tree-eh.c (lower_try_finally_switch): Create the label along with the CASE_LABEL_EXPR.
[gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "diagnostic-core.h"
39 #include "gimple.h"
40 #include "target.h"
41
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p = 0;
48
49 void
50 using_eh_for_cleanups (void)
51 {
52 using_eh_for_cleanups_p = 1;
53 }
54
55 /* Misc functions used in this file. */
56
57 /* Compare and hash for any structure which begins with a canonical
58 pointer. Assumes all pointers are interchangeable, which is sort
59 of already assumed by gcc elsewhere IIRC. */
60
61 static int
62 struct_ptr_eq (const void *a, const void *b)
63 {
64 const void * const * x = (const void * const *) a;
65 const void * const * y = (const void * const *) b;
66 return *x == *y;
67 }
68
69 static hashval_t
70 struct_ptr_hash (const void *a)
71 {
72 const void * const * x = (const void * const *) a;
73 return (size_t)*x >> 4;
74 }
75
76
77 /* Remember and lookup EH landing pad data for arbitrary statements.
78 Really this means any statement that could_throw_p. We could
79 stuff this information into the stmt_ann data structure, but:
80
81 (1) We absolutely rely on this information being kept until
82 we get to rtl. Once we're done with lowering here, if we lose
83 the information there's no way to recover it!
84
85 (2) There are many more statements that *cannot* throw as
86 compared to those that can. We should be saving some amount
87 of space by only allocating memory for those that can throw. */
88
89 /* Add statement T in function IFUN to landing pad NUM. */
90
91 void
92 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
93 {
94 struct throw_stmt_node *n;
95 void **slot;
96
97 gcc_assert (num != 0);
98
99 n = ggc_alloc_throw_stmt_node ();
100 n->stmt = t;
101 n->lp_nr = num;
102
103 if (!get_eh_throw_stmt_table (ifun))
104 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
105 struct_ptr_eq,
106 ggc_free));
107
108 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
109 gcc_assert (!*slot);
110 *slot = n;
111 }
112
113 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
114
115 void
116 add_stmt_to_eh_lp (gimple t, int num)
117 {
118 add_stmt_to_eh_lp_fn (cfun, t, num);
119 }
120
121 /* Add statement T to the single EH landing pad in REGION. */
122
123 static void
124 record_stmt_eh_region (eh_region region, gimple t)
125 {
126 if (region == NULL)
127 return;
128 if (region->type == ERT_MUST_NOT_THROW)
129 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
130 else
131 {
132 eh_landing_pad lp = region->landing_pads;
133 if (lp == NULL)
134 lp = gen_eh_landing_pad (region);
135 else
136 gcc_assert (lp->next_lp == NULL);
137 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
138 }
139 }
140
141
142 /* Remove statement T in function IFUN from its EH landing pad. */
143
144 bool
145 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
146 {
147 struct throw_stmt_node dummy;
148 void **slot;
149
150 if (!get_eh_throw_stmt_table (ifun))
151 return false;
152
153 dummy.stmt = t;
154 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
155 NO_INSERT);
156 if (slot)
157 {
158 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
159 return true;
160 }
161 else
162 return false;
163 }
164
165
166 /* Remove statement T in the current function (cfun) from its
167 EH landing pad. */
168
169 bool
170 remove_stmt_from_eh_lp (gimple t)
171 {
172 return remove_stmt_from_eh_lp_fn (cfun, t);
173 }
174
175 /* Determine if statement T is inside an EH region in function IFUN.
176 Positive numbers indicate a landing pad index; negative numbers
177 indicate a MUST_NOT_THROW region index; zero indicates that the
178 statement is not recorded in the region table. */
179
180 int
181 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
182 {
183 struct throw_stmt_node *p, n;
184
185 if (ifun->eh->throw_stmt_table == NULL)
186 return 0;
187
188 n.stmt = t;
189 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
190 return p ? p->lp_nr : 0;
191 }
192
193 /* Likewise, but always use the current function. */
194
195 int
196 lookup_stmt_eh_lp (gimple t)
197 {
198 /* We can get called from initialized data when -fnon-call-exceptions
199 is on; prevent crash. */
200 if (!cfun)
201 return 0;
202 return lookup_stmt_eh_lp_fn (cfun, t);
203 }
204
205 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
206 nodes and LABEL_DECL nodes. We will use this during the second phase to
207 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
208
209 struct finally_tree_node
210 {
211 /* When storing a GIMPLE_TRY, we have to record a gimple. However
212 when deciding whether a GOTO to a certain LABEL_DECL (which is a
213 tree) leaves the TRY block, its necessary to record a tree in
214 this field. Thus a treemple is used. */
215 treemple child;
216 gimple parent;
217 };
218
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static htab_t finally_tree;
221
222 static void
223 record_in_finally_tree (treemple child, gimple parent)
224 {
225 struct finally_tree_node *n;
226 void **slot;
227
228 n = XNEW (struct finally_tree_node);
229 n->child = child;
230 n->parent = parent;
231
232 slot = htab_find_slot (finally_tree, n, INSERT);
233 gcc_assert (!*slot);
234 *slot = n;
235 }
236
237 static void
238 collect_finally_tree (gimple stmt, gimple region);
239
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
242
243 static void
244 collect_finally_tree_1 (gimple_seq seq, gimple region)
245 {
246 gimple_stmt_iterator gsi;
247
248 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
249 collect_finally_tree (gsi_stmt (gsi), region);
250 }
251
252 static void
253 collect_finally_tree (gimple stmt, gimple region)
254 {
255 treemple temp;
256
257 switch (gimple_code (stmt))
258 {
259 case GIMPLE_LABEL:
260 temp.t = gimple_label_label (stmt);
261 record_in_finally_tree (temp, region);
262 break;
263
264 case GIMPLE_TRY:
265 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
266 {
267 temp.g = stmt;
268 record_in_finally_tree (temp, region);
269 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
271 }
272 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
273 {
274 collect_finally_tree_1 (gimple_try_eval (stmt), region);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
276 }
277 break;
278
279 case GIMPLE_CATCH:
280 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
281 break;
282
283 case GIMPLE_EH_FILTER:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
285 break;
286
287 default:
288 /* A type, a decl, or some kind of statement that we're not
289 interested in. Don't walk them. */
290 break;
291 }
292 }
293
294
295 /* Use the finally tree to determine if a jump from START to TARGET
296 would leave the try_finally node that START lives in. */
297
298 static bool
299 outside_finally_tree (treemple start, gimple target)
300 {
301 struct finally_tree_node n, *p;
302
303 do
304 {
305 n.child = start;
306 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
307 if (!p)
308 return true;
309 start.g = p->parent;
310 }
311 while (start.g != target);
312
313 return false;
314 }
315
316 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
317 nodes into a set of gotos, magic labels, and eh regions.
318 The eh region creation is straight-forward, but frobbing all the gotos
319 and such into shape isn't. */
320
321 /* The sequence into which we record all EH stuff. This will be
322 placed at the end of the function when we're all done. */
323 static gimple_seq eh_seq;
324
325 /* Record whether an EH region contains something that can throw,
326 indexed by EH region number. */
327 static bitmap eh_region_may_contain_throw_map;
328
329 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
330 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
331 The idea is to record a gimple statement for everything except for
332 the conditionals, which get their labels recorded. Since labels are
333 of type 'tree', we need this node to store both gimple and tree
334 objects. REPL_STMT is the sequence used to replace the goto/return
335 statement. CONT_STMT is used to store the statement that allows
336 the return/goto to jump to the original destination. */
337
338 struct goto_queue_node
339 {
340 treemple stmt;
341 gimple_seq repl_stmt;
342 gimple cont_stmt;
343 int index;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
346 int is_label;
347 };
348
349 /* State of the world while lowering. */
350
351 struct leh_state
352 {
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region;
357
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region;
362
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state *tf;
367 };
368
369 struct leh_tf_state
370 {
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gimple try_finally_expr;
376 gimple top_p;
377
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq;
381
382 /* The state outside this try_finally node. */
383 struct leh_state *outer;
384
385 /* The exception region created for it. */
386 eh_region region;
387
388 /* The goto queue. */
389 struct goto_queue_node *goto_queue;
390 size_t goto_queue_size;
391 size_t goto_queue_active;
392
393 /* Pointer map to help in searching goto_queue when it is large. */
394 struct pointer_map_t *goto_queue_map;
395
396 /* The set of unique labels seen as entries in the goto queue. */
397 VEC(tree,heap) *dest_array;
398
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
402 tree fallthru_label;
403
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
406 bool may_fallthru;
407
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
409 bool may_return;
410
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
413 bool may_throw;
414 };
415
416 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
417
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
420
421 #define LARGE_GOTO_QUEUE 20
422
423 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
424
425 static gimple_seq
426 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
427 {
428 unsigned int i;
429 void **slot;
430
431 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
432 {
433 for (i = 0; i < tf->goto_queue_active; i++)
434 if ( tf->goto_queue[i].stmt.g == stmt.g)
435 return tf->goto_queue[i].repl_stmt;
436 return NULL;
437 }
438
439 /* If we have a large number of entries in the goto_queue, create a
440 pointer map and use that for searching. */
441
442 if (!tf->goto_queue_map)
443 {
444 tf->goto_queue_map = pointer_map_create ();
445 for (i = 0; i < tf->goto_queue_active; i++)
446 {
447 slot = pointer_map_insert (tf->goto_queue_map,
448 tf->goto_queue[i].stmt.g);
449 gcc_assert (*slot == NULL);
450 *slot = &tf->goto_queue[i];
451 }
452 }
453
454 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
455 if (slot != NULL)
456 return (((struct goto_queue_node *) *slot)->repl_stmt);
457
458 return NULL;
459 }
460
461 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
462 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
463 then we can just splat it in, otherwise we add the new stmts immediately
464 after the GIMPLE_COND and redirect. */
465
466 static void
467 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
468 gimple_stmt_iterator *gsi)
469 {
470 tree label;
471 gimple_seq new_seq;
472 treemple temp;
473 location_t loc = gimple_location (gsi_stmt (*gsi));
474
475 temp.tp = tp;
476 new_seq = find_goto_replacement (tf, temp);
477 if (!new_seq)
478 return;
479
480 if (gimple_seq_singleton_p (new_seq)
481 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
482 {
483 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
484 return;
485 }
486
487 label = create_artificial_label (loc);
488 /* Set the new label for the GIMPLE_COND */
489 *tp = label;
490
491 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
492 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
493 }
494
495 /* The real work of replace_goto_queue. Returns with TSI updated to
496 point to the next statement. */
497
498 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
499
500 static void
501 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
502 gimple_stmt_iterator *gsi)
503 {
504 gimple_seq seq;
505 treemple temp;
506 temp.g = NULL;
507
508 switch (gimple_code (stmt))
509 {
510 case GIMPLE_GOTO:
511 case GIMPLE_RETURN:
512 temp.g = stmt;
513 seq = find_goto_replacement (tf, temp);
514 if (seq)
515 {
516 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
517 gsi_remove (gsi, false);
518 return;
519 }
520 break;
521
522 case GIMPLE_COND:
523 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
525 break;
526
527 case GIMPLE_TRY:
528 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
529 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
530 break;
531 case GIMPLE_CATCH:
532 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
533 break;
534 case GIMPLE_EH_FILTER:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
536 break;
537
538 default:
539 /* These won't have gotos in them. */
540 break;
541 }
542
543 gsi_next (gsi);
544 }
545
546 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
547
548 static void
549 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
550 {
551 gimple_stmt_iterator gsi = gsi_start (seq);
552
553 while (!gsi_end_p (gsi))
554 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
555 }
556
557 /* Replace all goto queue members. */
558
559 static void
560 replace_goto_queue (struct leh_tf_state *tf)
561 {
562 if (tf->goto_queue_active == 0)
563 return;
564 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
565 replace_goto_queue_stmt_list (eh_seq, tf);
566 }
567
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
570 a gimple return. */
571
572 static void
573 record_in_goto_queue (struct leh_tf_state *tf,
574 treemple new_stmt,
575 int index,
576 bool is_label)
577 {
578 size_t active, size;
579 struct goto_queue_node *q;
580
581 gcc_assert (!tf->goto_queue_map);
582
583 active = tf->goto_queue_active;
584 size = tf->goto_queue_size;
585 if (active >= size)
586 {
587 size = (size ? size * 2 : 32);
588 tf->goto_queue_size = size;
589 tf->goto_queue
590 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
591 }
592
593 q = &tf->goto_queue[active];
594 tf->goto_queue_active = active + 1;
595
596 memset (q, 0, sizeof (*q));
597 q->stmt = new_stmt;
598 q->index = index;
599 q->is_label = is_label;
600 }
601
602 /* Record the LABEL label in the goto queue contained in TF.
603 TF is not null. */
604
605 static void
606 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
607 {
608 int index;
609 treemple temp, new_stmt;
610
611 if (!label)
612 return;
613
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
619
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
624
625 if (! tf->dest_array)
626 {
627 tf->dest_array = VEC_alloc (tree, heap, 10);
628 VEC_quick_push (tree, tf->dest_array, label);
629 index = 0;
630 }
631 else
632 {
633 int n = VEC_length (tree, tf->dest_array);
634 for (index = 0; index < n; ++index)
635 if (VEC_index (tree, tf->dest_array, index) == label)
636 break;
637 if (index == n)
638 VEC_safe_push (tree, heap, tf->dest_array, label);
639 }
640
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true);
646 }
647
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
650 try_finally node. */
651
652 static void
653 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
654 {
655 struct leh_tf_state *tf = state->tf;
656 treemple new_stmt;
657
658 if (!tf)
659 return;
660
661 switch (gimple_code (stmt))
662 {
663 case GIMPLE_COND:
664 new_stmt.tp = gimple_op_ptr (stmt, 2);
665 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
666 new_stmt.tp = gimple_op_ptr (stmt, 3);
667 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
668 break;
669 case GIMPLE_GOTO:
670 new_stmt.g = stmt;
671 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
672 break;
673
674 case GIMPLE_RETURN:
675 tf->may_return = true;
676 new_stmt.g = stmt;
677 record_in_goto_queue (tf, new_stmt, -1, false);
678 break;
679
680 default:
681 gcc_unreachable ();
682 }
683 }
684
685
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
690
691 static void
692 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
693 {
694 struct leh_tf_state *tf = state->tf;
695 size_t i, n;
696
697 if (!tf)
698 return;
699
700 n = gimple_switch_num_labels (switch_expr);
701
702 for (i = 0; i < n; ++i)
703 {
704 treemple temp;
705 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
706 temp.t = lab;
707 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
708 }
709 }
710 #else
711 #define verify_norecord_switch_expr(state, switch_expr)
712 #endif
713
714 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
715 whatever is needed to finish the return. If MOD is non-null, insert it
716 before the new branch. RETURN_VALUE_P is a cache containing a temporary
717 variable to be used in manipulating the value returned from the function. */
718
719 static void
720 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
721 tree *return_value_p)
722 {
723 tree ret_expr;
724 gimple x;
725
726 /* In the case of a return, the queue node must be a gimple statement. */
727 gcc_assert (!q->is_label);
728
729 ret_expr = gimple_return_retval (q->stmt.g);
730
731 if (ret_expr)
732 {
733 if (!*return_value_p)
734 *return_value_p = ret_expr;
735 else
736 gcc_assert (*return_value_p == ret_expr);
737 q->cont_stmt = q->stmt.g;
738 /* The nasty part about redirecting the return value is that the
739 return value itself is to be computed before the FINALLY block
740 is executed. e.g.
