449 {
450 tf->goto_queue_map = pointer_map_create ();
451 for (i = 0; i < tf->goto_queue_active; i++)
452 {
453 slot = pointer_map_insert (tf->goto_queue_map,
454 tf->goto_queue[i].stmt.g);
455 gcc_assert (*slot == NULL);
456 *slot = &tf->goto_queue[i];
457 }
458 }
459
460 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
461 if (slot != NULL)
462 return (((struct goto_queue_node *) *slot)->repl_stmt);
463
464 return NULL;
465 }
466
467 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
468 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
469 then we can just splat it in, otherwise we add the new stmts immediately
470 after the GIMPLE_COND and redirect. */
471
472 static void
473 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
474 gimple_stmt_iterator *gsi)
475 {
476 tree label;
477 gimple_seq new_seq;
478 treemple temp;
479 location_t loc = gimple_location (gsi_stmt (*gsi));
480
481 temp.tp = tp;
482 new_seq = find_goto_replacement (tf, temp);
483 if (!new_seq)
484 return;
485
486 if (gimple_seq_singleton_p (new_seq)
487 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
488 {
489 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
490 return;
491 }
492
493 label = create_artificial_label (loc);
494 /* Set the new label for the GIMPLE_COND */
495 *tp = label;
496
497 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
498 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
499 }
500
501 /* The real work of replace_goto_queue. Returns with TSI updated to
502 point to the next statement. */
503
504 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
505
506 static void
507 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
508 gimple_stmt_iterator *gsi)
509 {
510 gimple_seq seq;
511 treemple temp;
512 temp.g = NULL;
513
514 switch (gimple_code (stmt))
515 {
516 case GIMPLE_GOTO:
517 case GIMPLE_RETURN:
518 temp.g = stmt;
519 seq = find_goto_replacement (tf, temp);
520 if (seq)
521 {
522 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
523 gsi_remove (gsi, false);
524 return;
525 }
526 break;
527
528 case GIMPLE_COND:
529 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
530 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
531 break;
532
533 case GIMPLE_TRY:
534 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
535 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
536 break;
537 case GIMPLE_CATCH:
538 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
539 break;
540 case GIMPLE_EH_FILTER:
541 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
542 break;
543 case GIMPLE_EH_ELSE:
544 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
545 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
546 break;
547
548 default:
549 /* These won't have gotos in them. */
550 break;
551 }
552
553 gsi_next (gsi);
554 }
555
556 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
557
558 static void
559 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
560 {
561 gimple_stmt_iterator gsi = gsi_start (*seq);
562
563 while (!gsi_end_p (gsi))
564 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
565 }
566
567 /* Replace all goto queue members. */
568
569 static void
570 replace_goto_queue (struct leh_tf_state *tf)
571 {
572 if (tf->goto_queue_active == 0)
573 return;
574 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
575 replace_goto_queue_stmt_list (&eh_seq, tf);
576 }
577
578 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
579 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
580 a gimple return. */
581
582 static void
583 record_in_goto_queue (struct leh_tf_state *tf,
584 treemple new_stmt,
585 int index,
586 bool is_label,
587 location_t location)
588 {
589 size_t active, size;
590 struct goto_queue_node *q;
591
592 gcc_assert (!tf->goto_queue_map);
593
594 active = tf->goto_queue_active;
595 size = tf->goto_queue_size;
596 if (active >= size)
597 {
598 size = (size ? size * 2 : 32);
599 tf->goto_queue_size = size;
600 tf->goto_queue
601 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
602 }
603
604 q = &tf->goto_queue[active];
605 tf->goto_queue_active = active + 1;
606
607 memset (q, 0, sizeof (*q));
608 q->stmt = new_stmt;
609 q->index = index;
610 q->location = location;
611 q->is_label = is_label;
612 }
613
614 /* Record the LABEL label in the goto queue contained in TF.
615 TF is not null. */
616
617 static void
618 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label,
619 location_t location)
620 {
621 int index;
622 treemple temp, new_stmt;
623
624 if (!label)
625 return;
626
627 /* Computed and non-local gotos do not get processed. Given
628 their nature we can neither tell whether we've escaped the
629 finally block nor redirect them if we knew. */
630 if (TREE_CODE (label) != LABEL_DECL)
631 return;
632
633 /* No need to record gotos that don't leave the try block. */
634 temp.t = label;
635 if (!outside_finally_tree (temp, tf->try_finally_expr))
636 return;
637
638 if (! tf->dest_array.exists ())
639 {
640 tf->dest_array.create (10);
641 tf->dest_array.quick_push (label);
642 index = 0;
643 }
644 else
645 {
646 int n = tf->dest_array.length ();
647 for (index = 0; index < n; ++index)
648 if (tf->dest_array[index] == label)
649 break;
650 if (index == n)
651 tf->dest_array.safe_push (label);
652 }
653
654 /* In the case of a GOTO we want to record the destination label,
655 since with a GIMPLE_COND we have an easy access to the then/else
656 labels. */
657 new_stmt = stmt;
658 record_in_goto_queue (tf, new_stmt, index, true, location);
659 }
660
661 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
662 node, and if so record that fact in the goto queue associated with that
663 try_finally node. */
664
665 static void
666 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
667 {
668 struct leh_tf_state *tf = state->tf;
669 treemple new_stmt;
670
671 if (!tf)
672 return;
673
674 switch (gimple_code (stmt))
675 {
676 case GIMPLE_COND:
677 new_stmt.tp = gimple_op_ptr (stmt, 2);
678 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt),
679 EXPR_LOCATION (*new_stmt.tp));
680 new_stmt.tp = gimple_op_ptr (stmt, 3);
681 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt),
682 EXPR_LOCATION (*new_stmt.tp));
683 break;
684 case GIMPLE_GOTO:
685 new_stmt.g = stmt;
686 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt),
687 gimple_location (stmt));
688 break;
689
690 case GIMPLE_RETURN:
691 tf->may_return = true;
692 new_stmt.g = stmt;
693 record_in_goto_queue (tf, new_stmt, -1, false, gimple_location (stmt));
694 break;
695
696 default:
697 gcc_unreachable ();
698 }
699 }
700
701
702 #ifdef ENABLE_CHECKING
703 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
704 was in fact structured, and we've not yet done jump threading, then none
705 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
706
707 static void
708 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
709 {
710 struct leh_tf_state *tf = state->tf;
711 size_t i, n;
712
713 if (!tf)
714 return;
715
716 n = gimple_switch_num_labels (switch_expr);
717
718 for (i = 0; i < n; ++i)
719 {
720 treemple temp;
721 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
722 temp.t = lab;
723 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
724 }
725 }
726 #else
727 #define verify_norecord_switch_expr(state, switch_expr)
728 #endif
729
730 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
731 non-null, insert it before the new branch. */
732
733 static void
734 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
735 {
736 gimple x;
737
738 /* In the case of a return, the queue node must be a gimple statement. */
739 gcc_assert (!q->is_label);
740
741 /* Note that the return value may have already been computed, e.g.,
742
743 int x;
744 int foo (void)
745 {
746 x = 0;
747 try {
748 return x;
749 } finally {
750 x++;
751 }
752 }
753
754 should return 0, not 1. We don't have to do anything to make
755 this happens because the return value has been placed in the
756 RESULT_DECL already. */
757
758 q->cont_stmt = q->stmt.g;
759
760 if (mod)
761 gimple_seq_add_seq (&q->repl_stmt, mod);
762
763 x = gimple_build_goto (finlab);
764 gimple_set_location (x, q->location);
765 gimple_seq_add_stmt (&q->repl_stmt, x);
766 }
767
768 /* Similar, but easier, for GIMPLE_GOTO. */
769
770 static void
771 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
772 struct leh_tf_state *tf)
773 {
774 gimple x;
775
776 gcc_assert (q->is_label);
777
778 q->cont_stmt = gimple_build_goto (tf->dest_array[q->index]);
779
780 if (mod)
781 gimple_seq_add_seq (&q->repl_stmt, mod);
782
783 x = gimple_build_goto (finlab);
784 gimple_set_location (x, q->location);
785 gimple_seq_add_stmt (&q->repl_stmt, x);
786 }
787
788 /* Emit a standard landing pad sequence into SEQ for REGION. */
789
790 static void
791 emit_post_landing_pad (gimple_seq *seq, eh_region region)
792 {
793 eh_landing_pad lp = region->landing_pads;
794 gimple x;
795
796 if (lp == NULL)
797 lp = gen_eh_landing_pad (region);
798
799 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
800 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
801
802 x = gimple_build_label (lp->post_landing_pad);
803 gimple_seq_add_stmt (seq, x);
804 }
805
806 /* Emit a RESX statement into SEQ for REGION. */
807
808 static void
809 emit_resx (gimple_seq *seq, eh_region region)
810 {
811 gimple x = gimple_build_resx (region->index);
812 gimple_seq_add_stmt (seq, x);
813 if (region->outer)
814 record_stmt_eh_region (region->outer, x);
815 }
816
817 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
818
819 static void
820 emit_eh_dispatch (gimple_seq *seq, eh_region region)
821 {
822 gimple x = gimple_build_eh_dispatch (region->index);
823 gimple_seq_add_stmt (seq, x);
824 }
825
826 /* Note that the current EH region may contain a throw, or a
827 call to a function which itself may contain a throw. */
828
829 static void
830 note_eh_region_may_contain_throw (eh_region region)
831 {
832 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
833 {
834 if (region->type == ERT_MUST_NOT_THROW)
835 break;
836 region = region->outer;
837 if (region == NULL)
838 break;
839 }
840 }
841
842 /* Check if REGION has been marked as containing a throw. If REGION is
843 NULL, this predicate is false. */
844
845 static inline bool
846 eh_region_may_contain_throw (eh_region r)
847 {
848 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
849 }
850
851 /* We want to transform
852 try { body; } catch { stuff; }
853 to
854 normal_seqence:
855 body;
856 over:
857 eh_seqence:
858 landing_pad:
859 stuff;
860 goto over;
861
862 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
863 should be placed before the second operand, or NULL. OVER is
864 an existing label that should be put at the exit, or NULL. */
865
866 static gimple_seq
867 frob_into_branch_around (gimple tp, eh_region region, tree over)
868 {
869 gimple x;
870 gimple_seq cleanup, result;
871 location_t loc = gimple_location (tp);
872
873 cleanup = gimple_try_cleanup (tp);
874 result = gimple_try_eval (tp);
875
876 if (region)
877 emit_post_landing_pad (&eh_seq, region);
878
879 if (gimple_seq_may_fallthru (cleanup))
880 {
881 if (!over)
882 over = create_artificial_label (loc);
883 x = gimple_build_goto (over);
884 gimple_set_location (x, loc);
885 gimple_seq_add_stmt (&cleanup, x);
886 }
887 gimple_seq_add_seq (&eh_seq, cleanup);
888
889 if (over)
890 {
891 x = gimple_build_label (over);
892 gimple_seq_add_stmt (&result, x);
893 }
894 return result;
895 }
896
897 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
898 Make sure to record all new labels found. */
899
900 static gimple_seq
901 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state,
902 location_t loc)
903 {
904 gimple region = NULL;
905 gimple_seq new_seq;
906 gimple_stmt_iterator gsi;
907
908 new_seq = copy_gimple_seq_and_replace_locals (seq);
909
910 for (gsi = gsi_start (new_seq); !gsi_end_p (gsi); gsi_next (&gsi))
911 {
912 gimple stmt = gsi_stmt (gsi);
913 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
914 {
915 tree block = gimple_block (stmt);
916 gimple_set_location (stmt, loc);
917 gimple_set_block (stmt, block);
918 }
919 }
920
921 if (outer_state->tf)
922 region = outer_state->tf->try_finally_expr;
923 collect_finally_tree_1 (new_seq, region);
924
925 return new_seq;
926 }
927
928 /* A subroutine of lower_try_finally. Create a fallthru label for
929 the given try_finally state. The only tricky bit here is that
930 we have to make sure to record the label in our outer context. */
931
932 static tree
933 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
934 {
935 tree label = tf->fallthru_label;
936 treemple temp;
937
938 if (!label)
939 {
940 label = create_artificial_label (gimple_location (tf->try_finally_expr));
941 tf->fallthru_label = label;
942 if (tf->outer->tf)
943 {
944 temp.t = label;
945 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
946 }
947 }
948 return label;
949 }
950
951 /* A subroutine of lower_try_finally. If FINALLY consits of a
952 GIMPLE_EH_ELSE node, return it. */
953
954 static inline gimple
955 get_eh_else (gimple_seq finally)
956 {
957 gimple x = gimple_seq_first_stmt (finally);
958 if (gimple_code (x) == GIMPLE_EH_ELSE)
959 {
960 gcc_assert (gimple_seq_singleton_p (finally));
961 return x;
962 }
963 return NULL;
964 }
965
966 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
967 langhook returns non-null, then the language requires that the exception
968 path out of a try_finally be treated specially. To wit: the code within
969 the finally block may not itself throw an exception. We have two choices
970 here. First we can duplicate the finally block and wrap it in a
971 must_not_throw region. Second, we can generate code like
972
973 try {
974 finally_block;
975 } catch {
976 if (fintmp == eh_edge)
977 protect_cleanup_actions;
978 }
979
980 where "fintmp" is the temporary used in the switch statement generation
981 alternative considered below. For the nonce, we always choose the first
982 option.