741
742 int x;
743 int foo (void)
744 {
745 x = 0;
746 try {
747 return x;
748 } finally {
749 x++;
750 }
751 }
752
753 should return 0, not 1. Arrange for this to happen by copying
754 computed the return value into a local temporary. This also
755 allows us to redirect multiple return statements through the
756 same destination block; whether this is a net win or not really
757 depends, I guess, but it does make generation of the switch in
758 lower_try_finally_switch easier. */
759
760 if (TREE_CODE (ret_expr) == RESULT_DECL)
761 {
762 if (!*return_value_p)
763 *return_value_p = ret_expr;
764 else
765 gcc_assert (*return_value_p == ret_expr);
766 q->cont_stmt = q->stmt.g;
767 }
768 else
769 gcc_unreachable ();
770 }
771 else
772 /* If we don't return a value, all return statements are the same. */
773 q->cont_stmt = q->stmt.g;
774
775 if (!q->repl_stmt)
776 q->repl_stmt = gimple_seq_alloc ();
777
778 if (mod)
779 gimple_seq_add_seq (&q->repl_stmt, mod);
780
781 x = gimple_build_goto (finlab);
782 gimple_seq_add_stmt (&q->repl_stmt, x);
783 }
784
785 /* Similar, but easier, for GIMPLE_GOTO. */
786
787 static void
788 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
789 struct leh_tf_state *tf)
790 {
791 gimple x;
792
793 gcc_assert (q->is_label);
794 if (!q->repl_stmt)
795 q->repl_stmt = gimple_seq_alloc ();
796
797 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
798
799 if (mod)
800 gimple_seq_add_seq (&q->repl_stmt, mod);
801
802 x = gimple_build_goto (finlab);
803 gimple_seq_add_stmt (&q->repl_stmt, x);
804 }
805
806 /* Emit a standard landing pad sequence into SEQ for REGION. */
807
808 static void
809 emit_post_landing_pad (gimple_seq *seq, eh_region region)
810 {
811 eh_landing_pad lp = region->landing_pads;
812 gimple x;
813
814 if (lp == NULL)
815 lp = gen_eh_landing_pad (region);
816
817 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
818 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
819
820 x = gimple_build_label (lp->post_landing_pad);
821 gimple_seq_add_stmt (seq, x);
822 }
823
824 /* Emit a RESX statement into SEQ for REGION. */
825
826 static void
827 emit_resx (gimple_seq *seq, eh_region region)
828 {
829 gimple x = gimple_build_resx (region->index);
830 gimple_seq_add_stmt (seq, x);
831 if (region->outer)
832 record_stmt_eh_region (region->outer, x);
833 }
834
835 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
836
837 static void
838 emit_eh_dispatch (gimple_seq *seq, eh_region region)
839 {
840 gimple x = gimple_build_eh_dispatch (region->index);
841 gimple_seq_add_stmt (seq, x);
842 }
843
844 /* Note that the current EH region may contain a throw, or a
845 call to a function which itself may contain a throw. */
846
847 static void
848 note_eh_region_may_contain_throw (eh_region region)
849 {
850 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
851 {
852 if (region->type == ERT_MUST_NOT_THROW)
853 break;
854 region = region->outer;
855 if (region == NULL)
856 break;
857 }
858 }
859
860 /* Check if REGION has been marked as containing a throw. If REGION is
861 NULL, this predicate is false. */
862
863 static inline bool
864 eh_region_may_contain_throw (eh_region r)
865 {
866 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
867 }
868
869 /* We want to transform
870 try { body; } catch { stuff; }
871 to
872 normal_seqence:
873 body;
874 over:
875 eh_seqence:
876 landing_pad:
877 stuff;
878 goto over;
879
880 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
881 should be placed before the second operand, or NULL. OVER is
882 an existing label that should be put at the exit, or NULL. */
883
884 static gimple_seq
885 frob_into_branch_around (gimple tp, eh_region region, tree over)
886 {
887 gimple x;
888 gimple_seq cleanup, result;
889 location_t loc = gimple_location (tp);
890
891 cleanup = gimple_try_cleanup (tp);
892 result = gimple_try_eval (tp);
893
894 if (region)
895 emit_post_landing_pad (&eh_seq, region);
896
897 if (gimple_seq_may_fallthru (cleanup))
898 {
899 if (!over)
900 over = create_artificial_label (loc);
901 x = gimple_build_goto (over);
902 gimple_seq_add_stmt (&cleanup, x);
903 }
904 gimple_seq_add_seq (&eh_seq, cleanup);
905
906 if (over)
907 {
908 x = gimple_build_label (over);
909 gimple_seq_add_stmt (&result, x);
910 }
911 return result;
912 }
913
914 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
915 Make sure to record all new labels found. */
916
917 static gimple_seq
918 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
919 {
920 gimple region = NULL;
921 gimple_seq new_seq;
922
923 new_seq = copy_gimple_seq_and_replace_locals (seq);
924
925 if (outer_state->tf)
926 region = outer_state->tf->try_finally_expr;
927 collect_finally_tree_1 (new_seq, region);
928
929 return new_seq;
930 }
931
932 /* A subroutine of lower_try_finally. Create a fallthru label for
933 the given try_finally state. The only tricky bit here is that
934 we have to make sure to record the label in our outer context. */
935
936 static tree
937 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
938 {
939 tree label = tf->fallthru_label;
940 treemple temp;
941
942 if (!label)
943 {
944 label = create_artificial_label (gimple_location (tf->try_finally_expr));
945 tf->fallthru_label = label;
946 if (tf->outer->tf)
947 {
948 temp.t = label;
949 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
950 }
951 }
952 return label;
953 }
954
955 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
956 langhook returns non-null, then the language requires that the exception
957 path out of a try_finally be treated specially. To wit: the code within
958 the finally block may not itself throw an exception. We have two choices
959 here. First we can duplicate the finally block and wrap it in a
960 must_not_throw region. Second, we can generate code like
961
962 try {
963 finally_block;
964 } catch {
965 if (fintmp == eh_edge)
966 protect_cleanup_actions;
967 }
968
969 where "fintmp" is the temporary used in the switch statement generation
970 alternative considered below. For the nonce, we always choose the first
971 option.
972
973 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
974
975 static void
976 honor_protect_cleanup_actions (struct leh_state *outer_state,
977 struct leh_state *this_state,
978 struct leh_tf_state *tf)
979 {
980 tree protect_cleanup_actions;
981 gimple_stmt_iterator gsi;
982 bool finally_may_fallthru;
983 gimple_seq finally;
984 gimple x;
985
986 /* First check for nothing to do. */
987 if (lang_hooks.eh_protect_cleanup_actions == NULL)
988 return;
989 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
990 if (protect_cleanup_actions == NULL)
991 return;
992
993 finally = gimple_try_cleanup (tf->top_p);
994 finally_may_fallthru = gimple_seq_may_fallthru (finally);
995
996 /* Duplicate the FINALLY block. Only need to do this for try-finally,
997 and not for cleanups. */
998 if (this_state)
999 finally = lower_try_finally_dup_block (finally, outer_state);
1000
1001 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1002 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1003 to be in an enclosing scope, but needs to be implemented at this level
1004 to avoid a nesting violation (see wrap_temporary_cleanups in
1005 cp/decl.c). Since it's logically at an outer level, we should call
1006 terminate before we get to it, so strip it away before adding the
1007 MUST_NOT_THROW filter. */
1008 gsi = gsi_start (finally);
1009 x = gsi_stmt (gsi);
1010 if (gimple_code (x) == GIMPLE_TRY
1011 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1012 && gimple_try_catch_is_cleanup (x))
1013 {
1014 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1015 gsi_remove (&gsi, false);
1016 }
1017
1018 /* Wrap the block with protect_cleanup_actions as the action. */
1019 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1020 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1021 GIMPLE_TRY_CATCH);
1022 finally = lower_eh_must_not_throw (outer_state, x);
1023
1024 /* Drop all of this into the exception sequence. */
1025 emit_post_landing_pad (&eh_seq, tf->region);
1026 gimple_seq_add_seq (&eh_seq, finally);
1027 if (finally_may_fallthru)
1028 emit_resx (&eh_seq, tf->region);
1029
1030 /* Having now been handled, EH isn't to be considered with
1031 the rest of the outgoing edges. */
1032 tf->may_throw = false;
1033 }
1034
1035 /* A subroutine of lower_try_finally. We have determined that there is
1036 no fallthru edge out of the finally block. This means that there is
1037 no outgoing edge corresponding to any incoming edge. Restructure the
1038 try_finally node for this special case. */
1039
1040 static void
1041 lower_try_finally_nofallthru (struct leh_state *state,
1042 struct leh_tf_state *tf)
1043 {
1044 tree lab, return_val;
1045 gimple x;
1046 gimple_seq finally;
1047 struct goto_queue_node *q, *qe;
1048
1049 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1050
1051 /* We expect that tf->top_p is a GIMPLE_TRY. */
1052 finally = gimple_try_cleanup (tf->top_p);
1053 tf->top_p_seq = gimple_try_eval (tf->top_p);
1054
1055 x = gimple_build_label (lab);
1056 gimple_seq_add_stmt (&tf->top_p_seq, x);
1057
1058 return_val = NULL;
1059 q = tf->goto_queue;
1060 qe = q + tf->goto_queue_active;
1061 for (; q < qe; ++q)
1062 if (q->index < 0)
1063 do_return_redirection (q, lab, NULL, &return_val);
1064 else
1065 do_goto_redirection (q, lab, NULL, tf);
1066
1067 replace_goto_queue (tf);
1068
1069 lower_eh_constructs_1 (state, finally);
1070 gimple_seq_add_seq (&tf->top_p_seq, finally);
1071
1072 if (tf->may_throw)
1073 {
1074 emit_post_landing_pad (&eh_seq, tf->region);
1075
1076 x = gimple_build_goto (lab);
1077 gimple_seq_add_stmt (&eh_seq, x);
1078 }
1079 }
1080
1081 /* A subroutine of lower_try_finally. We have determined that there is
1082 exactly one destination of the finally block. Restructure the
1083 try_finally node for this special case. */
1084
1085 static void
1086 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1087 {
1088 struct goto_queue_node *q, *qe;
1089 gimple x;
1090 gimple_seq finally;
1091 tree finally_label;
1092 location_t loc = gimple_location (tf->try_finally_expr);
1093
1094 finally = gimple_try_cleanup (tf->top_p);
1095 tf->top_p_seq = gimple_try_eval (tf->top_p);
1096
1097 lower_eh_constructs_1 (state, finally);
1098
1099 if (tf->may_throw)
1100 {
1101 /* Only reachable via the exception edge. Add the given label to
1102 the head of the FINALLY block. Append a RESX at the end. */
1103 emit_post_landing_pad (&eh_seq, tf->region);
1104 gimple_seq_add_seq (&eh_seq, finally);
1105 emit_resx (&eh_seq, tf->region);
1106 return;
1107 }
1108
1109 if (tf->may_fallthru)
1110 {
1111 /* Only reachable via the fallthru edge. Do nothing but let
1112 the two blocks run together; we'll fall out the bottom. */
1113 gimple_seq_add_seq (&tf->top_p_seq, finally);
1114 return;
1115 }
1116
1117 finally_label = create_artificial_label (loc);
1118 x = gimple_build_label (finally_label);
1119 gimple_seq_add_stmt (&tf->top_p_seq, x);
1120
1121 gimple_seq_add_seq (&tf->top_p_seq, finally);
1122
1123 q = tf->goto_queue;
1124 qe = q + tf->goto_queue_active;
1125
1126 if (tf->may_return)
1127 {
1128 /* Reachable by return expressions only. Redirect them. */
1129 tree return_val = NULL;
1130 for (; q < qe; ++q)
1131 do_return_redirection (q, finally_label, NULL, &return_val);
1132 replace_goto_queue (tf);
1133 }
1134 else
1135 {
1136 /* Reachable by goto expressions only. Redirect them. */
1137 for (; q < qe; ++q)
1138 do_goto_redirection (q, finally_label, NULL, tf);
1139 replace_goto_queue (tf);
1140
1141 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1142 {
1143 /* Reachable by goto to fallthru label only. Redirect it
1144 to the new label (already created, sadly), and do not
1145 emit the final branch out, or the fallthru label. */
1146 tf->fallthru_label = NULL;
1147 return;
1148 }
1149 }
1150
1151 /* Place the original return/goto to the original destination
1152 immediately after the finally block. */
1153 x = tf->goto_queue[0].cont_stmt;
1154 gimple_seq_add_stmt (&tf->top_p_seq, x);
1155 maybe_record_in_goto_queue (state, x);
1156 }
1157
1158 /* A subroutine of lower_try_finally. There are multiple edges incoming
1159 and outgoing from the finally block. Implement this by duplicating the
1160 finally block for every destination. */
1161
1162 static void
1163 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1164 {
1165 gimple_seq finally;
1166 gimple_seq new_stmt;
1167 gimple_seq seq;
1168 gimple x;
1169 tree tmp;
1170 location_t tf_loc = gimple_location (tf->try_finally_expr);
1171
1172 finally = gimple_try_cleanup (tf->top_p);
1173 tf->top_p_seq = gimple_try_eval (tf->top_p);
1174 new_stmt = NULL;
1175
1176 if (tf->may_fallthru)
1177 {
1178 seq = lower_try_finally_dup_block (finally, state);
1179 lower_eh_constructs_1 (state, seq);
1180 gimple_seq_add_seq (&new_stmt, seq);
1181
1182 tmp = lower_try_finally_fallthru_label (tf);
1183 x = gimple_build_goto (tmp);
1184 gimple_seq_add_stmt (&new_stmt, x);
1185 }
1186
1187 if (tf->may_throw)
1188 {
1189 seq = lower_try_finally_dup_block (finally, state);
1190 lower_eh_constructs_1 (state, seq);
1191
1192 emit_post_landing_pad (&eh_seq, tf->region);
1193 gimple_seq_add_seq (&eh_seq, seq);
1194 emit_resx (&eh_seq, tf->region);
1195 }
1196
1197 if (tf->goto_queue)
1198 {
1199 struct goto_queue_node *q, *qe;
1200 tree return_val = NULL;
1201 int return_index, index;
1202 struct labels_s
1203 {
1204 struct goto_queue_node *q;
1205 tree label;
1206 } *labels;
1207
1208 return_index = VEC_length (tree, tf->dest_array);
1209 labels = XCNEWVEC (struct labels_s, return_index + 1);
1210
1211 q = tf->goto_queue;
1212 qe = q + tf->goto_queue_active;
1213 for (; q < qe; q++)
1214 {
1215 index = q->index < 0 ? return_index : q->index;
1216
1217 if (!labels[index].q)
1218 labels[index].q = q;
1219 }
1220
1221 for (index = 0; index < return_index + 1; index++)
1222 {
1223 tree lab;
1224
1225 q = labels[index].q;
1226 if (! q)
1227 continue;
1228
1229 lab = labels[index].label
1230 = create_artificial_label (tf_loc);
1231
1232 if (index == return_index)
1233 do_return_redirection (q, lab, NULL, &return_val);
1234 else
1235 do_goto_redirection (q, lab, NULL, tf);
1236
1237 x = gimple_build_label (lab);
1238 gimple_seq_add_stmt (&new_stmt, x);
1239
1240 seq = lower_try_finally_dup_block (finally, state);
1241 lower_eh_constructs_1 (state, seq);
1242 gimple_seq_add_seq (&new_stmt, seq);
1243
1244 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1245 maybe_record_in_goto_queue (state, q->cont_stmt);
1246 }
1247
1248 for (q = tf->goto_queue; q < qe; q++)
1249 {
1250 tree lab;
1251
1252 index = q->index < 0 ? return_index : q->index;
1253
1254 if (labels[index].q == q)
1255 continue;
1256
1257 lab = labels[index].label;
1258
1259 if (index == return_index)
1260 do_return_redirection (q, lab, NULL, &return_val);
1261 else
1262 do_goto_redirection (q, lab, NULL, tf);
1263 }
1264
1265 replace_goto_queue (tf);
1266 free (labels);
1267 }
1268
1269 /* Need to link new stmts after running replace_goto_queue due
1270 to not wanting to process the same goto stmts twice. */
1271 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1272 }
1273
1274 /* A subroutine of lower_try_finally. There are multiple edges incoming
1275 and outgoing from the finally block. Implement this by instrumenting
1276 each incoming edge and creating a switch statement at the end of the
1277 finally block that branches to the appropriate destination. */
1278
1279 static void
1280 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1281 {
1282 struct goto_queue_node *q, *qe;
1283 tree return_val = NULL;
1284 tree finally_tmp, finally_label;
1285 int return_index, eh_index, fallthru_index;
1286 int nlabels, ndests, j, last_case_index;
1287 tree last_case;
1288 VEC (tree,heap) *case_label_vec;
1289 gimple_seq switch_body;
1290 gimple x;
1291 tree tmp;
1292 gimple switch_stmt;
1293 gimple_seq finally;
1294 struct pointer_map_t *cont_map = NULL;
1295 /* The location of the TRY_FINALLY stmt. */
1296 location_t tf_loc = gimple_location (tf->try_finally_expr);
1297 /* The location of the finally block. */
1298 location_t finally_loc;
1299
1300 switch_body = gimple_seq_alloc ();
1301
1302 /* Mash the TRY block to the head of the chain. */
1303 finally = gimple_try_cleanup (tf->top_p);
1304 tf->top_p_seq = gimple_try_eval (tf->top_p);
1305
1306 /* The location of the finally is either the last stmt in the finally
1307 block or the location of the TRY_FINALLY itself. */
1308 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1309 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1310 : tf_loc;
1311
1312 /* Lower the finally block itself. */
1313 lower_eh_constructs_1 (state, finally);
1314
1315 /* Prepare for switch statement generation. */
1316 nlabels = VEC_length (tree, tf->dest_array);
1317 return_index = nlabels;
1318 eh_index = return_index + tf->may_return;
1319 fallthru_index = eh_index + tf->may_throw;
1320 ndests = fallthru_index + tf->may_fallthru;
1321
1322 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1323 finally_label = create_artificial_label (finally_loc);
1324
1325 /* We use VEC_quick_push on case_label_vec throughout this function,
1326 since we know the size in advance and allocate precisely as muce
1327 space as needed. */
1328 case_label_vec = VEC_alloc (tree, heap, ndests);
1329 last_case = NULL;
1330 last_case_index = 0;
1331
1332 /* Begin inserting code for getting to the finally block. Things
1333 are done in this order to correspond to the sequence the code is
1334 layed out. */
1335
1336 if (tf->may_fallthru)
1337 {
1338 x = gimple_build_assign (finally_tmp,
1339 build_int_cst (NULL, fallthru_index));
1340 gimple_seq_add_stmt (&tf->top_p_seq, x);
1341
1342 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1343 build_int_cst (NULL, fallthru_index),
1344 NULL, create_artificial_label (tf_loc));
1345 VEC_quick_push (tree, case_label_vec, last_case);
1346 last_case_index++;
1347
1348 x = gimple_build_label (CASE_LABEL (last_case));
1349 gimple_seq_add_stmt (&switch_body, x);
1350
1351 tmp = lower_try_finally_fallthru_label (tf);
1352 x = gimple_build_goto (tmp);
1353 gimple_seq_add_stmt (&switch_body, x);
1354 }
1355
1356 if (tf->may_throw)
1357 {
1358 emit_post_landing_pad (&eh_seq, tf->region);
1359
1360 x = gimple_build_assign (finally_tmp,
1361 build_int_cst (NULL, eh_index));
1362 gimple_seq_add_stmt (&eh_seq, x);
1363
1364 x = gimple_build_goto (finally_label);
1365 gimple_seq_add_stmt (&eh_seq, x);
1366
1367 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1368 build_int_cst (NULL, eh_index),
1369 NULL, create_artificial_label (tf_loc));
1370 VEC_quick_push (tree, case_label_vec, last_case);
1371 last_case_index++;
1372
1373 x = gimple_build_label (CASE_LABEL (last_case));
1374 gimple_seq_add_stmt (&eh_seq, x);
1375 emit_resx (&eh_seq, tf->region);
1376 }
1377
1378 x = gimple_build_label (finally_label);
1379 gimple_seq_add_stmt (&tf->top_p_seq, x);
1380
1381 gimple_seq_add_seq (&tf->top_p_seq, finally);
1382
1383 /* Redirect each incoming goto edge. */
1384 q = tf->goto_queue;
1385 qe = q + tf->goto_queue_active;
1386 j = last_case_index + tf->may_return;
1387 /* Prepare the assignments to finally_tmp that are executed upon the
1388 entrance through a particular edge. */
1389 for (; q < qe; ++q)
1390 {
1391 gimple_seq mod;
1392 int switch_id;
1393 unsigned int case_index;
1394
1395 mod = gimple_seq_alloc ();
1396
1397 if (q->index < 0)
1398 {
1399 x = gimple_build_assign (finally_tmp,
1400 build_int_cst (NULL, return_index));
1401 gimple_seq_add_stmt (&mod, x);
1402 do_return_redirection (q, finally_label, mod, &return_val);
1403 switch_id = return_index;
1404 }
1405 else
1406 {
1407 x = gimple_build_assign (finally_tmp,
1408 build_int_cst (NULL, q->index));
1409 gimple_seq_add_stmt (&mod, x);
1410 do_goto_redirection (q, finally_label, mod, tf);
1411 switch_id = q->index;
1412 }
1413
1414 case_index = j + q->index;
1415 if (VEC_length (tree, case_label_vec) <= case_index
1416 || !VEC_index (tree, case_label_vec, case_index))
1417 {
1418 tree case_lab;
1419 void **slot;
1420 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1421 build_int_cst (NULL, switch_id),
1422 NULL, create_artificial_label (tf_loc));
1423 /* We store the cont_stmt in the pointer map, so that we can recover
1424 it in the loop below. */
1425 if (!cont_map)
1426 cont_map = pointer_map_create ();
1427 slot = pointer_map_insert (cont_map, case_lab);
1428 *slot = q->cont_stmt;
1429 VEC_quick_push (tree, case_label_vec, case_lab);
1430 }
1431 }
1432 for (j = last_case_index; j < last_case_index + nlabels; j++)
1433 {
1434 gimple cont_stmt;
1435 void **slot;
1436
1437 last_case = VEC_index (tree, case_label_vec, j);
1438
1439 gcc_assert (last_case);
1440 gcc_assert (cont_map);
1441
1442 slot = pointer_map_contains (cont_map, last_case);
1443 gcc_assert (slot);
1444 cont_stmt = *(gimple *) slot;
1445
1446 x = gimple_build_label (CASE_LABEL (last_case));
1447 gimple_seq_add_stmt (&switch_body, x);
1448 gimple_seq_add_stmt (&switch_body, cont_stmt);
1449 maybe_record_in_goto_queue (state, cont_stmt);
1450 }
1451 if (cont_map)
1452 pointer_map_destroy (cont_map);
1453
1454 replace_goto_queue (tf);
1455
1456 /* Make sure that the last case is the default label, as one is required.
1457 Then sort the labels, which is also required in GIMPLE. */
1458 CASE_LOW (last_case) = NULL;
1459 sort_case_labels (case_label_vec);
1460
1461 /* Build the switch statement, setting last_case to be the default
1462 label. */
1463 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1464 case_label_vec);
1465 gimple_set_location (switch_stmt, finally_loc);
1466
1467 /* Need to link SWITCH_STMT after running replace_goto_queue
1468 due to not wanting to process the same goto stmts twice. */
1469 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1470 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1471 }
1472
1473 /* Decide whether or not we are going to duplicate the finally block.
1474 There are several considerations.
1475
1476 First, if this is Java, then the finally block contains code
1477 written by the user. It has line numbers associated with it,
1478 so duplicating the block means it's difficult to set a breakpoint.
1479 Since controlling code generation via -g is verboten, we simply
1480 never duplicate code without optimization.
1481
1482 Second, we'd like to prevent egregious code growth. One way to
1483 do this is to estimate the size of the finally block, multiply
1484 that by the number of copies we'd need to make, and compare against
1485 the estimate of the size of the switch machinery we'd have to add. */
1486
1487 static bool
1488 decide_copy_try_finally (int ndests, gimple_seq finally)
1489 {
1490 int f_estimate, sw_estimate;
1491
1492 if (!optimize)
1493 return false;
1494
1495 /* Finally estimate N times, plus N gotos. */
1496 f_estimate = count_insns_seq (finally, &eni_size_weights);
1497 f_estimate = (f_estimate + 1) * ndests;
1498
1499 /* Switch statement (cost 10), N variable assignments, N gotos. */
1500 sw_estimate = 10 + 2 * ndests;
1501
1502 /* Optimize for size clearly wants our best guess. */
1503 if (optimize_function_for_size_p (cfun))
1504 return f_estimate < sw_estimate;
1505
1506 /* ??? These numbers are completely made up so far. */
1507 if (optimize > 1)
1508 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1509 else
1510 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1511 }
1512
1513 /* REG is the enclosing region for a possible cleanup region, or the region
1514 itself. Returns TRUE if such a region would be unreachable.