983
984 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
985
986 static void
987 honor_protect_cleanup_actions (struct leh_state *outer_state,
988 struct leh_state *this_state,
989 struct leh_tf_state *tf)
990 {
991 tree protect_cleanup_actions;
992 gimple_stmt_iterator gsi;
993 bool finally_may_fallthru;
994 gimple_seq finally;
995 gimple x, eh_else;
996
997 /* First check for nothing to do. */
998 if (lang_hooks.eh_protect_cleanup_actions == NULL)
999 return;
1000 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
1001 if (protect_cleanup_actions == NULL)
1002 return;
1003
1004 finally = gimple_try_cleanup (tf->top_p);
1005 eh_else = get_eh_else (finally);
1006
1007 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1008 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1009 if (eh_else)
1010 {
1011 finally = gimple_eh_else_e_body (eh_else);
1012 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
1013 }
1014 else if (this_state)
1015 finally = lower_try_finally_dup_block (finally, outer_state,
1016 gimple_location (tf->try_finally_expr));
1017 finally_may_fallthru = gimple_seq_may_fallthru (finally);
1018
1019 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1020 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1021 to be in an enclosing scope, but needs to be implemented at this level
1022 to avoid a nesting violation (see wrap_temporary_cleanups in
1023 cp/decl.c). Since it's logically at an outer level, we should call
1024 terminate before we get to it, so strip it away before adding the
1025 MUST_NOT_THROW filter. */
1026 gsi = gsi_start (finally);
1027 x = gsi_stmt (gsi);
1028 if (gimple_code (x) == GIMPLE_TRY
1029 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1030 && gimple_try_catch_is_cleanup (x))
1031 {
1032 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1033 gsi_remove (&gsi, false);
1034 }
1035
1036 /* Wrap the block with protect_cleanup_actions as the action. */
1037 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1038 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1039 GIMPLE_TRY_CATCH);
1040 finally = lower_eh_must_not_throw (outer_state, x);
1041
1042 /* Drop all of this into the exception sequence. */
1043 emit_post_landing_pad (&eh_seq, tf->region);
1044 gimple_seq_add_seq (&eh_seq, finally);
1045 if (finally_may_fallthru)
1046 emit_resx (&eh_seq, tf->region);
1047
1048 /* Having now been handled, EH isn't to be considered with
1049 the rest of the outgoing edges. */
1050 tf->may_throw = false;
1051 }
1052
1053 /* A subroutine of lower_try_finally. We have determined that there is
1054 no fallthru edge out of the finally block. This means that there is
1055 no outgoing edge corresponding to any incoming edge. Restructure the
1056 try_finally node for this special case. */
1057
1058 static void
1059 lower_try_finally_nofallthru (struct leh_state *state,
1060 struct leh_tf_state *tf)
1061 {
1062 tree lab;
1063 gimple x, eh_else;
1064 gimple_seq finally;
1065 struct goto_queue_node *q, *qe;
1066
1067 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1068
1069 /* We expect that tf->top_p is a GIMPLE_TRY. */
1070 finally = gimple_try_cleanup (tf->top_p);
1071 tf->top_p_seq = gimple_try_eval (tf->top_p);
1072
1073 x = gimple_build_label (lab);
1074 gimple_seq_add_stmt (&tf->top_p_seq, x);
1075
1076 q = tf->goto_queue;
1077 qe = q + tf->goto_queue_active;
1078 for (; q < qe; ++q)
1079 if (q->index < 0)
1080 do_return_redirection (q, lab, NULL);
1081 else
1082 do_goto_redirection (q, lab, NULL, tf);
1083
1084 replace_goto_queue (tf);
1085
1086 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1087 eh_else = get_eh_else (finally);
1088 if (eh_else)
1089 {
1090 finally = gimple_eh_else_n_body (eh_else);
1091 lower_eh_constructs_1 (state, &finally);
1092 gimple_seq_add_seq (&tf->top_p_seq, finally);
1093
1094 if (tf->may_throw)
1095 {
1096 finally = gimple_eh_else_e_body (eh_else);
1097 lower_eh_constructs_1 (state, &finally);
1098
1099 emit_post_landing_pad (&eh_seq, tf->region);
1100 gimple_seq_add_seq (&eh_seq, finally);
1101 }
1102 }
1103 else
1104 {
1105 lower_eh_constructs_1 (state, &finally);
1106 gimple_seq_add_seq (&tf->top_p_seq, finally);
1107
1108 if (tf->may_throw)
1109 {
1110 emit_post_landing_pad (&eh_seq, tf->region);
1111
1112 x = gimple_build_goto (lab);
1113 gimple_set_location (x, gimple_location (tf->try_finally_expr));
1114 gimple_seq_add_stmt (&eh_seq, x);
1115 }
1116 }
1117 }
1118
1119 /* A subroutine of lower_try_finally. We have determined that there is
1120 exactly one destination of the finally block. Restructure the
1121 try_finally node for this special case. */
1122
1123 static void
1124 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1125 {
1126 struct goto_queue_node *q, *qe;
1127 gimple x;
1128 gimple_seq finally;
1129 gimple_stmt_iterator gsi;
1130 tree finally_label;
1131 location_t loc = gimple_location (tf->try_finally_expr);
1132
1133 finally = gimple_try_cleanup (tf->top_p);
1134 tf->top_p_seq = gimple_try_eval (tf->top_p);
1135
1136 /* Since there's only one destination, and the destination edge can only
1137 either be EH or non-EH, that implies that all of our incoming edges
1138 are of the same type. Therefore we can lower EH_ELSE immediately. */
1139 x = get_eh_else (finally);
1140 if (x)
1141 {
1142 if (tf->may_throw)
1143 finally = gimple_eh_else_e_body (x);
1144 else
1145 finally = gimple_eh_else_n_body (x);
1146 }
1147
1148 lower_eh_constructs_1 (state, &finally);
1149
1150 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1151 {
1152 gimple stmt = gsi_stmt (gsi);
1153 if (LOCATION_LOCUS (gimple_location (stmt)) == UNKNOWN_LOCATION)
1154 {
1155 tree block = gimple_block (stmt);
1156 gimple_set_location (stmt, gimple_location (tf->try_finally_expr));
1157 gimple_set_block (stmt, block);
1158 }
1159 }
1160
1161 if (tf->may_throw)
1162 {
1163 /* Only reachable via the exception edge. Add the given label to
1164 the head of the FINALLY block. Append a RESX at the end. */
1165 emit_post_landing_pad (&eh_seq, tf->region);
1166 gimple_seq_add_seq (&eh_seq, finally);
1167 emit_resx (&eh_seq, tf->region);
1168 return;
1169 }
1170
1171 if (tf->may_fallthru)
1172 {
1173 /* Only reachable via the fallthru edge. Do nothing but let
1174 the two blocks run together; we'll fall out the bottom. */
1175 gimple_seq_add_seq (&tf->top_p_seq, finally);
1176 return;
1177 }
1178
1179 finally_label = create_artificial_label (loc);
1180 x = gimple_build_label (finally_label);
1181 gimple_seq_add_stmt (&tf->top_p_seq, x);
1182
1183 gimple_seq_add_seq (&tf->top_p_seq, finally);
1184
1185 q = tf->goto_queue;
1186 qe = q + tf->goto_queue_active;
1187
1188 if (tf->may_return)
1189 {
1190 /* Reachable by return expressions only. Redirect them. */
1191 for (; q < qe; ++q)
1192 do_return_redirection (q, finally_label, NULL);
1193 replace_goto_queue (tf);
1194 }
1195 else
1196 {
1197 /* Reachable by goto expressions only. Redirect them. */
1198 for (; q < qe; ++q)
1199 do_goto_redirection (q, finally_label, NULL, tf);
1200 replace_goto_queue (tf);
1201
1202 if (tf->dest_array[0] == tf->fallthru_label)
1203 {
1204 /* Reachable by goto to fallthru label only. Redirect it
1205 to the new label (already created, sadly), and do not
1206 emit the final branch out, or the fallthru label. */
1207 tf->fallthru_label = NULL;
1208 return;
1209 }
1210 }
1211
1212 /* Place the original return/goto to the original destination
1213 immediately after the finally block. */
1214 x = tf->goto_queue[0].cont_stmt;
1215 gimple_seq_add_stmt (&tf->top_p_seq, x);
1216 maybe_record_in_goto_queue (state, x);
1217 }
1218
1219 /* A subroutine of lower_try_finally. There are multiple edges incoming
1220 and outgoing from the finally block. Implement this by duplicating the
1221 finally block for every destination. */
1222
1223 static void
1224 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1225 {
1226 gimple_seq finally;
1227 gimple_seq new_stmt;
1228 gimple_seq seq;
1229 gimple x, eh_else;
1230 tree tmp;
1231 location_t tf_loc = gimple_location (tf->try_finally_expr);
1232
1233 finally = gimple_try_cleanup (tf->top_p);
1234
1235 /* Notice EH_ELSE, and simplify some of the remaining code
1236 by considering FINALLY to be the normal return path only. */
1237 eh_else = get_eh_else (finally);
1238 if (eh_else)
1239 finally = gimple_eh_else_n_body (eh_else);
1240
1241 tf->top_p_seq = gimple_try_eval (tf->top_p);
1242 new_stmt = NULL;
1243
1244 if (tf->may_fallthru)
1245 {
1246 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1247 lower_eh_constructs_1 (state, &seq);
1248 gimple_seq_add_seq (&new_stmt, seq);
1249
1250 tmp = lower_try_finally_fallthru_label (tf);
1251 x = gimple_build_goto (tmp);
1252 gimple_set_location (x, tf_loc);
1253 gimple_seq_add_stmt (&new_stmt, x);
1254 }
1255
1256 if (tf->may_throw)
1257 {
1258 /* We don't need to copy the EH path of EH_ELSE,
1259 since it is only emitted once. */
1260 if (eh_else)
1261 seq = gimple_eh_else_e_body (eh_else);
1262 else
1263 seq = lower_try_finally_dup_block (finally, state, tf_loc);
1264 lower_eh_constructs_1 (state, &seq);
1265
1266 emit_post_landing_pad (&eh_seq, tf->region);
1267 gimple_seq_add_seq (&eh_seq, seq);
1268 emit_resx (&eh_seq, tf->region);
1269 }
1270
1271 if (tf->goto_queue)
1272 {
1273 struct goto_queue_node *q, *qe;
1274 int return_index, index;
1275 struct labels_s
1276 {
1277 struct goto_queue_node *q;
1278 tree label;
1279 } *labels;
1280
1281 return_index = tf->dest_array.length ();
1282 labels = XCNEWVEC (struct labels_s, return_index + 1);
1283
1284 q = tf->goto_queue;
1285 qe = q + tf->goto_queue_active;
1286 for (; q < qe; q++)
1287 {
1288 index = q->index < 0 ? return_index : q->index;
1289
1290 if (!labels[index].q)
1291 labels[index].q = q;
1292 }
1293
1294 for (index = 0; index < return_index + 1; index++)
1295 {
1296 tree lab;
1297
1298 q = labels[index].q;
1299 if (! q)
1300 continue;
1301
1302 lab = labels[index].label
1303 = create_artificial_label (tf_loc);
1304
1305 if (index == return_index)
1306 do_return_redirection (q, lab, NULL);
1307 else
1308 do_goto_redirection (q, lab, NULL, tf);
1309
1310 x = gimple_build_label (lab);
1311 gimple_seq_add_stmt (&new_stmt, x);
1312
1313 seq = lower_try_finally_dup_block (finally, state, q->location);
1314 lower_eh_constructs_1 (state, &seq);
1315 gimple_seq_add_seq (&new_stmt, seq);
1316
1317 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1318 maybe_record_in_goto_queue (state, q->cont_stmt);
1319 }
1320
1321 for (q = tf->goto_queue; q < qe; q++)
1322 {
1323 tree lab;
1324
1325 index = q->index < 0 ? return_index : q->index;
1326
1327 if (labels[index].q == q)
1328 continue;
1329
1330 lab = labels[index].label;
1331
1332 if (index == return_index)
1333 do_return_redirection (q, lab, NULL);
1334 else
1335 do_goto_redirection (q, lab, NULL, tf);
1336 }
1337
1338 replace_goto_queue (tf);
1339 free (labels);
1340 }
1341
1342 /* Need to link new stmts after running replace_goto_queue due
1343 to not wanting to process the same goto stmts twice. */
1344 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1345 }
1346
1347 /* A subroutine of lower_try_finally. There are multiple edges incoming
1348 and outgoing from the finally block. Implement this by instrumenting
1349 each incoming edge and creating a switch statement at the end of the
1350 finally block that branches to the appropriate destination. */
1351
1352 static void
1353 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1354 {
1355 struct goto_queue_node *q, *qe;
1356 tree finally_tmp, finally_label;
1357 int return_index, eh_index, fallthru_index;
1358 int nlabels, ndests, j, last_case_index;
1359 tree last_case;
1360 vec<tree> case_label_vec;
1361 gimple_seq switch_body = NULL;
1362 gimple x, eh_else;
1363 tree tmp;
1364 gimple switch_stmt;
1365 gimple_seq finally;
1366 struct pointer_map_t *cont_map = NULL;
1367 /* The location of the TRY_FINALLY stmt. */
1368 location_t tf_loc = gimple_location (tf->try_finally_expr);
1369 /* The location of the finally block. */
1370 location_t finally_loc;
1371
1372 finally = gimple_try_cleanup (tf->top_p);
1373 eh_else = get_eh_else (finally);
1374
1375 /* Mash the TRY block to the head of the chain. */
1376 tf->top_p_seq = gimple_try_eval (tf->top_p);
1377
1378 /* The location of the finally is either the last stmt in the finally
1379 block or the location of the TRY_FINALLY itself. */
1380 x = gimple_seq_last_stmt (finally);
1381 finally_loc = x ? gimple_location (x) : tf_loc;
1382
1383 /* Lower the finally block itself. */
1384 lower_eh_constructs_1 (state, &finally);
1385
1386 /* Prepare for switch statement generation. */
1387 nlabels = tf->dest_array.length ();
1388 return_index = nlabels;
1389 eh_index = return_index + tf->may_return;
1390 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1391 ndests = fallthru_index + tf->may_fallthru;
1392
1393 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1394 finally_label = create_artificial_label (finally_loc);
1395
1396 /* We use vec::quick_push on case_label_vec throughout this function,
1397 since we know the size in advance and allocate precisely as muce
1398 space as needed. */
1399 case_label_vec.create (ndests);
1400 last_case = NULL;
1401 last_case_index = 0;
1402
1403 /* Begin inserting code for getting to the finally block. Things
1404 are done in this order to correspond to the sequence the code is
1405 laid out. */
1406
1407 if (tf->may_fallthru)
1408 {
1409 x = gimple_build_assign (finally_tmp,
1410 build_int_cst (integer_type_node,
1411 fallthru_index));
1412 gimple_seq_add_stmt (&tf->top_p_seq, x);
1413
1414 tmp = build_int_cst (integer_type_node, fallthru_index);
1415 last_case = build_case_label (tmp, NULL,
1416 create_artificial_label (tf_loc));
1417 case_label_vec.quick_push (last_case);
1418 last_case_index++;
1419
1420 x = gimple_build_label (CASE_LABEL (last_case));
1421 gimple_seq_add_stmt (&switch_body, x);
1422
1423 tmp = lower_try_finally_fallthru_label (tf);
1424 x = gimple_build_goto (tmp);
1425 gimple_set_location (x, tf_loc);
1426 gimple_seq_add_stmt (&switch_body, x);
1427 }
1428
1429 /* For EH_ELSE, emit the exception path (plus resx) now, then
1430 subsequently we only need consider the normal path. */
1431 if (eh_else)
1432 {
1433 if (tf->may_throw)
1434 {
1435 finally = gimple_eh_else_e_body (eh_else);
1436 lower_eh_constructs_1 (state, &finally);
1437
1438 emit_post_landing_pad (&eh_seq, tf->region);
1439 gimple_seq_add_seq (&eh_seq, finally);
1440 emit_resx (&eh_seq, tf->region);
1441 }
1442
1443 finally = gimple_eh_else_n_body (eh_else);
1444 }
1445 else if (tf->may_throw)
1446 {
1447 emit_post_landing_pad (&eh_seq, tf->region);
1448
1449 x = gimple_build_assign (finally_tmp,
1450 build_int_cst (integer_type_node, eh_index));
1451 gimple_seq_add_stmt (&eh_seq, x);
1452
1453 x = gimple_build_goto (finally_label);
1454 gimple_set_location (x, tf_loc);
1455 gimple_seq_add_stmt (&eh_seq, x);
1456
1457 tmp = build_int_cst (integer_type_node, eh_index);
1458 last_case = build_case_label (tmp, NULL,
1459 create_artificial_label (tf_loc));
1460 case_label_vec.quick_push (last_case);
1461 last_case_index++;
1462
1463 x = gimple_build_label (CASE_LABEL (last_case));
1464 gimple_seq_add_stmt (&eh_seq, x);
1465 emit_resx (&eh_seq, tf->region);
1466 }
1467
1468 x = gimple_build_label (finally_label);
1469 gimple_seq_add_stmt (&tf->top_p_seq, x);
1470
1471 gimple_seq_add_seq (&tf->top_p_seq, finally);
1472
1473 /* Redirect each incoming goto edge. */
1474 q = tf->goto_queue;
1475 qe = q + tf->goto_queue_active;
1476 j = last_case_index + tf->may_return;
1477 /* Prepare the assignments to finally_tmp that are executed upon the
1478 entrance through a particular edge. */
1479 for (; q < qe; ++q)
1480 {
1481 gimple_seq mod = NULL;
1482 int switch_id;
1483 unsigned int case_index;
1484
1485 if (q->index < 0)
1486 {
1487 x = gimple_build_assign (finally_tmp,
1488 build_int_cst (integer_type_node,
1489 return_index));
1490 gimple_seq_add_stmt (&mod, x);
1491 do_return_redirection (q, finally_label, mod);
1492 switch_id = return_index;
1493 }
1494 else
1495 {
1496 x = gimple_build_assign (finally_tmp,
1497 build_int_cst (integer_type_node, q->index));
1498 gimple_seq_add_stmt (&mod, x);
1499 do_goto_redirection (q, finally_label, mod, tf);
1500 switch_id = q->index;
1501 }
1502
1503 case_index = j + q->index;
1504 if (case_label_vec.length () <= case_index || !case_label_vec[case_index])
1505 {
1506 tree case_lab;
1507 void **slot;
1508 tmp = build_int_cst (integer_type_node, switch_id);
1509 case_lab = build_case_label (tmp, NULL,
1510 create_artificial_label (tf_loc));
1511 /* We store the cont_stmt in the pointer map, so that we can recover
1512 it in the loop below. */
1513 if (!cont_map)
1514 cont_map = pointer_map_create ();
1515 slot = pointer_map_insert (cont_map, case_lab);
1516 *slot = q->cont_stmt;
1517 case_label_vec.quick_push (case_lab);
1518 }
1519 }
1520 for (j = last_case_index; j < last_case_index + nlabels; j++)
1521 {
1522 gimple cont_stmt;
1523 void **slot;
1524
1525 last_case = case_label_vec[j];
1526
1527 gcc_assert (last_case);
1528 gcc_assert (cont_map);
1529
1530 slot = pointer_map_contains (cont_map, last_case);
1531 gcc_assert (slot);
1532 cont_stmt = *(gimple *) slot;
1533
1534 x = gimple_build_label (CASE_LABEL (last_case));
1535 gimple_seq_add_stmt (&switch_body, x);
1536 gimple_seq_add_stmt (&switch_body, cont_stmt);
1537 maybe_record_in_goto_queue (state, cont_stmt);
1538 }
1539 if (cont_map)
1540 pointer_map_destroy (cont_map);
1541
1542 replace_goto_queue (tf);
1543
1544 /* Make sure that the last case is the default label, as one is required.