1515
1516 Cleanup regions within a must-not-throw region aren't actually reachable
1517 even if there are throwing stmts within them, because the personality
1518 routine will call terminate before unwinding. */
1519
1520 static bool
1521 cleanup_is_dead_in (eh_region reg)
1522 {
1523 while (reg && reg->type == ERT_CLEANUP)
1524 reg = reg->outer;
1525 return (reg && reg->type == ERT_MUST_NOT_THROW);
1526 }
1527
1528 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1529 to a sequence of labels and blocks, plus the exception region trees
1530 that record all the magic. This is complicated by the need to
1531 arrange for the FINALLY block to be executed on all exits. */
1532
1533 static gimple_seq
1534 lower_try_finally (struct leh_state *state, gimple tp)
1535 {
1536 struct leh_tf_state this_tf;
1537 struct leh_state this_state;
1538 int ndests;
1539 gimple_seq old_eh_seq;
1540
1541 /* Process the try block. */
1542
1543 memset (&this_tf, 0, sizeof (this_tf));
1544 this_tf.try_finally_expr = tp;
1545 this_tf.top_p = tp;
1546 this_tf.outer = state;
1547 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1548 {
1549 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1550 this_state.cur_region = this_tf.region;
1551 }
1552 else
1553 {
1554 this_tf.region = NULL;
1555 this_state.cur_region = state->cur_region;
1556 }
1557
1558 this_state.ehp_region = state->ehp_region;
1559 this_state.tf = &this_tf;
1560
1561 old_eh_seq = eh_seq;
1562 eh_seq = NULL;
1563
1564 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1565
1566 /* Determine if the try block is escaped through the bottom. */
1567 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1568
1569 /* Determine if any exceptions are possible within the try block. */
1570 if (this_tf.region)
1571 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1572 if (this_tf.may_throw)
1573 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1574
1575 /* Determine how many edges (still) reach the finally block. Or rather,
1576 how many destinations are reached by the finally block. Use this to
1577 determine how we process the finally block itself. */
1578
1579 ndests = VEC_length (tree, this_tf.dest_array);
1580 ndests += this_tf.may_fallthru;
1581 ndests += this_tf.may_return;
1582 ndests += this_tf.may_throw;
1583
1584 /* If the FINALLY block is not reachable, dike it out. */
1585 if (ndests == 0)
1586 {
1587 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1588 gimple_try_set_cleanup (tp, NULL);
1589 }
1590 /* If the finally block doesn't fall through, then any destination
1591 we might try to impose there isn't reached either. There may be
1592 some minor amount of cleanup and redirection still needed. */
1593 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1594 lower_try_finally_nofallthru (state, &this_tf);
1595
1596 /* We can easily special-case redirection to a single destination. */
1597 else if (ndests == 1)
1598 lower_try_finally_onedest (state, &this_tf);
1599 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1600 lower_try_finally_copy (state, &this_tf);
1601 else
1602 lower_try_finally_switch (state, &this_tf);
1603
1604 /* If someone requested we add a label at the end of the transformed
1605 block, do so. */
1606 if (this_tf.fallthru_label)
1607 {
1608 /* This must be reached only if ndests == 0. */
1609 gimple x = gimple_build_label (this_tf.fallthru_label);
1610 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1611 }
1612
1613 VEC_free (tree, heap, this_tf.dest_array);
1614 free (this_tf.goto_queue);
1615 if (this_tf.goto_queue_map)
1616 pointer_map_destroy (this_tf.goto_queue_map);
1617
1618 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1619 If there was no old eh_seq, then the append is trivially already done. */
1620 if (old_eh_seq)
1621 {
1622 if (eh_seq == NULL)
1623 eh_seq = old_eh_seq;
1624 else
1625 {
1626 gimple_seq new_eh_seq = eh_seq;
1627 eh_seq = old_eh_seq;
1628 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1629 }
1630 }
1631
1632 return this_tf.top_p_seq;
1633 }
1634
1635 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1636 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1637 exception region trees that records all the magic. */
1638
1639 static gimple_seq
1640 lower_catch (struct leh_state *state, gimple tp)
1641 {
1642 eh_region try_region = NULL;
1643 struct leh_state this_state = *state;
1644 gimple_stmt_iterator gsi;
1645 tree out_label;
1646 gimple_seq new_seq;
1647 gimple x;
1648 location_t try_catch_loc = gimple_location (tp);
1649
1650 if (flag_exceptions)
1651 {
1652 try_region = gen_eh_region_try (state->cur_region);
1653 this_state.cur_region = try_region;
1654 }
1655
1656 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1657
1658 if (!eh_region_may_contain_throw (try_region))
1659 return gimple_try_eval (tp);
1660
1661 new_seq = NULL;
1662 emit_eh_dispatch (&new_seq, try_region);
1663 emit_resx (&new_seq, try_region);
1664
1665 this_state.cur_region = state->cur_region;
1666 this_state.ehp_region = try_region;
1667
1668 out_label = NULL;
1669 for (gsi = gsi_start (gimple_try_cleanup (tp));
1670 !gsi_end_p (gsi);
1671 gsi_next (&gsi))
1672 {
1673 eh_catch c;
1674 gimple gcatch;
1675 gimple_seq handler;
1676
1677 gcatch = gsi_stmt (gsi);
1678 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1679
1680 handler = gimple_catch_handler (gcatch);
1681 lower_eh_constructs_1 (&this_state, handler);
1682
1683 c->label = create_artificial_label (UNKNOWN_LOCATION);
1684 x = gimple_build_label (c->label);
1685 gimple_seq_add_stmt (&new_seq, x);
1686
1687 gimple_seq_add_seq (&new_seq, handler);
1688
1689 if (gimple_seq_may_fallthru (new_seq))
1690 {
1691 if (!out_label)
1692 out_label = create_artificial_label (try_catch_loc);
1693
1694 x = gimple_build_goto (out_label);
1695 gimple_seq_add_stmt (&new_seq, x);
1696 }
1697 if (!c->type_list)
1698 break;
1699 }
1700
1701 gimple_try_set_cleanup (tp, new_seq);
1702
1703 return frob_into_branch_around (tp, try_region, out_label);
1704 }
1705
1706 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1707 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1708 region trees that record all the magic. */
1709
1710 static gimple_seq
1711 lower_eh_filter (struct leh_state *state, gimple tp)
1712 {
1713 struct leh_state this_state = *state;
1714 eh_region this_region = NULL;
1715 gimple inner, x;
1716 gimple_seq new_seq;
1717
1718 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1719
1720 if (flag_exceptions)
1721 {
1722 this_region = gen_eh_region_allowed (state->cur_region,
1723 gimple_eh_filter_types (inner));
1724 this_state.cur_region = this_region;
1725 }
1726
1727 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1728
1729 if (!eh_region_may_contain_throw (this_region))
1730 return gimple_try_eval (tp);
1731
1732 new_seq = NULL;
1733 this_state.cur_region = state->cur_region;
1734 this_state.ehp_region = this_region;
1735
1736 emit_eh_dispatch (&new_seq, this_region);
1737 emit_resx (&new_seq, this_region);
1738
1739 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1740 x = gimple_build_label (this_region->u.allowed.label);
1741 gimple_seq_add_stmt (&new_seq, x);
1742
1743 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1744 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1745
1746 gimple_try_set_cleanup (tp, new_seq);
1747
1748 return frob_into_branch_around (tp, this_region, NULL);
1749 }
1750
1751 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1752 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1753 plus the exception region trees that record all the magic. */
1754
1755 static gimple_seq
1756 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1757 {
1758 struct leh_state this_state = *state;
1759
1760 if (flag_exceptions)
1761 {
1762 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1763 eh_region this_region;
1764
1765 this_region = gen_eh_region_must_not_throw (state->cur_region);
1766 this_region->u.must_not_throw.failure_decl
1767 = gimple_eh_must_not_throw_fndecl (inner);
1768 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1769
1770 /* In order to get mangling applied to this decl, we must mark it
1771 used now. Otherwise, pass_ipa_free_lang_data won't think it
1772 needs to happen. */
1773 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1774
1775 this_state.cur_region = this_region;
1776 }
1777
1778 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1779
1780 return gimple_try_eval (tp);
1781 }
1782
1783 /* Implement a cleanup expression. This is similar to try-finally,
1784 except that we only execute the cleanup block for exception edges. */
1785
1786 static gimple_seq
1787 lower_cleanup (struct leh_state *state, gimple tp)
1788 {
1789 struct leh_state this_state = *state;
1790 eh_region this_region = NULL;
1791 struct leh_tf_state fake_tf;
1792 gimple_seq result;
1793 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1794
1795 if (flag_exceptions && !cleanup_dead)
1796 {
1797 this_region = gen_eh_region_cleanup (state->cur_region);
1798 this_state.cur_region = this_region;
1799 }
1800
1801 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1802
1803 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1804 return gimple_try_eval (tp);
1805
1806 /* Build enough of a try-finally state so that we can reuse
1807 honor_protect_cleanup_actions. */
1808 memset (&fake_tf, 0, sizeof (fake_tf));
1809 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1810 fake_tf.outer = state;
1811 fake_tf.region = this_region;
1812 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1813 fake_tf.may_throw = true;
1814
1815 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1816
1817 if (fake_tf.may_throw)
1818 {
1819 /* In this case honor_protect_cleanup_actions had nothing to do,
1820 and we should process this normally. */
1821 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1822 result = frob_into_branch_around (tp, this_region,
1823 fake_tf.fallthru_label);
1824 }
1825 else
1826 {
1827 /* In this case honor_protect_cleanup_actions did nearly all of
1828 the work. All we have left is to append the fallthru_label. */
1829
1830 result = gimple_try_eval (tp);
1831 if (fake_tf.fallthru_label)
1832 {
1833 gimple x = gimple_build_label (fake_tf.fallthru_label);
1834 gimple_seq_add_stmt (&result, x);
1835 }
1836 }
1837 return result;
1838 }
1839
1840 /* Main loop for lowering eh constructs. Also moves gsi to the next
1841 statement. */
1842
1843 static void
1844 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1845 {
1846 gimple_seq replace;
1847 gimple x;
1848 gimple stmt = gsi_stmt (*gsi);
1849
1850 switch (gimple_code (stmt))
1851 {
1852 case GIMPLE_CALL:
1853 {
1854 tree fndecl = gimple_call_fndecl (stmt);
1855 tree rhs, lhs;
1856
1857 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1858 switch (DECL_FUNCTION_CODE (fndecl))
1859 {
1860 case BUILT_IN_EH_POINTER:
1861 /* The front end may have generated a call to
1862 __builtin_eh_pointer (0) within a catch region. Replace
1863 this zero argument with the current catch region number. */
1864 if (state->ehp_region)
1865 {
1866 tree nr = build_int_cst (NULL, state->ehp_region->index);
1867 gimple_call_set_arg (stmt, 0, nr);
1868 }
1869 else
1870 {
1871 /* The user has dome something silly. Remove it. */
1872 rhs = null_pointer_node;
1873 goto do_replace;
1874 }
1875 break;
1876
1877 case BUILT_IN_EH_FILTER:
1878 /* ??? This should never appear, but since it's a builtin it
1879 is accessible to abuse by users. Just remove it and
1880 replace the use with the arbitrary value zero. */
1881 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1882 do_replace:
1883 lhs = gimple_call_lhs (stmt);
1884 x = gimple_build_assign (lhs, rhs);
1885 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1886 /* FALLTHRU */
1887
1888 case BUILT_IN_EH_COPY_VALUES:
1889 /* Likewise this should not appear. Remove it. */
1890 gsi_remove (gsi, true);
1891 return;
1892
1893 default:
1894 break;
1895 }
1896 }
1897 /* FALLTHRU */
1898
1899 case GIMPLE_ASSIGN:
1900 /* If the stmt can throw use a new temporary for the assignment
1901 to a LHS. This makes sure the old value of the LHS is
1902 available on the EH edge. Only do so for statements that
1903 potentially fall thru (no noreturn calls e.g.), otherwise
1904 this new assignment might create fake fallthru regions. */
1905 if (stmt_could_throw_p (stmt)
1906 && gimple_has_lhs (stmt)
1907 && gimple_stmt_may_fallthru (stmt)
1908 && !tree_could_throw_p (gimple_get_lhs (stmt))
1909 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1910 {
1911 tree lhs = gimple_get_lhs (stmt);
1912 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1913 gimple s = gimple_build_assign (lhs, tmp);
1914 gimple_set_location (s, gimple_location (stmt));
1915 gimple_set_block (s, gimple_block (stmt));
1916 gimple_set_lhs (stmt, tmp);
1917 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1918 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1919 DECL_GIMPLE_REG_P (tmp) = 1;
1920 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1921 }
1922 /* Look for things that can throw exceptions, and record them. */
1923 if (state->cur_region && stmt_could_throw_p (stmt))
1924 {
1925 record_stmt_eh_region (state->cur_region, stmt);
1926 note_eh_region_may_contain_throw (state->cur_region);
1927 }
1928 break;
1929
1930 case GIMPLE_COND:
1931 case GIMPLE_GOTO:
1932 case GIMPLE_RETURN:
1933 maybe_record_in_goto_queue (state, stmt);
1934 break;
1935
1936 case GIMPLE_SWITCH:
1937 verify_norecord_switch_expr (state, stmt);
1938 break;
1939
1940 case GIMPLE_TRY:
1941 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1942 replace = lower_try_finally (state, stmt);
1943 else
1944 {
1945 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1946 if (!x)
1947 {
1948 replace = gimple_try_eval (stmt);
1949 lower_eh_constructs_1 (state, replace);
1950 }
1951 else
1952 switch (gimple_code (x))
1953 {
1954 case GIMPLE_CATCH:
1955 replace = lower_catch (state, stmt);
1956 break;
1957 case GIMPLE_EH_FILTER:
1958 replace = lower_eh_filter (state, stmt);
1959 break;
1960 case GIMPLE_EH_MUST_NOT_THROW:
1961 replace = lower_eh_must_not_throw (state, stmt);
1962 break;
1963 default:
1964 replace = lower_cleanup (state, stmt);
1965 break;
1966 }
1967 }
1968
1969 /* Remove the old stmt and insert the transformed sequence
1970 instead. */
1971 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1972 gsi_remove (gsi, true);
1973
1974 /* Return since we don't want gsi_next () */
1975 return;
1976
1977 default:
1978 /* A type, a decl, or some kind of statement that we're not
1979 interested in. Don't walk them. */
1980 break;
1981 }
1982
1983 gsi_next (gsi);
1984 }
1985
1986 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1987
1988 static void
1989 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1990 {
1991 gimple_stmt_iterator gsi;
1992 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
1993 lower_eh_constructs_2 (state, &gsi);
1994 }
1995
1996 static unsigned int
1997 lower_eh_constructs (void)
1998 {
1999 struct leh_state null_state;
2000 gimple_seq bodyp;
2001
2002 bodyp = gimple_body (current_function_decl);
2003 if (bodyp == NULL)
2004 return 0;
2005
2006 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2007 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2008 memset (&null_state, 0, sizeof (null_state));
2009
2010 collect_finally_tree_1 (bodyp, NULL);
2011 lower_eh_constructs_1 (&null_state, bodyp);
2012
2013 /* We assume there's a return statement, or something, at the end of
2014 the function, and thus ploping the EH sequence afterward won't
2015 change anything. */
2016 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2017 gimple_seq_add_seq (&bodyp, eh_seq);
2018
2019 /* We assume that since BODYP already existed, adding EH_SEQ to it
2020 didn't change its value, and we don't have to re-set the function. */
2021 gcc_assert (bodyp == gimple_body (current_function_decl));
2022
2023 htab_delete (finally_tree);
2024 BITMAP_FREE (eh_region_may_contain_throw_map);
2025 eh_seq = NULL;
2026
2027 /* If this function needs a language specific EH personality routine
2028 and the frontend didn't already set one do so now. */
2029 if (function_needs_eh_personality (cfun) == eh_personality_lang
2030 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2031 DECL_FUNCTION_PERSONALITY (current_function_decl)
2032 = lang_hooks.eh_personality ();
2033
2034 return 0;
2035 }
2036
2037 struct gimple_opt_pass pass_lower_eh =
2038 {
2039 {
2040 GIMPLE_PASS,
2041 "eh", /* name */
2042 NULL, /* gate */
2043 lower_eh_constructs, /* execute */
2044 NULL, /* sub */
2045 NULL, /* next */
2046 0, /* static_pass_number */
2047 TV_TREE_EH, /* tv_id */
2048 PROP_gimple_lcf, /* properties_required */
2049 PROP_gimple_leh, /* properties_provided */
2050 0, /* properties_destroyed */
2051 0, /* todo_flags_start */
2052 TODO_dump_func /* todo_flags_finish */
2053 }
2054 };
2055 \f
2056 /* Create the multiple edges from an EH_DISPATCH statement to all of
2057 the possible handlers for its EH region. Return true if there's
2058 no fallthru edge; false if there is. */
2059
2060 bool
2061 make_eh_dispatch_edges (gimple stmt)
2062 {
2063 eh_region r;
2064 eh_catch c;
2065 basic_block src, dst;
2066
2067 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2068 src = gimple_bb (stmt);
2069
2070 switch (r->type)
2071 {
2072 case ERT_TRY:
2073 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2074 {
2075 dst = label_to_block (c->label);
2076 make_edge (src, dst, 0);
2077
2078 /* A catch-all handler doesn't have a fallthru. */
2079 if (c->type_list == NULL)
2080 return false;
2081 }
2082 break;
2083
2084 case ERT_ALLOWED_EXCEPTIONS:
2085 dst = label_to_block (r->u.allowed.label);
2086 make_edge (src, dst, 0);
2087 break;
2088
2089 default:
2090 gcc_unreachable ();
2091 }
2092
2093 return true;
2094 }
2095
2096 /* Create the single EH edge from STMT to its nearest landing pad,
2097 if there is such a landing pad within the current function. */
2098
2099 void
2100 make_eh_edges (gimple stmt)
2101 {
2102 basic_block src, dst;
2103 eh_landing_pad lp;
2104 int lp_nr;
2105
2106 lp_nr = lookup_stmt_eh_lp (stmt);
2107 if (lp_nr <= 0)
2108 return;
2109
2110 lp = get_eh_landing_pad_from_number (lp_nr);
2111 gcc_assert (lp != NULL);
2112
2113 src = gimple_bb (stmt);
2114 dst = label_to_block (lp->post_landing_pad);
2115 make_edge (src, dst, EDGE_EH);
2116 }
2117
2118 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2119 do not actually perform the final edge redirection.