1545 Then sort the labels, which is also required in GIMPLE. */
1546 CASE_LOW (last_case) = NULL;
1547 sort_case_labels (case_label_vec);
1548
1549 /* Build the switch statement, setting last_case to be the default
1550 label. */
1551 switch_stmt = gimple_build_switch (finally_tmp, last_case,
1552 case_label_vec);
1553 gimple_set_location (switch_stmt, finally_loc);
1554
1555 /* Need to link SWITCH_STMT after running replace_goto_queue
1556 due to not wanting to process the same goto stmts twice. */
1557 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1558 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1559 }
1560
1561 /* Decide whether or not we are going to duplicate the finally block.
1562 There are several considerations.
1563
1564 First, if this is Java, then the finally block contains code
1565 written by the user. It has line numbers associated with it,
1566 so duplicating the block means it's difficult to set a breakpoint.
1567 Since controlling code generation via -g is verboten, we simply
1568 never duplicate code without optimization.
1569
1570 Second, we'd like to prevent egregious code growth. One way to
1571 do this is to estimate the size of the finally block, multiply
1572 that by the number of copies we'd need to make, and compare against
1573 the estimate of the size of the switch machinery we'd have to add. */
1574
1575 static bool
1576 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1577 {
1578 int f_estimate, sw_estimate;
1579 gimple eh_else;
1580
1581 /* If there's an EH_ELSE involved, the exception path is separate
1582 and really doesn't come into play for this computation. */
1583 eh_else = get_eh_else (finally);
1584 if (eh_else)
1585 {
1586 ndests -= may_throw;
1587 finally = gimple_eh_else_n_body (eh_else);
1588 }
1589
1590 if (!optimize)
1591 {
1592 gimple_stmt_iterator gsi;
1593
1594 if (ndests == 1)
1595 return true;
1596
1597 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1598 {
1599 gimple stmt = gsi_stmt (gsi);
1600 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1601 return false;
1602 }
1603 return true;
1604 }
1605
1606 /* Finally estimate N times, plus N gotos. */
1607 f_estimate = count_insns_seq (finally, &eni_size_weights);
1608 f_estimate = (f_estimate + 1) * ndests;
1609
1610 /* Switch statement (cost 10), N variable assignments, N gotos. */
1611 sw_estimate = 10 + 2 * ndests;
1612
1613 /* Optimize for size clearly wants our best guess. */
1614 if (optimize_function_for_size_p (cfun))
1615 return f_estimate < sw_estimate;
1616
1617 /* ??? These numbers are completely made up so far. */
1618 if (optimize > 1)
1619 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1620 else
1621 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1622 }
1623
1624 /* REG is the enclosing region for a possible cleanup region, or the region
1625 itself. Returns TRUE if such a region would be unreachable.
1626
1627 Cleanup regions within a must-not-throw region aren't actually reachable
1628 even if there are throwing stmts within them, because the personality
1629 routine will call terminate before unwinding. */
1630
1631 static bool
1632 cleanup_is_dead_in (eh_region reg)
1633 {
1634 while (reg && reg->type == ERT_CLEANUP)
1635 reg = reg->outer;
1636 return (reg && reg->type == ERT_MUST_NOT_THROW);
1637 }
1638
1639 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1640 to a sequence of labels and blocks, plus the exception region trees
1641 that record all the magic. This is complicated by the need to
1642 arrange for the FINALLY block to be executed on all exits. */
1643
1644 static gimple_seq
1645 lower_try_finally (struct leh_state *state, gimple tp)
1646 {
1647 struct leh_tf_state this_tf;
1648 struct leh_state this_state;
1649 int ndests;
1650 gimple_seq old_eh_seq;
1651
1652 /* Process the try block. */
1653
1654 memset (&this_tf, 0, sizeof (this_tf));
1655 this_tf.try_finally_expr = tp;
1656 this_tf.top_p = tp;
1657 this_tf.outer = state;
1658 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1659 {
1660 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1661 this_state.cur_region = this_tf.region;
1662 }
1663 else
1664 {
1665 this_tf.region = NULL;
1666 this_state.cur_region = state->cur_region;
1667 }
1668
1669 this_state.ehp_region = state->ehp_region;
1670 this_state.tf = &this_tf;
1671
1672 old_eh_seq = eh_seq;
1673 eh_seq = NULL;
1674
1675 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1676
1677 /* Determine if the try block is escaped through the bottom. */
1678 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1679
1680 /* Determine if any exceptions are possible within the try block. */
1681 if (this_tf.region)
1682 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1683 if (this_tf.may_throw)
1684 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1685
1686 /* Determine how many edges (still) reach the finally block. Or rather,
1687 how many destinations are reached by the finally block. Use this to
1688 determine how we process the finally block itself. */
1689
1690 ndests = this_tf.dest_array.length ();
1691 ndests += this_tf.may_fallthru;
1692 ndests += this_tf.may_return;
1693 ndests += this_tf.may_throw;
1694
1695 /* If the FINALLY block is not reachable, dike it out. */
1696 if (ndests == 0)
1697 {
1698 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1699 gimple_try_set_cleanup (tp, NULL);
1700 }
1701 /* If the finally block doesn't fall through, then any destination
1702 we might try to impose there isn't reached either. There may be
1703 some minor amount of cleanup and redirection still needed. */
1704 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1705 lower_try_finally_nofallthru (state, &this_tf);
1706
1707 /* We can easily special-case redirection to a single destination. */
1708 else if (ndests == 1)
1709 lower_try_finally_onedest (state, &this_tf);
1710 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1711 gimple_try_cleanup (tp)))
1712 lower_try_finally_copy (state, &this_tf);
1713 else
1714 lower_try_finally_switch (state, &this_tf);
1715
1716 /* If someone requested we add a label at the end of the transformed
1717 block, do so. */
1718 if (this_tf.fallthru_label)
1719 {
1720 /* This must be reached only if ndests == 0. */
1721 gimple x = gimple_build_label (this_tf.fallthru_label);
1722 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1723 }
1724
1725 this_tf.dest_array.release ();
1726 free (this_tf.goto_queue);
1727 if (this_tf.goto_queue_map)
1728 pointer_map_destroy (this_tf.goto_queue_map);
1729
1730 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1731 If there was no old eh_seq, then the append is trivially already done. */
1732 if (old_eh_seq)
1733 {
1734 if (eh_seq == NULL)
1735 eh_seq = old_eh_seq;
1736 else
1737 {
1738 gimple_seq new_eh_seq = eh_seq;
1739 eh_seq = old_eh_seq;
1740 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1741 }
1742 }
1743
1744 return this_tf.top_p_seq;
1745 }
1746
1747 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1748 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1749 exception region trees that records all the magic. */
1750
1751 static gimple_seq
1752 lower_catch (struct leh_state *state, gimple tp)
1753 {
1754 eh_region try_region = NULL;
1755 struct leh_state this_state = *state;
1756 gimple_stmt_iterator gsi;
1757 tree out_label;
1758 gimple_seq new_seq, cleanup;
1759 gimple x;
1760 location_t try_catch_loc = gimple_location (tp);
1761
1762 if (flag_exceptions)
1763 {
1764 try_region = gen_eh_region_try (state->cur_region);
1765 this_state.cur_region = try_region;
1766 }
1767
1768 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1769
1770 if (!eh_region_may_contain_throw (try_region))
1771 return gimple_try_eval (tp);
1772
1773 new_seq = NULL;
1774 emit_eh_dispatch (&new_seq, try_region);
1775 emit_resx (&new_seq, try_region);
1776
1777 this_state.cur_region = state->cur_region;
1778 this_state.ehp_region = try_region;
1779
1780 out_label = NULL;
1781 cleanup = gimple_try_cleanup (tp);
1782 for (gsi = gsi_start (cleanup);
1783 !gsi_end_p (gsi);
1784 gsi_next (&gsi))
1785 {
1786 eh_catch c;
1787 gimple gcatch;
1788 gimple_seq handler;
1789
1790 gcatch = gsi_stmt (gsi);
1791 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1792
1793 handler = gimple_catch_handler (gcatch);
1794 lower_eh_constructs_1 (&this_state, &handler);
1795
1796 c->label = create_artificial_label (UNKNOWN_LOCATION);
1797 x = gimple_build_label (c->label);
1798 gimple_seq_add_stmt (&new_seq, x);
1799
1800 gimple_seq_add_seq (&new_seq, handler);
1801
1802 if (gimple_seq_may_fallthru (new_seq))
1803 {
1804 if (!out_label)
1805 out_label = create_artificial_label (try_catch_loc);
1806
1807 x = gimple_build_goto (out_label);
1808 gimple_seq_add_stmt (&new_seq, x);
1809 }
1810 if (!c->type_list)
1811 break;
1812 }
1813
1814 gimple_try_set_cleanup (tp, new_seq);
1815
1816 return frob_into_branch_around (tp, try_region, out_label);
1817 }
1818
1819 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1820 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1821 region trees that record all the magic. */
1822
1823 static gimple_seq
1824 lower_eh_filter (struct leh_state *state, gimple tp)
1825 {
1826 struct leh_state this_state = *state;
1827 eh_region this_region = NULL;
1828 gimple inner, x;
1829 gimple_seq new_seq;
1830
1831 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1832
1833 if (flag_exceptions)
1834 {
1835 this_region = gen_eh_region_allowed (state->cur_region,
1836 gimple_eh_filter_types (inner));
1837 this_state.cur_region = this_region;
1838 }
1839
1840 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1841
1842 if (!eh_region_may_contain_throw (this_region))
1843 return gimple_try_eval (tp);
1844
1845 new_seq = NULL;
1846 this_state.cur_region = state->cur_region;
1847 this_state.ehp_region = this_region;
1848
1849 emit_eh_dispatch (&new_seq, this_region);
1850 emit_resx (&new_seq, this_region);
1851
1852 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1853 x = gimple_build_label (this_region->u.allowed.label);
1854 gimple_seq_add_stmt (&new_seq, x);
1855
1856 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1857 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1858
1859 gimple_try_set_cleanup (tp, new_seq);
1860
1861 return frob_into_branch_around (tp, this_region, NULL);
1862 }
1863
1864 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1865 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1866 plus the exception region trees that record all the magic. */
1867
1868 static gimple_seq
1869 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1870 {
1871 struct leh_state this_state = *state;
1872
1873 if (flag_exceptions)
1874 {
1875 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1876 eh_region this_region;
1877
1878 this_region = gen_eh_region_must_not_throw (state->cur_region);
1879 this_region->u.must_not_throw.failure_decl
1880 = gimple_eh_must_not_throw_fndecl (inner);
1881 this_region->u.must_not_throw.failure_loc
1882 = LOCATION_LOCUS (gimple_location (tp));
1883
1884 /* In order to get mangling applied to this decl, we must mark it
1885 used now. Otherwise, pass_ipa_free_lang_data won't think it
1886 needs to happen. */
1887 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1888
1889 this_state.cur_region = this_region;
1890 }
1891
1892 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1893
1894 return gimple_try_eval (tp);
1895 }
1896
1897 /* Implement a cleanup expression. This is similar to try-finally,
1898 except that we only execute the cleanup block for exception edges. */
1899
1900 static gimple_seq
1901 lower_cleanup (struct leh_state *state, gimple tp)
1902 {
1903 struct leh_state this_state = *state;
1904 eh_region this_region = NULL;
1905 struct leh_tf_state fake_tf;
1906 gimple_seq result;
1907 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1908
1909 if (flag_exceptions && !cleanup_dead)
1910 {
1911 this_region = gen_eh_region_cleanup (state->cur_region);
1912 this_state.cur_region = this_region;
1913 }
1914
1915 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1916
1917 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1918 return gimple_try_eval (tp);
1919
1920 /* Build enough of a try-finally state so that we can reuse
1921 honor_protect_cleanup_actions. */
1922 memset (&fake_tf, 0, sizeof (fake_tf));
1923 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1924 fake_tf.outer = state;
1925 fake_tf.region = this_region;
1926 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1927 fake_tf.may_throw = true;
1928
1929 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1930
1931 if (fake_tf.may_throw)
1932 {
1933 /* In this case honor_protect_cleanup_actions had nothing to do,
1934 and we should process this normally. */
1935 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1936 result = frob_into_branch_around (tp, this_region,
1937 fake_tf.fallthru_label);
1938 }
1939 else
1940 {
1941 /* In this case honor_protect_cleanup_actions did nearly all of
1942 the work. All we have left is to append the fallthru_label. */
1943
1944 result = gimple_try_eval (tp);
1945 if (fake_tf.fallthru_label)
1946 {
1947 gimple x = gimple_build_label (fake_tf.fallthru_label);
1948 gimple_seq_add_stmt (&result, x);
1949 }
1950 }
1951 return result;
1952 }
1953
1954 /* Main loop for lowering eh constructs. Also moves gsi to the next
1955 statement. */
1956
1957 static void
1958 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1959 {
1960 gimple_seq replace;
1961 gimple x;
1962 gimple stmt = gsi_stmt (*gsi);
1963
1964 switch (gimple_code (stmt))
1965 {
1966 case GIMPLE_CALL:
1967 {
1968 tree fndecl = gimple_call_fndecl (stmt);
1969 tree rhs, lhs;
1970
1971 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1972 switch (DECL_FUNCTION_CODE (fndecl))
1973 {
1974 case BUILT_IN_EH_POINTER:
1975 /* The front end may have generated a call to
1976 __builtin_eh_pointer (0) within a catch region. Replace
1977 this zero argument with the current catch region number. */
1978 if (state->ehp_region)
1979 {
1980 tree nr = build_int_cst (integer_type_node,
1981 state->ehp_region->index);
1982 gimple_call_set_arg (stmt, 0, nr);
1983 }
1984 else
1985 {
1986 /* The user has dome something silly. Remove it. */
1987 rhs = null_pointer_node;
1988 goto do_replace;
1989 }
1990 break;
1991
1992 case BUILT_IN_EH_FILTER:
1993 /* ??? This should never appear, but since it's a builtin it
1994 is accessible to abuse by users. Just remove it and
1995 replace the use with the arbitrary value zero. */
1996 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1997 do_replace:
1998 lhs = gimple_call_lhs (stmt);
1999 x = gimple_build_assign (lhs, rhs);
2000 gsi_insert_before (gsi, x, GSI_SAME_STMT);
2001 /* FALLTHRU */
2002
2003 case BUILT_IN_EH_COPY_VALUES:
2004 /* Likewise this should not appear. Remove it. */
2005 gsi_remove (gsi, true);
2006 return;
2007
2008 default:
2009 break;
2010 }
2011 }
2012 /* FALLTHRU */
2013
2014 case GIMPLE_ASSIGN:
2015 /* If the stmt can throw use a new temporary for the assignment
2016 to a LHS. This makes sure the old value of the LHS is
2017 available on the EH edge. Only do so for statements that
2018 potentially fall through (no noreturn calls e.g.), otherwise
2019 this new assignment might create fake fallthru regions. */
2020 if (stmt_could_throw_p (stmt)
2021 && gimple_has_lhs (stmt)
2022 && gimple_stmt_may_fallthru (stmt)
2023 && !tree_could_throw_p (gimple_get_lhs (stmt))
2024 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
2025 {
2026 tree lhs = gimple_get_lhs (stmt);
2027 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2028 gimple s = gimple_build_assign (lhs, tmp);
2029 gimple_set_location (s, gimple_location (stmt));
2030 gimple_set_block (s, gimple_block (stmt));
2031 gimple_set_lhs (stmt, tmp);
2032 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
2033 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
2034 DECL_GIMPLE_REG_P (tmp) = 1;
2035 gsi_insert_after (gsi, s, GSI_SAME_STMT);
2036 }
2037 /* Look for things that can throw exceptions, and record them. */
2038 if (state->cur_region && stmt_could_throw_p (stmt))
2039 {
2040 record_stmt_eh_region (state->cur_region, stmt);
2041 note_eh_region_may_contain_throw (state->cur_region);
2042 }
2043 break;
2044
2045 case GIMPLE_COND:
2046 case GIMPLE_GOTO:
2047 case GIMPLE_RETURN:
2048 maybe_record_in_goto_queue (state, stmt);
2049 break;
2050
2051 case GIMPLE_SWITCH:
2052 verify_norecord_switch_expr (state, stmt);
2053 break;
2054
2055 case GIMPLE_TRY:
2056 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
2057 replace = lower_try_finally (state, stmt);
2058 else
2059 {
2060 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
2061 if (!x)
2062 {
2063 replace = gimple_try_eval (stmt);
2064 lower_eh_constructs_1 (state, &replace);
2065 }
2066 else
2067 switch (gimple_code (x))
2068 {
2069 case GIMPLE_CATCH:
2070 replace = lower_catch (state, stmt);
2071 break;
2072 case GIMPLE_EH_FILTER:
2073 replace = lower_eh_filter (state, stmt);
2074 break;
2075 case GIMPLE_EH_MUST_NOT_THROW:
2076 replace = lower_eh_must_not_throw (state, stmt);
2077 break;
2078 case GIMPLE_EH_ELSE:
2079 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2080 gcc_unreachable ();
2081 default:
2082 replace = lower_cleanup (state, stmt);
2083 break;
2084 }
2085 }
2086
2087 /* Remove the old stmt and insert the transformed sequence
2088 instead. */
2089 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2090 gsi_remove (gsi, true);
2091
2092 /* Return since we don't want gsi_next () */
2093 return;
2094
2095 case GIMPLE_EH_ELSE:
2096 /* We should be eliminating this in lower_try_finally et al. */
2097 gcc_unreachable ();
2098
2099 default:
2100 /* A type, a decl, or some kind of statement that we're not
2101 interested in. Don't walk them. */
2102 break;
2103 }
2104
2105 gsi_next (gsi);
2106 }
2107
2108 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2109
2110 static void
2111 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2112 {
2113 gimple_stmt_iterator gsi;
2114 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2115 lower_eh_constructs_2 (state, &gsi);
2116 }
2117
2118 static unsigned int
2119 lower_eh_constructs (void)
2120 {
2121 struct leh_state null_state;
2122 gimple_seq bodyp;
2123
2124 bodyp = gimple_body (current_function_decl);
2125 if (bodyp == NULL)
2126 return 0;
2127
2128 finally_tree.create (31);
2129 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2130 memset (&null_state, 0, sizeof (null_state));
2131
2132 collect_finally_tree_1 (bodyp, NULL);
2133 lower_eh_constructs_1 (&null_state, &bodyp);
2134 gimple_set_body (current_function_decl, bodyp);
2135
2136 /* We assume there's a return statement, or something, at the end of
2137 the function, and thus ploping the EH sequence afterward won't
2138 change anything. */
2139 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2140 gimple_seq_add_seq (&bodyp, eh_seq);
2141
2142 /* We assume that since BODYP already existed, adding EH_SEQ to it
2143 didn't change its value, and we don't have to re-set the function. */
2144 gcc_assert (bodyp == gimple_body (current_function_decl));
2145
2146 finally_tree.dispose ();
2147 BITMAP_FREE (eh_region_may_contain_throw_map);
2148 eh_seq = NULL;
2149
2150 /* If this function needs a language specific EH personality routine
2151 and the frontend didn't already set one do so now. */
2152 if (function_needs_eh_personality (cfun) == eh_personality_lang
2153 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2154 DECL_FUNCTION_PERSONALITY (current_function_decl)
2155 = lang_hooks.eh_personality ();
2156
2157 return 0;
2158 }
2159
2160 struct gimple_opt_pass pass_lower_eh =
2161 {
2162 {
2163 GIMPLE_PASS,
2164 "eh", /* name */
2165 OPTGROUP_NONE, /* optinfo_flags */
2166 NULL, /* gate */
2167 lower_eh_constructs, /* execute */
2168 NULL, /* sub */
2169 NULL, /* next */
2170 0, /* static_pass_number */
2171 TV_TREE_EH, /* tv_id */
2172 PROP_gimple_lcf, /* properties_required */
2173 PROP_gimple_leh, /* properties_provided */
2174 0, /* properties_destroyed */
2175 0, /* todo_flags_start */
2176 0 /* todo_flags_finish */
2177 }
2178 };
2179 \f
2180 /* Create the multiple edges from an EH_DISPATCH statement to all of
2181 the possible handlers for its EH region. Return true if there's
2182 no fallthru edge; false if there is. */
2183
2184 bool
2185 make_eh_dispatch_edges (gimple stmt)
2186 {
2187 eh_region r;
2188 eh_catch c;
2189 basic_block src, dst;
2190
2191 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2192 src = gimple_bb (stmt);
2193
2194 switch (r->type)
2195 {
2196 case ERT_TRY:
2197 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2198 {
2199 dst = label_to_block (c->label);
2200 make_edge (src, dst, 0);
2201
2202 /* A catch-all handler doesn't have a fallthru. */
2203 if (c->type_list == NULL)
2204 return false;
2205 }
2206 break;
2207
2208 case ERT_ALLOWED_EXCEPTIONS:
2209 dst = label_to_block (r->u.allowed.label);
2210 make_edge (src, dst, 0);
2211 break;
2212
2213 default:
2214 gcc_unreachable ();
2215 }
2216
2217 return true;
2218 }
2219
2220 /* Create the single EH edge from STMT to its nearest landing pad,
2221 if there is such a landing pad within the current function. */
2222
2223 void
2224 make_eh_edges (gimple stmt)
2225 {
2226 basic_block src, dst;
2227 eh_landing_pad lp;
2228 int lp_nr;
2229
2230 lp_nr = lookup_stmt_eh_lp (stmt);
2231 if (lp_nr <= 0)
2232 return;
2233
2234 lp = get_eh_landing_pad_from_number (lp_nr);
2235 gcc_assert (lp != NULL);
2236
2237 src = gimple_bb (stmt);
2238 dst = label_to_block (lp->post_landing_pad);
2239 make_edge (src, dst, EDGE_EH);
2240 }
2241
2242 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2243 do not actually perform the final edge redirection.
2244
2245 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2246 we intend to change the destination EH region as well; this means
2247 EH_LANDING_PAD_NR must already be set on the destination block label.
2248 If false, we're being called from generic cfg manipulation code and we
2249 should preserve our place within the region tree. */
2250
2251 static void
2252 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2253 {
2254 eh_landing_pad old_lp, new_lp;
2255 basic_block old_bb;
2256 gimple throw_stmt;
2257 int old_lp_nr, new_lp_nr;
2258 tree old_label, new_label;
2259 edge_iterator ei;
2260 edge e;
2261
2262 old_bb = edge_in->dest;
2263 old_label = gimple_block_label (old_bb);
2264 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2265 gcc_assert (old_lp_nr > 0);
2266 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2267
2268 throw_stmt = last_stmt (edge_in->src);
2269 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2270
2271 new_label = gimple_block_label (new_bb);
2272
2273 /* Look for an existing region that might be using NEW_BB already. */
2274 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2275 if (new_lp_nr)
2276 {
2277 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2278 gcc_assert (new_lp);
2279
2280 /* Unless CHANGE_REGION is true, the new and old landing pad
2281 had better be associated with the same EH region. */
2282 gcc_assert (change_region || new_lp->region == old_lp->region);
2283 }
2284 else
2285 {
2286 new_lp = NULL;
2287 gcc_assert (!change_region);
2288 }
2289
2290 /* Notice when we redirect the last EH edge away from OLD_BB. */
2291 FOR_EACH_EDGE (e, ei, old_bb->preds)
2292 if (e != edge_in && (e->flags & EDGE_EH))
2293 break;
2294
2295 if (new_lp)
2296 {
2297 /* NEW_LP already exists. If there are still edges into OLD_LP,
2298 there's nothing to do with the EH tree. If there are no more
2299 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2300 If CHANGE_REGION is true, then our caller is expecting to remove
2301 the landing pad. */
2302 if (e == NULL && !change_region)
2303 remove_eh_landing_pad (old_lp);
2304 }
2305 else
2306 {
2307 /* No correct landing pad exists. If there are no more edges
2308 into OLD_LP, then we can simply re-use the existing landing pad.
2309 Otherwise, we have to create a new landing pad. */
2310 if (e == NULL)
2311 {
2312 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2313 new_lp = old_lp;
2314 }
2315 else
2316 new_lp = gen_eh_landing_pad (old_lp->region);
2317 new_lp->post_landing_pad = new_label;
2318 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2319 }
2320
2321 /* Maybe move the throwing statement to the new region. */
2322 if (old_lp != new_lp)
2323 {
2324 remove_stmt_from_eh_lp (throw_stmt);
2325 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2326 }
2327 }
2328
2329 /* Redirect EH edge E to NEW_BB. */
2330
2331 edge
2332 redirect_eh_edge (edge edge_in, basic_block new_bb)
2333 {
2334 redirect_eh_edge_1 (edge_in, new_bb, false);
2335 return ssa_redirect_edge (edge_in, new_bb);
2336 }
2337
2338 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2339 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2340 The actual edge update will happen in the caller. */
2341
2342 void
2343 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2344 {
2345 tree new_lab = gimple_block_label (new_bb);
2346 bool any_changed = false;
2347 basic_block old_bb;
2348 eh_region r;
2349 eh_catch c;
2350
2351 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2352 switch (r->type)
2353 {
2354 case ERT_TRY:
2355 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2356 {
2357 old_bb = label_to_block (c->label);
2358 if (old_bb == e->dest)
2359 {
2360 c->label = new_lab;
2361 any_changed = true;
2362 }
2363 }
2364 break;
2365
2366 case ERT_ALLOWED_EXCEPTIONS:
2367 old_bb = label_to_block (r->u.allowed.label);
2368 gcc_assert (old_bb == e->dest);
2369 r->u.allowed.label = new_lab;
2370 any_changed = true;
2371 break;
2372
2373 default:
2374 gcc_unreachable ();
2375 }
2376
2377 gcc_assert (any_changed);
2378 }
2379 \f
2380 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2381
2382 bool
2383 operation_could_trap_helper_p (enum tree_code op,
2384 bool fp_operation,
2385 bool honor_trapv,
2386 bool honor_nans,
2387 bool honor_snans,
2388 tree divisor,
2389 bool *handled)
2390 {
2391 *handled = true;
2392 switch (op)
2393 {
2394 case TRUNC_DIV_EXPR:
2395 case CEIL_DIV_EXPR:
2396 case FLOOR_DIV_EXPR:
2397 case ROUND_DIV_EXPR:
2398 case EXACT_DIV_EXPR:
2399 case CEIL_MOD_EXPR:
2400 case FLOOR_MOD_EXPR:
2401 case ROUND_MOD_EXPR:
2402 case TRUNC_MOD_EXPR:
2403 case RDIV_EXPR:
2404 if (honor_snans || honor_trapv)
2405 return true;
2406 if (fp_operation)
2407 return flag_trapping_math;
2408 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2409 return true;
2410 return false;
2411
2412 case LT_EXPR:
2413 case LE_EXPR:
2414 case GT_EXPR:
2415 case GE_EXPR:
2416 case LTGT_EXPR:
2417 /* Some floating point comparisons may trap. */
2418 return honor_nans;
2419
2420 case EQ_EXPR:
2421 case NE_EXPR:
2422 case UNORDERED_EXPR:
2423 case ORDERED_EXPR:
2424 case UNLT_EXPR:
2425 case UNLE_EXPR:
2426 case UNGT_EXPR:
2427 case UNGE_EXPR:
2428 case UNEQ_EXPR:
2429 return honor_snans;
2430
2431 case CONVERT_EXPR:
2432 case FIX_TRUNC_EXPR:
2433 /* Conversion of floating point might trap. */
2434 return honor_nans;
2435
2436 case NEGATE_EXPR:
2437 case ABS_EXPR:
2438 case CONJ_EXPR:
2439 /* These operations don't trap with floating point. */
2440 if (honor_trapv)
2441 return true;
2442 return false;
2443
2444 case PLUS_EXPR:
2445 case MINUS_EXPR:
2446 case MULT_EXPR:
2447 /* Any floating arithmetic may trap. */
2448 if (fp_operation && flag_trapping_math)
2449 return true;
2450 if (honor_trapv)
2451 return true;
2452 return false;
2453
2454 case COMPLEX_EXPR:
2455 case CONSTRUCTOR:
2456 /* Constructing an object cannot trap. */
2457 return false;
2458
2459 default:
2460 /* Any floating arithmetic may trap. */
2461 if (fp_operation && flag_trapping_math)
2462 return true;
2463
2464 *handled = false;
2465 return false;
2466 }
2467 }
2468
2469 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2470 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2471 type operands that may trap. If OP is a division operator, DIVISOR contains
2472 the value of the divisor. */
2473
2474 bool
2475 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2476 tree divisor)
2477 {
2478 bool honor_nans = (fp_operation && flag_trapping_math
2479 && !flag_finite_math_only);
2480 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2481 bool handled;
2482
2483 if (TREE_CODE_CLASS (op) != tcc_comparison
2484 && TREE_CODE_CLASS (op) != tcc_unary
2485 && TREE_CODE_CLASS (op) != tcc_binary)
2486 return false;
2487
2488 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2489 honor_nans, honor_snans, divisor,
2490 &handled);
2491 }
2492
2493 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2494 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2495 This routine expects only GIMPLE lhs or rhs input. */
2496
2497 bool
2498 tree_could_trap_p (tree expr)
2499 {
2500 enum tree_code code;
2501 bool fp_operation = false;
2502 bool honor_trapv = false;
2503 tree t, base, div = NULL_TREE;
2504
2505 if (!expr)
2506 return false;
2507
2508 code = TREE_CODE (expr);
2509 t = TREE_TYPE (expr);
2510
2511 if (t)
2512 {
2513 if (COMPARISON_CLASS_P (expr))
2514 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2515 else
2516 fp_operation = FLOAT_TYPE_P (t);