2120
2121 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2122 we intend to change the destination EH region as well; this means
2123 EH_LANDING_PAD_NR must already be set on the destination block label.
2124 If false, we're being called from generic cfg manipulation code and we
2125 should preserve our place within the region tree. */
2126
2127 static void
2128 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2129 {
2130 eh_landing_pad old_lp, new_lp;
2131 basic_block old_bb;
2132 gimple throw_stmt;
2133 int old_lp_nr, new_lp_nr;
2134 tree old_label, new_label;
2135 edge_iterator ei;
2136 edge e;
2137
2138 old_bb = edge_in->dest;
2139 old_label = gimple_block_label (old_bb);
2140 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2141 gcc_assert (old_lp_nr > 0);
2142 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2143
2144 throw_stmt = last_stmt (edge_in->src);
2145 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2146
2147 new_label = gimple_block_label (new_bb);
2148
2149 /* Look for an existing region that might be using NEW_BB already. */
2150 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2151 if (new_lp_nr)
2152 {
2153 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2154 gcc_assert (new_lp);
2155
2156 /* Unless CHANGE_REGION is true, the new and old landing pad
2157 had better be associated with the same EH region. */
2158 gcc_assert (change_region || new_lp->region == old_lp->region);
2159 }
2160 else
2161 {
2162 new_lp = NULL;
2163 gcc_assert (!change_region);
2164 }
2165
2166 /* Notice when we redirect the last EH edge away from OLD_BB. */
2167 FOR_EACH_EDGE (e, ei, old_bb->preds)
2168 if (e != edge_in && (e->flags & EDGE_EH))
2169 break;
2170
2171 if (new_lp)
2172 {
2173 /* NEW_LP already exists. If there are still edges into OLD_LP,
2174 there's nothing to do with the EH tree. If there are no more
2175 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2176 If CHANGE_REGION is true, then our caller is expecting to remove
2177 the landing pad. */
2178 if (e == NULL && !change_region)
2179 remove_eh_landing_pad (old_lp);
2180 }
2181 else
2182 {
2183 /* No correct landing pad exists. If there are no more edges
2184 into OLD_LP, then we can simply re-use the existing landing pad.
2185 Otherwise, we have to create a new landing pad. */
2186 if (e == NULL)
2187 {
2188 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2189 new_lp = old_lp;
2190 }
2191 else
2192 new_lp = gen_eh_landing_pad (old_lp->region);
2193 new_lp->post_landing_pad = new_label;
2194 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2195 }
2196
2197 /* Maybe move the throwing statement to the new region. */
2198 if (old_lp != new_lp)
2199 {
2200 remove_stmt_from_eh_lp (throw_stmt);
2201 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2202 }
2203 }
2204
2205 /* Redirect EH edge E to NEW_BB. */
2206
2207 edge
2208 redirect_eh_edge (edge edge_in, basic_block new_bb)
2209 {
2210 redirect_eh_edge_1 (edge_in, new_bb, false);
2211 return ssa_redirect_edge (edge_in, new_bb);
2212 }
2213
2214 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2215 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2216 The actual edge update will happen in the caller. */
2217
2218 void
2219 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2220 {
2221 tree new_lab = gimple_block_label (new_bb);
2222 bool any_changed = false;
2223 basic_block old_bb;
2224 eh_region r;
2225 eh_catch c;
2226
2227 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2228 switch (r->type)
2229 {
2230 case ERT_TRY:
2231 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2232 {
2233 old_bb = label_to_block (c->label);
2234 if (old_bb == e->dest)
2235 {
2236 c->label = new_lab;
2237 any_changed = true;
2238 }
2239 }
2240 break;
2241
2242 case ERT_ALLOWED_EXCEPTIONS:
2243 old_bb = label_to_block (r->u.allowed.label);
2244 gcc_assert (old_bb == e->dest);
2245 r->u.allowed.label = new_lab;
2246 any_changed = true;
2247 break;
2248
2249 default:
2250 gcc_unreachable ();
2251 }
2252
2253 gcc_assert (any_changed);
2254 }
2255 \f
2256 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2257
2258 bool
2259 operation_could_trap_helper_p (enum tree_code op,
2260 bool fp_operation,
2261 bool honor_trapv,
2262 bool honor_nans,
2263 bool honor_snans,
2264 tree divisor,
2265 bool *handled)
2266 {
2267 *handled = true;
2268 switch (op)
2269 {
2270 case TRUNC_DIV_EXPR:
2271 case CEIL_DIV_EXPR:
2272 case FLOOR_DIV_EXPR:
2273 case ROUND_DIV_EXPR:
2274 case EXACT_DIV_EXPR:
2275 case CEIL_MOD_EXPR:
2276 case FLOOR_MOD_EXPR:
2277 case ROUND_MOD_EXPR:
2278 case TRUNC_MOD_EXPR:
2279 case RDIV_EXPR:
2280 if (honor_snans || honor_trapv)
2281 return true;
2282 if (fp_operation)
2283 return flag_trapping_math;
2284 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2285 return true;
2286 return false;
2287
2288 case LT_EXPR:
2289 case LE_EXPR:
2290 case GT_EXPR:
2291 case GE_EXPR:
2292 case LTGT_EXPR:
2293 /* Some floating point comparisons may trap. */
2294 return honor_nans;
2295
2296 case EQ_EXPR:
2297 case NE_EXPR:
2298 case UNORDERED_EXPR:
2299 case ORDERED_EXPR:
2300 case UNLT_EXPR:
2301 case UNLE_EXPR:
2302 case UNGT_EXPR:
2303 case UNGE_EXPR:
2304 case UNEQ_EXPR:
2305 return honor_snans;
2306
2307 case CONVERT_EXPR:
2308 case FIX_TRUNC_EXPR:
2309 /* Conversion of floating point might trap. */
2310 return honor_nans;
2311
2312 case NEGATE_EXPR:
2313 case ABS_EXPR:
2314 case CONJ_EXPR:
2315 /* These operations don't trap with floating point. */
2316 if (honor_trapv)
2317 return true;
2318 return false;
2319
2320 case PLUS_EXPR:
2321 case MINUS_EXPR:
2322 case MULT_EXPR:
2323 /* Any floating arithmetic may trap. */
2324 if (fp_operation && flag_trapping_math)
2325 return true;
2326 if (honor_trapv)
2327 return true;
2328 return false;
2329
2330 case COMPLEX_EXPR:
2331 case CONSTRUCTOR:
2332 /* Constructing an object cannot trap. */
2333 return false;
2334
2335 default:
2336 /* Any floating arithmetic may trap. */
2337 if (fp_operation && flag_trapping_math)
2338 return true;
2339
2340 *handled = false;
2341 return false;
2342 }
2343 }
2344
2345 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2346 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2347 type operands that may trap. If OP is a division operator, DIVISOR contains
2348 the value of the divisor. */
2349
2350 bool
2351 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2352 tree divisor)
2353 {
2354 bool honor_nans = (fp_operation && flag_trapping_math
2355 && !flag_finite_math_only);
2356 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2357 bool handled;
2358
2359 if (TREE_CODE_CLASS (op) != tcc_comparison
2360 && TREE_CODE_CLASS (op) != tcc_unary
2361 && TREE_CODE_CLASS (op) != tcc_binary)
2362 return false;
2363
2364 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2365 honor_nans, honor_snans, divisor,
2366 &handled);
2367 }
2368
2369 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2370 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2371 This routine expects only GIMPLE lhs or rhs input. */
2372
2373 bool
2374 tree_could_trap_p (tree expr)
2375 {
2376 enum tree_code code;
2377 bool fp_operation = false;
2378 bool honor_trapv = false;
2379 tree t, base, div = NULL_TREE;
2380
2381 if (!expr)
2382 return false;
2383
2384 code = TREE_CODE (expr);
2385 t = TREE_TYPE (expr);
2386
2387 if (t)
2388 {
2389 if (COMPARISON_CLASS_P (expr))
2390 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2391 else
2392 fp_operation = FLOAT_TYPE_P (t);
2393 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2394 }
2395
2396 if (TREE_CODE_CLASS (code) == tcc_binary)
2397 div = TREE_OPERAND (expr, 1);
2398 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2399 return true;
2400
2401 restart:
2402 switch (code)
2403 {
2404 case TARGET_MEM_REF:
2405 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2406 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2407 return false;
2408 return !TREE_THIS_NOTRAP (expr);
2409
2410 case COMPONENT_REF:
2411 case REALPART_EXPR:
2412 case IMAGPART_EXPR:
2413 case BIT_FIELD_REF:
2414 case VIEW_CONVERT_EXPR:
2415 case WITH_SIZE_EXPR:
2416 expr = TREE_OPERAND (expr, 0);
2417 code = TREE_CODE (expr);
2418 goto restart;
2419
2420 case ARRAY_RANGE_REF:
2421 base = TREE_OPERAND (expr, 0);
2422 if (tree_could_trap_p (base))
2423 return true;
2424 if (TREE_THIS_NOTRAP (expr))
2425 return false;
2426 return !range_in_array_bounds_p (expr);
2427
2428 case ARRAY_REF:
2429 base = TREE_OPERAND (expr, 0);
2430 if (tree_could_trap_p (base))
2431 return true;
2432 if (TREE_THIS_NOTRAP (expr))
2433 return false;
2434 return !in_array_bounds_p (expr);
2435
2436 case MEM_REF:
2437 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2438 return false;
2439 /* Fallthru. */
2440 case INDIRECT_REF:
2441 return !TREE_THIS_NOTRAP (expr);
2442
2443 case ASM_EXPR:
2444 return TREE_THIS_VOLATILE (expr);
2445
2446 case CALL_EXPR:
2447 t = get_callee_fndecl (expr);
2448 /* Assume that calls to weak functions may trap. */
2449 if (!t || !DECL_P (t) || DECL_WEAK (t))
2450 return true;
2451 return false;
2452
2453 default:
2454 return false;
2455 }
2456 }
2457
2458
2459 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2460 an assignment or a conditional) may throw. */
2461
2462 static bool
2463 stmt_could_throw_1_p (gimple stmt)
2464 {
2465 enum tree_code code = gimple_expr_code (stmt);
2466 bool honor_nans = false;
2467 bool honor_snans = false;
2468 bool fp_operation = false;
2469 bool honor_trapv = false;
2470 tree t;
2471 size_t i;
2472 bool handled, ret;
2473
2474 if (TREE_CODE_CLASS (code) == tcc_comparison
2475 || TREE_CODE_CLASS (code) == tcc_unary
2476 || TREE_CODE_CLASS (code) == tcc_binary)
2477 {
2478 t = gimple_expr_type (stmt);
2479 fp_operation = FLOAT_TYPE_P (t);
2480 if (fp_operation)
2481 {
2482 honor_nans = flag_trapping_math && !flag_finite_math_only;
2483 honor_snans = flag_signaling_nans != 0;
2484 }
2485 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2486 honor_trapv = true;
2487 }
2488
2489 /* Check if the main expression may trap. */
2490 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2491 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2492 honor_nans, honor_snans, t,
2493 &handled);
2494 if (handled)
2495 return ret;
2496
2497 /* If the expression does not trap, see if any of the individual operands may
2498 trap. */
2499 for (i = 0; i < gimple_num_ops (stmt); i++)
2500 if (tree_could_trap_p (gimple_op (stmt, i)))
2501 return true;
2502
2503 return false;
2504 }
2505
2506
2507 /* Return true if statement STMT could throw an exception. */
2508
2509 bool
2510 stmt_could_throw_p (gimple stmt)
2511 {
2512 if (!flag_exceptions)
2513 return false;
2514
2515 /* The only statements that can throw an exception are assignments,
2516 conditionals, calls, resx, and asms. */
2517 switch (gimple_code (stmt))
2518 {
2519 case GIMPLE_RESX:
2520 return true;
2521
2522 case GIMPLE_CALL:
2523 return !gimple_call_nothrow_p (stmt);
2524
2525 case GIMPLE_ASSIGN:
2526 case GIMPLE_COND:
2527 if (!cfun->can_throw_non_call_exceptions)
2528 return false;
2529 return stmt_could_throw_1_p (stmt);
2530
2531 case GIMPLE_ASM:
2532 if (!cfun->can_throw_non_call_exceptions)
2533 return false;
2534 return gimple_asm_volatile_p (stmt);
2535
2536 default:
2537 return false;
2538 }
2539 }
2540
2541
2542 /* Return true if expression T could throw an exception. */
2543
2544 bool
2545 tree_could_throw_p (tree t)
2546 {
2547 if (!flag_exceptions)
2548 return false;
2549 if (TREE_CODE (t) == MODIFY_EXPR)
2550 {
2551 if (cfun->can_throw_non_call_exceptions
2552 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2553 return true;
2554 t = TREE_OPERAND (t, 1);
2555 }
2556
2557 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2558 t = TREE_OPERAND (t, 0);
2559 if (TREE_CODE (t) == CALL_EXPR)
2560 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2561 if (cfun->can_throw_non_call_exceptions)
2562 return tree_could_trap_p (t);
2563 return false;
2564 }
2565
2566 /* Return true if STMT can throw an exception that is not caught within
2567 the current function (CFUN). */
2568
2569 bool
2570 stmt_can_throw_external (gimple stmt)
2571 {
2572 int lp_nr;
2573
2574 if (!stmt_could_throw_p (stmt))
2575 return false;
2576
2577 lp_nr = lookup_stmt_eh_lp (stmt);
2578 return lp_nr == 0;
2579 }
2580
2581 /* Return true if STMT can throw an exception that is caught within
2582 the current function (CFUN). */
2583
2584 bool
2585 stmt_can_throw_internal (gimple stmt)
2586 {
2587 int lp_nr;
2588
2589 if (!stmt_could_throw_p (stmt))
2590 return false;
2591
2592 lp_nr = lookup_stmt_eh_lp (stmt);
2593 return lp_nr > 0;
2594 }
2595
2596 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2597 remove any entry it might have from the EH table. Return true if
2598 any change was made. */
2599
2600 bool
2601 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2602 {
2603 if (stmt_could_throw_p (stmt))
2604 return false;
2605 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2606 }
2607
2608 /* Likewise, but always use the current function. */
2609
2610 bool
2611 maybe_clean_eh_stmt (gimple stmt)
2612 {
2613 return maybe_clean_eh_stmt_fn (cfun, stmt);
2614 }
2615
2616 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2617 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2618 in the table if it should be in there. Return TRUE if a replacement was
2619 done that my require an EH edge purge. */
2620
2621 bool
2622 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2623 {
2624 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2625
2626 if (lp_nr != 0)
2627 {
2628 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2629
2630 if (new_stmt == old_stmt && new_stmt_could_throw)
2631 return false;
2632
2633 remove_stmt_from_eh_lp (old_stmt);
2634 if (new_stmt_could_throw)
2635 {
2636 add_stmt_to_eh_lp (new_stmt, lp_nr);
2637 return false;
2638 }
2639 else
2640 return true;
2641 }
2642
2643 return false;
2644 }
2645
2646 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2647 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2648 operand is the return value of duplicate_eh_regions. */