2517 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2518 }
2519
2520 if (TREE_CODE_CLASS (code) == tcc_binary)
2521 div = TREE_OPERAND (expr, 1);
2522 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2523 return true;
2524
2525 restart:
2526 switch (code)
2527 {
2528 case TARGET_MEM_REF:
2529 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2530 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2531 return false;
2532 return !TREE_THIS_NOTRAP (expr);
2533
2534 case COMPONENT_REF:
2535 case REALPART_EXPR:
2536 case IMAGPART_EXPR:
2537 case BIT_FIELD_REF:
2538 case VIEW_CONVERT_EXPR:
2539 case WITH_SIZE_EXPR:
2540 expr = TREE_OPERAND (expr, 0);
2541 code = TREE_CODE (expr);
2542 goto restart;
2543
2544 case ARRAY_RANGE_REF:
2545 base = TREE_OPERAND (expr, 0);
2546 if (tree_could_trap_p (base))
2547 return true;
2548 if (TREE_THIS_NOTRAP (expr))
2549 return false;
2550 return !range_in_array_bounds_p (expr);
2551
2552 case ARRAY_REF:
2553 base = TREE_OPERAND (expr, 0);
2554 if (tree_could_trap_p (base))
2555 return true;
2556 if (TREE_THIS_NOTRAP (expr))
2557 return false;
2558 return !in_array_bounds_p (expr);
2559
2560 case MEM_REF:
2561 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2562 return false;
2563 /* Fallthru. */
2564 case INDIRECT_REF:
2565 return !TREE_THIS_NOTRAP (expr);
2566
2567 case ASM_EXPR:
2568 return TREE_THIS_VOLATILE (expr);
2569
2570 case CALL_EXPR:
2571 t = get_callee_fndecl (expr);
2572 /* Assume that calls to weak functions may trap. */
2573 if (!t || !DECL_P (t))
2574 return true;
2575 if (DECL_WEAK (t))
2576 return tree_could_trap_p (t);
2577 return false;
2578
2579 case FUNCTION_DECL:
2580 /* Assume that accesses to weak functions may trap, unless we know
2581 they are certainly defined in current TU or in some other
2582 LTO partition. */
2583 if (DECL_WEAK (expr))
2584 {
2585 struct cgraph_node *node;
2586 if (!DECL_EXTERNAL (expr))
2587 return false;
2588 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2589 if (node && node->symbol.in_other_partition)
2590 return false;
2591 return true;
2592 }
2593 return false;
2594
2595 case VAR_DECL:
2596 /* Assume that accesses to weak vars may trap, unless we know
2597 they are certainly defined in current TU or in some other
2598 LTO partition. */
2599 if (DECL_WEAK (expr))
2600 {
2601 struct varpool_node *node;
2602 if (!DECL_EXTERNAL (expr))
2603 return false;
2604 node = varpool_variable_node (varpool_get_node (expr), NULL);
2605 if (node && node->symbol.in_other_partition)
2606 return false;
2607 return true;
2608 }
2609 return false;
2610
2611 default:
2612 return false;
2613 }
2614 }
2615
2616
2617 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2618 an assignment or a conditional) may throw. */
2619
2620 static bool
2621 stmt_could_throw_1_p (gimple stmt)
2622 {
2623 enum tree_code code = gimple_expr_code (stmt);
2624 bool honor_nans = false;
2625 bool honor_snans = false;
2626 bool fp_operation = false;
2627 bool honor_trapv = false;
2628 tree t;
2629 size_t i;
2630 bool handled, ret;
2631
2632 if (TREE_CODE_CLASS (code) == tcc_comparison
2633 || TREE_CODE_CLASS (code) == tcc_unary
2634 || TREE_CODE_CLASS (code) == tcc_binary)
2635 {
2636 if (is_gimple_assign (stmt)
2637 && TREE_CODE_CLASS (code) == tcc_comparison)
2638 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2639 else if (gimple_code (stmt) == GIMPLE_COND)
2640 t = TREE_TYPE (gimple_cond_lhs (stmt));
2641 else
2642 t = gimple_expr_type (stmt);
2643 fp_operation = FLOAT_TYPE_P (t);
2644 if (fp_operation)
2645 {
2646 honor_nans = flag_trapping_math && !flag_finite_math_only;
2647 honor_snans = flag_signaling_nans != 0;
2648 }
2649 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2650 honor_trapv = true;
2651 }
2652
2653 /* Check if the main expression may trap. */
2654 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2655 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2656 honor_nans, honor_snans, t,
2657 &handled);
2658 if (handled)
2659 return ret;
2660
2661 /* If the expression does not trap, see if any of the individual operands may
2662 trap. */
2663 for (i = 0; i < gimple_num_ops (stmt); i++)
2664 if (tree_could_trap_p (gimple_op (stmt, i)))
2665 return true;
2666
2667 return false;
2668 }
2669
2670
2671 /* Return true if statement STMT could throw an exception. */
2672
2673 bool
2674 stmt_could_throw_p (gimple stmt)
2675 {
2676 if (!flag_exceptions)
2677 return false;
2678
2679 /* The only statements that can throw an exception are assignments,
2680 conditionals, calls, resx, and asms. */
2681 switch (gimple_code (stmt))
2682 {
2683 case GIMPLE_RESX:
2684 return true;
2685
2686 case GIMPLE_CALL:
2687 return !gimple_call_nothrow_p (stmt);
2688
2689 case GIMPLE_ASSIGN:
2690 case GIMPLE_COND:
2691 if (!cfun->can_throw_non_call_exceptions)
2692 return false;
2693 return stmt_could_throw_1_p (stmt);
2694
2695 case GIMPLE_ASM:
2696 if (!cfun->can_throw_non_call_exceptions)
2697 return false;
2698 return gimple_asm_volatile_p (stmt);
2699
2700 default:
2701 return false;
2702 }
2703 }
2704
2705
2706 /* Return true if expression T could throw an exception. */
2707
2708 bool
2709 tree_could_throw_p (tree t)
2710 {
2711 if (!flag_exceptions)
2712 return false;
2713 if (TREE_CODE (t) == MODIFY_EXPR)
2714 {
2715 if (cfun->can_throw_non_call_exceptions
2716 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2717 return true;
2718 t = TREE_OPERAND (t, 1);
2719 }
2720
2721 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2722 t = TREE_OPERAND (t, 0);
2723 if (TREE_CODE (t) == CALL_EXPR)
2724 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2725 if (cfun->can_throw_non_call_exceptions)
2726 return tree_could_trap_p (t);
2727 return false;
2728 }
2729
2730 /* Return true if STMT can throw an exception that is not caught within
2731 the current function (CFUN). */
2732
2733 bool
2734 stmt_can_throw_external (gimple stmt)
2735 {
2736 int lp_nr;
2737
2738 if (!stmt_could_throw_p (stmt))
2739 return false;
2740
2741 lp_nr = lookup_stmt_eh_lp (stmt);
2742 return lp_nr == 0;
2743 }
2744
2745 /* Return true if STMT can throw an exception that is caught within
2746 the current function (CFUN). */
2747
2748 bool
2749 stmt_can_throw_internal (gimple stmt)
2750 {
2751 int lp_nr;
2752
2753 if (!stmt_could_throw_p (stmt))
2754 return false;
2755
2756 lp_nr = lookup_stmt_eh_lp (stmt);
2757 return lp_nr > 0;
2758 }
2759
2760 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2761 remove any entry it might have from the EH table. Return true if
2762 any change was made. */
2763
2764 bool
2765 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2766 {
2767 if (stmt_could_throw_p (stmt))
2768 return false;
2769 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2770 }
2771
2772 /* Likewise, but always use the current function. */
2773
2774 bool
2775 maybe_clean_eh_stmt (gimple stmt)
2776 {
2777 return maybe_clean_eh_stmt_fn (cfun, stmt);
2778 }
2779
2780 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2781 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2782 in the table if it should be in there. Return TRUE if a replacement was
2783 done that my require an EH edge purge. */
2784
2785 bool
2786 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2787 {
2788 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2789
2790 if (lp_nr != 0)
2791 {
2792 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2793
2794 if (new_stmt == old_stmt && new_stmt_could_throw)
2795 return false;
2796
2797 remove_stmt_from_eh_lp (old_stmt);
2798 if (new_stmt_could_throw)
2799 {
2800 add_stmt_to_eh_lp (new_stmt, lp_nr);
2801 return false;
2802 }
2803 else
2804 return true;
2805 }
2806
2807 return false;
2808 }
2809
2810 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2811 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2812 operand is the return value of duplicate_eh_regions. */
2813
2814 bool
2815 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2816 struct function *old_fun, gimple old_stmt,
2817 struct pointer_map_t *map, int default_lp_nr)
2818 {
2819 int old_lp_nr, new_lp_nr;
2820 void **slot;
2821
2822 if (!stmt_could_throw_p (new_stmt))
2823 return false;
2824
2825 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2826 if (old_lp_nr == 0)
2827 {
2828 if (default_lp_nr == 0)
2829 return false;
2830 new_lp_nr = default_lp_nr;
2831 }
2832 else if (old_lp_nr > 0)
2833 {
2834 eh_landing_pad old_lp, new_lp;
2835
2836 old_lp = (*old_fun->eh->lp_array)[old_lp_nr];
2837 slot = pointer_map_contains (map, old_lp);
2838 new_lp = (eh_landing_pad) *slot;
2839 new_lp_nr = new_lp->index;
2840 }
2841 else
2842 {
2843 eh_region old_r, new_r;
2844
2845 old_r = (*old_fun->eh->region_array)[-old_lp_nr];
2846 slot = pointer_map_contains (map, old_r);
2847 new_r = (eh_region) *slot;
2848 new_lp_nr = -new_r->index;
2849 }
2850
2851 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2852 return true;
2853 }
2854
2855 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2856 and thus no remapping is required. */
2857
2858 bool
2859 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2860 {
2861 int lp_nr;
2862
2863 if (!stmt_could_throw_p (new_stmt))
2864 return false;
2865
2866 lp_nr = lookup_stmt_eh_lp (old_stmt);
2867 if (lp_nr == 0)
2868 return false;
2869
2870 add_stmt_to_eh_lp (new_stmt, lp_nr);
2871 return true;
2872 }
2873 \f
2874 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2875 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2876 this only handles handlers consisting of a single call, as that's the
2877 important case for C++: a destructor call for a particular object showing
2878 up in multiple handlers. */
2879
2880 static bool
2881 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2882 {
2883 gimple_stmt_iterator gsi;
2884 gimple ones, twos;
2885 unsigned int ai;
2886
2887 gsi = gsi_start (oneh);
2888 if (!gsi_one_before_end_p (gsi))
2889 return false;
2890 ones = gsi_stmt (gsi);
2891
2892 gsi = gsi_start (twoh);
2893 if (!gsi_one_before_end_p (gsi))
2894 return false;
2895 twos = gsi_stmt (gsi);
2896
2897 if (!is_gimple_call (ones)
2898 || !is_gimple_call (twos)
2899 || gimple_call_lhs (ones)
2900 || gimple_call_lhs (twos)
2901 || gimple_call_chain (ones)
2902 || gimple_call_chain (twos)
2903 || !gimple_call_same_target_p (ones, twos)
2904 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2905 return false;
2906
2907 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2908 if (!operand_equal_p (gimple_call_arg (ones, ai),
2909 gimple_call_arg (twos, ai), 0))
2910 return false;
2911
2912 return true;
2913 }
2914
2915 /* Optimize
2916 try { A() } finally { try { ~B() } catch { ~A() } }
2917 try { ... } finally { ~A() }
2918 into
2919 try { A() } catch { ~B() }
2920 try { ~B() ... } finally { ~A() }
2921
2922 This occurs frequently in C++, where A is a local variable and B is a
2923 temporary used in the initializer for A. */
2924
2925 static void
2926 optimize_double_finally (gimple one, gimple two)
2927 {
2928 gimple oneh;
2929 gimple_stmt_iterator gsi;
2930 gimple_seq cleanup;
2931
2932 cleanup = gimple_try_cleanup (one);
2933 gsi = gsi_start (cleanup);
2934 if (!gsi_one_before_end_p (gsi))
2935 return;
2936
2937 oneh = gsi_stmt (gsi);
2938 if (gimple_code (oneh) != GIMPLE_TRY
2939 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2940 return;
2941
2942 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2943 {
2944 gimple_seq seq = gimple_try_eval (oneh);
2945
2946 gimple_try_set_cleanup (one, seq);
2947 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2948 seq = copy_gimple_seq_and_replace_locals (seq);
2949 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2950 gimple_try_set_eval (two, seq);
2951 }
2952 }
2953
2954 /* Perform EH refactoring optimizations that are simpler to do when code
2955 flow has been lowered but EH structures haven't. */
2956
2957 static void
2958 refactor_eh_r (gimple_seq seq)
2959 {
2960 gimple_stmt_iterator gsi;
2961 gimple one, two;
2962
2963 one = NULL;
2964 two = NULL;
2965 gsi = gsi_start (seq);
2966 while (1)
2967 {
2968 one = two;
2969 if (gsi_end_p (gsi))
2970 two = NULL;
2971 else
2972 two = gsi_stmt (gsi);
2973 if (one
2974 && two
2975 && gimple_code (one) == GIMPLE_TRY
2976 && gimple_code (two) == GIMPLE_TRY
2977 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2978 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2979 optimize_double_finally (one, two);
2980 if (one)
2981 switch (gimple_code (one))
2982 {
2983 case GIMPLE_TRY:
2984 refactor_eh_r (gimple_try_eval (one));
2985 refactor_eh_r (gimple_try_cleanup (one));
2986 break;
2987 case GIMPLE_CATCH:
2988 refactor_eh_r (gimple_catch_handler (one));
2989 break;
2990 case GIMPLE_EH_FILTER:
2991 refactor_eh_r (gimple_eh_filter_failure (one));
2992 break;
2993 case GIMPLE_EH_ELSE:
2994 refactor_eh_r (gimple_eh_else_n_body (one));
2995 refactor_eh_r (gimple_eh_else_e_body (one));
2996 break;
2997 default:
2998 break;
2999 }
3000 if (two)
3001 gsi_next (&gsi);
3002 else
3003 break;
3004 }
3005 }
3006
3007 static unsigned
3008 refactor_eh (void)
3009 {
3010 refactor_eh_r (gimple_body (current_function_decl));
3011 return 0;
3012 }
3013
3014 static bool
3015 gate_refactor_eh (void)
3016 {
3017 return flag_exceptions != 0;
3018 }
3019
3020 struct gimple_opt_pass pass_refactor_eh =
3021 {
3022 {
3023 GIMPLE_PASS,
3024 "ehopt", /* name */
3025 OPTGROUP_NONE, /* optinfo_flags */
3026 gate_refactor_eh, /* gate */
3027 refactor_eh, /* execute */
3028 NULL, /* sub */
3029 NULL, /* next */
3030 0, /* static_pass_number */
3031 TV_TREE_EH, /* tv_id */
3032 PROP_gimple_lcf, /* properties_required */
3033 0, /* properties_provided */
3034 0, /* properties_destroyed */
3035 0, /* todo_flags_start */
3036 0 /* todo_flags_finish */
3037 }
3038 };
3039 \f
3040 /* At the end of gimple optimization, we can lower RESX. */
3041
3042 static bool
3043 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
3044 {
3045 int lp_nr;
3046 eh_region src_r, dst_r;
3047 gimple_stmt_iterator gsi;
3048 gimple x;
3049 tree fn, src_nr;
3050 bool ret = false;
3051
3052 lp_nr = lookup_stmt_eh_lp (stmt);
3053 if (lp_nr != 0)
3054 dst_r = get_eh_region_from_lp_number (lp_nr);
3055 else
3056 dst_r = NULL;
3057
3058 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
3059 gsi = gsi_last_bb (bb);
3060
3061 if (src_r == NULL)
3062 {
3063 /* We can wind up with no source region when pass_cleanup_eh shows
3064 that there are no entries into an eh region and deletes it, but
3065 then the block that contains the resx isn't removed. This can
3066 happen without optimization when the switch statement created by
3067 lower_try_finally_switch isn't simplified to remove the eh case.
3068
3069 Resolve this by expanding the resx node to an abort. */
3070
3071 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3072 x = gimple_build_call (fn, 0);
3073 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3074
3075 while (EDGE_COUNT (bb->succs) > 0)
3076 remove_edge (EDGE_SUCC (bb, 0));
3077 }
3078 else if (dst_r)
3079 {
3080 /* When we have a destination region, we resolve this by copying
3081 the excptr and filter values into place, and changing the edge
3082 to immediately after the landing pad. */
3083 edge e;
3084
3085 if (lp_nr < 0)
3086 {
3087 basic_block new_bb;
3088 void **slot;
3089 tree lab;
3090
3091 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3092 the failure decl into a new block, if needed. */
3093 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3094
3095 slot = pointer_map_contains (mnt_map, dst_r);
3096 if (slot == NULL)
3097 {
3098 gimple_stmt_iterator gsi2;
3099
3100 new_bb = create_empty_bb (bb);
3101 if (current_loops)
3102 add_bb_to_loop (new_bb, bb->loop_father);
3103 lab = gimple_block_label (new_bb);
3104 gsi2 = gsi_start_bb (new_bb);
3105
3106 fn = dst_r->u.must_not_throw.failure_decl;
3107 x = gimple_build_call (fn, 0);
3108 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3109 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3110
3111 slot = pointer_map_insert (mnt_map, dst_r);
3112 *slot = lab;
3113 }
3114 else
3115 {
3116 lab = (tree) *slot;
3117 new_bb = label_to_block (lab);
3118 }
3119
3120 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3121 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3122 e->count = bb->count;
3123 e->probability = REG_BR_PROB_BASE;
3124 }
3125 else
3126 {
3127 edge_iterator ei;
3128 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3129
3130 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3131 src_nr = build_int_cst (integer_type_node, src_r->index);
3132 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3133 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3134
3135 /* Update the flags for the outgoing edge. */
3136 e = single_succ_edge (bb);
3137 gcc_assert (e->flags & EDGE_EH);
3138 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3139
3140 /* If there are no more EH users of the landing pad, delete it. */
3141 FOR_EACH_EDGE (e, ei, e->dest->preds)
3142 if (e->flags & EDGE_EH)
3143 break;
3144 if (e == NULL)
3145 {
3146 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3147 remove_eh_landing_pad (lp);
3148 }
3149 }
3150
3151 ret = true;
3152 }
3153 else
3154 {
3155 tree var;
3156
3157 /* When we don't have a destination region, this exception escapes
3158 up the call chain. We resolve this by generating a call to the
3159 _Unwind_Resume library function. */
3160
3161 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3162 with no arguments for C++ and Java. Check for that. */
3163 if (src_r->use_cxa_end_cleanup)
3164 {
3165 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3166 x = gimple_build_call (fn, 0);
3167 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3168 }
3169 else
3170 {
3171 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3172 src_nr = build_int_cst (integer_type_node, src_r->index);
3173 x = gimple_build_call (fn, 1, src_nr);
3174 var = create_tmp_var (ptr_type_node, NULL);
3175 var = make_ssa_name (var, x);
3176 gimple_call_set_lhs (x, var);
3177 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3178
3179 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3180 x = gimple_build_call (fn, 1, var);
3181 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3182 }
3183
3184 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3185 }
3186
3187 gsi_remove (&gsi, true);
3188
3189 return ret;
3190 }
3191
3192 static unsigned
3193 execute_lower_resx (void)
3194 {
3195 basic_block bb;
3196 struct pointer_map_t *mnt_map;
3197 bool dominance_invalidated = false;
3198 bool any_rewritten = false;
3199
3200 mnt_map = pointer_map_create ();
3201
3202 FOR_EACH_BB (bb)
3203 {
3204 gimple last = last_stmt (bb);
3205 if (last && is_gimple_resx (last))
3206 {
3207 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3208 any_rewritten = true;
3209 }
3210 }
3211
3212 pointer_map_destroy (mnt_map);
3213
3214 if (dominance_invalidated)
3215 {
3216 free_dominance_info (CDI_DOMINATORS);
3217 free_dominance_info (CDI_POST_DOMINATORS);
3218 }
3219
3220 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3221 }
3222
3223 static bool
3224 gate_lower_resx (void)
3225 {
3226 return flag_exceptions != 0;
3227 }
3228
3229 struct gimple_opt_pass pass_lower_resx =
3230 {
3231 {
3232 GIMPLE_PASS,
3233 "resx", /* name */
3234 OPTGROUP_NONE, /* optinfo_flags */
3235 gate_lower_resx, /* gate */
3236 execute_lower_resx, /* execute */
3237 NULL, /* sub */
3238 NULL, /* next */
3239 0, /* static_pass_number */
3240 TV_TREE_EH, /* tv_id */
3241 PROP_gimple_lcf, /* properties_required */
3242 0, /* properties_provided */
3243 0, /* properties_destroyed */
3244 0, /* todo_flags_start */
3245 TODO_verify_flow /* todo_flags_finish */
3246 }
3247 };
3248
3249 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3250 external throw. */
3251
3252 static void
3253 optimize_clobbers (basic_block bb)
3254 {
3255 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3256 bool any_clobbers = false;
3257 bool seen_stack_restore = false;
3258 edge_iterator ei;
3259 edge e;
3260
3261 /* Only optimize anything if the bb contains at least one clobber,
3262 ends with resx (checked by caller), optionally contains some
3263 debug stmts or labels, or at most one __builtin_stack_restore
3264 call, and has an incoming EH edge. */
3265 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3266 {
3267 gimple stmt = gsi_stmt (gsi);
3268 if (is_gimple_debug (stmt))
3269 continue;
3270 if (gimple_clobber_p (stmt))
3271 {
3272 any_clobbers = true;
3273 continue;
3274 }
3275 if (!seen_stack_restore
3276 && gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
3277 {
3278 seen_stack_restore = true;
3279 continue;
3280 }
3281 if (gimple_code (stmt) == GIMPLE_LABEL)
3282 break;
3283 return;
3284 }
3285 if (!any_clobbers)
3286 return;
3287 FOR_EACH_EDGE (e, ei, bb->preds)
3288 if (e->flags & EDGE_EH)
3289 break;
3290 if (e == NULL)
3291 return;
3292 gsi = gsi_last_bb (bb);
3293 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3294 {
3295 gimple stmt = gsi_stmt (gsi);
3296 if (!gimple_clobber_p (stmt))
3297 continue;
3298 unlink_stmt_vdef (stmt);
3299 gsi_remove (&gsi, true);
3300 release_defs (stmt);
3301 }
3302 }
3303
3304 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3305 internal throw to successor BB. */
3306
3307 static int
3308 sink_clobbers (basic_block bb)
3309 {
3310 edge e;
3311 edge_iterator ei;
3312 gimple_stmt_iterator gsi, dgsi;
3313 basic_block succbb;
3314 bool any_clobbers = false;
3315
3316 /* Only optimize if BB has a single EH successor and
3317 all predecessor edges are EH too. */
3318 if (!single_succ_p (bb)
3319 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3320 return 0;
3321
3322 FOR_EACH_EDGE (e, ei, bb->preds)
3323 {
3324 if ((e->flags & EDGE_EH) == 0)
3325 return 0;
3326 }
3327
3328 /* And BB contains only CLOBBER stmts before the final
3329 RESX. */
3330 gsi = gsi_last_bb (bb);
3331 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3332 {
3333 gimple stmt = gsi_stmt (gsi);
3334 if (is_gimple_debug (stmt))
3335 continue;
3336 if (gimple_code (stmt) == GIMPLE_LABEL)
3337 break;
3338 if (!gimple_clobber_p (stmt))
3339 return 0;
3340 any_clobbers = true;
3341 }
3342 if (!any_clobbers)
3343 return 0;
3344
3345 edge succe = single_succ_edge (bb);
3346 succbb = succe->dest;
3347
3348 /* See if there is a virtual PHI node to take an updated virtual
3349 operand from. */
3350 gimple vphi = NULL;
3351 tree vuse = NULL_TREE;
3352 for (gsi = gsi_start_phis (succbb); !gsi_end_p (gsi); gsi_next (&gsi))
3353 {
3354 tree res = gimple_phi_result (gsi_stmt (gsi));
3355 if (virtual_operand_p (res))
3356 {
3357 vphi = gsi_stmt (gsi);
3358 vuse = res;
3359 break;
3360 }
3361 }
3362
3363 dgsi = gsi_after_labels (succbb);
3364 gsi = gsi_last_bb (bb);
3365 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3366 {
3367 gimple stmt = gsi_stmt (gsi);
3368 tree lhs;
3369 if (is_gimple_debug (stmt))
3370 continue;
3371 if (gimple_code (stmt) == GIMPLE_LABEL)
3372 break;
3373 lhs = gimple_assign_lhs (stmt);
3374 /* Unfortunately we don't have dominance info updated at this
3375 point, so checking if
3376 dominated_by_p (CDI_DOMINATORS, succbb,
3377 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3378 would be too costly. Thus, avoid sinking any clobbers that
3379 refer to non-(D) SSA_NAMEs. */
3380 if (TREE_CODE (lhs) == MEM_REF
3381 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME
3382 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs, 0)))
3383 {
3384 unlink_stmt_vdef (stmt);
3385 gsi_remove (&gsi, true);
3386 release_defs (stmt);
3387 continue;
3388 }
3389
3390 /* As we do not change stmt order when sinking across a
3391 forwarder edge we can keep virtual operands in place. */
3392 gsi_remove (&gsi, false);
3393 gsi_insert_before (&dgsi, stmt, GSI_NEW_STMT);
3394
3395 /* But adjust virtual operands if we sunk across a PHI node. */
3396 if (vuse)
3397 {
3398 gimple use_stmt;
3399 imm_use_iterator iter;
3400 use_operand_p use_p;
3401 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vuse)
3402 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3403 SET_USE (use_p, gimple_vdef (stmt));
3404 /* Adjust the incoming virtual operand. */
3405 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi, succe), gimple_vuse (stmt));
3406 SET_USE (gimple_vuse_op (stmt), vuse);
3407 }
3408 }
3409
3410 return 0;
3411 }
3412
3413 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3414 we have found some duplicate labels and removed some edges. */
3415
3416 static bool
3417 lower_eh_dispatch (basic_block src, gimple stmt)
3418 {
3419 gimple_stmt_iterator gsi;
3420 int region_nr;
3421 eh_region r;
3422 tree filter, fn;
3423 gimple x;
3424 bool redirected = false;
3425
3426 region_nr = gimple_eh_dispatch_region (stmt);
3427 r = get_eh_region_from_number (region_nr);
3428
3429 gsi = gsi_last_bb (src);
3430
3431 switch (r->type)
3432 {
3433 case ERT_TRY:
3434 {
3435 vec<tree> labels = vNULL;
3436 tree default_label = NULL;
3437 eh_catch c;
3438 edge_iterator ei;
3439 edge e;
3440 struct pointer_set_t *seen_values = pointer_set_create ();
3441
3442 /* Collect the labels for a switch. Zero the post_landing_pad
3443 field becase we'll no longer have anything keeping these labels
3444 in existence and the optimizer will be free to merge these
3445 blocks at will. */
3446 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3447 {
3448 tree tp_node, flt_node, lab = c->label;
3449 bool have_label = false;
3450
3451 c->label = NULL;
3452 tp_node = c->type_list;
3453 flt_node = c->filter_list;
3454
3455 if (tp_node == NULL)
3456 {
3457 default_label = lab;
3458 break;
3459 }
3460 do
3461 {
3462 /* Filter out duplicate labels that arise when this handler
3463 is shadowed by an earlier one. When no labels are
3464 attached to the handler anymore, we remove
3465 the corresponding edge and then we delete unreachable
3466 blocks at the end of this pass. */
3467 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3468 {
3469 tree t = build_case_label (TREE_VALUE (flt_node),
3470 NULL, lab);
3471 labels.safe_push (t);
3472 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3473 have_label = true;
3474 }
3475
3476 tp_node = TREE_CHAIN (tp_node);
3477 flt_node = TREE_CHAIN (flt_node);
3478 }
3479 while (tp_node);
3480 if (! have_label)
3481 {
3482 remove_edge (find_edge (src, label_to_block (lab)));
3483 redirected = true;
3484 }
3485 }
3486
3487 /* Clean up the edge flags. */
3488 FOR_EACH_EDGE (e, ei, src->succs)
3489 {
3490 if (e->flags & EDGE_FALLTHRU)
3491 {
3492 /* If there was no catch-all, use the fallthru edge. */
3493 if (default_label == NULL)
3494 default_label = gimple_block_label (e->dest);
3495 e->flags &= ~EDGE_FALLTHRU;
3496 }
3497 }
3498 gcc_assert (default_label != NULL);
3499
3500 /* Don't generate a switch if there's only a default case.