2649
2650 bool
2651 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2652 struct function *old_fun, gimple old_stmt,
2653 struct pointer_map_t *map, int default_lp_nr)
2654 {
2655 int old_lp_nr, new_lp_nr;
2656 void **slot;
2657
2658 if (!stmt_could_throw_p (new_stmt))
2659 return false;
2660
2661 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2662 if (old_lp_nr == 0)
2663 {
2664 if (default_lp_nr == 0)
2665 return false;
2666 new_lp_nr = default_lp_nr;
2667 }
2668 else if (old_lp_nr > 0)
2669 {
2670 eh_landing_pad old_lp, new_lp;
2671
2672 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2673 slot = pointer_map_contains (map, old_lp);
2674 new_lp = (eh_landing_pad) *slot;
2675 new_lp_nr = new_lp->index;
2676 }
2677 else
2678 {
2679 eh_region old_r, new_r;
2680
2681 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2682 slot = pointer_map_contains (map, old_r);
2683 new_r = (eh_region) *slot;
2684 new_lp_nr = -new_r->index;
2685 }
2686
2687 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2688 return true;
2689 }
2690
2691 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2692 and thus no remapping is required. */
2693
2694 bool
2695 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2696 {
2697 int lp_nr;
2698
2699 if (!stmt_could_throw_p (new_stmt))
2700 return false;
2701
2702 lp_nr = lookup_stmt_eh_lp (old_stmt);
2703 if (lp_nr == 0)
2704 return false;
2705
2706 add_stmt_to_eh_lp (new_stmt, lp_nr);
2707 return true;
2708 }
2709 \f
2710 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2711 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2712 this only handles handlers consisting of a single call, as that's the
2713 important case for C++: a destructor call for a particular object showing
2714 up in multiple handlers. */
2715
2716 static bool
2717 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2718 {
2719 gimple_stmt_iterator gsi;
2720 gimple ones, twos;
2721 unsigned int ai;
2722
2723 gsi = gsi_start (oneh);
2724 if (!gsi_one_before_end_p (gsi))
2725 return false;
2726 ones = gsi_stmt (gsi);
2727
2728 gsi = gsi_start (twoh);
2729 if (!gsi_one_before_end_p (gsi))
2730 return false;
2731 twos = gsi_stmt (gsi);
2732
2733 if (!is_gimple_call (ones)
2734 || !is_gimple_call (twos)
2735 || gimple_call_lhs (ones)
2736 || gimple_call_lhs (twos)
2737 || gimple_call_chain (ones)
2738 || gimple_call_chain (twos)
2739 || !gimple_call_same_target_p (ones, twos)
2740 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2741 return false;
2742
2743 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2744 if (!operand_equal_p (gimple_call_arg (ones, ai),
2745 gimple_call_arg (twos, ai), 0))
2746 return false;
2747
2748 return true;
2749 }
2750
2751 /* Optimize
2752 try { A() } finally { try { ~B() } catch { ~A() } }
2753 try { ... } finally { ~A() }
2754 into
2755 try { A() } catch { ~B() }
2756 try { ~B() ... } finally { ~A() }
2757
2758 This occurs frequently in C++, where A is a local variable and B is a
2759 temporary used in the initializer for A. */
2760
2761 static void
2762 optimize_double_finally (gimple one, gimple two)
2763 {
2764 gimple oneh;
2765 gimple_stmt_iterator gsi;
2766
2767 gsi = gsi_start (gimple_try_cleanup (one));
2768 if (!gsi_one_before_end_p (gsi))
2769 return;
2770
2771 oneh = gsi_stmt (gsi);
2772 if (gimple_code (oneh) != GIMPLE_TRY
2773 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2774 return;
2775
2776 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2777 {
2778 gimple_seq seq = gimple_try_eval (oneh);
2779
2780 gimple_try_set_cleanup (one, seq);
2781 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2782 seq = copy_gimple_seq_and_replace_locals (seq);
2783 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2784 gimple_try_set_eval (two, seq);
2785 }
2786 }
2787
2788 /* Perform EH refactoring optimizations that are simpler to do when code
2789 flow has been lowered but EH structures haven't. */
2790
2791 static void
2792 refactor_eh_r (gimple_seq seq)
2793 {
2794 gimple_stmt_iterator gsi;
2795 gimple one, two;
2796
2797 one = NULL;
2798 two = NULL;
2799 gsi = gsi_start (seq);
2800 while (1)
2801 {
2802 one = two;
2803 if (gsi_end_p (gsi))
2804 two = NULL;
2805 else
2806 two = gsi_stmt (gsi);
2807 if (one
2808 && two
2809 && gimple_code (one) == GIMPLE_TRY
2810 && gimple_code (two) == GIMPLE_TRY
2811 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2812 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2813 optimize_double_finally (one, two);
2814 if (one)
2815 switch (gimple_code (one))
2816 {
2817 case GIMPLE_TRY:
2818 refactor_eh_r (gimple_try_eval (one));
2819 refactor_eh_r (gimple_try_cleanup (one));
2820 break;
2821 case GIMPLE_CATCH:
2822 refactor_eh_r (gimple_catch_handler (one));
2823 break;
2824 case GIMPLE_EH_FILTER:
2825 refactor_eh_r (gimple_eh_filter_failure (one));
2826 break;
2827 default:
2828 break;
2829 }
2830 if (two)
2831 gsi_next (&gsi);
2832 else
2833 break;
2834 }
2835 }
2836
2837 static unsigned
2838 refactor_eh (void)
2839 {
2840 refactor_eh_r (gimple_body (current_function_decl));
2841 return 0;
2842 }
2843
2844 static bool
2845 gate_refactor_eh (void)
2846 {
2847 return flag_exceptions != 0;
2848 }
2849
2850 struct gimple_opt_pass pass_refactor_eh =
2851 {
2852 {
2853 GIMPLE_PASS,
2854 "ehopt", /* name */
2855 gate_refactor_eh, /* gate */
2856 refactor_eh, /* execute */
2857 NULL, /* sub */
2858 NULL, /* next */
2859 0, /* static_pass_number */
2860 TV_TREE_EH, /* tv_id */
2861 PROP_gimple_lcf, /* properties_required */
2862 0, /* properties_provided */
2863 0, /* properties_destroyed */
2864 0, /* todo_flags_start */
2865 TODO_dump_func /* todo_flags_finish */
2866 }
2867 };
2868 \f
2869 /* At the end of gimple optimization, we can lower RESX. */
2870
2871 static bool
2872 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2873 {
2874 int lp_nr;
2875 eh_region src_r, dst_r;
2876 gimple_stmt_iterator gsi;
2877 gimple x;
2878 tree fn, src_nr;
2879 bool ret = false;
2880
2881 lp_nr = lookup_stmt_eh_lp (stmt);
2882 if (lp_nr != 0)
2883 dst_r = get_eh_region_from_lp_number (lp_nr);
2884 else
2885 dst_r = NULL;
2886
2887 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2888 gsi = gsi_last_bb (bb);
2889
2890 if (src_r == NULL)
2891 {
2892 /* We can wind up with no source region when pass_cleanup_eh shows
2893 that there are no entries into an eh region and deletes it, but
2894 then the block that contains the resx isn't removed. This can
2895 happen without optimization when the switch statement created by
2896 lower_try_finally_switch isn't simplified to remove the eh case.
2897
2898 Resolve this by expanding the resx node to an abort. */
2899
2900 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2901 x = gimple_build_call (fn, 0);
2902 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2903
2904 while (EDGE_COUNT (bb->succs) > 0)
2905 remove_edge (EDGE_SUCC (bb, 0));
2906 }
2907 else if (dst_r)
2908 {
2909 /* When we have a destination region, we resolve this by copying
2910 the excptr and filter values into place, and changing the edge
2911 to immediately after the landing pad. */
2912 edge e;
2913
2914 if (lp_nr < 0)
2915 {
2916 basic_block new_bb;
2917 void **slot;
2918 tree lab;
2919
2920 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2921 the failure decl into a new block, if needed. */
2922 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2923
2924 slot = pointer_map_contains (mnt_map, dst_r);
2925 if (slot == NULL)
2926 {
2927 gimple_stmt_iterator gsi2;
2928
2929 new_bb = create_empty_bb (bb);
2930 lab = gimple_block_label (new_bb);
2931 gsi2 = gsi_start_bb (new_bb);
2932
2933 fn = dst_r->u.must_not_throw.failure_decl;
2934 x = gimple_build_call (fn, 0);
2935 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2936 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2937
2938 slot = pointer_map_insert (mnt_map, dst_r);
2939 *slot = lab;
2940 }
2941 else
2942 {
2943 lab = (tree) *slot;
2944 new_bb = label_to_block (lab);
2945 }
2946
2947 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2948 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2949 e->count = bb->count;
2950 e->probability = REG_BR_PROB_BASE;
2951 }
2952 else
2953 {
2954 edge_iterator ei;
2955 tree dst_nr = build_int_cst (NULL, dst_r->index);
2956
2957 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2958 src_nr = build_int_cst (NULL, src_r->index);
2959 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2960 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2961
2962 /* Update the flags for the outgoing edge. */
2963 e = single_succ_edge (bb);
2964 gcc_assert (e->flags & EDGE_EH);
2965 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2966
2967 /* If there are no more EH users of the landing pad, delete it. */
2968 FOR_EACH_EDGE (e, ei, e->dest->preds)
2969 if (e->flags & EDGE_EH)
2970 break;
2971 if (e == NULL)
2972 {
2973 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2974 remove_eh_landing_pad (lp);
2975 }
2976 }
2977
2978 ret = true;
2979 }
2980 else
2981 {
2982 tree var;
2983
2984 /* When we don't have a destination region, this exception escapes
2985 up the call chain. We resolve this by generating a call to the
2986 _Unwind_Resume library function. */
2987
2988 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2989 with no arguments for C++ and Java. Check for that. */
2990 if (src_r->use_cxa_end_cleanup)
2991 {
2992 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2993 x = gimple_build_call (fn, 0);
2994 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2995 }
2996 else
2997 {
2998 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
2999 src_nr = build_int_cst (NULL, src_r->index);
3000 x = gimple_build_call (fn, 1, src_nr);
3001 var = create_tmp_var (ptr_type_node, NULL);
3002 var = make_ssa_name (var, x);
3003 gimple_call_set_lhs (x, var);
3004 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3005
3006 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
3007 x = gimple_build_call (fn, 1, var);
3008 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3009 }
3010
3011 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3012 }
3013
3014 gsi_remove (&gsi, true);
3015
3016 return ret;
3017 }
3018
3019 static unsigned
3020 execute_lower_resx (void)
3021 {
3022 basic_block bb;
3023 struct pointer_map_t *mnt_map;
3024 bool dominance_invalidated = false;
3025 bool any_rewritten = false;
3026
3027 mnt_map = pointer_map_create ();
3028
3029 FOR_EACH_BB (bb)
3030 {
3031 gimple last = last_stmt (bb);
3032 if (last && is_gimple_resx (last))
3033 {
3034 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3035 any_rewritten = true;
3036 }
3037 }
3038
3039 pointer_map_destroy (mnt_map);
3040
3041 if (dominance_invalidated)
3042 {
3043 free_dominance_info (CDI_DOMINATORS);
3044 free_dominance_info (CDI_POST_DOMINATORS);
3045 }
3046
3047 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3048 }
3049
3050 static bool
3051 gate_lower_resx (void)
3052 {
3053 return flag_exceptions != 0;
3054 }
3055
3056 struct gimple_opt_pass pass_lower_resx =
3057 {
3058 {
3059 GIMPLE_PASS,
3060 "resx", /* name */
3061 gate_lower_resx, /* gate */
3062 execute_lower_resx, /* execute */
3063 NULL, /* sub */
3064 NULL, /* next */
3065 0, /* static_pass_number */
3066 TV_TREE_EH, /* tv_id */
3067 PROP_gimple_lcf, /* properties_required */
3068 0, /* properties_provided */
3069 0, /* properties_destroyed */
3070 0, /* todo_flags_start */
3071 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3072 }
3073 };
3074
3075
3076 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3077 we have found some duplicate labels and removed some edges. */
3078
3079 static bool
3080 lower_eh_dispatch (basic_block src, gimple stmt)
3081 {
3082 gimple_stmt_iterator gsi;
3083 int region_nr;
3084 eh_region r;
3085 tree filter, fn;
3086 gimple x;
3087 bool redirected = false;
3088
3089 region_nr = gimple_eh_dispatch_region (stmt);
3090 r = get_eh_region_from_number (region_nr);
3091
3092 gsi = gsi_last_bb (src);
3093
3094 switch (r->type)
3095 {
3096 case ERT_TRY:
3097 {
3098 VEC (tree, heap) *labels = NULL;
3099 tree default_label = NULL;
3100 eh_catch c;
3101 edge_iterator ei;
3102 edge e;
3103 struct pointer_set_t *seen_values = pointer_set_create ();
3104
3105 /* Collect the labels for a switch. Zero the post_landing_pad
3106 field becase we'll no longer have anything keeping these labels
3107 in existance and the optimizer will be free to merge these
3108 blocks at will. */
3109 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3110 {
3111 tree tp_node, flt_node, lab = c->label;
3112 bool have_label = false;
3113
3114 c->label = NULL;
3115 tp_node = c->type_list;
3116 flt_node = c->filter_list;
3117
3118 if (tp_node == NULL)
3119 {
3120 default_label = lab;
3121 break;
3122 }
3123 do
3124 {
3125 /* Filter out duplicate labels that arise when this handler
3126 is shadowed by an earlier one. When no labels are
3127 attached to the handler anymore, we remove
3128 the corresponding edge and then we delete unreachable
3129 blocks at the end of this pass. */
3130 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3131 {
3132 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3133 TREE_VALUE (flt_node), NULL, lab);
3134 VEC_safe_push (tree, heap, labels, t);
3135 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3136 have_label = true;
3137 }
3138
3139 tp_node = TREE_CHAIN (tp_node);
3140 flt_node = TREE_CHAIN (flt_node);
3141 }
3142 while (tp_node);
3143 if (! have_label)
3144 {
3145 remove_edge (find_edge (src, label_to_block (lab)));
3146 redirected = true;
3147 }
3148 }
3149
3150 /* Clean up the edge flags. */
3151 FOR_EACH_EDGE (e, ei, src->succs)
3152 {
3153 if (e->flags & EDGE_FALLTHRU)
3154 {
3155 /* If there was no catch-all, use the fallthru edge. */
3156 if (default_label == NULL)
3157 default_label = gimple_block_label (e->dest);
3158 e->flags &= ~EDGE_FALLTHRU;
3159 }
3160 }
3161 gcc_assert (default_label != NULL);
3162
3163 /* Don't generate a switch if there's only a default case.