3501 This is common in the form of try { A; } catch (...) { B; }. */
3502 if (!labels.exists ())
3503 {
3504 e = single_succ_edge (src);
3505 e->flags |= EDGE_FALLTHRU;
3506 }
3507 else
3508 {
3509 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3510 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3511 region_nr));
3512 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3513 filter = make_ssa_name (filter, x);
3514 gimple_call_set_lhs (x, filter);
3515 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3516
3517 /* Turn the default label into a default case. */
3518 default_label = build_case_label (NULL, NULL, default_label);
3519 sort_case_labels (labels);
3520
3521 x = gimple_build_switch (filter, default_label, labels);
3522 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3523
3524 labels.release ();
3525 }
3526 pointer_set_destroy (seen_values);
3527 }
3528 break;
3529
3530 case ERT_ALLOWED_EXCEPTIONS:
3531 {
3532 edge b_e = BRANCH_EDGE (src);
3533 edge f_e = FALLTHRU_EDGE (src);
3534
3535 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3536 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3537 region_nr));
3538 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3539 filter = make_ssa_name (filter, x);
3540 gimple_call_set_lhs (x, filter);
3541 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3542
3543 r->u.allowed.label = NULL;
3544 x = gimple_build_cond (EQ_EXPR, filter,
3545 build_int_cst (TREE_TYPE (filter),
3546 r->u.allowed.filter),
3547 NULL_TREE, NULL_TREE);
3548 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3549
3550 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3551 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3552 }
3553 break;
3554
3555 default:
3556 gcc_unreachable ();
3557 }
3558
3559 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3560 gsi_remove (&gsi, true);
3561 return redirected;
3562 }
3563
3564 static unsigned
3565 execute_lower_eh_dispatch (void)
3566 {
3567 basic_block bb;
3568 int flags = 0;
3569 bool redirected = false;
3570
3571 assign_filter_values ();
3572
3573 FOR_EACH_BB (bb)
3574 {
3575 gimple last = last_stmt (bb);
3576 if (last == NULL)
3577 continue;
3578 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3579 {
3580 redirected |= lower_eh_dispatch (bb, last);
3581 flags |= TODO_update_ssa_only_virtuals;
3582 }
3583 else if (gimple_code (last) == GIMPLE_RESX)
3584 {
3585 if (stmt_can_throw_external (last))
3586 optimize_clobbers (bb);
3587 else
3588 flags |= sink_clobbers (bb);
3589 }
3590 }
3591
3592 if (redirected)
3593 delete_unreachable_blocks ();
3594 return flags;
3595 }
3596
3597 static bool
3598 gate_lower_eh_dispatch (void)
3599 {
3600 return cfun->eh->region_tree != NULL;
3601 }
3602
3603 struct gimple_opt_pass pass_lower_eh_dispatch =
3604 {
3605 {
3606 GIMPLE_PASS,
3607 "ehdisp", /* name */
3608 OPTGROUP_NONE, /* optinfo_flags */
3609 gate_lower_eh_dispatch, /* gate */
3610 execute_lower_eh_dispatch, /* execute */
3611 NULL, /* sub */
3612 NULL, /* next */
3613 0, /* static_pass_number */
3614 TV_TREE_EH, /* tv_id */
3615 PROP_gimple_lcf, /* properties_required */
3616 0, /* properties_provided */
3617 0, /* properties_destroyed */
3618 0, /* todo_flags_start */
3619 TODO_verify_flow /* todo_flags_finish */
3620 }
3621 };
3622 \f
3623 /* Walk statements, see what regions and, optionally, landing pads
3624 are really referenced.
3625
3626 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3627 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3628
3629 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3630 regions are marked.
3631
3632 The caller is responsible for freeing the returned sbitmaps. */
3633
3634 static void
3635 mark_reachable_handlers (sbitmap *r_reachablep, sbitmap *lp_reachablep)
3636 {
3637 sbitmap r_reachable, lp_reachable;
3638 basic_block bb;
3639 bool mark_landing_pads = (lp_reachablep != NULL);
3640 gcc_checking_assert (r_reachablep != NULL);
3641
3642 r_reachable = sbitmap_alloc (cfun->eh->region_array->length ());
3643 bitmap_clear (r_reachable);
3644 *r_reachablep = r_reachable;
3645
3646 if (mark_landing_pads)
3647 {
3648 lp_reachable = sbitmap_alloc (cfun->eh->lp_array->length ());
3649 bitmap_clear (lp_reachable);
3650 *lp_reachablep = lp_reachable;
3651 }
3652 else
3653 lp_reachable = NULL;
3654
3655 FOR_EACH_BB (bb)
3656 {
3657 gimple_stmt_iterator gsi;
3658
3659 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3660 {
3661 gimple stmt = gsi_stmt (gsi);
3662
3663 if (mark_landing_pads)
3664 {
3665 int lp_nr = lookup_stmt_eh_lp (stmt);
3666
3667 /* Negative LP numbers are MUST_NOT_THROW regions which
3668 are not considered BB enders. */
3669 if (lp_nr < 0)
3670 bitmap_set_bit (r_reachable, -lp_nr);
3671
3672 /* Positive LP numbers are real landing pads, and BB enders. */
3673 else if (lp_nr > 0)
3674 {
3675 gcc_assert (gsi_one_before_end_p (gsi));
3676 eh_region region = get_eh_region_from_lp_number (lp_nr);
3677 bitmap_set_bit (r_reachable, region->index);
3678 bitmap_set_bit (lp_reachable, lp_nr);
3679 }
3680 }
3681
3682 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3683 switch (gimple_code (stmt))
3684 {
3685 case GIMPLE_RESX:
3686 bitmap_set_bit (r_reachable, gimple_resx_region (stmt));
3687 break;
3688 case GIMPLE_EH_DISPATCH:
3689 bitmap_set_bit (r_reachable, gimple_eh_dispatch_region (stmt));
3690 break;
3691 default:
3692 break;
3693 }
3694 }
3695 }
3696 }
3697
3698 /* Remove unreachable handlers and unreachable landing pads. */
3699
3700 static void
3701 remove_unreachable_handlers (void)
3702 {
3703 sbitmap r_reachable, lp_reachable;
3704 eh_region region;
3705 eh_landing_pad lp;
3706 unsigned i;
3707
3708 mark_reachable_handlers (&r_reachable, &lp_reachable);
3709
3710 if (dump_file)
3711 {
3712 fprintf (dump_file, "Before removal of unreachable regions:\n");
3713 dump_eh_tree (dump_file, cfun);
3714 fprintf (dump_file, "Reachable regions: ");
3715 dump_bitmap_file (dump_file, r_reachable);
3716 fprintf (dump_file, "Reachable landing pads: ");
3717 dump_bitmap_file (dump_file, lp_reachable);
3718 }
3719
3720 if (dump_file)
3721 {
3722 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3723 if (region && !bitmap_bit_p (r_reachable, region->index))
3724 fprintf (dump_file,
3725 "Removing unreachable region %d\n",
3726 region->index);
3727 }
3728
3729 remove_unreachable_eh_regions (r_reachable);
3730
3731 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3732 if (lp && !bitmap_bit_p (lp_reachable, lp->index))
3733 {
3734 if (dump_file)
3735 fprintf (dump_file,
3736 "Removing unreachable landing pad %d\n",
3737 lp->index);
3738 remove_eh_landing_pad (lp);
3739 }
3740
3741 if (dump_file)
3742 {
3743 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3744 dump_eh_tree (dump_file, cfun);
3745 fprintf (dump_file, "\n\n");
3746 }
3747
3748 sbitmap_free (r_reachable);
3749 sbitmap_free (lp_reachable);
3750
3751 #ifdef ENABLE_CHECKING
3752 verify_eh_tree (cfun);
3753 #endif
3754 }
3755
3756 /* Remove unreachable handlers if any landing pads have been removed after
3757 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3758
3759 void
3760 maybe_remove_unreachable_handlers (void)
3761 {
3762 eh_landing_pad lp;
3763 unsigned i;
3764
3765 if (cfun->eh == NULL)
3766 return;
3767
3768 FOR_EACH_VEC_SAFE_ELT (cfun->eh->lp_array, i, lp)
3769 if (lp && lp->post_landing_pad)
3770 {
3771 if (label_to_block (lp->post_landing_pad) == NULL)
3772 {
3773 remove_unreachable_handlers ();
3774 return;
3775 }
3776 }
3777 }
3778
3779 /* Remove regions that do not have landing pads. This assumes
3780 that remove_unreachable_handlers has already been run, and
3781 that we've just manipulated the landing pads since then.
3782
3783 Preserve regions with landing pads and regions that prevent
3784 exceptions from propagating further, even if these regions
3785 are not reachable. */
3786
3787 static void
3788 remove_unreachable_handlers_no_lp (void)
3789 {
3790 eh_region region;
3791 sbitmap r_reachable;
3792 unsigned i;
3793
3794 mark_reachable_handlers (&r_reachable, /*lp_reachablep=*/NULL);
3795
3796 FOR_EACH_VEC_SAFE_ELT (cfun->eh->region_array, i, region)
3797 {
3798 if (! region)
3799 continue;
3800
3801 if (region->landing_pads != NULL
3802 || region->type == ERT_MUST_NOT_THROW)
3803 bitmap_set_bit (r_reachable, region->index);
3804
3805 if (dump_file
3806 && !bitmap_bit_p (r_reachable, region->index))
3807 fprintf (dump_file,
3808 "Removing unreachable region %d\n",
3809 region->index);
3810 }
3811
3812 remove_unreachable_eh_regions (r_reachable);
3813
3814 sbitmap_free (r_reachable);
3815 }
3816
3817 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3818 optimisticaly split all sorts of edges, including EH edges. The
3819 optimization passes in between may not have needed them; if not,
3820 we should undo the split.
3821
3822 Recognize this case by having one EH edge incoming to the BB and
3823 one normal edge outgoing; BB should be empty apart from the
3824 post_landing_pad label.
3825
3826 Note that this is slightly different from the empty handler case
3827 handled by cleanup_empty_eh, in that the actual handler may yet
3828 have actual code but the landing pad has been separated from the
3829 handler. As such, cleanup_empty_eh relies on this transformation
3830 having been done first. */
3831
3832 static bool
3833 unsplit_eh (eh_landing_pad lp)
3834 {
3835 basic_block bb = label_to_block (lp->post_landing_pad);
3836 gimple_stmt_iterator gsi;
3837 edge e_in, e_out;
3838
3839 /* Quickly check the edge counts on BB for singularity. */
3840 if (!single_pred_p (bb) || !single_succ_p (bb))
3841 return false;
3842 e_in = single_pred_edge (bb);
3843 e_out = single_succ_edge (bb);
3844
3845 /* Input edge must be EH and output edge must be normal. */
3846 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3847 return false;
3848
3849 /* The block must be empty except for the labels and debug insns. */
3850 gsi = gsi_after_labels (bb);
3851 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3852 gsi_next_nondebug (&gsi);
3853 if (!gsi_end_p (gsi))
3854 return false;
3855
3856 /* The destination block must not already have a landing pad
3857 for a different region. */
3858 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3859 {
3860 gimple stmt = gsi_stmt (gsi);
3861 tree lab;
3862 int lp_nr;
3863
3864 if (gimple_code (stmt) != GIMPLE_LABEL)
3865 break;
3866 lab = gimple_label_label (stmt);
3867 lp_nr = EH_LANDING_PAD_NR (lab);
3868 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3869 return false;
3870 }
3871
3872 /* The new destination block must not already be a destination of
3873 the source block, lest we merge fallthru and eh edges and get
3874 all sorts of confused. */
3875 if (find_edge (e_in->src, e_out->dest))
3876 return false;
3877
3878 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3879 thought this should have been cleaned up by a phicprop pass, but
3880 that doesn't appear to handle virtuals. Propagate by hand. */
3881 if (!gimple_seq_empty_p (phi_nodes (bb)))
3882 {
3883 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3884 {
3885 gimple use_stmt, phi = gsi_stmt (gsi);
3886 tree lhs = gimple_phi_result (phi);
3887 tree rhs = gimple_phi_arg_def (phi, 0);
3888 use_operand_p use_p;
3889 imm_use_iterator iter;
3890
3891 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3892 {
3893 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3894 SET_USE (use_p, rhs);
3895 }
3896
3897 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3898 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3899
3900 remove_phi_node (&gsi, true);
3901 }
3902 }
3903
3904 if (dump_file && (dump_flags & TDF_DETAILS))
3905 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3906 lp->index, e_out->dest->index);
3907
3908 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3909 a successor edge, humor it. But do the real CFG change with the
3910 predecessor of E_OUT in order to preserve the ordering of arguments
3911 to the PHI nodes in E_OUT->DEST. */
3912 redirect_eh_edge_1 (e_in, e_out->dest, false);
3913 redirect_edge_pred (e_out, e_in->src);
3914 e_out->flags = e_in->flags;
3915 e_out->probability = e_in->probability;
3916 e_out->count = e_in->count;
3917 remove_edge (e_in);
3918
3919 return true;
3920 }
3921
3922 /* Examine each landing pad block and see if it matches unsplit_eh. */
3923
3924 static bool
3925 unsplit_all_eh (void)
3926 {
3927 bool changed = false;
3928 eh_landing_pad lp;
3929 int i;
3930
3931 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
3932 if (lp)
3933 changed |= unsplit_eh (lp);
3934
3935 return changed;
3936 }
3937
3938 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3939 to OLD_BB to NEW_BB; return true on success, false on failure.
3940
3941 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3942 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3943 Virtual PHIs may be deleted and marked for renaming. */
3944
3945 static bool
3946 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3947 edge old_bb_out, bool change_region)
3948 {
3949 gimple_stmt_iterator ngsi, ogsi;
3950 edge_iterator ei;
3951 edge e;
3952 bitmap ophi_handled;
3953
3954 /* The destination block must not be a regular successor for any
3955 of the preds of the landing pad. Thus, avoid turning
3956 <..>
3957 | \ EH
3958 | <..>
3959 | /
3960 <..>
3961 into
3962 <..>
3963 | | EH
3964 <..>
3965 which CFG verification would choke on. See PR45172 and PR51089. */
3966 FOR_EACH_EDGE (e, ei, old_bb->preds)
3967 if (find_edge (e->src, new_bb))
3968 return false;
3969
3970 FOR_EACH_EDGE (e, ei, old_bb->preds)
3971 redirect_edge_var_map_clear (e);
3972
3973 ophi_handled = BITMAP_ALLOC (NULL);
3974
3975 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3976 for the edges we're going to move. */
3977 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3978 {
3979 gimple ophi, nphi = gsi_stmt (ngsi);
3980 tree nresult, nop;
3981
3982 nresult = gimple_phi_result (nphi);
3983 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3984
3985 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3986 the source ssa_name. */
3987 ophi = NULL;
3988 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3989 {
3990 ophi = gsi_stmt (ogsi);
3991 if (gimple_phi_result (ophi) == nop)
3992 break;
3993 ophi = NULL;
3994 }
3995
3996 /* If we did find the corresponding PHI, copy those inputs. */
3997 if (ophi)
3998 {
3999 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4000 if (!has_single_use (nop))
4001 {
4002 imm_use_iterator imm_iter;
4003 use_operand_p use_p;
4004
4005 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
4006 {
4007 if (!gimple_debug_bind_p (USE_STMT (use_p))
4008 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
4009 || gimple_bb (USE_STMT (use_p)) != new_bb))
4010 goto fail;
4011 }
4012 }
4013 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
4014 FOR_EACH_EDGE (e, ei, old_bb->preds)
4015 {
4016 location_t oloc;
4017 tree oop;
4018
4019 if ((e->flags & EDGE_EH) == 0)
4020 continue;
4021 oop = gimple_phi_arg_def (ophi, e->dest_idx);
4022 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
4023 redirect_edge_var_map_add (e, nresult, oop, oloc);
4024 }
4025 }
4026 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4027 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4028 variable is unchanged from input to the block and we can simply
4029 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4030 else
4031 {
4032 location_t nloc
4033 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
4034 FOR_EACH_EDGE (e, ei, old_bb->preds)
4035 redirect_edge_var_map_add (e, nresult, nop, nloc);
4036 }
4037 }
4038
4039 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4040 we don't know what values from the other edges into NEW_BB to use. */
4041 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
4042 {
4043 gimple ophi = gsi_stmt (ogsi);
4044 tree oresult = gimple_phi_result (ophi);
4045 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
4046 goto fail;
4047 }
4048
4049 /* Finally, move the edges and update the PHIs. */
4050 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
4051 if (e->flags & EDGE_EH)
4052 {
4053 /* ??? CFG manipluation routines do not try to update loop
4054 form on edge redirection. Do so manually here for now. */
4055 /* If we redirect a loop entry or latch edge that will either create
4056 a multiple entry loop or rotate the loop. If the loops merge
4057 we may have created a loop with multiple latches.