3164 This is common in the form of try { A; } catch (...) { B; }. */
3165 if (labels == NULL)
3166 {
3167 e = single_succ_edge (src);
3168 e->flags |= EDGE_FALLTHRU;
3169 }
3170 else
3171 {
3172 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3173 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3174 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3175 filter = make_ssa_name (filter, x);
3176 gimple_call_set_lhs (x, filter);
3177 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3178
3179 /* Turn the default label into a default case. */
3180 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3181 NULL, NULL, default_label);
3182 sort_case_labels (labels);
3183
3184 x = gimple_build_switch_vec (filter, default_label, labels);
3185 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3186
3187 VEC_free (tree, heap, labels);
3188 }
3189 pointer_set_destroy (seen_values);
3190 }
3191 break;
3192
3193 case ERT_ALLOWED_EXCEPTIONS:
3194 {
3195 edge b_e = BRANCH_EDGE (src);
3196 edge f_e = FALLTHRU_EDGE (src);
3197
3198 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3199 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3200 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3201 filter = make_ssa_name (filter, x);
3202 gimple_call_set_lhs (x, filter);
3203 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3204
3205 r->u.allowed.label = NULL;
3206 x = gimple_build_cond (EQ_EXPR, filter,
3207 build_int_cst (TREE_TYPE (filter),
3208 r->u.allowed.filter),
3209 NULL_TREE, NULL_TREE);
3210 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3211
3212 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3213 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3214 }
3215 break;
3216
3217 default:
3218 gcc_unreachable ();
3219 }
3220
3221 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3222 gsi_remove (&gsi, true);
3223 return redirected;
3224 }
3225
3226 static unsigned
3227 execute_lower_eh_dispatch (void)
3228 {
3229 basic_block bb;
3230 bool any_rewritten = false;
3231 bool redirected = false;
3232
3233 assign_filter_values ();
3234
3235 FOR_EACH_BB (bb)
3236 {
3237 gimple last = last_stmt (bb);
3238 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3239 {
3240 redirected |= lower_eh_dispatch (bb, last);
3241 any_rewritten = true;
3242 }
3243 }
3244
3245 if (redirected)
3246 delete_unreachable_blocks ();
3247 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3248 }
3249
3250 static bool
3251 gate_lower_eh_dispatch (void)
3252 {
3253 return cfun->eh->region_tree != NULL;
3254 }
3255
3256 struct gimple_opt_pass pass_lower_eh_dispatch =
3257 {
3258 {
3259 GIMPLE_PASS,
3260 "ehdisp", /* name */
3261 gate_lower_eh_dispatch, /* gate */
3262 execute_lower_eh_dispatch, /* execute */
3263 NULL, /* sub */
3264 NULL, /* next */
3265 0, /* static_pass_number */
3266 TV_TREE_EH, /* tv_id */
3267 PROP_gimple_lcf, /* properties_required */
3268 0, /* properties_provided */
3269 0, /* properties_destroyed */
3270 0, /* todo_flags_start */
3271 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3272 }
3273 };
3274 \f
3275 /* Walk statements, see what regions are really referenced and remove
3276 those that are unused. */
3277
3278 static void
3279 remove_unreachable_handlers (void)
3280 {
3281 sbitmap r_reachable, lp_reachable;
3282 eh_region region;
3283 eh_landing_pad lp;
3284 basic_block bb;
3285 int lp_nr, r_nr;
3286
3287 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3288 lp_reachable
3289 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3290 sbitmap_zero (r_reachable);
3291 sbitmap_zero (lp_reachable);
3292
3293 FOR_EACH_BB (bb)
3294 {
3295 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3296
3297 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3298 {
3299 gimple stmt = gsi_stmt (gsi);
3300 lp_nr = lookup_stmt_eh_lp (stmt);
3301
3302 /* Negative LP numbers are MUST_NOT_THROW regions which
3303 are not considered BB enders. */
3304 if (lp_nr < 0)
3305 SET_BIT (r_reachable, -lp_nr);
3306
3307 /* Positive LP numbers are real landing pads, are are BB enders. */
3308 else if (lp_nr > 0)
3309 {
3310 gcc_assert (gsi_one_before_end_p (gsi));
3311 region = get_eh_region_from_lp_number (lp_nr);
3312 SET_BIT (r_reachable, region->index);
3313 SET_BIT (lp_reachable, lp_nr);
3314 }
3315 }
3316 }
3317
3318 if (dump_file)
3319 {
3320 fprintf (dump_file, "Before removal of unreachable regions:\n");
3321 dump_eh_tree (dump_file, cfun);
3322 fprintf (dump_file, "Reachable regions: ");
3323 dump_sbitmap_file (dump_file, r_reachable);
3324 fprintf (dump_file, "Reachable landing pads: ");
3325 dump_sbitmap_file (dump_file, lp_reachable);
3326 }
3327
3328 for (r_nr = 1;
3329 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3330 if (region && !TEST_BIT (r_reachable, r_nr))
3331 {
3332 if (dump_file)
3333 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3334 remove_eh_handler (region);
3335 }
3336
3337 for (lp_nr = 1;
3338 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3339 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3340 {
3341 if (dump_file)
3342 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3343 remove_eh_landing_pad (lp);
3344 }
3345
3346 if (dump_file)
3347 {
3348 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3349 dump_eh_tree (dump_file, cfun);
3350 fprintf (dump_file, "\n\n");
3351 }
3352
3353 sbitmap_free (r_reachable);
3354 sbitmap_free (lp_reachable);
3355
3356 #ifdef ENABLE_CHECKING
3357 verify_eh_tree (cfun);
3358 #endif
3359 }
3360
3361 /* Remove regions that do not have landing pads. This assumes
3362 that remove_unreachable_handlers has already been run, and
3363 that we've just manipulated the landing pads since then. */
3364
3365 static void
3366 remove_unreachable_handlers_no_lp (void)
3367 {
3368 eh_region r;
3369 int i;
3370
3371 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3372 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3373 {
3374 if (dump_file)
3375 fprintf (dump_file, "Removing unreachable region %d\n", i);
3376 remove_eh_handler (r);
3377 }
3378 }
3379
3380 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3381 optimisticaly split all sorts of edges, including EH edges. The
3382 optimization passes in between may not have needed them; if not,
3383 we should undo the split.
3384
3385 Recognize this case by having one EH edge incoming to the BB and
3386 one normal edge outgoing; BB should be empty apart from the
3387 post_landing_pad label.
3388
3389 Note that this is slightly different from the empty handler case
3390 handled by cleanup_empty_eh, in that the actual handler may yet
3391 have actual code but the landing pad has been separated from the
3392 handler. As such, cleanup_empty_eh relies on this transformation
3393 having been done first. */
3394
3395 static bool
3396 unsplit_eh (eh_landing_pad lp)
3397 {
3398 basic_block bb = label_to_block (lp->post_landing_pad);
3399 gimple_stmt_iterator gsi;
3400 edge e_in, e_out;
3401
3402 /* Quickly check the edge counts on BB for singularity. */
3403 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3404 return false;
3405 e_in = EDGE_PRED (bb, 0);
3406 e_out = EDGE_SUCC (bb, 0);
3407
3408 /* Input edge must be EH and output edge must be normal. */
3409 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3410 return false;
3411
3412 /* The block must be empty except for the labels and debug insns. */
3413 gsi = gsi_after_labels (bb);
3414 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3415 gsi_next_nondebug (&gsi);
3416 if (!gsi_end_p (gsi))
3417 return false;
3418
3419 /* The destination block must not already have a landing pad
3420 for a different region. */
3421 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3422 {
3423 gimple stmt = gsi_stmt (gsi);
3424 tree lab;
3425 int lp_nr;
3426
3427 if (gimple_code (stmt) != GIMPLE_LABEL)
3428 break;
3429 lab = gimple_label_label (stmt);
3430 lp_nr = EH_LANDING_PAD_NR (lab);
3431 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3432 return false;
3433 }
3434
3435 /* The new destination block must not already be a destination of
3436 the source block, lest we merge fallthru and eh edges and get
3437 all sorts of confused. */
3438 if (find_edge (e_in->src, e_out->dest))
3439 return false;
3440
3441 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3442 thought this should have been cleaned up by a phicprop pass, but
3443 that doesn't appear to handle virtuals. Propagate by hand. */
3444 if (!gimple_seq_empty_p (phi_nodes (bb)))
3445 {
3446 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3447 {
3448 gimple use_stmt, phi = gsi_stmt (gsi);
3449 tree lhs = gimple_phi_result (phi);
3450 tree rhs = gimple_phi_arg_def (phi, 0);
3451 use_operand_p use_p;
3452 imm_use_iterator iter;
3453
3454 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3455 {
3456 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3457 SET_USE (use_p, rhs);
3458 }
3459
3460 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3461 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3462
3463 remove_phi_node (&gsi, true);
3464 }
3465 }
3466
3467 if (dump_file && (dump_flags & TDF_DETAILS))
3468 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3469 lp->index, e_out->dest->index);
3470
3471 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3472 a successor edge, humor it. But do the real CFG change with the
3473 predecessor of E_OUT in order to preserve the ordering of arguments
3474 to the PHI nodes in E_OUT->DEST. */
3475 redirect_eh_edge_1 (e_in, e_out->dest, false);
3476 redirect_edge_pred (e_out, e_in->src);
3477 e_out->flags = e_in->flags;
3478 e_out->probability = e_in->probability;
3479 e_out->count = e_in->count;
3480 remove_edge (e_in);
3481
3482 return true;
3483 }
3484
3485 /* Examine each landing pad block and see if it matches unsplit_eh. */
3486
3487 static bool
3488 unsplit_all_eh (void)
3489 {
3490 bool changed = false;
3491 eh_landing_pad lp;
3492 int i;
3493
3494 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3495 if (lp)
3496 changed |= unsplit_eh (lp);
3497
3498 return changed;
3499 }
3500
3501 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3502 to OLD_BB to NEW_BB; return true on success, false on failure.