4058 All of this isn't easily fixed thus cancel the affected loop
4059 and mark the other loop as possibly having multiple latches. */
4060 if (current_loops
4061 && e->dest == e->dest->loop_father->header)
4062 {
4063 e->dest->loop_father->header = NULL;
4064 e->dest->loop_father->latch = NULL;
4065 new_bb->loop_father->latch = NULL;
4066 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
4067 }
4068 redirect_eh_edge_1 (e, new_bb, change_region);
4069 redirect_edge_succ (e, new_bb);
4070 flush_pending_stmts (e);
4071 }
4072 else
4073 ei_next (&ei);
4074
4075 BITMAP_FREE (ophi_handled);
4076 return true;
4077
4078 fail:
4079 FOR_EACH_EDGE (e, ei, old_bb->preds)
4080 redirect_edge_var_map_clear (e);
4081 BITMAP_FREE (ophi_handled);
4082 return false;
4083 }
4084
4085 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4086 old region to NEW_REGION at BB. */
4087
4088 static void
4089 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
4090 eh_landing_pad lp, eh_region new_region)
4091 {
4092 gimple_stmt_iterator gsi;
4093 eh_landing_pad *pp;
4094
4095 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
4096 continue;
4097 *pp = lp->next_lp;
4098
4099 lp->region = new_region;
4100 lp->next_lp = new_region->landing_pads;
4101 new_region->landing_pads = lp;
4102
4103 /* Delete the RESX that was matched within the empty handler block. */
4104 gsi = gsi_last_bb (bb);
4105 unlink_stmt_vdef (gsi_stmt (gsi));
4106 gsi_remove (&gsi, true);
4107
4108 /* Clean up E_OUT for the fallthru. */
4109 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
4110 e_out->probability = REG_BR_PROB_BASE;
4111 }
4112
4113 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4114 unsplitting than unsplit_eh was prepared to handle, e.g. when
4115 multiple incoming edges and phis are involved. */
4116
4117 static bool
4118 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
4119 {
4120 gimple_stmt_iterator gsi;
4121 tree lab;
4122
4123 /* We really ought not have totally lost everything following
4124 a landing pad label. Given that BB is empty, there had better
4125 be a successor. */
4126 gcc_assert (e_out != NULL);
4127
4128 /* The destination block must not already have a landing pad
4129 for a different region. */
4130 lab = NULL;
4131 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
4132 {
4133 gimple stmt = gsi_stmt (gsi);
4134 int lp_nr;
4135
4136 if (gimple_code (stmt) != GIMPLE_LABEL)
4137 break;
4138 lab = gimple_label_label (stmt);
4139 lp_nr = EH_LANDING_PAD_NR (lab);
4140 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
4141 return false;
4142 }
4143
4144 /* Attempt to move the PHIs into the successor block. */
4145 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4146 {
4147 if (dump_file && (dump_flags & TDF_DETAILS))
4148 fprintf (dump_file,
4149 "Unsplit EH landing pad %d to block %i "
4150 "(via cleanup_empty_eh).\n",
4151 lp->index, e_out->dest->index);
4152 return true;
4153 }
4154
4155 return false;
4156 }
4157
4158 /* Return true if edge E_FIRST is part of an empty infinite loop
4159 or leads to such a loop through a series of single successor
4160 empty bbs. */
4161
4162 static bool
4163 infinite_empty_loop_p (edge e_first)
4164 {
4165 bool inf_loop = false;
4166 edge e;
4167
4168 if (e_first->dest == e_first->src)
4169 return true;
4170
4171 e_first->src->aux = (void *) 1;
4172 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4173 {
4174 gimple_stmt_iterator gsi;
4175 if (e->dest->aux)
4176 {
4177 inf_loop = true;
4178 break;
4179 }
4180 e->dest->aux = (void *) 1;
4181 gsi = gsi_after_labels (e->dest);
4182 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4183 gsi_next_nondebug (&gsi);
4184 if (!gsi_end_p (gsi))
4185 break;
4186 }
4187 e_first->src->aux = NULL;
4188 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4189 e->dest->aux = NULL;
4190
4191 return inf_loop;
4192 }
4193
4194 /* Examine the block associated with LP to determine if it's an empty
4195 handler for its EH region. If so, attempt to redirect EH edges to
4196 an outer region. Return true the CFG was updated in any way. This
4197 is similar to jump forwarding, just across EH edges. */
4198
4199 static bool
4200 cleanup_empty_eh (eh_landing_pad lp)
4201 {
4202 basic_block bb = label_to_block (lp->post_landing_pad);
4203 gimple_stmt_iterator gsi;
4204 gimple resx;
4205 eh_region new_region;
4206 edge_iterator ei;
4207 edge e, e_out;
4208 bool has_non_eh_pred;
4209 bool ret = false;
4210 int new_lp_nr;
4211
4212 /* There can be zero or one edges out of BB. This is the quickest test. */
4213 switch (EDGE_COUNT (bb->succs))
4214 {
4215 case 0:
4216 e_out = NULL;
4217 break;
4218 case 1:
4219 e_out = single_succ_edge (bb);
4220 break;
4221 default:
4222 return false;
4223 }
4224
4225 resx = last_stmt (bb);
4226 if (resx && is_gimple_resx (resx))
4227 {
4228 if (stmt_can_throw_external (resx))
4229 optimize_clobbers (bb);
4230 else if (sink_clobbers (bb))
4231 ret = true;
4232 }
4233
4234 gsi = gsi_after_labels (bb);
4235
4236 /* Make sure to skip debug statements. */
4237 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4238 gsi_next_nondebug (&gsi);
4239
4240 /* If the block is totally empty, look for more unsplitting cases. */
4241 if (gsi_end_p (gsi))
4242 {
4243 /* For the degenerate case of an infinite loop bail out. */
4244 if (infinite_empty_loop_p (e_out))
4245 return ret;
4246
4247 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4248 }
4249
4250 /* The block should consist only of a single RESX statement, modulo a
4251 preceding call to __builtin_stack_restore if there is no outgoing
4252 edge, since the call can be eliminated in this case. */
4253 resx = gsi_stmt (gsi);
4254 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4255 {
4256 gsi_next (&gsi);
4257 resx = gsi_stmt (gsi);
4258 }
4259 if (!is_gimple_resx (resx))
4260 return ret;
4261 gcc_assert (gsi_one_before_end_p (gsi));
4262
4263 /* Determine if there are non-EH edges, or resx edges into the handler. */
4264 has_non_eh_pred = false;
4265 FOR_EACH_EDGE (e, ei, bb->preds)
4266 if (!(e->flags & EDGE_EH))
4267 has_non_eh_pred = true;
4268
4269 /* Find the handler that's outer of the empty handler by looking at
4270 where the RESX instruction was vectored. */
4271 new_lp_nr = lookup_stmt_eh_lp (resx);
4272 new_region = get_eh_region_from_lp_number (new_lp_nr);
4273
4274 /* If there's no destination region within the current function,
4275 redirection is trivial via removing the throwing statements from
4276 the EH region, removing the EH edges, and allowing the block
4277 to go unreachable. */
4278 if (new_region == NULL)
4279 {
4280 gcc_assert (e_out == NULL);
4281 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4282 if (e->flags & EDGE_EH)
4283 {
4284 gimple stmt = last_stmt (e->src);
4285 remove_stmt_from_eh_lp (stmt);
4286 remove_edge (e);
4287 }
4288 else
4289 ei_next (&ei);
4290 goto succeed;
4291 }
4292
4293 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4294 to handle the abort and allow the blocks to go unreachable. */
4295 if (new_region->type == ERT_MUST_NOT_THROW)
4296 {
4297 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4298 if (e->flags & EDGE_EH)
4299 {
4300 gimple stmt = last_stmt (e->src);
4301 remove_stmt_from_eh_lp (stmt);
4302 add_stmt_to_eh_lp (stmt, new_lp_nr);
4303 remove_edge (e);
4304 }
4305 else
4306 ei_next (&ei);
4307 goto succeed;
4308 }
4309
4310 /* Try to redirect the EH edges and merge the PHIs into the destination
4311 landing pad block. If the merge succeeds, we'll already have redirected
4312 all the EH edges. The handler itself will go unreachable if there were
4313 no normal edges. */
4314 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4315 goto succeed;
4316
4317 /* Finally, if all input edges are EH edges, then we can (potentially)
4318 reduce the number of transfers from the runtime by moving the landing
4319 pad from the original region to the new region. This is a win when
4320 we remove the last CLEANUP region along a particular exception
4321 propagation path. Since nothing changes except for the region with
4322 which the landing pad is associated, the PHI nodes do not need to be
4323 adjusted at all. */
4324 if (!has_non_eh_pred)
4325 {
4326 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4327 if (dump_file && (dump_flags & TDF_DETAILS))
4328 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4329 lp->index, new_region->index);
4330
4331 /* ??? The CFG didn't change, but we may have rendered the
4332 old EH region unreachable. Trigger a cleanup there. */
4333 return true;
4334 }
4335
4336 return ret;
4337
4338 succeed:
4339 if (dump_file && (dump_flags & TDF_DETAILS))
4340 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4341 remove_eh_landing_pad (lp);
4342 return true;
4343 }
4344
4345 /* Do a post-order traversal of the EH region tree. Examine each
4346 post_landing_pad block and see if we can eliminate it as empty. */
4347
4348 static bool
4349 cleanup_all_empty_eh (void)
4350 {
4351 bool changed = false;
4352 eh_landing_pad lp;
4353 int i;
4354
4355 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
4356 if (lp)
4357 changed |= cleanup_empty_eh (lp);
4358
4359 return changed;
4360 }
4361
4362 /* Perform cleanups and lowering of exception handling
4363 1) cleanups regions with handlers doing nothing are optimized out
4364 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4365 3) Info about regions that are containing instructions, and regions
4366 reachable via local EH edges is collected
4367 4) Eh tree is pruned for regions no longer neccesary.
4368
4369 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4370 Unify those that have the same failure decl and locus.
4371 */
4372
4373 static unsigned int
4374 execute_cleanup_eh_1 (void)
4375 {
4376 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4377 looking up unreachable landing pads. */
4378 remove_unreachable_handlers ();
4379
4380 /* Watch out for the region tree vanishing due to all unreachable. */
4381 if (cfun->eh->region_tree && optimize)
4382 {
4383 bool changed = false;
4384
4385 changed |= unsplit_all_eh ();
4386 changed |= cleanup_all_empty_eh ();
4387
4388 if (changed)
4389 {
4390 free_dominance_info (CDI_DOMINATORS);
4391 free_dominance_info (CDI_POST_DOMINATORS);
4392
4393 /* We delayed all basic block deletion, as we may have performed
4394 cleanups on EH edges while non-EH edges were still present. */
4395 delete_unreachable_blocks ();
4396
4397 /* We manipulated the landing pads. Remove any region that no
4398 longer has a landing pad. */
4399 remove_unreachable_handlers_no_lp ();
4400
4401 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4402 }
4403 }
4404
4405 return 0;
4406 }
4407
4408 static unsigned int
4409 execute_cleanup_eh (void)
4410 {
4411 int ret = execute_cleanup_eh_1 ();
4412
4413 /* If the function no longer needs an EH personality routine
4414 clear it. This exposes cross-language inlining opportunities
4415 and avoids references to a never defined personality routine. */
4416 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4417 && function_needs_eh_personality (cfun) != eh_personality_lang)
4418 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4419
4420 return ret;
4421 }
4422
4423 static bool
4424 gate_cleanup_eh (void)
4425 {
4426 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4427 }
4428
4429 struct gimple_opt_pass pass_cleanup_eh = {
4430 {
4431 GIMPLE_PASS,
4432 "ehcleanup", /* name */
4433 OPTGROUP_NONE, /* optinfo_flags */
4434 gate_cleanup_eh, /* gate */
4435 execute_cleanup_eh, /* execute */
4436 NULL, /* sub */
4437 NULL, /* next */
4438 0, /* static_pass_number */
4439 TV_TREE_EH, /* tv_id */
4440 PROP_gimple_lcf, /* properties_required */
4441 0, /* properties_provided */
4442 0, /* properties_destroyed */
4443 0, /* todo_flags_start */
4444 TODO_verify_ssa /* todo_flags_finish */
4445 }
4446 };
4447 \f
4448 /* Verify that BB containing STMT as the last statement, has precisely the
4449 edge that make_eh_edges would create. */
4450
4451 DEBUG_FUNCTION bool
4452 verify_eh_edges (gimple stmt)
4453 {
4454 basic_block bb = gimple_bb (stmt);
4455 eh_landing_pad lp = NULL;
4456 int lp_nr;
4457 edge_iterator ei;
4458 edge e, eh_edge;
4459
4460 lp_nr = lookup_stmt_eh_lp (stmt);
4461 if (lp_nr > 0)
4462 lp = get_eh_landing_pad_from_number (lp_nr);
4463
4464 eh_edge = NULL;
4465 FOR_EACH_EDGE (e, ei, bb->succs)
4466 {
4467 if (e->flags & EDGE_EH)
4468 {
4469 if (eh_edge)
4470 {
4471 error ("BB %i has multiple EH edges", bb->index);
4472 return true;
4473 }
4474 else
4475 eh_edge = e;
4476 }
4477 }
4478
4479 if (lp == NULL)
4480 {
4481 if (eh_edge)
4482 {
4483 error ("BB %i can not throw but has an EH edge", bb->index);
4484 return true;
4485 }
4486 return false;
4487 }
4488
4489 if (!stmt_could_throw_p (stmt))
4490 {
4491 error ("BB %i last statement has incorrectly set lp", bb->index);
4492 return true;
4493 }
4494
4495 if (eh_edge == NULL)
4496 {
4497 error ("BB %i is missing an EH edge", bb->index);
4498 return true;
4499 }
4500
4501 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4502 {
4503 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4504 return true;
4505 }
4506
4507 return false;
4508 }
4509
4510 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4511
4512 DEBUG_FUNCTION bool
4513 verify_eh_dispatch_edge (gimple stmt)
4514 {
4515 eh_region r;
4516 eh_catch c;
4517 basic_block src, dst;
4518 bool want_fallthru = true;
4519 edge_iterator ei;
4520 edge e, fall_edge;
4521
4522 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4523 src = gimple_bb (stmt);
4524
4525 FOR_EACH_EDGE (e, ei, src->succs)
4526 gcc_assert (e->aux == NULL);
4527
4528 switch (r->type)
4529 {
4530 case ERT_TRY:
4531 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4532 {
4533 dst = label_to_block (c->label);
4534 e = find_edge (src, dst);
4535 if (e == NULL)
4536 {
4537 error ("BB %i is missing an edge", src->index);
4538 return true;
4539 }
4540 e->aux = (void *)e;
4541
4542 /* A catch-all handler doesn't have a fallthru. */
4543 if (c->type_list == NULL)
4544 {
4545 want_fallthru = false;
4546 break;
4547 }
4548 }
4549 break;
4550
4551 case ERT_ALLOWED_EXCEPTIONS:
4552 dst = label_to_block (r->u.allowed.label);
4553 e = find_edge (src, dst);
4554 if (e == NULL)
4555 {
4556 error ("BB %i is missing an edge", src->index);
4557 return true;
4558 }
4559 e->aux = (void *)e;
4560 break;
4561
4562 default:
4563 gcc_unreachable ();
4564 }
4565
4566 fall_edge = NULL;
4567 FOR_EACH_EDGE (e, ei, src->succs)
4568 {
4569 if (e->flags & EDGE_FALLTHRU)
4570 {
4571 if (fall_edge != NULL)
4572 {
4573 error ("BB %i too many fallthru edges", src->index);
4574 return true;
4575 }
4576 fall_edge = e;
4577 }
4578 else if (e->aux)
4579 e->aux = NULL;
4580 else
4581 {
4582 error ("BB %i has incorrect edge", src->index);
4583 return true;
4584 }
4585 }
4586 if ((fall_edge != NULL) ^ want_fallthru)
4587 {
4588 error ("BB %i has incorrect fallthru edge", src->index);
4589 return true;
4590 }
4591
4592 return false;
4593 }