3503
3504 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3505 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3506 Virtual PHIs may be deleted and marked for renaming. */
3507
3508 static bool
3509 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3510 edge old_bb_out, bool change_region)
3511 {
3512 gimple_stmt_iterator ngsi, ogsi;
3513 edge_iterator ei;
3514 edge e;
3515 bitmap rename_virts;
3516 bitmap ophi_handled;
3517
3518 FOR_EACH_EDGE (e, ei, old_bb->preds)
3519 redirect_edge_var_map_clear (e);
3520
3521 ophi_handled = BITMAP_ALLOC (NULL);
3522 rename_virts = BITMAP_ALLOC (NULL);
3523
3524 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3525 for the edges we're going to move. */
3526 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3527 {
3528 gimple ophi, nphi = gsi_stmt (ngsi);
3529 tree nresult, nop;
3530
3531 nresult = gimple_phi_result (nphi);
3532 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3533
3534 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3535 the source ssa_name. */
3536 ophi = NULL;
3537 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3538 {
3539 ophi = gsi_stmt (ogsi);
3540 if (gimple_phi_result (ophi) == nop)
3541 break;
3542 ophi = NULL;
3543 }
3544
3545 /* If we did find the corresponding PHI, copy those inputs. */
3546 if (ophi)
3547 {
3548 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3549 if (!has_single_use (nop))
3550 {
3551 imm_use_iterator imm_iter;
3552 use_operand_p use_p;
3553
3554 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3555 {
3556 if (!gimple_debug_bind_p (USE_STMT (use_p))
3557 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3558 || gimple_bb (USE_STMT (use_p)) != new_bb))
3559 goto fail;
3560 }
3561 }
3562 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3563 FOR_EACH_EDGE (e, ei, old_bb->preds)
3564 {
3565 location_t oloc;
3566 tree oop;
3567
3568 if ((e->flags & EDGE_EH) == 0)
3569 continue;
3570 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3571 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3572 redirect_edge_var_map_add (e, nresult, oop, oloc);
3573 }
3574 }
3575 /* If we didn't find the PHI, but it's a VOP, remember to rename
3576 it later, assuming all other tests succeed. */
3577 else if (!is_gimple_reg (nresult))
3578 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3579 /* If we didn't find the PHI, and it's a real variable, we know
3580 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3581 variable is unchanged from input to the block and we can simply
3582 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3583 else
3584 {
3585 location_t nloc
3586 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3587 FOR_EACH_EDGE (e, ei, old_bb->preds)
3588 redirect_edge_var_map_add (e, nresult, nop, nloc);
3589 }
3590 }
3591
3592 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3593 we don't know what values from the other edges into NEW_BB to use. */
3594 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3595 {
3596 gimple ophi = gsi_stmt (ogsi);
3597 tree oresult = gimple_phi_result (ophi);
3598 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3599 goto fail;
3600 }
3601
3602 /* At this point we know that the merge will succeed. Remove the PHI
3603 nodes for the virtuals that we want to rename. */
3604 if (!bitmap_empty_p (rename_virts))
3605 {
3606 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3607 {
3608 gimple nphi = gsi_stmt (ngsi);
3609 tree nresult = gimple_phi_result (nphi);
3610 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3611 {
3612 mark_virtual_phi_result_for_renaming (nphi);
3613 remove_phi_node (&ngsi, true);
3614 }
3615 else
3616 gsi_next (&ngsi);
3617 }
3618 }
3619
3620 /* Finally, move the edges and update the PHIs. */
3621 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3622 if (e->flags & EDGE_EH)
3623 {
3624 redirect_eh_edge_1 (e, new_bb, change_region);
3625 redirect_edge_succ (e, new_bb);
3626 flush_pending_stmts (e);
3627 }
3628 else
3629 ei_next (&ei);
3630
3631 BITMAP_FREE (ophi_handled);
3632 BITMAP_FREE (rename_virts);
3633 return true;
3634
3635 fail:
3636 FOR_EACH_EDGE (e, ei, old_bb->preds)
3637 redirect_edge_var_map_clear (e);
3638 BITMAP_FREE (ophi_handled);
3639 BITMAP_FREE (rename_virts);
3640 return false;
3641 }
3642
3643 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3644 old region to NEW_REGION at BB. */
3645
3646 static void
3647 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3648 eh_landing_pad lp, eh_region new_region)
3649 {
3650 gimple_stmt_iterator gsi;
3651 eh_landing_pad *pp;
3652
3653 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3654 continue;
3655 *pp = lp->next_lp;
3656
3657 lp->region = new_region;
3658 lp->next_lp = new_region->landing_pads;
3659 new_region->landing_pads = lp;
3660
3661 /* Delete the RESX that was matched within the empty handler block. */
3662 gsi = gsi_last_bb (bb);
3663 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3664 gsi_remove (&gsi, true);
3665
3666 /* Clean up E_OUT for the fallthru. */
3667 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3668 e_out->probability = REG_BR_PROB_BASE;
3669 }
3670
3671 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3672 unsplitting than unsplit_eh was prepared to handle, e.g. when
3673 multiple incoming edges and phis are involved. */
3674
3675 static bool
3676 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3677 {
3678 gimple_stmt_iterator gsi;
3679 tree lab;
3680 edge_iterator ei;
3681 edge e;
3682
3683 /* We really ought not have totally lost everything following
3684 a landing pad label. Given that BB is empty, there had better
3685 be a successor. */
3686 gcc_assert (e_out != NULL);
3687
3688 /* The destination block must not already have a landing pad
3689 for a different region. */
3690 lab = NULL;
3691 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3692 {
3693 gimple stmt = gsi_stmt (gsi);
3694 int lp_nr;
3695
3696 if (gimple_code (stmt) != GIMPLE_LABEL)
3697 break;
3698 lab = gimple_label_label (stmt);
3699 lp_nr = EH_LANDING_PAD_NR (lab);
3700 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3701 return false;
3702 }
3703
3704 /* The destination block must not be a regular successor for any
3705 of the preds of the landing pad. Thus, avoid turning
3706 <..>
3707 | \ EH
3708 | <..>
3709 | /
3710 <..>
3711 into
3712 <..>
3713 | | EH
3714 <..>
3715 which CFG verification would choke on. See PR45172. */
3716 FOR_EACH_EDGE (e, ei, bb->preds)
3717 if (find_edge (e->src, e_out->dest))
3718 return false;
3719
3720 /* Attempt to move the PHIs into the successor block. */
3721 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3722 {
3723 if (dump_file && (dump_flags & TDF_DETAILS))
3724 fprintf (dump_file,
3725 "Unsplit EH landing pad %d to block %i "
3726 "(via cleanup_empty_eh).\n",
3727 lp->index, e_out->dest->index);
3728 return true;
3729 }
3730
3731 return false;
3732 }
3733
3734 /* Return true if edge E_FIRST is part of an empty infinite loop
3735 or leads to such a loop through a series of single successor
3736 empty bbs. */
3737
3738 static bool
3739 infinite_empty_loop_p (edge e_first)
3740 {
3741 bool inf_loop = false;
3742 edge e;
3743
3744 if (e_first->dest == e_first->src)
3745 return true;
3746
3747 e_first->src->aux = (void *) 1;
3748 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
3749 {
3750 gimple_stmt_iterator gsi;
3751 if (e->dest->aux)
3752 {
3753 inf_loop = true;
3754 break;
3755 }
3756 e->dest->aux = (void *) 1;
3757 gsi = gsi_after_labels (e->dest);
3758 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3759 gsi_next_nondebug (&gsi);
3760 if (!gsi_end_p (gsi))
3761 break;
3762 }
3763 e_first->src->aux = NULL;
3764 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
3765 e->dest->aux = NULL;
3766
3767 return inf_loop;
3768 }
3769
3770 /* Examine the block associated with LP to determine if it's an empty
3771 handler for its EH region. If so, attempt to redirect EH edges to
3772 an outer region. Return true the CFG was updated in any way. This
3773 is similar to jump forwarding, just across EH edges. */
3774
3775 static bool
3776 cleanup_empty_eh (eh_landing_pad lp)
3777 {
3778 basic_block bb = label_to_block (lp->post_landing_pad);
3779 gimple_stmt_iterator gsi;
3780 gimple resx;
3781 eh_region new_region;
3782 edge_iterator ei;
3783 edge e, e_out;
3784 bool has_non_eh_pred;
3785 int new_lp_nr;
3786
3787 /* There can be zero or one edges out of BB. This is the quickest test. */
3788 switch (EDGE_COUNT (bb->succs))
3789 {
3790 case 0:
3791 e_out = NULL;
3792 break;
3793 case 1:
3794 e_out = EDGE_SUCC (bb, 0);
3795 break;
3796 default:
3797 return false;
3798 }
3799 gsi = gsi_after_labels (bb);
3800
3801 /* Make sure to skip debug statements. */
3802 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3803 gsi_next_nondebug (&gsi);
3804
3805 /* If the block is totally empty, look for more unsplitting cases. */
3806 if (gsi_end_p (gsi))
3807 {
3808 /* For the degenerate case of an infinite loop bail out. */
3809 if (infinite_empty_loop_p (e_out))
3810 return false;
3811
3812 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3813 }
3814
3815 /* The block should consist only of a single RESX statement. */
3816 resx = gsi_stmt (gsi);
3817 if (!is_gimple_resx (resx))
3818 return false;
3819 gcc_assert (gsi_one_before_end_p (gsi));
3820
3821 /* Determine if there are non-EH edges, or resx edges into the handler. */
3822 has_non_eh_pred = false;
3823 FOR_EACH_EDGE (e, ei, bb->preds)
3824 if (!(e->flags & EDGE_EH))
3825 has_non_eh_pred = true;
3826
3827 /* Find the handler that's outer of the empty handler by looking at
3828 where the RESX instruction was vectored. */
3829 new_lp_nr = lookup_stmt_eh_lp (resx);
3830 new_region = get_eh_region_from_lp_number (new_lp_nr);
3831
3832 /* If there's no destination region within the current function,
3833 redirection is trivial via removing the throwing statements from
3834 the EH region, removing the EH edges, and allowing the block
3835 to go unreachable. */
3836 if (new_region == NULL)
3837 {
3838 gcc_assert (e_out == NULL);
3839 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3840 if (e->flags & EDGE_EH)
3841 {
3842 gimple stmt = last_stmt (e->src);
3843 remove_stmt_from_eh_lp (stmt);
3844 remove_edge (e);
3845 }
3846 else
3847 ei_next (&ei);
3848 goto succeed;
3849 }
3850
3851 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3852 to handle the abort and allow the blocks to go unreachable. */
3853 if (new_region->type == ERT_MUST_NOT_THROW)
3854 {
3855 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3856 if (e->flags & EDGE_EH)
3857 {
3858 gimple stmt = last_stmt (e->src);
3859 remove_stmt_from_eh_lp (stmt);
3860 add_stmt_to_eh_lp (stmt, new_lp_nr);
3861 remove_edge (e);
3862 }
3863 else
3864 ei_next (&ei);
3865 goto succeed;
3866 }
3867
3868 /* Try to redirect the EH edges and merge the PHIs into the destination
3869 landing pad block. If the merge succeeds, we'll already have redirected
3870 all the EH edges. The handler itself will go unreachable if there were
3871 no normal edges. */
3872 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3873 goto succeed;
3874
3875 /* Finally, if all input edges are EH edges, then we can (potentially)
3876 reduce the number of transfers from the runtime by moving the landing
3877 pad from the original region to the new region. This is a win when
3878 we remove the last CLEANUP region along a particular exception
3879 propagation path. Since nothing changes except for the region with
3880 which the landing pad is associated, the PHI nodes do not need to be
3881 adjusted at all. */
3882 if (!has_non_eh_pred)
3883 {
3884 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3885 if (dump_file && (dump_flags & TDF_DETAILS))
3886 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3887 lp->index, new_region->index);
3888
3889 /* ??? The CFG didn't change, but we may have rendered the
3890 old EH region unreachable. Trigger a cleanup there. */
3891 return true;
3892 }
3893
3894 return false;
3895
3896 succeed:
3897 if (dump_file && (dump_flags & TDF_DETAILS))
3898 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3899 remove_eh_landing_pad (lp);
3900 return true;
3901 }
3902
3903 /* Do a post-order traversal of the EH region tree. Examine each
3904 post_landing_pad block and see if we can eliminate it as empty. */
3905
3906 static bool
3907 cleanup_all_empty_eh (void)
3908 {
3909 bool changed = false;
3910 eh_landing_pad lp;
3911 int i;
3912
3913 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3914 if (lp)
3915 changed |= cleanup_empty_eh (lp);
3916
3917 return changed;
3918 }
3919
3920 /* Perform cleanups and lowering of exception handling
3921 1) cleanups regions with handlers doing nothing are optimized out
3922 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3923 3) Info about regions that are containing instructions, and regions
3924 reachable via local EH edges is collected
3925 4) Eh tree is pruned for regions no longer neccesary.
3926
3927 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3928 Unify those that have the same failure decl and locus.
3929 */
3930
3931 static unsigned int
3932 execute_cleanup_eh_1 (void)
3933 {
3934 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3935 looking up unreachable landing pads. */
3936 remove_unreachable_handlers ();
3937
3938 /* Watch out for the region tree vanishing due to all unreachable. */
3939 if (cfun->eh->region_tree && optimize)
3940 {
3941 bool changed = false;
3942
3943 changed |= unsplit_all_eh ();
3944 changed |= cleanup_all_empty_eh ();
3945
3946 if (changed)
3947 {
3948 free_dominance_info (CDI_DOMINATORS);
3949 free_dominance_info (CDI_POST_DOMINATORS);
3950
3951 /* We delayed all basic block deletion, as we may have performed
3952 cleanups on EH edges while non-EH edges were still present. */
3953 delete_unreachable_blocks ();
3954
3955 /* We manipulated the landing pads. Remove any region that no
3956 longer has a landing pad. */
3957 remove_unreachable_handlers_no_lp ();
3958
3959 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3960 }
3961 }
3962
3963 return 0;
3964 }
3965
3966 static unsigned int
3967 execute_cleanup_eh (void)
3968 {
3969 int ret = execute_cleanup_eh_1 ();
3970
3971 /* If the function no longer needs an EH personality routine
3972 clear it. This exposes cross-language inlining opportunities
3973 and avoids references to a never defined personality routine. */
3974 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
3975 && function_needs_eh_personality (cfun) != eh_personality_lang)
3976 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
3977
3978 return ret;
3979 }
3980
3981 static bool
3982 gate_cleanup_eh (void)
3983 {
3984 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3985 }
3986
3987 struct gimple_opt_pass pass_cleanup_eh = {
3988 {
3989 GIMPLE_PASS,
3990 "ehcleanup", /* name */
3991 gate_cleanup_eh, /* gate */
3992 execute_cleanup_eh, /* execute */
3993 NULL, /* sub */
3994 NULL, /* next */
3995 0, /* static_pass_number */
3996 TV_TREE_EH, /* tv_id */
3997 PROP_gimple_lcf, /* properties_required */
3998 0, /* properties_provided */
3999 0, /* properties_destroyed */
4000 0, /* todo_flags_start */
4001 TODO_dump_func /* todo_flags_finish */
4002 }
4003 };
4004 \f
4005 /* Verify that BB containing STMT as the last statement, has precisely the
4006 edge that make_eh_edges would create. */
4007
4008 DEBUG_FUNCTION bool
4009 verify_eh_edges (gimple stmt)
4010 {
4011 basic_block bb = gimple_bb (stmt);
4012 eh_landing_pad lp = NULL;
4013 int lp_nr;
4014 edge_iterator ei;
4015 edge e, eh_edge;
4016
4017 lp_nr = lookup_stmt_eh_lp (stmt);
4018 if (lp_nr > 0)
4019 lp = get_eh_landing_pad_from_number (lp_nr);
4020
4021 eh_edge = NULL;
4022 FOR_EACH_EDGE (e, ei, bb->succs)
4023 {
4024 if (e->flags & EDGE_EH)
4025 {
4026 if (eh_edge)
4027 {
4028 error ("BB %i has multiple EH edges", bb->index);
4029 return true;
4030 }
4031 else
4032 eh_edge = e;
4033 }
4034 }
4035
4036 if (lp == NULL)
4037 {
4038 if (eh_edge)
4039 {
4040 error ("BB %i can not throw but has an EH edge", bb->index);
4041 return true;
4042 }
4043 return false;
4044 }
4045
4046 if (!stmt_could_throw_p (stmt))
4047 {
4048 error ("BB %i last statement has incorrectly set lp", bb->index);
4049 return true;
4050 }
4051
4052 if (eh_edge == NULL)
4053 {
4054 error ("BB %i is missing an EH edge", bb->index);
4055 return true;
4056 }
4057
4058 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4059 {
4060 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4061 return true;
4062 }
4063
4064 return false;
4065 }
4066
4067 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4068
4069 DEBUG_FUNCTION bool
4070 verify_eh_dispatch_edge (gimple stmt)
4071 {
4072 eh_region r;
4073 eh_catch c;
4074 basic_block src, dst;
4075 bool want_fallthru = true;
4076 edge_iterator ei;
4077 edge e, fall_edge;
4078
4079 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4080 src = gimple_bb (stmt);
4081
4082 FOR_EACH_EDGE (e, ei, src->succs)
4083 gcc_assert (e->aux == NULL);
4084
4085 switch (r->type)
4086 {
4087 case ERT_TRY:
4088 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4089 {
4090 dst = label_to_block (c->label);
4091 e = find_edge (src, dst);
4092 if (e == NULL)
4093 {
4094 error ("BB %i is missing an edge", src->index);
4095 return true;
4096 }
4097 e->aux = (void *)e;
4098
4099 /* A catch-all handler doesn't have a fallthru. */
4100 if (c->type_list == NULL)
4101 {
4102 want_fallthru = false;
4103 break;
4104 }
4105 }
4106 break;
4107
4108 case ERT_ALLOWED_EXCEPTIONS:
4109 dst = label_to_block (r->u.allowed.label);
4110 e = find_edge (src, dst);
4111 if (e == NULL)
4112 {
4113 error ("BB %i is missing an edge", src->index);
4114 return true;
4115 }
4116 e->aux = (void *)e;
4117 break;
4118
4119 default:
4120 gcc_unreachable ();
4121 }
4122
4123 fall_edge = NULL;
4124 FOR_EACH_EDGE (e, ei, src->succs)
4125 {
4126 if (e->flags & EDGE_FALLTHRU)
4127 {
4128 if (fall_edge != NULL)
4129 {
4130 error ("BB %i too many fallthru edges", src->index);
4131 return true;
4132 }
4133 fall_edge = e;
4134 }
4135 else if (e->aux)
4136 e->aux = NULL;
4137 else
4138 {
4139 error ("BB %i has incorrect edge", src->index);
4140 return true;
4141 }
4142 }
4143 if ((fall_edge != NULL) ^ want_fallthru)
4144 {
4145 error ("BB %i has incorrect fallthru edge", src->index);
4146 return true;
4147 }
4148
4149 return false;
4150 }